JP6172030B2 - Workpiece cutting method and machining fluid - Google Patents

Workpiece cutting method and machining fluid Download PDF

Info

Publication number
JP6172030B2
JP6172030B2 JP2014077178A JP2014077178A JP6172030B2 JP 6172030 B2 JP6172030 B2 JP 6172030B2 JP 2014077178 A JP2014077178 A JP 2014077178A JP 2014077178 A JP2014077178 A JP 2014077178A JP 6172030 B2 JP6172030 B2 JP 6172030B2
Authority
JP
Japan
Prior art keywords
abrasive grains
wire
workpiece
cutting
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014077178A
Other languages
Japanese (ja)
Other versions
JP2015196236A (en
Inventor
佳一 上林
佳一 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014077178A priority Critical patent/JP6172030B2/en
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to CN201580012652.XA priority patent/CN106132631B/en
Priority to US15/124,245 priority patent/US10189181B2/en
Priority to PCT/JP2015/001214 priority patent/WO2015151408A1/en
Priority to DE112015001156.0T priority patent/DE112015001156B4/en
Priority to SG11201607416QA priority patent/SG11201607416QA/en
Priority to KR1020167026522A priority patent/KR102367641B1/en
Priority to TW104107389A priority patent/TWI613034B/en
Publication of JP2015196236A publication Critical patent/JP2015196236A/en
Application granted granted Critical
Publication of JP6172030B2 publication Critical patent/JP6172030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

本発明は、ワイヤーソーを使用したワークの切断方法及びそれに用いる加工液に関する。   The present invention relates to a workpiece cutting method using a wire saw and a machining fluid used therefor.

近年、半導体ウェーハの大型化が望まれており、この大型化に伴い、ワークの切断には専らワイヤーソー装置が使用されている。
ワイヤーソー装置は、ワイヤー(高張力鋼線)を高速走行させて、ここにスラリーを掛けながら、ワーク(例えばシリコンインゴットが挙げられる。)を押し当てて切断し、多数のウェーハを同時に切り出す装置である(特許文献1参照)。
In recent years, an increase in size of a semiconductor wafer has been desired, and along with this increase in size, a wire saw device is exclusively used for cutting a workpiece.
A wire saw device is a device that runs a wire (high-strength steel wire) at a high speed, applies a slurry to the workpiece, presses a workpiece (for example, a silicon ingot), cuts the wafer, and simultaneously cuts a large number of wafers. Yes (see Patent Document 1).

ここで、図4に、従来の一般的なワイヤーソーの一例の概要を示す。
図4に示すように、ワイヤーソー101は、主に、ワークを切断するためのワイヤー102、ワイヤー102を巻回したワイヤーガイド103、ワイヤー102に張力を付与するための張力付与機構104、切断されるワークを送り出すワーク送り手段105、切断時に砥粒をクーラントに分散して混合した加工液(スラリー)を供給するためのノズル106等で構成されている。
Here, FIG. 4 shows an outline of an example of a conventional general wire saw.
As shown in FIG. 4, the wire saw 101 is mainly cut by a wire 102 for cutting a workpiece, a wire guide 103 around which the wire 102 is wound, a tension applying mechanism 104 for applying tension to the wire 102, and the like. The workpiece feeding means 105 for feeding the workpiece to be fed, and the nozzle 106 for supplying a working fluid (slurry) in which abrasive grains are dispersed and mixed in the coolant at the time of cutting.

ワイヤー102は、一方のワイヤーリールボビン107から繰り出され、トラバーサ108を介してパウダクラッチ(定トルクモーター109)やダンサローラ(デッドウェイト)(不図示)等からなる張力付与機構104を経て、ワイヤーガイド103に入っている。ワイヤー102はこのワイヤーガイド103に300〜400回程度巻回された後、もう一方の張力付与機構104’を経てワイヤーリールボビン107’に巻き取られている。   The wire 102 is fed out from one wire reel bobbin 107, and is passed through a traverser 108, through a tension applying mechanism 104 including a powder clutch (constant torque motor 109), a dancer roller (dead weight) (not shown), etc., and then to a wire guide 103. In. The wire 102 is wound around the wire guide 103 about 300 to 400 times, and is then wound around the wire reel bobbin 107 ′ through the other tension applying mechanism 104 ′.

また、ワイヤーガイド103は鉄鋼製円筒の周囲にポリウレタン樹脂を圧入し、その表面に一定のピッチで溝を切ったローラであり、巻回されたワイヤー102が、駆動用モーター110によって予め定められた周期で往復方向に駆動できるようになっている。   The wire guide 103 is a roller in which polyurethane resin is press-fitted around a steel cylinder and grooves are cut at a constant pitch on the surface thereof. The wound wire 102 is predetermined by a drive motor 110. It can be driven in a reciprocating direction with a period.

そして、ワイヤーガイド103、巻回されたワイヤー102の近傍には、ノズル106が設けられており、切断時にはこのノズル106から、ワイヤーガイド103、ワイヤー102にスラリーを供給できるようになっている。そして、切断後には廃スラリーとして排出される。   A nozzle 106 is provided in the vicinity of the wire guide 103 and the wound wire 102, and slurry can be supplied from the nozzle 106 to the wire guide 103 and the wire 102 at the time of cutting. And after cutting, it is discharged as waste slurry.

このようなワイヤーソー101を用い、ワイヤー102に張力付与機構104を用いて適当な張力をかけて、駆動用モーター110により、ワイヤー102を往復方向に走行させ、スラリーを供給しつつワークをスライスすることにより、所望のスライスウェーハを得ている。   Using such a wire saw 101, an appropriate tension is applied to the wire 102 using the tension applying mechanism 104, and the wire 102 is caused to travel in the reciprocating direction by the driving motor 110 to slice the workpiece while supplying slurry. Thus, a desired slice wafer is obtained.

上記の様なワイヤーソー装置でのワーク切断において、このワーク切断に使われた砥粒を、何度も使用(再利用)することにより、ウェーハの製造コストを低減することが提案されている(特許文献2)。   In the workpiece cutting with the wire saw apparatus as described above, it has been proposed to reduce the wafer manufacturing cost by using (reusing) the abrasive grains used for the workpiece cutting many times ( Patent Document 2).

特開平10−86140号公報JP-A-10-86140 特表2002−519209号公報Special Table 2002-519209

従来、半導体ウェーハ、特にシリコンウェーハの表面、あるいは内部に存在する金属不純物は、ウェーハが使用される各種半導体素子の特性に大きな影響を与えることが知られている。半導体素子への影響を考えると、ウェーハへの金属不純物による汚染は極力少ないことが望ましい。尚、汚染源となる金属不純物の一例として、銅が挙げられる。   Conventionally, it is known that metal impurities existing on the surface or inside of a semiconductor wafer, particularly a silicon wafer, greatly affect the characteristics of various semiconductor elements in which the wafer is used. Considering the influence on the semiconductor device, it is desirable that the contamination of the wafer by metal impurities is as small as possible. In addition, copper is mentioned as an example of the metal impurity used as a contamination source.

このようなウェーハへの金属不純物汚染を防ぐ方法としては、汚染源となる金属をウェーハに接触をさせないことが重要となる。   As a method for preventing such metal impurity contamination on the wafer, it is important that the metal that is a contamination source is not brought into contact with the wafer.

ワイヤーソーによるワーク切断で使用されるワイヤーは、一般に表面にブラスメッキが施されているものを用いている。   The wire used for workpiece cutting with a wire saw is generally one whose surface is brass plated.

上述のワイヤーソー装置では、ワークを切断する際にワイヤー自体も削られ細線化していく為、ブラスメッキ内に含まれている金属不純物である銅がスラリー中に溶け出していく。この銅がスラリー中の砥粒に付着し使用済み砥粒側に残存することが原因で、未使用の新品砥粒に比べ、使用済み砥粒で多くの銅が検出されることになる。   In the wire saw device described above, when cutting the workpiece, the wire itself is also cut and thinned, so that copper, which is a metal impurity contained in the brass plating, is dissolved into the slurry. Because this copper adheres to the abrasive grains in the slurry and remains on the used abrasive grains side, more copper is detected in the used abrasive grains than in the unused new abrasive grains.

上述の様に多くの銅が含まれる使用済み砥粒を再利用してワークの切断を行うと、系内に多くの銅が存在する状態になり、ウェーハと銅が接触する機会が多くなる。そうすると、切り上がったウェーハ中により多くの銅が取りこまれやすくなることが想定される。   When the workpiece is cut by reusing used abrasive grains containing a large amount of copper as described above, a large amount of copper is present in the system, and the wafer and copper are more likely to come into contact with each other. Then, it is assumed that more copper is easily taken into the rounded wafer.

本発明はこのような問題に鑑みてなされたものであって、ワイヤーソー装置を用いたワークの切断において砥粒を再利用する際の、ウェーハへの金属不純物による汚染を抑制することのできるワークの切断方法を提供することを目的とする。   The present invention has been made in view of such problems, and a workpiece capable of suppressing contamination by metal impurities on a wafer when abrasive grains are reused in cutting of a workpiece using a wire saw device. An object of the present invention is to provide a cutting method.

上記目的を達成するために、本発明は、
複数のワイヤーガイド間に螺旋状に巻回された軸方向に走行するワイヤーでワイヤー列を形成し、ワークと前記ワイヤーとの接触部に砥粒を含む加工液を供給しながら、前記ワイヤー列に前記ワークを押し当てることで、前記ワークを切断するワークの切断方法であって、
使用済みの前記砥粒に対して硫酸と過酸化水素水の混合液で処理を行い、処理後の砥粒を前記ワークの切断に再利用するワークの切断方法を提供する。
In order to achieve the above object, the present invention provides:
A wire row is formed with a wire that runs in an axial direction spirally wound between a plurality of wire guides, and a processing liquid containing abrasive grains is supplied to a contact portion between the workpiece and the wire while the wire row is supplied to the wire row. A work cutting method for cutting the work by pressing the work,
Provided is a workpiece cutting method in which used abrasive grains are treated with a mixed solution of sulfuric acid and hydrogen peroxide water, and the treated abrasive grains are reused for cutting the workpiece.

このようなワークの切断方法であれば、再利用した砥粒を用いたとしても、ワークを切断した後に得られるウェーハへの金属不純物による汚染を抑制することができ、金属不純物による汚染が少ない高純度なウェーハを低コストで製造することができる。   With such a workpiece cutting method, even if reused abrasive grains are used, contamination by metal impurities on the wafer obtained after cutting the workpiece can be suppressed, and contamination by metal impurities is low. A pure wafer can be manufactured at low cost.

また、本発明は、
ワイヤーソーを用いたワーク切断に使用した後に再利用した砥粒を含む加工液であって、
前記砥粒に含有される銅の濃度が砥粒1g当たり1ppm以下のものである加工液を提供する。
The present invention also provides:
A working fluid containing abrasive grains reused after being used to cut a workpiece using a wire saw,
Provided is a working fluid in which the concentration of copper contained in the abrasive grains is 1 ppm or less per gram of abrasive grains.

このような加工液であれば、再利用した砥粒を含むものでありながら、ウェーハと銅が接触する機会を少なくすることができ、かつ、ウェーハの製造コストを低減することができる。   With such a working fluid, the opportunity of contact between the wafer and copper can be reduced while the abrasive grains that have been reused are included, and the manufacturing cost of the wafer can be reduced.

本発明のワークの切断方法であれば、使用済み砥粒を再利用しながらもワークを切断した後に得られるウェーハへの金属不純物による汚染を抑制することができ、金属不純物による汚染が少ない高純度なウェーハを低コストで製造することができる。また、本発明の加工液であれば、再利用した砥粒を含むものでありながら、ウェーハと銅が接触する機会を少なくすることができ、かつ、ウェーハの製造コストを低減することができる。   If the workpiece cutting method of the present invention, it is possible to suppress contamination by metal impurities on the wafer obtained after cutting the workpiece while reusing used abrasive grains, high purity with less contamination by metal impurities A simple wafer can be manufactured at low cost. Moreover, if it is a processing liquid of this invention, the opportunity which a wafer and copper will contact can be decreased, and the manufacturing cost of a wafer can be reduced, although the reused abrasive grain is included.

本発明のワークの切断方法の一例を示したフロー図である。It is the flowchart which showed an example of the cutting method of the workpiece | work of this invention. 実施例1及び比較例1の砥粒1g当たりの銅濃度のグラフである。4 is a graph of copper concentration per 1 g of abrasive grains of Example 1 and Comparative Example 1. 実施例2及び比較例2により得られたウェーハ中の各種金属の濃度のグラフである。It is a graph of the density | concentration of the various metals in the wafer obtained by Example 2 and Comparative Example 2. 一般的なワイヤーソーの一例を示した概略図である。It is the schematic which showed an example of the general wire saw.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
上記で説明したように、ワークの切断に使用した砥粒を再利用する場合には、砥粒がワイヤー等に由来する金属に汚染されているため、ウェーハが金属で汚染されることとなり、品質が悪化したりするという問題があった。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
As explained above, when reusing the abrasive grains used to cut the workpiece, the abrasive grains are contaminated with metal derived from wires, etc., so the wafer is contaminated with metal, and the quality There was a problem of getting worse.

そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、ワークの切断に使用した砥粒を再利用する場合、使用済みの砥粒に対して硫酸と過酸化水素水の混合液で処理を行うことで、ウェーハの金属汚染を抑制できることに想到し、本発明を完成させた。   Therefore, the present inventor has intensively studied to solve such problems. As a result, when reusing the abrasive grains used for cutting the workpiece, it is thought that the metal contamination of the wafer can be suppressed by treating the used abrasive grains with a mixture of sulfuric acid and hydrogen peroxide. The present invention has been completed.

以下、本発明のワークの切断方法について図1のフロー図を参照して説明する。
本発明のワークの切断方法の一つの態様としては、(a)1回目のワークの切断を行い、(b)(a)工程で排出された使用済み砥粒を回収し、(c)硫酸と過酸化水素水の混合液によって使用済み砥粒を処理し、(d)(c)工程で得られた処理後の砥粒を再利用して、(e)2回目のワークの切断を行う工程を含む方法を挙げることができる。尚、図1に示すように、(e)工程で排出された使用済み砥粒に対しても、(b)工程〜(e)工程を繰り返すことで再利用することができる。
Hereinafter, the workpiece cutting method of the present invention will be described with reference to the flowchart of FIG.
As one aspect of the workpiece cutting method of the present invention, (a) cutting the first workpiece, (b) collecting the used abrasive grains discharged in the step (a), (c) sulfuric acid and (E) A process of cutting the workpiece for the second time by treating the used abrasive grains with a mixed solution of hydrogen peroxide water and reusing the treated abrasive grains obtained in steps (d) and (c). Can be mentioned. As shown in FIG. 1, the used abrasive grains discharged in the step (e) can be reused by repeating the steps (b) to (e).

(a)工程では、例えば、図4に示すようなワイヤーソー101を用いてワークを切断することができる。
このワイヤーソー101では、ノズル106から砥粒を含むスラリーを供給し、ワイヤー102でワークを切断する。ワークの切断に用いたスラリーは廃スラリーとして、排出される。
In the step (a), for example, the workpiece can be cut using a wire saw 101 as shown in FIG.
In this wire saw 101, slurry containing abrasive grains is supplied from a nozzle 106 and the workpiece is cut by the wire 102. The slurry used for cutting the workpiece is discharged as waste slurry.

ワークとしては、製造するウェーハの材質によって適宜選択することができ、例えば、シリコン、ガラス、セラミックス等からなるインゴットを挙げることができる。   The workpiece can be appropriately selected depending on the material of the wafer to be manufactured, and examples thereof include ingots made of silicon, glass, ceramics, and the like.

砥粒としては、特に限定されないが、ワイヤーソーに一般的に用いられている炭化ケイ素を挙げることができる。   Although it does not specifically limit as an abrasive grain, The silicon carbide generally used for the wire saw can be mentioned.

ワイヤーとしては、一般に表面にブラスメッキが施されているものを用いている。このブラスメッキは、ワイヤーの原料となる線材を、細く伸線し、規定の径に加工する過程で頻繁に用いられるものとなっている。   As the wire, a wire whose surface is brass-plated is generally used. This brass plating is frequently used in the process of thinly drawing a wire, which is a raw material of a wire, and processing it into a specified diameter.

(b)工程では、ワイヤーソーから排出される廃スラリー中に含まれる使用済み砥粒を回収する。   In the step (b), used abrasive grains contained in the waste slurry discharged from the wire saw are collected.

この使用済み砥粒の回収方法としては、ワークの切断に使用した後の廃スラリーを遠心分離器にかけて、砥粒を廃スラリーのクーラントから遠心分離する方法を挙げることができる。   As a method for recovering the used abrasive grains, there can be mentioned a method in which the waste slurry after being used for cutting the workpiece is subjected to a centrifuge to centrifuge the abrasive grains from the coolant of the waste slurry.

この使用済みの砥粒内には、主成分である炭化ケイ素の他に、シリコン、鉄、銅が含まれている。シリコンは、ワーク(シリコンインゴット)が切断される際にカーフロスとして発生する。鉄と銅は、ワークの切断と共にワイヤーが摩耗し細線化する過程で削れた分が発生する。ワイヤー表面のブラスメッキから銅、ワイヤー内部の鉄線部分から鉄が、それぞれ出る。   The used abrasive grains contain silicon, iron, and copper in addition to silicon carbide as the main component. Silicon is generated as kerf loss when a workpiece (silicon ingot) is cut. Iron and copper are cut off in the process of wire wear and thinning as the workpiece is cut. Copper comes out from the brass plating on the wire surface, and iron comes out from the iron wire part inside the wire.

この使用済み砥粒を分析した場合、通常、未使用の新品砥粒と比較して100倍以上の濃度の銅が検出される。
尚、上記の分析方法としては、使用済み砥粒サンプル5gを混酸(フッ酸と硝酸の混合液)50ccで3時間の間、酸抽出した後、10倍希釈の後、ICP−OES測定(誘導結合プラズマ発光分析法)を行う方法を挙げることができる。
When this used abrasive grain is analyzed, copper having a concentration 100 times or more higher than that of an unused new abrasive grain is usually detected.
In the above analysis method, 5 g of a used abrasive sample was acid-extracted with 50 cc of mixed acid (hydrofluoric acid and nitric acid) for 3 hours, diluted 10 times, and then subjected to ICP-OES measurement (induction) And a method of performing a coupled plasma emission analysis method).

(c)工程では、(b)工程で得られた使用済み砥粒内の金属不純物である銅を除去する為、硫酸と過酸化水素水の混合液で処理を行う。   In step (c), in order to remove copper, which is a metal impurity in the used abrasive grains obtained in step (b), treatment is performed with a mixed solution of sulfuric acid and hydrogen peroxide solution.

従来では使用済みの砥粒からシリコンと鉄を除去する為に、それぞれ苛性ソーダ、硫酸での処理を行っていた。しかし、銅を除去する方法としては不十分であり、上記の方法で苛性ソーダと硫酸で処理を行っても、使用済み砥粒内には、多くの銅が残存しており、銅の除去方法としては適切ではなかった。   Conventionally, in order to remove silicon and iron from used abrasive grains, treatment with caustic soda and sulfuric acid was performed, respectively. However, as a method for removing copper, it is not sufficient, and even when treated with caustic soda and sulfuric acid by the above method, a large amount of copper remains in the used abrasive grains. Was not appropriate.

本発明では、銅を溶かす方法として、硫酸と過酸化水素水の混合液で処理をする方法を行う。これは銅を溶かすのには、硫酸存在下で、標準電位が銅よりも上位の過酸化水素水が適切な為である。   In the present invention, as a method of dissolving copper, a method of treating with a mixed solution of sulfuric acid and hydrogen peroxide water is performed. This is because a hydrogen peroxide solution having a higher standard potential than copper in the presence of sulfuric acid is suitable for dissolving copper.

このときの硫酸と過酸化水素水の混合比としては、特に限定されないが、例えば、75%硫酸123g、30%過酸化水素水27gの混合液を用いることができる。   The mixing ratio of sulfuric acid and hydrogen peroxide solution at this time is not particularly limited. For example, a mixed solution of 123 g of 75% sulfuric acid and 27 g of 30% hydrogen peroxide solution can be used.

このような混合液を用いて、使用済み砥粒を処理することにより残存する銅の濃度の低い砥粒を得ることができる。   By using such a mixed liquid and treating the used abrasive grains, it is possible to obtain abrasive grains having a low concentration of remaining copper.

具体的な処理条件としては、使用済み砥粒10gを上述の混合液で撹拌後、濾過し、純水で水洗した後、乾燥を行う条件を挙げることができる。尚、この条件の場合、混合液での処理の際の温度は25℃、処理時間は24時間と設定できる。   Specific treatment conditions may include conditions in which 10 g of used abrasive grains are stirred with the above-mentioned mixed solution, filtered, washed with pure water, and then dried. In this case, the temperature during the treatment with the mixed solution can be set to 25 ° C., and the treatment time can be set to 24 hours.

上述の処理により、使用済み砥粒内の銅の濃度を使用前と同等以下、例えば、1ppm以下とする。これにより、後述のように加工液としてワークの切断に再利用した際に、ウェーハと銅が接触する機会を少なくすることができる。   By the above-mentioned treatment, the concentration of copper in the used abrasive grains is made equal to or less than that before use, for example, 1 ppm or less. Thereby, when it reuses for the cutting | disconnection of a workpiece | work as a process liquid so that it may mention later, the opportunity which a wafer and copper contact can be decreased.

尚、本発明では、ウェーハとした際に特に悪影響を及ぼす金属不純物である銅の濃度の低減を目的として上記の処理を行うが、このような処理を行った砥粒であれば、ワークの切断に再利用した際に、他の種類の金属不純物、例えば、ナトリウム、マグネシウム、アルミニウム、クロム、鉄、ニッケル、亜鉛といった金属不純物に対しても濃度の低減効果が期待できる。   In the present invention, the above-described treatment is performed for the purpose of reducing the concentration of copper, which is a metal impurity that has a particularly bad influence on the wafer, but if the abrasive is subjected to such treatment, the workpiece is cut. When it is reused, the concentration reduction effect can be expected for other types of metal impurities such as sodium, magnesium, aluminum, chromium, iron, nickel, and zinc.

(d)工程では、(c)工程で得られた処理後の砥粒を再利用する。具体的には、処理後の砥粒をクーラントに溶かし、加工液(スラリー)とする。   In the step (d), the processed abrasive grains obtained in the step (c) are reused. Specifically, the treated abrasive is dissolved in a coolant to obtain a working fluid (slurry).

クーラントとしては、ワイヤーソーのスラリーに用いるものであれば、特に限定されないが、(a)工程で用いるスラリーのクーラントと同種のものを用いることができ、具体的なものとしてはグリコール系分散媒を例示できる。   Although it will not specifically limit if it is used for the slurry of a wire saw as a coolant, The same kind as the coolant of the slurry used at the (a) process can be used, As a concrete thing, glycol system dispersion medium is used. It can be illustrated.

このような加工液であれば、再利用した際にウェーハと銅が接触する機会を少なくすることができ、かつ、再利用することからスラリーのコストを低減することができ、その結果、ウェーハの製造コストを低減することができる。   With such a processing fluid, the chance of contact between the wafer and copper when reused can be reduced, and the cost of the slurry can be reduced because of reuse. Manufacturing cost can be reduced.

(e)工程では、(d)工程で得られたスラリーを用いてワークの切断を行う。この工程は基本的に(a)工程と同様であり、(a)工程で用いたワイヤーソーと同一の装置を再度利用してもよい。   In step (e), the workpiece is cut using the slurry obtained in step (d). This step is basically the same as step (a), and the same apparatus as the wire saw used in step (a) may be used again.

この(e)工程で排出された廃スラリー中の使用済み砥粒についても、(a)工程と同様に、(b)工程の回収、(c)工程の処理、(d)工程の再利用を行うことができ、再度ワークの切断に用いることができる。この場合、当然砥粒の不足分を新品砥粒で補い、再利用分と混合して用いることができる。   Regarding the used abrasive grains in the waste slurry discharged in the step (e), as in the step (a), the recovery of the step (b), the processing of the step (c), and the reuse of the step (d) Can be used again to cut the workpiece. In this case, of course, the shortage of abrasive grains can be supplemented with new abrasive grains and mixed with the reused amount.

このようなワークの切断方法であれば、使用済み砥粒を再利用しながらもワークを切断した後に得られるウェーハへの金属不純物による汚染を抑制することができ、金属不純物による汚染が少ない高純度なウェーハを低コストで製造することができる。   With such a workpiece cutting method, it is possible to suppress contamination by metal impurities on the wafer obtained after cutting the workpiece while reusing used abrasive grains, and high purity with less contamination by metal impurities A simple wafer can be manufactured at low cost.

以下、実験、実施例、及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an experiment, an Example, and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

[実験]
#2000砥粒を用いて直径300mmのシリコンインゴットの切断を行った後、使用済み砥粒サンプル5gを混酸(フッ酸と硝酸の混合液)50ccで3時間の間、酸抽出して10倍希釈した後、ICP−OES測定を行った。この方法で分析を行った結果、砥粒1g当たりに含有される銅の濃度は、未使用の新品砥粒では1.87ppmであったのに対し、使用済み砥粒では143.00ppmであった。
[Experiment]
After cutting a silicon ingot with a diameter of 300 mm using # 2000 abrasive grains, 5 g of used abrasive grain samples were acid-extracted with 50 cc of mixed acid (mixed solution of hydrofluoric acid and nitric acid) for 3 hours and diluted 10 times. Then, ICP-OES measurement was performed. As a result of analysis by this method, the concentration of copper contained in 1 g of abrasive grains was 1.87 ppm for unused new abrasive grains, whereas it was 143.00 ppm for used abrasive grains. .

[実施例1]
実験で得られた使用済み砥粒に対して硫酸と過酸化水素水の混合液で処理を行い、分析を行った。処理条件としては、使用済み砥粒10gを75%硫酸123gと30%過酸化水素水27gの混合液で撹拌後、濾過し、純水で水洗した後、乾燥を行った。混合液での処理の際の温度は25℃、処理時間は24時間で行った。分析方法は先と同様、使用済み砥粒サンプル5gを混酸(フッ酸と硝酸の混合液)50ccで3時間の間、酸抽出した後、10倍希釈してICP−OES測定を行った。
上述の処理を行った砥粒を実験と同様に分析したところ、砥粒1g中に含有される銅の濃度は、0.42ppmであり処理前の砥粒に対して300分の1以下の水準にまでに低減した。結果を図2に示す。
[Example 1]
The used abrasive grains obtained in the experiment were treated with a mixed solution of sulfuric acid and hydrogen peroxide and analyzed. As processing conditions, 10 g of used abrasive grains were stirred with a mixed solution of 123 g of 75% sulfuric acid and 27 g of 30% hydrogen peroxide, filtered, washed with pure water, and then dried. The temperature during the treatment with the mixed solution was 25 ° C., and the treatment time was 24 hours. As in the previous analysis method, 5 g of a used abrasive grain sample was acid-extracted with 50 cc of mixed acid (mixed solution of hydrofluoric acid and nitric acid) for 3 hours, diluted 10 times, and ICP-OES measurement was performed.
When the abrasive grains subjected to the above-described treatment were analyzed in the same manner as in the experiment, the concentration of copper contained in 1 g of the abrasive grains was 0.42 ppm, which was a level of 1/300 or less of the abrasive grains before treatment. Reduced to The results are shown in FIG.

[比較例1]
実験で得られた使用済み砥粒に対して、従来法である苛性ソーダと硫酸で処理を実施して実験及び実施例と同様に分析を行った。その結果、砥粒1g中に含有される銅の濃度は、141.34ppmであり、処理前の値から変化がなかった。結果を図2に示す。
[Comparative Example 1]
The used abrasives obtained in the experiment were treated with caustic soda and sulfuric acid, which are conventional methods, and analyzed in the same manner as in the experiments and examples. As a result, the concentration of copper contained in 1 g of abrasive grains was 141.34 ppm, which was unchanged from the value before the treatment. The results are shown in FIG.

また、未使用の新品砥粒の銅の濃度が1.87ppmであることから、実施例1の硫酸と過酸化水素水の混合液で処理をした使用済み砥粒は、新品砥粒と同等、もしくはそれ以下の水準まで銅の濃度を下げることができることが明らかになった。また、図2に示すように実施例1と比較例1のそれぞれで得られた処理後の砥粒には、銅の濃度に有意な差が見受けられることが明らかになった。   Moreover, since the copper concentration of the unused new abrasive grains is 1.87 ppm, the used abrasive grains treated with the mixed solution of sulfuric acid and hydrogen peroxide solution in Example 1 are equivalent to the new abrasive grains, It became clear that the copper concentration could be lowered to a level below that. Moreover, as shown in FIG. 2, it became clear that there is a significant difference in the copper concentration in the treated abrasive grains obtained in Example 1 and Comparative Example 1.

[実施例2]
砥粒中に含まれる銅が切断後ウェーハ内の銅濃度に与える影響を確認の為、実施例1で得られた処理後の砥粒を用いて、直径300mmのシリコンインゴットの切断を行った。切断の際、砥粒と混合するクーラントは未使用の新品クーラント、ワイヤーは表面にメッキの無いワイヤーを準備し、それぞれ使用した。
[Example 2]
In order to confirm the influence of the copper contained in the abrasive grains on the copper concentration in the wafer after cutting, a silicon ingot having a diameter of 300 mm was cut using the processed abrasive grains obtained in Example 1. At the time of cutting, a coolant that was mixed with abrasive grains was prepared as an unused new coolant, and a wire without plating on the surface was prepared and used.

[比較例2]
比較例1で得られた処理後の砥粒を用いて実施例2と同様にシリコンインゴットの切断を行った。
[Comparative Example 2]
Using the treated abrasive grains obtained in Comparative Example 1, the silicon ingot was cut in the same manner as in Example 2.

実施例2及び比較例2で得られたウェーハを、それぞれ以下のように分析した。
分析のサンプルは、1本のワークを切断して得られた複数枚のウェーハの中から2枚のウェーハを抽出した(サンプル1、サンプル2)。得られたウェーハの表層を50μmエッチオフした後、それぞれのウェーハから試験片を3個切り出して得られた、計6サンプルとした。試験片の切り出しは、ウェーハの中央部付近から採取した。採取したサンプルについて、全溶解法にて金属不純物の濃度をICP−MS測定(誘導結合プラズマ質量分析法)し、ウェーハ中に含まれる銅、ナトリウム、マグネシウム、アルミニウム、クロム、鉄、ニッケル、及び亜鉛の濃度を定量した。結果を図3に示す。
The wafers obtained in Example 2 and Comparative Example 2 were analyzed as follows.
As samples for analysis, two wafers were extracted from a plurality of wafers obtained by cutting one workpiece (sample 1, sample 2). After the surface layer of the obtained wafer was etched off by 50 μm, a total of 6 samples were obtained by cutting out three test pieces from each wafer. The specimen was cut out from the vicinity of the center of the wafer. The collected sample was subjected to ICP-MS measurement (inductively coupled plasma mass spectrometry) for the concentration of metal impurities by the total dissolution method, and copper, sodium, magnesium, aluminum, chromium, iron, nickel, and zinc contained in the wafer. The concentration of was quantified. The results are shown in FIG.

比較例2で得られたウェーハ中の銅濃度を測定したところ、図3に示すように、最大で9.49E+12 atoms/cm、最小で3.61E+11 atoms/cmの銅濃度が検出された。
一方で、実施例2で得られたウェーハ中の銅濃度を測定したところ、図3に示すように、最大で4.14E+11 atoms/cm、最小で1.85E+11 atoms/cmの銅濃度が検出された。
両者の切断後ウェーハ中の銅濃度を比較すると、実施例2の方が比較例2に比べ、最大値で約22分の1以下、最小値で約2分の1以下になっており、銅濃度を低減できることが明らかになった。
When the copper concentration in the wafer obtained in Comparative Example 2 was measured, a maximum copper concentration of 9.49E + 12 atoms / cm 3 and a minimum of 3.61E + 11 atoms / cm 3 was detected as shown in FIG. .
On the other hand, when the copper concentration in the wafer obtained in Example 2 was measured, as shown in FIG. 3, the maximum copper concentration was 4.14E + 11 atoms / cm 3 and the minimum copper concentration was 1.85E + 11 atoms / cm 3. was detected.
Comparing the copper concentrations in the wafers after cutting the two, compared to Comparative Example 2, Example 2 had a maximum value of about 1/22 or less and a minimum value of about 1/2 or less. It became clear that the concentration could be reduced.

また、銅以外の金属、即ち、ナトリウム、マグネシウム、アルミニウム、クロム、鉄、ニッケル、及び亜鉛においても、図3に示すように、実施例2の方が比較例2に比べ、濃度を同等以下に低減できることが示された。   Further, in the case of metals other than copper, that is, sodium, magnesium, aluminum, chromium, iron, nickel, and zinc, as shown in FIG. It was shown that it can be reduced.

上記の結果から、本発明のワークの切断方法であれば、使用済み砥粒を再利用しながらもワークを切断した後に得られるウェーハへの金属不純物による汚染を抑制することができ、金属不純物による汚染が少ない高純度なウェーハを低コストで製造することができることが明らかになった。   From the above results, the workpiece cutting method of the present invention can suppress contamination by metal impurities on the wafer obtained after cutting the workpiece while reusing used abrasive grains. It has become clear that high-purity wafers with low contamination can be produced at low cost.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (2)

複数のワイヤーガイド間に螺旋状に巻回された軸方向に走行するワイヤーでワイヤー列を形成し、ワークと前記ワイヤーとの接触部に砥粒を含む加工液を供給しながら、前記ワイヤー列に前記ワークを押し当てることで、前記ワークを切断するワークの切断方法であって、
ワイヤーソーから排出される廃スラリー中に含まれる使用済みの前記砥粒を回収し、該回収した使用済みの前記砥粒に対して硫酸と過酸化水素水の混合液で処理を行い、処理後の砥粒をクーラントに混合して前記加工液とすることで、前記処理後の砥粒を前記ワークの切断に再利用することを特徴とするワークの切断方法。
A wire row is formed with a wire that runs in an axial direction spirally wound between a plurality of wire guides, and a processing liquid containing abrasive grains is supplied to a contact portion between the workpiece and the wire while the wire row is supplied to the wire row. A work cutting method for cutting the work by pressing the work,
The used of the abrasive grains contained in the waste slurry discharged from the wire saw is recovered, subjected to treatment with a mixture of sulfuric acid and hydrogen peroxide to said collected used of the abrasive grain, after treatment A workpiece cutting method , wherein the abrasive grains after the treatment are reused for cutting the workpiece by mixing the abrasive grains in a coolant to form the processing liquid .
ワイヤーソーを用いたワーク切断に使用した後に銅を除去して再利用した砥粒を含む加工液であって、
前記砥粒に含有される銅の濃度が砥粒1g当たり1ppm以下のものであることを特徴とする加工液。
A working fluid containing abrasive grains that have been reused by removing copper after being used for workpiece cutting using a wire saw,
A processing liquid, wherein the concentration of copper contained in the abrasive grains is 1 ppm or less per gram of abrasive grains.
JP2014077178A 2014-04-03 2014-04-03 Workpiece cutting method and machining fluid Active JP6172030B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014077178A JP6172030B2 (en) 2014-04-03 2014-04-03 Workpiece cutting method and machining fluid
US15/124,245 US10189181B2 (en) 2014-04-03 2015-03-06 Method for slicing workpiece and processing liquid
PCT/JP2015/001214 WO2015151408A1 (en) 2014-04-03 2015-03-06 Workpiece cutting method and working fluid
DE112015001156.0T DE112015001156B4 (en) 2014-04-03 2015-03-06 Method for cutting a workpiece and process fluid
CN201580012652.XA CN106132631B (en) 2014-04-03 2015-03-06 The cutting-off method and working fluid of workpiece
SG11201607416QA SG11201607416QA (en) 2014-04-03 2015-03-06 Method for slicing workpiece and processing liquid
KR1020167026522A KR102367641B1 (en) 2014-04-03 2015-03-06 Workpiece cutting method and working fluid
TW104107389A TWI613034B (en) 2014-04-03 2015-03-09 Workpiece cutting method and working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014077178A JP6172030B2 (en) 2014-04-03 2014-04-03 Workpiece cutting method and machining fluid

Publications (2)

Publication Number Publication Date
JP2015196236A JP2015196236A (en) 2015-11-09
JP6172030B2 true JP6172030B2 (en) 2017-08-02

Family

ID=54239762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014077178A Active JP6172030B2 (en) 2014-04-03 2014-04-03 Workpiece cutting method and machining fluid

Country Status (8)

Country Link
US (1) US10189181B2 (en)
JP (1) JP6172030B2 (en)
KR (1) KR102367641B1 (en)
CN (1) CN106132631B (en)
DE (1) DE112015001156B4 (en)
SG (1) SG11201607416QA (en)
TW (1) TWI613034B (en)
WO (1) WO2015151408A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149885A1 (en) * 2017-11-13 2019-05-16 Philo, Inc. Thumbnail preview after a seek request within a video
CN112829096A (en) * 2020-12-30 2021-05-25 镇江耐丝新型材料有限公司 Cutting steel wire without brass plating layer on surface and preparation method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856490A (en) * 1987-09-09 1989-08-15 Osaka Diamond Industrial Co., Ltd. Wire saw
AU7221294A (en) * 1993-07-30 1995-02-28 Semitool, Inc. Methods for processing semiconductors to reduce surface particles
JP2606156B2 (en) * 1994-10-14 1997-04-30 栗田工業株式会社 Method for collecting abrasive particles
US6159858A (en) * 1995-07-04 2000-12-12 Fujitsu Limited Slurry containing manganese oxide and a fabrication process of a semiconductor device using such a slurry
JP3244426B2 (en) * 1996-03-26 2002-01-07 信越半導体株式会社 Method for manufacturing wire for wire saw and wire for wire saw
US20020111024A1 (en) * 1996-07-25 2002-08-15 Small Robert J. Chemical mechanical polishing compositions
JP3106416B2 (en) 1996-09-20 2000-11-06 株式会社東京精密 Wire running control method for wire saw
JP3123483B2 (en) * 1997-10-28 2001-01-09 日本電気株式会社 Probe card and probe card forming method
IT1299540B1 (en) 1998-07-01 2000-03-16 Memc Electronic Materials PROCEDURE TO SEPARATE AND REGENERATE WASTE ABRASIVE BASED ON GLYCOL AND SILICON CARBIDE FOR THE PURPOSE OF THEIR REUSE
JP4369054B2 (en) 1999-07-01 2009-11-18 エムイーエムシー・エレクトロニック・マテリアルズ・ソシエタ・ペル・アチオニ Separation, regeneration and reuse of spent glycol slurry
DE60144346D1 (en) * 2001-05-29 2011-05-12 Memc Electronic Materials Process for the treatment of a spent glycol slurry
CN100378145C (en) * 2001-06-21 2008-04-02 花王株式会社 Grinding liquid composition
US6884634B2 (en) 2002-09-27 2005-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Specifying method for Cu contamination processes and detecting method for Cu contamination during reclamation of silicon wafers, and reclamation method of silicon wafers
JP2005057054A (en) * 2003-08-04 2005-03-03 Sumitomo Mitsubishi Silicon Corp Semiconductor wafer and its manufacturing method
JP2005153035A (en) * 2003-11-20 2005-06-16 Kyocera Corp Wire saw device
ITRM20050329A1 (en) * 2005-06-24 2006-12-25 Guido Fragiacomo PROCEDURE FOR TREATING ABRASIVE SUSPENSIONS EXHAUSTED FOR THE RECOVERY OF THEIR RECYCLABLE COMPONENTS AND ITS PLANT.
JP2007207679A (en) * 2006-02-03 2007-08-16 Canon Inc Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell
KR101486302B1 (en) 2007-12-19 2015-01-26 신에쯔 한도타이 가부시키가이샤 Method for cutting work by wire saw and wire saw
JP2009149480A (en) 2007-12-21 2009-07-09 Sharp Corp Silicon regenerating method
US20090211167A1 (en) * 2008-02-21 2009-08-27 Sumco Corporation Slurry for wire saw
US8425639B2 (en) * 2008-05-30 2013-04-23 Cabot Microelectronics Corporation Wire saw slurry recycling process
US8383003B2 (en) * 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
US8231006B2 (en) 2008-12-31 2012-07-31 Memc Singapore Pte. Ltd. Methods to recover and purify silicon particles from saw kerf
US8356590B2 (en) * 2009-02-03 2013-01-22 Tha NanoSteel Company, Inc. Method and product for cutting materials
JP2011005561A (en) * 2009-06-23 2011-01-13 Shin Etsu Handotai Co Ltd Method and system for cutting silicon ingot
JP2011016185A (en) * 2009-07-08 2011-01-27 Sumco Corp Washing liquid for slurry circulating path and washing method of the same
CN102179880A (en) 2011-03-30 2011-09-14 苏州市汇峰机械设备厂 Multi-wire cutting machine
SG11201403191PA (en) * 2011-12-22 2014-08-28 Konica Minolta Inc Abrasive material regeneration method and regenerated abrasive material
JP6022836B2 (en) * 2012-07-18 2016-11-09 株式会社荏原製作所 Plating apparatus and substrate holder cleaning method

Also Published As

Publication number Publication date
US10189181B2 (en) 2019-01-29
US20170015019A1 (en) 2017-01-19
CN106132631A (en) 2016-11-16
DE112015001156T5 (en) 2017-03-16
JP2015196236A (en) 2015-11-09
TWI613034B (en) 2018-02-01
KR20160140647A (en) 2016-12-07
TW201545840A (en) 2015-12-16
CN106132631B (en) 2019-06-28
SG11201607416QA (en) 2016-10-28
KR102367641B1 (en) 2022-02-28
DE112015001156B4 (en) 2024-05-02
WO2015151408A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
DE102005046726A1 (en) Unpolished semiconductor wafer manufacture, involves cutting off wafer from crystal, rounding off edge of wafer, grounding upper surface of one side of wafer, treating wafer with corrosive medium and cleaning wafer
JP5263536B2 (en) Work cutting method
JP5173945B2 (en) Coolant regeneration method and slurry regeneration method
JP6172030B2 (en) Workpiece cutting method and machining fluid
JP2010278327A (en) Method for cutting silicon ingot
JP2011218503A (en) Method for disposing silicon-containing waste liquid
KR102100839B1 (en) Workpiece cutting method
CN113226640B (en) Method for cutting workpiece and wire saw
JP2005313030A (en) Slurry regeneration method
JP5888203B2 (en) Manufacturing method of slurry for wire saw
CN109716486B (en) Method for cutting silicon ingot, method for manufacturing silicon wafer, and silicon wafer
JP7376215B2 (en) Processing method for recycling silicon ingot cutting waste
JP6090154B2 (en) Slicing method
JP5578409B2 (en) Semiconductor wafer manufacturing method
US20240136173A1 (en) Method for producing discs from a cylindrical rod made of a semiconductor material
JP2018148042A (en) Wafer manufacturing method
KR20220147311A (en) Ingot cutting device including coating removal means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250