JP5044311B2 - Nitride single crystal growth method - Google Patents

Nitride single crystal growth method Download PDF

Info

Publication number
JP5044311B2
JP5044311B2 JP2007180752A JP2007180752A JP5044311B2 JP 5044311 B2 JP5044311 B2 JP 5044311B2 JP 2007180752 A JP2007180752 A JP 2007180752A JP 2007180752 A JP2007180752 A JP 2007180752A JP 5044311 B2 JP5044311 B2 JP 5044311B2
Authority
JP
Japan
Prior art keywords
single crystal
nitride single
crystal
grown
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007180752A
Other languages
Japanese (ja)
Other versions
JP2008094704A (en
Inventor
義政 小林
幹也 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007180752A priority Critical patent/JP5044311B2/en
Publication of JP2008094704A publication Critical patent/JP2008094704A/en
Application granted granted Critical
Publication of JP5044311B2 publication Critical patent/JP5044311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化物単結晶の育成方法に関するものである。
The present invention relates to a method for growing a nitride single crystal.

窒化ガリウム系III-V 窒化物は、優れた青色発光素子として注目を集めており、発光ダイオードや半導体レーザーダイオード用材料として実用化されている。特許文献1〜4記載の方法では、フラックス法によってIII 族窒化物単結晶を育成している。
特開2002−293696 特開2003−292400 WO2005−095682 WO2006−030718
Gallium nitride III-V nitride has attracted attention as an excellent blue light emitting device, and has been put into practical use as a material for light emitting diodes and semiconductor laser diodes. In the methods described in Patent Documents 1 to 4, a group III nitride single crystal is grown by a flux method.
JP2002-293696A JP 2003-292400 A WO2005-095682 WO2006-030718

種結晶として、基板上に堆積させたGaN 薄膜またはAlN 薄膜を用いて、核発生箇所を制御する方法が報告されている(特許文献5)。
特開2000−327495
A method of controlling the nucleation site using a GaN thin film or an AlN thin film deposited on a substrate as a seed crystal has been reported (Patent Document 5).
JP 2000-327495 A

また、本出願人は、アルミナを含む原料組成物を、窒素含有雰囲気中、炭素存在下で加熱することにより、窒化アルミニウム単結晶を製造方法によって、針状の窒化アルミニウム単結晶を作製する事に成功している(特許文献6、7)。
特開2005−132699 特開2006−045047
In addition, the present applicant decided to produce a needle-like aluminum nitride single crystal by a method for producing an aluminum nitride single crystal by heating a raw material composition containing alumina in a nitrogen-containing atmosphere in the presence of carbon. It has been successful (Patent Documents 6 and 7).
JP 2005-132699 A JP 2006-045047 A

本出願人は、フラックス法において、気液界面の温度と融液の底部における温度との差を設けることにより、雑晶を発生させずに、種結晶上に均一に単結晶を育成する事に成功している(特許文献8:未公開)。
特願2006−084250
In the flux method, the applicant decides to grow a single crystal uniformly on the seed crystal without generating miscellaneous crystals by providing a difference between the temperature at the gas-liquid interface and the temperature at the bottom of the melt. Successful (Patent Document 8: unpublished).
Japanese Patent Application No. 2006-084250

しかし、従来の窒化物単結晶の育成方法では、基板と窒化物単結晶の熱膨張差に起因し、窒化物単結晶に反りが発生することがあった。すなわち、育成された窒化物単結晶は板状ないし膜状をなしているが、この窒化物単結晶に反りが発生することがある。窒化物単結晶に反りが生じたときにも、これを加工することによって平坦面を形成することは可能である。しかし、反りの発生した窒化物単結晶中では、単結晶の結晶方位が場所によって少しずつ異なることになる。このため、窒化物単結晶に機械的に平坦面を形成したとしても、その平坦面の各点における結晶方位が少しずつ変化することになる。結晶方位が場所によって変化すると、高品質の光学デバイスを作製することは難しくなる。
また、種結晶基板の表面に窒化物単結晶を育成するとき、種結晶基板上での核発生場所を制御することが難しく、種結晶基板上の任意の位置で結晶成長が始まる。隣接する部位から成長を始めた窒化物単結晶は、成長に伴って互いにぶつかりあい、粒界を形成しやすい。
However, in the conventional method for growing a nitride single crystal, the nitride single crystal may be warped due to a difference in thermal expansion between the substrate and the nitride single crystal. That is, the grown nitride single crystal has a plate or film shape, but the nitride single crystal may be warped. Even when the nitride single crystal is warped, it is possible to form a flat surface by processing it. However, in a nitride single crystal in which warpage has occurred, the crystal orientation of the single crystal differs little by little depending on the location. For this reason, even if a flat surface is mechanically formed on the nitride single crystal, the crystal orientation at each point on the flat surface changes little by little. When the crystal orientation changes depending on the location, it becomes difficult to produce a high-quality optical device.
Further, when a nitride single crystal is grown on the surface of the seed crystal substrate, it is difficult to control the location of nucleation on the seed crystal substrate, and crystal growth starts at an arbitrary position on the seed crystal substrate. Nitride single crystals that have started to grow from adjacent sites collide with each other as they grow, and easily form grain boundaries.

本発明の課題は、フラックス法によって窒化物単結晶を育成するのに際して、結晶基板の反りや粒界生成を抑制することである。   An object of the present invention is to suppress warping of crystal substrates and generation of grain boundaries when growing a nitride single crystal by a flux method.

本発明は、フラックス法によって窒化物単結晶を育成する方法であって、
融液中で窒化物単結晶からなる針状種結晶の側面から窒化物単結晶を成長させる。
The present invention is a method for growing a nitride single crystal by a flux method,
A nitride single crystal is grown from the side surface of a needle-like seed crystal composed of the nitride single crystal in the melt.

この際、成長する窒化物単結晶のc軸が針状種結晶の主軸と略平行となるようにし,針状種結晶の幅に対する長さの比率が5以上である。At this time, the c-axis of the growing nitride single crystal is made substantially parallel to the main axis of the acicular seed crystal, and the ratio of the length to the width of the acicular seed crystal is 5 or more.

前記窒化物単結晶を加工して窒化物単結晶基板を製作できる
A nitride single crystal substrate can be manufactured by processing the nitride single crystal.

本発明者は、融液中で種結晶上に窒化物単結晶を成長させる育成方法において、針状種結晶の側面から径方向に向かって、すなわち針状種結晶の厚さないし径が大きくなる方向へと向かって窒化物単結晶を成長させることを想到した。   In the growing method of growing a nitride single crystal on a seed crystal in a melt, the present inventor increases the thickness or diameter of the needle-shaped seed crystal from the side surface in the radial direction, that is, the needle-shaped seed crystal. The idea was to grow nitride single crystals in the direction.

例えば図1の模式図に示すように、針状種結晶9を育成容器7の融液5内に浸漬し、単結晶の育成条件とする。この育成方法によれば、例えば図2(a)、図2(b)の模式図に示すように、針状種結晶9の側面9aから、矢印Yのように径方向へと向かって、窒化物単結晶10が一層ずつ成長していく。したがって、隣接する単結晶同士の衝突は起こりにくく、粒界は形成されにくい。   For example, as shown in the schematic diagram of FIG. 1, the needle-like seed crystal 9 is immersed in the melt 5 of the growth vessel 7 to obtain a single crystal growth condition. According to this growth method, for example, as shown in the schematic diagrams of FIGS. 2A and 2B, nitriding is performed from the side surface 9a of the needle-like seed crystal 9 in the radial direction as indicated by the arrow Y. The material single crystal 10 grows one layer at a time. Therefore, collision between adjacent single crystals hardly occurs and a grain boundary is hardly formed.

また、この方法によって得られた単結晶は、針状種結晶との接触面積が小さいために、育成された単結晶と種結晶との熱膨張差の影響が小さい。その上、針状種結晶を中心として単結晶の形状は略対称である。したがって、育成される単結晶の反りが少なく、単結晶の結晶方位が揃っており、高品質な単結晶を提供できる。   Moreover, since the single crystal obtained by this method has a small contact area with the acicular seed crystal, the influence of the difference in thermal expansion between the grown single crystal and the seed crystal is small. In addition, the shape of the single crystal is substantially symmetric around the needle-like seed crystal. Therefore, the single crystal to be grown is less warped, the crystal orientation of the single crystal is uniform, and a high-quality single crystal can be provided.

本発明の育成方法によって、例えば以下の単結晶を好適に育成できる。
GaN、AlN、InN、これらの混晶(AlGaInN)、BN。
For example, the following single crystals can be suitably grown by the growing method of the present invention.
GaN, AlN, InN, mixed crystals thereof (AlGaInN), BN.

針状種結晶の種類は特に限定されないが、窒化物単結晶が特に好ましい。このような窒化物単結晶としては、GaN、AlN、InN、これらの混晶(AlGaInN)、BNを例示できる。   The kind of the needle-like seed crystal is not particularly limited, but a nitride single crystal is particularly preferable. Examples of such nitride single crystals include GaN, AlN, InN, mixed crystals thereof (AlGaInN), and BN.

針状種結晶の横断面形状は特に限定されず、例えば真円形、楕円形などであってよく、また、三角形、四辺形、五角形、六角形等の多角形であってよい。   The cross-sectional shape of the needle-like seed crystal is not particularly limited, and may be, for example, a perfect circle or an ellipse, or may be a polygon such as a triangle, a quadrilateral, a pentagon, or a hexagon.

針状種結晶は、細長い形状をした種結晶であ、針状種結晶のに対する長さ比率は5以上である。 The acicular seed crystals, Ri seed crystal der where the elongated shape, the length ratio to the width of the acicular seed crystals is 5 or more.

針状種結晶の製造方法は特に限定されないが、特許文献6、7に記載の方法を好適に例示できる。   Although the manufacturing method of an acicular seed crystal is not specifically limited, The method of patent document 6, 7 can be illustrated suitably.

本発明の方法を実施する際には、側面9aから矢印A方向へと向かっても単結晶が成長する傾向がある。このような単結晶も、その起点が針状種結晶9の側面9aにある範囲内において、本発明に包含される。ただし、側面から、針状種結晶9の主軸Xに対して略垂直な方向Yへと向かって、単結晶が成長することが好ましい。   When the method of the present invention is carried out, the single crystal tends to grow from the side surface 9a toward the arrow A direction. Such a single crystal is also included in the present invention as long as its starting point is on the side surface 9a of the needle-like seed crystal 9. However, it is preferable that the single crystal grows from the side surface in the direction Y substantially perpendicular to the main axis X of the needle-like seed crystal 9.

好適な実施形態においては、育成される窒化物単結晶がウルツ鉱構造を有しており、すなわち、m軸、c軸、およびa軸を有する。これらの各結晶軸は結晶学的に定義されるものである。そして、育成される窒化物単結晶のc軸が、針状種結晶の主軸と略平行となるように単結晶を育成する。すなわち、図2(a)、(b)に示すように、窒化物単結晶10のc軸が、針状種結晶9の主軸Xと略平行となるように窒化物単結晶を育成する。これによって、育成される窒化物単結晶の反りや粒界を一層低減できる。この実施形態では、単結晶c軸とX軸とは、ほぼ平行であれば足り、例えば10°以内の誤差は差し支えない。また、c軸の方位は、針状種結晶9の側面9aにおける結晶方位によって制御することができる。   In a preferred embodiment, the nitride single crystal to be grown has a wurtzite structure, i.e., has an m-axis, a c-axis, and an a-axis. Each of these crystal axes is defined crystallographically. Then, the single crystal is grown so that the c-axis of the nitride single crystal to be grown is substantially parallel to the main axis of the acicular seed crystal. That is, as shown in FIGS. 2A and 2B, the nitride single crystal is grown so that the c-axis of the nitride single crystal 10 is substantially parallel to the main axis X of the needle-like seed crystal 9. As a result, warpage and grain boundaries of the grown nitride single crystal can be further reduced. In this embodiment, it is sufficient that the single crystal c-axis and the X-axis are substantially parallel. For example, an error within 10 ° is acceptable. Further, the orientation of the c-axis can be controlled by the crystal orientation on the side surface 9 a of the needle-like seed crystal 9.

また、本発明の方法によって得られた窒化物単結晶を加工して、窒化物単結晶基板を作製することができる。この方法は特に限定されない。例えば、窒化物単結晶のバルクを研削加工することができるが、窒化物単結晶バルクを切断して基板を取り出すことが好ましい。この切り出し方法も特に限定されず、単結晶ブールの通常の切断方法を使用できる。   Further, a nitride single crystal obtained by the method of the present invention can be processed to produce a nitride single crystal substrate. This method is not particularly limited. For example, the nitride single crystal bulk can be ground, but it is preferable to cut the nitride single crystal bulk and take out the substrate. This cutting method is not particularly limited, and a normal cutting method for a single crystal boule can be used.

好適な実施形態においては、針状種結晶の主軸が窒化物単結晶基板の法線と平行になるように切り出す。図3(a)、(b)は、この実施形態に係るものである。   In a preferred embodiment, the acicular seed crystal is cut so that the principal axis is parallel to the normal line of the nitride single crystal substrate. 3A and 3B relate to this embodiment.

すなわち、図3(a)の正面図に示すように、針状種結晶9の主軸Xが窒化物単結晶基板12の法線Kと略平行になるように切り出す。Tが切断面である。切断面Tは、単結晶の主軸Xに対して略垂直である。   That is, as shown in the front view of FIG. 3A, the main axis X of the needle-like seed crystal 9 is cut out so as to be substantially parallel to the normal line K of the nitride single crystal substrate 12. T is a cut surface. The cut surface T is substantially perpendicular to the main axis X of the single crystal.

この切断によって、図3(b)に示すような窒化物単結晶基板12が得られる。12a、12bが主面(切断面である)。転位は窒化物単結晶10の成長方向(つまり主軸Xと略垂直な方向Y)へと向かって延びる。したがって、主軸Xと略垂直な方向Yに向かって切断すると、転位が基板の主面12a、12bには露出しない。したがって、基板12を貫通する貫通転位を低減できる。   By this cutting, a nitride single crystal substrate 12 as shown in FIG. 3B is obtained. 12a and 12b are main surfaces (cut surfaces). Dislocations extend in the growth direction of nitride single crystal 10 (that is, direction Y substantially perpendicular to main axis X). Therefore, when cutting in the direction Y substantially perpendicular to the main axis X, dislocations are not exposed on the main surfaces 12a and 12b of the substrate. Therefore, threading dislocations penetrating the substrate 12 can be reduced.

本発明の実施の際には、融液5の気液界面5aにおける温度(TS)と融液5の底部5bにおける温度(TB)との差(TS−TB)を1℃以上、8℃以下とすることが好ましい(図1参照)。これによって、窒化物単結晶への雑晶の付着を防止できる。   In the practice of the present invention, the difference (TS−TB) between the temperature (TS) at the gas-liquid interface 5a of the melt 5 and the temperature (TB) at the bottom 5b of the melt 5 is 1 ° C. or more and 8 ° C. or less. (See FIG. 1). As a result, adhesion of miscellaneous crystals to the nitride single crystal can be prevented.

好適な実施形態においては、融液5の気液界面5aと種結晶9の側面9aとがなす角度を45°以上、135°以下とする。好ましくは、融液5の気液界面5aと種結晶9の側面9aとがなす角度を80°以上、100°以下とする。特に好ましくは、融液の気液界面5aと種結晶の側面9aとをほぼ垂直とする。これによって、雑晶が一層単結晶に対して付着しにくくなる。   In a preferred embodiment, the angle formed by the gas-liquid interface 5a of the melt 5 and the side surface 9a of the seed crystal 9 is set to 45 ° or more and 135 ° or less. Preferably, the angle formed by the gas-liquid interface 5a of the melt 5 and the side surface 9a of the seed crystal 9 is 80 ° or more and 100 ° or less. Particularly preferably, the gas-liquid interface 5a of the melt and the side surface 9a of the seed crystal are substantially vertical. This makes it difficult for the miscellaneous crystals to adhere to the single crystal.

また、融液の気液界面と種結晶の成長面とをほぼ垂直とする場合には、育成容器内に複数の種結晶を収容し、固定することができるので、生産性が向上する。
融液の各点の温度は、熱電対、放射温度計、セラミックス成型体の熱収縮量などによって計測する。
Further, when the gas-liquid interface of the melt and the growth surface of the seed crystal are substantially perpendicular, a plurality of seed crystals can be accommodated and fixed in the growth vessel, so that productivity is improved.
The temperature of each point of the melt is measured by a thermocouple, a radiation thermometer, the amount of heat shrinkage of the ceramic molded body, and the like.

好適な実施形態においては、図4に模式的に示すように、複数の発熱体6A、6B、6Cを上下方向に設置し、発熱体ごとに発熱量を独立して制御する。つまり、上下方向へと向かって多ゾーン制御を行なう。圧力容器内は高温、高圧となるので、上下方向の温度勾配を制御することは一般には難しいが、複数の発熱体を上下方向に設置し、各発熱体をゾーン制御することによって、融液内部における温度差を最適に制御できる。   In a preferred embodiment, as schematically shown in FIG. 4, a plurality of heating elements 6A, 6B, 6C are installed in the vertical direction, and the heating value is controlled independently for each heating element. That is, multi-zone control is performed in the vertical direction. It is generally difficult to control the temperature gradient in the vertical direction because the inside of the pressure vessel is high temperature and high pressure, but it is difficult to control the temperature gradient in the vertical direction. The temperature difference at can be optimally controlled.

各発熱体を発熱させ、気体タンク1、圧力制御装置2、配管3を通して、雰囲気制御用容器4内の育成容器7へと窒素含有雰囲気を流し、加熱および加圧すると、育成容器内で混合原料がすべて溶解し、融液を生成する。ここで、所定の単結晶育成条件を保持すれば、窒素が育成原料融液中に安定して供給され、種結晶上に単結晶膜が成長する。   When each heating element is heated, a nitrogen-containing atmosphere is passed through the gas tank 1, the pressure control device 2, and the pipe 3 to the growth vessel 7 in the atmosphere control vessel 4, and when heated and pressurized, the mixed raw materials are mixed in the growth vessel. All dissolve and form a melt. Here, if the predetermined single crystal growth conditions are maintained, nitrogen is stably supplied into the growth raw material melt, and a single crystal film grows on the seed crystal.

発熱体の材質は特に限定されないが、鉄- クロム- アルミ系、ニッケル- クロム系などの合金発熱体、白金、モリブデン、タンタル、タングステンなどの高融点金属発熱体、炭化珪素、モリブデンシリサイト、カーボンなどの非金属発熱体を例示できる。   The material of the heating element is not particularly limited, but iron-chromium-aluminum alloy, nickel-chromium alloy heating element, platinum, molybdenum, tantalum, tungsten and other refractory metal heating elements, silicon carbide, molybdenum silicite, carbon Non-metallic heating elements such as

単結晶育成装置において、原料混合物を加熱して融液を生成させるための装置は特に限定されない。この装置は熱間等方圧プレス装置が好ましいが、それ以外の雰囲気加圧型加熱炉であってもよい。   In the single crystal growth apparatus, an apparatus for heating the raw material mixture to generate a melt is not particularly limited. This apparatus is preferably a hot isostatic pressing apparatus, but other atmospheric pressure heating furnaces may be used.

融液を生成するためのフラックスは特に限定されないが、アルカリ金属およびアルカリ土類金属からなる群より選ばれた一種以上の金属またはその合金が好ましい。この金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが例示でき、リチウム、ナトリウム、カルシウムが特に好ましく、ナトリウムが最も好ましい。   The flux for generating the melt is not particularly limited, but one or more metals selected from the group consisting of alkali metals and alkaline earth metals or alloys thereof are preferable. Examples of the metal include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. Lithium, sodium, and calcium are particularly preferable, and sodium is most preferable.

また、上記アルカリ金属およびアルカリ土類金属からなる群より選ばれた一種以上の金属と合金を形成する物質としては、以下の金属を例示できる。
ガリウム、アルミニウム、インジウム、ホウ素、亜鉛、ケイ素、錫、アンチモン、ビスマス。
Examples of the substance that forms an alloy with one or more metals selected from the group consisting of alkali metals and alkaline earth metals include the following metals.
Gallium, aluminum, indium, boron, zinc, silicon, tin, antimony, bismuth.

単結晶育成工程における加熱温度、圧力は、単結晶の種類によって選択するので特に限定されない。加熱温度は例えば800〜1500℃とすることができる。好ましくは800〜1200℃であり、更に好ましくは900〜1100℃である。圧力も特に限定されないが、圧力は1MPa以上であることが好ましく、10MPa以上であることが更に好ましい。圧力の上限は特に規定しないが、例えば200MPa以下とすることができ、100MPa以下が好ましい。   The heating temperature and pressure in the single crystal growth step are not particularly limited because they are selected depending on the type of single crystal. The heating temperature can be set to, for example, 800 to 1500 ° C. Preferably it is 800-1200 degreeC, More preferably, it is 900-1100 degreeC. The pressure is not particularly limited, but the pressure is preferably 1 MPa or more, and more preferably 10 MPa or more. The upper limit of the pressure is not particularly defined, but can be, for example, 200 MPa or less, and preferably 100 MPa or less.

反応を行なうための育成容器の材質は特に限定されず、目的とする加熱および加圧条件において耐久性のある材料であればよい。こうした材料としては、金属タンタル、タングステン、モリブデンなどの高融点金属、アルミナ、サファイア、イットリアなどの酸化物、窒化アルミニウム、窒化チタン、窒化ジルコニウム、窒化ホウ素などの窒化物セラミックス、タングステンカーバイド、タンタルカーバイドなどの高融点金属の炭化物、p−BN(パイロリティックBN)、p−Gr(パイロリティックグラファイト)などの熱分解生成体が挙げられる。   The material of the growth container for carrying out the reaction is not particularly limited as long as the material is durable under the intended heating and pressurizing conditions. Examples of such materials include refractory metals such as tantalum, tungsten, and molybdenum, oxides such as alumina, sapphire, and yttria, nitride ceramics such as aluminum nitride, titanium nitride, zirconium nitride, and boron nitride, tungsten carbide, tantalum carbide, and the like. And pyrolytic products such as p-BN (pyrolytic BN) and p-Gr (pyrolytic graphite).

以下、更に具体的な単結晶およびその育成手順について例示する。
(窒化ガリウム単結晶の育成例)
本発明を利用し、少なくともナトリウム金属を含むフラックスを使用して窒化ガリウム単結晶を育成できる。このフラックスには、ガリウム原料物質を溶解させる。ガリウム原料物質としては、ガリウム単体金属、ガリウム合金、ガリウム化合物を適用できるが、ガリウム単体金属が取扱いの上からも好適である。
Hereinafter, more specific single crystals and their growth procedures will be exemplified.
(Gallium nitride single crystal growth example)
Using the present invention, a gallium nitride single crystal can be grown using a flux containing at least sodium metal. In this flux, the gallium source material is dissolved. As the gallium source material, a gallium simple metal, a gallium alloy, and a gallium compound can be applied, but a gallium simple metal is also preferable in terms of handling.

このフラックスには、ナトリウム以外の金属、例えばリチウムを含有させることができる。ガリウム原料物質とナトリウムなどのフラックス原料物質との使用割合は、適宜であってよいが、一般的には、ナトリウム過剰量を用いることが考慮される。もちろん、このことは限定的ではない。   This flux can contain metals other than sodium, such as lithium. The use ratio of the gallium source material and the flux source material such as sodium may be appropriate, but in general, it is considered to use an excess amount of sodium. Of course, this is not limiting.

この実施形態においては、窒素ガスを含む混合ガスからなる雰囲気下で、全圧1MPa以上、200MPa以下の圧力下で窒化ガリウム単結晶を育成する。全圧を1MPa以上とすることによって、例えば800℃以上の高温領域において、更に好ましくは900℃以上の高温領域において、良質の窒化ガリウム単結晶を育成可能であった。この理由は、定かではないが、温度上昇に伴って窒素溶解度が上昇し、育成融液に窒素が効率的に溶け込むためと推測される。また、雰囲気の全圧を200MPa以上とすると、高圧ガスの密度と育成融液の密度がかなり近くなるために、育成融液を反応を行うための容器内に保持することが困難になるために好ましくない。   In this embodiment, a gallium nitride single crystal is grown under a pressure of a total pressure of 1 MPa or more and 200 MPa or less in an atmosphere composed of a mixed gas containing nitrogen gas. By setting the total pressure to 1 MPa or more, it was possible to grow a good quality gallium nitride single crystal in a high temperature region of, for example, 800 ° C. or higher, more preferably in a high temperature region of 900 ° C. or higher. The reason for this is not clear, but it is presumed that the nitrogen solubility increases as the temperature rises, and nitrogen is efficiently dissolved in the growth melt. In addition, if the total pressure of the atmosphere is 200 MPa or more, the density of the high-pressure gas and the density of the growth melt become quite close, so that it is difficult to hold the growth melt in the vessel for reaction. It is not preferable.

好適な実施形態においては、育成時雰囲気中の窒素分圧を1MPa以上、200MPa以下とする。この窒素分圧を1MPa以上とすることによって、例えば800℃以上の高温領域において、フラックス中への窒素の溶解を促進し、良質の窒化ガリウム単結晶を育成可能であった。この観点からは、雰囲気の窒素分圧を2MPa以上とすることが更に好ましい。また、窒素分圧は実用的には100MPa以下とすることが好ましい。   In a preferred embodiment, the nitrogen partial pressure in the growth atmosphere is 1 MPa or more and 200 MPa or less. By setting the nitrogen partial pressure to 1 MPa or higher, for example, in a high temperature region of 800 ° C. or higher, dissolution of nitrogen into the flux was promoted, and a high-quality gallium nitride single crystal could be grown. From this viewpoint, it is more preferable that the nitrogen partial pressure of the atmosphere is 2 MPa or more. Moreover, it is preferable that nitrogen partial pressure shall be 100 Mpa or less practically.

雰囲気中の窒素以外のガスは限定されないが、不活性ガスが好ましく、アルゴン、ヘリウム、ネオンが特に好ましい。窒素以外のガスの分圧は、全圧から窒素ガス分圧を除いた値である。
好適な実施形態においては、窒化ガリウム単結晶の育成温度は、800℃以上であり、900℃以上とすることが好ましく、1000℃以上とすることが更に好ましい。このような高温領域においても良質な窒化ガリウム単結晶が育成可能である。また、高温・高圧での育成により、生産性を向上させ得る可能性がある。
A gas other than nitrogen in the atmosphere is not limited, but an inert gas is preferable, and argon, helium, and neon are particularly preferable. The partial pressure of a gas other than nitrogen is a value obtained by subtracting the nitrogen gas partial pressure from the total pressure.
In a preferred embodiment, the growth temperature of the gallium nitride single crystal is 800 ° C. or higher, preferably 900 ° C. or higher, and more preferably 1000 ° C. or higher. Even in such a high temperature region, a good quality gallium nitride single crystal can be grown. Moreover, there is a possibility that productivity can be improved by growing at high temperature and high pressure.

窒化ガリウム単結晶の育成温度の上限は特にないが、育成温度が高すぎると結晶が成長しにくくなるので、1500℃以下とすることが好ましく、この観点からは、1200℃以下とすることが更に好ましい。   The upper limit of the growth temperature of the gallium nitride single crystal is not particularly limited. However, if the growth temperature is too high, the crystal is difficult to grow. Therefore, the temperature is preferably set to 1500 ° C. or lower. From this viewpoint, the temperature is further set to 1200 ° C. or lower. preferable.

(AlN単結晶の育成例)
本発明は、少なくともアルミニウムとアルカリ土類を含むフラックスを含む融液を特定の条件下で窒素含有雰囲気中で加圧することによって、AlN単結晶を育成する場合にも有効であることが確認できた。
(Example of growing AlN single crystal)
The present invention has been confirmed to be effective even when growing an AlN single crystal by pressurizing a melt containing a flux containing at least aluminum and an alkaline earth in a nitrogen-containing atmosphere under specific conditions. .

(実施例1)
図1〜図4を参照しつつ説明した本発明に従い、GaN単結晶を育成した。
具体的には、III族原料として金属ガリウム(Ga)を、フラックスとして金属ナトリウム(Na)を、種結晶と共に、育成容器7内に秤量した。GaとNaのモル比は25:75となるように秤量した。
Example 1
A GaN single crystal was grown in accordance with the present invention described with reference to FIGS.
Specifically, metallic gallium (Ga) as a group III raw material and metallic sodium (Na) as a flux were weighed in a growth vessel 7 together with a seed crystal. Weighed so that the molar ratio of Ga to Na was 25:75.

種結晶9としては、直径0.5mm 、長さ10mmの針状の窒化アルミニウム単結晶を用いた。単結晶9は、 特開2006−045047号公報の実施例3 にしたがって製造したものである。種結晶9は、主軸Xが気液界面5aと垂直になるように縦置きに配置し、固定した。この育成容器7を、ガス導入口をもつ雰囲気制御用容器4内に配置し、密封した。一連の作業は、原料およびフラックス等の酸化を防ぐ為、不活性ガス雰囲気中で行なった。   As the seed crystal 9, a needle-like aluminum nitride single crystal having a diameter of 0.5 mm and a length of 10 mm was used. The single crystal 9 is manufactured according to Example 3 of JP 2006-045047 A. The seed crystal 9 was placed vertically and fixed so that the main axis X was perpendicular to the gas-liquid interface 5a. The growth container 7 was placed in an atmosphere control container 4 having a gas inlet and sealed. A series of operations were performed in an inert gas atmosphere in order to prevent oxidation of raw materials and flux.

上記密封容器を、3ゾーンの発熱体6A〜6Cを持つ電気炉内に配置した後、ガス導入口に圧力制御装置2を介して気体タンク1を接続した。3ゾーンの発熱体は個別に温度調整ができ、育成容器の上下方向に、任意の温度勾配を設けることができる。育成容器上部温度860℃、育成容器底部温度が855℃となるように加熱保持した雰囲気制御用容器内に、ガス圧4MPaになるように窒素ガスを導入し、200時間保持した。その後、冷却した雰囲気制御用容器から育成容器を取り出し、フラックスをエタノールと反応させ、除去する事により、種結晶を中心にして成長したGaN単結晶の回収を行なった。   After the sealed container was placed in an electric furnace having three zones of heating elements 6A to 6C, the gas tank 1 was connected to the gas inlet through the pressure controller 2. The temperature of the three-zone heating elements can be individually adjusted, and an arbitrary temperature gradient can be provided in the vertical direction of the growth vessel. Nitrogen gas was introduced so as to have a gas pressure of 4 MPa in an atmosphere control vessel heated and maintained so that the temperature at the top of the growth vessel was 860 ° C. and the temperature at the bottom of the growth vessel was 855 ° C., and held for 200 hours. Thereafter, the growth vessel was taken out from the cooled atmosphere control vessel, and the flux was reacted with ethanol and removed, whereby the GaN single crystal grown around the seed crystal was collected.

育成したGaN単結晶は、直径8 mm、長さ12mmの略六角柱形であった。単結晶上に雑晶は乗っていなかった。   The grown GaN single crystal had a substantially hexagonal prism shape with a diameter of 8 mm and a length of 12 mm. There were no miscellaneous crystals on the single crystal.

図3に示すように、育成したGaN 単結晶から平板12を切り出し、表面12a、12bを研磨し、厚さ0.6mm の基板を得た。原子間力顕微鏡によって基板表面の算術平均粗さRaを見積もった。この結果、針状種結晶から1mm 離れた箇所で約1nm であり、外周部から1 mm内側に入った箇所で約1nm であった。したがって、面内でほぼ均一に鏡面研磨されている事が確認できた。また、X 線ロッキングカーブのピーク半値幅を測定したところ、(0002)面からの反射は約40arcsec、(10-12 )面からの反射は約30arcsecであり、高品質な単結晶であることが確認できた。レーザー干渉計を用いて測定した研磨面の凹凸は2 μm 以下(発振波長λ=633nmのHe-Ne レーザーを用い、基板全体での干渉縞の数より測定)であり、反りが小さい事が確認できた。   As shown in FIG. 3, the flat plate 12 was cut out from the grown GaN single crystal, and the surfaces 12a and 12b were polished to obtain a substrate having a thickness of 0.6 mm. The arithmetic mean roughness Ra of the substrate surface was estimated by atomic force microscopy. As a result, it was about 1 nm at a location 1 mm away from the needle-like seed crystal and about 1 nm at a location 1 mm inside from the outer periphery. Therefore, it was confirmed that the mirror polishing was almost uniformly performed within the surface. In addition, when the peak half-value width of the X-ray rocking curve was measured, the reflection from the (0002) plane was about 40 arcsec and the reflection from the (10-12) plane was about 30 arcsec. It could be confirmed. The roughness of the polished surface measured with a laser interferometer is 2 μm or less (measured from the number of interference fringes on the entire substrate using a He-Ne laser with an oscillation wavelength of λ = 633 nm), confirming that the warpage is small. did it.

基板を50℃の酸性溶液(pH3 )に3 時間浸した後、洗浄し、GaN 部分を微分干渉顕微鏡で観察したところ、c+ 面で約104/cm 2個のピットが観察された。c- 面は激しく侵食され、凸凹になった。   The substrate was immersed in an acidic solution (pH 3) at 50 ° C. for 3 hours, then washed, and the GaN portion was observed with a differential interference microscope. As a result, about 10 4 / cm 2 pits were observed on the c + plane. The c- plane was eroded violently and became uneven.

(比較例1)
種結晶として、針状の窒化アルミニウム単結晶を用いずに、 (0001)面を主面にもつ厚さ0.43mmのサファイア基板を用いた。サファイア基板上に、有機金属化学的気相成長法(MOCVD )でエピタキシャル成長させた厚さ1
μm のAlN 単結晶薄膜を用いる以外は、実施例1 と同様にして、GaN 単結晶を育成した。
(Comparative Example 1)
As a seed crystal, a sapphire substrate having a thickness of (0001) and having a principal surface of (0001) mm was used without using a needle-like aluminum nitride single crystal. Thickness epitaxially grown on a sapphire substrate by metal organic chemical vapor deposition (MOCVD) 1
A GaN single crystal was grown in the same manner as in Example 1 except that a μm AlN single crystal thin film was used.

回収したGaN 単結晶の厚さは、表面の凹凸のために正確には測定できないが、約2mm であった。接触式段差計でサファイア面側を走査して測定したところ、基板の曲率半径は約2mであった。サファイアとGaN の熱膨張係数差に起因する内部応力が、このように大きな反りの原因であると考えられる。   The thickness of the recovered GaN single crystal could not be measured accurately due to surface irregularities, but was about 2 mm. When the sapphire surface side was scanned with a contact level meter, the radius of curvature of the substrate was about 2 m. The internal stress caused by the difference in thermal expansion coefficient between sapphire and GaN is considered to be the cause of such a large warp.

(実施例2)
実施例1 で得られたGaN 単結晶基板の表面をさらに研磨し、厚さ0.3 mmの基板を得た。実施例1 と同様にレーザー干渉計を用いて測定した研磨面の凹凸は、2 μm 以下であった。基板の反りが小さい事が確認できた。
(Example 2)
The surface of the GaN single crystal substrate obtained in Example 1 was further polished to obtain a substrate having a thickness of 0.3 mm. The roughness of the polished surface measured using a laser interferometer in the same manner as in Example 1 was 2 μm or less. It was confirmed that the warpage of the substrate was small.

(実施例3)
実施例1 で得られたGaN 単結晶から、図3に示すように平板12を切り出し、表面を研磨し、厚さ1.0 mmの基板12を得た。レーザー干渉計を用いて測定した研磨面の凹凸は1 μm 以下であった。基板の反りが小さい事が確認できた。
(Example 3)
As shown in FIG. 3, the flat plate 12 was cut out from the GaN single crystal obtained in Example 1, and the surface was polished to obtain a substrate 12 having a thickness of 1.0 mm. The roughness of the polished surface measured with a laser interferometer was 1 μm or less. It was confirmed that the warpage of the substrate was small.

(実施例4)
実施例1 と同様にして、図5(a)に示すようにGaN 単結晶を得た。次いで、図5(b)に示すように、針状単結晶9の長手方向と略平行に切断を行うことで、図5(b)、(c)に示す平板13を切り出した。平板13の主面13a、13bは、本例では、(11-20 )面(a 面)とした。この平板13の主面13a、13bを研磨し、厚さ0.6 mmの基板を得た。レーザー干渉計を用いて測定した研磨面の凹凸は3 μm 以下であり、基板の反りが小さい事が確認できた。また、X 線ロッキングカーブのピーク半値幅を測定したところ、(11-20 )面からの反射は約30arcsecであり、高品質な単結晶であることが確認できた。
Example 4
In the same manner as in Example 1, a GaN single crystal was obtained as shown in FIG. Next, as shown in FIG. 5B, the flat plate 13 shown in FIGS. 5B and 5C was cut out by cutting substantially parallel to the longitudinal direction of the needle-like single crystal 9. The main surfaces 13a and 13b of the flat plate 13 are (11-20) planes (a planes) in this example. The main surfaces 13a and 13b of the flat plate 13 were polished to obtain a substrate having a thickness of 0.6 mm. The unevenness of the polished surface measured with a laser interferometer was 3 μm or less, and it was confirmed that the warpage of the substrate was small. When the peak half-width of the X-ray rocking curve was measured, reflection from the (11-20) plane was about 30 arcsec, confirming that it was a high-quality single crystal.

(実施例5)
実施例1 と同様にして、図5(a)に示すようにGaN 単結晶を得た。次いで、図6(a)に示すように、針状単結晶9の長手方向と略平行に切断を行うことで、図6(a)、(b)に示す平板14を切り出した。平板14の主面14a、14bは、本例では、(1-100 )面(m面)となるようにした。主面14a、14bを表面研磨し、厚さ0.6 mmの基板14 を得た。レーザー干渉計を用いて測定した研磨面の凹凸は3 μm 以下であり、基板の反りが小さい事が確認できた。また、X 線ロッキングカーブのピーク半値幅を測定したところ、(1-100 )面からの反射は約30arcsecであり、高品質な単結晶であることが確認できた。
(Example 5)
In the same manner as in Example 1, a GaN single crystal was obtained as shown in FIG. Next, as shown in FIG. 6A, the flat plate 14 shown in FIGS. 6A and 6B was cut out by cutting substantially parallel to the longitudinal direction of the needle-like single crystal 9. In this example, the main surfaces 14a and 14b of the flat plate 14 are (1-100) planes (m-planes). The main surfaces 14a and 14b were surface-polished to obtain a substrate 14 having a thickness of 0.6 mm. The unevenness of the polished surface measured with a laser interferometer was 3 μm or less, and it was confirmed that the warpage of the substrate was small. Further, when the peak half width of the X-ray rocking curve was measured, reflection from the (1-100) plane was about 30 arcsec, and it was confirmed that the crystal was a high quality single crystal.

育成容器7内に融液5および針状種結晶9を収容した状態を示す模式図である。FIG. 4 is a schematic view showing a state in which a melt 5 and a needle-like seed crystal 9 are accommodated in a growth container 7. (a)は、針状種結晶9から単結晶が成長している状態を模式的に示す概念図であり、(b)は、同じく横断面図である。(A) is a conceptual diagram which shows typically the state from which the single crystal is growing from the acicular seed crystal 9, (b) is a cross-sectional view similarly. (a)は、単結晶の切断方法を示す正面図であり、(b)は、(a)において切断された窒化物単結晶基板12を示す図である。(A) is a front view which shows the cutting method of a single crystal, (b) is a figure which shows the nitride single crystal substrate 12 cut | disconnected in (a). 本発明の実施に使用できる育成装置の全体を示すブロック図である。It is a block diagram which shows the whole growing apparatus which can be used for implementation of this invention. (a)は、育成された単結晶を模式的に示す正面図であり、(b)は、(a)の単結晶の切断方向を示す上面図であり、(c)は、切断によって得られた平板13を示す正面図である。(A) is a front view schematically showing a grown single crystal, (b) is a top view showing a cutting direction of the single crystal of (a), and (c) is obtained by cutting. It is a front view which shows the flat plate 13. (a)は、図5(a)の単結晶の切断方向を示す上面図であり、(b)は、切断によって得られた平板14を示す正面図である。(A) is a top view which shows the cutting | disconnection direction of the single crystal of Fig.5 (a), (b) is a front view which shows the flat plate 14 obtained by cutting | disconnection.

符号の説明Explanation of symbols

5 融液 5a 気液界面 7 育成容器 9 針状種結晶 9a 針状種結晶9の側面 10、11 窒化物単結晶 12、13、14 窒化物単結晶基板 A 窒化物単結晶11の育成方向 C 窒化物単結晶10のc軸 X 針状種結晶9の主軸 Y 窒化物単結晶10の成長方向   DESCRIPTION OF SYMBOLS 5 Melt 5a Gas-liquid interface 7 Growth container 9 Needle-shaped seed crystal 9a Side surface of needle-shaped seed crystal 9 10, 11 Nitride single crystal 12, 13, 14 Nitride single crystal substrate A Growth direction of nitride single crystal 11 C-axis of nitride single crystal 10 X main axis of needle-like seed crystal Y growth direction of nitride single crystal 10

Claims (6)

フラックス法によって窒化物単結晶を育成する方法であって、
融液中で窒化物単結晶からなる針状種結晶の側面から窒化物単結晶を成長させ、成長する前記窒化物単結晶のc軸が前記針状種結晶の主軸と略平行となるようにし、前記針状種結晶の幅に対する長さの比率が5以上であることを特徴とする、窒化物単結晶の育成方法。
A method of growing a nitride single crystal by a flux method,
Nitrides from the side surface of acicular seed crystals of a nitride single crystal in the melt a single crystal is grown, as the c-axis of the nitride single crystal grown is substantially parallel to the main axis of the acicular seed crystals A method for growing a nitride single crystal , wherein the ratio of the length to the width of the needle-like seed crystal is 5 or more .
前記融液の気液界面における温度(TS)と前記融液の底部における温度(TB)との差(TS−TB)を1℃以上、8℃以下とすることを特徴とする、請求項1記載の方法。   The difference (TS-TB) between the temperature (TS) at the gas-liquid interface of the melt and the temperature (TB) at the bottom of the melt is set to 1 ° C or more and 8 ° C or less. The method described. 前記融液の気液界面と前記種結晶の前記側面とがほぼ垂直であることを特徴とする、請求項1または2記載の方法。   The method according to claim 1, wherein the gas-liquid interface of the melt and the side surface of the seed crystal are substantially perpendicular. 育成された前記窒化物単結晶を加工して窒化物単結晶基板を作製することを特徴とする、請求項1〜3のいずれか一つの請求項に記載の方法 Characterized by producing a nitride single crystal substrate by processing the grown the nitride single crystal, the method according to any one of claims 1 to 3. 育成された前記窒化物単結晶を加工するのに際して、前記針状種結晶の主軸が前記窒化物単結晶基板の法線と平行になるように前記窒化物単結晶基板を切り出すことを特徴とする、請求項4記載の方法 In for machining the grown the nitride single crystal, wherein the acicular seed Succoth crystals spindle cut out the nitride single crystal substrate to be parallel to the normal line of the nitride single crystal substrate The method of claim 4 . 前記融液がガリウム原料物質およびナトリウムを含んでおり、前記針状種結晶が窒化アルミニウム単結晶からなり、育成される前記窒化物単結晶が窒化ガリウム単結晶であることを特徴とする、請求項1〜5のいずれか一つの請求項に記載の方法。The melt includes a gallium raw material and sodium, the needle-like seed crystal is made of an aluminum nitride single crystal, and the grown nitride single crystal is a gallium nitride single crystal. The method according to any one of claims 1 to 5.
JP2007180752A 2006-09-13 2007-07-10 Nitride single crystal growth method Active JP5044311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180752A JP5044311B2 (en) 2006-09-13 2007-07-10 Nitride single crystal growth method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006247556 2006-09-13
JP2006247556 2006-09-13
JP2007180752A JP5044311B2 (en) 2006-09-13 2007-07-10 Nitride single crystal growth method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012157969A Division JP2012206937A (en) 2006-09-13 2012-07-13 Bulk single crystal and nitride single crystal substrate

Publications (2)

Publication Number Publication Date
JP2008094704A JP2008094704A (en) 2008-04-24
JP5044311B2 true JP5044311B2 (en) 2012-10-10

Family

ID=39377934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180752A Active JP5044311B2 (en) 2006-09-13 2007-07-10 Nitride single crystal growth method

Country Status (1)

Country Link
JP (1) JP5044311B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200291B2 (en) * 2008-08-27 2013-06-05 株式会社リコー Group III element nitride crystal manufacturing method, group III element nitride crystal, semiconductor device forming substrate, and semiconductor device
WO2010084682A1 (en) * 2009-01-23 2010-07-29 日本碍子株式会社 Group 3b nitride crystal
JP5651480B2 (en) * 2009-01-23 2015-01-14 日本碍子株式会社 Method for producing group 3B nitride crystals
JP5887697B2 (en) * 2010-03-15 2016-03-16 株式会社リコー Gallium nitride crystal, group 13 nitride crystal, crystal substrate, and manufacturing method thereof
JP2012012259A (en) 2010-07-01 2012-01-19 Ricoh Co Ltd Nitride crystal and method for producing the same
JP6168091B2 (en) * 2010-08-31 2017-07-26 株式会社リコー Group III nitride crystal and group III nitride crystal substrate
JP5729182B2 (en) 2010-08-31 2015-06-03 株式会社リコー Method for producing n-type group III nitride single crystal, n-type group III nitride single crystal and crystal substrate
JP5842490B2 (en) 2011-09-14 2016-01-13 株式会社リコー Group 13 nitride crystal and group 13 nitride crystal substrate
JP5953684B2 (en) 2011-09-14 2016-07-20 株式会社リコー Method for producing group 13 nitride crystal
JP2013060344A (en) * 2011-09-14 2013-04-04 Ricoh Co Ltd Gallium nitride crystal, manufacturing method of group 13 nitride crystal, and group 13 nitride crystal substrate
JP5953683B2 (en) * 2011-09-14 2016-07-20 株式会社リコー Group 13 nitride crystal and group 13 nitride crystal substrate
JP6098028B2 (en) * 2011-09-14 2017-03-22 株式会社リコー Gallium nitride crystal, group 13 nitride crystal, group 13 nitride crystal substrate, and manufacturing method
JP6106932B2 (en) * 2012-03-19 2017-04-05 株式会社リコー Group 13 nitride crystal and group 13 nitride crystal substrate
JP6135080B2 (en) 2012-09-17 2017-05-31 株式会社リコー Group 13 nitride crystal, group 13 nitride crystal substrate, and method for producing group 13 nitride crystal
JP6187064B2 (en) * 2012-09-21 2017-08-30 三菱ケミカル株式会社 Periodic table group 13 metal nitride semiconductor substrate
JP6070257B2 (en) * 2013-02-21 2017-02-01 株式会社リコー Group 13 nitride crystal manufacturing method and group 13 nitride crystal manufacturing apparatus
JP2015078121A (en) * 2014-12-12 2015-04-23 株式会社リコー Nitride crystal and its production method
JP6222292B2 (en) * 2016-06-14 2017-11-01 株式会社リコー Gallium nitride crystal, method for producing group 13 nitride crystal, and group 13 nitride crystal substrate
JP2016172692A (en) * 2016-07-08 2016-09-29 株式会社リコー Nitride crystal and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801315B2 (en) * 2002-01-29 2011-10-26 株式会社リコー Method for producing group III nitride crystal
JP4508613B2 (en) * 2002-11-26 2010-07-21 株式会社リコー Group III nitride crystal manufacturing method
PL371405A1 (en) * 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Method for manufacture of volumetric monocrystals by their growth on crystal nucleus

Also Published As

Publication number Publication date
JP2008094704A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5044311B2 (en) Nitride single crystal growth method
US11015263B2 (en) Defect reduction in seeded aluminum nitride crystal growth
JP4827107B2 (en) Method for producing nitride single crystal
CN107059116B (en) Defect reduction in seeded aluminum nitride crystal growth
JP4712450B2 (en) Method for improving surface flatness of AlN crystal
EP3103899B1 (en) Method for producing group-iii nitride crystal
WO2016140074A1 (en) Method for manufacturing group-iii nitride semiconductor crystal substrate
KR101749781B1 (en) Single-crystal substrate, group ⅲ element nitride crystal obtained using same, and process for producing group ⅲ element nitride crystal
US10202710B2 (en) Process for producing group III nitride crystal and apparatus for producing group III nitride crystal
JP4823856B2 (en) Method for producing AlN group III nitride single crystal thick film
WO2006013957A1 (en) NITRIDE SEMICONDUCTOR SINGLE CRYSTAL INCLUDING Ga, METHOD FOR MANUFACTURING THE SAME, AND SUBSTRATE AND DEVICE USING THE CRYSTAL
JP5359740B2 (en) Method for producing group III nitride compound semiconductor
JP5205265B2 (en) Dislocation reduction method of group III nitride crystal and substrate for epitaxial growth
JP2011246749A (en) Aluminum-based group iii nitride production apparatus and method for producing aluminum-based group iii nitride
JP5005266B2 (en) AlN crystal fabrication method and AlN thick film
US11441237B2 (en) RAMO4 substrate and method of manufacture thereof, and group III nitride semiconductor
JP2008162855A (en) Method for manufacturing nitride semiconductor substrate, and nitride semiconductor substrate
JP4908467B2 (en) Method for producing group III nitride compound semiconductor crystal
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP2012206937A (en) Bulk single crystal and nitride single crystal substrate
WO2024004961A1 (en) Method of reusing sam substrate
JP2007073975A (en) Quality improvement method of group iii nitride crystal, substrate for epitaxial growth, and semiconductor element
JP6159245B2 (en) Method for producing aluminum nitride crystal
JP2018127385A (en) Method of producing group iii nitride semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3