WO2009081725A1 - Silicon reclamation method - Google Patents

Silicon reclamation method Download PDF

Info

Publication number
WO2009081725A1
WO2009081725A1 PCT/JP2008/072329 JP2008072329W WO2009081725A1 WO 2009081725 A1 WO2009081725 A1 WO 2009081725A1 JP 2008072329 W JP2008072329 W JP 2008072329W WO 2009081725 A1 WO2009081725 A1 WO 2009081725A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
solid content
recovery
cleaning
acid solution
Prior art date
Application number
PCT/JP2008/072329
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Fujita
Kimihiko Kajimoto
Yoshiyuki Hojo
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to DE112008003423T priority Critical patent/DE112008003423T5/en
Publication of WO2009081725A1 publication Critical patent/WO2009081725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the present invention relates to a method for regenerating silicon from waste slurry used in a silicon wafer manufacturing process or the like.
  • the recycled silicon obtained by the method of the present invention has high purity and can be suitably used as a solar cell material.
  • silicon wafer In the manufacturing process of a thin plate made of silicon single crystal or polycrystal (hereinafter referred to as “silicon wafer”) widely used for IC chips and solar cells, about 60% of the raw material silicon is waste liquid by cutting, chamfering or polishing. The cost to the product and the environmental impact associated with disposal (this waste liquid is generally disposed of in landfill after concentrating and collecting some materials) is a major problem. It has become.
  • solid content is recovered from waste slurry discharged from a process of cutting or polishing a silicon single crystal or polycrystalline ingot using a slurry in which abrasive grains are dispersed in a coolant, and the recovered solid content
  • organic solvent cleaning to remove coolant, water cleaning to wash away organic solvent, metals (iron, copper, etc.) contained in waste slurry are dissolved in acid aqueous solution (hydrofluoric acid aqueous solution, etc.) Acid cleaning for removing the water and water cleaning for washing away the acid aqueous solution are performed.
  • Patent Document 1 describes that the solid content inevitably remains in the solid content obtained by the disclosed recovery method, and further purification is necessary to obtain silicon for solar cells from this solid content. It is stated that. JP 2001-278612 A
  • the present inventors have found that the solid content for silicon recovery contains a large amount of phosphorus that adversely affects the characteristics of the solar cell. Thus, it has been found that it is difficult to obtain regenerated silicon that can be preferably used as solar cell silicon simply by removing metal (iron, copper, aluminum, etc.) from the solid content for silicon recovery.
  • the present invention has been made in view of such circumstances, and provides a silicon regeneration method capable of efficiently removing phosphorus contained in the solid content for silicon recovery.
  • phosphorus contained in the solid content for silicon recovery is derived from, for example, metal scraps such as wire scraps generated from the wire used for cutting the silicon wafer (which cannot be completely removed even by cleaning and remain unavoidably) This is considered (specifically, described later).
  • a silicon slurry using a slurry containing abrasive grains and a coolant or a silicon lump or a silicon wafer is cut or polished to solid-liquid separate a waste slurry in which silicon scrap is mixed into the slurry or a concentrated component thereof.
  • a process is provided.
  • phosphorus contained in the solid content for silicon recovery can be removed relatively easily. This will be described below.
  • phosphorus (or phosphorus compound) is directly removed from the metal scrap at a temperature lower than the melting point of silicon without melting the metal scrap containing phosphorus in silicon. This makes it possible to remove phosphorus contained in the solid content for silicon recovery relatively easily.
  • the present inventors have found that the metal impurities remaining in the solids for silicon recovery contain a lot of phosphorus that adversely affects the characteristics of the solar cell. Has been found to greatly deteriorate. Furthermore, after the silicon recovery solid content is washed with a cleaning solution comprising an acid solution, the silicon recovery solid content is baked at a temperature of 200 ° C. or higher and 1000 ° C. or lower, so that phosphorus in the silicon recovery solid content is efficiently removed. The inventors have found that it can be removed, and have completed the present invention.
  • the silicon recycling method of the present invention is a waste slurry in which silicon waste is mixed into a slurry by cutting or polishing a silicon lump or a silicon wafer using a slurry containing abrasive grains and a coolant, or a concentrated portion thereof.
  • the waste slurry is a slurry in which silicon scraps are mixed by cutting or polishing a silicon lump or a silicon wafer using a slurry containing abrasive grains and coolant.
  • the concentrated portion of the waste slurry is a concentrate of the waste slurry.
  • the silicon lump is a lump of silicon, for example, a silicon ingot.
  • the shape of the silicon lump is not particularly limited, but in an example, it is a columnar shape or a quadrangular prism shape.
  • An example of the cutting device is a multi-wire saw device (hereinafter referred to as “MWS”) that is widely used as a silicon ingot cutting device.
  • MWS is a cutting device that wraps and winds a wire between a plurality of rollers, runs slurry while supplying slurry containing abrasive grains and coolant, and presses an object to be cut against the wire for cutting. .
  • An example of a polishing apparatus is a wheel-type polishing apparatus, which is an apparatus that performs polishing by rotating a wheel having abrasive grains fixed with an adhesive and moving a silicon ingot.
  • a silicon ingot is cut or polished using these devices, silicon scraps, crushed abrasive grains and non-crushed abrasive grains in the slurry, and metal scraps that are worn pieces of wires and polishing wheels, etc. It will be mixed.
  • the results of analyzing the composition of typical silicon ingots, wires and metal wheels are shown in Table 1. Although silicon contains almost no metal impurities and phosphorus, it shows that the wire and polishing wheel contain a lot of phosphorus in addition to metal impurities.
  • the slurry is composed of abrasive grains and a coolant that disperses the abrasive grains.
  • the type of abrasive grains is not limited and is made of, for example, SiC, diamond, CBN, alumina, or the like.
  • the type of the coolant is not limited.
  • an oil-based coolant oil based on mineral oil
  • an aqueous coolant a water-based glycol-based solvent (for example, ethylene glycol, propylene glycol or polyethylene glycol), surfactant) Or an organic acid added thereto).
  • the coolant is mainly composed of an organic solvent (water-soluble organic solvent) such as ethylene glycol, propylene glycol or polyethylene glycol, and an additive such as an organic acid or bentonite is added thereto at 10 wt% or less (preferably 3 wt% or less). It may be.
  • an organic solvent water-soluble organic solvent
  • an additive such as an organic acid or bentonite is added thereto at 10 wt% or less (preferably 3 wt% or less). It may be.
  • the phrase “having the organic solvent as a main component” here means that, for example, the coolant may contain 20 wt% or less (preferably 15 wt% or less) of water.
  • Solid-liquid separation step First, the waste slurry or its concentrated component is subjected to solid-liquid separation in the separation unit 1 to obtain a solid content for silicon recovery.
  • the configuration of the separation unit 1 is not particularly limited as long as it is a configuration capable of solid-liquid separation of the waste slurry or its concentrated component to obtain a solid content for silicon recovery.
  • the separation unit 1 is, for example, a centrifuge.
  • the solid-liquid separation device such as a filtration device or a distillation device is used alone or in combination of two or more thereof in series. Specific examples of the combination are (1) a centrifuge and a distillation device, (2) a centrifuge and a filtration device, or (3) a filtration device and a distillation device.
  • each separation unit may send either the separated liquid or solid content to the next solid-liquid separation device, and a part of liquid and a mixture of solids or a part of solid and a mixture of liquids. You may send to the following solid-liquid separator.
  • the silicon recovery solid content is cleaned with a cleaning liquid made of an acid solution.
  • the cleaning unit 2 includes a cleaning bowl 2a and a stirrer 2b provided in the cleaning bowl 2a.
  • This acid cleaning step is (1) removing residual organic substances derived from coolant such as glycol solvents and additives contained in the solid content for silicon recovery by dissolving them in an acid solution, and (2) wear pieces of wires. It is performed for the purpose of dissolving and removing metal scraps in an acid solution.
  • the particle size of the solids for silicon recovery is preferably in the range of 0.01 ⁇ m or more and less than 10 mm. More preferably, it is in the range of 0.1 ⁇ m or more and less than 5 ⁇ m.
  • particle size means a value measured by a method according to JIS R1629.
  • the “powder having a particle size of less than X ⁇ m” means a powder having a particle size of 98% of particles in the powder of less than X ⁇ m.
  • the “powder of powder Y ⁇ m or more and less than Z ⁇ m” means a powder remaining after removing “powder of particle size less than Y ⁇ m” from “powder of particle size less than Z ⁇ m”.
  • the acid solution is a solution obtained by dissolving an acidic substance in a solvent containing water.
  • the pH of the acid solution may be less than 7, but is preferably 0-4.
  • the pH of the acid solution is, for example, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, or 4.
  • the pH of the acid solution may be within a range between any two of the numerical values exemplified herein.
  • the solvent of the acid solution preferably consists essentially of water, but may contain components other than water.
  • the ratio of water in the solvent of the acid solution is preferably 50 wt% or more, for example, 50, 60, 70, 80, 90, 95, 99, 99.9, 100 wt%.
  • the ratio of water may be within a range between any two of the numerical values exemplified here.
  • Components other than water in the solvent preferably have compatibility with the coolant and have a boiling point lower than that of the coolant, for example, 1 to 6 carbon atoms (preferably 1, 2, 3, 4, 5, and 6 in the range between any two of 6) or a ketone having 3 to 6 carbon atoms (preferably in the range between any two of 3, 4, 5 and 6). In this case, it becomes easy to remove the residual coolant by dissolving it in the acid solution.
  • Examples of acidic substances include inorganic or organic acidic substances.
  • examples of inorganic acidic substances include hydrogen chloride, sulfuric acid, nitric acid, hydrogen fluoride, and hydrogen bromide.
  • examples of the organic acidic substance include citric acid, acetic acid, formic acid, oxalic acid, and lactic acid.
  • the acid solution only needs to contain at least one kind of acidic substance, and may contain both an inorganic acidic substance and an organic acidic substance.
  • an acid solution containing only an inorganic acidic substance is called an inorganic acid solution
  • an acid solution containing only an organic acidic substance is called an organic acid solution.
  • the acid solution is preferably composed of an inorganic acid solution. This is because the phosphorus compound produced by the reaction with the inorganic acid generally has a lower boiling point than the phosphorus compound produced by the reaction with the organic acid.
  • the acid solution is preferably non-oxidizing with respect to silicon.
  • “non-oxidizing” means that the oxidizing power of silicon is weaker than that of sulfuric acid.
  • the acid solution is non-oxidizing with respect to silicon, it is possible to suppress a decrease in silicon recovery rate due to silicon oxidation.
  • Examples of the acid solution that is non-oxidizing with respect to silicon include hydrochloric acid, hydrofluoric acid, citric acid, and an aqueous ammonium fluoride solution.
  • the acid solution may contain hydrogen peroxide.
  • the ratio of hydrogen peroxide is, for example, 0.1 to 5 wt%, and specifically, for example, 0.1, 0.5, 1, 2, 3, 4, 5 wt%.
  • the ratio of hydrogen peroxide may be in a range between any two of the numerical values exemplified here.
  • Neutralization treatment step Next, the washing solution after washing the solids for silicon recovery is transferred to the neutralization treatment vessel 3 to neutralize the acid solution.
  • This neutralization treatment step is performed for the purpose of preventing the device from corroding in the next solid-liquid separation step, but may be omitted depending on the configuration of the device.
  • a solvent such as water may be added to the cleaning solution to dilute the acid solution, thereby reducing the concentration of protons in the acid solution to prevent corrosion of the apparatus.
  • the neutralization method is not particularly limited.
  • basic substances such as sodium hydroxide, calcium hydroxide, and ammonia (dissolve in a solvent such as water to release hydroxide ions or become proton acceptors).
  • base solution a method of adding a substance) solution
  • the pH value of the cleaning solution after neutralization or dilution is not particularly limited, but is 2 to 4, for example. In this case, it is possible to suppress the precipitation of phosphorus as a hardly soluble solid material that is difficult to remove.
  • Separation / Washing Step Next, in the separation / water washing section 4, the washing liquid after acid washing and the solid content for silicon recovery are separated into solid and liquid, and washed with pure water to obtain the solid content for silicon collection after washing. Note that this step may be omitted and the cleaning liquid may be volatilized in, for example, a drying step or a baking step.
  • the separation / water washing unit 4 is configured by combining two or more pure water supply devices in series with a solid-liquid separation device such as a centrifuge, a filtration device, or a distillation device, for example.
  • the cleaning unit 5 includes a cleaning bowl 5a and a stirrer 5b provided in the cleaning bowl 5a.
  • the impurity removal effect can be further enhanced by the cleaning in the cleaning unit 5.
  • a cleaning liquid made of pure water, an inorganic acid solution or an organic solvent can be used.
  • the inorganic acid solution is preferably non-oxidizing with respect to silicon.
  • the organic solvent preferably has a boiling point lower than the firing temperature in the firing step. In this case, since the organic solvent is removed at a temperature lower than the firing temperature, generation of SiC is prevented.
  • the organic solvent preferably has compatibility with the coolant and has a lower boiling point than the coolant.
  • the organic solvent has 1 to 6 carbon atoms (preferably any one of 1, 2, 3, 4, 5, and 6). Or a ketone having 3 to 6 carbon atoms (preferably, a range between any two of 3, 4, 5 and 6). In this case, it becomes easy to remove the residual coolant by dissolving it in an organic solvent.
  • the separation / water washing unit 6 is configured by combining two or more solid-liquid separation devices such as a centrifuge, a filtration device, or a distillation device, and two or more pure water supply devices in series.
  • Drying step 7 in the dryer 7, the solid content for silicon recovery after washing obtained in the steps so far is dried. Drying can be performed, for example, by heating the solid content for silicon recovery or reducing the ambient atmosphere.
  • the solid content for silicon recovery may be naturally dried, or the solid content for silicon recovery may be dried at the same time as another step such as a baking step described later. Therefore, this step can be omitted as an independent step.
  • baking process Next, in the baking apparatus 8, baking of the solid content for silicon
  • a drum type airflow dryer etc. can be used, for example.
  • the solid content for silicon recovery is baked by blowing a gas stream of heated gas to the solid content for silicon recovery while rotating and rotating the solid content for silicon recovery by rotating the drum.
  • This firing step is performed by (1) removing residual organic substances derived from coolant such as glycol solvent and additives in solids before washing, and (2) recovering silicon. The purpose is to remove phosphorus remaining in the solid content.
  • the firing temperature is set to 200 ° C. or more and 1000 ° C. or less.
  • the firing temperature is 200 ° C. or more, phosphorus is easily removed by volatilization of phosphorus (single phosphorus or a phosphorus-containing compound).
  • the firing temperature is 1000 ° C. or lower, the oxidation of silicon is suppressed and the formation of an alloy between phosphorus and silicon is suppressed. As a result, the silicon recovery rate is improved and phosphorus is efficiently removed.
  • the firing temperature is 200 ° C. or more and 1000 ° C. or less, for example, 300 ° C. or more and 800 ° C. or less. Specifically, for example, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 ° C.
  • the firing temperature may be within a range between any two of the numerical values exemplified here.
  • the firing time is, for example, 0.5 to 10 hours. Specifically, for example, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8 9, 10 hours.
  • the firing time may be within a range between any two of the numerical values exemplified here. In one example, it is preferable to perform treatment for 1 hour or more per 200 kg of the solid content for recovery.
  • Calcination is preferably performed in an inert gas atmosphere in order to further suppress oxidation of silicon during calcination.
  • the inert gas is, for example, a rare gas (eg, argon) or nitrogen gas.
  • the firing is preferably performed in a reduced pressure atmosphere.
  • the atmospheric pressure during decompression is, for example, 0.1 to 0.9 atm, and specifically, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0 0.7, 0.8 and 0.9 atm.
  • the atmospheric pressure at the time of depressurization may be within a range between any two of the numerical values exemplified here.
  • the solid content for silicon recovery from which phosphorus has been removed can be obtained.
  • the obtained solid content for silicon recovery can be recovered as recycled silicon.
  • Heating / refining step Further, the solid content for recovering silicon from which phosphorus has been removed is melted in the heating / purifying device 9 at a temperature equal to or higher than the melting point of silicon (generally 1410 ° C to 1420 ° C) and then solidified Alternatively, a silicon lump may be used.
  • the heating / purification device 9 is preferably a hermetically sealed system and suppresses the oxidation of silicon, and has an inert gas introduction part. The obtained silicon mass can be recovered as recycled silicon.
  • the silicon lump can be purified to remove the remaining metal components.
  • the purification method for example, various known purification techniques (for example, removal of segregated impurities by unidirectional solidification) at the time of conventional polycrystalline silicon casting can be used. As a result, a silicon lump from which impurities such as metal components have been removed can be obtained and recovered as recycled silicon.
  • the heating / refining device 9 includes, for example, a vacuum heating and melting furnace and two or more unidirectional solidification furnaces combined in series.
  • the pulverization step refers to all known methods for pulverizing the solid content for silicon recovery to a specific size, and devices such as a ball mill, a jet mill, and a vibration vacuum dryer can be used.
  • the molding process can be performed as a pretreatment for melting to increase bulk specific gravity and increase transport efficiency, or to increase thermal conductivity and facilitate melting, and pressurizes silicon-containing powder to form a plate, An apparatus having any configuration can be used as long as the apparatus granulates in a block shape, a pellet shape, or the like.
  • the powder separation process includes, for example, classification of particles based on physical parameters such as particle size and density using an inertia classifier or a centrifugal classifier, and a method of removing magnetic impurities such as iron using a magnet. .
  • Example 1 Silicon was regenerated in the above-described process using the waste slurry obtained by cutting the solar cell wafer using a wire saw.
  • Example 1 To the solid content, 500 L of pure water was added and again stirred and washed for 1 hour, followed by filtration to recover the solid content. The solid content thus obtained was dried by heating to 60 ° C. in 1 atm air and holding for 2 hours. Next, the sample was thrown into the drum of a drum-type baking machine that performs baking while rotating the inclined drum slowly.
  • the drum is provided with a heating tube, and the temperature of the firing object can be controlled by feeding heated nitrogen gas into the drum.
  • the firing target was controlled to be in the range of 400 to 500 ° C., and firing was performed for 1.5 hours to obtain a dry powder.
  • the dry powder is heated to 1800 ° C. at a rate of 300 ° C./hour in an argon 1 atm atmosphere using an externally heated blast furnace and melted by holding for 2 hours to obtain 60 kg of silicon lump. It was.
  • Table 2 shows the results of analyzing the concentration of typical impurities for the solid content obtained from the waste slurry, the solid content after washing twice, the dried powder after firing, and the silicon lump after melting in Example 1. It can be seen that impurities were reduced by washing, but the concentration of phosphorus (P) was greatly reduced by firing. Since the concentration of phosphorus is greatly reduced by firing, the silicon mass after melting can be made into a solar cell material by removing the remaining metal by an appropriate method without removing phosphorus particularly under vacuum melting. .
  • purification is performed by unidirectional solidification in an atmosphere of 1 atm of argon, sliced into a polycrystalline silicon substrate, and a solar cell is created.
  • the conversion efficiency from sunlight to electrical energy is 13 to 14.2%.
  • a characteristic close to that of a normal commercial product was obtained.
  • Comparative Example 1 In Comparative Example 1, the solid content obtained by filtering the waste slurry was subjected to the same method as in Example 1 up to twice washing, solid-liquid separation, and drying. In this case, melting was performed in the same manner as in Example 1 using an externally heated blast furnace as it was without firing with a firing machine.
  • Table 3 shows the results of analysis of the silicon mass after melting in Comparative Example 1. Compared with Example 1, the residue of phosphorus is particularly large. This is presumed to be because phosphorus was taken into silicon and was not efficiently removed because the holding time was below the melting point of silicon.
  • Comparative Example 1 As in Example 1, purification by unidirectional solidification was performed in an atmosphere of 1 atm of argon, and a solar cell was created by slicing to a polycrystalline silicon substrate. 1% or less. This is considered to be improved by going through a dephosphorization step, but in this case, the production cost is remarkably increased.

Abstract

A silicon reclamation method includes a step wherein a waste slurry or its concentration is separated into a solid and a liquid, and a solid material containing silicon particles is obtained for recovering silicon. In the waste slurry, the silicon particles are mixed with a slurry when a silicon ingot or a silicon wafer is cut or polished by using the slurry which contains abrasive grains and a coolant. The method also includes a step wherein the solid material is cleaned with a cleaning solution composed of an acid solution, and baking the solid material at a temperature of 200°C or higher but not higher than 1,000°C after cleaning.

Description

シリコン再生方法Silicon regeneration method
 本発明は、シリコンウェハの製造工程等に使用された廃スラリーからのシリコン再生方法に関する。本発明の方法によって得られる再生シリコンは、純度が高く太陽電池用材料として好適に使用できる。 The present invention relates to a method for regenerating silicon from waste slurry used in a silicon wafer manufacturing process or the like. The recycled silicon obtained by the method of the present invention has high purity and can be suitably used as a solar cell material.
 ICチップや太陽電池用として広く用いられるシリコン単結晶又は多結晶からなる薄板(以下、「シリコンウェハ」と呼ぶ。)の製造工程において、原料シリコンの約60%が切断、面取り又は研磨等により廃液中に廃棄されており、製品に対するコスト負荷ならびに廃棄処分(この廃液は濃縮処理や一部材料の回収の後、埋め立て処分されるのが一般的である)に伴う環境への負荷が大きな問題となっている。 In the manufacturing process of a thin plate made of silicon single crystal or polycrystal (hereinafter referred to as “silicon wafer”) widely used for IC chips and solar cells, about 60% of the raw material silicon is waste liquid by cutting, chamfering or polishing. The cost to the product and the environmental impact associated with disposal (this waste liquid is generally disposed of in landfill after concentrating and collecting some materials) is a major problem. It has become.
 また、特に近年、太陽電池の生産量は増加の一途をたどっており、原料シリコンの需要も急激な伸びが見られる。このため太陽電池用のシリコンの不足が顕在化している。 In particular, in recent years, the production of solar cells has been steadily increasing, and the demand for raw material silicon has been increasing rapidly. For this reason, the shortage of silicon for solar cells has become apparent.
 そこで従来、上記の切断又は研磨といったシリコンウェハの製造時に発生する廃液からシリコンを回収する方法が提案されてきた。 Therefore, conventionally, a method for recovering silicon from waste liquid generated during the production of silicon wafers such as cutting or polishing has been proposed.
 例えば特許文献1においては、砥粒をクーラントに分散させたスラリーを用いてシリコン単結晶又は多結晶のインゴットを切断又は研磨する処理から排出される廃スラリーから固形分を回収し、回収した固形分に対して、クーラント等を除去するための有機溶剤洗浄、有機溶剤を洗い流すための水洗浄、廃スラリーに含まれていた金属(鉄、銅など)を酸水溶液(フッ酸水溶液など)に溶解させて除去するための酸洗浄、酸水溶液を洗い流すための水洗浄等が行われている。 For example, in Patent Document 1, solid content is recovered from waste slurry discharged from a process of cutting or polishing a silicon single crystal or polycrystalline ingot using a slurry in which abrasive grains are dispersed in a coolant, and the recovered solid content In contrast, organic solvent cleaning to remove coolant, water cleaning to wash away organic solvent, metals (iron, copper, etc.) contained in waste slurry are dissolved in acid aqueous solution (hydrofluoric acid aqueous solution, etc.) Acid cleaning for removing the water and water cleaning for washing away the acid aqueous solution are performed.
 ただし特許文献1には、開示された回収方法によって得られた固形分には不可避的に金属分が残留すると記載されており、この固形分から太陽電池用シリコンを得るためには、さらに精製が必要であると述べられている。
特開2001-278612号公報
However, Patent Document 1 describes that the solid content inevitably remains in the solid content obtained by the disclosed recovery method, and further purification is necessary to obtain silicon for solar cells from this solid content. It is stated that.
JP 2001-278612 A
 しかしながら本発明者らは、シリコン回収用固形分には太陽電池の特性に悪影響を及ぼすリンが多く含まれていることを見出した。このことにより、シリコン回収用固形分から金属(鉄、銅、アルミニウムなど)を除去するだけでは太陽電池用シリコンとして好ましく使用できる再生シリコンを得ることが難しいことが分かった。 However, the present inventors have found that the solid content for silicon recovery contains a large amount of phosphorus that adversely affects the characteristics of the solar cell. Thus, it has been found that it is difficult to obtain regenerated silicon that can be preferably used as solar cell silicon simply by removing metal (iron, copper, aluminum, etc.) from the solid content for silicon recovery.
 本発明はこのような事情に鑑みてなされたものであり、シリコン回収用固形分に含まれるリンを効率的に除去することができるシリコン再生方法を提供するものである。 The present invention has been made in view of such circumstances, and provides a silicon regeneration method capable of efficiently removing phosphorus contained in the solid content for silicon recovery.
 なお、シリコン回収用固形分に含まれるリンは、たとえばシリコンウェハの切断に用いたワイヤから発生するワイヤ屑などの金属屑(洗浄によっても完全には除去できず、不可避的に残留する)に由来すると考えられる(具体的には後述)。 In addition, phosphorus contained in the solid content for silicon recovery is derived from, for example, metal scraps such as wire scraps generated from the wire used for cutting the silicon wafer (which cannot be completely removed even by cleaning and remain unavoidably) This is considered (specifically, described later).
 本発明のシリコン再生方法は、砥粒とクーラントを含むスラリーを用いたシリコン塊又はシリコンウェハの切断又は研磨によって前記スラリーにシリコン屑が混入された廃スラリー又はその濃縮分を固液分離してシリコン屑を含有するシリコン回収用固形分を取得し、前記シリコン回収用固形分を酸溶液からなる洗浄液で洗浄し、前記洗浄後に200℃以上1000℃以下の温度で前記シリコン回収用固形分を焼成する工程を備えることを特徴とする。 In the silicon recycling method of the present invention, a silicon slurry using a slurry containing abrasive grains and a coolant or a silicon lump or a silicon wafer is cut or polished to solid-liquid separate a waste slurry in which silicon scrap is mixed into the slurry or a concentrated component thereof. Obtaining solids for collecting silicon containing scraps, washing the solids for collecting silicon with a cleaning solution comprising an acid solution, and firing the solids for collecting silicon at a temperature of 200 ° C. to 1000 ° C. after the washing. A process is provided.
 本発明によれば、シリコン回収用固形分に含まれるリンを比較的簡単に除去することができる。このことを以下に説明する。 According to the present invention, phosphorus contained in the solid content for silicon recovery can be removed relatively easily. This will be described below.
 従来、シリコン中のリンを除去するための方法として、シリコンを融解して減圧状態で一定時間保持することにより、リンを蒸発除去する方法が広く用いられてきた。 Conventionally, as a method for removing phosphorus in silicon, a method of evaporating and removing phosphorus by melting silicon and holding it under reduced pressure for a certain time has been widely used.
 しかし、この従来方法をシリコン回収用固形分に適用すると、リンを含む金属屑をシリコンと共に溶融するので、リンをシリコン中に融解させることになる。シリコンに融解した金属(鉄など)は一方向凝固などで比較的容易に除去できるのに対し、シリコンに融解したリンを除去するためには上記のようにシリコンを融解した状態で長時間保持する必要がある。このため、大きなエネルギーを要し、再生コストを大きく上昇させるおそれがある。 However, when this conventional method is applied to the solid content for silicon recovery, the metal waste containing phosphorus is melted together with silicon, so that phosphorus is melted in silicon. While metals melted in silicon (such as iron) can be removed relatively easily by unidirectional solidification, etc., in order to remove phosphorus melted in silicon, as described above, the silicon is melted and held for a long time. There is a need. For this reason, big energy is required and there exists a possibility of raising a regeneration cost large.
 これに対し、本発明によれば、リンを含む金属屑をシリコン中に融解させることなく、シリコン融点未満の温度において金属屑からリン(またはリン化合物)を直接除去する。このことにより、シリコン回収用固形分に含まれるリンを比較的簡単に除去できる。 On the other hand, according to the present invention, phosphorus (or phosphorus compound) is directly removed from the metal scrap at a temperature lower than the melting point of silicon without melting the metal scrap containing phosphorus in silicon. This makes it possible to remove phosphorus contained in the solid content for silicon recovery relatively easily.
本発明の一実施形態のシリコン再生方法の手順及びこの方法に用いる装置の概略断面を示した図である。It is the figure which showed the outline of the procedure of the silicon | silicone reproduction | regeneration method of one Embodiment of this invention, and the apparatus used for this method.
符号の説明Explanation of symbols
1:分離部(濾過装置) 2:洗浄部 2a:洗浄槽 2b:攪拌機 3:中和処理漕 4:分離・水洗部(濾過・洗浄装置) 5:洗浄部 5a:洗浄槽 5b:攪拌機 6:分離・水洗部(濾過・洗浄装置)7:乾燥機 8:焼成装置 9:加熱・精製装置 1: Separation part (filtering device) 2: Washing part 2a: Washing tank 2b: Stirrer 3: Neutralizer IV 4: Separation / water washing part (filtration / washing apparatus) 5: Washing part 5a: Washing tank 5b: Stirrer 6: Separation / water washing part (filtration / washing device) 7: dryer 8: baking device 9: heating / purification device
 本発明者らは、鋭意研究を行った結果、シリコン回収用固形分に残留する金属不純物の中には、太陽電池の特性に悪影響を及ぼすリンが多く含まれており、これらが太陽電池の特性を大きく悪化させることを見出した。さらに、シリコン回収用固形分を酸溶液からなる洗浄液で洗浄した後に200℃以上1000℃以下の温度でシリコン回収用固形分の焼成を行うことによって、シリコン回収用固形分中のリンを効率的に除去できることを見出し、本発明の完成に到った。本発明の方法によってリンを効率的に除去できる理由は、必ずしも明らかではないが、シリコン回収用固形分中に含まれる高沸点のリン(またはリン化合物)が酸溶液によって低温において気化しやすい物質になったためと推測される。 As a result of diligent research, the present inventors have found that the metal impurities remaining in the solids for silicon recovery contain a lot of phosphorus that adversely affects the characteristics of the solar cell. Has been found to greatly deteriorate. Furthermore, after the silicon recovery solid content is washed with a cleaning solution comprising an acid solution, the silicon recovery solid content is baked at a temperature of 200 ° C. or higher and 1000 ° C. or lower, so that phosphorus in the silicon recovery solid content is efficiently removed. The inventors have found that it can be removed, and have completed the present invention. The reason why phosphorus can be efficiently removed by the method of the present invention is not necessarily clear, but the high boiling point phosphorus (or phosphorus compound) contained in the solids for silicon recovery is a substance that is easily vaporized at low temperatures by an acid solution. It is guessed that it became.
 以下、本発明の実施形態を図1を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.
 図1に示すように、本発明のシリコン再生方法は、砥粒とクーラントを含むスラリーを用いたシリコン塊又はシリコンウェハの切断又は研磨によってスラリーにシリコン屑が混入された廃スラリー又はその濃縮分を固液分離してシリコン屑を含有するシリコン回収用固形分を取得する固液分離工程と、シリコン回収用固形分を酸溶液からなる洗浄液で洗浄する酸洗浄工程および、200℃以上1000℃以下の温度で酸洗浄後のシリコン回収用固形分を焼成する焼成工程からなる。 As shown in FIG. 1, the silicon recycling method of the present invention is a waste slurry in which silicon waste is mixed into a slurry by cutting or polishing a silicon lump or a silicon wafer using a slurry containing abrasive grains and a coolant, or a concentrated portion thereof. Solid-liquid separation step for obtaining solid content for silicon recovery containing silicon waste by solid-liquid separation, an acid cleaning step for washing solid content for silicon recovery with a cleaning solution comprising an acid solution, and a temperature of 200 ° C. or higher and 1000 ° C. or lower It comprises a firing step of firing the solids for silicon recovery after acid cleaning at a temperature.
 これら以外の工程(本実施形態においては中和処理工程、分離・水洗工程、洗浄工程、乾燥工程を例示する)は任意工程であり、必要に応じて適宜設けることができる。 Other steps (in this embodiment, a neutralization treatment step, a separation / water washing step, a washing step, and a drying step are exemplified) are optional steps, and can be appropriately provided as necessary.
 シリコン再生方法の実施形態について説明する前に、まず、廃スラリーとその濃縮分について説明する。 Before explaining the embodiment of the silicon regeneration method, first, the waste slurry and its concentrated part will be explained.
 廃スラリーとは、砥粒とクーラントを含むスラリーを用いたシリコン塊又はシリコンウェハの切断又は研磨によって前記スラリーにシリコン屑が混入されたものである。廃スラリーの濃縮分とは、廃スラリーを濃縮したものである。 The waste slurry is a slurry in which silicon scraps are mixed by cutting or polishing a silicon lump or a silicon wafer using a slurry containing abrasive grains and coolant. The concentrated portion of the waste slurry is a concentrate of the waste slurry.
 シリコン塊は、シリコンの塊であり、例えば、シリコンインゴットである。シリコン塊の形状は、特に限定されないが、一例では、円柱状や四角柱状である。切断装置の一例は、シリコンインゴットの切断装置として広く用いられているマルチワイヤソー装置(以下、「MWS」と呼ぶ。)である。MWSとは一般に、複数のローラ間にワイヤを架け渡して巻き付け、砥粒とクーラントを含むスラリーをワイヤに供給しつつ走行させ、このワイヤに被切断物を押し付けて切断する切断装置のことである。研磨装置の一例は、ホイール式研磨装置であり、接着剤で砥粒を固定したホイールを回転し、シリコンインゴットを移動させることで研磨を行う装置である。これらの装置を用いてシリコンインゴットを切断又は研磨すると、スラリー中にシリコンの切断屑、破砕された砥粒及び破砕されなかった砥粒、さらにはワイヤ及び研磨ホイールの摩耗片である金属屑などが混入することになる。ここで、典型的なシリコンインゴット、ワイヤ及び金属ホイールの組成を分析した結果を表1に示す。シリコンには金属不純物及びリンはほとんど含まれないが、ワイヤ及び研磨ホイールには金属不純物に加え、多くのリンが含まれていることを示している。
Figure JPOXMLDOC01-appb-T000001
The silicon lump is a lump of silicon, for example, a silicon ingot. The shape of the silicon lump is not particularly limited, but in an example, it is a columnar shape or a quadrangular prism shape. An example of the cutting device is a multi-wire saw device (hereinafter referred to as “MWS”) that is widely used as a silicon ingot cutting device. In general, MWS is a cutting device that wraps and winds a wire between a plurality of rollers, runs slurry while supplying slurry containing abrasive grains and coolant, and presses an object to be cut against the wire for cutting. . An example of a polishing apparatus is a wheel-type polishing apparatus, which is an apparatus that performs polishing by rotating a wheel having abrasive grains fixed with an adhesive and moving a silicon ingot. When a silicon ingot is cut or polished using these devices, silicon scraps, crushed abrasive grains and non-crushed abrasive grains in the slurry, and metal scraps that are worn pieces of wires and polishing wheels, etc. It will be mixed. Here, the results of analyzing the composition of typical silicon ingots, wires and metal wheels are shown in Table 1. Although silicon contains almost no metal impurities and phosphorus, it shows that the wire and polishing wheel contain a lot of phosphorus in addition to metal impurities.
Figure JPOXMLDOC01-appb-T000001
 ここでスラリーの構成及び組成について説明する。スラリーは、砥粒とそれを分散するクーラントとからなる。砥粒は、その種類は限定されず、例えば、SiC、ダイヤモンド、CBN、アルミナなどからなる。クーラントは、その種類は限定されず、例えば、油性クーラント(鉱油をベースとしたオイル)や、水性クーラント(水をベースとしてグリコール系溶媒(例えば、エチレングリコール、プロピレングリコール又はポリエチレングリコール)、界面活性剤、有機酸などが添加されたもの)であってもよい。クーラントは、エチレングリコール、プロピレングリコール又はポリエチレングリコールなどの有機溶媒(水溶性有機溶媒)を主成分とし、ここに有機酸、ベントナイトなどの添加物を10wt%以下(好ましくは3wt%以下)添加したものであってもよい。なお、ここでいう「有機溶媒を主成分とする」とは、例えばクーラント中に20wt%以下(好ましくは15wt%以下)の水分が含まれていても良いことを意味している。 Here, the composition and composition of the slurry will be described. The slurry is composed of abrasive grains and a coolant that disperses the abrasive grains. The type of abrasive grains is not limited and is made of, for example, SiC, diamond, CBN, alumina, or the like. The type of the coolant is not limited. For example, an oil-based coolant (oil based on mineral oil), an aqueous coolant (a water-based glycol-based solvent (for example, ethylene glycol, propylene glycol or polyethylene glycol), surfactant) Or an organic acid added thereto). The coolant is mainly composed of an organic solvent (water-soluble organic solvent) such as ethylene glycol, propylene glycol or polyethylene glycol, and an additive such as an organic acid or bentonite is added thereto at 10 wt% or less (preferably 3 wt% or less). It may be. Note that the phrase “having the organic solvent as a main component” here means that, for example, the coolant may contain 20 wt% or less (preferably 15 wt% or less) of water.
1.固液分離工程
 まず、前記廃スラリー又はその濃縮分について、分離部1にて固液分離してシリコン回収用固形分を取得する。分離部1の構成は、廃スラリー又はその濃縮分を固液分離してシリコン回収用固形分を取得することが可能な構成であれば特に限定されず、分離部1は、例えば、遠心分離機、濾過装置又は蒸留装置などの固液分離装置を単独で又はこれらを2つ以上直列に組み合わせて構成される。組合せの具体例としては、(1)遠心分離機と蒸留装置、(2)遠心分離機と濾過装置又は(3)濾過装置と蒸留装置などである。(1)~(3)において、遠心分離機、濾過装置又は蒸留装置は、それぞれ2つ以上含まれていてもよい。各分離部は、分離後の液分と固形分の何れを次の固液分離装置に送ってもよく、液分の一部と固形分の混合物又は固形分の一部と液分の混合物を次の固液分離装置に送ってもよい。
1. Solid-liquid separation step First, the waste slurry or its concentrated component is subjected to solid-liquid separation in the separation unit 1 to obtain a solid content for silicon recovery. The configuration of the separation unit 1 is not particularly limited as long as it is a configuration capable of solid-liquid separation of the waste slurry or its concentrated component to obtain a solid content for silicon recovery. The separation unit 1 is, for example, a centrifuge. The solid-liquid separation device such as a filtration device or a distillation device is used alone or in combination of two or more thereof in series. Specific examples of the combination are (1) a centrifuge and a distillation device, (2) a centrifuge and a filtration device, or (3) a filtration device and a distillation device. In (1) to (3), two or more centrifuges, filtration devices or distillation devices may be included. Each separation unit may send either the separated liquid or solid content to the next solid-liquid separation device, and a part of liquid and a mixture of solids or a part of solid and a mixture of liquids. You may send to the following solid-liquid separator.
2.酸洗浄工程
 次に、洗浄部2において、酸溶液からなる洗浄液でシリコン回収用固形分の洗浄を行う。洗浄部2は、一例では、洗浄漕2aと、洗浄漕2a内に設けられた攪拌機2bとで構成される。
2. Acid Cleaning Step Next, in the cleaning unit 2, the silicon recovery solid content is cleaned with a cleaning liquid made of an acid solution. In one example, the cleaning unit 2 includes a cleaning bowl 2a and a stirrer 2b provided in the cleaning bowl 2a.
 この酸洗浄工程は、(1)シリコン回収用固形分に含まれるグリコール系溶媒や添加物などのクーラント由来の残留有機物を酸溶液に溶解させて除去すること、(2)ワイヤの摩耗片である金属屑を酸溶液に溶解させて除去すること等を目的として行われる。 This acid cleaning step is (1) removing residual organic substances derived from coolant such as glycol solvents and additives contained in the solid content for silicon recovery by dissolving them in an acid solution, and (2) wear pieces of wires. It is performed for the purpose of dissolving and removing metal scraps in an acid solution.
 シリコン回収用固形分の粒径としては、比表面積が大きい方が洗浄効果が高くなるため、粒径が小さいことが好ましいが、一方、粒径が小さくなると洗浄後に固形分の回収が困難となることから、実用上は、シリコン回収用固形分の粒径は0.01μm以上10mm未満の範囲にあることが好ましい。0.1μm以上5μm未満の範囲にあればさらに好ましい。なお、本明細書において、「粒径」とは、JIS R1629に準拠した方法で測定したものを意味する。「粒径Xμm未満の粉体」とは、その粉体中の98%の粒子の粒径がXμm未満であるような粉体を意味する。「粉体Yμm以上Zμm未満の粉体」とは、「粒径Zμm未満の粉体」から「粒径Yμm未満の粉体」を除いて残った粉体を意味する。 As the particle size of solids for silicon recovery, the larger the specific surface area, the higher the cleaning effect. Therefore, it is preferable that the particle size is small. On the other hand, when the particle size is small, it becomes difficult to recover the solids after washing. Therefore, in practice, the particle size of the solids for silicon recovery is preferably in the range of 0.01 μm or more and less than 10 mm. More preferably, it is in the range of 0.1 μm or more and less than 5 μm. In the present specification, “particle size” means a value measured by a method according to JIS R1629. The “powder having a particle size of less than X μm” means a powder having a particle size of 98% of particles in the powder of less than X μm. The “powder of powder Y μm or more and less than Z μm” means a powder remaining after removing “powder of particle size less than Y μm” from “powder of particle size less than Z μm”.
 酸溶液は、酸性物質を水を含む溶媒に溶解した溶液である。酸溶液のpHは、7未満であればよいが、0~4が好ましい。酸溶液のpHは、例えば、0、0.5、1、1.5、2、2.5、3、3.5、4である。酸溶液のpHは、ここで例示した数値の何れか2つの間の範囲内であってもよい。酸溶液の溶媒は、実質的に水のみからなることが好ましいが、水以外の成分を含んでいてもよい。酸溶液の溶媒中の水の比率は、50wt%以上が好ましく、例えば、50、60、70、80、90、95、99、99.9、100wt%である。水の比率は、ここで例示した数値の何れか2つの間の範囲内であってもよい。溶媒中の水以外の成分は、クーラントに対し相溶性を有しかつクーラントよりも沸点が低いものが好ましく、例えば、炭素数が1~6(好ましくは、1、2、3、4、5及び6の何れか2つの間の範囲)のアルコール又は炭素数が3~6(好ましくは、3、4、5及び6の何れか2つの間の範囲)のケトンである。この場合、残留クーラントを酸溶液に溶解させて除去するのが容易になる。 The acid solution is a solution obtained by dissolving an acidic substance in a solvent containing water. The pH of the acid solution may be less than 7, but is preferably 0-4. The pH of the acid solution is, for example, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, or 4. The pH of the acid solution may be within a range between any two of the numerical values exemplified herein. The solvent of the acid solution preferably consists essentially of water, but may contain components other than water. The ratio of water in the solvent of the acid solution is preferably 50 wt% or more, for example, 50, 60, 70, 80, 90, 95, 99, 99.9, 100 wt%. The ratio of water may be within a range between any two of the numerical values exemplified here. Components other than water in the solvent preferably have compatibility with the coolant and have a boiling point lower than that of the coolant, for example, 1 to 6 carbon atoms (preferably 1, 2, 3, 4, 5, and 6 in the range between any two of 6) or a ketone having 3 to 6 carbon atoms (preferably in the range between any two of 3, 4, 5 and 6). In this case, it becomes easy to remove the residual coolant by dissolving it in the acid solution.
 酸性物質(水等の溶媒に溶解してプロトンを放出する物質)としては、無機又は有機酸性物質が挙げられる。無機酸性物質としては、塩化水素、硫酸、硝酸、弗化水素、臭化水素などが挙げられる。有機酸性物質としては、クエン酸、酢酸、ギ酸、シュウ酸、乳酸などが挙げられる。酸溶液は、少なくとも1種の酸性物質を含んでいればよく、無機酸性物質と有機酸性物質の両方を含んでいてもよい。以下、無機酸性物質のみを含む酸溶液を無機酸溶液と呼び、有機酸性物質のみを含む酸溶液を有機酸溶液と呼ぶ。 Examples of acidic substances (substances that dissolve in a solvent such as water and release protons) include inorganic or organic acidic substances. Examples of inorganic acidic substances include hydrogen chloride, sulfuric acid, nitric acid, hydrogen fluoride, and hydrogen bromide. Examples of the organic acidic substance include citric acid, acetic acid, formic acid, oxalic acid, and lactic acid. The acid solution only needs to contain at least one kind of acidic substance, and may contain both an inorganic acidic substance and an organic acidic substance. Hereinafter, an acid solution containing only an inorganic acidic substance is called an inorganic acid solution, and an acid solution containing only an organic acidic substance is called an organic acid solution.
 酸溶液は、無機酸溶液からなることが好ましい。無機酸との反応によって生成するリン化合物は、有機酸との反応によって生成するリン化合物に比べて一般に沸点が低いからである。 The acid solution is preferably composed of an inorganic acid solution. This is because the phosphorus compound produced by the reaction with the inorganic acid generally has a lower boiling point than the phosphorus compound produced by the reaction with the organic acid.
 また、酸溶液は、シリコンに対して非酸化性のものが好ましい。本発明において「非酸化性」とは、硫酸よりもシリコンの酸化力が弱いことを意味する。酸溶液がシリコンに対して非酸化性である場合、シリコンの酸化によるシリコン回収率の低下を抑制することができる。シリコンに対して非酸化性の酸溶液としては、塩酸、弗酸、クエン酸、フッ化アンモニウム水溶液が挙げられる。 The acid solution is preferably non-oxidizing with respect to silicon. In the present invention, “non-oxidizing” means that the oxidizing power of silicon is weaker than that of sulfuric acid. When the acid solution is non-oxidizing with respect to silicon, it is possible to suppress a decrease in silicon recovery rate due to silicon oxidation. Examples of the acid solution that is non-oxidizing with respect to silicon include hydrochloric acid, hydrofluoric acid, citric acid, and an aqueous ammonium fluoride solution.
 酸溶液は、過酸化水素を含んでいてもよい。この場合、短い時間で金属屑を除去できるという利点がある。過酸化水素の比率は、例えば、0.1~5wt%であり、具体的には例えば、0.1、0.5、1、2、3、4、5wt%である。過酸化水素の比率は、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The acid solution may contain hydrogen peroxide. In this case, there is an advantage that metal waste can be removed in a short time. The ratio of hydrogen peroxide is, for example, 0.1 to 5 wt%, and specifically, for example, 0.1, 0.5, 1, 2, 3, 4, 5 wt%. The ratio of hydrogen peroxide may be in a range between any two of the numerical values exemplified here.
3.中和処理工程
 次に、シリコン回収用固形分の洗浄した後の洗浄液を中和処理漕3に移し、酸溶液の中和処理を行う。この中和処理工程は次の固液分離工程において装置を腐食しないようにする目的で行うが、装置の構成によっては省略してもよい。また、中和処理の代わりに、洗浄液に水等の溶媒を添加して酸溶液を希釈することによって酸溶液中のプロトンの濃度を下げて装置の腐食を防いでもよい。
 中和の方法は、特に限定されず、例えば、水酸化ナトリウム、水酸化カルシウム、アンモニア等の塩基性物質(水等の溶媒に溶解して水酸化物イオンを放出するかプロトンの受容体となる物質)の溶液(以下、「塩基溶液」と呼ぶ。)を洗浄液に添加する方法や、塩基性物質を洗浄液に直接添加する方法等が挙げられる。
3. Neutralization treatment step Next, the washing solution after washing the solids for silicon recovery is transferred to the neutralization treatment vessel 3 to neutralize the acid solution. This neutralization treatment step is performed for the purpose of preventing the device from corroding in the next solid-liquid separation step, but may be omitted depending on the configuration of the device. Further, instead of neutralization, a solvent such as water may be added to the cleaning solution to dilute the acid solution, thereby reducing the concentration of protons in the acid solution to prevent corrosion of the apparatus.
The neutralization method is not particularly limited. For example, basic substances such as sodium hydroxide, calcium hydroxide, and ammonia (dissolve in a solvent such as water to release hydroxide ions or become proton acceptors). For example, a method of adding a substance) solution (hereinafter referred to as “base solution”) to the cleaning liquid, and a method of adding a basic substance directly to the cleaning liquid.
 中和又は希釈後の洗浄液のpHの値は、特に限定されないが、例えば、2~4である。この場合、除去困難な難溶性の固形物質としてリンが沈殿することを抑制することができるからである。 The pH value of the cleaning solution after neutralization or dilution is not particularly limited, but is 2 to 4, for example. In this case, it is possible to suppress the precipitation of phosphorus as a hardly soluble solid material that is difficult to remove.
4.分離・水洗工程
 次に、分離・水洗部4において、酸洗浄後の洗浄液と前記シリコン回収用固形分を固液分離し、純水により洗浄を行い洗浄後のシリコン回収用固形分を取得する。なお、この工程を省略して例えば乾燥工程又は焼成工程で洗浄液を揮発させてもよい。
 分離・水洗部4は、例えば、遠心分離機、濾過装置又は蒸留装置などの固液分離装置と、純水供給装置を2つ以上直列に組み合わせて構成される。
4). Separation / Washing Step Next, in the separation / water washing section 4, the washing liquid after acid washing and the solid content for silicon recovery are separated into solid and liquid, and washed with pure water to obtain the solid content for silicon collection after washing. Note that this step may be omitted and the cleaning liquid may be volatilized in, for example, a drying step or a baking step.
The separation / water washing unit 4 is configured by combining two or more pure water supply devices in series with a solid-liquid separation device such as a centrifuge, a filtration device, or a distillation device, for example.
5.洗浄工程
 次に、洗浄部5において、洗浄液でシリコン回収用固形分の洗浄を行う。洗浄部5は、一例では、洗浄漕5aと、洗浄漕5a内に設けられた攪拌機5bとで構成される。洗浄部5での洗浄により不純物除去効果をさらに高めることができる。
5). Cleaning Step Next, in the cleaning unit 5, the silicon recovery solids are cleaned with a cleaning liquid. In one example, the cleaning unit 5 includes a cleaning bowl 5a and a stirrer 5b provided in the cleaning bowl 5a. The impurity removal effect can be further enhanced by the cleaning in the cleaning unit 5.
 本工程では、洗浄液として、例えば、純水、無機酸溶液又は有機溶媒からなるものを用いることができる。無機酸溶液は、シリコンに対して非酸化性のものが好ましい。有機溶媒は、焼成工程での焼成温度よりも沸点が低いものが好ましい。この場合、焼成温度よりも低い温度で有機溶媒が除去されるので、SiCの生成が防止される。また、有機溶媒は、クーラントに対し相溶性を有しかつクーラントよりも沸点が低いものが好ましく、例えば、炭素数が1~6(好ましくは、1、2、3、4、5及び6の何れか2つの間の範囲)のアルコール又は炭素数が3~6(好ましくは、3、4、5及び6の何れか2つの間の範囲)のケトンである。この場合、残留クーラントを有機溶媒に溶解させて除去するのが容易になる。 In this step, for example, a cleaning liquid made of pure water, an inorganic acid solution or an organic solvent can be used. The inorganic acid solution is preferably non-oxidizing with respect to silicon. The organic solvent preferably has a boiling point lower than the firing temperature in the firing step. In this case, since the organic solvent is removed at a temperature lower than the firing temperature, generation of SiC is prevented. The organic solvent preferably has compatibility with the coolant and has a lower boiling point than the coolant. For example, the organic solvent has 1 to 6 carbon atoms (preferably any one of 1, 2, 3, 4, 5, and 6). Or a ketone having 3 to 6 carbon atoms (preferably, a range between any two of 3, 4, 5 and 6). In this case, it becomes easy to remove the residual coolant by dissolving it in an organic solvent.
6.分離・水洗工程2
 次に、分離・水洗部6において、上記洗浄後の洗浄液と前記シリコン回収用固形分を固液分離し、純水により洗浄を行い洗浄後のシリコン回収用固形分を取得する。
 分離・水洗部6は、例えば、遠心分離機、濾過装置又は蒸留装置などの固液分離装置と、純水供給装置を2つ以上直列に組み合わせて構成される。
6). Separation and washing process 2
Next, in the separation / water washing section 6, the washed cleaning liquid and the silicon recovery solid are separated into solid and liquid, and washed with pure water to obtain the cleaned silicon recovery solid.
The separation / water washing unit 6 is configured by combining two or more solid-liquid separation devices such as a centrifuge, a filtration device, or a distillation device, and two or more pure water supply devices in series.
7.乾燥工程
 次に、乾燥機7において、ここまでの工程で得られた洗浄後のシリコン回収用固形分を乾燥させる。乾燥は、例えば、シリコン回収用固形分を加熱するか周囲雰囲気を減圧することによって行うことができる。シリコン回収用固形分は自然乾燥させてもよく、後述する焼成工程などの別の工程と同時にシリコン回収用固形分の乾燥を行ってもよい。従って、本工程は、独立した工程としては省略可能である。
7). Drying step Next, in the dryer 7, the solid content for silicon recovery after washing obtained in the steps so far is dried. Drying can be performed, for example, by heating the solid content for silicon recovery or reducing the ambient atmosphere. The solid content for silicon recovery may be naturally dried, or the solid content for silicon recovery may be dried at the same time as another step such as a baking step described later. Therefore, this step can be omitted as an independent step.
8.焼成工程
 次に、焼成装置8において、200℃以上1000℃以下の温度でシリコン回収用固形分の焼成を行う。
8). Baking process Next, in the baking apparatus 8, baking of the solid content for silicon | silicone recovery is performed at the temperature of 200 to 1000 degreeC.
 焼成装置8としては、例えば、ドラム型気流乾燥機などを用いることができる。この乾燥機では、ドラムを回転させることによってシリコン回収用固形分を攪拌及び移動させながらシリコン回収用固形分に加熱気体の気流を吹き付けることによってシリコン回収用固形分を焼成する。
 この焼成工程は、(1)洗浄前の固形分のグリコール系溶媒や添加物などのクーラント由来の残留有機物のうち、洗浄工程において除去しきれなかった残留分を除去すること、(2)シリコン回収用固形分に残留するリンを除去することを目的として行われる。
As the baking apparatus 8, a drum type airflow dryer etc. can be used, for example. In this dryer, the solid content for silicon recovery is baked by blowing a gas stream of heated gas to the solid content for silicon recovery while rotating and rotating the solid content for silicon recovery by rotating the drum.
This firing step is performed by (1) removing residual organic substances derived from coolant such as glycol solvent and additives in solids before washing, and (2) recovering silicon. The purpose is to remove phosphorus remaining in the solid content.
 焼成の温度を200℃以上1000℃以下としたのは、焼成の温度が200℃以上の場合、リン(単体リン又は含リン化合物)の揮発によってリンが除去されやすい。また、焼成の温度が1000℃以下の場合、シリコンの酸化が抑制され且つリンとシリコンとの合金形成が抑制され、その結果、シリコンの回収率が向上し且つリンが効率的に除去される。 The firing temperature is set to 200 ° C. or more and 1000 ° C. or less. When the firing temperature is 200 ° C. or more, phosphorus is easily removed by volatilization of phosphorus (single phosphorus or a phosphorus-containing compound). Further, when the firing temperature is 1000 ° C. or lower, the oxidation of silicon is suppressed and the formation of an alloy between phosphorus and silicon is suppressed. As a result, the silicon recovery rate is improved and phosphorus is efficiently removed.
 焼成の温度は、200℃以上1000℃以下であり、例えば、300℃以上800℃以下であり、具体的には例えば200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000℃である。焼成の温度は、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The firing temperature is 200 ° C. or more and 1000 ° C. or less, for example, 300 ° C. or more and 800 ° C. or less. Specifically, for example, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 ° C. The firing temperature may be within a range between any two of the numerical values exemplified here.
 また、焼成時間は、例えば、0.5~10時間であり、具体的には例えば、0.5、1、1.5、2、2.5、3、4、5、6、7、8、9、10時間である。焼成時間は、ここで例示した数値の何れか2つの間の範囲内であってもよい。一例では、200kgの回収用固形分につき1時間以上の処理を行うことが好ましい。 The firing time is, for example, 0.5 to 10 hours. Specifically, for example, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8 9, 10 hours. The firing time may be within a range between any two of the numerical values exemplified here. In one example, it is preferable to perform treatment for 1 hour or more per 200 kg of the solid content for recovery.
 焼成中のシリコンの酸化をさらに抑えるため、焼成は、不活性ガス雰囲気中で行うことが好ましい。不活性ガスは、例えば、希ガス(例:アルゴン)や窒素ガスである。 Calcination is preferably performed in an inert gas atmosphere in order to further suppress oxidation of silicon during calcination. The inert gas is, for example, a rare gas (eg, argon) or nitrogen gas.
 また、リンの揮発を促進するために、焼成は、減圧雰囲気で行うことが好ましい。減圧時の雰囲気圧力は、例えば、0.1~0.9atmであり、具体的には例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9atmである。減圧時の雰囲気圧力は、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In order to promote the volatilization of phosphorus, the firing is preferably performed in a reduced pressure atmosphere. The atmospheric pressure during decompression is, for example, 0.1 to 0.9 atm, and specifically, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0 0.7, 0.8 and 0.9 atm. The atmospheric pressure at the time of depressurization may be within a range between any two of the numerical values exemplified here.
 このようにして、リンを除去したシリコン回収用固形分を得ることができる。得られたシリコン回収用固形分は、再生シリコンとして回収することができる。 In this way, the solid content for silicon recovery from which phosphorus has been removed can be obtained. The obtained solid content for silicon recovery can be recovered as recycled silicon.
9.加熱・精製工程
 さらに、リンを除去したシリコン回収用固形分について、加熱・精製装置9において、シリコンの融点(一般に1410℃~1420℃とされる)以上の加熱において融解し、次いで固化させることにより、シリコン塊としてもよい。加熱・精製装置9は、シリコンの酸化を抑えるため、密閉された系であり、不活性ガスの導入部を有することが好ましい。得られたシリコン塊を再生シリコンとして回収することができる。
9. Heating / refining step Further, the solid content for recovering silicon from which phosphorus has been removed is melted in the heating / purifying device 9 at a temperature equal to or higher than the melting point of silicon (generally 1410 ° C to 1420 ° C) and then solidified Alternatively, a silicon lump may be used. The heating / purification device 9 is preferably a hermetically sealed system and suppresses the oxidation of silicon, and has an inert gas introduction part. The obtained silicon mass can be recovered as recycled silicon.
 前記シリコン塊について、残留した金属成分の除去を行うために精製を行うことができる。精製方法は、例えば、従来の多結晶シリコン鋳造時における各種(例えば一方向凝固による偏析不純物の除去)の公知の精製手法を用いることができる。これによって金属成分などの不純物が除去されたシリコン塊が得られ、再生シリコンとして回収することができる。 The silicon lump can be purified to remove the remaining metal components. As the purification method, for example, various known purification techniques (for example, removal of segregated impurities by unidirectional solidification) at the time of conventional polycrystalline silicon casting can be used. As a result, a silicon lump from which impurities such as metal components have been removed can be obtained and recovered as recycled silicon.
 加熱・精製装置9としては、例えば、真空加熱融解炉と、一方向凝固炉を2つ以上直列に組み合わせて構成される。 The heating / refining device 9 includes, for example, a vacuum heating and melting furnace and two or more unidirectional solidification furnaces combined in series.
 以上に示した各工程の前後には、必要に応じて粉砕工程又は成形工程、又は粉末分離工程を組み込むことができる。粉砕工程とは、シリコン回収用固形分を特定の大きさまで粉砕する公知のすべての方法を示し、ボールミル、ジェットミル、振動真空乾燥機などの装置を用いることができる。成形工程は、かさ比重を高めて運搬効率を上げるため、あるいは熱伝導性を上昇させ融解を容易にするための融解の前処理として行うことができ、シリコン含有粉体を加圧して板状、ブロック状、ペレット状などに造粒する装置であればどのような構成の装置でも用いることができる。粉末分離工程は、例えば慣性分級装置又は遠心分級装置を用いて粒径や密度などの物理的パラメータに基づいて粒子を分別する分級や、磁石を用いて鉄などの磁性不純物を除く方法などがある。 Before and after each step shown above, a pulverization step, a molding step, or a powder separation step can be incorporated as necessary. The pulverization step refers to all known methods for pulverizing the solid content for silicon recovery to a specific size, and devices such as a ball mill, a jet mill, and a vibration vacuum dryer can be used. The molding process can be performed as a pretreatment for melting to increase bulk specific gravity and increase transport efficiency, or to increase thermal conductivity and facilitate melting, and pressurizes silicon-containing powder to form a plate, An apparatus having any configuration can be used as long as the apparatus granulates in a block shape, a pellet shape, or the like. The powder separation process includes, for example, classification of particles based on physical parameters such as particle size and density using an inertia classifier or a centrifugal classifier, and a method of removing magnetic impurities such as iron using a magnet. .
1.実施例1
 ワイヤソーを用いて太陽電池用ウェハを切断した廃スラリーを用いて、上述した工程においてシリコンを再生した。
1. Example 1
Silicon was regenerated in the above-described process using the waste slurry obtained by cutting the solar cell wafer using a wire saw.
 本実施例では、廃スラリーを濾過して得られた120kgの固形分に対して、15wt%の塩酸水溶液500Lを加えて1時間の攪拌洗浄を行った。中和処理工程は省略し、そのまま酸溶液を濾過して固形分を回収した。 In this example, 500 L of a 15 wt% hydrochloric acid aqueous solution was added to 120 kg of solid content obtained by filtering the waste slurry, followed by stirring and washing for 1 hour. The neutralization treatment step was omitted, and the acid solution was filtered as it was to recover the solid content.
 前記固形分に対して、純水500Lを加えて再度1時間の攪拌洗浄を行い、濾過して固形分を回収した。このようにして得られた固形分について、1atmの空気中で60℃まで加熱し、2時間保持することで乾燥を行った。次に、傾斜したドラムを回転させることでゆっくり移動させながら焼成を行うドラム型焼成機のドラム内に試料を投じた。ドラム内には加熱管を備えており、さらに加熱された窒素ガスをドラム内に送り込むことにより焼成対象の温度を制御することができる。実施例1では、焼成対象が400~500℃の範囲になるように制御し、1.5時間かけて焼成を行い、乾燥粉末を得た。 To the solid content, 500 L of pure water was added and again stirred and washed for 1 hour, followed by filtration to recover the solid content. The solid content thus obtained was dried by heating to 60 ° C. in 1 atm air and holding for 2 hours. Next, the sample was thrown into the drum of a drum-type baking machine that performs baking while rotating the inclined drum slowly. The drum is provided with a heating tube, and the temperature of the firing object can be controlled by feeding heated nitrogen gas into the drum. In Example 1, the firing target was controlled to be in the range of 400 to 500 ° C., and firing was performed for 1.5 hours to obtain a dry powder.
 次に、前記乾燥粉末について、外熱式の溶鉱炉を用いてアルゴン1atm雰囲気下で300℃/時間のレートで1800℃まで昇温し、2時間保持して融解を行い、60kgのシリコン塊を得た。 Next, the dry powder is heated to 1800 ° C. at a rate of 300 ° C./hour in an argon 1 atm atmosphere using an externally heated blast furnace and melted by holding for 2 hours to obtain 60 kg of silicon lump. It was.
 実施例1において、廃スラリーから得た固形分、2回洗浄後の固形分、焼成後の乾燥粉末、融解後のシリコン塊について、代表的な不純物の濃度を分析した結果を表2に示す。洗浄により不純物が減少したが、特に焼成によりリン(P)の濃度が大きく減少したことが分かる。焼成によってリンの濃度が大きく減少したので、融解後のシリコン塊については特に減圧融解下によるリン除去を行うことなく、残留する金属を適当な方法で除去することで太陽電池材料とすることができる。 Table 2 shows the results of analyzing the concentration of typical impurities for the solid content obtained from the waste slurry, the solid content after washing twice, the dried powder after firing, and the silicon lump after melting in Example 1. It can be seen that impurities were reduced by washing, but the concentration of phosphorus (P) was greatly reduced by firing. Since the concentration of phosphorus is greatly reduced by firing, the silicon mass after melting can be made into a solar cell material by removing the remaining metal by an appropriate method without removing phosphorus particularly under vacuum melting. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここでは、アルゴン1atm雰囲気下において一方向凝固による精製を行い、スライスして多結晶シリコン基板とし、太陽電池セルを作成したところ、太陽光から電気エネルギーへの変換効率は13~14.2%となり、通常の市販品に近い特性を得られた。 Here, purification is performed by unidirectional solidification in an atmosphere of 1 atm of argon, sliced into a polycrystalline silicon substrate, and a solar cell is created. The conversion efficiency from sunlight to electrical energy is 13 to 14.2%. A characteristic close to that of a normal commercial product was obtained.
2.比較例1
 比較例1においては、廃スラリーを濾過して得た固形分に対して、2回の洗浄及び固液分離、乾燥までは実施例1と同様の方法で行った。その上で、この場合は、焼成機による焼成を行うことなく、そのまま外熱式の溶鉱炉を用いて実施例1と同様の方法で融解を行った。
2. Comparative Example 1
In Comparative Example 1, the solid content obtained by filtering the waste slurry was subjected to the same method as in Example 1 up to twice washing, solid-liquid separation, and drying. In this case, melting was performed in the same manner as in Example 1 using an externally heated blast furnace as it was without firing with a firing machine.
 比較例1において、融解後のシリコン塊について分析した結果を表3に示す。実施例1に比べて特にリンの残留分が大きくなっている。シリコン融点以下で保持する時間が短いために、リンがシリコン中に取り込まれて効率的に除去されなかったためであると推測される。 Table 3 shows the results of analysis of the silicon mass after melting in Comparative Example 1. Compared with Example 1, the residue of phosphorus is particularly large. This is presumed to be because phosphorus was taken into silicon and was not efficiently removed because the holding time was below the melting point of silicon.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例1でも実施例1と同様に、アルゴン1atm雰囲気下において一方向凝固による精製を行い、スライスして多結晶シリコン基板とし、太陽電池セルを作成したが、太陽光から電気エネルギーの変換効率は1%以下であった。これは脱リンの工程を経ることにより改善されると考えられるが、その場合は生産コストが著しく増加することになる。 In Comparative Example 1, as in Example 1, purification by unidirectional solidification was performed in an atmosphere of 1 atm of argon, and a solar cell was created by slicing to a polycrystalline silicon substrate. 1% or less. This is considered to be improved by going through a dephosphorization step, but in this case, the production cost is remarkably increased.

Claims (10)

  1. 砥粒とクーラントを含むスラリーを用いたシリコン塊又はシリコンウェハの切断又は研磨によって前記スラリーにシリコン屑が混入された廃スラリー又はその濃縮分を固液分離してシリコン屑を含有するシリコン回収用固形分を取得し、
    前記シリコン回収用固形分を酸溶液からなる洗浄液で洗浄し、
    前記洗浄後に200℃以上1000℃以下の温度で前記シリコン回収用固形分を焼成する工程を備えることを特徴とするシリコン再生方法。
    Solid silicon for recovery of silicon containing silicon waste by solid-liquid separation of waste slurry mixed with silicon scrap by cutting or polishing of silicon lump or silicon wafer using slurry containing abrasive grains and coolant Get the minute
    The solid content for silicon recovery is washed with a cleaning solution comprising an acid solution,
    A silicon regeneration method comprising a step of firing the solid content for silicon recovery at a temperature of 200 ° C. or higher and 1000 ° C. or lower after the cleaning.
  2. 前記酸溶液は、無機酸溶液からなる請求項1に記載の方法。 The method of claim 1, wherein the acid solution comprises an inorganic acid solution.
  3. 酸洗浄後の洗浄液と前記シリコン回収用固形分を固液分離することによって得られる固形分を純水又は非酸化性の無機酸溶液又は有機溶媒により再度洗浄処理する工程をさらに備える請求項1に記載の方法。 The solid content obtained by carrying out solid-liquid separation of the washing | cleaning liquid after acid washing | cleaning and the said solid content for silicon | silicone collection | recovery is further equipped with the process of wash-processing again with a pure water, a non-oxidizing inorganic acid solution, or an organic solvent. The method described.
  4. 酸洗浄後の洗浄液を中和又は希釈する工程をさらに備える請求項1に記載の方法。 The method according to claim 1, further comprising a step of neutralizing or diluting the cleaning liquid after the acid cleaning.
  5. 前記中和又は希釈は、中和又は希釈後の洗浄液のpHが2~4になるように行われる請求項4に記載の方法。 The method according to claim 4, wherein the neutralization or dilution is performed such that the pH of the washing solution after neutralization or dilution is 2 to 4.
  6. 前記焼成の温度は、300℃以上800℃以下である請求項1に記載の方法。 The method according to claim 1, wherein the firing temperature is 300 ° C. or higher and 800 ° C. or lower.
  7. 前記焼成は、不活性ガス雰囲気下で行われる請求項1に記載の方法。 The method according to claim 1, wherein the firing is performed in an inert gas atmosphere.
  8. 前記焼成は、減圧下で行われる請求項1に記載の方法。 The method according to claim 1, wherein the firing is performed under reduced pressure.
  9. 前記焼成後に、前記シリコン回収用固形分を融解する工程をさらに備える請求項1に記載の方法。 The method according to claim 1, further comprising a step of melting the solid content for silicon recovery after the baking.
  10. 前記融解後に前記シリコン回収用固形分を精製する工程をさらに備える請求項9に記載の方法。 The method according to claim 9, further comprising the step of purifying the silicon recovery solids after the melting.
PCT/JP2008/072329 2007-12-21 2008-12-09 Silicon reclamation method WO2009081725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008003423T DE112008003423T5 (en) 2007-12-21 2008-12-09 Process for recovering silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007330341A JP2009149480A (en) 2007-12-21 2007-12-21 Silicon regenerating method
JP2007-330341 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081725A1 true WO2009081725A1 (en) 2009-07-02

Family

ID=40801033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072329 WO2009081725A1 (en) 2007-12-21 2008-12-09 Silicon reclamation method

Country Status (4)

Country Link
JP (1) JP2009149480A (en)
DE (1) DE112008003423T5 (en)
TW (1) TW200946452A (en)
WO (1) WO2009081725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434646A1 (en) * 2017-07-25 2019-01-30 Total Solar International Method for recycling sub-micron si-particles from a si wafer production process
WO2019239067A1 (en) * 2018-06-14 2019-12-19 Rosi Treatment process for recycling silicon ingot cutting waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415714B (en) * 2010-03-01 2013-11-21 Ihi Compressor And Machinery Co Ltd Saw the slurry management device
DE102011115081B4 (en) * 2011-09-19 2017-08-31 Baufeld-Mineralölraffinerie GmbH Process for the recovery of solar silicon from sawed waste
JP6172030B2 (en) * 2014-04-03 2017-08-02 信越半導体株式会社 Workpiece cutting method and machining fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687607A (en) * 1991-09-05 1994-03-29 Nec Corp Method for recovering silicon
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2002293528A (en) * 2001-03-30 2002-10-09 Sharp Corp Production method of silicon for solar cell
JP2007302513A (en) * 2006-05-11 2007-11-22 Sharp Corp Method for separating silicon carbide and silicon and apparatus used for the method
JP2007332001A (en) * 2006-06-16 2007-12-27 Kimura Chem Plants Co Ltd Method for producing silicon from waste sludge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687607A (en) * 1991-09-05 1994-03-29 Nec Corp Method for recovering silicon
JPH0848514A (en) * 1994-08-04 1996-02-20 Sharp Corp Removal of phosphorus from silicon
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2002293528A (en) * 2001-03-30 2002-10-09 Sharp Corp Production method of silicon for solar cell
JP2007302513A (en) * 2006-05-11 2007-11-22 Sharp Corp Method for separating silicon carbide and silicon and apparatus used for the method
JP2007332001A (en) * 2006-06-16 2007-12-27 Kimura Chem Plants Co Ltd Method for producing silicon from waste sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434646A1 (en) * 2017-07-25 2019-01-30 Total Solar International Method for recycling sub-micron si-particles from a si wafer production process
WO2019020656A1 (en) * 2017-07-25 2019-01-31 Total Solar International Method for recycling sub-micron si-particles from a si wafer production process
WO2019239067A1 (en) * 2018-06-14 2019-12-19 Rosi Treatment process for recycling silicon ingot cutting waste
FR3082512A1 (en) * 2018-06-14 2019-12-20 Rosi PROCESSING PROCESS FOR THE RECYCLING OF CUT WASTE FROM SILICON INGOTS
CN112512970A (en) * 2018-06-14 2021-03-16 罗西 Treatment method for recycling silicon ingot cutting waste
JP7376215B2 (en) 2018-06-14 2023-11-08 ロシ Processing method for recycling silicon ingot cutting waste

Also Published As

Publication number Publication date
JP2009149480A (en) 2009-07-09
DE112008003423T5 (en) 2011-04-14
TW200946452A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
US20100068115A1 (en) Silicon reclamation apparatus and method of reclaiming silicon
JP4966938B2 (en) Silicon regeneration method
Kong et al. An economical approach for the recycling of high-purity silicon from diamond-wire saw kerf slurry waste
Drouiche et al. Recovery of solar grade silicon from kerf loss slurry waste
US8354088B2 (en) Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
JP5722601B2 (en) Silicon cutting waste treatment method
JP2009196849A (en) Silicon recovery method and silicon recovery apparatus
JP5001589B2 (en) Method for producing silicon from waste sludge
Hachichi et al. Silicon recovery from kerf slurry waste: a review of current status and perspective
JP5114436B2 (en) Metal content removal method and silicon purification method
Yang et al. A rapid thermal process for silicon recycle and refining from cutting kerf-loss slurry waste
WO2009081725A1 (en) Silicon reclamation method
JP2011121049A (en) Silicon recycling system and silicon recycling method
JP4520331B2 (en) Method for producing hydrogen gas
CN103052594B (en) The method for preparing HIGH-PURITY SILICON
JP2011218503A (en) Method for disposing silicon-containing waste liquid
WO2011111767A1 (en) Method for recovering silicon and method for producing silicon
JP5246702B2 (en) Silicon purification method
JP2009084069A (en) Apparatus and method for regenerating silicon
EP2712844A1 (en) Recycling of silicon kerfs from wafer sawing
JP2012111672A (en) Method for purifying silicon and purified silicon
JP2002293528A (en) Production method of silicon for solar cell
JP5286095B2 (en) Silicon sludge recovery method and silicon processing apparatus
JP2011116605A (en) Method and apparatus for producing high-purity silica and high-purity silicon
JP2009292656A (en) Method for manufacturing silicon ingot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080034230

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863666

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008003423

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P