WO2009157523A1 - 無線通信装置及び無線通信方法 - Google Patents

無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2009157523A1
WO2009157523A1 PCT/JP2009/061656 JP2009061656W WO2009157523A1 WO 2009157523 A1 WO2009157523 A1 WO 2009157523A1 JP 2009061656 W JP2009061656 W JP 2009061656W WO 2009157523 A1 WO2009157523 A1 WO 2009157523A1
Authority
WO
WIPO (PCT)
Prior art keywords
state information
channel state
wireless communication
transmission weight
channel
Prior art date
Application number
PCT/JP2009/061656
Other languages
English (en)
French (fr)
Inventor
琢 中山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/001,269 priority Critical patent/US20110176630A1/en
Priority to JP2010518060A priority patent/JPWO2009157523A1/ja
Priority to KR1020107028842A priority patent/KR20110016948A/ko
Publication of WO2009157523A1 publication Critical patent/WO2009157523A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method.
  • MIMO Multi-Input Multi-Output
  • CSI Channel State Information
  • the receiving terminal determines the CSI k for the k-th subcarrier (channel) from the relationship between the dedicated reference signal (x i ) transmitted by the transmitting terminal at a fixed period and the received signal (y j, i ) at the receiving terminal. It can be measured as shown in Equation 1.
  • TxAnt represents the number of antennas of the transmitting terminal
  • RxAnt represents the number of antennas of the receiving terminal
  • CSI k is represented as a complex matrix having a dimension of RxAnt ⁇ TxAnt.
  • the subcarrier into which the reference signal is inserted is often different for each transmission antenna so that the receiving terminal can separate the received signal.
  • the reception signal and the reference signal are expressed as being obtained for each antenna independently for all subcarriers.
  • the transmission terminal and the reception terminal hold information on transmission weights that are common in advance, and the reception terminal feeds back only the transmission weight index information (identification information) according to CSI to the transmission terminal. (In other words, only the number of transmission weights to be used is notified), so that feedback information is greatly reduced. Also, by applying one transmission weight to a plurality of subcarriers collectively, it is possible to reduce the transmission weight index itself to be fed back, and to further reduce feedback information.
  • the transmission weight information is shared as PM (Precoding Matrix) between the transmission terminal and the reception terminal.
  • PM Precoding Matrix
  • a plurality of PMs are defined according to the number of antennas.
  • the receiving terminal selects an appropriate PM according to the CSI, and feeds back a PMI (Precoding Matrix Index) that is an identification number of the PM to the transmitting terminal.
  • PMI Precoding Matrix Index
  • the frequency band used for communication is divided into 8 subbands, each subband is divided into 8 tiles, and each tile has 16 pieces.
  • Subcarriers are divided into subcarriers (Subcarriers).
  • the receiving terminal calculates an average value (CSI Ave ) of CSI in units of subbands or tiles according to Equation 2.
  • N CSI represents the number of subcarriers included in the subband.
  • N CSI is 128 (8 ⁇ 16).
  • N CSI is 16.
  • the receiving terminal selects the PM most suitable for the CSI average value, and feeds back the PMI corresponding to the PM to the transmitting terminal.
  • FIG. 6 shows feedback feedback MIMO when averaging CSI required for PMI selection is performed in units of subbands, in units of tiles, and when transmission weight control is not performed by PMI selection. It is a figure which shows the change of frequency utilization efficiency [bps / Hz]. As shown in FIG. 6, when the SNR (Signal to Noise Ratio) of the transmission signal is the same, it is shown that the communication characteristics are improved by controlling the transmission weight. Furthermore, it has been shown that the communication characteristics are further improved when PMI selection is performed in finer units (that is, tile units rather than subband units).
  • SNR Signal to Noise Ratio
  • the receiving terminal uses each of the subcarriers (channels) in a range in which a common transmission weight (PM) is applied (hereinafter referred to as “transmission weight application range”).
  • a transmission weight index (PMI) to be fed back to the transmitting terminal is selected based on a simple average value of CSI of each subcarrier. Therefore, a transmission weight having the greatest common divisor that is not optimal for any subcarrier is selected. With such a greatest common divisor transmission weight, the phases of a plurality of corresponding subcarriers rotate with each other and cancel signals on the complex plane, thereby degrading the MIMO communication characteristics when using transmission weights.
  • radio communication quality varies greatly from frequency to frequency, such as in a multipath fading environment, it is expected that the radio communication quality of each of the 128/16 subcarriers included in each subband / tile is greatly different. .
  • an object of the present invention made in view of the above-described problems is to provide a wireless communication apparatus and a wireless communication method that prevent deterioration of communication characteristics due to the greatest common divisor transmission weight and improve communication characteristics in feedback MIMO. It is.
  • the wireless communication device of the present invention is A wireless communication device having a plurality of antennas, A receiving unit that receives a signal of a channel belonging to a predetermined frequency band from another wireless communication device, and acquires channel state information of the channel; An average value of the channel state information is calculated; Among the channels, the channel state information is extracted a channel that is equal to or greater than a threshold according to the average value, A channel state information calculation unit that calculates representative channel state information of the entire predetermined frequency band from the channel state information of the extracted channel; A transmission weight selection unit that selects a transmission weight based on the calculated representative channel state information; A transmission unit that transmits the identification information of the transmission weight to the other wireless communication device; It is characterized by providing.
  • the channel state information calculation unit calculates an average value of the extracted channel state information of the channel as representative channel state information of the entire predetermined frequency band.
  • the transmission weight selection unit stores a correspondence between the channel state information and the transmission weight, and selects the stored transmission weight corresponding to the representative channel state information.
  • the wireless communication method of the present invention includes: A wireless communication method of a wireless communication device having a plurality of antennas, Receiving a signal of a channel belonging to a predetermined frequency band from another wireless communication device, and acquiring channel state information of the channel; Calculating an average value of the channel state information; Extracting a channel in which the channel state information is equal to or greater than a threshold value corresponding to the average value, among the channels; A calculation step of calculating representative channel state information of the entire predetermined frequency band from the channel state information of the extracted channel; Selecting a transmission weight based on the calculated representative channel state information; Transmitting the transmission weight identification information to the other wireless communication device; It is characterized by having.
  • an average value of the channel state information of the extracted channels is calculated as representative channel state information of the entire predetermined frequency band.
  • the transmission weight corresponding to the representative channel state information is selected from the correspondence between the channel state information stored in advance and the transmission weight.
  • the CSI of the subcarriers belonging to the transmission weight application range is not simply obtained by averaging, but the channel capacity of the subcarriers belonging to the transmission weight application range is the largest. It focuses on specific subcarrier areas that are expected to grow. Then, by performing processing for calculating CSI with high accuracy with respect to the subcarriers in the specific region, a transmission weight that further increases the channel capacity is selected for the entire applicable transmission weight application range. Therefore, the influence of subcarriers whose channel capacity is limited as a propagation path is reduced, and further, the phenomenon that the phases are reversed and cancel each other to deteriorate the CSI accuracy is reduced, and the subcarriers with sufficient power are available. By selecting a transmission weight that has a strong influence on the carrier region, it is possible to improve communication characteristics in feedback MIMO.
  • the average power is not constant. Basically, it uses the feature (diversity effect) that the error correction effect is demonstrated in the data series in which the good and bad parts stand out compared to the data series of uniform quality as a whole. is there.
  • FIG. 1 It is a figure which shows schematic structure of the communication network which can use the communication terminal which concerns on one embodiment of this invention. It is a figure which shows the structure of the communication terminal which concerns on one embodiment of this invention. It is a functional block diagram which shows schematic structure of the CSI calculation part shown in FIG. It is a flowchart of operation
  • FIG. 1 is a diagram showing a schematic configuration of a communication network that can be used by a communication terminal 1 according to an embodiment of the present invention.
  • a communication terminal 1 performs MIMO communication with a base station 2 using a plurality of antennas.
  • the communication terminal 1 acquires CSI for each subcarrier from the reference signal transmitted by the base station 2.
  • the communication terminal 1 selects a transmission weight (PM) to be used by the base station 2 and feeds back a transmission weight index corresponding to the transmission weight to the base station 2.
  • the base station 2 selects a transmission weight according to the transmission weight index and performs feedback MIMO control.
  • FIG. 2 is a diagram showing a configuration of the communication terminal 1 according to the embodiment of the present invention.
  • the communication terminal 1 includes, for example, a mobile phone, a notebook computer, or a PDA (personal digital assistant) provided with a MIMO communication interface.
  • the communication terminal 1 receives a signal from the base station 2 and acquires a CSI of a subcarrier, and a CSI calculator (channel state) that acquires CSI information from the receiver 10 and performs a predetermined calculation related to CSI.
  • CSI calculator channel state
  • transmission weight selection unit 30 that selects a transmission weight index of transmission weight to be fed back to base station 2 based on the results of CSI calculation unit 20, and transmission weight index selected by transmission weight selection unit 30
  • a transmission unit 40 that transmits to the base station 2 at the same time as communication data and the like.
  • the receiving unit 10 and the transmitting unit 40 are composed of interface devices compatible with feedback MIMO, for example.
  • the receiving unit 10 and the transmitting unit 40 are normal functions required for wireless communication, such as signal modulation / demodulation, error correction decoding / coding, PS / SP conversion, and channel estimation necessary for wireless signal transmission / reception.
  • the CSI calculation unit 20 and the transmission weight selection unit 30 are configured by any suitable processor such as a CPU (Central Processing Unit), for example, and each function of the CSI calculation unit 20 and the transmission weight selection unit 30 is It can be configured by software executed on the processor or a dedicated processor specialized in processing of each function (for example, DSP (digital signal processor)).
  • DSP digital signal processor
  • FIG. 3 is a functional block diagram showing a schematic configuration of the CSI calculation unit 20 shown in FIG.
  • the CSI calculation unit 20 includes a CSI average power calculation unit 21 that calculates the average power of CSI belonging to the transmission weight application range, and a corresponding CSI selection unit that selects a predetermined subcarrier based on the calculation result of the CSI average power calculation unit 21 22 and a representative CSI calculator 23 that calculates a representative CSI of the entire transmission weight application range from the CSI of the subcarrier selected by the corresponding CSI selector 22.
  • FIG. 4 is a flowchart of the operation of the communication terminal according to the embodiment of the present invention. The operation of each functional block of the communication terminal 1 will be described in detail with reference to the flowchart.
  • the CSI calculation unit 20 acquires the CSI of the subcarriers belonging to the transmission weight application range from the reception unit 10 (S001).
  • the CSI average power calculation unit 21 calculates the average power (Pow Ave ) of CSI belonging to the transmission weight application range by Equation 3 (S002).
  • the corresponding CSI selection unit 22 uses a determination criterion (threshold) set based on the average power calculated by the CSI average power calculation unit 21, and among the CSIs of subcarriers belonging to the transmission weight application range, CSI equal to or higher than the reference value Is extracted (S003).
  • the determination criterion is the CSI average power value of the transmission weight application range calculated by the CSI average power calculation unit 21 or the average power value is multiplied by a predetermined coefficient (for example, an average power value of 0. 0). 8 times, 1.2 times, 1/2, 1/3, etc.) and addition / subtraction (for example, +1, -0.5, etc. as an offset). If the determination criterion is set higher than the average power value, the extracted CSI is reduced, and if it is set lower than the average power value, the extracted CSI is increased.
  • the specific small area CSI calculating unit 27 calculates the average value (CSI Selected_Ave ) of the CSI (Selected_CSI) extracted by the corresponding CSI selecting unit 22 using Equation 4 (S004).
  • N Selected_CSI represents the number of CSI extracted by the corresponding CSI selection unit 22.
  • the average value of CSI is representative CSI (representative channel state information) of the entire transmission weight application range.
  • the transmission weight selection unit 30 selects a transmission weight based on the representative CSI (CSI w_Ave ) supplied from the representative CSI calculation unit 23 (S005). Note that a method of selecting a predetermined transmission weight from a certain CSI is well known to those skilled in the art, and details thereof will not be described.
  • the transmission weight selection unit 30 stores the correspondence between the CSI and the transmission weight in advance, and can select a transmission weight corresponding to the representative channel state information based on the correspondence.
  • the transmission weight selection unit 30 feeds back a transmission weight index corresponding to the selected transmission weight to the base station 2 through the transmission unit 40.
  • the base station 2 can improve the feedback MIMO communication characteristics by selecting a transmission weight using the transmission weight index.
  • subcarriers having large power values are reflected in the representative CSI, and transmission weights corresponding to those subcarriers are selected. Therefore, the influence of subcarriers that have a limited channel capacity as a propagation path is reduced, and further, the phenomenon that the CSI accuracy is deteriorated due to phase inversion and canceling each other is reduced, thereby improving communication characteristics in feedback MIMO. It becomes possible to do. With such a method, the corresponding transmission weight is not selected for subcarriers with originally low channel capacity, but the error correction technology included in the system is used for data arranged on such subcarriers. Can be restored.
  • power is used as the CSI quality, but other standards such as amplitude values may be used.
  • the receiving unit 10 detects the magnitude of the amplitude value
  • the CSI average power calculating unit 21 calculates the average amplitude of CSI of each subchannel
  • the corresponding CSI selecting unit 22 Extracts a CSI equal to or greater than a reference value set according to the average amplitude value
  • the representative CSI calculation unit can calculate the representative CSI from the extracted CSI.
  • CSI between antennas is simply discussed.
  • a power value as a system obtained by multiplying CSI by a transmission / reception weight may be used as a reference.
  • the UMB is assumed as a wireless communication method.
  • LTE Long Term Term Evolution
  • the frequency band used for communication is divided into 8 subbands, each subband is divided into 8 tiles, and each tile is further divided into 16 subcarriers.
  • the frequency band used for communication is divided into 9 subbands in some cases, and in this case, each subband is divided into 6 to 2 resource blocks (RBs).
  • each resource block is divided into 12 subcarriers.
  • each embodiment can be understood as an embodiment in the case where the description in each embodiment is applied to LTE by appropriately replacing a tile in UMB as an LTE resource block.
  • the number of subbands, resource blocks (tiles), and subcarriers needs to be appropriately replaced according to LTE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

 最大公約数的な送信ウェイトによる通信特性の劣化を防ぎ、フィードバックMIMOにおける通信特性を高める無線通信装置を提供する。  複数のアンテナを備えた無線通信装置であって、他の無線通信装置から受信した信号のチャンネルのチャンネル状態情報を取得する受信部と、前記チャンネル状態情報の平均値を算出し、前記チャンネルのうち、前記チャンネル状態情報が前記平均値に応じた閾値以上となるチャンネルを抽出し、抽出した前記チャンネルの前記チャンネル状態情報から、前記所定の周波数帯域全体の代表チャンネル状態情報を計算する、チャンネル状態情報計算部と、前記代表チャンネル状態情報に基づいて、送信ウェイトを選択する送信ウェイト選択部と、前記送信ウェイトの識別情報を前記他の無線通信装置に送信する送信部と、を備えることを特徴とする無線通信装置。

Description

無線通信装置及び無線通信方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2008-169617号(2008年6月27日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 この発明は、無線通信装置及び無線通信方法に関する。
 近年、無線通信システムでは、信号の送受信に複数のアンテナを用いることにより、通信容量の増大や通信品質の向上を図っている。このような複数アンテナを用いた送受信技術はMIMO(Multi-Input Multi-Output)と呼ばれている。特に、受信端末が、送信端末に対して、チャンネル状態情報である、CSI(Channel State Information:伝搬路情報)に関する何らかの情報をフィードバックすることにより、MIMOの通信特性をさらに向上させる技術を、Closed-Loop MIMO、又はフィードバックMIMOと呼んでいる。
 受信端末は、送信端末が一定周期で送信する専用の参照信号(xi)と、受信端末における受信信号(yj,i)との関係から、第kのサブキャリア(チャンネル)に対するCSIを数1の通り測定することができる。なお、数1において、TxAntは送信端末のアンテナ数、RxAntは受信端末のアンテナ数を表し、CSIは、RxAnt×TxAntの次元を持つ複素行列として表されるものである。また、実際には受信端末が受信信号を分離できるように、送信アンテナ毎に、参照信号が挿入されるサブキャリアは異なっている場合が多い。しかし、ここでは簡単の為、全サブキャリアで受信信号と参照信号がアンテナ毎に独立に得られるものとして表現している。
Figure JPOXMLDOC01-appb-M000001
 フィードバックMIMOでは、受信端末から送信端末にフィードバックするCSIの情報が詳細であればあるほど、MIMOの通信特性が改善されることになる。しかし、受信端末がフィードバックするCSIの情報が詳細であればあるほど通信量が増加するため、結局はシステムの無線通信容量が逼迫されてしまうことになる。かかる問題への対応として、送信端末及び受信端末で予め共通の送信ウェイトの情報を保持しておき、受信端末がCSIに応じた当該送信ウェイトのインデックス情報(識別情報)のみを送信端末にフィードバックする(つまり、どの番号の送信ウェイトを使用するかのみを通知する)ことにより、フィードバック情報を大幅に削減することが行われている。また、一つの送信ウェイトを複数のサブキャリアに対してまとめて適用することで、フィードバックする送信ウェイトのインデックス自体を減らすことができ、さらなるフィードバック情報の削減が可能になる。
 例えば、第3.9世代移動体通信システム(以下「3.9G」という。)の1つであるUMB(Ultra Mobile Broadband、例えば、非特許文献1参照)やE-UTRA(LTE)(Evolved UMTS Terrestrial Radio Access、Long Term Evolution、例えば、非特許文献2参照)では、上記送信ウェイトの情報をPM(Precoding Matrix)として送信端末及び受信端末で共有している。このPMは、複数アンテナの本数等に応じて複数定義されている。受信端末は、CSIに応じて適切なPMを選択し、当該PMの識別番号であるPMI(Precoding Matrix Index)を送信端末にフィードバックする。送信端末は受信端末からPMIを受信すると、PMIによって特定されるPMを用いて複数アンテナの送信ウェイト制御を行うことになる。
 例えば、UMBでは、図5に示す通り、通信に使用する周波数帯は8つのサブバンド(Subband)に分割され、各サブバンドは8つのタイル(Tile)に分割され、さらに、各タイルは16個のサブキャリア(Subcarrier)に分割されている。複数のサブキャリアに対して共通に適用するPMを選択するために、受信端末は、数2に従い、サブバンド単位やタイル単位でのCSIの平均値(CSIAve)を計算する。ここで、NCSIはサブバンドに含まれるサブキャリアの本数を表し、サブバンド単位の平均化の場合には、NCSIは128(8×16)となり、タイル単位の平均化の場合には、NCSIは16となる。受信端末は、CSIの平均値を求めると、当該CSI平均値に対して最も適したPMを選択し、当該PMに対応するPMIを送信端末にフィードバックする。
Figure JPOXMLDOC01-appb-M000002
 図6は、PMI選択に必要なCSIの平均化をサブバンド単位で行った場合、タイル単位で行った場合、及びPMI選択による送信ウェイトの制御を行わなかった場合のそれぞれの、フィードバックMIMOにおける、周波数利用効率[bps/Hz]の変化を示す図である。図6に示すとおり、送信信号のSNR(Signal to Noise Ratio)が同じ場合、送信ウェイトの制御によって通信特性が改善されることが示されている。さらに、より細かい単位(つまりサブバンド単位ではなくタイル単位)でPMI選択を行ったほうが、より通信特性が改善されることが示されている。
「Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification(C.S0084-001-0 v1.0)」、3GPP2、平成19年4月 「Multiplexing and channel coding (3GPP TS36.212)」、3GPP、平成20年5月
 上記の通り、従来の方法では、受信端末は、図7に示すとおり、共通の送信ウェイト(PM)を適用する範囲(以下、「送信ウェイト適用範囲」という。)の各サブキャリア(チャンネル)の通信品質によらず、各サブキャリアのCSIの単純な平均値に基づいて、送信端末にフィードバックする送信ウェイトインデックス(PMI)を選択している。そのため、どのサブキャリアにとっても最適とならない、最大公約数的な送信ウェイトが選択されることになる。かかる最大公約数的な送信ウェイトでは、該当する複数のサブキャリア同士の位相が回転し合い、複素平面上で信号を打ち消しあうことにより、送信ウェイトを用いた場合のMIMOの通信特性が劣化してしまうという問題点があった。特に、マルチパスフェージング環境など、周波数毎に無線通信品質の変動が激しい場合においては、各サブバンド/タイルに含まれる128/16個のサブキャリアそれぞれの無線通信品質が大きく異なることが予想される。
 従って、上記の諸課題を鑑みてなされた本発明の目的は、最大公約数的な送信ウェイトによる通信特性の劣化を防ぎ、フィードバックMIMOにおける通信特性を高める無線通信装置及び無線通信方法を提供することである。
 上述した諸課題を解決すべく、本発明の無線通信装置は、
 複数のアンテナを備えた無線通信装置であって、
  他の無線通信装置から所定の周波数帯域に属するチャンネルの信号を受信し、前記チャンネルのチャンネル状態情報を取得する受信部と、
  前記チャンネル状態情報の平均値を算出し、
  前記チャンネルのうち、前記チャンネル状態情報が前記平均値に応じた閾値以上となるチャンネルを抽出し、
  抽出した前記チャンネルの前記チャンネル状態情報から、前記所定の周波数帯域全体の代表チャンネル状態情報を計算する、チャンネル状態情報計算部と、
  前記計算された代表チャンネル状態情報に基づいて、送信ウェイトを選択する送信ウェイト選択部と、
  前記送信ウェイトの識別情報を前記他の無線通信装置に送信する送信部と、
 を備えることを特徴とする。
 また、前記チャンネル状態情報計算部は、抽出した前記チャンネルの前記チャンネル状態情報の平均値を、前記所定の周波数帯域全体の代表チャンネル状態情報として計算することが望ましい。
 また、前記送信ウェイト選択部は、前記チャンネル状態情報と前記送信ウェイトとの対応を記憶しており、前記代表チャンネル状態情報に対応する、記憶された前記送信ウェイトを選択することが望ましい。
 また、上述した諸課題を解決すべく、本発明の無線通信方法は、
 複数のアンテナを備えた無線通信装置の無線通信方法であって、
  他の無線通信装置から所定の周波数帯域に属するチャンネルの信号を受信し、前記チャンネルのチャンネル状態情報を取得するステップと、
  前記チャンネル状態情報の平均値を算出するステップと、
  前記チャンネルのうち、前記チャンネル状態情報が前記平均値に応じた閾値以上となるチャンネルを抽出するステップと、
  抽出した前記チャンネルの前記チャンネル状態情報から、前記所定の周波数帯域全体の代表チャンネル状態情報を計算する計算ステップと、
  前記計算された代表チャンネル状態情報に基づいて、送信ウェイトを選択するステップと、
  前記送信ウェイトの識別情報を前記他の無線通信装置に送信するステップと、
 を有することを特徴とする。
 また、前記計算ステップにおいて、抽出した前記チャンネルの前記チャンネル状態情報の平均値を、前記所定の周波数帯域全体の代表チャンネル状態情報として計算することが望ましい。
 また、前記送信ウェイト選択ステップにおいて、予め記憶してある前記チャンネル状態情報と前記送信ウェイトとの対応から、前記代表チャンネル状態情報に対応する、前記送信ウェイトを選択することが望ましい。
 本発明によれば、送信ウェイトを計算する際に、送信ウェイト適用範囲に属するサブキャリアのCSIを単純に平均して求めるのではなく、送信ウェイト適用範囲に属するサブキャリアのうち、最もチャンネル容量が大きくなることが期待される特定のサブキャリア領域に焦点を絞っている。そして、その特定領域のサブキャリアに関して精度の高いCSIを計算する処理を行うことによって、該当する送信ウェイト適用範囲全体に対して、よりチャンネル容量が増大する送信ウェイトを選択することになる。そのため、伝搬路としてチャンネル容量が限られているようなサブキャリアの影響を低減させ、さらに、位相が反転して互いに打ち消しあってCSI精度を劣化させる現象を少なくし、電力的に余裕のあるサブキャリア領域に対しての影響が強い送信ウェイトを選択することにより、フィードバックMIMOにおける通信特性を改善することが可能となる。
 なお、本発明は、3.9Gで採用される畳込み符号(CC:Convolutional Coding)や繰返し畳込み符号(CTC:Convolutional Turbo Coding)などの誤り訂正の性質上、平均電力が一定の条件化では、基本的に全体が均等な品質のデータ系列よりも、品質の良いと部分と悪い部分が際立ったデータ系列の方が誤り訂正の効果が発揮されるという特徴(ダイバーシティ効果)を利用するものである。
本発明の一実施の形態に係る通信端末が使用可能な、通信ネットワークの概略構成を示す図である。 本発明の一実施の形態に係る通信端末の構成を示す図である。 図2に示したCSI計算部の概略構成を示す機能ブロック図である。 本発明の一実施の形態に係る通信端末の動作のフローチャートである。 周波数分割単位の一例を示す図である。 送信ウェイト制御による周波数利用効率の変化を示す図である。 従来の通信端末の動作のフローチャートである。
 以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。
 図1は、本発明の一実施の形態に係る通信端末1が使用可能な、通信ネットワークの概略構成を示す図である。図1において、通信端末1は、基地局2との間で、複数アンテナを用いたMIMOによる通信を行う。通信端末1は、基地局2が送信する参照信号からサブキャリア毎のCSIを取得する。通信端末1は、当該CSIに所定の処理を行った後に、基地局2が利用すべき送信ウェイト(PM)を選択し、当該送信ウェイトに対応した送信ウェイトインデックスを基地局2にフィードバックする。基地局2は、当該送信ウェイトインデックスに応じて送信ウェイトを選択し、フィードバックMIMO制御を行う。
 図2は、本発明の一実施の形態に係る通信端末1の構成を示す図である。ここで、通信端末1は、例えば、MIMOの通信インターフェースを備える携帯電話機、ノートパソコン、又はPDA(携帯情報端末)からなる。通信端末1は、基地局2から信号を受信し、サブキャリアのCSIを取得する受信部10と、受信部10からCSIの情報を取得し、CSIに関する所定の計算を行うCSI計算部(チャンネル状態情報計算部)20と、CSI計算部20の結果に基づき、基地局2にフィードバックする送信ウェイトの送信ウェイトインデックスを選択する送信ウェイト選択部30と、送信ウェイト選択部30が選択した送信ウェイトインデックスを、通信データ等と同時に基地局2に送信する送信部40と、を有する。
 受信部10及び送信部40は、例えば、フィードバックMIMOに対応したインターフェース機器から構成される。なお、受信部10及び送信部40は、無線信号の送受信に必要な信号の変調/復調、誤り訂正の復号化/符号化、PS/SP変換、及びチャンネル推定といった、無線通信に要する通常の機能を有しうる。CSI計算部20及び送信ウェイト選択部30は、例えば、CPU(中央処理装置)等の任意の好適なプロセッサ構成されるものであり、CSI計算部20及び送信ウェイト選択部30の各機能は、当該プロセッサ上で実行されるソフトウェアや、又は各機能の処理に特化した専用のプロセッサ(例えばDSP(デジタルシグナルプロセッサ))によって構成することができる。
 図3は、図2に示したCSI計算部20の概略構成を示す機能ブロック図である。CSI計算部20は、送信ウェイト適用範囲に属するCSIの平均電力を計算するCSI平均電力計算部21と、CSI平均電力計算部21の計算結果に基づき、所定のサブキャリアを選択する対応CSI選択部22と、対応CSI選択部22が選択したサブキャリアのCSIから、送信ウェイト適用範囲全体の代表CSIを計算する代表CSI計算部23と、を有する。
 図4は、本発明の一実施の形態に係る通信端末の動作のフローチャートである。当該フローチャートを参照しながら、通信端末1の各機能ブロックの動作を詳述する。
 通信端末1が基地局2から参照信号を受信すると、通信端末1において、CSI計算部20は、受信部10から送信ウェイト適用範囲に属するサブキャリアのCSIを取得する(S001)。本実施例では、例えば、送信ウェイト適用範囲には、128本のサブキャリアが含まれるものとする(NCSI=128)。なお、送信ウェイト適用範囲がサブキャリアが128本の場合に限られないことは、当業者にとって明らかな事項である。
 CSI計算部20において、CSI平均電力計算部21は、送信ウェイト適用範囲に属するCSIの平均電力(PowAve)を数3により計算する(S002)。
Figure JPOXMLDOC01-appb-M000003
 対応CSI選択部22は、CSI平均電力計算部21が計算した平均電力に基づいて設定した判定基準(閾値)を用いて、送信ウェイト適用範囲に属するサブキャリアのCSIのうち、基準値以上のCSIを抽出する(S003)。当該判定基準は、CSI平均電力計算部21が計算した送信ウェイト適用範囲のCSIの平均電力の値そのものとしたり、当該平均電力値に所定の係数を乗除したり(例えば、平均電力値の0.8倍、1.2倍、1/2、1/3など)、加算減算(例えば、オフセットとして+1、-0.5など)したものとすることができる。当該判定基準を、平均電力値より高く設定すれば、抽出されるCSIはより少なくなり、平均電力値より低く設定すれば、抽出されるCSIは多くなることになる。
 特定小領域CSI計算部27は、対応CSI選択部22が抽出したCSI(Selected_CSI)の平均値(CSISelected_Ave)を数4により計算する(S004)。ここで、NSelected_CSIは、対応CSI選択部22によって抽出されたCSIの数を表す。かかるCSIの平均値は、送信ウェイト適用範囲全体の代表CSI(代表チャンネル状態情報)となる。
Figure JPOXMLDOC01-appb-M000004
 送信ウェイト選択部30は、代表CSI計算部23から供給された代表CSI(CSIw_Ave)に基づき、送信ウェイトを選択する(S005)。なお、あるCSIから所定の送信ウェイトを選択する方法は当業者にとって周知であるため、詳細は記載しないものとする。送信ウェイト選択部30は、予めCSIと送信ウェイトとの対応を記憶しており、かかる対応によって、代表チャンネル状態情報に対応する、送信ウェイトを選択することもできる。送信ウェイト選択部30は、選択した送信ウェイトに対応する送信ウェイトインデックスを、送信部40を通じて基地局2にフィードバックする。
 基地局2は、かかる送信ウェイトインデックスを用いて送信ウェイトを選択することにより、フィードバックMIMOの通信特性を改善することができる。
 本実施例によると、代表CSIには電力値の大きいサブキャリアが反映されることになり、送信ウェイトもそれらのサブキャリアに対応したものが選択されるようになる。そのため、伝搬路としてチャンネル容量が限られているようなサブキャリアの影響を低減させ、さらに、位相が反転して互いに打ち消しあってCSI精度を劣化させる現象を少なくし、フィードバックMIMOにおける通信特性を改善することが可能となる。このような手法では、もともとチャンネル容量の乏しいサブキャリアに対しては、対応する送信ウェイトが選択されなくなるが、このようなサブキャリアに配置されたデータに関しては、システムに含まれている誤り訂正技術により復元することが可能となる。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
 上記実施例では、CSIの品質として電力を基準としているが、これは他の基準、例えば振幅値などでも構わない。例えば、振幅値を基準とする場合には、受信部10が振幅値の大きさを検出し、CSI平均電力計算部21は、各サブチャンネルのCSIの平均振幅を計算し、対応CSI選択部22は、当該平均振幅値に応じて設定された基準値以上のCSIを抽出し、代表CSI計算部は、抽出されたCSIから代表CSIを計算することが出来る。また、上記実施例では単純にアンテナ間のCSIに関して論じているが、例えばCSIに送受信のウェイトを乗じた系としての電力値を基準としても構わない。
 また、上述の各実施形態では、無線通信方式として、UMBを想定して説明したが、本発明の適用範囲はかかる無線通信方式のみに限られるものではなく、例えば、LTE(Long Term Evolution)など、フィードバックMIMOに対応したあらゆる無線通信方式に対応することが可能である。例えば、UMBでは、上述の通り、通信に使用する周波数帯は8つのサブバンドに分割され、各サブバンドは8つのタイルに分割され、さらに、各タイルは16個のサブキャリアに分割されているが、同様に、LTEでは、通信に使用する周波数帯は場合によっては9つのサブバンドに分割され、この場合、各サブバンドは6個乃至2個のリソースブロック(RB:Resource Block)に分割され、さらに、各リソースブロックは12個のサブキャリアに分割されている。そのため、上記記載において、UMBにおけるタイルをLTEのリソースブロックとして適宜読み替えることにより、各実施形態の記載をLTEに適用した場合の実施態様として理解することができる。なおこの場合、サブバンド、リソースブロック(タイル)、サブキャリアの数も、適宜、LTEに応じた読み替えが必要になることに留意されたい。
 1 通信端末
 2 基地局
 10 受信部
 20 CSI計算部
 21 CSI平均電力計算部
 22 対応CSI選択部
 23 代表CSI計算部
 30 送信ウェイト選択部
 40 送信部

Claims (6)

  1.  複数のアンテナを備えた無線通信装置であって、
      他の無線通信装置から所定の周波数帯域に属するチャンネルの信号を受信し、前記チャンネルのチャンネル状態情報を取得する受信部と、
      前記チャンネル状態情報の平均値を算出し、
      前記チャンネルのうち、前記チャンネル状態情報が前記平均値に応じた閾値以上となるチャンネルを抽出し、
      抽出した前記チャンネルの前記チャンネル状態情報から、前記所定の周波数帯域全体の代表チャンネル状態情報を計算する、チャンネル状態情報計算部と、
      前記計算された代表チャンネル状態情報に基づいて、送信ウェイトを選択する送信ウェイト選択部と、
      前記送信ウェイトの識別情報を前記他の無線通信装置に送信する送信部と、
     を備えることを特徴とする無線通信装置。
  2.  前記チャンネル状態情報計算部は、
      抽出した前記チャンネルの前記チャンネル状態情報の平均値を、前記所定の周波数帯域全体の代表チャンネル状態情報として計算する、
     ことを特徴とする請求項1に記載の無線通信装置。
  3.  前記送信ウェイト選択部は、
      前記チャンネル状態情報と前記送信ウェイトとの対応を記憶しており、
      前記代表チャンネル状態情報に対応する、記憶された前記送信ウェイトを選択する、
     ことを特徴とする請求項1又は2に記載の無線通信装置。
  4.  複数のアンテナを備えた無線通信装置の無線通信方法であって、
      他の無線通信装置から所定の周波数帯域に属するチャンネルの信号を受信し、前記チャンネルのチャンネル状態情報を取得するステップと、
      前記チャンネル状態情報の平均値を算出するステップと、
      前記チャンネルのうち、前記チャンネル状態情報が前記平均値に応じた閾値以上となるチャンネルを抽出するステップと、
      抽出した前記チャンネルの前記チャンネル状態情報から、前記所定の周波数帯域全体の代表チャンネル状態情報を計算する計算ステップと、
      前記計算された代表チャンネル状態情報に基づいて、送信ウェイトを選択するステップと、
      前記送信ウェイトの識別情報を前記他の無線通信装置に送信するステップと、
     を有することを特徴とする無線通信方法。
  5.  前記計算ステップにおいて、
      抽出した前記チャンネルの前記チャンネル状態情報の平均値を、前記所定の周波数帯域全体の代表チャンネル状態情報として計算する、
     ことを特徴とする請求項4に記載の無線通信方法。
  6.  前記送信ウェイト選択ステップにおいて、
      予め記憶してある前記チャンネル状態情報と前記送信ウェイトとの対応から、
      前記代表チャンネル状態情報に対応する、前記送信ウェイトを選択する
     ことを特徴とする請求項4又は5に記載の無線通信方法。
PCT/JP2009/061656 2008-06-27 2009-06-25 無線通信装置及び無線通信方法 WO2009157523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/001,269 US20110176630A1 (en) 2008-06-27 2009-06-25 Wireless communication apparatus and wireless communication method
JP2010518060A JPWO2009157523A1 (ja) 2008-06-27 2009-06-25 無線通信装置及び無線通信方法
KR1020107028842A KR20110016948A (ko) 2008-06-27 2009-06-25 무선통신장치 및 무선통신방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169617 2008-06-27
JP2008169617 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009157523A1 true WO2009157523A1 (ja) 2009-12-30

Family

ID=41444586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061656 WO2009157523A1 (ja) 2008-06-27 2009-06-25 無線通信装置及び無線通信方法

Country Status (4)

Country Link
US (1) US20110176630A1 (ja)
JP (1) JPWO2009157523A1 (ja)
KR (1) KR20110016948A (ja)
WO (1) WO2009157523A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051510A1 (ja) * 2011-10-03 2013-04-11 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、フィードバック方法、ユーザ端末、及び無線基地局装置
KR20130110396A (ko) * 2012-03-29 2013-10-10 삼성전자주식회사 아날로그/디지털 혼합 빔 포밍 시스템에서 기준 신호 생성을 위한 방법 및 장치
JP6729152B2 (ja) * 2016-08-04 2020-07-22 富士通オプティカルコンポーネンツ株式会社 光伝送システムおよび光送信器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247003A (ja) * 2001-02-22 2002-08-30 Hitachi Kokusai Electric Inc 直交周波数分割多重変調方式を用いた伝送装置
JP2007019880A (ja) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd 通信装置、基地局装置及び通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1392004B1 (en) * 2002-08-22 2009-01-21 Interuniversitair Microelektronica Centrum Vzw Method for multi-user MIMO transmission and apparatuses suited therefore
US7305056B2 (en) * 2003-11-18 2007-12-04 Ibiquity Digital Corporation Coherent tracking for FM in-band on-channel receivers
JPWO2006028204A1 (ja) * 2004-09-10 2008-05-08 松下電器産業株式会社 無線通信装置および無線通信方法
KR101124932B1 (ko) * 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
KR100768510B1 (ko) * 2005-10-24 2007-10-18 한국전자통신연구원 다중안테나를 사용하는 직교 주파수 분할 다중 접속시스템의 전송 장치 및 그 방법
US7564912B2 (en) * 2006-02-15 2009-07-21 Mediatek Inc. Method and apparatus for channel state information generation in a DVB-T receiver
US7826489B2 (en) * 2007-03-23 2010-11-02 Qualcomm Incorporated Method and apparatus for improved estimation of selective channels in an OFDMA system with dedicated pilot tones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247003A (ja) * 2001-02-22 2002-08-30 Hitachi Kokusai Electric Inc 直交周波数分割多重変調方式を用いた伝送装置
JP2007019880A (ja) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd 通信装置、基地局装置及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT W. HEATH JR ET AL.: "lln Partial Proposal: Quantized Precoding with Feedback", IEEE 802.11-04/962R1, IEEE, 13 September 2004 (2004-09-13) *

Also Published As

Publication number Publication date
US20110176630A1 (en) 2011-07-21
KR20110016948A (ko) 2011-02-18
JPWO2009157523A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
EP2220791B1 (en) Apparatus and method for reporting channel quality indicator in wireless communication system
CN101233713B (zh) 用于mimo系统的稳健秩预测
JP4752602B2 (ja) Mimo無線通信方法およびmimo無線通信装置
US9729272B2 (en) Feedback with unequal error protection
US8630311B2 (en) System and method for reporting quantized feedback information for adaptive codebooks
CN102918791B (zh) 无线通信系统中用于信道质量报告的方法和设备
WO2009063342A2 (en) Method, apparatus and computer readable medium providing power allocation for beamforming with minimum bler in an mimo-ofdm system
JP5079880B2 (ja) 無線通信装置及び無線通信方法
WO2013115706A2 (en) Method and apparatus for pilot power allocation in a multi antenna communication system
WO2009157523A1 (ja) 無線通信装置及び無線通信方法
WO2009157522A1 (ja) 無線通信装置及び無線通信方法
WO2009157521A1 (ja) 無線通信装置及び無線通信方法
JP5223939B2 (ja) Mimo無線通信方法およびmimo無線通信装置
WO2010035809A1 (ja) 無線通信装置及び無線通信方法
JP2009225130A (ja) 受信機および信号処理方法
JP2011188385A (ja) 無線通信端末およびアンテナインピーダンスの制御方法
CN117914367A (zh) 采用信道状态信息压缩的无线通信装置和方法
KR20090047051A (ko) 더티 페이퍼 코딩을 이용한 데이터 전송 방법 및 송신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518060

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13001269

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09770233

Country of ref document: EP

Kind code of ref document: A1