WO2009157347A1 - Method for growing nitride single crystal - Google Patents

Method for growing nitride single crystal Download PDF

Info

Publication number
WO2009157347A1
WO2009157347A1 PCT/JP2009/060978 JP2009060978W WO2009157347A1 WO 2009157347 A1 WO2009157347 A1 WO 2009157347A1 JP 2009060978 W JP2009060978 W JP 2009060978W WO 2009157347 A1 WO2009157347 A1 WO 2009157347A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
single crystal
jig
seed
crystal
Prior art date
Application number
PCT/JP2009/060978
Other languages
French (fr)
Japanese (ja)
Inventor
今井克宏
岩井真
東原周平
市村幹也
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2010517931A priority Critical patent/JP5361884B2/en
Publication of WO2009157347A1 publication Critical patent/WO2009157347A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/067Boots or containers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Definitions

  • the present invention relates to a method of growing a nitride single crystal by a flux method.
  • Gallium nitride ⁇ - ⁇ nitride has attracted attention as an excellent material for blue light emitting devices, and has been put to practical use in light emitting diodes and blue-violet semiconductor lasers for optical pickups.
  • the Na flux method is known as one of the group I nitride single crystal growth methods.
  • WO 2 0 0 4 0 8 3 4 9 8 A 1 a seed crystal is placed horizontally at the bottom of the vessel, and while the vessel containing the melt is rotated or rocked, the nitride single crystal is grown. It has been described that.
  • a seed crystal is placed horizontally on the bottom of the vessel, and while the vessel containing the melt is rotated or shaken, a nitride single crystal is formed. It is stated that the fostering of Moreover, at this time, it is described that the stirring is promoted by immersing a plurality of balls in the melt and moving the balls in the melt.
  • the group III metal is filled with the Na metal in a vessel for crystal growth to form a mixed melt, and nitrogen is melted from the gas phase through the gas-liquid interface. It is supplied into. Crystal growth starts only when the amount of nitrogen dissolved in the melt reaches the saturation concentration of Group III nitride. In other words, crystal growth on the seed substrate does not progress until nitrogen of the required concentration dissolves in the melt and is transported to the periphery of the seed substrate by diffusion or convection. Also, the growth rate after the start of crystal growth is limited by the dissolution rate of nitrogen at the gas-liquid interface.
  • GaN gallium nitride
  • the grown nitride single crystal is taken into the solidified flux. Heating and cooling are required to take it out. However, there was a case that a crack was generated in the nitride single crystal during such heating and cooling.
  • Fig.12 (b) it is also conceivable to use a vessel with a small cross-sectional area to reduce the amount of melt.
  • the gas-liquid interface area of the melt 3 B also decreases in proportion to the decrease in the amount of melt, so the time taken for the dissolution of nitrogen in the melt is not shortened.
  • the present invention is a method of growing a nitride single crystal by a flux method in a nitrogen-containing non-oxidizing atmosphere
  • Nitrogen dissolving process for dissolving nitrogen in the melt in the vessel
  • the present invention relates to a method of growing a nitride single crystal, which is characterized.
  • the nitride single crystal is grown on the seed crystal in a state where the angle between the gas-liquid interface of the melt and the growth surface of the seed crystal is 45 ° or more and 135 ° or less. It is hard to attach miscellaneous crystals and can suppress single crystal defects.
  • the jig is made by immersing in the melt a jig whose surface is made of a material that is not reactive with the molten raw material, so that the melt is melted. Raise the base and immerse the seed crystal in the melt to grow a single crystal.
  • the dissolution of nitrogen in the melt is completed in a short time because the amount of melt is small due to the low degree of stagnation. This can reduce the time required to produce single crystals.
  • the seed crystals are not immersed in the melt at the stage of the nitrogen dissolution step, it is possible to prevent the meltback of the seed crystals into the melt and to prevent the crystal defects caused by the meltback.
  • the jig is separated from the melt, thereby reducing the height of the melt to melt the seed crystal and the nitride single crystal on the seed crystal. Can be exposed from In this case, since the grown nitride single crystal is not taken into the solidified flux, it is possible to prevent a crack which occurs when the nitride single crystal is taken out from the solidified flux. However, it is not always necessary to expose seed crystals and nitride single crystals from the melt. Brief description of the drawings
  • FIG. 1 is a cross-sectional view schematically showing a state in which melt 3 and seed crystals 4 and 4 are contained in container 1.
  • FIG. 2 is a cross-sectional view schematically showing the lid 6 to which the jig 8 is attached.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
  • FIG. 4 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A.
  • FIG. 5 is a cross-sectional view schematically showing a single crystal-attached seed crystal separated from the melt.
  • FIG. 6 is a cross-sectional view schematically showing a jig 8 to which a seed crystal is attached.
  • FIG. 7 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
  • FIG. 8 is a cross-sectional view schematically showing a state in which the jig and the seed crystal are immersed in the melt.
  • FIG. 9 is a cross-sectional view schematically showing a jig 18 having a large width portion 1 8 a and a narrow width portion 1 8 b.
  • FIG. 10 is a cross-sectional view schematically showing a state in which the jig 18 and the seed crystal are immersed in the melt.
  • FIG. 11 is a cross-sectional view schematically showing the state in which the seed crystal is immersed in the melt.
  • Fig. 12 (a) and Fig. 12 (b) are diagrams schematically showing a state in which the seed crystal 4 is immersed in the melt 3B of the containers 1A and 1B, respectively.
  • the container is moved in the seed crystal growing step.
  • stirring and convection of the melt can be promoted, defects of the nitride single crystal can be prevented, and the film thickness can be made uniform.
  • Such movement is not particularly limited, but peristalsis and rotation are preferable.
  • Fig. 1 schematically shows the state in which the melt 3 and the seed crystals 4A and 4B are contained in the container 1. It is sectional drawing shown to.
  • the metal source material and the source material of the flux are enclosed in a non-oxidative atmosphere glove box, and enclosed in the non-oxidative atmosphere in the inner space 5 of the container 1 as shown in the figure.
  • the vessel 1 is placed in a pressure vessel such as a HIP (hot isotropic pressure press) apparatus, for example, and the vessel 1 is heated and pressurized in the pressure vessel. Then, all the raw materials are dissolved in the container 1 to form a mixed melt 3.
  • nitrogen is stably supplied into the mixed melt 3 from the space 5 in the container 1 and dissolved (nitrogen dissolving step). At this stage, the height H I of the melt is reduced so that the seed crystals 4 A and 4 B do not contact the melt 3.
  • FIG. 2 is a cross-sectional view schematically showing the lid 6 to which the jig 8 is attached.
  • a jig 8 is attached so as to protrude into the inner space 7 of the lid 6.
  • At least the surface of the jig 8 is made of a material non-reactive with the melt 3.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
  • the lid 6 is placed on the platform 9 and fixed.
  • Container 1 is attached to shaft 10.
  • the axis 10 can move up and down like arrows A and B, and can rotate like arrow C.
  • the shaft 10 By raising the shaft 10 as shown by the arrow A, the container 1 is lifted from the state of FIG. 1 and charged into the inner space 7 of the lid 6.
  • axis 10 may be kept rotating as shown by arrow C.
  • the jig 8 is not immersed in the melt 3 and the liquid level H 1 of the melt 3 does not change.
  • FIG. 4 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A.
  • Jig 8 is immersed in the melt by further raising axis 10 as shown by arrow A.
  • the liquid level of the melt 3 A rises to H 2, and the seed crystals 4 A and 4 B are immersed in the melt 3 A.
  • the nitrogen pressure required for nitride single crystal growth And when holding time, as shown in FIG. 5, nitride single crystals 12 A and 12 B grow on the growth surface 20 of the seed crystals 4 A and 4 B.
  • the angle 0 between the gas-liquid interface 21 and the growth surface 20 is set to 45 ° to 35 °.
  • the axis 10 is lowered as shown by arrow B, and the jig 8 is separated from the melt 3 as shown in FIG.
  • the liquid level of Melt 3 drops and becomes slightly lower than the first liquid level H I. In this state, various crystals 4 A, 4 B and single crystals 12 A, 12 B are exposed from melt 3.
  • a seed crystal is attached to the jig.
  • the seed crystal attached to the jig is simultaneously immersed in the melt.
  • the seed crystal and the single crystal thereon can also be separated from the melt at the same time.
  • FIG. 6 is a cross-sectional view schematically showing a state in which the jig 8 is attached to the lid 6 and the seed crystals 4 A, 4 B, and 4 C are attached to the jig 8.
  • the method of attaching the seed crystals 4 A, 4 B, 4 C to the jig 8 is not particularly limited, and may be mechanical attachment or adhesion.
  • FIG. 7 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
  • the lid 6 is placed on the platform 9 and fixed.
  • Container 1 is attached to shaft 10.
  • the shaft 10 By raising the shaft 10 as shown by the arrow A, the container 1 is lifted from the state of FIG. 6 and charged into the inner space 7 of the lid 6.
  • axis 10 may be kept rotating as shown by arrow C.
  • the jig 8 is not immersed in the melt 3 and the liquid level H 1 of the melt 3 does not change.
  • FIG. 8 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A.
  • Jig 8 is immersed in the melt by further raising axis 10 as shown by arrow A.
  • the liquid level of the melt 3 A rises to H 2, and the seed crystals 4 A, 4 B, 4 C are immersed in the melt 3 A.
  • nitrogen necessary for nitride single crystal growth is When the atomic pressure and time are maintained, nitride single crystals 12 A and 12 B grow on the growth surface of the seed crystals 4 A and 4 B.
  • the jig comprises a wide width portion and a narrow width portion, and in the liquid level raising step, the wide width portion is immersed in the melt, and the narrow width portion is the gas-liquid boundary of the melt. Touch the face. 9 and 10 relate to this embodiment.
  • FIG. 9 is a cross-sectional view schematically showing the lid 6 to which the jig 18 is attached.
  • a jig 18 is attached so as to protrude into the inner space 7 of the lid 6.
  • At least the surface of jig 18 is made of a material that is non-reactive with melt 3.
  • a wide portion 18a is formed on the tip end side of the jig 18 and a narrow portion 18b is formed on the base side thereof.
  • FIG. 9 is a cross-sectional view schematically showing a state in which the jig 18 is immersed in the melt 3A.
  • Jig 18 is immersed in the melt by raising axis 10 further as shown by arrow A.
  • the wide part 18a is totally immersed in the melt 3A
  • the liquid level of the melt 3A rises to H 2 and the seed crystals 4A and 4B are contained in the melt 3A.
  • the narrow portion 18 b contacts the gas-liquid interface of the melt, and only a part of the narrow portion is immersed in the melt.
  • the interface 18 c enters the melt.
  • the angle 0 between the gas-liquid interface of the melt 3 A and the growth surface of the seed crystal is set to 45 ° or more and 135 ° or less.
  • 0 is set to 80 ° or more and 100 ° or less.
  • the gas-liquid interface of the melt and the growth surface of the seed crystal are substantially perpendicular. This makes it difficult for the miscellaneous crystals to adhere to the layer single crystal.
  • the material of the solid material constituting at least the surface of the jig does not react with flux. Therefore, this material is appropriately selected by those skilled in the art according to the type of flux used.
  • the entire jig may be of such material, or only the surface of the jig may be of such material.
  • the material of the jig is most preferably metal tantalum, but metal such as metal tan dusten, metal molybdenum, etc., alumina, alumina, It was also found that oxide ceramics such as force lucia, etc., single crystals such as sapphire, carbide ceramics such as tungsten carbide and tantalum carbide, and nitride ceramics such as aluminum nitride, titanium nitride, and zirconium nitride can also be used. Also, the surface of a solid made of another material can be coated with a material that does not react with the melt as described above. Therefore, for example, a jig in which a copper material is coated with metallic tantalum is also preferable.
  • the ratio H 2 Z H 1 to the liquid level H 1 in the nitrogen dissolving process of the liquid level H 2 in the crystal growth step is preferably 2 or more, more preferably 3 or more.
  • H 2 Z H 1 is preferably 5 or less.
  • the ratio W 1 / W 2 of the width W 1 to the width W 2 of the wide part W 1 of the jig is From the viewpoint of increasing the area of the liquid interface, 2 or more is preferable, and 3 or more is more preferable.
  • the upper limit of W 1 / W 2 is not particularly limited, but is preferably 10 or less in design.
  • an apparatus for heating the raw material mixture to generate a melt is not particularly limited.
  • a hot isostatic press apparatus can be exemplified, but other atmosphere pressure type heating furnaces may be used.
  • the flux for producing the melt is not particularly limited, but one or more metals or alloys thereof selected from the group consisting of aluminum nitride metals and alkaline earth metals are preferable. Examples of this metal include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium, with lithium, sodium and calcium being particularly preferred, with sodium being particularly preferred. Most preferred.
  • the substance which forms an alloy with one or more metals selected from the group consisting of the above-mentioned alkali metals and alkaline earth metals the following metals can be exemplified.
  • the following single crystals can be suitably grown by the growing method of the present invention.
  • the heating temperature and pressure in the single crystal growth step are not particularly limited because they are selected according to the type of single crystal.
  • the heating temperature can be set to, for example, 800-1500 ° C. Preferably it is 800-1200 degreeC, More preferably, it is 800-100 degreeC.
  • the pressure is also not particularly limited, but the pressure is preferably IMP a or more, more preferably 2 MP a or more.
  • the upper limit of the pressure is not particularly defined, but may be, for example, 2 0 OMP a or less, preferably 1 0 OMP a or less.
  • the material of the growth vessel for carrying out the reaction is not particularly limited, as long as it is a material which is durable under the intended heating and pressure conditions.
  • Such materials include refractory metals such as metal tantalum, tungsten and molybdenum, oxides such as phenolemina, sapphire and ittria, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride and boron nitride, Examples thereof include carbides of refractory metals such as tanten carbide and tantalum carbide, and thermal decomposition products such as p-BN (pyrolytic BN) and p-GR (pyrolytic graphite).
  • refractory metals such as metal tantalum, tungsten and molybdenum, oxides such as phenolemina, sapphire and ittria
  • nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride and boron nitride
  • carbides of refractory metals such as tanten carbide and tantalum carbide
  • the present invention can be used to grow a gallium nitride single crystal using a flux containing at least sodium metal. Dissolve the gallium source material in this flux.
  • a gallium source material a single metal of gallium, a gallium alloy, and a gallium compound can be applied, but a single metal of gallium is also preferable from the viewpoint of handling.
  • the flux may contain metals other than sodium, such as lithium.
  • the ratio of the gallium source material to the flux source material such as sodium may be appropriate, but in general, it is considered to use an excess amount of sodium. Of course, this is not limiting.
  • a gallium nitride single crystal is grown under a pressure of total pressure I MP a or more and 200 MPa or less under an atmosphere of a mixed gas containing nitrogen gas. By setting the total pressure to 1 MPa or more, it is possible to grow a good quality gallium nitride single crystal in a high temperature region of 800 ° C. or more, more preferably in a high temperature region of 800 ° C. or more. Met.
  • the nitrogen partial pressure in the atmosphere during growth is set to 1 MP a or more and 200 MP a or less.
  • this nitrogen partial pressure is set to I MP a or higher
  • the gas other than nitrogen in the atmosphere is not limited, but is preferably an inert gas, particularly preferably argon, helium or neon.
  • the partial pressure of gases other than nitrogen is the value obtained by removing the partial pressure of nitrogen gas from the total pressure.
  • the growth temperature of the gallium nitride single crystal is 800 ° C. or higher, and more preferably, 850 ° C. or higher. Good quality gallium nitride single crystals can be grown even in such a high temperature region. Also, high temperature-high pressure growth may improve productivity.
  • the upper limit of the growth temperature of the gallium nitride single crystal is not particularly limited, but if the growth temperature is too high, the crystal is difficult to grow, so the temperature is preferably 150 ° C. or less. From this point of view, It is further preferable to set the temperature to 1 200 ° C. or less.
  • the material of the growth substrate for epitaxially growing the gallium nitride crystal is not limited, but sapphire, A 1 N template, G a N template, G a N free-standing substrate, silicon single crystal, Si i C single crystal, Mg O single crystal, Swinenole (Mg A1 2 0 4 ), L i A 1 0 2 2 , L i G a 2, L a A 1 0 3 , L a G a 0 a, N d Perovskite type composite oxides such as G a O 3 can be exemplified.
  • S CAM S c A 1 M g O 4
  • S c A 1 M g O 4 can also be used.
  • the present invention is also effective in growing an A 1 N single crystal by pressurizing a melt containing a flux containing at least aluminum and an alkaline earth in a nitrogen-containing atmosphere under specific conditions. That was confirmed.
  • a single crystal was grown according to the method described above with reference to FIGS. Specifically, the inner diameter of the round flat bottom plate 1 was set to 160 mm, and the height was set to 120 mm.
  • As raw materials for growth 300 g of metal G a and 400 g of metal N a were melted and filled in a growth box, respectively.
  • the Na was shielded from the atmosphere by first filling with Na and then filling with Ga.
  • the melt height H 1 of the raw materials in crucible 1 was about 30 mm.
  • a 2 N diameter G a N template (G a N single on sapphire substrate
  • Six pieces of crystal thin film (grown by 5 micron epitaxial growth) were placed vertically. At this time, the bottom of the seed crystal substrate became 35 mm high from the bottom of the crucible. Only two of the six seed substrates are shown in FIG.
  • the jig 8 has a cylindrical shape, and the diameter in the horizontal cross section is 130 mm.
  • the temperature is lowered to 8 70 ° C and the jig is moved by moving the crucible upward as shown in Fig. 4 8 was infiltrated into Melt 3 A, and the liquid level was raised.
  • the calculated liquid level H 2 at this time is 90 mm from the bottom of the pot.
  • the crucible was moved downward and the jig 8 was pulled out of the melt to lower the liquid level to separate the seed substrate and the melt. Thereafter, it was gradually cooled to room temperature over 24 hours to recover crystals.
  • the grown crystals are separated from the flux and no cracks have occurred. won. About 2 mm of G.sub.a N crystals were grown on the entire surface of the six 2-inch seed substrates.
  • the in-plane thickness variation was small, less than 10%. Also, the average thickness variation of the six sheets was as small as about 10%.
  • the seed crystal substrates 4 A, 4 B, and 4 C were fixed to the surface of the jig 8.
  • the jig 8 has a hexagonal prism shape, and one side of the horizontal cross section is 70 mm and the diagonal is 140 mm.
  • six G a N templates with a diameter of 2 inches were vertically arranged as seed substrates. At this time, the bottom of the seed substrate was 5 mm above the bottom of the jig.
  • the temperature is lowered to 8 70 ° C and the jig 8 is melted by moving the crucible upward. Infiltrated into 3 and raised the liquid level.
  • the calculated liquid level H 2 at this time is 9 O mm from the bottom of the pot.
  • the grown crystals were separated from the flux, and no cracks occurred.
  • About 2 mm of G.sub.a N crystals were grown on the entire surface of the six 2-inch seed substrates.
  • the in-plane thickness variation was small, less than 10%.
  • the average thickness variation of the three sheets was also as small as about 10%.
  • Example 2 The experiment was conducted under the same conditions as in Example 1 except that the growth time was 96 hours. Of 5 mm thick were obtained. This is because, as shown in FIG. 10, since the area of the gas-liquid interface 21 during crystal growth is improved by about 2.8 times as compared with the case of Example 1, the dissolution of nitrogen during the crystal growth It is thought that the speed is improved and the crystal growth speed is improved.
  • Example 1 crystal growth was performed while rotating ⁇ ⁇ 1, and G A N crystals of 4 mm in thickness were obtained in the same growth time. This is thought to be because the rotation accelerates the stirring of the melt, the nitrogen supply rate on the seed substrate is improved, and the crystal growth rate is improved.
  • the crucible 1 was placed in a growth furnace, heated and pressurized to 870 ° C. * 4.5 MP a, held for 120 hours, gradually cooled over 24 hours, and the crystals were recovered. Here, no jig for liquid level adjustment was used. About 0.5 mm of G a N crystal was grown on the top of the seed substrate, but the thickness decreased toward the bottom, and G a N crystals did not grow below the center of the seed substrate. Evaluation of the recovered seed substrate revealed that the MO C VD film was not melted back below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed is a method for growing a nitride single crystal by a flux process in a nitrogen-containing non-oxidizing atmosphere.  Nitrogen is dissolved into a melt (3A) in a container (1).  Then, the level (H2) of the melt (3A) is raised by immersing a jig (8), at least the surface of which is composed of a material not reactive with the molten raw material, into the melt, and seed crystals (4A, 4B) are immersed into the melt (3A).  A nitride single crystal is grown on the seed crystals (4A, 4B), while setting the angle between the gas-liquid interface of the melt (3A) and the growing surface of each seed crystal at not less than 45˚ but not more than 135˚C.

Description

明細書  Specification
窒化物単結晶の育成方法 発明の属する技術分野  Method of growing nitride single crystal TECHNICAL FIELD
本発明は、 フラックス法による窒化物単結晶の育成方法に関するもので ある。  The present invention relates to a method of growing a nitride single crystal by a flux method.
背景技術  Background art
窒化ガリ ゥム系 ιπ-ν窒化物は、 優れた青色発光素子用材料として注目 を集めており、 発光ダイォードゃ光ピックアップ用の青紫色半導体レーザ —において実用化されている。 I I I族窒化物単結晶育成方法の一つとして、 N a フラックス法が知られている。 W O 2 0 0 4 / 0 8 3 4 9 8 A 1 においては、 容器底に種結晶を水平に設置し、 融液の入った容器を回動な いし揺動させながら、 窒化物単結晶を育成することが記載されている。 また、 W O 2 0 0 7 / 1 0 2 6 1 0 A 1では、 容器底に種結晶を水 平に設置し、 融液の入った容器を回動ないし揺動させながら、 窒化物単結 晶を育成することが記載されている。 しかも、 この際に、 融液中にボール を複数個浸漬し、 融液中でボールを動かすことで撹拌を促進することが記 載されている。  Gallium nitride ιπ-ν nitride has attracted attention as an excellent material for blue light emitting devices, and has been put to practical use in light emitting diodes and blue-violet semiconductor lasers for optical pickups. The Na flux method is known as one of the group I nitride single crystal growth methods. In WO 2 0 0 4 0 8 3 4 9 8 A 1, a seed crystal is placed horizontally at the bottom of the vessel, and while the vessel containing the melt is rotated or rocked, the nitride single crystal is grown. It has been described that. Also, in WO 2 0 07/1 0 2 0 6 0 1, a seed crystal is placed horizontally on the bottom of the vessel, and while the vessel containing the melt is rotated or shaken, a nitride single crystal is formed. It is stated that the fostering of Moreover, at this time, it is described that the stirring is promoted by immersing a plurality of balls in the melt and moving the balls in the melt.
Na フラックスを用いた III族窒化物単結晶育成法においては、 III族金 属は Na 金属と共に結晶育成用容器に充填されて混合融液を形成し、 窒素 は気相より気液界面を通じて融液中へと供給される。 融液中に溶け込んだ 窒素量が III族窒化物の飽和濃度に到達してから、初めて結晶成長が開始さ れる。 言い換えれば、 必要な濃度の窒素が融液中に溶け込み、 種基板周辺 まで拡散や対流により運ばれてくるまでは、 種基板上の結晶成長は進展し ない。 また、 結晶成長開始後の成長速度は、 気液界面での窒素の溶け込み 速度に律速される。 融液中の窒素濃度を、 より早く飽和濃度に到達させるためには、 ( 1 ) 気液界面での窒素の溶け込み速度が早いこと、 および (2) 融液の絶対量 が少ないことが重要である。 ( 1 )気液界面での窒素の溶け込み速度を上げ るためには、 ( l a ) 気液界面面積を大きくする、 ( l b) 窒素圧力を上げ るなどの方法がある。 融液の絶対量を少なく保ちながら、 気液界面面積を 大きくするためには、 育成容器口径に対して、 融液の高さを低くすること が望ましい。 言い換えると、 融液の気液界面から容器底までの距離を近く することが好ましい。 In the group III nitride single crystal growth method using Na flux, the group III metal is filled with the Na metal in a vessel for crystal growth to form a mixed melt, and nitrogen is melted from the gas phase through the gas-liquid interface. It is supplied into. Crystal growth starts only when the amount of nitrogen dissolved in the melt reaches the saturation concentration of Group III nitride. In other words, crystal growth on the seed substrate does not progress until nitrogen of the required concentration dissolves in the melt and is transported to the periphery of the seed substrate by diffusion or convection. Also, the growth rate after the start of crystal growth is limited by the dissolution rate of nitrogen at the gas-liquid interface. In order to make the nitrogen concentration in the melt reach the saturation concentration more quickly, it is important that (1) the rate of nitrogen dissolution at the gas-liquid interface be fast, and (2) the absolute amount of melt be small. is there. (1) In order to increase the dissolution rate of nitrogen at the gas-liquid interface, there are methods such as (la) increasing the gas-liquid interface area and (lb) increasing the nitrogen pressure. In order to increase the gas-liquid interface area while keeping the absolute amount of melt small, it is desirable to lower the height of the melt relative to the diameter of the growth vessel. In other words, it is preferable to reduce the distance from the gas-liquid interface of the melt to the bottom of the vessel.
融液を浅くするためには、 口径の大きい育成容器を用い、 育成容器の底 に種基板を水平に配置することが考えられる。 これによつて、 少ない融液 量で窒化ガリ ウム (GaN) の結晶成長を行えるはずである。 しかし、 この 方法では、 比較的短時間で種基板上に GaN結晶が成長したが、 表面形状が 凹凸になりやすい、 結晶が着色しやすい、 融液中で発生した微結晶 (雑晶) が成長した結晶に付着してクラックの原因になる、 などの問題があること が判明した。  In order to make the melt shallow, it is conceivable to use a large diameter growth vessel and place the seed substrate horizontally on the bottom of the growth vessel. As a result, it should be possible to grow gallium nitride (GaN) crystal with a small amount of melt. However, in this method, GaN crystals grew on the seed substrate in a relatively short time, but the surface shape tends to be uneven, crystals tend to be colored, and microcrystals (miscellaneous crystals) generated in the melt grow. It has been found that there are problems such as sticking to the crystals and causing cracks.
そこで、 本出願人は、 WO 2 00 7/ 1 2 2 8 6 5 A 1において、 融液中に種結晶基板を垂直に設置し、 この状態で種結晶基板の成長面上に 窒化物単結晶を成長させることを開示した。 種基板を縦に配置すると、 表 面形状が平滑になりやすく、 着色しにく く、 雑晶の付着も抑制される傾向 があることが判明した。 発明の開示  Therefore, in WO 2007/112856 A1, the present applicant places the seed crystal substrate vertically in the melt, and in this state the nitride single crystal is formed on the growth surface of the seed crystal substrate. Was disclosed to grow. It was found that when the seed substrate is placed vertically, the surface shape tends to be smooth, it is difficult to be colored, and the adhesion of miscellaneous crystals tends to be suppressed. Disclosure of the invention
しかし、 種結晶を育成容器の融液内で縦に配置する場合、 容器底部に配 置する場合よりも、 融液の液位.を高くする必要がある。 例えば図 1 2 ( a ) に示すように、 容器 1 A内に融液 3 Bを生じさせ、 融液 3 B内に種結晶 4 を浸漬すると、 融液 3 Bの液位は、 種結晶 4よりも高くする必要がある。 つまり、 種結晶 4を縦に配置して口径の大きな結晶を作製する場合、 融液 3 Bの量を増やすことで、 融液の液位を高く し、 液深さを深くする必要が ある。 However, when seed crystals are arranged vertically in the melt of the growth vessel, it is necessary to raise the liquid level of the melt more than when arranged at the bottom of the vessel. For example, as shown in FIG. 12 (a), when melt 3 B is produced in container 1 A and seed crystal 4 is immersed in melt 3 B, the liquid level of melt 3 B becomes seed crystal 4. Need to be higher than. That is, when the seed crystal 4 is vertically disposed to produce a crystal with a large diameter, it is necessary to increase the liquid level of the melt and to increase the liquid depth by increasing the amount of the melt 3B.
しかし、 この場合には、 融液 3 B中の窒素濃度が結晶成長に必要な濃度 まで向上するのに長い時間がかかるため、 生産性が低く、 製造工程が長時 間化する。 また、 融液 3 B中の窒素濃度が結晶成長に必要な濃度まで上昇 するのに時間がかかるため、 成長が開始する前に種基板が融液に溶けて(メ ノレトバックして)しまい、 部分的に結晶が成長しないことがある。  However, in this case, since it takes a long time for the nitrogen concentration in the melt 3B to increase to the concentration necessary for crystal growth, the productivity is low and the manufacturing process becomes long. In addition, since it takes time for the nitrogen concentration in melt 3B to rise to the concentration necessary for crystal growth, the seed substrate is melted (melted back) in the melt before growth starts, and Crystals sometimes do not grow.
更には、 結晶育成の終了後に単結晶を取り出すときには、 固化したフラ ックス中に育成した窒化物単結晶が取り込まれている。 これを取り出すた めには、 加熱や冷却が必要である。 しかし、 こう した加熱一冷却時に窒化 物単結晶にクラックを生じる場合があった。  Furthermore, when the single crystal is taken out after completion of crystal growth, the grown nitride single crystal is taken into the solidified flux. Heating and cooling are required to take it out. However, there was a case that a crack was generated in the nitride single crystal during such heating and cooling.
一方、 図 1 2 ( b ) に示すように、 断面積の小さい容器を使用し、 融液 の量を減らすことも考えられる。 しかし、 この場合には、 融液 3 Bの気液 界面面積も、 融液量の減少に比例して減少してしまうので、 窒素の融液中 への溶解にかかる時間は短縮されない。  On the other hand, as shown in Fig.12 (b), it is also conceivable to use a vessel with a small cross-sectional area to reduce the amount of melt. However, in this case, the gas-liquid interface area of the melt 3 B also decreases in proportion to the decrease in the amount of melt, so the time taken for the dissolution of nitrogen in the melt is not shortened.
本発明の課題は、 窒素含有非酸化性雰囲気下でフラックス法により窒化 物単結晶を育成する方法において、 融液中に種結晶を縦置きして窒化物単 結晶を育成するのに際して、 窒素の融液への溶解にかかる時間を短縮する ことで、 生産性を向上させ、 また種結晶のメルトバックを防止することで ある。  It is an object of the present invention to provide a method of growing a nitride single crystal by a flux method in a nitrogen-containing non-oxidizing atmosphere, wherein the seed crystal is placed vertically in the melt to grow the nitride single crystal. By shortening the time taken for dissolution in the melt, the productivity is improved and the meltback of the seed crystals is prevented.
本発明は、 窒素含有非酸化性雰囲気下でフラックス法により窒化物単結 晶を育成する方法であって、  The present invention is a method of growing a nitride single crystal by a flux method in a nitrogen-containing non-oxidizing atmosphere,
容器内の融液に対して窒素を溶解させる窒素溶解工程;  Nitrogen dissolving process for dissolving nitrogen in the melt in the vessel;
次いで、 少なく とも表面が溶融原料と非反応性の材質からなる治具を融 液中に浸漬することで、 融液の液位を上昇させ、 この融液中に種結晶を浸 漬する液位上昇工程;および Then, by immersing in the melt a jig whose material is at least the surface of the molten raw material and non-reactive material, the liquid level of the melt is raised, and the seed crystal is immersed in the melt. Soaking liquid level rising process; and
融液の気液界面と種結晶の成長面とがなす角度を 4 5 ° 以上、 1 3 5 ° 以下とした状態で種結晶上に窒化物単結晶を育成する単結晶成長工程 を有することを特徴とする、 窒化物単結晶の育成方法に係るものである。 本発明によれば、 融液の気液界面と種結晶の成長面とがなす角度を 4 5 ° 以上、 1 3 5 ° 以下とした状態で種結晶上に窒化物単結晶を育成する ので、 雑晶が付着しにく く、 単結晶の欠陥を抑制できる。 その上で、 容器 内の融液に対して窒素を飽和濃度まで溶解させた後、 表面が溶融原料と非 反応性の材質からなる治具を融液中に浸漬することで、 融液の液位を上昇 させ、 融液中に種結晶を浸漬し、 単結晶成長を行う。  Having a single crystal growth process to grow a nitride single crystal on a seed crystal in a state where the angle between the gas-liquid interface of the melt and the growth surface of the seed crystal is 45 ° or more and 135 ° or less The present invention relates to a method of growing a nitride single crystal, which is characterized. According to the present invention, the nitride single crystal is grown on the seed crystal in a state where the angle between the gas-liquid interface of the melt and the growth surface of the seed crystal is 45 ° or more and 135 ° or less. It is hard to attach miscellaneous crystals and can suppress single crystal defects. Then, after dissolving nitrogen to a saturation concentration in the melt in the container, the jig is made by immersing in the melt a jig whose surface is made of a material that is not reactive with the molten raw material, so that the melt is melted. Raise the base and immerse the seed crystal in the melt to grow a single crystal.
従って、 窒素溶解工程では、 ί夜位が低く、 融液量が少ないので、 融液中 への窒素の溶解が短時間で終わる。 このため単結晶の生産に必要な時間を 短縮できる。 その上で、 窒素溶解工程の段階では、 種結晶を融液に浸漬し ないので、 種結晶の融液中へのメルトバックを防止でき、 メルトバックに 起因する結晶欠陥を防止できる。  Therefore, in the nitrogen dissolution step, the dissolution of nitrogen in the melt is completed in a short time because the amount of melt is small due to the low degree of stagnation. This can reduce the time required to produce single crystals. In addition, since the seed crystals are not immersed in the melt at the stage of the nitrogen dissolution step, it is possible to prevent the meltback of the seed crystals into the melt and to prevent the crystal defects caused by the meltback.
また、 本発明では、 窒化物単結晶の育成後には、 融液から治具を離脱さ せることにより、 融液の高さを低く して種結晶およびその上の窒化物単結 晶を融液から露出させることができる。 この場合には、 固化したフラック ス中に育成した窒化物単結晶が取り込まれてないので、 固化したフラック スから窒化物単結晶を取り出すときに生ずるクラックを防止できる。 ただ し、 融液から種結晶および窒化物単結晶を露出させることは、 必ずしも必 要ない。 図面の簡単な説明  Further, in the present invention, after growing the nitride single crystal, the jig is separated from the melt, thereby reducing the height of the melt to melt the seed crystal and the nitride single crystal on the seed crystal. Can be exposed from In this case, since the grown nitride single crystal is not taken into the solidified flux, it is possible to prevent a crack which occurs when the nitride single crystal is taken out from the solidified flux. However, it is not always necessary to expose seed crystals and nitride single crystals from the melt. Brief description of the drawings
図 1は、 容器 1内に融液 3および種結晶 4 Α、 4 Βを収容した状態を模 式的に示す断面図である。 図 2は、 治具 8の取り付けられた蓋 6を模式的に示す断面図である。 図 3は、 容器 1に対して蓋 6を組み合わせた状態を模式的に示す断面図 である。 FIG. 1 is a cross-sectional view schematically showing a state in which melt 3 and seed crystals 4 and 4 are contained in container 1. FIG. 2 is a cross-sectional view schematically showing the lid 6 to which the jig 8 is attached. FIG. 3 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
図 4は、治具 8を融液 3 Aに浸漬した状態を模式的に示す断面図である。 図 5は、 単結晶の付いた種結晶を融液から分離した状態を模式的に示す 断面図である。  FIG. 4 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A. FIG. 5 is a cross-sectional view schematically showing a single crystal-attached seed crystal separated from the melt.
図 6は、 種結晶の取り付けられた治具 8を模式的に示す断面図である。 図 7は、 容器 1に対して蓋 6を組み合わせた状態を模式的に示す断面図 である。  FIG. 6 is a cross-sectional view schematically showing a jig 8 to which a seed crystal is attached. FIG. 7 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1.
図 8は、 治具および種結晶を融液内に浸漬した状態を模式的に示す断面 図である。  FIG. 8 is a cross-sectional view schematically showing a state in which the jig and the seed crystal are immersed in the melt.
図 9は、 太幅部 1 8 a と細幅部 1 8 bとを備える治具 1 8を模式的に示 す断面図である。  FIG. 9 is a cross-sectional view schematically showing a jig 18 having a large width portion 1 8 a and a narrow width portion 1 8 b.
図 1 0は、 治具 1 8および種結晶を融液に浸漬した状態を模式的に示す 断面図である。  FIG. 10 is a cross-sectional view schematically showing a state in which the jig 18 and the seed crystal are immersed in the melt.
図 1 1は、融液内に種結晶を浸漬した状態を模式的に示す断面図である。 図 1 2 ( a )、 図 1 2 ( b ) は、 それぞれ、 容器 1 A、 1 Bの融液 3 B内 に種結晶 4を浸漬した状態を模式的に示す図である。 発明を実施するための最良の形態  FIG. 11 is a cross-sectional view schematically showing the state in which the seed crystal is immersed in the melt. Fig. 12 (a) and Fig. 12 (b) are diagrams schematically showing a state in which the seed crystal 4 is immersed in the melt 3B of the containers 1A and 1B, respectively. BEST MODE FOR CARRYING OUT THE INVENTION
好適な実施形態においては、種結晶育成工程において容器を運動させる。 これによつて融液の撹拌と対流とを促進し、窒化物単結晶の欠陥を防止し、 膜厚を揃えることができる。このような運動は特に限定されないが、摇動、 回動が好ましい。  In a preferred embodiment, the container is moved in the seed crystal growing step. As a result, stirring and convection of the melt can be promoted, defects of the nitride single crystal can be prevented, and the film thickness can be made uniform. Such movement is not particularly limited, but peristalsis and rotation are preferable.
以下、 図面を適宜参照しつつ、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate.
図 1は、 容器 1内に融液 3、 種結晶 4 A、 4 Bを収容した状態を模式的 に示す断面図である。 Π Ι属原料とフラックスの原料とを非酸化性雰囲気の グローブボックス内で封入し、 図丄に示すような容器 1の内側空間 5に非 酸化性雰囲気内で封入する。 容器 1の適当な場所、 例えば側壁に、 種結晶 の固定部 2 Α、 2 Βを設け、各固定部 2 Α、 2 Β上にそれぞれ種結晶 4 Α、 4 Βを固定する。 Fig. 1 schematically shows the state in which the melt 3 and the seed crystals 4A and 4B are contained in the container 1. It is sectional drawing shown to. The metal source material and the source material of the flux are enclosed in a non-oxidative atmosphere glove box, and enclosed in the non-oxidative atmosphere in the inner space 5 of the container 1 as shown in the figure. Fix the seed crystal 2Α and 2 2 on the appropriate place of the container 1, for example, the side wall, and fix the seed crystals 4Α and 4Β on the 2Α and 2Β respectively.
容器 1を、 例えば H I P (熱間等方圧プレス) 装置等の圧力容器中に設 置し、 圧力容器内で容器 1を加熱および加圧する。 すると、 容器 1内で原 料がすべて溶解し、 混合融液 3を生成する。 ここで、 容器 1内の空間 5か ら窒素が混合融液 3中に安定して供給され、溶解していく (窒素溶解工程)。 この段階では、 融液の高さ H Iを低く し、 種結晶 4 A、 4 Bが融液 3に接 触しないようにする。  The vessel 1 is placed in a pressure vessel such as a HIP (hot isotropic pressure press) apparatus, for example, and the vessel 1 is heated and pressurized in the pressure vessel. Then, all the raw materials are dissolved in the container 1 to form a mixed melt 3. Here, nitrogen is stably supplied into the mixed melt 3 from the space 5 in the container 1 and dissolved (nitrogen dissolving step). At this stage, the height H I of the melt is reduced so that the seed crystals 4 A and 4 B do not contact the melt 3.
図 2は、 治具 8を取り付けた蓋 6を模式的に示す断面図である。 蓋 6の 内側空間 7に突出するように、 治具 8が取り付けられている。 治具 8の少 なく とも表面は、 融液 3と非反応性の材質から形成する。  FIG. 2 is a cross-sectional view schematically showing the lid 6 to which the jig 8 is attached. A jig 8 is attached so as to protrude into the inner space 7 of the lid 6. At least the surface of the jig 8 is made of a material non-reactive with the melt 3.
図 3は、 容器 1に対して蓋 6を組み合わせた状態を模式的に示す断面図 である。 本例では、 蓋 6を台 9の上に載置し、 固定する。 容器 1は軸 1 0 に対して取り付けられている。 軸 1 0は、 矢印 A、 Bのように上下動可能 であり、 また矢印 Cのように回転可能である。 軸 1 0を矢印 Aのように上 昇させることで、 図 1の状態から容器 1を上昇させ、 蓋 6の内側空間 7内 に装入する。この間、軸 1 0を矢印 Cのように回転させ続けていても良い。 図 3の時点では、 治具 8は融液 3中に浸漬されておらず、 融液 3の液位 H 1は変わらない。  FIG. 3 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1. In this example, the lid 6 is placed on the platform 9 and fixed. Container 1 is attached to shaft 10. The axis 10 can move up and down like arrows A and B, and can rotate like arrow C. By raising the shaft 10 as shown by the arrow A, the container 1 is lifted from the state of FIG. 1 and charged into the inner space 7 of the lid 6. During this time, axis 10 may be kept rotating as shown by arrow C. At the time of FIG. 3, the jig 8 is not immersed in the melt 3 and the liquid level H 1 of the melt 3 does not change.
図 4は、治具 8を融液 3 Aに浸漬した状態を模式的に示す断面図である。 軸 1 0を矢印 Aのように更に上昇させることで、 治具 8を融液内に浸漬す る。 この結果、 融液 3 Aの液位は H 2まで上昇し、 種結晶 4 A、 4 Bが融 液 3 A内に浸漬される。 この状態で、 窒化物単結晶成長に必要な窒素圧力 および時間を保持すると、 図 5に示すように、 種結晶 4 A、 4 Bの成長面 2 0上で窒化物単結晶 1 2 A、 1 2 Bが成長する。 このとき、 気液界面 2 1 と成長面 2 0との角度 0は 4 5〜 1 3 5 ° とする。 FIG. 4 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A. Jig 8 is immersed in the melt by further raising axis 10 as shown by arrow A. As a result, the liquid level of the melt 3 A rises to H 2, and the seed crystals 4 A and 4 B are immersed in the melt 3 A. In this state, the nitrogen pressure required for nitride single crystal growth And when holding time, as shown in FIG. 5, nitride single crystals 12 A and 12 B grow on the growth surface 20 of the seed crystals 4 A and 4 B. At this time, the angle 0 between the gas-liquid interface 21 and the growth surface 20 is set to 45 ° to 35 °.
次いで、 軸 1 0を矢印 Bのように下降させ、 図 5のように、 治具 8を融 液 3から離脱させる。 融液 3の液位は低下し、 最初の液位 H I よりやや低 くなる。 この状態で、 各種結晶 4 A、 4 Bおよび単結晶 1 2 A、 1 2 Bは、 融液 3から露出する。  Next, the axis 10 is lowered as shown by arrow B, and the jig 8 is separated from the melt 3 as shown in FIG. The liquid level of Melt 3 drops and becomes slightly lower than the first liquid level H I. In this state, various crystals 4 A, 4 B and single crystals 12 A, 12 B are exposed from melt 3.
好適な実施形態においては、治具に種結晶を取り付ける。この場合には、 治具を下降させて融液中に浸漬するときに、 治具に取り付けられた種結晶 も同時に融液に浸潰される。 また、 治具を上昇させて融液から離脱させる ときに、 種結晶およびその上の単結晶も同時に融液から離脱させることが できる。  In a preferred embodiment, a seed crystal is attached to the jig. In this case, when the jig is lowered to immerse in the melt, the seed crystal attached to the jig is simultaneously immersed in the melt. In addition, when the jig is lifted and separated from the melt, the seed crystal and the single crystal thereon can also be separated from the melt at the same time.
図 6〜図 8は、 この実施形態に係るものである。 図 6は、 蓋 6に治具 8 を取り付け、 治具 8に種結晶 4 A、 4 B、 4 Cを取り付けた状態を模式的 に示す断面図である。 種結晶 4 A、 4 B、 4 Cを治具 8に取り付ける方法 は特に限定されず、 機械的取り付けや接着であってよい。  6 to 8 relate to this embodiment. FIG. 6 is a cross-sectional view schematically showing a state in which the jig 8 is attached to the lid 6 and the seed crystals 4 A, 4 B, and 4 C are attached to the jig 8. The method of attaching the seed crystals 4 A, 4 B, 4 C to the jig 8 is not particularly limited, and may be mechanical attachment or adhesion.
図 7は、 容器 1に対して蓋 6を組み合わせた状態を模式的に示す断面図 である。 本例では、 蓋 6を台 9の上に載置し、 固定する。 容器 1は軸 1 0 に対して取り付けられている。軸 1 0を矢印 Aのように上昇させることで、 図 6の状態から容器 1を上昇させ、 蓋 6の内側空間 7内に装入する。 この 間、軸 1 0を矢印 Cのように回転させ続けていても良い。図 7の時点では、 治具 8は融液 3中に浸漬されておらず、 融液 3の液位 H 1は変わらない。 図 8は、治具 8を融液 3 Aに浸漬した状態を模式的に示す断面図である。 軸 1 0を矢印 Aのように更に上昇させることで、 治具 8を融液内に浸漬す る。 この結果、 融液 3 Aの液位は H 2まで上昇し、 種結晶 4 A、 4 B、 4 Cが融液 3 A内に浸漬される。 この状態で、 窒化物単結晶成長に必要な窒 素圧力および時間を保持すると、 種結晶 4 A、 4 Bの成長面上で窒化物単 結晶 1 2 A、 1 2 Bが成長する。 FIG. 7 is a cross-sectional view schematically showing a state in which the lid 6 is combined with the container 1. In this example, the lid 6 is placed on the platform 9 and fixed. Container 1 is attached to shaft 10. By raising the shaft 10 as shown by the arrow A, the container 1 is lifted from the state of FIG. 6 and charged into the inner space 7 of the lid 6. During this time, axis 10 may be kept rotating as shown by arrow C. At the time of FIG. 7, the jig 8 is not immersed in the melt 3 and the liquid level H 1 of the melt 3 does not change. FIG. 8 is a cross-sectional view schematically showing a state in which the jig 8 is immersed in the melt 3A. Jig 8 is immersed in the melt by further raising axis 10 as shown by arrow A. As a result, the liquid level of the melt 3 A rises to H 2, and the seed crystals 4 A, 4 B, 4 C are immersed in the melt 3 A. In this state, nitrogen necessary for nitride single crystal growth is When the atomic pressure and time are maintained, nitride single crystals 12 A and 12 B grow on the growth surface of the seed crystals 4 A and 4 B.
次いで、 軸 1 0を下降させ、 治具 8を融液 3から離脱させる。 種結晶 4 A、 4 B、 4 Cは、 治具 8と共に融液から離脱する。 この結果、 融液 3の 液位は低下し、 最初の液位 H 1よりやや低くなる。 この状態で、 各種結晶 4 A、 4 Bおよび単結晶 1 2 A、 1 2 Bは、 融液 3から露出する。  Then, the shaft 10 is lowered to separate the jig 8 from the melt 3. The seed crystals 4 A, 4 B and 4 C are released from the melt together with the jig 8. As a result, the liquid level of Melt 3 drops and becomes slightly lower than the initial liquid level H 1. In this state, various crystals 4 A, 4 B and single crystals 12 A, 12 B are exposed from melt 3.
好適な実施形態においては、 治具が太幅部と細幅部とを備えており、 液 位上昇工程において、 太幅部が融液中に浸漬され、 細幅部が融液の気液界 面に接する。 図 9、 図 1 0は、 この実施形態に係るものである。  In a preferred embodiment, the jig comprises a wide width portion and a narrow width portion, and in the liquid level raising step, the wide width portion is immersed in the melt, and the narrow width portion is the gas-liquid boundary of the melt. Touch the face. 9 and 10 relate to this embodiment.
図 9は、 治具 1 8を取り付けた蓋 6を模式的に示す断面図である。 蓋 6 の内側空間 7に突出するように、 治具 1 8が取り付けられている。 治具 1 8の少なく とも表面は、 融液 3と非反応性の材質から形成する。 治具 1 8 の先端側には太幅部 1 8 aが形成されており、 その根本側に細幅部 1 8 b が形成されている。  FIG. 9 is a cross-sectional view schematically showing the lid 6 to which the jig 18 is attached. A jig 18 is attached so as to protrude into the inner space 7 of the lid 6. At least the surface of jig 18 is made of a material that is non-reactive with melt 3. A wide portion 18a is formed on the tip end side of the jig 18 and a narrow portion 18b is formed on the base side thereof.
図 9は、 治具 1 8を融液 3 Aに浸漬した状態を模式的に示す断面図であ る。 軸 1 0を矢印 Aのように更に上昇させることで、 治具 1 8を融液内に 浸漬する。 この時点では、 太幅部 1 8 aは全体に融液 3 A中に浸漬され、 融液 3 Aの液位は H 2まで上昇し、 種結晶 4 A、 4 Bが融液 3 A内に浸漬 される。 このとき、 細幅部 1 8 bは融液の気液界面に接触し、 細幅部の一 部しか融液内に浸漬されない。 なお、 境界面 1 8 cは融液内に入る。  FIG. 9 is a cross-sectional view schematically showing a state in which the jig 18 is immersed in the melt 3A. Jig 18 is immersed in the melt by raising axis 10 further as shown by arrow A. At this point, the wide part 18a is totally immersed in the melt 3A, the liquid level of the melt 3A rises to H 2 and the seed crystals 4A and 4B are contained in the melt 3A. Immersed. At this time, the narrow portion 18 b contacts the gas-liquid interface of the melt, and only a part of the narrow portion is immersed in the melt. The interface 18 c enters the melt.
この状態で、 窒化物単結晶成長に必要な窒素圧力および時間を保持する と、 種結晶 4 A、 4 Bの成長面上で窒化物単結晶 1 2 A、 1 2 Bが成長す る。 次いで、 軸 1 0を下降させ、 治具 1 8を融液 3から離脱させる。 融液 3の液位は低下し、 最初の液位 H 1よりやや低くなる。 この状態で、 各種 結晶 4 A、 4 Bおよび単結晶 1 2 A、 1 2 Bは、 融液 3から露出する。 本実施形態では、 太幅部の全体が融液内に浸漬されるので、 液位上昇幅 ( H 2 - H 1 ) を大きくすることができる。 これと同時に、 細幅部が気液 界面に接触するようにしたので、 単結晶育成工程の間、 気液界面の面積は 大きくでき、 結晶育成速度を更に向上させることができる。 In this state, when the nitrogen pressure and time necessary for nitride single crystal growth are maintained, nitride single crystals 12A and 12B grow on the growth surfaces of the seed crystals 4A and 4B. Then, lower the axis 10 and separate the jig 18 from the melt 3. The level of Melt 3 drops and is slightly lower than the first level H 1. In this state, various crystals 4 A, 4 B and single crystals 12 A, 12 B are exposed from melt 3. In the present embodiment, since the entire wide width portion is immersed in the melt, the liquid level rise width (H 2 -H 1) can be increased. At the same time, since the narrow portion is in contact with the gas-liquid interface, the area of the gas-liquid interface can be increased during the single crystal growth step, and the crystal growth rate can be further improved.
本発明においては、 融液 3 Aの気液界面と種結晶の成長面とがなす角度 0を 4 5 ° 以上、 1 3 5 ° 以下とする。 好ましくは、 0を 8 0 ° 以上、 1 0 0 ° 以下とする。 特に好ましくは、 融液の気液界面と種結晶の成長面と をほぼ垂直とする。 これによつて、 雑晶がー層単結晶に対して付着しにく くなる。  In the present invention, the angle 0 between the gas-liquid interface of the melt 3 A and the growth surface of the seed crystal is set to 45 ° or more and 135 ° or less. Preferably, 0 is set to 80 ° or more and 100 ° or less. Particularly preferably, the gas-liquid interface of the melt and the growth surface of the seed crystal are substantially perpendicular. This makes it difficult for the miscellaneous crystals to adhere to the layer single crystal.
本発明において、 治具の少なく とも表面を構成する固形物の材質は、 フ ラックスと反応しないことが必要である。 従ってこの材質は、 使用するフ ラックスの種類に応じて、 当業者が適宜選択する。 治具の全体がこう した 材質からなっていてよく、 あるいは治具の表面のみがこう した材質からな つていてよレ、。  In the present invention, it is necessary that the material of the solid material constituting at least the surface of the jig does not react with flux. Therefore, this material is appropriately selected by those skilled in the art according to the type of flux used. The entire jig may be of such material, or only the surface of the jig may be of such material.
通常、 アルカ リ金属, アルカリ土類金属を含有するフラックスに適用す る場合には、 治具の材質は金属タンタルがもっとも好ましいが、 金属タン ダステン、 金属モリブデン、 等の金属、 アルミナ、 イツ トリア、 力ルシア、 等の酸化物セラミックス、 サファイアなどの単結晶、 タングステンカーバ ィ ド、タンタルカーバイ ドなどの炭化物セラミックス、窒化アルミニゥム、 窒化チタン、 窒化ジルコニウム等の窒化物セラミ ックスも使用できること がわかった。 また、 他の材質からなる固形物の表面を、 上述したような、 融液と反応しない材質によって被覆することもできる。 従って、 例えば銅 材を金属タンタルによって被覆した治具も好ましい。  Generally, when applied to a flux containing an alkali metal or alkaline earth metal, the material of the jig is most preferably metal tantalum, but metal such as metal tan dusten, metal molybdenum, etc., alumina, alumina, It was also found that oxide ceramics such as force lucia, etc., single crystals such as sapphire, carbide ceramics such as tungsten carbide and tantalum carbide, and nitride ceramics such as aluminum nitride, titanium nitride, and zirconium nitride can also be used. Also, the surface of a solid made of another material can be coated with a material that does not react with the melt as described above. Therefore, for example, a jig in which a copper material is coated with metallic tantalum is also preferable.
結晶育成工程における液位 H 2の窒素溶解工程における液位 H 1に対す る比率 H 2 Z H 1は、 本発明の観点からは、 2以上が好ましく、 3以上が 更に好ましい。 しかし、 設計上、 H 2 Z H 1は、 5以下が好ましい。  From the viewpoint of the present invention, the ratio H 2 Z H 1 to the liquid level H 1 in the nitrogen dissolving process of the liquid level H 2 in the crystal growth step is preferably 2 or more, more preferably 3 or more. However, in design, H 2 Z H 1 is preferably 5 or less.
治具の太幅部の幅 W 1の細幅部の幅 W 2に対する比率 W 1 /W 2は、 気 液界面の面積を大きくするという観点からは、 2以上が好ましく、 3以上 が更に好ましい。 W 1 /W2の上限は特にないが、 設計上は 1 0以下が好 ましい。 The ratio W 1 / W 2 of the width W 1 to the width W 2 of the wide part W 1 of the jig is From the viewpoint of increasing the area of the liquid interface, 2 or more is preferable, and 3 or more is more preferable. The upper limit of W 1 / W 2 is not particularly limited, but is preferably 10 or less in design.
本発明の単結晶育成装置において、 原料混合物を加熱して融液を生成さ せるための装置は特に限定されない。 この装置の例として熱間等方圧プレ ス装置を例示できるが、 それ以外の雰囲気加圧型加熱炉であってもよい。 融液を生成するためのフラックスは特に限定されないが、 アル力リ金属 およびアル力リ土類金属からなる群より選ばれた一種以上の金属またはそ の合金が好ましい。 この金属としては、 例えば、 リチウム、 ナトリ ウム、 カリウム、 ルビジウム、 セシウム、 ベリ リ ウム、 マグネシウム、 カルシゥ ム、 ス トロンチウム、 バリ ウムが例示でき、 リチウム、 ナトリ ウム、 カル シゥムが特に好ましく、 ナトリ ウムが最も好ましい。  In the single crystal growth apparatus of the present invention, an apparatus for heating the raw material mixture to generate a melt is not particularly limited. As an example of this apparatus, a hot isostatic press apparatus can be exemplified, but other atmosphere pressure type heating furnaces may be used. The flux for producing the melt is not particularly limited, but one or more metals or alloys thereof selected from the group consisting of aluminum nitride metals and alkaline earth metals are preferable. Examples of this metal include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium, with lithium, sodium and calcium being particularly preferred, with sodium being particularly preferred. Most preferred.
また、 上記アル力リ金属およびアル力リ土類金属からなる群より選ばれ た一種以上の金属と合金を形成する物質としては、 以下の金属を例示でき る。  Further, as the substance which forms an alloy with one or more metals selected from the group consisting of the above-mentioned alkali metals and alkaline earth metals, the following metals can be exemplified.
ガリ ウム、 アルミニウム、 インジウム、 ホウ素、 亜鉛、 ケィ素、 錫、 ァ ンチモン、 ビスマス。  Gallium, Aluminum, Indium, Boron, Zinc, Zinc, Tin, Tin, Anthemium, Bismuth.
本発明の育成方法によって、 例えば以下の単結晶を好適に育成できる。 G a N、 A l N、 I nN、 これらの混晶 (A l G a I nN)、 BN。 単結晶育成工程における加熱温度、 圧力は、 単結晶の種類によって選択 するので特に限定されない。 加熱温度は例えば 8 0 0〜 1 5 00°Cとする ことができる。 好ましくは 8 00〜 1 200°Cであり、 更に好ましくは 8 00〜 1 1 0 0°Cである。 圧力も特に限定されないが、 圧力は IMP a以 上であることが好ましく、 2 MP a以上であることが更に好ましい。 圧力 の上限は特に規定しないが、 例えば 2 0 OMP a以下とすることができ、 1 0 OMP a以下が好ましい。 反応を行なうための育成容器の材質は特に限定ざれず、 目的とする加熱 および加圧条件において耐久性のある材料であればよい。 こう した材料と しては、 金属タンタル、 タングステン、 モリブデンなどの高融点金属、 ァ ノレミナ、 サファイア、 イッ トリアなどの酸化物、 窒化アルミニウム、 窒化 チタン、 窒化ジルコニウム、 窒化ホウ素などの窒化物セラミ ックス、 タン ダステンカーバイ ド、 タンタルカーバイ ドなどの高融点金属の炭化物、 p - B N (パイロリティック B N) 、 p - G r (パイロリティックグラフアイ ト) などの熱分解生成体が挙げられる。 For example, the following single crystals can be suitably grown by the growing method of the present invention. G a N, A l N, I nN, mixed crystals of these (A l G a I nN), BN. The heating temperature and pressure in the single crystal growth step are not particularly limited because they are selected according to the type of single crystal. The heating temperature can be set to, for example, 800-1500 ° C. Preferably it is 800-1200 degreeC, More preferably, it is 800-100 degreeC. The pressure is also not particularly limited, but the pressure is preferably IMP a or more, more preferably 2 MP a or more. The upper limit of the pressure is not particularly defined, but may be, for example, 2 0 OMP a or less, preferably 1 0 OMP a or less. The material of the growth vessel for carrying out the reaction is not particularly limited, as long as it is a material which is durable under the intended heating and pressure conditions. Such materials include refractory metals such as metal tantalum, tungsten and molybdenum, oxides such as phenolemina, sapphire and ittria, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride and boron nitride, Examples thereof include carbides of refractory metals such as tanten carbide and tantalum carbide, and thermal decomposition products such as p-BN (pyrolytic BN) and p-GR (pyrolytic graphite).
以下、 更に具体的な単結晶およびその育成手順について例示する。  Hereinafter, more specific single crystals and their growth procedures will be exemplified.
(窒化ガリ ウム単結晶の育成例)  (Example of growing gallium nitride single crystal)
本発明を利用し、 少なく ともナトリ ゥム金属を含むフラックスを使用し て窒化ガリ ウム単結晶を育成できる。 このフラックスには、 ガリ ウム原料 物質を溶解させる。 ガリ ウム原料物質としては、 ガリ ウム単体金属、 ガリ ゥム合金、 ガリ ウム化合物を適用できるが、 ガリ ウム単体金属が取扱いの 上からも好適である。  The present invention can be used to grow a gallium nitride single crystal using a flux containing at least sodium metal. Dissolve the gallium source material in this flux. As a gallium source material, a single metal of gallium, a gallium alloy, and a gallium compound can be applied, but a single metal of gallium is also preferable from the viewpoint of handling.
このフラックスには、 ナトリ ウム以外の金属、 例えばリチウムを含有さ せることができる。 ガリ ゥム原料物質とナトリ ゥムなどのフラックス原料 物質との使用割合は、 適宜であってよいが、 一般的には、 ナトリ ウム過剰 量を用いることが考慮される。 もちろん、 このことは限定的ではない。 この実施形態においては、窒素ガスを含む混合ガスからなる雰囲気下で、 全圧 I MP a以上、 200MP a以下の圧力下で窒化ガリ ゥム単結晶を育 成する。 全圧を 1 MP a以上とすることによって、 例えば 8 0 0°C以上の 高温領域において、 更に好ましくは 8 5 0 °C以上の高温領域において、 良 質の窒化ガリ ゥム単結晶を育成可能であった。  The flux may contain metals other than sodium, such as lithium. The ratio of the gallium source material to the flux source material such as sodium may be appropriate, but in general, it is considered to use an excess amount of sodium. Of course, this is not limiting. In this embodiment, a gallium nitride single crystal is grown under a pressure of total pressure I MP a or more and 200 MPa or less under an atmosphere of a mixed gas containing nitrogen gas. By setting the total pressure to 1 MPa or more, it is possible to grow a good quality gallium nitride single crystal in a high temperature region of 800 ° C. or more, more preferably in a high temperature region of 800 ° C. or more. Met.
好適な実施形態においては、育成時雰囲気中の窒素分圧を 1 MP a以上、 2 00MP a以下とする。 この窒素分圧を I MP a以上とすることによつ て、 例えば 8 00°C以上の高温領域において、 フラックス中への窒素の溶 解を促進し、 良質の窒化ガリ ウム単結晶を育成可能であった。 この観点か らは、雰囲気の窒素分圧を 2 MP a以上とすることが更に好ましレ、。また、 窒素分圧は実用的には 1 O OMP a以下とすることが好ましい。 In a preferred embodiment, the nitrogen partial pressure in the atmosphere during growth is set to 1 MP a or more and 200 MP a or less. By setting this nitrogen partial pressure to I MP a or higher For example, in a high temperature range of 800.degree. C. or higher, dissolution of nitrogen in the flux is promoted, and a good quality gallium nitride single crystal can be grown. From this point of view, it is further preferable to set the nitrogen partial pressure of the atmosphere to 2 MP a or more. In addition, it is preferable to set the nitrogen partial pressure to 1 O OMP a or less practically.
雰囲気中の窒素以外のガスは限定されないが、 不活性ガスが好ましく、 アルゴン、 ヘリ ウム、 ネオンが特に好ましい。 窒素以外のガスの分圧は、 全圧から窒素ガス分圧を除いた値である。  The gas other than nitrogen in the atmosphere is not limited, but is preferably an inert gas, particularly preferably argon, helium or neon. The partial pressure of gases other than nitrogen is the value obtained by removing the partial pressure of nitrogen gas from the total pressure.
好適な実施形態においては、窒化ガリ ゥム単結晶の育成温度は、 80 0°C 以上であり、 8 5 0°C以上とすることが更に好ましい。 このような高温領 域においても良質な窒化ガリウム単結晶が育成可能である。 また、 高温 - 高圧での育成により、 生産性を向上させ得る可能性がある。  In a preferred embodiment, the growth temperature of the gallium nitride single crystal is 800 ° C. or higher, and more preferably, 850 ° C. or higher. Good quality gallium nitride single crystals can be grown even in such a high temperature region. Also, high temperature-high pressure growth may improve productivity.
窒化ガリ ゥム単結晶の育成温度の上限は特にないが、 育成温度が高すぎ ると結晶が成長しにく くなるので、 1 5 00°C以下とすることが好ましく、 この観点からは、 1 200°C以下とすることが更に好ましい。  The upper limit of the growth temperature of the gallium nitride single crystal is not particularly limited, but if the growth temperature is too high, the crystal is difficult to grow, so the temperature is preferably 150 ° C. or less. From this point of view, It is further preferable to set the temperature to 1 200 ° C. or less.
窒化ガリ ゥム結晶をェピタキシャル成長させるための育成用基板の材質 は限定されないが、 サファイア、 A 1 Nテンプレー ト、 G a Nテンプレ一 ト、 G a N自立基板、 シリ コン単結晶、 S i C単結晶、 Mg O単結晶、 ス ビネノレ (Mg A l 204)、 L i A 1 02、 L i G a〇2、 L a A 1 03, L a G a O a, N d G a O 3等のぺロブスカイ ト型複合酸化物を例示できる。 また組成式 [Ai— y ( S r ! _ x B a x) y〕 〔 (A 1 x _ z G a z) x _u - Du〕 O a (Aは、 希土類元素である ; Dは、 ニオブおよびタンタルからな る群より選ばれた一種以上の元素である ; y = 0. 3〜0. 98 ; X = 0 〜 l ; z = 0〜 l ; u = 0. 1 5〜0. 4 9 ; x + z = 0. :!〜 2) の立 方晶系のベロブスカイ ト構造複合酸化物も使用できる。 また、 S CAM (S c A 1 M g O 4) も使用できる。 The material of the growth substrate for epitaxially growing the gallium nitride crystal is not limited, but sapphire, A 1 N template, G a N template, G a N free-standing substrate, silicon single crystal, Si i C single crystal, Mg O single crystal, Swinenole (Mg A1 2 0 4 ), L i A 1 0 2 2 , L i G a 2, L a A 1 0 3 , L a G a 0 a, N d Perovskite type composite oxides such as G a O 3 can be exemplified. The composition formula [Ai- y (S r _ x B a x!) Y ] [(A 1 x _ z G a z) x _ u - D u ] O a (A is a rare earth element; D is , One or more elements selected from the group consisting of niobium and tantalum; y = 0. 3 to 0. 98; X = 0 to 1; z = 0 to 1; u = 0. 1 5 to 0. Beloveite-squite complex oxide of 4 9; x + z = 0.:! ~ 2) can also be used. In addition, S CAM (S c A 1 M g O 4 ) can also be used.
(A 1 N単結晶の育成例) 本発明は、 少なく ともアルミニウムとアル力リ土類を含むフラックスを 含む融液を特定の条件下で窒素含有雰囲気中で加圧することによって、 A 1 N単結晶を育成する場合にも有効であることが確認できた。 実施例 (Example of growing A 1 N single crystal) The present invention is also effective in growing an A 1 N single crystal by pressurizing a melt containing a flux containing at least aluminum and an alkaline earth in a nitrogen-containing atmosphere under specific conditions. That was confirmed. Example
(実施例 1 )  (Example 1)
図 1〜図 5を参照しつつ説明した前記方法に従い、 単結晶を育成した。 具体的には、 円形平底坩堝 1の内径を 1 6 0mmとし、 高さを 1 2 0 mm とした。 育成原料として、 金属 G a 3 00 g、 金属 N a 4 8 0 gをグロ一 ブボックス内でそれぞれ融解して充填した。 まず N aを充填し、 その後 G aを充填することにより、 N aを雰囲気から遮蔽した。 坩堝 1内の原料の 融液高さ H 1は約 3 0 mmとなった。  A single crystal was grown according to the method described above with reference to FIGS. Specifically, the inner diameter of the round flat bottom plate 1 was set to 160 mm, and the height was set to 120 mm. As raw materials for growth, 300 g of metal G a and 400 g of metal N a were melted and filled in a growth box, respectively. The Na was shielded from the atmosphere by first filling with Na and then filling with Ga. The melt height H 1 of the raw materials in crucible 1 was about 30 mm.
次に、 坩堝 1内周に設置した種基板保持用の台 2 A、 2 Bに、 種結晶基板 4 A、 4 Bとして、 直径 2インチの G a Nテンプレート (サファイア基板 上に G a N単結晶薄膜を 5 ミクロンェピタキシャル成長させたもの) を 6 枚、 縦に配置した。 この時、 種結晶基板の最下部は坩堝底から 3 5 mmの 高さとなった。 図 1には、 6枚の種基板のうち 2枚のみが示されている。 治具 8は円筒形状をしており、 水平断面における口径は 1 3 0 mmであ る。 9 0 0°C * 4. 5 MP aにて昇温加圧後、 24時間保持したのち、 8 70°Cまで降温し、 図 4に示すように坩堝を上方に移動することにより、 治具 8を融液 3 A中に侵浸させ、 液位を上昇させた。 この時の液位 H 2の 計算値は坩堝底から 90 mmである。 この状態で 9 6時間保持した後、 図 5に示すように坩堝を下方に移動して治具 8を融液から引き出すことによ り液位を下げ、 種基板と融液を分離した。 その後 24時間かけて室温まで 徐冷し、 結晶を回収した。 Next, on the inner periphery of the seed plate 1 on the inner surface of the seed substrate holding platform 2 A, 2 B, as the seed crystal substrate 4 A, 4 B, a 2 N diameter G a N template (G a N single on sapphire substrate Six pieces of crystal thin film (grown by 5 micron epitaxial growth) were placed vertically. At this time, the bottom of the seed crystal substrate became 35 mm high from the bottom of the crucible. Only two of the six seed substrates are shown in FIG. The jig 8 has a cylindrical shape, and the diameter in the horizontal cross section is 130 mm. After raising the temperature and pressure at 900 ° C * 4.5 MP a and holding for 24 hours, the temperature is lowered to 8 70 ° C and the jig is moved by moving the crucible upward as shown in Fig. 4 8 was infiltrated into Melt 3 A, and the liquid level was raised. The calculated liquid level H 2 at this time is 90 mm from the bottom of the pot. After holding for 96 hours in this state, as shown in FIG. 5, the crucible was moved downward and the jig 8 was pulled out of the melt to lower the liquid level to separate the seed substrate and the melt. Thereafter, it was gradually cooled to room temperature over 24 hours to recover crystals.
育成した結晶はフラックスと分離されており、 クラックは発生していな かった。 6枚の 2ィンチの種基板全面に約 2 mmの G a N結晶が成長して いた。 面内の厚さバラツキは小さく、 1 0 %未満であった。 また、 6枚の 平均厚さバラツキも 1 0 %程度と小さかった。 The grown crystals are separated from the flux and no cracks have occurred. won. About 2 mm of G.sub.a N crystals were grown on the entire surface of the six 2-inch seed substrates. The in-plane thickness variation was small, less than 10%. Also, the average thickness variation of the six sheets was as small as about 10%.
(実施例 2)  (Example 2)
実施例 1 と同様にして単結晶を育成した。 ただし、 本例では、 図 6〜 図 8に示すように、 治具 8の表面に種結晶基板 4 A、 4 B、 4 Cを固定し た。 また、 治具 8は 6角柱形状をしており、 水平断面の一辺が 7 0 mm、 対角 1 4 0 mmである。 この治具 8に、 種基板として直径 2インチの G a Nテンプレートを 6枚、 縦に配置した。 この時、 種基板の最下部は治具の 底部から 5 mmの高さとなった。  Single crystals were grown in the same manner as in Example 1. However, in this example, as shown in FIGS. 6 to 8, the seed crystal substrates 4 A, 4 B, and 4 C were fixed to the surface of the jig 8. Further, the jig 8 has a hexagonal prism shape, and one side of the horizontal cross section is 70 mm and the diagonal is 140 mm. In this jig 8, six G a N templates with a diameter of 2 inches were vertically arranged as seed substrates. At this time, the bottom of the seed substrate was 5 mm above the bottom of the jig.
9 0 0 °C · 4. 5 MP aにて昇温加圧後、 2 4時間保持したのち、 8 7 0°Cまで降温し、 坩堝を上方に移動することにより、 治具 8を融液 3中に 侵浸させ、 液位を上昇させた。 この時の液位 H 2の計算値は坩堝底から 9 O mmである。 この状態で 9 6時間保持した後、 坩堝を下方に移動して治 具を融液から引き出すことにより液位を下げ、 種基板と融液を分離した。 その後 2 4時間かけて室温まで徐冷し、 結晶を回収した。  After raising the temperature and pressure at 900 ° C · 4.5 MP a and holding for 24 hours, the temperature is lowered to 8 70 ° C and the jig 8 is melted by moving the crucible upward. Infiltrated into 3 and raised the liquid level. The calculated liquid level H 2 at this time is 9 O mm from the bottom of the pot. After holding for 96 hours in this state, the crucible was moved downward and the jig was pulled out of the melt to lower the liquid level, and the seed substrate and the melt were separated. Thereafter, it was gradually cooled to room temperature over 24 hours to recover crystals.
育成した結晶はフラックスと分離されており、 クラックは発生していな かった。 6枚の 2ィンチの種基板全面に約 2 mmの G a N結晶が成長して いた。 面内の厚さバラツキは小さく、 1 0 %未満であった。 また、 3枚の 平均厚さバラツキも 1 0 %程度と小さかった。  The grown crystals were separated from the flux, and no cracks occurred. About 2 mm of G.sub.a N crystals were grown on the entire surface of the six 2-inch seed substrates. The in-plane thickness variation was small, less than 10%. In addition, the average thickness variation of the three sheets was also as small as about 10%.
(実施例 3 )  (Example 3)
実施例 1 と同様にして単結晶を育成した。 ただし、 液位調整用治具の形 状を、 図 9に示すように変更した。 液位調整用治具の底部から 8 0 mmま での口径 W 1を 1 3 0 mmとし、 それより上方の口径 W 2を 3 O mmとし た。  Single crystals were grown in the same manner as in Example 1. However, the shape of the level adjustment jig was changed as shown in Figure 9. The diameter W 1 up to 80 mm from the bottom of the level adjustment jig was 130 mm, and the diameter W 2 above that was 3 O mm.
この他は実施例 1 と同じ条件で実験を行ったところ、 育成時間 9 6時間 で厚さ 5 mmの G a N結晶が得られた。 これは、 図 1 0に示すように、 結 晶育成中の気液界面 2 1の面積が、 実施例 1の場合と比較して約 2. 8倍 に向上したため、 結晶成長中の窒素の溶け込み速度が向上し、 結晶成長速 度が向上したためと考えられる。 The experiment was conducted under the same conditions as in Example 1 except that the growth time was 96 hours. Of 5 mm thick were obtained. This is because, as shown in FIG. 10, since the area of the gas-liquid interface 21 during crystal growth is improved by about 2.8 times as compared with the case of Example 1, the dissolution of nitrogen during the crystal growth It is thought that the speed is improved and the crystal growth speed is improved.
(実施例 4)  (Example 4)
実施例 1において、 坩堝 1を回転させながら結晶育成を行ったところ、 同じ育成時間で 4 mm厚さの G a N結晶が得られた。 これは回転によって 融液の撹拌が促進され、 種基板上への窒素供給速度が向上し、 結晶成長速 度が向上したためと考えられる。  In Example 1, crystal growth was performed while rotating 坩 堝 1, and G A N crystals of 4 mm in thickness were obtained in the same growth time. This is thought to be because the rotation accelerates the stirring of the melt, the nitrogen supply rate on the seed substrate is improved, and the crystal growth rate is improved.
(比較例 1 )  (Comparative example 1)
図 1 1に示すようにして単結晶を育成した。 ただし、 実施例 1 と同じ坩 堝を用い、 グローブボックス中でまず種基板を縦に 6枚配置し、 液位が 9 0 mmになるように、 金属 G a と金属 N aをそれぞれ 90 0 gと 1 44 0 g枰量し、 融解して充填した。 金属 N aを先に溶融充填し、 その後金属 G aを充填することにより、 金属 N aを雰囲気から遮断した。  Single crystals were grown as shown in FIG. However, using the same crucible as in Example 1, first arrange six seed substrates vertically in the glove box, and set the liquid level to 90 mm, respectively 90 0 g of metal G a and metal N a And weighed 1 44 0 g, thawed and filled. The metal Na was isolated from the atmosphere by melt filling the metal Na first and then filling it with the metal Ga.
坩堝 1を育成炉に設置し、 8 7 0°C * 4. 5 MP aに昇温加圧後、 1 2 0時間保持し、 24時間かけて徐冷して結晶を回収した。 ここで、 液位調 整用の治具は使用しなかった。 種基板の上部に約 0. 5 mmの G a N結晶 が成長したが、 下部に向かうにつれて厚さが減少し、 種基板中心付近より 下方には G a N結晶は成長していなかった。 回収した種基板を評価したと ころ、 下方では MO C VD膜がメルトバックして存在していないことが判 明した。  The crucible 1 was placed in a growth furnace, heated and pressurized to 870 ° C. * 4.5 MP a, held for 120 hours, gradually cooled over 24 hours, and the crystals were recovered. Here, no jig for liquid level adjustment was used. About 0.5 mm of G a N crystal was grown on the top of the seed substrate, but the thickness decreased toward the bottom, and G a N crystals did not grow below the center of the seed substrate. Evaluation of the recovered seed substrate revealed that the MO C VD film was not melted back below.
本発明の特定の実施形態を説明してきたけれども、 本発明はこれら特定 の実施形態に限定されるものではなく、 請求の範囲の範囲から離れること なく、 種々の変更や改変を行いながら実施できる。  Although specific embodiments of the present invention have been described, the present invention is not limited to these specific embodiments and can be practiced with various changes and modifications without departing from the scope of the claims.

Claims

請求の範囲 The scope of the claims
1 . 窒素含有非酸化性雰囲気下でフラックス法により窒化物単結晶を 育成する方法であって、 1. A method of growing a nitride single crystal by a flux method in a nitrogen-containing non-oxidizing atmosphere,
容器内の融液に対して窒素を溶解させる窒素溶解工程;  Nitrogen dissolving process for dissolving nitrogen in the melt in the vessel;
次いで、 少なく とも表面が前記融液と非反応性の材質からなる治具を前 記融液中に浸漬することで、 前記融液の液位を上昇させ、 この融液中に種 結晶を浸漬する液位上昇工程;および  Then, by immersing in the melt a jig in which at least the surface is made of a material non-reactive with the melt, the liquid level of the melt is raised, and the seed crystal is immersed in the melt. Liquid level rising process; and
前記融液の気液界面と前記種結晶の成長面とがなす角度を 4 5 ° 以上、 1 3 5 ° 以下とした状態で前記種結晶上に窒化物単結晶を育成する単結晶 成長工程  Single crystal growth step of growing a nitride single crystal on the seed crystal in a state where the angle between the gas-liquid interface of the melt and the growth surface of the seed crystal is 45 ° or more and 135 ° or less
を有することを特徴とする、 窒化物単結晶の育成方法。 And a method of growing a nitride single crystal.
2 . 前記融液の気液界面と前記種結晶の前記成長面とがほぼ垂直であ ることを特徴とする、 請求項 1記載の方法。 2. The method according to claim 1, wherein the gas-liquid interface of the melt and the growth surface of the seed crystal are substantially perpendicular.
3 . 前記窒化物単結晶を育成した後に、 前記治具を前記融液から引き 上げることによって、 前記種結晶および前記窒化物単結晶を前記融液外に 露出させることを特徴とする、 請求項 1または 2記載の方法。 3. After growing the nitride single crystal, the seed crystal and the nitride single crystal are exposed outside the melt by pulling up the jig from the melt. The method described in 1 or 2.
4 . 前記単結晶育成工程において前記容器を揺動または回動させるこ とを特徴とする、 請求項 1〜 3のいずれか一つの請求項に記載の方法。 4. The method according to any one of claims 1 to 3, characterized in that the container is rocked or pivoted in the single crystal growth step.
5 . 前記治具が太幅部と細幅部とを備えており、 前記液位上昇工程に おいて、 前記太幅部が前記融液中に浸漬され、 前記細幅部が前記融液の気 液界面に接することを特徴とする、 請求項 1〜 4のいずれか一つの請求項 に記載の方法 5. The jig includes a wide width portion and a narrow width portion, and in the liquid level raising step, the wide width portion is immersed in the melt, and the narrow width portion is formed of the melt. The air-liquid interface according to any one of claims 1 to 4, characterized in that it is in contact with the interface. Method described in
6 . 前記治具に前記種結晶を取り付けることを特徴とする、 〜 5のいずれか一つの請求項に記載の方法。 6. The method according to any one of 5 to 5, characterized in that the seed crystal is attached to the jig.
PCT/JP2009/060978 2008-06-26 2009-06-10 Method for growing nitride single crystal WO2009157347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010517931A JP5361884B2 (en) 2008-06-26 2009-06-10 Nitride single crystal growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-166933 2008-06-26
JP2008166933 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009157347A1 true WO2009157347A1 (en) 2009-12-30

Family

ID=41444415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060978 WO2009157347A1 (en) 2008-06-26 2009-06-10 Method for growing nitride single crystal

Country Status (2)

Country Link
JP (1) JP5361884B2 (en)
WO (1) WO2009157347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168609A (en) * 2014-03-10 2015-09-28 株式会社リコー Method for manufacturing 13 group nitride crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175275A (en) * 2003-12-12 2005-06-30 Matsushita Electric Works Ltd Semiconductor light emitting element employing group iii metal nitride crystal and process for producing group iii metal nitride crystal
JP2005187317A (en) * 2003-12-03 2005-07-14 Ngk Insulators Ltd Method of manufacturing single crystal, single crystal, and its composite
JP2007238343A (en) * 2006-03-06 2007-09-20 Ngk Insulators Ltd Method of growing group iii nitride single crystal
JP2007254161A (en) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Method of and device for producing group iii nitride crystal
WO2007122865A1 (en) * 2006-03-24 2007-11-01 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187317A (en) * 2003-12-03 2005-07-14 Ngk Insulators Ltd Method of manufacturing single crystal, single crystal, and its composite
JP2005175275A (en) * 2003-12-12 2005-06-30 Matsushita Electric Works Ltd Semiconductor light emitting element employing group iii metal nitride crystal and process for producing group iii metal nitride crystal
JP2007238343A (en) * 2006-03-06 2007-09-20 Ngk Insulators Ltd Method of growing group iii nitride single crystal
JP2007254161A (en) * 2006-03-20 2007-10-04 Ngk Insulators Ltd Method of and device for producing group iii nitride crystal
WO2007122865A1 (en) * 2006-03-24 2007-11-01 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168609A (en) * 2014-03-10 2015-09-28 株式会社リコー Method for manufacturing 13 group nitride crystal

Also Published As

Publication number Publication date
JPWO2009157347A1 (en) 2011-12-08
JP5361884B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5044311B2 (en) Nitride single crystal growth method
JP5182944B2 (en) Method and apparatus for producing nitride single crystal
JP4827107B2 (en) Method for producing nitride single crystal
JPWO2007102610A1 (en) Single crystal growth method
JP5433632B2 (en) GaAs single crystal manufacturing method and GaAs single crystal wafer
US8506705B2 (en) Method for manufacturing nitride single crystal
JP2009091225A (en) Method for manufacturing nitride single crystal
WO2007108498A1 (en) Nitride single crystal manufacturing apparatus
CN112226813A (en) Target single crystal growth device and method
WO2009157347A1 (en) Method for growing nitride single crystal
WO2017026196A1 (en) Production method for group 13 nitride single crystal and production apparatus for group 13 nitride single crystal
JP2019194132A (en) Method of manufacturing group iii nitride microcrystal aggregate, method of manufacturing gallium nitride microcrystal aggregate, group iii nitride microcrystal aggregate, and sputtering target
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
JP4591183B2 (en) Method for producing AlN single crystal
JP6631813B2 (en) GaN single crystal growth method and GaN single crystal growth apparatus
WO2009081687A1 (en) Apparatus for growing nitride single crystal
JP4863264B2 (en) Manufacturing method of semiconductor crystal
JP5318803B2 (en) Method and apparatus for producing nitride crystal
WO2008099720A1 (en) Melt composition for gallium nitride single crystal growth and method for growing gallium nitride single crystal
JP4965465B2 (en) Method for producing nitride single crystal
JP5637601B2 (en) Nitride single crystal growth equipment
JP2010024125A (en) Method for growing group iii nitride crystal
JP2019189466A (en) Method for manufacturing group iii nitride crystal
JP7456849B2 (en) Method for manufacturing group 13 nitride crystal
JP6720888B2 (en) Method for manufacturing group III nitride semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770057

Country of ref document: EP

Kind code of ref document: A1