JPH0687607A - Method for recovering silicon - Google Patents

Method for recovering silicon

Info

Publication number
JPH0687607A
JPH0687607A JP25482891A JP25482891A JPH0687607A JP H0687607 A JPH0687607 A JP H0687607A JP 25482891 A JP25482891 A JP 25482891A JP 25482891 A JP25482891 A JP 25482891A JP H0687607 A JPH0687607 A JP H0687607A
Authority
JP
Japan
Prior art keywords
silicon
particles
suspension
silicon particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25482891A
Other languages
Japanese (ja)
Inventor
Masatoshi Ichi
正年 位地
Sadahiko Yokoyama
貞彦 横山
Minoru Tsurumi
實 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25482891A priority Critical patent/JPH0687607A/en
Publication of JPH0687607A publication Critical patent/JPH0687607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To recover silicon from suspension of silicon particles. CONSTITUTION:Inorganic acid, water soluble inorganic salt and their mixture are added to suspension of silicon particles to give the silicon sedimentation. And if necessary, the separated silicon is washed with water to be made to have high purity. And further, after the suspension is given sedimentation with inorganic acid, the recovered silicon is heated to be made to have high purity. Thus silicon is effectively recovered from suspension of silicon particles and if necessary, the recovered silicon is also made to have high purity. As a result, it is effectively recycled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細なシリコン粒子が
懸濁した水溶液からシリコンを回収する方法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering silicon from an aqueous solution in which fine silicon particles are suspended.

【0002】[0002]

【従来の技術】半導体のシリコンチップは、シリコンイ
ンゴットから切断及び研磨されたシリコンウエハーを切
断加工することによって製造される。このインゴットの
切断や、切断されたウエハーの研磨工程で発生する削り
屑は、切断,研磨工程に使用される水にシリコンの微細
な粒子が懸濁した状態となり、半導体産業の発展に伴っ
て、この量は膨大なものになっている。
2. Description of the Related Art Semiconductor silicon chips are manufactured by cutting a silicon wafer cut and polished from a silicon ingot. The shavings generated during the cutting of the ingot and the polishing process of the cut wafer become a state where fine particles of silicon are suspended in the water used for the cutting and polishing process, and with the development of the semiconductor industry, This amount is enormous.

【0003】[0003]

【発明が解決しようとする課題】上記工程で発生したシ
リコン粒子は、非常に微細なため水中で懸濁し、容易に
沈降しない。このため、シリコンを水中から分離するこ
とは困難であり、これまでは再利用されずに懸濁液のま
ま、他の廃液とともに処理され廃棄されていた。しか
し、高価な純度の高いシリコンを再利用しないことは、
資源の有効利用の点で大きな問題である。
The silicon particles generated in the above process are so fine that they are suspended in water and do not easily settle. For this reason, it is difficult to separate silicon from water, and until now, it was treated as a suspension without being reused, and was treated and discarded together with other waste liquids. But not reusing expensive, pure silicon
This is a big problem in terms of effective use of resources.

【0004】一般には粒子の回収方法として、濾過,分
離する方法が知られているが、上記シリコン粒子は、粒
径が細かすぎるため濾紙に目詰まりしやすく、実用的で
ない。また、遠心分離方法もあるが、水分に対してシリ
コン粒子の濃度が薄すぎて遠心分離の効率が悪く、さら
に設備や運転にコストがかかり、この方法も実用性に乏
しい。
[0004] Generally, as a method of collecting particles, a method of filtering and separating is known, but the above-mentioned silicon particles are not practical because the particle size is too fine and they are easily clogged with the filter paper. There is also a centrifuge method, but the concentration of silicon particles is too thin with respect to water, the efficiency of centrifuge is poor, and the equipment and operation are expensive, and this method is also not practical.

【0005】本発明はかかる事情に対してなされたもの
であり、水中に懸濁しているシリコン粒子を化学的に処
理して、沈降分離することで効率的に回収し、しかも必
要に応じて回収したシリコンを高純度化することを目的
としている。
The present invention has been made in view of the above circumstances, in which silicon particles suspended in water are chemically treated to be efficiently separated by sedimentation and further, if necessary, recovered. The purpose is to make the purified silicon highly purified.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明によるシリコン粒子懸濁液からのシリコン回
収方法においては、シリコン粒子が懸濁した水溶液から
シリコン粒子を回収するシリコンの回収方法であって、
シリコン粒子懸濁液に無機酸を添加し、液中に沈降した
シリコン粒子を分離するものである。
In order to achieve the above object, the method for recovering silicon from a suspension of silicon particles according to the present invention is a method for recovering silicon from an aqueous solution in which silicon particles are suspended. There
An inorganic acid is added to the silicon particle suspension to separate the silicon particles settled in the liquid.

【0007】また、シリコン粒子が懸濁した水溶液から
シリコン粒子を回収するシリコンの回収方法であって、
シリコン粒子懸濁液に水溶性の無機塩を添加し、液中に
沈降したシリコン粒子を分離するものである。
Further, there is provided a silicon recovery method for recovering silicon particles from an aqueous solution in which silicon particles are suspended,
A water-soluble inorganic salt is added to a silicon particle suspension to separate the silicon particles settled in the liquid.

【0008】また、シリコン粒子が懸濁した水溶液から
シリコン粒子を回収するシリコンの回収方法であって、
シリコン粒子懸濁液に無機酸と無機塩との混合物を添加
し、液中に沈降したシリコン粒子を分離するものであ
る。
A method of recovering silicon from an aqueous solution in which silicon particles are suspended,
A mixture of an inorganic acid and an inorganic salt is added to a suspension of silicon particles to separate the silicon particles precipitated in the liquid.

【0009】また、前記水溶液より分離したシリコン粒
子に水洗処理を施して回収されたシリコンを高純度化す
るものである。
Further, the silicon particles separated from the aqueous solution are subjected to a water washing treatment to highly purify the recovered silicon.

【0010】また、前記水溶液より分離したシリコン粒
子を加熱して回収されたシリコンを高純度化するもので
ある。
Further, the silicon particles separated from the aqueous solution are heated to highly purify the recovered silicon.

【0011】[0011]

【作用】本発明は、シリコン粒子懸濁液に無機酸,水溶
性無機塩又は無機酸と水溶性無機塩の混合物を添加する
ことにより、シリコン粒子を沈降分離して、シリコンを
回収し、また、回収したシリコンを高純度化するもので
ある。
According to the present invention, by adding an inorganic acid, a water-soluble inorganic salt or a mixture of an inorganic acid and a water-soluble inorganic salt to a silicon particle suspension, the silicon particles are precipitated and separated to recover silicon. , To purify the recovered silicon.

【0012】本発明のシリコン粒子懸濁液とは、水溶液
中にシリコン粒子が懸濁しているものを指し、例えば、
シリコンインゴットの切削工程やシリコンウエハーの研
磨工程などで発生する微細なシリコン粒子を含む水溶液
が挙げられる。
The silicon particle suspension of the present invention refers to a suspension of silicon particles in an aqueous solution.
An aqueous solution containing fine silicon particles generated in a silicon ingot cutting step, a silicon wafer polishing step, or the like can be used.

【0013】これら実際のシリコン粒子の平均粒子径
は、一般的に10μ程度から0.1μ程度である。この
他、懸濁して沈降しにくいシリコン粒子が、全体的又は
部分的に存在する水溶液の全てに本発明は適用可能であ
る。
The average particle diameter of these actual silicon particles is generally about 10 μ to 0.1 μ. In addition to the above, the present invention is applicable to all aqueous solutions in which silicon particles that are suspended and hardly settle are wholly or partially present.

【0014】次に、この懸濁液に添加する無機酸として
は、水中でよく解離する無機質の酸を指し、例えば硫
酸,塩酸,フッ酸,硝酸又はこれらの混合物などが挙げ
られる。これらの添加量については、0.01mol/
l以上が好ましい。0.01mol/l未満では、シリ
コン粒子の沈降速度を向上させる効果が小さくなる。
Next, the inorganic acid added to this suspension refers to an inorganic acid that dissociates well in water, and examples thereof include sulfuric acid, hydrochloric acid, hydrofluoric acid, nitric acid, and mixtures thereof. The addition amount of these is 0.01 mol /
It is preferably 1 or more. If it is less than 0.01 mol / l, the effect of improving the sedimentation rate of silicon particles becomes small.

【0015】またこれらの添加量の上限については、フ
ッ酸及びこれと他の酸との混合物以外特に制限がない
が、回収したシリコンの純度が低下するので、なるべく
少ない方が好ましい。フッ酸やこれを他の酸と混合する
場合は、フッ酸の懸濁液に対する添加量は1mol/l
未満が好ましい。これ以上ではシリコンの溶解する傾向
が強くなり、シリコンの回収率が低下する。
The upper limits of the amounts of these added are not particularly limited, except for hydrofluoric acid and mixtures thereof with other acids, but the purity of the recovered silicon decreases, so it is preferable that it is as low as possible. When hydrofluoric acid or other acids are mixed, the amount of hydrofluoric acid added to the suspension is 1 mol / l.
Less than is preferred. Above this, the tendency of silicon to dissolve becomes strong, and the recovery rate of silicon decreases.

【0016】また、この懸濁液に添加する水溶性の無機
塩としては、塩化カルシウム,塩化ナトリウム,塩化第
二鉄,硫酸アルミニウム,硫酸第一鉄,硫酸第二鉄など
が挙げられる。これらの添加量は0.005mol/l
以上が好ましい。これ未満では、沈降速度を向上させる
効果が小さくなる。
Examples of the water-soluble inorganic salt added to this suspension include calcium chloride, sodium chloride, ferric chloride, aluminum sulfate, ferrous sulfate, ferric sulfate and the like. The addition amount of these is 0.005 mol / l
The above is preferable. Below this, the effect of improving the sedimentation rate becomes small.

【0017】これらの添加量の上限は、これらが懸濁液
に溶解する限り、特に制限はないが、回収したシリコン
の純度が低下するので、添加量はなるべく少ない方が好
ましい。
The upper limit of the amount of addition of these is not particularly limited as long as they are dissolved in the suspension, but since the purity of the recovered silicon decreases, it is preferable that the amount of addition is as small as possible.

【0018】これらの無機酸と水溶性の無機塩との混合
物を添加する場合は、これらの合計量が0.005mo
l/l以上が好ましい。これ以下では、沈降速度を向上
させる効果が小さくなる。これらの上限は、フッ酸を他
と混合して添加する以外については、懸濁液によく溶解
する限り特に制限はない。
When a mixture of these inorganic acids and water-soluble inorganic salts is added, their total amount is 0.005mo.
It is preferably 1 / l or more. Below this, the effect of improving the sedimentation speed becomes small. These upper limits are not particularly limited as long as they are well dissolved in the suspension, except that hydrofluoric acid is mixed with the other and added.

【0019】但し、回収したシリコンの純度が低下する
ので、なるべく少ない方が好ましい。フッ酸を無機塩と
混合して添加する場合は、フッ酸の添加量が懸濁液に対
して1mol/l未満が好ましい。これ以上では、シリ
コンが溶解する傾向が強くなり、シリコンの回収率が低
下する。
However, since the purity of the recovered silicon decreases, it is preferable that the amount is as small as possible. When hydrofluoric acid is added as a mixture with an inorganic salt, the amount of hydrofluoric acid added is preferably less than 1 mol / l with respect to the suspension. Above this, the tendency for the silicon to dissolve becomes stronger, and the recovery rate of silicon decreases.

【0020】このようにして懸濁液から沈降させたシリ
コンは、上澄みをデカンテーションや濾過した後、水分
を乾燥などで除去することで分離できる。
The silicon thus precipitated from the suspension can be separated by decanting or filtering the supernatant and then removing water by drying or the like.

【0021】また、上記の方法で分離したシリコンに付
着した無機酸や無機塩を除去して純度を向上させること
は、これらを水洗することによって行うことができる。
具体的にはデカンテーションを繰り返すか、濾過の際に
シリコンの残渣を水で洗浄することで行うことができ
る。このとき、本発明では沈降したシリコン粒子が強固
に凝集しているので、洗浄しても再懸濁し、沈降分離し
にくくなったりすることはない。
Further, the removal of the inorganic acid or the inorganic salt attached to the silicon separated by the above method to improve the purity can be carried out by washing these with water.
Specifically, it can be performed by repeating decantation or washing the silicon residue with water during filtration. At this time, in the present invention, since the precipitated silicon particles are strongly aggregated, they are not resuspended even if washed, and the sedimentation and separation do not become difficult.

【0022】また、無機酸を単独で添加してシリコンを
沈降分離させた場合は、分離したシリコンを加熱するこ
とで、回収したシリコンを高純度化することができる。
When the inorganic acid is added alone to precipitate and separate the silicon, the recovered silicon can be highly purified by heating the separated silicon.

【0023】懸濁していたシリコンの微粒子は、無機酸
や水溶性無機塩及びこれらの混合物の添加によって、容
易に沈降分離でき、しかもその後、高純度化が可能であ
る。この理由としては、懸濁液中のシリコン粒子の表面
は荷電されており、この反発力で浮遊していたが、無機
酸や無機塩などを添加することで、表面の電荷をなく
し、さらに表面が改質されて強固な凝集が生じたことが
考えられる。このため、水洗する際に、再懸濁すること
なく、回収したシリコンの高純度化が可能であったと思
われる。
The suspended silicon fine particles can be easily separated by sedimentation by adding an inorganic acid, a water-soluble inorganic salt or a mixture thereof, and can be highly purified thereafter. The reason for this is that the surface of the silicon particles in the suspension was charged and floated due to this repulsive force, but by adding an inorganic acid or an inorganic salt, the surface charge was eliminated and It is conceivable that the powder was modified to cause strong aggregation. Therefore, it is considered that the recovered silicon could be highly purified without being resuspended when washed with water.

【0024】また無機酸を添加してシリコンを沈降分離
した場合は、付着した酸を加熱することで酸を蒸発させ
ることができ、高純度化できたと考えられる。
When the inorganic acid is added and the silicon is separated by sedimentation, it is considered that the acid adhering to the silicon can be evaporated by heating the adhering acid, resulting in high purification.

【0025】[0025]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0026】シリコン粒子懸濁液に無機酸,水溶性の無
機塩を添加して実施例1〜11に示す混合物を作成し
た。例えば、実施例1については、平均粒径0.6μの
シリコン粒子が0.5重量%懸濁している水溶液90m
lに、10規定の硫酸10mlを添加し、1mol/l
の濃度になるようにしたものである。実施例2〜11に
ついてもその要領は同じである。
Mixtures shown in Examples 1 to 11 were prepared by adding an inorganic acid and a water-soluble inorganic salt to a suspension of silicon particles. For example, for Example 1, 90 m of an aqueous solution in which 0.5% by weight of silicon particles having an average particle size of 0.6 μ are suspended.
10 ml of 10 N sulfuric acid was added to 1 to give 1 mol / l.
The concentration is set to. The procedure is the same for Examples 2 to 11.

【0027】各実施例についてのシリコン粒子の平均粒
径,シリコン濃度,添加した無機酸,無機塩の種類及び
その添加量を表1に示す。
Table 1 shows the average particle size of silicon particles, the silicon concentration, the type of the added inorganic acid and the type of the inorganic salt, and the addition amount thereof for each example.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、各実施例の試料を3分間撹拌した後
放置して、シリコンの沈降速度を測定した。沈降速度
は、上澄み液を定時間で分取し、これの濁度を測定する
ことで求めた。濁度の測定法は、JIS KO101
9.2に準じ、また、カオリン標準液を用いて検量線を
作成した。この測定結果を表2に示す。
Next, the samples of the respective examples were stirred for 3 minutes and then allowed to stand, and the sedimentation rate of silicon was measured. The sedimentation speed was determined by collecting the supernatant liquid at a fixed time and measuring the turbidity of the liquid. The turbidity measurement method is JIS KO101.
According to 9.2, a calibration curve was prepared using a kaolin standard solution. The measurement results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】さらに実施例3,4,10の試料について
沈降分離したシリコンをそれぞれ濾過した後、濾紙上の
シリコン残渣に純水を10ml添加して吸引する操作を
3回繰返して洗浄した。
Further, the sedimented and separated silicon of the samples of Examples 3, 4 and 10 was filtered, and 10 ml of pure water was added to the silicon residue on the filter paper and suction was repeated three times for washing.

【0032】この洗浄したシリコンをビーカーに移して
純水を100ml加え、3分間撹拌した後の再沈降性を
測定した。沈降速度の測定は、前記と同じ方法で測定し
た。測定結果をそれぞれ実施例12,13,14として
表2に示す。
The washed silicon was transferred to a beaker, 100 ml of pure water was added, and the mixture was stirred for 3 minutes, and the reprecipitation property was measured. The sedimentation velocity was measured by the same method as described above. The measurement results are shown in Table 2 as Examples 12, 13 and 14, respectively.

【0033】また、実施例7,11の試料について、沈
降分離したシリコンの上澄みをそれぞれデカンテーショ
ンし、さらに純水100mlを添加した後、撹拌して放
置し、デカンテーションする操作を3回繰返した。そし
て、純水を100ml添加して撹拌した後、前実施例と
同様に沈降速度を測定した。測定結果を実施例15,1
6として表2に示す。
Further, with respect to the samples of Examples 7 and 11, the sedimentation-separated supernatants of silicon were decanted, 100 ml of pure water was added, and the mixture was stirred and allowed to stand, followed by decanting three times. . Then, 100 ml of pure water was added and stirred, and then the sedimentation rate was measured in the same manner as in the previous example. The measurement results are shown in Examples 15 and 1.
6 is shown in Table 2.

【0034】さらに、実施例12〜16について、沈降
性を見たときの上澄み液の電気伝導度を測定してシリコ
ンの洗浄度を調べた。その測定結果を表3に示す。
Further, in Examples 12 to 16, the electrical conductivity of the supernatant liquid when the sedimentation property was observed was measured to examine the cleaning degree of silicon. The measurement results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】表3中、実施例17,18は、実施例3,
4の試料について、沈降分離したシリコンをそれぞれ濾
過した後、風乾し、さらに300℃で5時間加熱し、こ
れに純水100mlを添加して撹拌してから溶液の電気
伝導度を測定したものである。測定結果は、酸の除去性
を表わしている。
In Table 3, Examples 17 and 18 correspond to Example 3,
For the sample of No. 4, after filtering the precipitated and separated silicon respectively, air-drying and further heating at 300 ° C. for 5 hours, adding 100 ml of pure water and stirring, and measuring the electric conductivity of the solution. is there. The measurement result represents the acid removability.

【0037】比較のため、無機酸,無機塩を添加しない
表1に示す比較例1,2の試料について、その懸濁液を
3分間撹拌した後のシリコンの沈降速度を測定した。そ
の測定結果を表2に示す。さらに、比較例1,2のシリ
コン懸濁液の電気伝導度を測定した。その測定結果をそ
れぞれ比較例3,4として表3に示す。
For comparison, with respect to the samples of Comparative Examples 1 and 2 shown in Table 1 in which no inorganic acid or inorganic salt was added, the sedimentation rate of silicon was measured after stirring the suspensions for 3 minutes. The measurement results are shown in Table 2. Furthermore, the electrical conductivity of the silicon suspensions of Comparative Examples 1 and 2 was measured. The measurement results are shown in Table 3 as Comparative Examples 3 and 4, respectively.

【0038】以上実施例と比較例とを比較して明らかな
とおり、無機酸,水溶性無機塩、及びこれらの混合物を
シリコン粒子懸濁液に添加すると容易にシリコンを沈降
分離できることが分かった。
As is clear from the comparison between the examples and the comparative examples, it was found that silicon can be easily precipitated and separated by adding an inorganic acid, a water-soluble inorganic salt, and a mixture thereof to a silicon particle suspension.

【0039】また、回収したシリコンを水洗して高純度
化することが可能となり、さらに水洗後の沈降分離性も
良好で、再懸濁しにくいことが判明した。そして、無機
酸で沈降分離したものは加熱することでも高純度化でき
ることもわかった。
Further, it has been found that the recovered silicon can be washed with water to be highly purified, and the sedimentation / separation property after washing with water is good, and resuspension is difficult. It was also found that the product separated by sedimentation with an inorganic acid can be highly purified by heating.

【0040】[0040]

【発明の効果】以上のように本発明によれば、シリコン
粒子懸濁液からシリコンを効率的に分離回収することが
でき、また必要に応じて回収したシリコンを高純度化す
ることができ、その結果、これらを有効に再資源化する
ことができる効果を有する。
As described above, according to the present invention, silicon can be efficiently separated and recovered from a silicon particle suspension, and the recovered silicon can be highly purified, if necessary. As a result, there is an effect that these can be effectively recycled.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 貞彦 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 鶴見 實 神奈川県横浜市緑区榎が丘30−2−1− 103 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadahiko Yokoyama 5-7-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Inventor Minoru Tsurumi 30-2-1 Engaoka, Midori-ku, Yokohama-shi, Kanagawa − 103

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン粒子が懸濁した水溶液からシリ
コン粒子を回収するシリコンの回収方法であって、 シリコン粒子懸濁液に無機酸を添加し、液中に沈降した
シリコン粒子を分離するものであることを特徴とするシ
リコンの回収方法。
1. A method for recovering silicon from an aqueous solution in which silicon particles are suspended, which comprises adding an inorganic acid to a suspension of silicon particles and separating the silicon particles precipitated in the liquid. A method for recovering silicon, which is characterized by being present.
【請求項2】 シリコン粒子が懸濁した水溶液からシリ
コン粒子を回収するシリコンの回収方法であって、 シリコン粒子懸濁液に水溶性の無機塩を添加し、液中に
沈降したシリコン粒子を分離するものであることを特徴
とするシリコンの回収方法。
2. A method of recovering silicon particles from an aqueous solution in which silicon particles are suspended, comprising adding a water-soluble inorganic salt to a suspension of silicon particles, and separating the silicon particles precipitated in the liquid. A method for recovering silicon, which is characterized in that
【請求項3】 シリコン粒子が懸濁した水溶液からシリ
コン粒子を回収するシリコンの回収方法であって、 シリコン粒子懸濁液に無機酸と無機塩との混合物を添加
し、液中に沈降したシリコン粒子を分離するものである
ことを特徴とするシリコンの回収方法。
3. A silicon recovery method for recovering silicon particles from an aqueous solution in which silicon particles are suspended, which comprises adding a mixture of an inorganic acid and an inorganic salt to a suspension of silicon particles, and depositing the silicon in a liquid. A method for recovering silicon, which comprises separating particles.
【請求項4】 前記水溶液より分離したシリコン粒子に
水洗処理を施して回収されたシリコンを高純度化するこ
とを特徴とする請求項1〜3に記載のシリコンの回収方
法。
4. The method for recovering silicon according to claim 1, wherein the silicon particles separated from the aqueous solution are washed with water to highly recover the recovered silicon.
【請求項5】 前記水溶液より分離したシリコン粒子を
加熱して回収されたシリコンを高純度化することを特徴
とする請求項1に記載のシリコンの回収方法。
5. The method for recovering silicon according to claim 1, wherein the silicon particles separated from the aqueous solution are heated to highly purify the recovered silicon.
JP25482891A 1991-09-05 1991-09-05 Method for recovering silicon Pending JPH0687607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25482891A JPH0687607A (en) 1991-09-05 1991-09-05 Method for recovering silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25482891A JPH0687607A (en) 1991-09-05 1991-09-05 Method for recovering silicon

Publications (1)

Publication Number Publication Date
JPH0687607A true JPH0687607A (en) 1994-03-29

Family

ID=17270428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25482891A Pending JPH0687607A (en) 1991-09-05 1991-09-05 Method for recovering silicon

Country Status (1)

Country Link
JP (1) JPH0687607A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
JP2008094937A (en) * 2006-10-11 2008-04-24 Sumco Techxiv株式会社 Process for manufacturing molded article
WO2009081725A1 (en) * 2007-12-21 2009-07-02 Sharp Kabushiki Kaisha Silicon reclamation method
JP2010082568A (en) * 2008-09-30 2010-04-15 Daido Chem Ind Co Ltd Method of treating waste liquid
WO2010078274A3 (en) * 2008-12-31 2010-12-16 Memc Electronic Materials, Inc. Methods to recover and purify silicon particles from saw kerf
JP2012115758A (en) * 2010-11-30 2012-06-21 Sanwa Biotech Kk Method for treating waste liquid from silicon cutting
US8354088B2 (en) 2008-04-11 2013-01-15 Iosil Energy Corporation Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
KR101323765B1 (en) * 2006-02-24 2013-10-31 가부시키가이샤 아이에이치아이 카이덴기카이 Method and apparatus for processing silicon particles
US8580205B2 (en) 2006-08-18 2013-11-12 Iosil Energy Corporation Method and apparatus for improving the efficiency of purification and deposition of polycrystalline silicon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
KR101323765B1 (en) * 2006-02-24 2013-10-31 가부시키가이샤 아이에이치아이 카이덴기카이 Method and apparatus for processing silicon particles
US8580205B2 (en) 2006-08-18 2013-11-12 Iosil Energy Corporation Method and apparatus for improving the efficiency of purification and deposition of polycrystalline silicon
JP2008094937A (en) * 2006-10-11 2008-04-24 Sumco Techxiv株式会社 Process for manufacturing molded article
WO2009081725A1 (en) * 2007-12-21 2009-07-02 Sharp Kabushiki Kaisha Silicon reclamation method
US8354088B2 (en) 2008-04-11 2013-01-15 Iosil Energy Corporation Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
JP2010082568A (en) * 2008-09-30 2010-04-15 Daido Chem Ind Co Ltd Method of treating waste liquid
WO2010078274A3 (en) * 2008-12-31 2010-12-16 Memc Electronic Materials, Inc. Methods to recover and purify silicon particles from saw kerf
US8231006B2 (en) 2008-12-31 2012-07-31 Memc Singapore Pte. Ltd. Methods to recover and purify silicon particles from saw kerf
EP2743335A1 (en) * 2008-12-31 2014-06-18 MEMC Singapore Pte. Ltd. Methods to recover and purify silicon particles from Saw Kerf
JP2012115758A (en) * 2010-11-30 2012-06-21 Sanwa Biotech Kk Method for treating waste liquid from silicon cutting

Similar Documents

Publication Publication Date Title
JP6421887B2 (en) Method for producing cerium salt, cerium oxide and cerium-based abrasive
JP2012514349A5 (en)
EP2607445B1 (en) Method for recovery of cerium oxide
JPH0687607A (en) Method for recovering silicon
US20090293369A1 (en) Wire saw slurry recycling process
JP2011509187A (en) Method for separating and recovering suspended fluid contained in slurry discharged by silicon machining
JP2928020B2 (en) Silicon recovery method
JP3413394B2 (en) Method for recovering cerium oxide from cerium oxide abrasive waste liquid for optical polishing and method for eliminating pollution from cerium oxide abrasive waste liquid for optical polishing
JP6260617B2 (en) Diamond abrasive recovery method
JP2003147455A (en) Method of recovering tantalum compound from wire saw slurry
US3630351A (en) Methods of upgrading alumina-bearing materials
JP4657172B2 (en) Method for purifying metal silicon
JP5370598B2 (en) Method for recovering abrasive components containing cerium oxide from used abrasive slurry
JPH1112562A (en) Recovery of diamond abrasive grain
JP6230613B2 (en) Method to enhance filtration of slurry produced by buyer method
JP2683343B2 (en) Whisker purification method
JP3436304B2 (en) Method for concentrating gallium compound from sediment containing gallium compound, abrasive grains and cutting oil
JP2005007541A (en) Reusing system of slurry waste liquid for slicing hard/brittle material
JP5967246B2 (en) Recovery method of cerium oxide
WO2014042494A1 (en) Method for recycling waste abrasive material containing ceria
TW538112B (en) Method for treating an exhausted glycol-based slurry
JPH0319168B2 (en)
RU2021104545A (en) COMPLEX COMPOUND OF HYDROXAMIC ACID AND METAL HYDROXIDE, ITS PREPARATION AND APPLICATION
WO1991012080A1 (en) Processing of mineral deposits
JPS5938001B2 (en) Method for concentrating and regenerating dilute water-based magnetic fluid