WO2007119308A1 - Method of recovering silicon-containing material - Google Patents

Method of recovering silicon-containing material Download PDF

Info

Publication number
WO2007119308A1
WO2007119308A1 PCT/JP2007/054198 JP2007054198W WO2007119308A1 WO 2007119308 A1 WO2007119308 A1 WO 2007119308A1 JP 2007054198 W JP2007054198 W JP 2007054198W WO 2007119308 A1 WO2007119308 A1 WO 2007119308A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
solid content
soluble coolant
coolant
liquid
Prior art date
Application number
PCT/JP2007/054198
Other languages
French (fr)
Japanese (ja)
Inventor
Kimihiko Kajimoto
Yoshiyuki Hojo
Masaya Tanaka
Katsumi Takahashi
Original Assignee
Sharp Kabushiki Kaisha
Ihi Compressor And Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, Ihi Compressor And Machinery Co., Ltd. filed Critical Sharp Kabushiki Kaisha
Publication of WO2007119308A1 publication Critical patent/WO2007119308A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention is used when a multi-wire saw (hereinafter referred to as "MWS") or a wrapping apparatus is used to manufacture, for example, a polycrystalline silicon for a solar cell or a silicon wafer for a semiconductor device. Used slurry force
  • the present invention relates to a method for recovering silicon-containing materials.
  • the used slurry contains silicon chips. Until now, these silicon scraps have been disposed of without being used, or as disclosed in Patent Document 1, HF and inorganic acids are used. It was recovered after being used and subjected to many treatments such as filtration and drying.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-278612
  • the present invention has been made in view of such circumstances, and provides a method for recovering a silicon-containing material from which coolant has been removed.
  • the method for recovering a silicon-containing material comprises removing a used slurry force water-soluble coolant in advance in a silicon wafer manufacturing process containing at least a water-soluble coolant, abrasive grains, and silicon particles.
  • the water-soluble coolant remaining in the solid content is extracted from the solid content using a low-boiling organic solvent that is compatible with the water-soluble coolant and has a lower boiling point than the water-soluble coolant.
  • the low-boiling organic solvent used in the process is removed by filtration, and a solid content obtained by filtration is collected.
  • the water-soluble coolant remaining in the solid content is extracted, and the low-boiling organic solvent used for the extraction is removed by filtration. , Recover the silicon-containing material from which the water-soluble coolant has been removed.
  • the solid content obtained by filtration contains a low-boiling organic solvent, which can be easily removed because it has a relatively low boiling point.
  • the recovered silicon-containing material contains a large amount of silicon and can be used in various ways, such as as a raw material for the production of hydrogen gas and sodium silicate, or as a raw material for the production of polysilicon. Further, it can be used as a raw material for producing halosilanes by the method disclosed in JP-A-2005-330149.
  • FIG. 1 shows a silicon-containing material recovery system according to Example 1 of the present invention.
  • FIG. 2 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention.
  • FIG. 3 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention.
  • FIG. 4 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention.
  • FIG. 5 shows a silicon-containing material recovery system according to Example 2 of the present invention.
  • a method for recovering a silicon-containing material includes a method of previously collecting a water-soluble coolant from a used slurry in a silicon wafer manufacturing process, which contains at least water-soluble coolant, abrasive grains, and silicon grains.
  • the low-boiling organic solvent used in the extraction is removed by filtration, and the solid content obtained by filtration is recovered.
  • the solid content is obtained by previously removing the water-soluble coolant used in the manufacturing process of silicon weno, which contains at least water-soluble coolant, abrasive grains, and silicon grains.
  • the used slurry is a slurry in which silicon particles are mixed.
  • the slurry is composed of a barrel and a water-soluble coolant that disperses it.
  • a water-soluble coolant that disperses it.
  • Water soluble One run is a coolant that is compatible with water, and the type of water is not limited, but a water-soluble coolant can also be a water-soluble organic solvent such as ethylene glycol, propylene glycol, or polyethylene glycol.
  • the water-soluble coolant may contain about 5% to 15% water. In this case, it can be avoided that this coolant becomes a dangerous material under the Fire Service Law.
  • a coolant (bentonite) or the like (a few percent) is usually added to the coolant to disperse the granules and Si chips.
  • “%” means “% by weight”.
  • Examples of steps included in the silicon wafer manufacturing process include a silicon ingot slicing step and a silicon wafer lapping step.
  • Silicon grains are, for example, silicon chips generated when a silicon wafer is formed by slicing a silicon ingot, or polishing chips generated when lapping a silicon wafer.
  • the silicon concentration in the used slurry is, for example, 10% or more.
  • the solid content is obtained by previously removing the used slurry force water-soluble coolant.
  • the removal method of a water-soluble coolant is not limited, For example, it is distillation.
  • the distillation method is not limited as long as the water-soluble coolant is evaporated from the used slurry to obtain a solid content. Distillation can be any of atmospheric distillation, vacuum distillation, and vacuum distillation V, but power from the viewpoint of energy saving and safety Vacuum (lOTorr or less) distillation is preferred.
  • the solid content is usually in powder form.
  • the evaporated water-soluble coolant is preferably recovered and used to regenerate the slurry.
  • the water-soluble coolant may be removed by centrifugation or filtration in addition to distillation.
  • the removal of the water-soluble coolant from the used slurry in advance can be performed more specifically, for example, by the following method.
  • the pre-removal of water-soluble coolant from the used slurry is used.
  • the spent slurry is subjected to primary centrifugation to recover the solids composed mainly of abrasive grains, and the liquid obtained by the primary centrifugation is subjected to secondary centrifugation, so that water-soluble coolant is the main component.
  • This is performed by a method that includes a step of removing a part of the liquid and preliminarily removing the water-soluble coolant by distillation.
  • the above-mentioned used slurry is subjected to primary centrifugation to recover the solid content of the main component of the abrasive grains.
  • the primary centrifugation is preferably performed at 100 to 1000G.
  • the used slurry is separated into the first solid and the first liquid.
  • the first solid content is mainly composed of gunshot particles. Since the barrel generally has a higher specific gravity than the silicon grain, it settles faster than the silicon grain. For this reason, when low-speed centrifugation is performed, the barrels are selectively settled. Since the first solid contains a lot of particles, the first solid can be used to regenerate the slurry. On the other hand, the first liquid contains mainly water-soluble coolant and silicon particles.
  • the liquid obtained by the primary centrifugation is secondarily centrifuged to recover a part of the liquid that is mainly composed of water-soluble coolant.
  • Secondary centrifugation is preferably performed at 2000-5000G. In this way, if centrifugation is performed at a speed higher than that of the primary centrifugation, the solid content that does not settle will also settle in the primary centrifugation. Therefore, by the secondary centrifugation, the first liquid is separated into a liquid mainly composed of water-soluble coolant (second liquid) and sludge that is a solid.
  • the sludge contains silicon particles and cannon particles that did not settle in the primary centrifugation.
  • the second liquid also contains cannonballs and silicon particles.
  • the second liquid is usually used for slurry regeneration, but if the entire amount is used as it is for slurry regeneration, the silicon mass ratio of the regenerated slurry becomes too large, which is not preferable. Therefore, in this method, only a part of the second liquid is collected.
  • the recovered liquid can be used for slurry regeneration.
  • a sample consisting of at least one of the remaining liquid and sludge obtained by secondary centrifugation is distilled.
  • the sample to be distilled may be, for example, (1) only the remaining liquid, (2) only sludge, or (3) a mixture of the remaining liquid and sludge. Only a portion of the sludge may be included in the sample.
  • the sludge may be dried before distillation. The drying method is not particularly limited.
  • the water-soluble coolant is removed from the used slurry in advance by firstly centrifuging the used slurry to collect the solids whose main component is abrasive grains, and then performing the first centrifuge.
  • the sample force which is at least a partial force of the liquid obtained by the above is carried out by a method including a step of previously removing the water-soluble coolant by distillation.
  • the primary centrifugation method and distillation method are the same as the first method.
  • the sample to be distilled is different from the first method.
  • a solid sample is obtained by distilling a sample that has at least a partial force from the primary centrifuge.
  • the sample to be distilled may be, for example, (1) a part of the liquid or (2) the whole of the liquid. If a portion of the liquid is to be distilled, the remaining liquid may be subjected to secondary centrifugation, and the resulting sludge (total or partial) may be included in the sample to be distilled.
  • the water-soluble coolant remaining in the solid is extracted from the solid using a low-boiling organic solvent that is compatible with the water-soluble coolant and has a boiling point lower than that of the water-soluble coolant.
  • extraction means dissolving a water-soluble coolant remaining in the solid content in a low-boiling organic solvent.
  • Extraction of the water-soluble coolant can be performed, for example, by adding the low boiling point organic solvent to the solid content and stirring both.
  • the type of the low-boiling organic solvent is not limited as long as it is compatible with the water-soluble coolant and has a boiling point lower than that of the water-soluble coolant.
  • the number of carbon atoms is 1 to 6 (preferably 1 , 2, 3, 4, 5 and 6 in the range between two alcohols or ketones with a carbon number of up to 6 (preferably in the range between 3, 4, 5 and 6 between the two) It is. like this Specific examples of such alcohols include methanol, ethanol, isopropyl alcohol, and butyl alcohol. A specific example of such a ketone is acetone methyl ketone.
  • the low boiling point organic solvent may be a mixture of a plurality of types of organic solvents.
  • low-boiling organic solvents have boiling points of 50 ° C or higher (preferably 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C) than water-soluble coolants.
  • the above is preferable.
  • the low-boiling organic solvent remaining in the solid content obtained by filtration described below is easily evaporated, and when the low-boiling organic solvent is recovered by distilling the liquid obtained by filtration, distillation is performed. There is an advantage that the purity of the low-boiling organic solvent obtained by the method is increased.
  • a step of pulverizing the solid content before or during the extraction may be further provided.
  • the low-boiling organic solvent used for extraction is removed by filtration.
  • the filtration method and the apparatus used for it are not limited. Filtration is preferably performed using a leaf filter in consideration of efficiency during mass production.
  • washing is not limited, but washing can be performed, for example, by pouring a low-boiling organic solvent over the solid content on the filter paper. Washing is preferably carried out by repeating the step V when the liquid after passing through the solid is poured again from above the solid U. The low boiling organic solvent may be replaced with a new one during repeated washing. Washing is preferably carried out until the transparency of the liquid after washing is below the standard.
  • the transparency of the liquid is an indicator of how much water-soluble coolant is dissolved in the low-boiling organic solvent. If the transparency is below the standard, a sufficient amount of water-soluble coolant is low It can be said that it is indirectly shown that the amount dissolved in the solvent and the solid content is below the standard. Transparency is defined by the factory drainage test method of JIS K 0102, and the standard can be set to 10 mm or 20 mm, for example. [0027] It is preferable to further comprise a step of recovering the low-boiling organic solvent by distilling the liquid obtained by filtration and the liquid after washing. The recovered low-boiling organic solvent can be used again for extraction or washing of residual water-soluble coolant. The distillation of the liquid obtained by filtration and the liquid after washing may be performed together or separately.
  • Low boiling organic solvents are relatively easy to evaporate because of their relatively low boiling points.
  • the method for drying the solid content is not limited as long as it can evaporate the low boiling point organic solvent in the solid content. Drying may be natural drying or drying by heating, reduced pressure or a combination of heating and reduced pressure.
  • Example 1 of the present invention will be described with reference to FIG. Figure 1 shows the silicon-containing material recovery system of this example.
  • silicon for solar cells was selected as an object for slicing using slurry.
  • a slurry tank with a size of about 200L is used for processing, and the slurry contained in this tank is barrel (specific gravity: 3.21) and water-soluble coolant (specific gravity: 1). Were mixed at a mass ratio of 1: 1.
  • a water-soluble coolant with a composition of 80% propylene glycol, 15% water, and 5% dispersant was used.
  • About 20 kg of silicon chips are mixed into the solid-state S slurry mainly consisting of silicon chips by one processing.
  • Solids generated by primary centrifugation (contains a lot of barrels) 3b is recovered as reclaimed barrels 4 and a part (30%) of liquid 5a generated by secondary centrifugation is recovered. Recovered as coolant 6, mixed them, adjusted specific gravity and viscosity, and added new abrasive grains and new coolant to create a regenerated slurry. When slurry regeneration and slicing were repeated, the concentrations of silicon contained in the used slurry and recycled slurry were about 12% and 6%, respectively.
  • the particle size distribution of solid content 9b was measured.
  • the particle size was measured by first separating particles of 10 mm or more, 1 mm or more, and 0.1 mm or more using a sieve, and then measuring the particle size of the remaining particles using a particle size distribution meter.
  • Table 3 Looking at Table 3, it can be seen that there are many large grains of 1 ⁇ : LOmm. This remains in solids 9b This is thought to be because fine particles are bonded together by the retained coolant, resulting in large particles.
  • alcohol 12 isopropyl alcohol (hereinafter referred to as “alcohol”) 12 was added to the solid content 9b and stirred for 1 hour in a ball mill.
  • the ball mill used was a container with a diameter of lm and a length of 1.5 m.
  • 200 spherical 20 mm ceramic balls were placed in the solution and rotated at 20 RPM.
  • the container was coated with a resin coating on the inner surface of the stainless steel container, and nitrogen was circulated around the shaft to collect the alcohol volatiles. According to this method, the solid content 9b and the alcohol 12 are stirred and the solid content 9b is pulverized.
  • a leaf filter set is a horizontal disk-shaped leaf placed inside a closed container in layers on a vertical hollow shaft, and the spacing between each leaf is adjusted by a spacer ring. Solid content 15b only on top of leaf The accumulated liquid 15a is discharged through a vertical hollow shaft.
  • the solid content 15b can be easily washed. Furthermore, the leaf filter set filtration device is suitably used in a method having a cleaning process using a volatile organic solvent such as alcohol in this embodiment because of the sealed structure.
  • the filter cloth of the leaf filter used was a polypropylene air permeability of 0.11. The treatment of liquid 15a will be described later.
  • the solid content 17b after washing had a total weight of 111.8 kg and contained 28 kg of alcohol.
  • Liquid 15a and liquid 17a were once stored in a collection tank and then distilled together. The distillate was removed as recycled alcohol 21. Recycled alcohol 21 was reused as stirring or cleaning alcohol. Distillation was performed at 90 ° C, and the evaporated liquid was collected using a condenser. To increase the yield, the condenser temperature was set to 0 ° C. The alcohol (isopropyl alcohol) contained in liquid 15a and liquid 17a has a boiling point of 82.4 ° C, and propylene glycol has 187.85 ° C. Therefore, in the distillation at 90 ° C, the propylenic alcohol is hardly evaporated, and high purity alcohol can be recovered by distillation.
  • the total weight of liquid 15a and liquid 17a was 750kg.
  • the weight of recycled alcohol 21 was 720kg.
  • the solid content remaining after distillation was mainly composed of PG, a coolant component, and contained SiC, Si, metal impurities, and others as minor components.
  • Silicon-containing material 23 substantially free of coolant could be recovered.
  • Silicon-containing material 23 contains a large amount of silicon and can be used as a raw material for the production of polysilicon or halosilane.
  • the secondary centrifugation was performed on the total amount of the liquid 3a of the primary centrifugation, but as shown in Fig. 2, only the amount necessary to obtain the regenerated coolant 6 was obtained. Then, perform secondary centrifugation, mix the remainder of liquid 3a with sludge 5b, and distill it. In this case, the load during secondary centrifugation can be reduced.
  • the sludge 5b is mixed with the excess coolant 7 without drying, but as shown in Fig. 3, the sludge 5b and the excess coolant 7 may be mixed after the sludge 5b is dried. . Even in this case, the same effect as in the above embodiment can be obtained.
  • Embodiment 2 of the present invention will be described with reference to FIG. This example is different from Example 1 in that distillation is performed on a sample that only has surplus coolant.
  • the solid content 17b after washing had a total weight of 13 kg and contained 2 kg of alcohol.
  • Liquid 15a and liquid 17a were once stored in a recovery tank and then distilled together. The distillate was removed as recycled alcohol 21. Recycled alcohol 21 was reused as stirring or cleaning alcohol. Distillation was performed at 90 ° C, and the evaporated liquid was collected using a condenser. To increase the yield, the condenser temperature was set to 0 ° C.
  • the total weight of liquid 15a and liquid 17a was 102.4 kg.
  • the weight of recycled alcohol 21 was 95 kg.
  • the solid content remaining after distillation was mainly composed of PG, a coolant component, and contained SiC, Si, metal impurities, and others as trace components.
  • the evaporated liquid component 19a was recovered by a condenser.
  • the condenser conditions were set at 0 ° C at normal pressure.
  • the amount recovered was 1.84 kg.
  • the recovered liquid 19a was directly used as recycled alcohol 21.
  • the generation amount and components of the solid content 19b were measured. The results are shown in Table 9.
  • Example 3 was performed under the same conditions as in Example 2.
  • the weight of the coolant contained in the solid content 9b after distillation, the solid content 15b after filtration, the solid content 17b after washing, and the solid content 19b after drying was measured.
  • the residual coolant weight was measured by heating each solid to 100 ° C to remove the low-boiling organic solvent, then heating at 300 ° C to remove the coolant, and then measuring the weight again.
  • the weight change before and after heating at 300 ° C was taken as the weight of the residual coolant.
  • Table 11 As can be seen from Table 11, it can be seen that the weight of the residual coolant was significantly reduced by filtration and washing.
  • Example 4 was performed under the same conditions as Example 2 except that the washing step was repeated twice.
  • the weight of the coolant contained in the solid content 15b after filtration, the solid content after the first washing, the solid content after the second washing, and the solid content 19b after drying was measured. The results are shown in Table 12. As is clear from Table 12, the weight of the residual coolant was reduced by repeated washing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Treatment Of Sludge (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

A method by which a silicon-containing material from which a coolant has been removed is recovered. The method of recovering a silicon-containing material is characterized by comprising the steps of: removing beforehand a water-soluble coolant from a spent slurry resulting from a silicon wafer production process which comprises the water-soluble coolant, abrasive grains, and silicon particles to thereby obtain a solid matter; extracting from the solid matter the water-soluble coolant remaining in the solid matter with a low-boiling organic solvent which has compatibility with the water-soluble coolant and has a lower boiling point than the water-soluble coolant; removing by filtration the low-boiling organic solvent used in the extraction; and recovering the solid matter obtained by the filtration.

Description

明 細 書  Specification
シリコン含有材料の回収方法  Method for recovering silicon-containing material
技術分野  Technical field
[0001] 本発明は,マルチワイヤーソー(以下, 「MWS」とする)やラッピング装置を使用し, 例えば太陽電池用多結晶シリコン用や半導体装置用のシリコンウェハ等を製造する 際に用いられた使用済みスラリー力 シリコン含有材料を回収する方法に関するもの である。  [0001] The present invention is used when a multi-wire saw (hereinafter referred to as "MWS") or a wrapping apparatus is used to manufacture, for example, a polycrystalline silicon for a solar cell or a silicon wafer for a semiconductor device. Used slurry force The present invention relates to a method for recovering silicon-containing materials.
背景技術  Background art
[0002] シリコンのインゴットからウェハ(薄 、板)にスライスする方法として,ワイヤソーを使 用する方法があり,その際にはスラリーと呼ばれる砲粒とクーラントを混合したものを 切断箇所に供給する方法が一般的である。またスラリーは繰り返し使用されるのがー 般的であるが,スライス力卩ェの度にシリコンの切屑などがスラリーに混入し,徐々にヮ ィャソ一の切削性能を低下させる。  [0002] As a method of slicing a silicon ingot into a wafer (thin, plate), there is a method using a wire saw, and in that case, a method of supplying a mixture of bullets and coolant called slurry to the cutting site Is common. Slurries are generally used repeatedly, but each time the slicing force is reached, silicon chips and the like are mixed into the slurry, gradually reducing the cutting performance of the chassis.
[0003] 使用済みスラリーの中にはシリコンの切屑が含まれるが,これまでこれらのシリコン 屑は、利用されないまま廃棄処理されるか,もしくは特許文献 1に示されるように, HF や無機酸を使用した処理や,濾過や乾燥などの多くの処理が施されて回収されてい た。  [0003] The used slurry contains silicon chips. Until now, these silicon scraps have been disposed of without being used, or as disclosed in Patent Document 1, HF and inorganic acids are used. It was recovered after being used and subjected to many treatments such as filtration and drying.
特許文献 1 :特開 2001— 278612号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-278612
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら,使用済みスラリーに含まれるシリコンを回収する従来の技術では,設 備が大掛力りになり,また工程数も多く手間が力かっていた。特に,スラリーに鉱物油 を使用している場合は,灯油や軽油などの石油系の有機溶剤や、 HFなどの無機酸 などが必要で,安全設備や環境汚染防止の処理に非常に多大なコストが必要となつ ていた。また,濾過装置を必要とするため濾過フィルター費用もコスト UPの要因とな つていた。 [0004] However, in the conventional technology for recovering silicon contained in the used slurry, the equipment has a large force and the number of processes is large and laborious. In particular, when mineral oil is used in the slurry, petroleum-based organic solvents such as kerosene and light oil, and inorganic acids such as HF are required, which is very expensive for safety equipment and treatment for environmental pollution prevention. Was becoming necessary. In addition, the cost of the filtration filter has been a factor in increasing costs because a filtration device is required.
このため,使用済みスラリー中のシリコン屑の有効な処理方法が望まれていた。しか し,使用済みスラリーをシリコン含有材料として使用する場合には,スラリー中に含ま れる有機物であるクーラントが種々の問題を引き起こすことがある。問題としては,例 えば,有機物系有害物質を発生させることや,精製炉内での有機物の付着による汚 染などが挙げられる。従って,使用済みスラリーをシリコン含有材料として使用するた めには,クーラントを確実に除去することが重要である。 For this reason, there has been a demand for an effective treatment method for silicon scrap in the used slurry. Only However, when the used slurry is used as a silicon-containing material, the organic coolant contained in the slurry can cause various problems. Problems include, for example, the generation of organic harmful substances and contamination due to the adhesion of organic substances in the refining furnace. Therefore, in order to use the used slurry as a silicon-containing material, it is important to reliably remove the coolant.
本発明は係る事情に鑑みてなされたものであり,クーラントが除去されたシリコン含 有材料を回収する方法を提供するものである。  The present invention has been made in view of such circumstances, and provides a method for recovering a silicon-containing material from which coolant has been removed.
課題を解決するための手段及び発明の効果  Means for Solving the Problems and Effects of the Invention
[0005] 本発明のシリコン含有材料の回収方法は,水溶性クーラント,砥粒及びシリコン粒 を少なくとも含有する,シリコンウェハの製造プロセスでの使用済みスラリー力 水溶 性クーラントを予め除去することによって固形分を得て,その固形分から,水溶性クー ラントに対し相溶性を有しかつ水溶性クーラントよりも沸点が低い低沸点有機溶媒を 用いて前記固形分中に残留する水溶性クーラントを抽出し,抽出に用いた低沸点有 機溶媒を濾過によって除去し,濾過により得られる固形分を回収する工程を備えるこ とを特徴とする。  [0005] The method for recovering a silicon-containing material according to the present invention comprises removing a used slurry force water-soluble coolant in advance in a silicon wafer manufacturing process containing at least a water-soluble coolant, abrasive grains, and silicon particles. The water-soluble coolant remaining in the solid content is extracted from the solid content using a low-boiling organic solvent that is compatible with the water-soluble coolant and has a lower boiling point than the water-soluble coolant. The low-boiling organic solvent used in the process is removed by filtration, and a solid content obtained by filtration is collected.
[0006] 本発明では,比較的蒸発しやすい低沸点有機溶媒を用いて,固形分に残留してい る水溶性クーラントを抽出し,抽出に用いた低沸点有機溶媒を濾過によって除去す ることによって,水溶性クーラントが除去されたシリコン含有材料を回収する。濾過に より得られる固形分中には低沸点有機溶媒が含まれるが,低沸点有機溶媒は沸点 が比較的低いので,容易に除去することができる。  [0006] In the present invention, by using a low-boiling organic solvent that is relatively easy to evaporate, the water-soluble coolant remaining in the solid content is extracted, and the low-boiling organic solvent used for the extraction is removed by filtration. , Recover the silicon-containing material from which the water-soluble coolant has been removed. The solid content obtained by filtration contains a low-boiling organic solvent, which can be easily removed because it has a relatively low boiling point.
回収されたシリコン含有材料中には,多くのシリコンが含有されており,水素ガスお よび珪酸ナトリウム製造の原材料として,又はポリシリコンの製造の原材料としてなど ,種々の方法で使用可能である。さらに,特開 2005— 330149号公報で開示された 方法によってハロシランを製造するための原材料として用いることができる。  The recovered silicon-containing material contains a large amount of silicon and can be used in various ways, such as as a raw material for the production of hydrogen gas and sodium silicate, or as a raw material for the production of polysilicon. Further, it can be used as a raw material for producing halosilanes by the method disclosed in JP-A-2005-330149.
また,この材料は,水溶性クーラントが除去されているので,有機物系有害物質が 発生したり,精製炉内での有機物の付着による汚染が起こったりするといつた問題を 回避することができる。  In addition, since the water-soluble coolant has been removed from this material, it is possible to avoid problems when organic hazardous substances are generated or contamination occurs due to the adhesion of organic substances in the refining furnace.
図面の簡単な説明 [0007] [図 1]本発明の実施例 1のシリコン含有材料回収システムを示す。 Brief Description of Drawings FIG. 1 shows a silicon-containing material recovery system according to Example 1 of the present invention.
[図 2]本発明の実施例 1のシリコン含有材料回収システムの変形例を示す。  FIG. 2 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention.
[図 3]本発明の実施例 1のシリコン含有材料回収システムの変形例を示す。  FIG. 3 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention.
[図 4]本発明の実施例 1のシリコン含有材料回収システムの変形例を示す。す。  FIG. 4 shows a modification of the silicon-containing material recovery system according to Example 1 of the present invention. The
[図 5]本発明の実施例2のシリコン含有材料回収システムを示す。 FIG. 5 shows a silicon-containing material recovery system according to Example 2 of the present invention.
符号の説明  Explanation of symbols
[0008] 1 :使用済みスラリー 3a : l次遠心分離後の液分 3b : 1次遠心分離後の固形分 4 : 再生砲粒 5a : 2次遠心分離後の液分 5b : 2次遠心分離後の固形分 6 :再生クー ラント 7 :余剰クーラント 9a :蒸留後の液分 9b :蒸留後の固形分 11 :蒸留クーラ ント 12 :アルコール 15a :濾過後の液分 15b :濾過後の固形分 17a :洗浄後の 液分 17b :洗浄後の固形分 19a :乾燥後の液分 19b :乾燥後の固形分 21 :再 生アルコール 23 :シリコン含有材料  [0008] 1: Used slurry 3a: Liquid content after primary centrifugation 3b: Solid content after primary centrifugation 4: Regenerated barrel 5a: Liquid content after secondary centrifugation 5b: After secondary centrifugation Solid content 6: Regenerated coolant 7: Excess coolant 9a: Liquid content after distillation 9b: Solid content after distillation 11: Distillation coolant 12: Alcohol 15a: Liquid content after filtration 15b: Solid content after filtration 17a: Liquid after washing 17b: Solid after washing 19a: Liquid after drying 19b: Solid after drying 21: Recycled alcohol 23: Silicon-containing material
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の一実施形態のシリコン含有材料の回収方法は,水溶性クーラント,砥粒及 びシリコン粒を少なくとも含有する,シリコンウェハの製造プロセスでの使用済みスラリ 一から水溶性クーラントを予め除去することによって固形分を得て,その固形分から, 水溶性クーラントに対し相溶性を有しかつ水溶性クーラントよりも沸点が低い低沸点 有機溶媒を用いて前記固形分中に残留する水溶性クーラントを抽出し,抽出に用い た低沸点有機溶媒を濾過によって除去し,濾過により得られる固形分を回収するェ 程を備えることを特徴とする。  [0009] A method for recovering a silicon-containing material according to an embodiment of the present invention includes a method of previously collecting a water-soluble coolant from a used slurry in a silicon wafer manufacturing process, which contains at least water-soluble coolant, abrasive grains, and silicon grains. A water-soluble coolant remaining in the solid content using a low boiling point organic solvent having a solid content obtained by removing the solid content and having a compatibility with the water-soluble coolant and having a boiling point lower than that of the water-soluble coolant. The low-boiling organic solvent used in the extraction is removed by filtration, and the solid content obtained by filtration is recovered.
[0010] 以下,各工程について詳述する。  [0010] Hereinafter, each step will be described in detail.
1.固形分取得工程  1. Solid content acquisition process
まず,水溶性クーラント,砥粒及びシリコン粒を少なくとも含有する,シリコンウエノ、 の製造プロセスでの使用済みスラリー力 水溶性クーラントを予め除去することによつ て固形分を得る。  First, the solid content is obtained by previously removing the water-soluble coolant used in the manufacturing process of silicon weno, which contains at least water-soluble coolant, abrasive grains, and silicon grains.
[0011] 使用済みスラリーとは,スラリーにシリコン粒が混入されたものである。  [0011] The used slurry is a slurry in which silicon particles are mixed.
スラリーは,砲粒とそれを分散する水溶性クーラントとからなる。砲粒は,その種類は 限定されないが,例えば, SiC,ダイヤモンド, CBN,アルミナなど力もなる。水溶性ク 一ラントとは,水に対し相溶性を有するクーラントであり,その種類は限定されないが ,水溶性クーラントは,例えば,エチレングリコール,プロピレングリコール又はポリェ チレングリコールなどの水溶性の有機溶媒力もなる。また,水溶性クーラントは, 5% 〜15%程度の水を含んでいてもよい。この場合,このクーラントが消防法上の危険物 となるのを避けることができる。さらに,クーラントには,通常,砲粒や Si切り屑を分散 させるための分散剤 (ベントナイト)など (数%程度)が添加されて 、る。本明細書にお いて, 「%」は, 「重量%」を意味する。 The slurry is composed of a barrel and a water-soluble coolant that disperses it. There are no limitations on the type of gunshot particles, but for example, SiC, diamond, CBN, and alumina can also be used. Water soluble One run is a coolant that is compatible with water, and the type of water is not limited, but a water-soluble coolant can also be a water-soluble organic solvent such as ethylene glycol, propylene glycol, or polyethylene glycol. The water-soluble coolant may contain about 5% to 15% water. In this case, it can be avoided that this coolant becomes a dangerous material under the Fire Service Law. In addition, a coolant (bentonite) or the like (a few percent) is usually added to the coolant to disperse the granules and Si chips. In this specification, “%” means “% by weight”.
[0012] シリコンウェハの製造プロセスに含まれる工程の例としては,例えば,シリコンインゴ ットのスライス工程や,シリコンウェハのラッピング工程などが挙げられる。シリコン粒と は,例えば,シリコンインゴットをスライスしてシリコンウェハを作成するときに発生する シリコン切屑,又はシリコンウェハをラッピングするときに発生する研磨屑である。使用 済みスラリー中のシリコン濃度は,例えば 10%以上である。  [0012] Examples of steps included in the silicon wafer manufacturing process include a silicon ingot slicing step and a silicon wafer lapping step. Silicon grains are, for example, silicon chips generated when a silicon wafer is formed by slicing a silicon ingot, or polishing chips generated when lapping a silicon wafer. The silicon concentration in the used slurry is, for example, 10% or more.
[0013] 固形分は,使用済みスラリー力 水溶性クーラントを予め除去することによって得る 。水溶性クーラントの除去方法は,限定されないが,例えば,蒸留である。蒸留の方 法は,使用済みスラリーから水溶性クーラントを蒸発させて固形分が得られる方法で あれば,限定されない。蒸留は,常圧蒸留,減圧蒸留,真空蒸留の何れであってもよ V、が,エネルギー節約や安全性等の観点力 真空(lOTorr以下)蒸留が好ま 、。 固形分は,通常は,粉体状である。蒸発させた水溶性クーラントは,回収してスラリー の再生に用いることが好まし 、。  [0013] The solid content is obtained by previously removing the used slurry force water-soluble coolant. Although the removal method of a water-soluble coolant is not limited, For example, it is distillation. The distillation method is not limited as long as the water-soluble coolant is evaporated from the used slurry to obtain a solid content. Distillation can be any of atmospheric distillation, vacuum distillation, and vacuum distillation V, but power from the viewpoint of energy saving and safety Vacuum (lOTorr or less) distillation is preferred. The solid content is usually in powder form. The evaporated water-soluble coolant is preferably recovered and used to regenerate the slurry.
[0014] 水溶性クーラントの除去は,蒸留以外にも,遠心分離又は濾過によって行ってもよ い。(1)遠心分離と蒸留の組合せ, (2)濾過と蒸留の組合せによって行ってもよい。 蒸留又は遠心分離によって得られる固形分を蒸留してもよく,液分を蒸留してもよい 。蒸留又は遠心分離によって得られる固形分又は液分の一部のみを蒸留してもよい 。遠心分離又は濾過は, 1次であっても複数次であってもよい。  [0014] The water-soluble coolant may be removed by centrifugation or filtration in addition to distillation. (1) A combination of centrifugation and distillation. (2) A combination of filtration and distillation. Solids obtained by distillation or centrifugation may be distilled or liquids may be distilled. Only a part of the solid or liquid obtained by distillation or centrifugation may be distilled. Centrifugation or filtration may be primary or multiple.
[0015] 使用済みスラリーから水溶性クーラントを予め除去することは,より具体的には,例 えば,以下の方法で実施することができる。  [0015] The removal of the water-soluble coolant from the used slurry in advance can be performed more specifically, for example, by the following method.
1 - 1.第 1の方法  1-1. First method
第 1の方法では,使用済みスラリーから水溶性クーラントを予め除去することは,使 用済みスラリーを, 1次遠心分離することにより,砥粒が主成分の固形分を回収し, 1 次遠心分離により得られる液分を 2次遠心分離することにより,水溶性クーラントが主 成分の液分の一部を回収し, 2次遠心分離により得られる液分の残りとスラッジの少 なくとも一方力 なる試料力 蒸留により水溶性クーラントを予め除去する工程を含む 方法によって行われる。 In the first method, the pre-removal of water-soluble coolant from the used slurry is used. The spent slurry is subjected to primary centrifugation to recover the solids composed mainly of abrasive grains, and the liquid obtained by the primary centrifugation is subjected to secondary centrifugation, so that water-soluble coolant is the main component. This is performed by a method that includes a step of removing a part of the liquid and preliminarily removing the water-soluble coolant by distillation.
[0016] 以下,第 1の方法に含まれる工程について詳しく説明する。  [0016] Hereinafter, the steps included in the first method will be described in detail.
(1) 1次遠心分離工程  (1) Primary centrifugation process
この工程では,上記使用済みスラリーを, 1次遠心分離することにより,砥粒が主成 分の固形分を回収する。  In this process, the above-mentioned used slurry is subjected to primary centrifugation to recover the solid content of the main component of the abrasive grains.
[0017] 1次遠心分離は,好ましくは, 100〜1000Gで行う。 1次遠心分離により,使用済み スラリーが,第 1固形分と第 1液分とに分離される。第 1固形分は,砲粒が主成分であ る。砲粒は,一般にシリコン粒よりも比重が大きいので,シリコン粒よりも速く沈降する 。このため,低速の遠心分離を行うと,砲粒が選択的に沈降する。第 1固形分には, 多くの砲粒が含まれているので,第 1固形分は,スラリーの再生に用いることができる 。一方,第 1液分には,主に水溶性クーラント及びシリコン粒が含まれている。  [0017] The primary centrifugation is preferably performed at 100 to 1000G. In the primary centrifugation, the used slurry is separated into the first solid and the first liquid. The first solid content is mainly composed of gunshot particles. Since the barrel generally has a higher specific gravity than the silicon grain, it settles faster than the silicon grain. For this reason, when low-speed centrifugation is performed, the barrels are selectively settled. Since the first solid contains a lot of particles, the first solid can be used to regenerate the slurry. On the other hand, the first liquid contains mainly water-soluble coolant and silicon particles.
[0018] (2) 2次遠心分離工程  [0018] (2) Secondary centrifugation step
この工程では, 1次遠心分離により得られる液分を 2次遠心分離することにより,水 溶性クーラントが主成分の液分の一部を回収する。  In this process, the liquid obtained by the primary centrifugation is secondarily centrifuged to recover a part of the liquid that is mainly composed of water-soluble coolant.
2次遠心分離は,好ましくは, 2000〜5000Gで行う。このように 1次遠心分離よりも 高速の遠心分離を行うと, 1次遠心分離では,沈降しな力つた固形分も沈降する。従 つて, 2次遠心分離により,第 1液分が,水溶性クーラントが主成分の液分 (第 2液分) と,固形分であるスラッジとに分離される。スラッジには,シリコン粒と, 1次遠心分離で 沈降しなかった砲粒が含まれている。第 2液分には,砲粒及びシリコン粒も含まれて いる。第 2液分は,通常,スラリーの再生に利用されるが,その全量をそのままスラリ 一の再生に用いると,再生したスラリーのシリコン質量比が大きくなりすぎて,好ましく ない。そこで,本方法では,第 2液分の一部のみを回収する。この回収された液分は ,スラリーの再生に用いることができる。  Secondary centrifugation is preferably performed at 2000-5000G. In this way, if centrifugation is performed at a speed higher than that of the primary centrifugation, the solid content that does not settle will also settle in the primary centrifugation. Therefore, by the secondary centrifugation, the first liquid is separated into a liquid mainly composed of water-soluble coolant (second liquid) and sludge that is a solid. The sludge contains silicon particles and cannon particles that did not settle in the primary centrifugation. The second liquid also contains cannonballs and silicon particles. The second liquid is usually used for slurry regeneration, but if the entire amount is used as it is for slurry regeneration, the silicon mass ratio of the regenerated slurry becomes too large, which is not preferable. Therefore, in this method, only a part of the second liquid is collected. The recovered liquid can be used for slurry regeneration.
[0019] (3)蒸留工程 この工程では, 2次遠心分離により得られる液分の残りとスラッジの少なくとも一方か らなる試料を蒸留する。蒸留する試料は,例えば, (1)液分の残りのみ, (2)スラッジ のみ, (3)液分の残りとスラッジの混合物の何れであってもよい。スラッジは,一部の みを試料に含めてもよい。スラッジは,蒸留を行う前に乾燥させておいてもよい。乾燥 の方法は,特に限定されない。 [0019] (3) Distillation process In this process, a sample consisting of at least one of the remaining liquid and sludge obtained by secondary centrifugation is distilled. The sample to be distilled may be, for example, (1) only the remaining liquid, (2) only sludge, or (3) a mixture of the remaining liquid and sludge. Only a portion of the sludge may be included in the sample. The sludge may be dried before distillation. The drying method is not particularly limited.
[0020] 1 - 2.第 2の方法  [0020] 1-2. Second method
第 2の方法では,使用済みスラリーから水溶性クーラントを予め除去することは,使 用済みスラリーを, 1次遠心分離することにより,砥粒が主成分の固形分を回収し, 1 次遠心分離により得られる液分の少なくとも一部力 なる試料力 蒸留により水溶性 クーラントを予め除去する工程を含む方法によって行われる。  In the second method, the water-soluble coolant is removed from the used slurry in advance by firstly centrifuging the used slurry to collect the solids whose main component is abrasive grains, and then performing the first centrifuge. The sample force which is at least a partial force of the liquid obtained by the above is carried out by a method including a step of previously removing the water-soluble coolant by distillation.
[0021] 以下,第 2の方法に含まれる工程について説明する。 1次遠心分離の方法,蒸留の 方法は,第 1の方法と共通する。第 2の方法では,蒸留する試料が第 1の方法と異な つている。第 2の方法では, 1次遠心分離により得られる液分の少なくとも一部力もな る試料を蒸留して固形分を得る。蒸留する試料は,例えば, (1)液分の一部, (2)液 分の全部の何れであってもよい。また,液分の一部を蒸留する場合,液分の残りを 2 次遠心分離し,それによつて得られるスラッジ (全量又は一部)を蒸留する試料に含 めてもよい。  [0021] Hereinafter, steps included in the second method will be described. The primary centrifugation method and distillation method are the same as the first method. In the second method, the sample to be distilled is different from the first method. In the second method, a solid sample is obtained by distilling a sample that has at least a partial force from the primary centrifuge. The sample to be distilled may be, for example, (1) a part of the liquid or (2) the whole of the liquid. If a portion of the liquid is to be distilled, the remaining liquid may be subjected to secondary centrifugation, and the resulting sludge (total or partial) may be included in the sample to be distilled.
[0022] 2.抽出工程  [0022] 2. Extraction process
次に,上記固形分から,水溶性クーラントに対し相溶性を有しかつ水溶性クーラント よりも沸点が低い低沸点有機溶媒を用いて前記固形分中に残留する水溶性クーラン トを抽出する。本明細書において、「抽出」とは,前記固形分中に残留する水溶性ク 一ラントを低沸点有機溶媒中に溶解させることを意味する。  Next, the water-soluble coolant remaining in the solid is extracted from the solid using a low-boiling organic solvent that is compatible with the water-soluble coolant and has a boiling point lower than that of the water-soluble coolant. In this specification, “extraction” means dissolving a water-soluble coolant remaining in the solid content in a low-boiling organic solvent.
[0023] 水溶性クーラントの抽出は,例えば,上記低沸点有機溶媒を上記固形分に添加し ,両者を攪拌することによって行うことができる。  [0023] Extraction of the water-soluble coolant can be performed, for example, by adding the low boiling point organic solvent to the solid content and stirring both.
上記低沸点有機溶媒の種類は,水溶性クーラントに対し相溶性を有しかつ水溶性 クーラントよりも沸点が低いものであれば,限定されないが,例えば,炭素数が 1〜6 ( 好ましくは, 1, 2, 3, 4, 5及び 6の何れか 2つの間の範囲)のアルコール又は炭素数 カ^〜 6 (好ましくは, 3, 4, 5及び 6の何れ力 2つの間の範囲)のケトンである。このよう なアルコールの具体例としては,メタノール,エタノール,イソプロピルアルコール、ブ チルアルコールなどが挙げられる。このようなケトンの具体例としては,アセトンゃメチ ルェチルケトンが挙げられる。低沸点有機溶媒は,複数種類の有機溶媒の混合物で あってもよい。別の観点から,低沸点有機溶媒は,水溶性クーラントよりも,沸点が 50 °C以上 (好ましくは, 60°C以上, 70°C以上, 80°C以上, 90°C以上又は 100°C以上) 低いものが好ましい。この場合,次に述べる濾過により得られる固形分に残留する低 沸点有機溶媒を蒸発させやすいという利点と,濾過により得られる液分を蒸留するこ とによって低沸点有機溶媒を回収する際に,蒸留により得られる低沸点有機溶媒の 純度を高くしゃす 、と 、う利点がある。 The type of the low-boiling organic solvent is not limited as long as it is compatible with the water-soluble coolant and has a boiling point lower than that of the water-soluble coolant. For example, the number of carbon atoms is 1 to 6 (preferably 1 , 2, 3, 4, 5 and 6 in the range between two alcohols or ketones with a carbon number of up to 6 (preferably in the range between 3, 4, 5 and 6 between the two) It is. like this Specific examples of such alcohols include methanol, ethanol, isopropyl alcohol, and butyl alcohol. A specific example of such a ketone is acetone methyl ketone. The low boiling point organic solvent may be a mixture of a plurality of types of organic solvents. From another point of view, low-boiling organic solvents have boiling points of 50 ° C or higher (preferably 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C) than water-soluble coolants. The above is preferable. In this case, the low-boiling organic solvent remaining in the solid content obtained by filtration described below is easily evaporated, and when the low-boiling organic solvent is recovered by distilling the liquid obtained by filtration, distillation is performed. There is an advantage that the purity of the low-boiling organic solvent obtained by the method is increased.
[0024] 固形分中に残留する水溶性クーラントを低沸点有機溶媒に効率的に溶解させるた めに,抽出の前又は抽出の際に,固形分を粉砕する工程をさらに備えてもよい。  [0024] In order to efficiently dissolve the water-soluble coolant remaining in the solid content in the low boiling point organic solvent, a step of pulverizing the solid content before or during the extraction may be further provided.
[0025] 3.濾過工程  [0025] 3. Filtration process
次に,抽出に用いた低沸点有機溶媒を濾過によって除去する。濾過の方法やそれ に用いる装置は,限定されない。濾過は,量産時の効率等を考慮すると,リーフフィ ルターを用いて行うことが好まし 、。  Next, the low-boiling organic solvent used for extraction is removed by filtration. The filtration method and the apparatus used for it are not limited. Filtration is preferably performed using a leaf filter in consideration of efficiency during mass production.
[0026] 4.洗浄工程  [0026] 4. Cleaning process
濾過の後,抽出に用いた低沸点有機溶媒と同一又は異なる種類の低沸点有機溶 媒で,固形分を洗浄する工程を備えることが好ましい。これによつて,固形分に残留 する水溶性クーラントがさらに確実に除去される。洗浄の方法は,限定されないが, 洗浄は,例えば,濾紙上の固形分の上から低沸点有機溶媒を注ぐ方法によって行う ことができる。洗浄は,固形分中を通過した後の液分を再度,固形分の上から注ぐと V、う工程を繰り返すことによって行うことが好ま U、。繰り返しの洗浄中に低沸点有機 溶媒を新しいものに交換してもよい。洗浄は,洗浄後の液分の透明度が基準以下に なるまで行うことが好ましい。液分の透明度は,どの程度の量の水溶性クーラントが低 沸点有機溶媒に溶解したのかを示す指標になり,透明度が基準以下である場合に は,十分な量の水溶性クーラントが低沸点有機溶媒に溶解し,固形分中の残留量が 基準以下であることを間接的に示しているといえる。透明度は, JIS K 0102の工場 排水試験方法で定められ,基準は,例えば 10mmや 20mmに設定することができる [0027] 濾過により得られる液分及び洗浄後の液分を蒸留して低沸点有機溶媒を回収する 工程をさらに備えることが好ましい。回収した低沸点有機溶媒は,再度,残留水溶性 クーラントの抽出又は洗浄に用いることができる。濾過により得られる液分の蒸留と, 洗浄後の液分の蒸留は,一緒に行っても,別々に行ってもよい。 After the filtration, it is preferable to provide a step of washing the solid content with a low-boiling organic solvent of the same or different type as the low-boiling organic solvent used for extraction. As a result, the water-soluble coolant remaining in the solid content is more reliably removed. The washing method is not limited, but washing can be performed, for example, by pouring a low-boiling organic solvent over the solid content on the filter paper. Washing is preferably carried out by repeating the step V when the liquid after passing through the solid is poured again from above the solid U. The low boiling organic solvent may be replaced with a new one during repeated washing. Washing is preferably carried out until the transparency of the liquid after washing is below the standard. The transparency of the liquid is an indicator of how much water-soluble coolant is dissolved in the low-boiling organic solvent. If the transparency is below the standard, a sufficient amount of water-soluble coolant is low It can be said that it is indirectly shown that the amount dissolved in the solvent and the solid content is below the standard. Transparency is defined by the factory drainage test method of JIS K 0102, and the standard can be set to 10 mm or 20 mm, for example. [0027] It is preferable to further comprise a step of recovering the low-boiling organic solvent by distilling the liquid obtained by filtration and the liquid after washing. The recovered low-boiling organic solvent can be used again for extraction or washing of residual water-soluble coolant. The distillation of the liquid obtained by filtration and the liquid after washing may be performed together or separately.
[0028] 5.乾燥工程  [0028] 5. Drying process
次に,固形分に残留している低沸点有機溶媒を蒸発させて固形分を乾燥させるェ 程を備えることが好ましい。  Next, it is preferable to provide a step of evaporating the low boiling point organic solvent remaining in the solid content and drying the solid content.
低沸点有機溶媒は,比較的沸点が低いので比較的蒸発しやすい。固形分の乾燥 の方法は,固形分中の低沸点有機溶媒を蒸発させることができる方法であれば限定 されない。乾燥は, 自然乾燥であっても,加熱、減圧又は加熱と減圧の組合せによる 乾燥であってもよい。  Low boiling organic solvents are relatively easy to evaporate because of their relatively low boiling points. The method for drying the solid content is not limited as long as it can evaporate the low boiling point organic solvent in the solid content. Drying may be natural drying or drying by heating, reduced pressure or a combination of heating and reduced pressure.
[0029] 以上の実施形態で示した種々の特徴は,互いに組み合わせることができる。 1つの 実施形態中に複数の特徴が含まれている場合,そのうちの 1又は複数個の特徴を適 宜抜き出して,単独で又は組み合わせて,本発明に採用することができる。  The various features shown in the above embodiments can be combined with each other. In the case where a plurality of features are included in one embodiment, one or more of the features can be appropriately extracted and used in the present invention alone or in combination.
実施例 1  Example 1
[0030] 図 1を用いて,本発明の実施例 1について説明する。図 1は,本実施例のシリコン含 有材料回収システムを示す。  [0030] Example 1 of the present invention will be described with reference to FIG. Figure 1 shows the silicon-containing material recovery system of this example.
本実施例ではスラリーを使用したスライス加工の対象物として太陽電池用シリコンを 選択した。本実施例で使用した太陽電池用の MWSは,生産能力に主眼が置かれて おり,一回のカロェで, 4本のシリ =3ンインゴット(125WX 125D X 400Uを一度にカロ ェし, >^:i^、(125WX 125D X O. 3L)を 3200枚程度加工することが可能である。  In this example, silicon for solar cells was selected as an object for slicing using slurry. The MWS for solar cells used in this example focuses on production capacity, and in a single calorie, four seri = 3 ingots (125WX 125D X 400U are calored at once, ^: i ^, (125WX 125D X O. 3L) can be processed about 3200 sheets.
[0031] 加工時に使用するスラリータンクには 200L程度の大きさのものを使用し,このタン ク内に収容させるスラリーには砲粒 (比重: 3. 21)と水溶性クーラント(比重: 1)を 1 : 1 の質量比に混合したものを使用した。水溶性クーラントには,組成が,プロピレンダリ コール 80%,水 15%,分散剤など 5%であるものを用いた。一回の加工により約 20k gのシリコン切屑を主とする固形物力 Sスラリーの中に混入する。  [0031] A slurry tank with a size of about 200L is used for processing, and the slurry contained in this tank is barrel (specific gravity: 3.21) and water-soluble coolant (specific gravity: 1). Were mixed at a mass ratio of 1: 1. A water-soluble coolant with a composition of 80% propylene glycol, 15% water, and 5% dispersant was used. About 20 kg of silicon chips are mixed into the solid-state S slurry mainly consisting of silicon chips by one processing.
[0032] 1. 1次, 2次遠心分離工程 まず, 500kg (比重: 1. 72, 290L)の使用済みスラリー 1をデカンタ方式の遠心分 離(1次遠心分離と呼ぶ, 500G)により液分 3aと固形分 3bに分離した。 [0032] 1. Primary and secondary centrifugation steps First, 500 kg (specific gravity: 1.72, 290 L) of used slurry 1 was separated into liquid 3a and solid 3b by decanter-type centrifugal separation (called primary centrifugation, 500G).
次に,液分 3aの全量をさらにデカンタ方式の遠心分離(2次遠心分離と呼ぶ, 350 OG)により液分 5aとスラッジ 5bとに分離した。  Next, the entire amount of liquid 3a was further separated into liquid 5a and sludge 5b by decanter-type centrifugation (referred to as secondary centrifugation, 350 OG).
1次遠心分離により発生した固形分 (砲粒が多く含まれる) 3bの全量を再生砲粒 4と して回収し, 2次遠心分離により発生した液分 5aの一部(30%)を再生クーラント 6と して回収し,両者を混合し,比重や粘度を調整し,新砥粒と新クーラントを追加して再 生スラリーを作成した。スラリーの再生とスライスを繰り返すと,使用済みスラリー,再 生スラリーに含まれるシリコンの濃度は,それぞれ, 12%程度, 6%程度になった。  Solids generated by primary centrifugation (contains a lot of barrels) 3b is recovered as reclaimed barrels 4 and a part (30%) of liquid 5a generated by secondary centrifugation is recovered. Recovered as coolant 6, mixed them, adjusted specific gravity and viscosity, and added new abrasive grains and new coolant to create a regenerated slurry. When slurry regeneration and slicing were repeated, the concentrations of silicon contained in the used slurry and recycled slurry were about 12% and 6%, respectively.
[0033] スラッジ 5bと,液分 5aのうち再生クーラント 6として使用されないもの(余剰クーラント ) 7の発生量はそれぞれ 100kg, 80kgであった。スラッジ 5bと余剰クーラント 7の発生 量及び成分を測定した。その結果を表 1に示す。 [0033] The amounts of sludge 5b and liquid 5a that were not used as regenerated coolant 6 (surplus coolant) 7 were 100kg and 80kg, respectively. The amount and composition of sludge 5b and surplus coolant 7 were measured. The results are shown in Table 1.
[0034] [表 1]
Figure imgf000011_0001
[0034] [Table 1]
Figure imgf000011_0001
2.蒸留工程 2.Distillation process
次に,スラッジ 5bと余剰クーラント 7を混合した試料を真空蒸留し,液分 9aと固形分 9bを得た。真空蒸留は,真空蒸留装置 (温度: 160°C,最終到達真空度 lOTorr)を 用いて行った。液分 9aは,蒸留クーラント 11としてスラリーの再生に利用した。固形 分 9bの発生量及び成分を測定した。その結果を表 2に示す。  Next, a sample in which sludge 5b and surplus coolant 7 were mixed was vacuum distilled to obtain liquid 9a and solid 9b. Vacuum distillation was performed using a vacuum distillation apparatus (temperature: 160 ° C, final ultimate vacuum lOTorr). Liquid 9a was used as distillation coolant 11 to regenerate the slurry. The generation amount and components of solid content 9b were measured. The results are shown in Table 2.
[表 2]
Figure imgf000011_0002
[Table 2]
Figure imgf000011_0002
固形分 9bの粒径分布を測定した。粒径測定は,まず,ふるいを用いて 10mm以上 , 1mm以上, 0. 1mm以上の粒子を順に分離し,その後,粒度分布計を用いて残り の粒子の粒径を測定することによって行った。その結果を表 3に示す。表 3を見ると, 1〜: LOmm程度の大きな粒が多数存在していることが分かる。これは,固形分 9bに残 留するクーラントによって微細な粒子同士が接着され,大きな粒子になっているため であると考えられる。 The particle size distribution of solid content 9b was measured. The particle size was measured by first separating particles of 10 mm or more, 1 mm or more, and 0.1 mm or more using a sieve, and then measuring the particle size of the remaining particles using a particle size distribution meter. The results are shown in Table 3. Looking at Table 3, it can be seen that there are many large grains of 1 ~: LOmm. This remains in solids 9b This is thought to be because fine particles are bonded together by the retained coolant, resulting in large particles.
[表 3]
Figure imgf000012_0001
[Table 3]
Figure imgf000012_0001
[0037] 3.攪拌'粉枠工程  [0037] 3. Agitation 'powder crushing process
次に,固形分 9bに対して重量比で 5倍量 (490kg)のイソプロピルアルコール(以下 , 「アルコール」と呼ぶ) 12を添カ卩し,ボールミルにて 1時間攪拌した。ボールミルは, 容器の大きさ直径 lm,長さ 1. 5mのものを使用し, 20mmの球状のセラミックボール 200個を液中に入れて, 20RPMで回転させた。容器は,ステンレス容器の内面に榭 脂コートして使用し,軸心にはチッソを循環させて,アルコールの揮発分を捕集した。 この方法によれば,固形分 9bとアルコール 12とが攪拌されると共に固形分 9bが粉砕 される。  Next, 5 times by weight (490 kg) of isopropyl alcohol (hereinafter referred to as “alcohol”) 12 was added to the solid content 9b and stirred for 1 hour in a ball mill. The ball mill used was a container with a diameter of lm and a length of 1.5 m. 200 spherical 20 mm ceramic balls were placed in the solution and rotated at 20 RPM. The container was coated with a resin coating on the inner surface of the stainless steel container, and nitrogen was circulated around the shaft to collect the alcohol volatiles. According to this method, the solid content 9b and the alcohol 12 are stirred and the solid content 9b is pulverized.
[0038] この後,攪拌後の混合液に含まれる粒子の粒径分布を測定した。粒径測定は,粒 度分布計を用いて行った。その結果を表 4に示す。表 3と表 4を比較すると,蒸留後 の固形分 9bにアルコール 12を添カ卩して攪拌を行うことによって,粒径 0. 1mm以上 の粒子が消失し,ほとんどの粒子の粒径が 0. 02mm未満になったことが分かる。こ れは,蒸留後の固形分 9bに残留しているクーラントがアルコールに溶力され,クーラ ントによって接着されていた微細粒子同士が分離したためであると考えられる。  [0038] Thereafter, the particle size distribution of the particles contained in the mixed liquid after stirring was measured. The particle size was measured using a particle size distribution meter. The results are shown in Table 4. When Table 3 and Table 4 are compared, by adding alcohol 12 to the solid content 9b after distillation and stirring, particles with a particle size of 0.1 mm or more disappear, and the particle size of most particles is 0. You can see that it is less than 02mm. This is probably because the coolant remaining in the solid content 9b after distillation was dissolved in alcohol and the fine particles adhered by the coolant separated.
[表 4]
Figure imgf000012_0002
[Table 4]
Figure imgf000012_0002
4.濾過工程 4. Filtration process
次に,リーフフィルタ一式濾過装置を用いて濾過を行った。これによつて液分 (濾液 ) 15aと固形分 (ケーキ) 15bが得られた。リーフフィルタ一式濾過装置とは,密閉容器 の内部に水平円盤形のリーフが垂直中空軸に重層的に設置されたものであり,各リ ーフの間隔は,スぺーサーリングにより調整する。固形分 15bは,リーフ上面にだけ 堆積し,液分 15aは,垂直中空軸を通って外に排出される構造になっている。 Next, it filtered using the leaf filter complete filter apparatus. As a result, liquid (filtrate) 15a and solid (cake) 15b were obtained. A leaf filter set is a horizontal disk-shaped leaf placed inside a closed container in layers on a vertical hollow shaft, and the spacing between each leaf is adjusted by a spacer ring. Solid content 15b only on top of leaf The accumulated liquid 15a is discharged through a vertical hollow shaft.
[0040] リーフフィルタ一式濾過装置を使用すれば,固形分 15bの洗浄が容易である。さら に,リーフフィルタ一式濾過装置は,密閉構造のため,本実施例のアルコールのよう な揮発性高 ヽ有機溶媒を用いた洗浄工程を有する方法で好適に用いられる。リーフ フィルターの濾布は,ポリプロピレン製の通気度 0. 11ものを使用した。液分 15aの処 理は,後述する。 [0040] If a leaf filter set filtration device is used, the solid content 15b can be easily washed. Furthermore, the leaf filter set filtration device is suitably used in a method having a cleaning process using a volatile organic solvent such as alcohol in this embodiment because of the sealed structure. The filter cloth of the leaf filter used was a polypropylene air permeability of 0.11. The treatment of liquid 15a will be described later.
[0041] 5.洗净工程 [0041] 5. Washing process
次に,リーフ上面に堆積した固形分 15bを, 3倍量(294kg)のアルコールを用いて 洗浄した。洗浄用のアルコールには,イソプロピルアルコールを用いた。洗浄は,固 形分 15bの上からアルコールを注ぎ,固形分 15bを通過させ, 固形分 15bを通過さ せたアルコールを回収し,これを再度固形分 15bの上から注ぐという工程を繰り返す ことによって行った。この繰り返しは, 3時間行った。これによつて洗浄後の液分 17aと 固形分 17bが得られた。  Next, the solid content 15b deposited on the top surface of the leaf was washed with 3 times the amount of alcohol (294 kg). Isopropyl alcohol was used as the cleaning alcohol. Washing is performed by repeating the process of pouring alcohol from the top of the solid content 15b, allowing the solid content 15b to pass through, recovering the alcohol that has passed the solid content 15b, and pouring it again from the top of the solid content 15b. went. This was repeated for 3 hours. As a result, liquid 17a and solid 17b after washing were obtained.
洗浄後の固形分 17bは,全体の重量が 111. 8kgで, 28kgのアルコールを含んで いた。  The solid content 17b after washing had a total weight of 111.8 kg and contained 28 kg of alcohol.
[0042] 液分 15aと液分 17aは,回収槽に一旦貯蔵した後,これらを一緒に蒸留した。蒸留 の液分は,再生アルコール 21として取り出した。再生アルコール 21は,攪拌又は洗 浄用アルコールとして再利用した。蒸留は, 90°Cで行い,蒸発した液分は,凝縮器 を用いて回収した。収率を高くするため,凝縮器の温度は, 0°Cに設定した。液分 15 aと液分 17aに含まれるアルコール (イソプロピルアルコール)は,沸点が 82. 4°Cであ り,プロピレングリコールは, 187. 85°Cである。従って, 90°Cでの蒸留では,プロピ レンダリコールは,ほとんど蒸発せず,蒸留によって高純度のアルコールを回収する ことができる。  [0042] Liquid 15a and liquid 17a were once stored in a collection tank and then distilled together. The distillate was removed as recycled alcohol 21. Recycled alcohol 21 was reused as stirring or cleaning alcohol. Distillation was performed at 90 ° C, and the evaporated liquid was collected using a condenser. To increase the yield, the condenser temperature was set to 0 ° C. The alcohol (isopropyl alcohol) contained in liquid 15a and liquid 17a has a boiling point of 82.4 ° C, and propylene glycol has 187.85 ° C. Therefore, in the distillation at 90 ° C, the propylenic alcohol is hardly evaporated, and high purity alcohol can be recovered by distillation.
液分 15aと液分 17aの合計重量は, 750kgであった。再生アルコール 21の重量は , 720kgであった。蒸留後に残存した固形分は,主成分が,クーラント成分の PGで, 微量成分として, SiC, Si,金属不純物,その他を含んでいた。  The total weight of liquid 15a and liquid 17a was 750kg. The weight of recycled alcohol 21 was 720kg. The solid content remaining after distillation was mainly composed of PG, a coolant component, and contained SiC, Si, metal impurities, and others as minor components.
[0043] 6.乾燥工程 [0043] 6. Drying process
次に,固形分 17bに対して真空乾燥 (40°C lOTorr以下)を実施して,液分 19aを 蒸発させることによって固形分 19bを取り出した。蒸発した液分 19aは,凝縮器で回 収した。凝縮器の条件は,常圧で 0°Cに設定した。回収量は, 25kgであった。回収し た液分 19aは,そのまま再生アルコール 21とした。固形分 19bの発生量及び成分を 測定した。その結果を表 5に示す。 Next, vacuum drying (40 ° C lOTorr or less) is applied to the solid content 17b, and the liquid content 19a is reduced. The solid 19b was removed by evaporation. The evaporated liquid 19a was collected by a condenser. The condenser conditions were set at 0 ° C at normal pressure. The amount recovered was 25 kg. The recovered liquid 19a was directly used as recycled alcohol 21. The amount and components of solid content 19b were measured. The results are shown in Table 5.
[表 5]
Figure imgf000014_0001
[Table 5]
Figure imgf000014_0001
[0044] 以上の工程によって,クーラントが実質的に含まれていないシリコン含有材料 23を 回収することができた。シリコン含有材料 23は,多くのシリコンを含有しており,ポリシ リコンゃハロシランの製造の原材料として利用可能である。  [0044] Through the above steps, the silicon-containing material 23 substantially free of coolant could be recovered. Silicon-containing material 23 contains a large amount of silicon and can be used as a raw material for the production of polysilicon or halosilane.
[0045] 本実施例では,液分 15aと液分 17aからアルコールを回収し,さらに乾燥工程で蒸 発したアルコールも回収した。従って,使用したアルコールの大部分を回収し,再利 用することができた。  [0045] In this example, alcohol was recovered from liquid 15a and liquid 17a, and alcohol evaporated during the drying process was also recovered. Therefore, most of the used alcohol could be recovered and reused.
[0046] 上記実施例では, 1次遠心分離の液分 3aの全量に対して 2次遠心分離を行ったが ,図 2に示すように,再生クーラント 6を得るのに必要な分量のみに対して 2次遠心分 離を行い,液分 3aの残りをスラッジ 5bと混合し,これを蒸留してもよい。この場合, 2 次遠心分離での負荷を減少させることができる。  [0046] In the above embodiment, the secondary centrifugation was performed on the total amount of the liquid 3a of the primary centrifugation, but as shown in Fig. 2, only the amount necessary to obtain the regenerated coolant 6 was obtained. Then, perform secondary centrifugation, mix the remainder of liquid 3a with sludge 5b, and distill it. In this case, the load during secondary centrifugation can be reduced.
[0047] さらに,上記実施例ではスラッジ 5bを乾燥させずに余剰クーラント 7と混合したが, 図 3に示すように,スラッジ 5bを乾燥させた後にスラッジ 5bと余剰クーラント 7を混合し てもよい。この場合でも,上記実施例と同等の効果が得られる。  [0047] Further, in the above embodiment, the sludge 5b is mixed with the excess coolant 7 without drying, but as shown in Fig. 3, the sludge 5b and the excess coolant 7 may be mixed after the sludge 5b is dried. . Even in this case, the same effect as in the above embodiment can be obtained.
[0048] さらに,上記実施例では 1次 · 2次遠心分離を行ったが,図 4に示すように, 1次遠心 分離のみを行い,その液分 3aを蒸留する試料としてもよい。この場合,設備コストを 低減することができるという利点がある。  [0048] Furthermore, in the above embodiment, primary / secondary centrifugation is performed, but as shown in Fig. 4, only the primary centrifugation may be performed, and the liquid 3a may be used as a sample. In this case, there is an advantage that the equipment cost can be reduced.
実施例 2  Example 2
[0049] 図 5を用いて,本発明の実施例 2について説明する。本実施例は,余剰クーラント のみ力もなる試料に対して蒸留を行う点において,実施例 1と異なっている。  [0049] Embodiment 2 of the present invention will be described with reference to FIG. This example is different from Example 1 in that distillation is performed on a sample that only has surplus coolant.
[0050] 1. 1次, 2次遠心分離工程 [0050] 1. Primary and secondary centrifugation steps
この工程は,実施例 1と共通しているので説明を省略する。但し,スラッジ 5bは,廃 棄し,余剰クーラント 7のみを,蒸留する試料とした。 Since this process is the same as in Example 1, the description thereof is omitted. However, sludge 5b is discarded. Only the surplus coolant 7 was used as the sample to be distilled.
[0051] 2.蒸留工程 [0051] 2. Distillation process
次に,余剰クーラント 7からなる試料を真空蒸留し,液分 9aと固形分 9bを得た。真 空蒸留は,実施例 1と同一の条件で行った。液分 9aは,蒸留クーラント 11としてスラリ 一の再生に利用した。固形分 9bの発生量及び成分を測定した。その結果を表 6に示 す。  Next, a sample consisting of excess coolant 7 was vacuum distilled to obtain liquid 9a and solid 9b. The vacuum distillation was performed under the same conditions as in Example 1. Liquid 9a was used as the distillation coolant 11 to regenerate the slurry. The generation amount and components of solid content 9b were measured. The results are shown in Table 6.
[表 6]
Figure imgf000015_0001
固形分 9bの粒径分布を測定した。その結果を表 7に示す。表 7を見ると, 1〜: LOm m程度の大きな粒が多数存在していることが分かる。これは,固形分 9bに残留するク 一ラントによって微細な粒子同士が接着され,大きな粒子になってレ、るためであると 考えられる。
[Table 6]
Figure imgf000015_0001
The particle size distribution of solid content 9b was measured. The results are shown in Table 7. Looking at Table 7, it can be seen that there are many large grains of about 1 to: LOm m. This is thought to be because fine particles are bonded to each other by the coolant remaining in the solid content 9b and become large particles.
[表 7]
Figure imgf000015_0002
[Table 7]
Figure imgf000015_0002
[0053] 3.攪拌'粉砕工程 [0053] 3. Stirring 'grinding process
次に,固形分 9bに対して重量比で 5倍量(64kg)のイソプロピルアルコール(以下, 「アルコール」と呼ぶ) 12を添カ卩し,ボールミルにて 1時間攪拌した。ボールミルによる 攪拌は,実施例 1と同一の条件で行った。  Next, 5 times by weight (64 kg) of isopropyl alcohol (hereinafter referred to as “alcohol”) 12 was added to the solid content 9b and stirred for 1 hour in a ball mill. Stirring with a ball mill was performed under the same conditions as in Example 1.
この後,攪拌後の混合液に含まれる粒子の粒径分布を測定した。その結果を表 8 に示す。表 7と表 8を比較すると,粒径 0. 1mm以上の粒子が消失し,ほとんどの粒子 の粒径が 0. 02mm未満になったことが分力る。  Thereafter, the particle size distribution of the particles contained in the mixed liquid after stirring was measured. The results are shown in Table 8. Comparing Table 7 and Table 8, it can be seen that particles with a particle size of 0.1 mm or more have disappeared, and most of the particles have a particle size of less than 0.02 mm.
[表 8]
Figure imgf000015_0003
[Table 8]
Figure imgf000015_0003
[0054] 4.濾過工程 次に,リーフフィルタ一式濾過装置を用いて濾過を行った。濾過は,実施例 1と同一 の条件で行った。 [0054] 4. Filtration process Next, it filtered using the leaf filter complete filter apparatus. Filtration was performed under the same conditions as in Example 1.
[0055] 5.洗净工程  [0055] 5. Washing process
次に,リーフ上面に堆積した固形分 15bを, 3倍量(38. 4kg)のアルコールを用い て洗浄した。固形分 15bの洗浄は,実施例 1と同一の条件で行った。  Next, the solid content 15b deposited on the upper surface of the leaf was washed with 3 times the amount of alcohol (38.4 kg). The solid content 15b was washed under the same conditions as in Example 1.
[0056] 洗浄後の固形分 17bは,全体の重量が 13kgで, 2kgのアルコールを含んでいた。  [0056] The solid content 17b after washing had a total weight of 13 kg and contained 2 kg of alcohol.
[0057] 液分 15aと液分 17aは,回収槽に一旦貯蔵した後,これらを一緒に蒸留した。蒸留 の液分は,再生アルコール 21として取り出した。再生アルコール 21は,攪拌又は洗 浄用アルコールとして再利用した。蒸留は, 90°Cで行い,蒸発した液分は,凝縮器 を用いて回収した。収率を高くするため,凝縮器の温度は, 0°Cに設定した。  [0057] Liquid 15a and liquid 17a were once stored in a recovery tank and then distilled together. The distillate was removed as recycled alcohol 21. Recycled alcohol 21 was reused as stirring or cleaning alcohol. Distillation was performed at 90 ° C, and the evaporated liquid was collected using a condenser. To increase the yield, the condenser temperature was set to 0 ° C.
液分 15aと液分 17aの合計重量は, 102. 4kgであった。再生アルコール 21の重量 は, 95kgであった。蒸留後に残存した固形分は,主成分が,クーラント成分の PGで ,微量成分として, SiC, Si,金属不純物,その他を含んでいた。  The total weight of liquid 15a and liquid 17a was 102.4 kg. The weight of recycled alcohol 21 was 95 kg. The solid content remaining after distillation was mainly composed of PG, a coolant component, and contained SiC, Si, metal impurities, and others as trace components.
[0058] 6.乾燥工程  [0058] 6. Drying process
次に,固形分 17bに対して真空乾燥 (40°C lOTorr以下)を実施して,液分 19aを 蒸発させることによって固形分 19bを取り出した。真空乾燥は,実施例 1と同一の条 件で行った。  Next, vacuum drying (40 ° C lOTorr or less) was applied to the solid content 17b, and the solid content 19b was removed by evaporating the liquid content 19a. Vacuum drying was performed under the same conditions as in Example 1.
[0059] 蒸発した液分 19aは,凝縮器で回収した。凝縮器の条件は,常圧で 0°Cに設定した 。回収量は, 1. 84kgであった。回収した液分 19aは,そのまま再生アルコール 21と した。固形分 19bの発生量及び成分を測定した。その結果を表 9に示す。  [0059] The evaporated liquid component 19a was recovered by a condenser. The condenser conditions were set at 0 ° C at normal pressure. The amount recovered was 1.84 kg. The recovered liquid 19a was directly used as recycled alcohol 21. The generation amount and components of the solid content 19b were measured. The results are shown in Table 9.
[表 9]
Figure imgf000016_0001
[Table 9]
Figure imgf000016_0001
[0060] さらに,固形分 19bの粒度分布を測定した。その結果を表 10に示す,  [0060] Further, the particle size distribution of the solid content 19b was measured. The results are shown in Table 10.
[表 10]  [Table 10]
0. 001 m m以上 0. 02 m m以上 0. 1 m m以上 1 m m以上 1 0 m m以上 固形分 90 % 1 0 % 0 % 0% 0 % [0061] 以上の工程によって,クーラントが実質的に含まれていないシリコン含有材料 23を 回収することができた。 0.001 mm or more 0.02 mm or more 0.1 mm or more 1 mm or more 10 mm or more Solid content 90% 1 0% 0% 0% 0% [0061] Through the above steps, the silicon-containing material 23 substantially free of coolant could be recovered.
実施例 3  Example 3
[0062] 実施例 3は,実施例 2と同じ条件で行った。蒸留後の固形分 9b,濾過後の固形分 1 5b,洗浄後の固形分 17b,乾燥後の固形分 19bに含まれているクーラントの重量を 測定した。残留クーラント重量の測定は,各固形分を 100°Cに加熱して低沸点有機 溶媒を除去した後に重量を測定し,その後, 300°Cで加熱してクーラントを除去した 後に再度,重量を測定し, 300°Cでの加熱の前後での重量変化量を残留クーラント の重量とすることによって行った。その結果を表 11に示す。表 11から明らかなように ,濾過及び洗浄によって残留クーラント重量が大幅に減少したことが分かる。  [0062] Example 3 was performed under the same conditions as in Example 2. The weight of the coolant contained in the solid content 9b after distillation, the solid content 15b after filtration, the solid content 17b after washing, and the solid content 19b after drying was measured. The residual coolant weight was measured by heating each solid to 100 ° C to remove the low-boiling organic solvent, then heating at 300 ° C to remove the coolant, and then measuring the weight again. The weight change before and after heating at 300 ° C was taken as the weight of the residual coolant. The results are shown in Table 11. As can be seen from Table 11, it can be seen that the weight of the residual coolant was significantly reduced by filtration and washing.
[表 11]
Figure imgf000017_0001
[Table 11]
Figure imgf000017_0001
実施例 4  Example 4
[0063] 実施例 4は,洗浄工程を 2回繰り返した以外は,実施例 2と同じ条件で行った。濾過 後の固形分 15b, 1回目の洗浄後の固形分, 2回目の洗浄後の固形分,乾燥後の固 形分 19bに含まれているクーラントの重量を測定した。その結果を表 12に示す。表 1 2から明らかなように,洗浄を繰り返すことによって残留クーラント重量が減少したこと がわカゝる。  [0063] Example 4 was performed under the same conditions as Example 2 except that the washing step was repeated twice. The weight of the coolant contained in the solid content 15b after filtration, the solid content after the first washing, the solid content after the second washing, and the solid content 19b after drying was measured. The results are shown in Table 12. As is clear from Table 12, the weight of the residual coolant was reduced by repeated washing.
[表 12]
Figure imgf000017_0002
[Table 12]
Figure imgf000017_0002
[0064] この出願は, 曰本国出願 No. 2006— 75164 (出願曰: 2006年 3月 17曰)への優 先権を主張し,この日本出願の内容は,ここに参照によって取り込まれる。  [0064] This application claims priority to Japanese application No. 2006-75164 (Application IV: March 17, 2006), the contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] 水溶性クーラント,砲粒及びシリコン粒を少なくとも含有する,シリコンウェハの製造プ ロセスでの使用済みスラリーから水溶性クーラントを予め除去することによって固形分 を得て,  [1] A solid content is obtained by previously removing water-soluble coolant from the used slurry in the silicon wafer manufacturing process, which contains at least water-soluble coolant, cannon and silicon particles.
その固形分から,水溶性クーラントに対し相溶性を有しかつ水溶性クーラントよりも沸 点が低い低沸点有機溶媒を用いて前記固形分中に残留する水溶性クーラントを抽 出し,抽出に用いた低沸点有機溶媒を濾過によって除去し,濾過により得られる固形 分を回収する工程を備えることを特徴とするシリコン含有材料の回収方法。  From the solid content, the water-soluble coolant remaining in the solid content is extracted using a low-boiling organic solvent that is compatible with the water-soluble coolant and has a boiling point lower than that of the water-soluble coolant. A method for recovering a silicon-containing material, comprising a step of removing a boiling organic solvent by filtration and recovering a solid content obtained by filtration.
[2] 使用済みスラリー力 水溶性クーラントを予め除去することは,  [2] Used slurry force Removing water-soluble coolant in advance
使用済みスラリーを, 1次遠心分離することにより,砥粒が主成分の固形分を回収し, 1次遠心分離により得られる液分を 2次遠心分離することにより,水溶性クーラントが 主成分の液分の一部を回収し,  The used slurry is subjected to primary centrifugation to recover the solid content of abrasive grains as the main component, and the liquid obtained by the primary centrifugation is subjected to secondary centrifugation to obtain a water-soluble coolant as the main component. Collect a portion of the liquid,
2次遠心分離により得られる液分の残りとスラッジの少なくとも一方力 なる試料から 蒸留により水溶性クーラントを予め除去する工程を含む方法によって行われる請求 項 1に記載の方法。  The method according to claim 1, wherein the method is performed by a method comprising a step of previously removing a water-soluble coolant by distillation from a sample having at least one of the remaining liquid content and sludge obtained by secondary centrifugation.
[3] 使用済みスラリー力 水溶性クーラントを予め除去することは, [3] Used slurry force Removing water-soluble coolant in advance
使用済みスラリーを, 1次遠心分離することにより,砥粒が主成分の固形分を回収し, 1次遠心分離により得られる液分の少なくとも一部からなる試料力 蒸留により水溶 性クーラントを予め除去する工程を含む方法によって行われる請求項 1に記載の方 法。  The used slurry is subjected to primary centrifugation to recover the solids composed mainly of abrasive grains, and the water-soluble coolant is removed beforehand by sample force distillation consisting of at least part of the liquid obtained by primary centrifugation. The method according to claim 1, wherein the method is performed by a method comprising the steps of:
[4] 低沸点有機溶媒は,炭素数が 1〜6のアルコール又は炭素数が 3〜6のケトンからな る請求項 1に記載の方法。  [4] The method according to claim 1, wherein the low boiling point organic solvent comprises an alcohol having 1 to 6 carbon atoms or a ketone having 3 to 6 carbon atoms.
[5] 低沸点有機溶媒は,メタノール,エタノール,イソプロピルアルコール又はアセトンか らなる請求項 1に記載の方法。 5. The method according to claim 1, wherein the low-boiling organic solvent comprises methanol, ethanol, isopropyl alcohol, or acetone.
[6] 低沸点有機溶媒は,水溶性クーラントよりも,沸点が 50°C以上低い請求項 1に記載 の方法。 [6] The method according to claim 1, wherein the low boiling point organic solvent has a boiling point of 50 ° C or more lower than that of the water-soluble coolant.
[7] 濾過の後,抽出に用いた低沸点有機溶媒と同一又は異なる種類の低沸点有機溶媒 で,濾過により得られる固形分を洗浄する工程を備える請求項 1に記載の方法。 7. The method according to claim 1, further comprising the step of washing the solid content obtained by filtration with a low-boiling organic solvent of the same type or different from the low-boiling organic solvent used for extraction after the filtration.
[8] 洗浄は,洗浄後の液分の透明度が基準以下になるまで繰り返される請求項 7記載の 方法。 [8] The method according to claim 7, wherein the washing is repeated until the transparency of the liquid after washing is below a reference value.
[9] 残留する水溶性クーラントの抽出の前に又は抽出の際に,固形分を粉砕する工程を さらに備える請求項 1に記載の方法。  [9] The method according to claim 1, further comprising a step of pulverizing the solid content before or during the extraction of the remaining water-soluble coolant.
[10] 濾過により得られる液分を蒸留することによって低沸点有機溶媒を回収する工程をさ らに備える請求項 1に記載の方法。 [10] The method according to claim 1, further comprising a step of recovering the low-boiling organic solvent by distilling the liquid obtained by filtration.
PCT/JP2007/054198 2006-03-17 2007-03-05 Method of recovering silicon-containing material WO2007119308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-075164 2006-03-17
JP2006075164A JP2007246366A (en) 2006-03-17 2006-03-17 Method for recovering silicon-containing material

Publications (1)

Publication Number Publication Date
WO2007119308A1 true WO2007119308A1 (en) 2007-10-25

Family

ID=38591046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054198 WO2007119308A1 (en) 2006-03-17 2007-03-05 Method of recovering silicon-containing material

Country Status (3)

Country Link
JP (1) JP2007246366A (en)
TW (1) TW200804181A (en)
WO (1) WO2007119308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001961A1 (en) * 2008-07-02 2010-01-07 シャープ株式会社 Method of regenerating coolant and method of regenerating slurry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399125B2 (en) * 2009-04-27 2014-01-29 株式会社Ihi回転機械 Coolant management method and apparatus for wire saw
CN101786692B (en) * 2010-03-22 2012-07-25 浙江矽盛电子有限公司 Method for recycling mortar used in silicon wafer incision process
JP5722601B2 (en) * 2010-11-30 2015-05-20 サンワバイオテック株式会社 Silicon cutting waste treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2002293528A (en) * 2001-03-30 2002-10-09 Sharp Corp Production method of silicon for solar cell
JP2005330149A (en) * 2004-05-19 2005-12-02 Sharp Corp Method for producing halosilane and method for purifying solid portion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278612A (en) * 2000-03-31 2001-10-10 Nippei Toyama Corp Method of recovering silicon
JP2002293528A (en) * 2001-03-30 2002-10-09 Sharp Corp Production method of silicon for solar cell
JP2005330149A (en) * 2004-05-19 2005-12-02 Sharp Corp Method for producing halosilane and method for purifying solid portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001961A1 (en) * 2008-07-02 2010-01-07 シャープ株式会社 Method of regenerating coolant and method of regenerating slurry

Also Published As

Publication number Publication date
TW200804181A (en) 2008-01-16
JP2007246366A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
WO2007108308A1 (en) Method of recovering silicon-containing material
JP4369095B2 (en) Slurry regeneration method
CN101528597B (en) Silicon reclamation apparatus and method of reclaiming silicon
TW445200B (en) Method for treating exhausted slurry utilized in slicing silicon wafers from silicon ingot
JP2011516290A (en) Method and apparatus for recovery of silicon and silicon carbide from spent wafer sawing slurry
JP5722601B2 (en) Silicon cutting waste treatment method
JP2001278612A (en) Method of recovering silicon
WO2010150460A1 (en) Ingot cutting method reusing waste sludge and system using same
WO2009084068A1 (en) Process for separating and recovering the suspending fluids contained in exhausted slurries from the machining of silicon
JP4520331B2 (en) Method for producing hydrogen gas
KR101179521B1 (en) The method and device for the recycling of waste silicon wafer sludge
JP4966938B2 (en) Silicon regeneration method
WO2007119308A1 (en) Method of recovering silicon-containing material
Hecini et al. Recovery of cutting fluids used in polycrystalline silicon ingot slicing
JP5244500B2 (en) Silicon purification method and silicon purification apparatus
KR100542208B1 (en) System for recycling waste sludge of semiconductor wafer
CN106241794B (en) It is a kind of that the method and product that diamond is reclaimed in slug are ground from sapphire
NO318474B1 (en) Process for separating a machining suspension into fractions
JP2009084069A (en) Apparatus and method for regenerating silicon
JP5286095B2 (en) Silicon sludge recovery method and silicon processing apparatus
JP4414364B2 (en) Method for recovering silicon-containing material
CN106966396A (en) A kind of heavy-fluid and silicon and the separation method of carborundum for divided silicon and carborundum
KR101111649B1 (en) Reclaiming process of abrasive and reclaimed abrasive
KR101070226B1 (en) Specific-gravity difference separation of silicon using the modified heavy liquid
WO2018016297A1 (en) Grinding fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07715216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715216

Country of ref document: EP

Kind code of ref document: A1