WO2010000122A1 - 双通道声表面波滤波器 - Google Patents

双通道声表面波滤波器 Download PDF

Info

Publication number
WO2010000122A1
WO2010000122A1 PCT/CN2008/073708 CN2008073708W WO2010000122A1 WO 2010000122 A1 WO2010000122 A1 WO 2010000122A1 CN 2008073708 W CN2008073708 W CN 2008073708W WO 2010000122 A1 WO2010000122 A1 WO 2010000122A1
Authority
WO
WIPO (PCT)
Prior art keywords
interdigital
acoustic wave
surface acoustic
finger
transducer
Prior art date
Application number
PCT/CN2008/073708
Other languages
English (en)
French (fr)
Inventor
倪山林
王为标
Original Assignee
无锡市好达电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡市好达电子有限公司 filed Critical 无锡市好达电子有限公司
Priority to US12/599,299 priority Critical patent/US8232852B2/en
Publication of WO2010000122A1 publication Critical patent/WO2010000122A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02779Continuous surface reflective arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14591Vertically-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6426Combinations of the characteristics of different transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2250/00Indexing scheme relating to dual- or multi-band filters

Definitions

  • the present invention relates to a band pass filter, and in particular to a surface acoustic wave band pass filter integrated on a piezoelectric crystal material. Background technique
  • the surface acoustic wave filter has the characteristics of a band pass filter.
  • the surface-wave filter of the surface acoustic wave filter is realized based on the surface acoustic wave formed in the above lattice.
  • the basic structure of the surface acoustic wave filter is to fabricate two on a polishing surface of a substrate material having piezoelectric characteristics (for example, a lithium niobate single crystal material).
  • the cross-paired comb-shaped aluminum electrode structure is formed by photolithography, and an electrical signal transmitted on the comb electrode structure is applied to the fork of the two comb electrodes
  • the surface acoustic wave is formed between the fingers, so the comb electrode structure functions as an electroacoustic transducer, which is called an interdigital transducer.
  • the excitation regions of the transducers are formed between the fingers of the two comb electrodes, and the comb portion of the two comb electrodes connected to the interdigitated fingers is called a bus bar, and the signal voltage is applied to the two bus bars of the interdigitated comb electrodes.
  • the interdigital transducer is further divided into an input transducer and an output transducer: the input transducer converts the electrical signal into a surface acoustic wave signal, propagates along the surface of the crystal, and the output transducer then receives the surface acoustic wave signal. Converted to electrical signal output.
  • the input transducer and the output transducer constitute a transmission channel of a surface acoustic wave, and the transmission channel has different transmission characteristics or bandpass characteristics for the surface acoustic wave according to different weighting structures of the interdigital transducer.
  • a two-channel surface acoustic wave filter similar to the present invention has a US patent: Patent No. 5107234 (Aug. 21, 1992), and the invention name is "SURFACE-WAVE FILTER WITH SELECTIVELY CONNECTABLE TRACKS TO PROVEDE A VARIABLE TRANSMISSION BAND"(; transmission Surface acoustic wave filter with variable passband and selectable channels;).
  • the invention is based on the design of a surface acoustic wave filter with a switch to replace multiple filters with different bandwidths and separate packages to reduce cost.
  • Transmission Channel A channel is connected, and the different transmission passbands of the surface acoustic wave filter are selected by connecting or not connecting another channel, thus forming a surface acoustic wave filter of a variable transmission passband. Since the surface acoustic wave transmission channel is composed of independent parallel input transducers and output transducers, the surface acoustic wave filter has a larger chip area and consumes more substrate material. Summary of the invention:
  • the present invention is directed to the above-described shortcomings of the conventional two-channel surface acoustic wave filter, and provides a dual-channel surface acoustic wave filter of another structure, which can effectively reduce the chip area.
  • the technical solution of the present invention is as follows:
  • a two-channel surface acoustic wave filter comprising two input terminal interdigital transducers integrated on a piezoelectric crystal piece, an output terminal interdigital transducer, and a shielding strip therebetween, the two input terminal fingers
  • the transducers share an output terminal interdigital transducer;
  • the two input end interdigital transducers share a comb electrode, and the central portion of the common comb electrode is provided with a bus bar;
  • the energy director is two parallel finger-weighted interdigital transducers, and the main lobe regions of the tangent envelopes on the two finger-weighted interdigital transducers are staggered and arranged in a mutually overlapping manner. position.
  • the above-mentioned shared output terminal interdigital transducer is an equal finger long interdigital transducer.
  • bus bar segments on the common comb electrodes are formed, and the segments of the bus bars are respectively connected to the interdigital fingers on the two finger-weighted interdigital transducers.
  • the present invention integrates and implements a dual channel filter function on the same chip within a standard package housing. Since two parallel finger-weighted interdigital transducers share a comb electrode and a bus bar thereon, the main lobe regions of the tangent envelopes on the two finger-weighted transducers are staggered and arranged in mutual The position of the cross stacking is such that the chip area occupied by the present invention can be effectively reduced, the substrate material is consumed less, and the volume of the package casing is reduced, thereby effectively reducing the manufacturing cost.
  • Figure 1 is a schematic view showing a structural embodiment of the present invention
  • Figure 2 is a schematic diagram of the functional structure of Figure 1;
  • FIG. 3 is a schematic diagram of the weighted envelope structure of the finger on the input finger of the input end of FIG. 1;
  • FIG. 4 is a schematic diagram of the finger-weighting method of the input end interdigital transducer of FIG. 1;
  • FIG 5 is a spectrum diagram of the structural embodiment of Figure 1; detailed description
  • the present invention comprises integrated interdigital transducers 2, 5 and output interdigital transducers 11 integrated into the piezoelectric crystal piece 7, and a shielding strip 17 therebetween.
  • the two surface acoustic wave transmission channels A, B, the two surface acoustic wave transmission channels, the B input transducer fingers 2, 5 share an output terminal interdigital transducer 11, the sharing
  • the output end interdigital transducer 11 is an equal finger interdigital transducer.
  • the two surface acoustic wave transmission channels A and B formed as described above constitute two surface acoustic wave transverse filters. Sharing an output interdigital transducer 11 allows the output impedances of the two filters to be identical for easy circuit matching.
  • the input end interdigital transducer 2, 5 converts electrical energy into surface acoustic wave mechanical energy; the output end interdigital transducer 11 instead, converts the surface acoustic wave mechanical energy into electrical energy, thus completing the filtering and transmission of the signal.
  • the input end of the two surface acoustic wave transmission channels means that the transducers share a comb electrode 3, and the central portion of the common comb electrode 3 is provided with a bus bar 4.
  • the bus bars 4 on the common comb electrodes 3 are formed in segments, and the segments of the bus bars 4 are respectively connected to the interdigitated fingers on the two finger-weighted interdigital transducers 2, 5.
  • the input ends of the two surface acoustic wave transmission channels are interdigital transducers 2, 5 being two parallel finger-weighted interdigital transducers.
  • the main lobe regions 10 and 14 formed by the tangent envelopes 8, 9 and 15, 16 on the two finger-weighted interdigital transducers are staggered and placed in a mutually overlapping position. .
  • the chip width of the two-channel surface acoustic wave filter is significantly narrowed.
  • bus bars 1, 4, 6, 12, 13 are respectively electrical connection ports, and the power receiving ports are respectively connected to the lead legs of the package casing through the pressing wires, and each input or output interdigital finger is transposed.
  • the input terminals are connected to the electrical ports 1, 4, and 6 to select different power-on modes.
  • the two-channel surface acoustic wave filters have different electrical properties, for example, different center frequencies, bandwidths, rectangular factors, and out-of-band rejection. As shown in Figure 5.
  • the interdigital transducer can excite the surface acoustic wave; and when the two reflow strips of the input interdigital transducer have the same potential , the surface acoustic wave cannot be excited.
  • Figure 1, Figure 2, Figure 3 when the power port 1 and port 4 are connected to different potentials, and the port 4 and the port 6 have the same potential, the input terminal interdigital transducer 2 operates, and the interdigital transducer 5 Not working.
  • the interdigital transducer 2 does not work, and the interdigital transducer 5 operates.
  • the interdigital transducers 2, 5 work simultaneously, as shown in Figure 5.
  • the output end interdigital transducer 11 of the embodiment shown in Figures 1 and 3 is an equal finger interdigital transducer, and the bus bar 4 on the common comb electrode 3 is composed of segments, each segment of the bus bar 4 Connect the two separately An interdigitated finger on a finger-weighted interdigital transducer.
  • FIG. 3 is a schematic diagram of the weighted envelope structure of the finger on the input finger of the input end of FIG. 1 . See Figure 3.
  • the input interdigital transducer obtains the desired frequency characteristics by varying the weight of the interdigital length.
  • 15 and 16 are envelopes formed by the input end interdigital transducer 2 after weighted by the fingers
  • 8 and 9 are envelopes formed by the input end interdigital transducer 5 after being weighted by the fingers.
  • the intersection of the interdigital fingers of the input interdigital transducers 2, 5 forms an excitation region of the interdigital transducer, i.e., the region enclosed by the finger enveloping envelopes 15, 16, and 8, 9 in FIG.
  • the output end interdigital transducer 11 is a long interdigital transducer, which means that the envelope is a straight line, and the surface acoustic wave received in the excitation region can be converted into electric energy.
  • Fig. 1 As a practical application of the embodiment of the present invention shown in Fig. 1, for example, it can be used as an IF filter with an acoustic surface wave digital or analog multi-format television receiver with a switch.
  • the surface acoustic wave filter switches between different transmission bandwidths according to a required standard by a switch.
  • the surface acoustic wave transmission channels A and B have different transmission bandwidths.
  • channel A is an image intermediate frequency filter of the PAL system
  • channel B is an internal carrier intermediate frequency filter of the N system.
  • the filter formed by the energy converter 2 and the output transducer 11 is a PAL image filter.
  • port 1 and port 4 input a high level at the same time, port 6 inputs a low level, channel A's interdigital transducer 2 does not work, channel B's interdigital transducer 5 operates, interdigital transducer 5 and output
  • the filter formed by the end transducer 11 is an N-carrier internal carrier filter.
  • input ports 1, 4, 6 can choose to input other different high and low level combinations, so that the interdigital transducers 2, 5 work separately, or work simultaneously to obtain surface acoustic wave filters with different output bandwidths.
  • FIG. 4 is a schematic diagram of the finger-weighting method of the input end interdigital transducer of FIG. 1.
  • the implementation method of the finger-weighting method of the input-end interdigital transducers 2 and 5 can be: Firstly, the finger-weighting of the two channels in the integrated dual-channel surface acoustic wave filter is separately designed according to a conventional method.
  • the interdigital transducers 2, 5 share a comb electrode 3, the central portion of the common comb electrode 3 is provided with a bus bar 4; in order to make the finger weighting package on the interdigital transducers 2, 5
  • the main lobe regions 10, 14 of the interconnect are staggered on the integrated chip and are placed in a mutually overlapping position, and the main lobe regions 10, 14 of the interdigital transducers 2, 5 are relatively displaced during design, for example,
  • the main lobe region 14 of one transducer 2 is moved to the left by several wavelengths while the main lobe region 10 of the second transducer 5 is moved to the right by several wavelengths, moving to two interdigital transducers 2 5, the main lobe areas 10, 14 are separated from each other at the position of the chip,
  • the energy collectors 2, 5 and their main lobe regions 10, 14 are stacked on the integrated chip.
  • the bus bars 4 on the common comb electrodes 3 can only be segmented, and the segments of the bus bar 4 are respectively connected to the above.
  • Two finger-weighted interdigital transducers 2, 5 interdigitated fingers.
  • the distance L in Fig. 4 is the size of the interdigital transducers 2, 5 which are narrowed on the integrated chip after being stacked.
  • the length is the same as the design length of the present invention to ensure a sufficiently long impulse response.
  • the impulse response of the interdigital transducers 2, 5 is changed, resulting in a change in the performance of the surface acoustic wave filter.
  • the interdigital transducer 2 can be conventionally applied. 5 finger weighting (cutting refers to the envelope shape) to make corresponding compensation.
  • the length and center of the receiving transducer also change.
  • the finger length and the center (the shape of the envelope) of the receiving transducer 11 can also be compensated according to the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

双通道声表面波滤波器
技术领域
本发明涉及带通滤波器, 具体涉及集成于压电晶体材料上的声表面波带 通滤波器。 背景技术
当电压加载在具有压电特性的基片材料 (例如铌酸锂单晶材料) 的电极 上, 会在压电晶体材料的晶格中形成机械畸变。 当加载在压电晶体材料电极 上的电压为输入的电信号, 那么会在压电晶体材料表面的晶格中形成声表面 波, 该声表面波是一种在压电晶体材料表面传播、 振幅随深入基片材料深度 的增加而迅速减少的弹性机械波。
声表面波滤波器具有带通滤波器的特性。 声表面波滤波器带通滤波功能 的实现便是基于上述晶格中形成的声表面波。 声表面波滤波器的基本结构是 在具有压电特性的基片材料 (例如铌酸锂单晶材料) 的抛光面上制作两个约
Ο. ΐμηι厚的铝膜, 在该铝膜层上通过光刻工艺形成交叉成对的梳状铝电极结 构, 在该梳状电极结构上施加传输的电信号, 便在两梳状电极的叉指间形成 声表面波, 因此该梳状电极结构起着电声换能器的作用, 称其为叉指换能器。 两梳状电极的叉指间形成换能器的激励区域, 两梳状电极的连接各叉指指条 的梳柄部分称为汇流条, 信号电压施加于交叉梳状电极的两汇流条上。 叉指 换能器又分为输入换能器及输出换能器: 输入换能器将电信号转换成声表面 波信号, 沿晶体表面传播, 输出换能器再将接收到的声表面波信号转换成电 信号输出。 所述输入换能器与输出换能器构成声表面波的传输通道, 所述传 输通道根据叉指换能器的不同加权结构, 对声表面波具有不同的传输特性或 带通特性。
与本发明相近的双通道声表面波滤波器有美国专利: 专利号为 5107234 ( Apr.21, 1992 )、 发明名称为 《 SURFACE- WAVE FILTER WITH SELECTIVELY CONNECTABLE TRACKS TO PROVEDE A VARIABLE TRANSMISSION BAND》 (;传输通带可变以及可选择通道的声表面波滤波 器;)。该专利的发明点在于设计一个带开关的声表面波滤波器来替代原先具有 不同带宽及分别单独封装的多个滤波器, 以降低成本。 它由集成于同一芯片 上的至少两个完全平行布置的声表面波滤波器购成, 它们分别有各自完全独 立的输入换能器和输出换能器, 分别构成独立的平行布置的声表面波的传输 通道: 一个通道处于连接状态, 通过连接或者不连接另一个通道, 来选择声 表面波滤波器的不同的传输通带,如此构成可变传输通带的声表面波滤波器。 由于声表面波的传输通道由各自独立的平行布置的输入换能器和输出换能器 构成, 如此使得声表面波滤波器具有较大的芯片面积, 耗费基片材料较多。 发明内容:
本发明针对上述现有双通道声表面波滤波器的缺点, 提供另一种结构的 双通道声表面波滤波器, 其占用的芯片面积能有效减小。 本发明的技术方案 如下:
双通道声表面波滤波器, 包括集成于压电晶体片上的两个输入端叉指换 能器、 输出端叉指换能器以及两者之间的屏蔽条, 所述两个输入端叉指换能 器共用一个输出端叉指换能器; 所述两个输入端叉指换能器共用一个梳状电 极, 共用梳状电极上的中部设置汇流条; 所述两个输入端叉指换能器为两个 并列的切指加权的叉指换能器, 所述两个切指加权的叉指换能器上的切指包 络线的主瓣区域错开排列, 处于相互交叉叠放的位置。
上述共用的输出端叉指换能器为等指长叉指换能器。
上述共用梳状电极上的汇流条分段构成, 所述汇流条的各分段分别连接 所述两个切指加权的叉指换能器上的叉指指条。
本发明在一个标准封装外壳内的同一个芯片上集成和实现双通道滤波器 功能。 由于两个并列的切指加权的叉指换能器共用一个梳状电极及其上的汇 流条, 两个切指加权换能器上的切指包络线的主瓣区域错开排列, 处于相互 交叉叠放的位置, 如此使得本发明占用的芯片面积能有效减小, 耗费基片材 料较少以及减小封装外壳的体积, 有效降低制造成本。 附图说明
图 1为本发明结构实施例的示意图;
图 2为图 1功能结构的示意图;
图 3为图 1输入端叉指换能器上切指加权包络线结构的示意图;
图 4为图 1输入端叉指换能器切指加权方法的示意图;
图 5为图 1结构实施例的频谱曲线图; 具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。
见图 1至图 3, 本发明包括集成于压电晶体片 7上的分别由输入端叉指 换能器 2、 5与输出端叉指换能器 11以及两者之间的屏蔽条 17构成的两个声 表面波的传输通道 A、 B, 所述两个声表面波的传输通道 、 B的输入端叉指 换能器 2、 5共用一个输出端叉指换能器 11, 所述共用的输出端叉指换能器 11为等指叉指换能器。 上述所构成的两个声表面波的传输通道 A、 B即构成 两个声表面波横向滤波器。共用一个输出端叉指换能器 11可以使两个滤波器 的输出阻抗完全相同, 便于进行电路匹配。 输入端叉指换能器 2、 5将电能转 变为声表面波机械能; 输出端叉指换能器 11相反, 将声表面波机械能转变为 电能, 如此完成信号的滤波和传输。 所述两个声表面波传输通道的输入端叉 指换能器共用一个梳状电极 3, 共用梳状电极 3上的中部设置汇流条 4。共用 梳状电极 3上的汇流条 4分段构成, 汇流条 4的各分段分别连接所述两个切 指加权的叉指换能器 2、 5上的叉指指条。所述两个声表面波的传输通道的输 入端叉指换能器 2、 5为两个并列的切指加权的叉指换能器。 见图 3, 与所述 两个切指加权的叉指换能器上的切指包络线 8、 9及 15、 16构成的主瓣区域 10及 14错开排列, 处于相互交叉叠放的位置。 从图 1可见, 如此使双通道 声表面波滤波器的芯片宽度明显变窄。
图 1、 图 3中汇流条 1、 4、 6、 12、 13分别为接电端口, 所述接电端口 分别通过压悍丝与封装外壳的引线脚连接, 每一个输入或输出叉指换能器分 别有两根汇流条。 输入端接电端口 1、 4、 6选择不同的接电方式, 双通道声 表面波滤波器对应有不同的电性能, 例如可以具有不同的中心频率、 带宽、 矩形因子、 带外抑制等性能, 如图 5所示。 当输入端叉指换能器的两根回流 条有不同的电位时, 该叉指换能器便能激发声表面波; 而当输入端叉指换能 器的两根回流条有相同电位时, 则不能激发声表面波。 例如图 1、 图 2、 图 3 中, 当接电端口 1和端口 4接入不同的电位, 端口 4与端口 6电位相同时, 输入端叉指换能器 2工作, 叉指换能器 5不工作。 当接电端口 1、 4的电位相 同, 而接电端口 4、 6 的电位不同时, 叉指换能器 2不工作, 叉指换能器 5 工作。 当接电端口 1、 4以及 4、 6的电位都不同时, 叉指换能器 2、 5同时工 作, 如图 5所示。
图 1、 图 3中所示实施例的输出端叉指换能器 11为等指叉指换能器, 共 用梳状电极 3上的汇流条 4由分段构成, 汇流条 4的各分段分别连接所述两 个切指加权的叉指换能器上的叉指指条。
图 3为图 1输入端叉指换能器上切指加权包络线结构的示意图。 见图 3, 输入端叉指换能器通过改变叉指长度的加权方法来获得所需的频率特性。 图 3中 15、 16是输入端叉指换能器 2经过切指加权后形成的包络线, 8、 9是输 入端叉指换能器 5 经过切指加权后形成的包络线。 输入端叉指换能器 2、 5 的叉指指条的交叉部分形成叉指换能器的激励区域, 即由图 3中切指包络线 15、 16及 8、 9所围成的区域, 在激励区域内电能转换为声表面波能, 其中 区域 14及 10分别为激励主瓣区域。输出端叉指换能器 11为等指长叉指换能 器, 其切指包络线为直线, 在其激励区域内接收的声表面波能转换为电能。
作为图 1所示本发明实施例的实际应用, 例如可以作为一带开关的声表 面波数字或者模拟多制式电视接收机的中频滤波器。 该声表面波滤波器通过 开关根据所需制式进行不同传输带宽间的切换。 声表面波的传输通道 A、 B 有不同的传输带宽。图 2所示实施例中通道 A为 PAL制式的图像中频滤波器, 通道 B为 N 制式的内载波中频滤波器。 当图 1或图 3中端口 1输入高电平, 端口 4及 6同时输入低电平时, 通道 A的叉指换能器 2工作, 通道 B的叉指 换能器 5 不工作, 叉指换能器 2与输出端换能器 11形成的滤波器为一 PAL 制式的图像滤波器。 当端口 1和端口 4同时输入高电平, 端口 6输入低电平 时, 通道 A的叉指换能器 2不工作, 通道 B的叉指换能器 5工作, 叉指换能 器 5与输出端换能器 11形成的滤波器为一 N制式的内载波滤波器。 同理, 输入端口 1, 4, 6可以选择输入其他不同的高低电平组合, 以使叉指换能器 2、 5分别工作, 或者同时工作, 以获得不同输出带宽的声表面波滤波器。
图 4为图 1输入端叉指换能器切指加权方法的示意图。 见图 4, 输入端 叉指换能器 2、 5指条的切指加权方法的实施方式可以为: 首先按常规方法分 别单独设计集成双通道声表面波滤波器中两个通道的切指加权的叉指换能器 2、 5 以及两者之间的屏蔽条, 两个叉指换能器 2、 5共用一个输出端叉指换 能器 11, 叉指换能器 2、 5在芯片上为并列布置; 叉指换能器 2、 5共用一个 梳状电极 3, 共用梳状电极 3上的中部设置汇流条 4; 为了使所述叉指换能器 2、 5上的切指加权包络线的主瓣区域 10、 14在集成芯片上错开排列以及处 于相互交叉叠放的位置, 设计时将叉指换能器 2、 5的主瓣区域 10、 14进行 相对位移, 例如, 将第一个换能器 2的主瓣区域 14向左移动几个波长, 同时 将第二个换能器 5的主瓣区域 10向右移动几个波长,移动至使得两个叉指换 能器 2、 5的主瓣区域 10、 14在芯片的位置上相互岔开, 如图 4所示; 再将 叉指换能器 2左边的一部分指条 18截断并舍弃,以及将叉指换能器 5右边的 一部分指条 19截断并舍弃; 将叉指换能器 2、 5相互靠拢, 使叉指换能器 2、 5及其主瓣区域 10、 14在集成芯片上交叉叠放, 此时共用梳状电极 3上的汇 流条 4只能分段构成, 汇流条 4的各分段分别连接所述两个切指加权的叉指 换能器 2、 5上的叉指指条。 图 4中距离 L即为叉指换能器 2、 5交叉叠放后 在集成芯片上变窄的尺寸。
设计时预先计算上述叉指换能器 2、 5的截断长度以及预先确定两叉指换 能器 2、 5的主瓣在集成芯片上的位置, 使截断后叉指换能器 2、 5的长度和 本发明的设计长度相同, 以保证足够长的脉冲响应。 截断后, 由于舍弃部分 指条, 致使叉指换能器 2、 5的脉冲响应发生改变, 导致声表面波滤波器的性 能改变, 在设计时可按按常规方法对叉指换能器 2、 5指条的切指加权(切指 包络线形态) 做出相应的补偿。
由于共用一个等指长接收换能器 11, 接收换能器的指长和中心也要发生 变化。 在设计时应根据滤波器的电性能指标, 可应用常规方法对接收换能器 11的指长和中心 (切指包络线形态) 也作出相应的补偿。

Claims

权 利 要 求 书
1.一种双通道声表面波滤波器, 包括集成于压电晶体片上的两个输入端 叉指换能器、 输出端叉指换能器以及两者之间的屏蔽条, 其特征在于: 所述 两个输入端叉指换能器共用一个输出端叉指换能器; 所述两个输入端叉指换 能器共用一个梳状电极, 共用梳状电极上的中部设置汇流条; 所述两个输入 端叉指换能器为两个并列的切指加权的叉指换能器, 所述两个切指加权的叉 指换能器上的切指包络线的主瓣区域错开排列, 处于相互交叉叠放的位置。
2. 按照权利要求 1所述的双通道声表面波滤波器, 其特征在于所述共用 的输出端叉指换能器为等指叉指换能器。
3. 按照权利要求 1所述的双通道声表面波滤波器, 其特征在于所述共用 梳状电极上的汇流条分段构成, 所述汇流条的各分段分别连接所述两个切指 加权的叉指换能器上的叉指指条。
PCT/CN2008/073708 2008-07-04 2008-12-24 双通道声表面波滤波器 WO2010000122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/599,299 US8232852B2 (en) 2008-07-04 2008-12-24 Dual-track surface-wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101242178A CN101316099B (zh) 2008-07-04 2008-07-04 双通道声表面波滤波器
CN200810124217.8 2008-07-04

Publications (1)

Publication Number Publication Date
WO2010000122A1 true WO2010000122A1 (zh) 2010-01-07

Family

ID=40106970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073708 WO2010000122A1 (zh) 2008-07-04 2008-12-24 双通道声表面波滤波器

Country Status (3)

Country Link
US (1) US8232852B2 (zh)
CN (1) CN101316099B (zh)
WO (1) WO2010000122A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316099B (zh) 2008-07-04 2010-06-16 无锡市好达电子有限公司 双通道声表面波滤波器
CN101656524B (zh) * 2009-09-15 2012-04-18 无锡市好达电子有限公司 三通道声表面波滤波器
CN101888221B (zh) * 2010-07-02 2012-11-21 无锡市好达电子有限公司 多汇流条声表面波滤波器
CN102882490A (zh) * 2012-10-11 2013-01-16 无锡市好达电子有限公司 声表面波滤波器的双通道隔离线
CN110649908A (zh) * 2019-08-05 2020-01-03 北京中讯四方科技股份有限公司 温度补偿声表波滤波器及其制备方法与应用
US11621695B2 (en) * 2020-10-02 2023-04-04 RF360 Europe GmbH Cascaded surface acoustic wave devices with apodized interdigital transducers
CN112564660A (zh) * 2020-12-09 2021-03-26 北京中科飞鸿科技股份有限公司 一种抑制声表面波滤波器杂波的加工方法
CN113210240B (zh) * 2021-03-23 2022-09-06 魔音智芯科技(深圳)有限公司 一种双面叉指换能器的兰姆波器件及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126309A (en) * 1980-03-10 1981-10-03 Nec Corp Elastic surface wave filter
JPS59123305A (ja) * 1982-12-29 1984-07-17 Murata Mfg Co Ltd 弾性表面波フイルタ
JPH02189015A (ja) * 1989-01-17 1990-07-25 Clarion Co Ltd 弾性表面波装置
JPH04298111A (ja) * 1991-03-27 1992-10-21 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ
US5309057A (en) * 1991-08-19 1994-05-03 Nec Corporation Weighted transducer for surface acoustic wave filter
JPH10178332A (ja) * 1996-12-17 1998-06-30 Canon Inc マッチドフィルタ及びそれを用いた受信装置とスペクトル拡散通信装置
JP2005176338A (ja) * 2003-11-18 2005-06-30 Fujitsu Media Device Kk 弾性表面波デバイス
EP1655837A2 (de) * 2004-11-09 2006-05-10 Epcos Ag Umschaltbares SAW Filter, Filter-Vorrichtung mit dem SAW Filter und Verfahren zum Betreiben des SAW Filters
CN101316099A (zh) * 2008-07-04 2008-12-03 无锡市好达电子有限公司 双通道声表面波滤波器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561126A (en) * 1978-11-01 1980-05-08 Hitachi Ltd Elastic surface wave device
JPS58200618A (ja) * 1982-05-19 1983-11-22 Hitachi Ltd 弾性表面波装置
US4604595A (en) * 1982-06-16 1986-08-05 Murata Manufacturing Co., Ltd. Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response
ATE85870T1 (de) * 1988-11-11 1993-03-15 Siemens Ag Oberflaechenwellenfilter mit aenderbarem durchlassbereich.
US5365138A (en) * 1993-12-02 1994-11-15 Northern Telecom Limited Double mode surface wave resonators
TW256966B (zh) * 1994-03-04 1995-09-11 Murata Manufacturing Co
DE19512251C2 (de) * 1995-03-31 1997-04-03 Siemens Ag Interdigitalwandler für ein Oberflächenfilter
CN2323517Y (zh) * 1997-12-31 1999-06-09 中国科学院声学研究所 甚高频高段射频声表面波滤波器
JP4120549B2 (ja) * 2003-01-09 2008-07-16 株式会社村田製作所 弾性表面波フィルタ
SG112100A1 (en) * 2003-11-18 2005-06-29 Fujitsu Media Devices Ltd Surface acoustic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126309A (en) * 1980-03-10 1981-10-03 Nec Corp Elastic surface wave filter
JPS59123305A (ja) * 1982-12-29 1984-07-17 Murata Mfg Co Ltd 弾性表面波フイルタ
JPH02189015A (ja) * 1989-01-17 1990-07-25 Clarion Co Ltd 弾性表面波装置
JPH04298111A (ja) * 1991-03-27 1992-10-21 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ
US5309057A (en) * 1991-08-19 1994-05-03 Nec Corporation Weighted transducer for surface acoustic wave filter
JPH10178332A (ja) * 1996-12-17 1998-06-30 Canon Inc マッチドフィルタ及びそれを用いた受信装置とスペクトル拡散通信装置
JP2005176338A (ja) * 2003-11-18 2005-06-30 Fujitsu Media Device Kk 弾性表面波デバイス
EP1655837A2 (de) * 2004-11-09 2006-05-10 Epcos Ag Umschaltbares SAW Filter, Filter-Vorrichtung mit dem SAW Filter und Verfahren zum Betreiben des SAW Filters
CN101316099A (zh) * 2008-07-04 2008-12-03 无锡市好达电子有限公司 双通道声表面波滤波器

Also Published As

Publication number Publication date
US8232852B2 (en) 2012-07-31
CN101316099A (zh) 2008-12-03
US20110260805A1 (en) 2011-10-27
CN101316099B (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
JP3244386B2 (ja) 弾性表面波装置
WO2010000122A1 (zh) 双通道声表面波滤波器
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
US7564174B2 (en) Acoustic wave device and filter
WO2018003297A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JPH06260876A (ja) 弾性表面波フィルタ
CN109286384A (zh) 多工器、高频前端电路以及通信装置
JP4809448B2 (ja) デュプレクサ
WO2007049754A1 (ja) 弾性表面波装置および通信装置
WO2005031971A1 (ja) 弾性表面波フィルタ及び通信機
WO2019131533A1 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
JPH01208010A (ja) モノリシツクな格子型弾性表面波フイルタ
JPWO2019138811A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP5194032B2 (ja) 表面弾性波フィルタ
CN110419162A (zh) 提取器
WO2021085609A1 (ja) 弾性波フィルタ
CN101355348B (zh) 开关切换型双通道声表面波滤波器
US8222973B2 (en) Elastic wave resonator, ladder filter and duplexer
WO2018117060A1 (ja) 弾性波共振器、フィルタ装置およびマルチプレクサ
CN201263139Y (zh) 双通道声表面波滤波器
CN201490985U (zh) 三通道声表面波滤波器
JP4053038B2 (ja) 弾性表面波装置
JP3425394B2 (ja) 弾性表面波共振子および弾性表面波フィルタ
JP2002064358A (ja) 複合弾性表面波フィルタ
WO2018117059A1 (ja) 弾性波共振器、フィルタ装置およびマルチプレクサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12599299

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874854

Country of ref document: EP

Kind code of ref document: A1