WO2009157319A1 - Chamfering apparatus - Google Patents

Chamfering apparatus Download PDF

Info

Publication number
WO2009157319A1
WO2009157319A1 PCT/JP2009/060716 JP2009060716W WO2009157319A1 WO 2009157319 A1 WO2009157319 A1 WO 2009157319A1 JP 2009060716 W JP2009060716 W JP 2009060716W WO 2009157319 A1 WO2009157319 A1 WO 2009157319A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamfering
edge line
laser beam
condensing
Prior art date
Application number
PCT/JP2009/060716
Other languages
French (fr)
Japanese (ja)
Inventor
一星 熊谷
富久 砂田
政二 清水
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN200980131178.7A priority Critical patent/CN102123817B/en
Priority to JP2010517888A priority patent/JP5320395B2/en
Priority to KR1020117001391A priority patent/KR101306673B1/en
Publication of WO2009157319A1 publication Critical patent/WO2009157319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • C03B29/025Glass sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a method for chamfering an edge line (ridge line) formed on an end face of a brittle material substrate, and more particularly, a chamfering method and a chamfering apparatus for performing R chamfering or C chamfering of an edge line by laser beam irradiation.
  • the brittle material substrates to be processed include substrates such as quartz, single crystal silicon, sapphire, semiconductor wafers, and ceramics in addition to glass substrates.
  • Brittle material substrates such as glass substrates are used in various products by processing them into desired dimensions and shapes.
  • processing of brittle material substrates is performed by existing processing technologies such as dicing, wheel scribe, laser scribe, etc., but the edge line of the substrate end face divided by these processing technologies is very sharp and a slight impact is applied. Even alone, defects such as chipping and microcracks occur.
  • FPD flat panel display
  • fragments generated due to chipping of edges cause damage to the surface of the FPD substrate, which affects the product yield. Therefore, chamfering is performed along the edge lines in order to prevent chipping of the edge portion of the substrate that occurs after the substrate is divided.
  • One conventional chamfering process is a wet polishing method in which a large amount of water is supplied and polished with a diamond grindstone.
  • minute cracks remain continuously on the chamfered surface formed by the wet polishing method, and the strength of the chamfered surface is significantly lower than the surroundings.
  • a heating / melting method in which a laser beam is scanned along the edge line to be chamfered, and the edge is heated and melted by moving the focal point of the laser beam along the edge line, thereby performing chamfering.
  • a method is disclosed in which chamfering is performed by heating the vicinity of a ridge line portion with a laser to soften and round the ridge line portion while keeping the entire glass member at a temperature higher than room temperature (remaining heat) (see Patent Document 1). ).
  • FIG. 8 is a cross-sectional view showing a laser irradiation state when chamfering is performed by a heat melting method using a CO 2 laser light source.
  • a heat melting method using a CO 2 laser light source In advance, along the edge line 51 that chamfers the glass substrate 10 that has been gradually heated to a predetermined temperature lower than the softening temperature by using a heater (not shown) and then maintained at the predetermined temperature.
  • the laser light from the CO 2 laser light source 50 is condensed by the condenser lens 53, and the focal point is scanned in the vicinity of the processing portion. At that time, by adjusting the laser output and the scanning speed, the edge portion irradiated with the laser becomes high temperature and softens, and thereby the edge portion irradiated with the laser is processed to be rounded.
  • a laser beam is irradiated near the edge and heated to generate a crack in the glass substrate 10, and the laser beam is relatively edge-lined.
  • a laser scribing method is disclosed in which a crack is grown along an edge line by scanning in a direction, and chamfering is performed by separating the vicinity of the edge from a glass substrate (Patent Document 2).
  • FIG. 9 is a diagram showing a laser irradiation state when chamfering is performed by laser scribing using a CO 2 laser light source.
  • the laser light from the CO 2 laser light source 50 is locally irradiated near the edge line 51 of the glass substrate 10 by the condenser lens 53 and heated at a temperature lower than the softening temperature.
  • the crack 52 is generated by the thermal stress accompanying the local thermal expansion.
  • sequentially generated cracks 52 grow along the edge line 51, and the vicinity of the edge (corner portion) including the edge line 51 is separated.
  • Patent Document 2 it is said that by performing chamfering by laser scribing, chamfering that does not require high productivity and a cleaning step can be performed without impairing the accuracy of the glass substrate.
  • FIG. 10 is an enlarged view of a processed cross section when chamfering is performed by laser scribing using a CO 2 laser.
  • the corner portion U of the glass substrate 10 is separated (peeled) by the chamfering process, and the edge line 53 of the glass substrate 10 disappears together with the corner portion U, but a new chamfered surface 54 is formed.
  • the cross-sectional shape of the chamfered surface 54 is observed, it has an arcuate inverted R surface that is recessed toward the glass substrate 10 side.
  • two edge lines 57 and 58 are formed at the intersections of the glass substrate S with the substrate surfaces 55 and 56. These edge lines 57 and 58 have improved edge sharpness compared to the original edge line 53, but if the dent becomes large, a sharp edge will be formed.
  • TAB tape may be wired immediately above the edge lines 57 and 58. If a sharp edge remains in this area after chamfering, the TAB tape breaks. Is likely to be. For this reason, the chamfered surface 54 is required to be a C surface where the chamfered portion is a flat surface, or an R surface which is convex toward the outside.
  • the present invention provides a chamfering apparatus capable of forming a chamfered surface formed by laser irradiation into a curved surface that is convex toward the C or R surface, or the outside of the substrate, instead of the reverse R surface. With the goal.
  • the chamfering processing apparatus of the present invention made to solve the above problems is convex toward the C-plane, R-plane, and the outside of the substrate by scanning the condensing point of the laser beam using a special optical element unit.
  • the chamfering of the curved surface is realized.
  • the chamfering apparatus of the present invention is a chamfering apparatus that chamfers a brittle material substrate, and includes a laser light source, a condensing member that condenses the laser beam emitted from the laser light source and guides the substrate to the substrate, A beam deflecting unit that is provided on the optical path of the laser beam from the laser light source to the substrate through the condensing member, deflects the incident optical path of the laser beam, and scans the position of the condensing point formed by the laser beam; With respect to the edge line to be chamfered, a laser beam is irradiated toward the edge line from diagonally forward of two adjacent surfaces having the edge line as an end, and the condensing point is formed on the substrate surface in the vicinity of the edge line or inside the substrate.
  • a substrate support portion that supports the substrate so as to be scanned along a surface intersecting with the edge line, and the condensing member is configured to run a condensing point formed on the surface intersecting with the edge line.
  • Trajectory is set to be an optical element unit comprising an optical parameter of the concave or straight as viewed from the light collector.
  • the brittle material substrate includes a glass substrate, a quartz substrate, a silicon substrate, a sapphire substrate, a silicon or other semiconductor wafer, and a ceramic substrate.
  • the laser light source has different absorption characteristics of the substrate depending on the wavelength of the laser light
  • the laser light source to be used is selected depending on the type of the substrate and whether the substrate is scanned from the substrate surface or the inside of the substrate. For example, when scanning the vicinity of the surface of a glass substrate, it is preferable to use a CO 2 laser or CO laser whose substrate material has a large absorption coefficient (however, if the substrate surface is scanned, the laser only needs to be condensed).
  • a YAG laser Nd-YAG laser, Er-YAG laser, etc.
  • a YAG laser Nd-YAG laser, Er-YAG laser, etc.
  • a lens unit or a mirror unit can be used as the optical element unit serving as a light collecting member.
  • the optical parameter of the optical element unit (lens unit, mirror unit) used in the present invention the scanning locus of the condensing point formed by the condensing member when the incident optical path is deflected by the beam deflecting unit is the condensing member.
  • An optical parameter having an optical parameter that becomes concave or linear when viewed from the side is used.
  • the optical parameters for obtaining such a scanning locus can be obtained by geometric calculation, analysis by a finite element method, or trial and error design.
  • the optical element unit here is not limited to a single lens, but has a structure in which a plurality of lenses and mirrors are arranged in series, such as a combination lens.
  • the shape of the light collecting member is concave when viewed from the light collecting member.
  • the optical system is configured such that the laser beam emitted from the laser light source is irradiated from the obliquely forward direction of the substrate to the edge line for chamfering the substrate through the beam deflecting unit and the condensing member. Is placed.
  • the beam deflecting unit deflects an incident optical path of the laser beam emitted from the laser light source to the condensing member.
  • the condensing member is deflected in the incident optical path by the beam deflecting unit, so that the traveling direction of the laser beam emitted from the condensing member is deflected.
  • the position of the condensing point formed by the laser beam emitted from the condensing member is scanned in the vicinity of the edge line of the substrate.
  • the condensing member uses an optical element unit having an optical parameter in which the scanning locus of the condensing point formed on the surface intersecting the edge line is concave or linear when viewed from the condensing member, the edge The scanning locus of the condensing point near the line is concave or linear when viewed from the condensing member.
  • the scanning locus is a straight line
  • chamfering of the C surface is performed, and when the scanning locus is concave when viewed from the light collecting member, an R surface, a paraboloid, an elliptical surface, and the like determined according to the concave shape.
  • a convex chamfering process is performed.
  • the chamfered surface formed by laser irradiation can be a C surface, an R surface, or a curved surface that is convex toward the outside of the substrate.
  • the light collecting member may be an optical element unit including an f ⁇ lens or an f ⁇ mirror. Since the scanning locus of the condensing point is a straight line when the condensing member is an optical element unit composed of an f ⁇ lens or an f ⁇ mirror, the C surface can be chamfered.
  • the light condensing member may be an optical element unit in which a non-telecentric f ⁇ lens and a plane parallel plate are combined.
  • the condensing member is an optical element unit that is a combination of a non-telecentric f ⁇ lens and a plane parallel plate, the scanning locus of the condensing point is convex toward the outside of the substrate, so that the convex chamfering is performed. be able to.
  • a feeding mechanism for moving the substrate side or the laser beam side so that the condensing point relatively moves along the edge line may be provided. According to this, the entire edge line can be chamfered along the edge line.
  • the substrate support portion includes a table for horizontally placing the substrate, and the light condensing member and the beam deflection portion are inclined at 45 degrees with respect to the edge line of the horizontally placed substrate as a central direction. You may make it arrange
  • the beam deflection unit may be constituted by a galvanometer mirror or a polygon mirror.
  • the laser beam directed to the condensing member can be deflected accurately and with high reproducibility by a simple mechanism by the swinging motion of the reflecting mirror and in the case of a polygon mirror by the rotating motion of the reflecting mirror.
  • a depth adjusting mechanism for adjusting the position of the condensing point in the depth direction with respect to the substrate by moving the position of the substrate or the condensing member in the laser beam irradiation direction may be further provided.
  • deep chamfering is performed, shallow chamfering is performed, deep chamfering is performed by gradually changing the depth, and from the origin of the edge line while adjusting the scanning position in the depth direction. By relatively moving relative to the end point continuously, it is possible to perform chamfering without difficulty.
  • substrate which is one Embodiment of this invention.
  • the enlarged view of the scanning optical system of FIG. The block diagram of the control system of the chamfering apparatus of FIG.
  • FIG. 1 is a view showing a brittle material substrate chamfering apparatus LM according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing the scanning optical system of FIG.
  • the chamfering apparatus LM is provided with a slide table 2 that reciprocates in the front-rear direction of the paper surface (hereinafter referred to as the Y direction) in FIG. 1 along a pair of guide rails 3 and 4 arranged in parallel on a horizontal base 1. ing.
  • a screw screw 5 is arranged between the guide rails 3 and 4 along the front-rear direction, and a stay 6 fixed to the slide table 2 is screwed to the screw screw 5.
  • the slide table 2 is formed so as to reciprocate in the Y direction along the guide rails 3 and 4 by forward and reverse rotation (not shown).
  • a horizontal pedestal 7 is arranged so as to reciprocate in the left-right direction in FIG.
  • a screw 10 that is rotated by a motor 9 is threaded through a stay 10a that is fixed to the pedestal 7, and the pedestal 7 moves along the guide rail 8 in the X direction when the screw 10 rotates forward and backward. Move back and forth.
  • a lifting table 11 for adjusting the height direction (hereinafter referred to as Z direction) and a suction table 12 on which a suction chuck is mounted are provided.
  • a glass substrate G is mounted on the suction table 12. Set in a horizontal state. At this time, the edge line EL to be chamfered is directed upward, and is supported so that a laser beam to be described later is incident obliquely from a 45 degree direction.
  • the glass substrate G is positioned using the camera 20 and alignment marks (not shown) formed on the substrate so that the edge line EL is directed in the Y direction.
  • positioning may be performed by providing a positioning guide on the surface of the suction table 12 and bringing a part of the substrate into contact with the guide.
  • a laser light source 13 Above the glass substrate G, a laser light source 13, a galvanometer mirror 14 (beam deflection unit), and a lens unit 15 (light condensing member) are attached.
  • the galvanometer mirror 14 and the lens unit 15 constitute a scanning optical system 16.
  • An Nd-YAG laser light source is used as the laser light source 13.
  • the laser light source 13 In the XZ plane, the laser light source 13 has an emission direction directed obliquely downward 45 degrees to the left.
  • the galvanometer mirror 14 has a reflecting mirror disposed on the optical path of the laser beam emitted from the laser light source 13, emits the laser beam obliquely downward to the right, and changes the beam emitting direction by the swinging motion of the reflecting mirror. Deflection in the XZ plane.
  • the range of the oscillating motion of the galvanometer mirror 14 at this time is adjusted according to the angle range for chamfering the workpiece.
  • the lens unit 15 condenses the laser beam emitted from the galvanometer mirror 14 to form a condensing point. Further, as a result of the emission direction being deflected by the galvanometer mirror 14 and the incident position of the laser beam on the lens unit 15 being scanned, the condensing point of the laser beam emitted from the lens unit 15 is within the XZ plane (that is, the edge). Scanning is performed in a plane orthogonal to the line EL, and the scanning locus becomes concave (convex toward the outside of the substrate) when viewed from the lens unit side. For example, as shown in FIG. 2, the scanning locus of the condensing point is an arc R0 connecting F0, F1, and F2 due to the swinging motion of the galvanometer mirror 14.
  • the lens unit 15 is a lens unit that is a combination of a non-telecentric f ⁇ lens and a plane-parallel plate, so that the scanning locus of the condensing point is shaped like an arc R0 connecting F0, F1, and F2 (on the outside of the substrate). Can be convex).
  • the galvano mirror 14 and the lens unit 15 are fixed to the frame of the apparatus, and the position of the condensing point and the scanning locus of the condensing point formed by these optical elements are a constant position and locus, A function representing the coordinates of the condensing point (coordinates of F0, F1, and F2) and the locus (arc R0) can be obtained by geometric calculation (or by actual measurement).
  • the focusing point F0 is set on the edge line EL or in the vicinity of the edge line EL by adjusting the position in the XYZ directions by the slide table 2, the base 7, and the lifting table 11. Match the position of the planned surface.
  • FIG. 3 is a block diagram of the control system.
  • the chamfering apparatus LM includes a control unit 50 including a memory that stores various control data, setting parameters, and a program (software), and a CPU that executes arithmetic processing.
  • the control unit 50 includes a table driving unit 51 that drives a motor (such as the motor 9) for positioning and moving the slide table 2, the pedestal 7, and the lifting table 11, and a suction mechanism drive that drives the suction chuck of the suction table 12.
  • the drive system of the part 52, the beam deflection part drive part 53 which drives the galvanometer mirror 14, and the laser drive part 54 which performs laser irradiation is controlled.
  • the control unit 50 is connected to an input unit (not shown) including a keyboard and a mouse, and a display unit (not shown) that performs various displays on the display screen, and displays necessary information on the screen. Necessary commands and settings can be input.
  • the substrate G is placed on the suction table 12 and the position is adjusted using the camera 20. Then, the edge line EL is directed in the Y direction, and the position is adjusted by the slide table 2, the pedestal 7, and the lifting table 11 so that the coordinates of the condensing point F0 are at the depth of the processing planned surface on or near the edge line EL. . In this case, if the pedestal 7 and the lifting table 11 are moved in conjunction with each other, the substrate can be moved in an oblique direction, so that it can be used as a position adjustment mechanism in the depth direction of the substrate at the focal point F0. .
  • the galvanometer mirror 14 and the laser light source 13 are driven to scan the laser beam in the vicinity of the edge line.
  • the substrate material is melted and removed by ablation near the condensing point, and a chamfered surface is formed.
  • the slide table 2 When chamfering the entire length of the edge line EL, the slide table 2 is sent at a constant speed, and the substrate G is moved in the Y direction with respect to the scanning surface (XZ surface) of the laser beam. At this time, the slide table 2 may be intermittently fed so that the laser beam is scanned a plurality of times at the same processing position.
  • chamfering is performed in multiple steps. That is, as shown in FIG. 4, the first chamfering process is performed while setting the condensing point at a shallow position close to the edge line EL and moving in the Y direction. The same process is repeated by gradually shifting to the inner side.
  • FIG. 5 is an enlarged view of the scanning optical system when the condensing member is changed from the lens unit 15 to the f ⁇ lens 15a.
  • the C surface can be chamfered.
  • the optical parameters such as the curved surface shape, the radius of curvature, and the refractive index of the lens unit 15 are appropriately designed, a free-form surface lens that can draw a desired scanning locus can be created.
  • the chamfered surface can be a parabolic surface, an elliptical surface, or an arbitrary free-form surface.
  • the same trajectory as the scanning trajectory by the lens can be drawn using a reflecting mirror instead of the lens.
  • the same chamfering can be performed even if the beam deflecting unit is changed from a galvanometer mirror to a polygon mirror.
  • FIG. 6 shows a modification of the scanning optical system.
  • the focal position is scanned by the galvanometer mirror 14, but here, instead of the galvanometer mirror 14, a swing mechanism (not shown) is attached to the plane parallel plate of the lens unit 15 to swing this.
  • the scanning trajectory is substantially the same as in FIG.
  • FIG. 7 is an enlarged view of the scanning optical system when the condensing member is replaced with a unit 15b composed of a non-telecentric f ⁇ mirror and a plane parallel plate.
  • the unit 15b also has a shape like an arc R0 that connects the scanning locus of the condensing point to the above-described F0, F1, and F2. It can be convex toward the outside of the substrate). Even when these scanning optical systems are used, the same chamfering as in FIG. 2 can be performed.
  • an aspherical lens or aspherical mirror having appropriate optical parameters using the finite element method, it is equivalent to a single lens or a single mirror alone and a combination lens of a non-telecentric f ⁇ lens and a plane parallel plate. It is also possible to form an optical system.
  • the slide table 2 on which the substrate G is placed is moved in the chamfering apparatus LM in FIG. 2, but the scanning optical system (galvano mirror 14, lens unit 15) side is moved. It can also be moved.
  • the chamfering process for the glass substrate has been described above.
  • the same chamfering process can be realized by selecting a laser light source that can be used according to the absorption characteristics of each substrate material. Can do.
  • the present invention is used for chamfering a brittle material substrate such as a glass substrate.

Abstract

Provided is a chamfering apparatus for chamfering or rounding a brittle material substrate. The chamfering apparatus is provided with a beam deflecting section (14), which is arranged on a laser beam optical path between a laser light source (13) and a light focusing member (15) and makes the position of a light focused point formed by laser beams outputted from the light focusing member scan the substrate by deflecting an incoming optical path of the laser beam to the light focusing member.  The chamfering apparatus is also provided with substrate supporting sections (2, 7, 11, 12) which support the substrate so that the laser beam is applied diagonally from the front of an edge line (EL) toward the edge line and that the light focused point scans the substrate along a surface which intersects with the edge line on a surface or inside the substrate at the vicinity of the edge line.  The light focusing member (15) is formed as an optical element unit wherein the scan track of the light focused point formed on the surface which intersects with the edge line has a recessed shape or is linear when viewed from the focusing member, and thus a shape protruding toward the outer side of the substrate is chamfered.

Description

面取り加工装置Chamfering device
 本発明は、脆性材料基板の端面に形成されるエッジライン(稜線)の面取り加工方法に関し、さらに詳細にはレーザビームの照射によりエッジラインのR面取りまたはC面取りを行う面取り加工方法および面取り加工装置に関する。
 ここで加工対象となる脆性材料基板には、ガラス基板のほか、石英、単結晶シリコン、サファイヤ、半導体ウェハ、セラミック等の基板が含まれる。
The present invention relates to a method for chamfering an edge line (ridge line) formed on an end face of a brittle material substrate, and more particularly, a chamfering method and a chamfering apparatus for performing R chamfering or C chamfering of an edge line by laser beam irradiation. About.
Here, the brittle material substrates to be processed include substrates such as quartz, single crystal silicon, sapphire, semiconductor wafers, and ceramics in addition to glass substrates.
 ガラス基板等の脆性材料基板は、所望の寸法、形状に加工することにより各種の製品に用いられている。一般に、脆性材料基板の加工は、ダイシング、ホイールスクライブ、レーザスクライブ等の既存の加工技術により行われるが、これらの加工技術により分断された基板端面のエッジラインは非常に鋭く、わずかな衝撃が加わるだけでもチッピングやマイクロクラック等の不具合が生じる。例えば、フラットパネルディスプレイ(FPD)用のガラス基板では、エッジが欠けることにより発生した破片がFPD用基板の表面に傷を付ける原因となり、製品の歩留まりに影響を与える。
 そのため、基板を分断した後に発生する基板のエッジ部分の欠け等を防止するために、エッジラインに沿って面取り加工が行われている。
Brittle material substrates such as glass substrates are used in various products by processing them into desired dimensions and shapes. In general, processing of brittle material substrates is performed by existing processing technologies such as dicing, wheel scribe, laser scribe, etc., but the edge line of the substrate end face divided by these processing technologies is very sharp and a slight impact is applied. Even alone, defects such as chipping and microcracks occur. For example, in a glass substrate for a flat panel display (FPD), fragments generated due to chipping of edges cause damage to the surface of the FPD substrate, which affects the product yield.
Therefore, chamfering is performed along the edge lines in order to prevent chipping of the edge portion of the substrate that occurs after the substrate is divided.
 従来からの面取り加工のひとつに、多量の水を供給しつつダイヤモンド砥石により研磨するウェット研磨法がある。しかしながら、ウェット研磨法により形成される面取り加工面には、微小なクラックが連続的に残存しており、面取り加工面の強度は周囲より著しく低下することになっていた。 One conventional chamfering process is a wet polishing method in which a large amount of water is supplied and polished with a diamond grindstone. However, minute cracks remain continuously on the chamfered surface formed by the wet polishing method, and the strength of the chamfered surface is significantly lower than the surroundings.
 これに対し、面取り加工を行おうとするエッジラインに沿ってレーザビームを走査し、エッジラインに沿って、レーザビームの焦点が移動することによりエッジ上が加熱溶融することにより面取りを行う加熱溶融法が提案されている。たとえばガラス部材全体を常温より高い温度に保持(余熱)した状態で、稜線部近傍をレーザ加熱して稜線部を軟化させて丸くすることにより面取りを行う方法が開示されている(特許文献1参照)。 In contrast, a heating / melting method in which a laser beam is scanned along the edge line to be chamfered, and the edge is heated and melted by moving the focal point of the laser beam along the edge line, thereby performing chamfering. Has been proposed. For example, a method is disclosed in which chamfering is performed by heating the vicinity of a ridge line portion with a laser to soften and round the ridge line portion while keeping the entire glass member at a temperature higher than room temperature (remaining heat) (see Patent Document 1). ).
 図8は、COレーザ光源を用いて加熱溶融法により面取り加工を行う際のレーザ照射状態を示す断面図である。予め、図示しないヒータを用いてガラス基板10全体を軟化温度より低い所定温度に徐々に加熱しておき、続いて所定温度に保持されたガラス基板10の面取り加工を行うエッジライン51に沿って、COレーザ光源50からのレーザ光を集光レンズ53により集光し、焦点を加工部分近傍に合わせて走査する。その際、レーザ出力、走査速度を調整することにより、レーザ照射されたエッジ部分が高温になって軟化するようにし、これによりレーザ照射されたエッジ部分が丸みを帯びるように加工する。 FIG. 8 is a cross-sectional view showing a laser irradiation state when chamfering is performed by a heat melting method using a CO 2 laser light source. In advance, along the edge line 51 that chamfers the glass substrate 10 that has been gradually heated to a predetermined temperature lower than the softening temperature by using a heater (not shown) and then maintained at the predetermined temperature. The laser light from the CO 2 laser light source 50 is condensed by the condenser lens 53, and the focal point is scanned in the vicinity of the processing portion. At that time, by adjusting the laser output and the scanning speed, the edge portion irradiated with the laser becomes high temperature and softens, and thereby the edge portion irradiated with the laser is processed to be rounded.
 この場合、予備加熱、加工後の冷却に時間がかかる。また、基板全体を予備加熱する必要があり、加熱できないデバイスやセンサ等の機能膜が基板上に既に形成されている場合には、この方法による面取り加工を実施できない場合もある。また、余熱が不十分であれば熱応力により割れ(クラック)が発生し、良好な面取り加工ができなくなる。さらに、上述した加熱溶融法による面取り加工では、溶融部分が変形してその一部(丸みを帯びた部分の一部)が周囲よりも膨れてしまい、基板端面の平坦度が損なわれることがある。 In this case, it takes time for preheating and cooling after processing. In addition, if the entire substrate needs to be preheated and a functional film such as a device or sensor that cannot be heated is already formed on the substrate, chamfering by this method may not be performed. Further, if the residual heat is insufficient, a crack is generated due to thermal stress, and good chamfering cannot be performed. Further, in the chamfering process by the heating and melting method described above, the melted part is deformed and a part thereof (part of the rounded part) is swollen from the surroundings, and the flatness of the substrate end face may be impaired. .
 加熱溶融法とは異なり、予備加熱の必要がないレーザ照射による面取り方法として、エッジ近傍にレーザ光を照射して加熱することでガラス基板10にクラックを発生させ、レーザ光を相対的にエッジライン方向に走査することによりクラックをエッジラインに沿って成長させ、ガラス基板からエッジ近傍を分離することにより面取りを行うレーザスクライブ法が開示されている(特許文献2)。 Unlike the heating and melting method, as a chamfering method by laser irradiation that does not require preheating, a laser beam is irradiated near the edge and heated to generate a crack in the glass substrate 10, and the laser beam is relatively edge-lined. A laser scribing method is disclosed in which a crack is grown along an edge line by scanning in a direction, and chamfering is performed by separating the vicinity of the edge from a glass substrate (Patent Document 2).
 図9は、COレーザ光源を用いてレーザスクライブにより面取り加工を行う際のレーザ照射状態を示す図である。ガラス基板10のエッジライン51付近にCOレーザ光源50からのレーザ光を集光レンズ53により局所的に照射し、軟化温度より低い温度で加熱する。このとき局所的熱膨張にともなう熱応力によってクラック52が発生する。そして、エッジライン51に沿ってレーザ光を走査することにより、順次発生するクラック52がエッジライン51に沿って成長し、エッジライン51を含むエッジ近傍(角部分)が分離される。
 特許文献2によれば、レーザスクライブによる面取り加工を行うことにより、ガラス基板の精度を損なうことなく、高い生産性と洗浄工程を必要としない面取り加工を施すことができるとされている。
特開平2-241684号公報 特開平9-225665号公報
FIG. 9 is a diagram showing a laser irradiation state when chamfering is performed by laser scribing using a CO 2 laser light source. The laser light from the CO 2 laser light source 50 is locally irradiated near the edge line 51 of the glass substrate 10 by the condenser lens 53 and heated at a temperature lower than the softening temperature. At this time, the crack 52 is generated by the thermal stress accompanying the local thermal expansion. Then, by scanning the laser beam along the edge line 51, sequentially generated cracks 52 grow along the edge line 51, and the vicinity of the edge (corner portion) including the edge line 51 is separated.
According to Patent Document 2, it is said that by performing chamfering by laser scribing, chamfering that does not require high productivity and a cleaning step can be performed without impairing the accuracy of the glass substrate.
JP-A-2-241684 JP-A-9-225665
 ここで、レーザスクライブによる面取り加工によって形成される加工面について説明する。図10は、COレーザを用いたレーザスクライブにより面取り加工を行ったときの加工断面の拡大図である。 Here, a processed surface formed by chamfering by laser scribing will be described. FIG. 10 is an enlarged view of a processed cross section when chamfering is performed by laser scribing using a CO 2 laser.
 面取り加工により、ガラス基板10の角部分Uが分離(剥離)され、ガラス基板10のエッジライン53は角部分Uとともに消失するが、新たに面取り加工面54が形成される。
 この面取り加工面54の断面形状を観察すると、ガラス基板10側に凹んだ円弧形状の逆R面を有している。面取り加工面54が凹んでいる結果、ガラス基板Sの基板表面55、56との交差部分には、2つのエッジライン57、58が形成されることになる。これらエッジライン57、58は、当初のエッジライン53に比べるとエッジの鋭さは改善されているが、それでも凹みが大きくなると、鋭利なエッジが形成されてしまうことになる。
 特にフラットパネルディスプレイ用(FPD用)ガラス基板では、エッジライン57、58の直上にTABテープが配線されることがあり、面取り加工後に、この部分に鋭利なエッジが残っているとTABテープが断線される可能性が高くなる。
 そのため、面取り加工面54は、凹みをなくし、面取り部分が平面であるC面、あるいは、外側に向けて凸状になるR面にすることが求められている。
The corner portion U of the glass substrate 10 is separated (peeled) by the chamfering process, and the edge line 53 of the glass substrate 10 disappears together with the corner portion U, but a new chamfered surface 54 is formed.
When the cross-sectional shape of the chamfered surface 54 is observed, it has an arcuate inverted R surface that is recessed toward the glass substrate 10 side. As a result of the chamfered surface 54 being recessed, two edge lines 57 and 58 are formed at the intersections of the glass substrate S with the substrate surfaces 55 and 56. These edge lines 57 and 58 have improved edge sharpness compared to the original edge line 53, but if the dent becomes large, a sharp edge will be formed.
In particular, for flat panel display (FPD) glass substrates, TAB tape may be wired immediately above the edge lines 57 and 58. If a sharp edge remains in this area after chamfering, the TAB tape breaks. Is likely to be.
For this reason, the chamfered surface 54 is required to be a C surface where the chamfered portion is a flat surface, or an R surface which is convex toward the outside.
 しかしながら、上述したような従来のCOレーザを用いたレーザスクライブ法による面取り加工面54ではどうしても面取り加工面に凹みが発生してしまう。これはエッジライン53に照射するレーザの照射方向を変化させたりしても、結果はほぼ同じであり、面取り加工面の形状を制御することが困難であった。 However, in the chamfered surface 54 by the laser scribing method using the conventional CO 2 laser as described above, a dent is inevitably generated on the chamfered surface. Even if the irradiation direction of the laser irradiating the edge line 53 is changed, the result is almost the same, and it is difficult to control the shape of the chamfered surface.
 近年、フラットパネルディスプレイ(FPD)用ガラス基板等では、従来よりも大型のガラス基板が用いられ、ガラス基板の大型化に伴って、基板の加工品質についても、これまで以上に高い精度や信頼性が求められるようになってきている。面取り加工面の形状についても、これまで以上に高い精度と信頼性が求められている。 In recent years, glass substrates for flat panel displays (FPD), etc., have been using larger glass substrates than before, and with the increase in size of glass substrates, the processing quality of the substrates is also higher than ever before with higher accuracy and reliability. Has come to be required. As for the shape of the chamfered surface, higher accuracy and reliability than ever are required.
 そこで本発明は、レーザ照射により形成される面取り加工面を、逆R面ではなく、C面あるいはR面、あるいは基板外側に向けて凸になる曲面にすることができる面取り加工装置を提供することを目的とする。 Accordingly, the present invention provides a chamfering apparatus capable of forming a chamfered surface formed by laser irradiation into a curved surface that is convex toward the C or R surface, or the outside of the substrate, instead of the reverse R surface. With the goal.
 上記課題を解決するためになされた本発明の面取り加工装置は、特殊な光学素子ユニットを用いてレーザビームの集光点を走査することによりC面、R面、基板外側に向けて凸になる曲面の面取り加工を実現するようにしている。
すなわち、本発明の面取り加工装置は、脆性材料基板の面取り加工を行う面取り加工装置であって、レーザ光源と、レーザ光源から放射されたレーザビームを集光して基板に導く集光部材と、レーザ光源から集光部材を介して基板に至るまでのレーザビームの光路上に設けられ、レーザビームの入射光路を偏向してレーザビームが形成する集光点の位置を走査させるビーム偏向部と、面取り加工を行うエッジラインに対し、エッジラインを端辺とする2つの隣接面の斜め前方からエッジラインに向けてレーザビームが照射され、エッジライン近傍の基板表面又は基板内部に前記集光点がエッジラインと交差する面に沿って走査されるように基板を支持する基板支持部とを備え、集光部材は、エッジラインと交差する面に形成される集光点の走査軌跡が集光部材からみて凹状又は直線状になる光学パラメータを有する光学素子ユニットからなるようにしている。
The chamfering processing apparatus of the present invention made to solve the above problems is convex toward the C-plane, R-plane, and the outside of the substrate by scanning the condensing point of the laser beam using a special optical element unit. The chamfering of the curved surface is realized.
That is, the chamfering apparatus of the present invention is a chamfering apparatus that chamfers a brittle material substrate, and includes a laser light source, a condensing member that condenses the laser beam emitted from the laser light source and guides the substrate to the substrate, A beam deflecting unit that is provided on the optical path of the laser beam from the laser light source to the substrate through the condensing member, deflects the incident optical path of the laser beam, and scans the position of the condensing point formed by the laser beam; With respect to the edge line to be chamfered, a laser beam is irradiated toward the edge line from diagonally forward of two adjacent surfaces having the edge line as an end, and the condensing point is formed on the substrate surface in the vicinity of the edge line or inside the substrate. A substrate support portion that supports the substrate so as to be scanned along a surface intersecting with the edge line, and the condensing member is configured to run a condensing point formed on the surface intersecting with the edge line. Trajectory is set to be an optical element unit comprising an optical parameter of the concave or straight as viewed from the light collector.
 ここで、脆性材料基板には、ガラス基板、石英基板、シリコン基板、サファイヤ基板、シリコンその他の半導体ウェハ、セラミック基板が含まれる。
 また、レーザ光源は、レーザ光の波長により基板の吸収特性が異なるので、基板の種類、基板表面から走査するか基板内部を走査するかによって、使用するレーザ光源を選択する。
例えば、ガラス基板に対し、表面付近を走査する場合には基板材料の吸収係数が大きいCOレーザやCOレーザを用いるのが好ましい(但し基板表面を走査する場合はレーザを集光しさえすれば吸収の小さいレーザでも使用できる)。一方、基板内部を走査する場合には基板材料の吸収係数が小さいYAGレーザ(Nd-YAGレーザ、Er-YAGレーザ等)を用いるのが好ましい。
Here, the brittle material substrate includes a glass substrate, a quartz substrate, a silicon substrate, a sapphire substrate, a silicon or other semiconductor wafer, and a ceramic substrate.
Further, since the laser light source has different absorption characteristics of the substrate depending on the wavelength of the laser light, the laser light source to be used is selected depending on the type of the substrate and whether the substrate is scanned from the substrate surface or the inside of the substrate.
For example, when scanning the vicinity of the surface of a glass substrate, it is preferable to use a CO 2 laser or CO laser whose substrate material has a large absorption coefficient (however, if the substrate surface is scanned, the laser only needs to be condensed). (It can be used with lasers with low absorption) On the other hand, when scanning the inside of the substrate, it is preferable to use a YAG laser (Nd-YAG laser, Er-YAG laser, etc.) having a small absorption coefficient of the substrate material.
 また、集光部材となる光学素子ユニットには、レンズユニットまたはミラーユニットを用いることができる。一般に、レンズユニットではその屈折率分布、レンズ曲面形状を調整することにより、また、ミラーユニットではその反射面形状を調整することにより、レンズユニット、ミラーユニットへの入射光に対する出射光の光路方向や集光点を設計することができる。したがって、本発明に用いる光学素子ユニット(レンズユニット、ミラーユニット)の光学パラメータとして、ビーム偏向部によって入射光路が偏向されたときに集光部材により形成される集光点の走査軌跡が集光部材からみて凹状又は直線状になる光学パラメータを有するものを用いる。なお、このような走査軌跡を得る光学パラメータは幾何学的な計算、あるいは有限要素法による解析、あるいは試行錯誤的な設計を行うことにより求めることができる。 In addition, a lens unit or a mirror unit can be used as the optical element unit serving as a light collecting member. In general, by adjusting the refractive index distribution and lens curved surface shape in the lens unit, and by adjusting the reflecting surface shape in the mirror unit, the optical path direction of the outgoing light with respect to the incident light to the lens unit and mirror unit A condensing point can be designed. Therefore, as the optical parameter of the optical element unit (lens unit, mirror unit) used in the present invention, the scanning locus of the condensing point formed by the condensing member when the incident optical path is deflected by the beam deflecting unit is the condensing member. An optical parameter having an optical parameter that becomes concave or linear when viewed from the side is used. The optical parameters for obtaining such a scanning locus can be obtained by geometric calculation, analysis by a finite element method, or trial and error design.
 また、ここでいう光学素子ユニットには、単レンズだけでははく、組み合わせレンズのように、複数のレンズや鏡を直列に並べた構造にすることにより、素子全体として、集光点の走査軌跡が集光部材からみて凹状になるようにしたものも含まれる。 In addition, the optical element unit here is not limited to a single lens, but has a structure in which a plurality of lenses and mirrors are arranged in series, such as a combination lens. In this case, the shape of the light collecting member is concave when viewed from the light collecting member.
 本発明によれば、レーザ光源から放射されるレーザビームが、ビーム偏向部、集光部材を経て、基板の面取り加工を行うエッジラインに対し、基板の斜め前方方向から照射されるように光学系が配置される。ビーム偏向部は、レーザ光源から放射されたレーザビームの集光部材への入射光路を偏向する。集光部材はビーム偏向部によって入射光路が偏向されることにより、集光部材から出射するレーザビームの進行方向が偏向される。その結果、集光部材から出射するレーザビームにより形成される集光点の位置が、基板のエッジライン近傍で走査されるようになる。このとき集光部材には、エッジラインと交差する面に形成される集光点の走査軌跡が集光部材からみて凹状又は直線状になる光学パラメータを有する光学素子ユニットを用いてあるので、エッジライン近傍の集光点の走査軌跡が集光部材からみて凹状又は直線状になる。そして基板表面又は基板内部で集光点が走査されると、その軌跡に沿ってアブレーション現象が生じるようになり、集光点の走査軌跡に沿って基板の一部が除去されるようになる。したがって走査軌跡が直線状である場合はC面の面取り加工が行われ、走査軌跡が集光部材からみて凹状である場合は、その凹状に対応して定まるR面、放物面、楕円面等の凸状の面取り加工が行われる。 According to the present invention, the optical system is configured such that the laser beam emitted from the laser light source is irradiated from the obliquely forward direction of the substrate to the edge line for chamfering the substrate through the beam deflecting unit and the condensing member. Is placed. The beam deflecting unit deflects an incident optical path of the laser beam emitted from the laser light source to the condensing member. The condensing member is deflected in the incident optical path by the beam deflecting unit, so that the traveling direction of the laser beam emitted from the condensing member is deflected. As a result, the position of the condensing point formed by the laser beam emitted from the condensing member is scanned in the vicinity of the edge line of the substrate. At this time, since the condensing member uses an optical element unit having an optical parameter in which the scanning locus of the condensing point formed on the surface intersecting the edge line is concave or linear when viewed from the condensing member, the edge The scanning locus of the condensing point near the line is concave or linear when viewed from the condensing member. When the condensing point is scanned on the substrate surface or inside the substrate, an ablation phenomenon occurs along the locus, and a part of the substrate is removed along the scanning locus of the condensing point. Therefore, when the scanning locus is a straight line, chamfering of the C surface is performed, and when the scanning locus is concave when viewed from the light collecting member, an R surface, a paraboloid, an elliptical surface, and the like determined according to the concave shape. A convex chamfering process is performed.
 本発明によれば、レーザ照射によって形成される面取り加工面を、C面、あるいはR面、あるいは、基板外側に向けて凸になる曲面にすることができる。 According to the present invention, the chamfered surface formed by laser irradiation can be a C surface, an R surface, or a curved surface that is convex toward the outside of the substrate.
(その他の課題解決手段および効果)
 上記発明において、集光部材はfθレンズ又はfθミラーからなる光学素子ユニットであってもよい。
 集光部材をfθレンズ又はfθミラーからなる光学素子ユニットにした場合の集光点の走査軌跡は、直線状になるので、C面の面取り加工を行うことができる。
(Other problem solving means and effects)
In the above invention, the light collecting member may be an optical element unit including an fθ lens or an fθ mirror.
Since the scanning locus of the condensing point is a straight line when the condensing member is an optical element unit composed of an fθ lens or an fθ mirror, the C surface can be chamfered.
 上記発明において、集光部材は、テレセントリックでないfθレンズと平面平行板との組み合わせた光学素子ユニットであってもよい。
 集光部材をテレセントリックでないfθレンズと平面平行板との組み合わせた光学素子ユニットにした場合の集光点の走査軌跡は、基板外側に向けて凸状になるので、当該凸状の面取り加工を行うことができる。
In the above invention, the light condensing member may be an optical element unit in which a non-telecentric fθ lens and a plane parallel plate are combined.
When the condensing member is an optical element unit that is a combination of a non-telecentric fθ lens and a plane parallel plate, the scanning locus of the condensing point is convex toward the outside of the substrate, so that the convex chamfering is performed. be able to.
 上記発明において、集光点が前記エッジラインに沿って相対移動するように基板側又はレーザビーム側を移動させる送り機構を備えるようにしてもよい。
 これによれば、エッジラインに沿って、エッジライン全体の面取り加工を行うことができる。
In the above invention, a feeding mechanism for moving the substrate side or the laser beam side so that the condensing point relatively moves along the edge line may be provided.
According to this, the entire edge line can be chamfered along the edge line.
 上記発明において、基板支持部は基板を水平に載置するテーブルからなり、前記集光部材およびビーム偏向部は水平に載置された基板のエッジラインに対し斜め45度方向を中心方向にして前記集光点が走査されるように配置されるようにしてもよい。
 これによれば、基板を水平なテーブル上に安定に載置したまま面取り加工を行うことができる。
In the above invention, the substrate support portion includes a table for horizontally placing the substrate, and the light condensing member and the beam deflection portion are inclined at 45 degrees with respect to the edge line of the horizontally placed substrate as a central direction. You may make it arrange | position so that a condensing point may be scanned.
According to this, it is possible to perform chamfering while the substrate is stably placed on a horizontal table.
 上記発明において、ビーム偏向部はガルバノミラー又はポリゴンミラーにより構成されるようにしてもよい。
 ガルバノミラーの場合は反射鏡の揺動運動により、また、ポリゴンミラーの場合は反射鏡の回転運動により、簡単な機構で集光部材に向かうレーザビームを正確かつ再現性よく偏向させることができる。
In the above invention, the beam deflection unit may be constituted by a galvanometer mirror or a polygon mirror.
In the case of a galvano mirror, the laser beam directed to the condensing member can be deflected accurately and with high reproducibility by a simple mechanism by the swinging motion of the reflecting mirror and in the case of a polygon mirror by the rotating motion of the reflecting mirror.
 上記発明において、基板又は前記集光部材の位置をレーザビームの照射方向に移動することにより前記集光点の基板に対する深さ方向の位置を調整する深さ調整機構をさらに備えるようにしてもよい。
 これによれば、集光点の基板内の深さ位置を、面取り加工の加工予定深さに合わせて面取り加工を行うことにより、所望の深さの面取り加工を行うことができる。
 また、深い面取り加工を行うような場合に、浅い面取り加工を行い、徐々に深さを変化させて深い面取り加工を行うようにして、深さ方向の走査位置を調整しながらエッジラインの起点から終点まで連続的に相対移動させることにより、無理のない面取り加工を行うことができる。
In the above invention, a depth adjusting mechanism for adjusting the position of the condensing point in the depth direction with respect to the substrate by moving the position of the substrate or the condensing member in the laser beam irradiation direction may be further provided. .
According to this, it is possible to perform chamfering at a desired depth by chamfering the depth position of the condensing point in the substrate in accordance with the planned chamfering depth.
In addition, when deep chamfering is performed, shallow chamfering is performed, deep chamfering is performed by gradually changing the depth, and from the origin of the edge line while adjusting the scanning position in the depth direction. By relatively moving relative to the end point continuously, it is possible to perform chamfering without difficulty.
本発明の一実施形態である脆性材料基板の面取り加工装置の構成を示す図。The figure which shows the structure of the chamfering processing apparatus of the brittle material board | substrate which is one Embodiment of this invention. 図1の走査光学系の拡大図。The enlarged view of the scanning optical system of FIG. 図1の面取り加工装置の制御系のブロック図。The block diagram of the control system of the chamfering apparatus of FIG. 面取り加工面を深く形成する場合の手順を示す図。The figure which shows the procedure in the case of forming a chamfering processed surface deeply. 走査光学系の変形例の拡大図。The enlarged view of the modification of a scanning optical system. 走査光学系の変形例の拡大図。The enlarged view of the modification of a scanning optical system. 走査光学計の変形例の拡大図。The enlarged view of the modification of a scanning optical meter. COレーザ光源を用いて加熱溶融法により面取り加工を行う際のレーザ照射状態を示す断面図。Sectional view of a laser irradiation state at the time of performing the chamfering by heating and melting method using a CO 2 laser source. COレーザ光源を用いてレーザスクライブ法により面取り加工を行う際のレーザ照射状態を示す図。It shows a laser irradiation state at the time of performing the chamfering by a laser scribing method using a CO 2 laser source. COレーザを用いたレーザスクライブ法により面取り加工を行ったときの加工断面の拡大図。Enlarged view of a processed cross section when performing chamfering by CO 2 laser scribing method using a laser.
  2 スライドテーブル
  7 台座
 11 昇降テーブル
 12 吸着テーブル
 13 レーザ光源
 14 ガルバノミラー(ビーム偏向部)
 14aポリゴンミラー
 15 レンズユニット(集光部材)
 15afθレンズ
 15bユニット
 16 走査光学系
2 Slide table 7 Base 11 Lifting table 12 Suction table 13 Laser light source 14 Galvano mirror (beam deflection unit)
14a Polygon mirror 15 Lens unit (Condensing member)
15afθ lens 15b unit 16 scanning optical system
 以下、本発明の実施形態について図面を用いて説明する。ここでは、ガラス基板についての面取り加工について説明する。
 なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the chamfering process for the glass substrate will be described.
Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.
 図1は、本発明の一実施形態である脆性材料基板の面取り加工装置LMを示す図である。図2は、図1の走査光学系を示す拡大図である。 FIG. 1 is a view showing a brittle material substrate chamfering apparatus LM according to an embodiment of the present invention. FIG. 2 is an enlarged view showing the scanning optical system of FIG.
 面取り加工装置LMは、水平な架台1上に平行に配置された一対のガイドレール3、4に沿って、図1の紙面前後方向(以下Y方向という)に往復移動するスライドテーブル2が設けられている。両ガイドレール3、4の間に、スクリューネジ5が前後方向に沿って配置され、このスクリューネジ5に、前記スライドテーブル2に固定されたステー6が螺合されており、スクリューネジ5をモータ(図示外)によって正、逆転することにより、スライドテーブル2がガイドレール3、4に沿ってY方向に往復移動するように形成されている。 The chamfering apparatus LM is provided with a slide table 2 that reciprocates in the front-rear direction of the paper surface (hereinafter referred to as the Y direction) in FIG. 1 along a pair of guide rails 3 and 4 arranged in parallel on a horizontal base 1. ing. A screw screw 5 is arranged between the guide rails 3 and 4 along the front-rear direction, and a stay 6 fixed to the slide table 2 is screwed to the screw screw 5. The slide table 2 is formed so as to reciprocate in the Y direction along the guide rails 3 and 4 by forward and reverse rotation (not shown).
 スライドテーブル2上には、水平な台座7がガイドレール8に沿って、図1の左右方向(以下X方向という)に往復移動するように配置されている。台座7に固定されたステー10aに、モータ9によって回転するスクリューネジ10が貫通螺合されており、スクリューネジ10が正、逆転することにより、台座7がガイドレール8に沿って、X方向に往復移動する。 On the slide table 2, a horizontal pedestal 7 is arranged so as to reciprocate in the left-right direction in FIG. A screw 10 that is rotated by a motor 9 is threaded through a stay 10a that is fixed to the pedestal 7, and the pedestal 7 moves along the guide rail 8 in the X direction when the screw 10 rotates forward and backward. Move back and forth.
 台座7上には、高さ方向(以下Z方向という)の調整を行う昇降テーブル11と、吸引チャックを搭載した吸着テーブル12が設けられており、この吸着テーブル12の上に、ガラス基板Gが水平な状態でセットされる。このとき、面取り加工を行うエッジラインELは上方に向けられ、後述するレーザビームが斜め45度方向から入射されるように支持される。
 なお、ガラス基板Gはカメラ20および基板に形成されたアライメントマーク(不図示)を利用して位置決めを行い、エッジラインELをY方向に向けるようにする。基板Gが一定である場合には、吸着テーブル12の表面に位置決め用のガイドを設けておき、基板の一部をガイドに当接させるようにして位置決めを行ってもよい。
On the pedestal 7, a lifting table 11 for adjusting the height direction (hereinafter referred to as Z direction) and a suction table 12 on which a suction chuck is mounted are provided. On the suction table 12, a glass substrate G is mounted. Set in a horizontal state. At this time, the edge line EL to be chamfered is directed upward, and is supported so that a laser beam to be described later is incident obliquely from a 45 degree direction.
The glass substrate G is positioned using the camera 20 and alignment marks (not shown) formed on the substrate so that the edge line EL is directed in the Y direction. When the substrate G is constant, positioning may be performed by providing a positioning guide on the surface of the suction table 12 and bringing a part of the substrate into contact with the guide.
 ガラス基板Gの上方には、レーザ光源13と、ガルバノミラー14(ビーム偏向部)と、レンズユニット15(集光部材)とが取り付けられている。ガルバノミラー14とレンズユニット15とは走査光学系16を構成する。
 レーザ光源13にはNd-YAGレーザ光源が用いられる。レーザ光源13はXZ面内で出射方向が左斜め下方45度に向けられている。
 ガルバノミラー14は、レーザ光源13から出射されるレーザビームの光路上に反射鏡を配置してあり、レーザビームを右斜め下方に出射するとともに、反射鏡の揺動運動により、ビームの出射方向をXZ面内で偏向する。このときのガルバノミラー14の揺動運動の範囲は、加工対象物の面取り加工を行う角度範囲に応じて調整する。
 レンズユニット15は、ガルバノミラー14から出射されるレーザビームを集光し、集光点を形成する。また、ガルバノミラー14によって出射方向が偏向されて、レーザビームのレンズユニット15への入射位置が走査される結果、レンズユニット15から出射されるレーザビームによる集光点は、XZ面内(すなわちエッジラインELに直交する面内)で走査され、走査軌跡がレンズユニット側から見て凹状(基板外側に向けて凸状)になる。
 例えば図2に示すように、ガルバノミラー14の揺動運動により集光点の走査軌跡はF0、F1、F2を結ぶ弧R0となる。
Above the glass substrate G, a laser light source 13, a galvanometer mirror 14 (beam deflection unit), and a lens unit 15 (light condensing member) are attached. The galvanometer mirror 14 and the lens unit 15 constitute a scanning optical system 16.
An Nd-YAG laser light source is used as the laser light source 13. In the XZ plane, the laser light source 13 has an emission direction directed obliquely downward 45 degrees to the left.
The galvanometer mirror 14 has a reflecting mirror disposed on the optical path of the laser beam emitted from the laser light source 13, emits the laser beam obliquely downward to the right, and changes the beam emitting direction by the swinging motion of the reflecting mirror. Deflection in the XZ plane. The range of the oscillating motion of the galvanometer mirror 14 at this time is adjusted according to the angle range for chamfering the workpiece.
The lens unit 15 condenses the laser beam emitted from the galvanometer mirror 14 to form a condensing point. Further, as a result of the emission direction being deflected by the galvanometer mirror 14 and the incident position of the laser beam on the lens unit 15 being scanned, the condensing point of the laser beam emitted from the lens unit 15 is within the XZ plane (that is, the edge). Scanning is performed in a plane orthogonal to the line EL, and the scanning locus becomes concave (convex toward the outside of the substrate) when viewed from the lens unit side.
For example, as shown in FIG. 2, the scanning locus of the condensing point is an arc R0 connecting F0, F1, and F2 due to the swinging motion of the galvanometer mirror 14.
 ここでレンズユニット15の具体例について説明する。レンズユニット15は、テレセントリックでないfθレンズと平行平面板とを組み合わせたレンズユニットとすることにより、集光点の走査軌跡を上述したF0、F1、F2を結ぶ弧R0のような形状(基板外側に向けて凸状)にすることができる。 Here, a specific example of the lens unit 15 will be described. The lens unit 15 is a lens unit that is a combination of a non-telecentric fθ lens and a plane-parallel plate, so that the scanning locus of the condensing point is shaped like an arc R0 connecting F0, F1, and F2 (on the outside of the substrate). Can be convex).
 ガルバノミラー14とレンズユニット15とは装置のフレームに固定してあり、これらの光学素子により形成される集光点の位置および集光点の走査軌跡は、一定の位置および軌跡になるので、予め、集光点の座標(F0,F1,F2の座標)や軌跡(弧R0)を表す関数を幾何学的計算により(または実測で)求めておくことができる。 The galvano mirror 14 and the lens unit 15 are fixed to the frame of the apparatus, and the position of the condensing point and the scanning locus of the condensing point formed by these optical elements are a constant position and locus, A function representing the coordinates of the condensing point (coordinates of F0, F1, and F2) and the locus (arc R0) can be obtained by geometric calculation (or by actual measurement).
 したがって、ガラス基板Gをセットした後、スライドテーブル2および台座7および昇降テーブル11によるXYZ方向の位置調整を行うことにより、集光点F0をエッジラインEL上、あるいはエッジラインEL近傍に設定した加工予定面の位置に合わせるようにする。 Therefore, after the glass substrate G is set, the focusing point F0 is set on the edge line EL or in the vicinity of the edge line EL by adjusting the position in the XYZ directions by the slide table 2, the base 7, and the lifting table 11. Match the position of the planned surface.
 続いて、面取り加工装置LMの制御系について説明する。図3は制御系のブロック図である。面取り加工装置LMは、各種制御データ、設定パラメータおよびプログラム(ソフトウェア)を記憶するメモリ、演算処理を実行するCPUからなる制御部50を備えている。 Subsequently, a control system of the chamfering processing apparatus LM will be described. FIG. 3 is a block diagram of the control system. The chamfering apparatus LM includes a control unit 50 including a memory that stores various control data, setting parameters, and a program (software), and a CPU that executes arithmetic processing.
 この制御部50は、スライドテーブル2、台座7、昇降テーブル11の位置決めや移動を行うためのモータ(モータ9等)を駆動するテーブル駆動部51、吸着テーブル12の吸引チャックを駆動する吸着機構駆動部52、ガルバノミラー14を駆動するビーム偏向部駆動部53、レーザ照射を行うレーザ駆動部54の各駆動系を制御する。また、制御部50は、キーボード、マウスなどからなる入力部(不図示)、および、表示画面上に各種表示を行う表示部(不図示)が接続され、必要な情報が画面に表示するとともに、必要な指令や設定が入力できるようにしてある。 The control unit 50 includes a table driving unit 51 that drives a motor (such as the motor 9) for positioning and moving the slide table 2, the pedestal 7, and the lifting table 11, and a suction mechanism drive that drives the suction chuck of the suction table 12. The drive system of the part 52, the beam deflection part drive part 53 which drives the galvanometer mirror 14, and the laser drive part 54 which performs laser irradiation is controlled. The control unit 50 is connected to an input unit (not shown) including a keyboard and a mouse, and a display unit (not shown) that performs various displays on the display screen, and displays necessary information on the screen. Necessary commands and settings can be input.
 次に、面取り加工装置LMによる面取り動作について説明する。基板Gを吸着テーブル12に載せ、カメラ20を用いて位置調整を行う。そしてエッジラインELをY方向に向けるとともに、集光点F0の座標がエッジラインEL上またはこの近傍の加工予定面の深さにくるようにスライドテーブル2、台座7、昇降テーブル11により位置調整する。
 この場合、台座7と昇降テーブル11とを連動して移動させれば、基板を斜め方向に移動することができるので、集光点F0の基板の深さ方向の位置調整機構として用いることができる。
 続いて、ガルバノミラー14およびレーザ光源13を駆動してレーザビームをエッジライン近傍で走査する。その結果、集光点近傍でアブレーションにより基板材料が溶融除去され、面取り加工面が形成される。
Next, a chamfering operation by the chamfering apparatus LM will be described. The substrate G is placed on the suction table 12 and the position is adjusted using the camera 20. Then, the edge line EL is directed in the Y direction, and the position is adjusted by the slide table 2, the pedestal 7, and the lifting table 11 so that the coordinates of the condensing point F0 are at the depth of the processing planned surface on or near the edge line EL. .
In this case, if the pedestal 7 and the lifting table 11 are moved in conjunction with each other, the substrate can be moved in an oblique direction, so that it can be used as a position adjustment mechanism in the depth direction of the substrate at the focal point F0. .
Subsequently, the galvanometer mirror 14 and the laser light source 13 are driven to scan the laser beam in the vicinity of the edge line. As a result, the substrate material is melted and removed by ablation near the condensing point, and a chamfered surface is formed.
 エッジラインELの全長にわたって面取りを行うときは、スライドテーブル2を一定速度で送り、レーザビームの走査面(XZ面)に対し基板GをY方向へ移動する。このとき、スライドテーブル2を間欠的に送り、同じ加工位置に対して複数回レーザビームが走査されるようにしてもよい。 When chamfering the entire length of the edge line EL, the slide table 2 is sent at a constant speed, and the substrate G is moved in the Y direction with respect to the scanning surface (XZ surface) of the laser beam. At this time, the slide table 2 may be intermittently fed so that the laser beam is scanned a plurality of times at the same processing position.
 また、面取り加工面を深く形成する場合には、複数回に分けて面取り加工を行う。すなわち、図4に示すように、初回の面取り加工はエッジラインELに近い浅い位置に集光点を設定してY方向へ移動しながら加工を行い、2回目移行は集光点の位置を基板内部側に少しずつシフトさせて同様の加工を繰り返すようにする。 Also, when forming a chamfered surface deeply, chamfering is performed in multiple steps. That is, as shown in FIG. 4, the first chamfering process is performed while setting the condensing point at a shallow position close to the edge line EL and moving in the Y direction. The same process is repeated by gradually shifting to the inner side.
 次に、変形実施例について説明する。
 図5は、集光部材をレンズユニット15から、fθレンズ15aに代えたときの走査光学系の拡大図である。この場合は、集光点の走査軌跡がXZ面で直線状になるのでC面の面取り加工を行うことができる。
Next, a modified embodiment will be described.
FIG. 5 is an enlarged view of the scanning optical system when the condensing member is changed from the lens unit 15 to the fθ lens 15a. In this case, since the scanning locus of the condensing point is linear on the XZ plane, the C surface can be chamfered.
 なお、レンズユニット15の曲面形状、曲率半径、屈折率等の光学パラメータを適宜設計すれば、所望の走査軌跡を描くことができる自由曲面レンズを作成することができるので、この自由曲面レンズを用いて、面取り加工面を放物面にしたり、楕円面にしたり、任意の自由曲面にすることもできる。さらにレンズによる走査軌跡と同じ軌跡を、レンズに代えて反射鏡を用いて描かせることもできる。 If the optical parameters such as the curved surface shape, the radius of curvature, and the refractive index of the lens unit 15 are appropriately designed, a free-form surface lens that can draw a desired scanning locus can be created. Thus, the chamfered surface can be a parabolic surface, an elliptical surface, or an arbitrary free-form surface. Further, the same trajectory as the scanning trajectory by the lens can be drawn using a reflecting mirror instead of the lens.
 また、ビーム偏向部をガルバノミラーからポリゴンミラーに代えても同様の面取り加工を行うことができる。 Also, the same chamfering can be performed even if the beam deflecting unit is changed from a galvanometer mirror to a polygon mirror.
 図6は走査光学系の変形例である。図2と同じものについては同符号を付すことで説明を省略する。図2の走査光学系ではガルバノミラー14により焦点の位置を走査したが、ここではガルバノミラー14に代えて、レンズユニット15の平面平行板に揺動機構(不図示)を取り付け、これ揺動させることにより、実質的に図2と同じ走査軌跡をなすようにしている。 FIG. 6 shows a modification of the scanning optical system. The same components as those shown in FIG. In the scanning optical system of FIG. 2, the focal position is scanned by the galvanometer mirror 14, but here, instead of the galvanometer mirror 14, a swing mechanism (not shown) is attached to the plane parallel plate of the lens unit 15 to swing this. Thus, the scanning trajectory is substantially the same as in FIG.
 また、図7は集光部材をテレセントリックでないfθミラーと平面平行板とからなるユニット15bに代えたときの走査光学系の拡大図である。
ユニット15bについても、図2で説明したテレセントリックでないfθレンズと平面平行板との組み合わせのときと同様に、集光点の走査軌跡を上述したF0、F1、F2を結ぶ弧R0のような形状(基板外側に向けて凸状)にすることができる。
 これらの走査光学系を用いた場合も、図2と同様の面取り加工を行うことができる。
FIG. 7 is an enlarged view of the scanning optical system when the condensing member is replaced with a unit 15b composed of a non-telecentric fθ mirror and a plane parallel plate.
Similarly to the combination of the non-telecentric fθ lens and the plane parallel plate described with reference to FIG. 2, the unit 15b also has a shape like an arc R0 that connects the scanning locus of the condensing point to the above-described F0, F1, and F2. It can be convex toward the outside of the substrate).
Even when these scanning optical systems are used, the same chamfering as in FIG. 2 can be performed.
 また、有限要素法を用いで適切な光学パラメータを有する非球面レンズや非球面ミラーを設計することにより、単レンズあるいは単ミラーだけで、テレセントリックでないfθレンズと平面平行板との組み合わせレンズと等価な光学系を形成することも可能である。 In addition, by designing an aspherical lens or aspherical mirror having appropriate optical parameters using the finite element method, it is equivalent to a single lens or a single mirror alone and a combination lens of a non-telecentric fθ lens and a plane parallel plate. It is also possible to form an optical system.
 また、エッジラインELに沿って面取り加工を行う際に、図2の面取り加工装置LMでは基板Gを載せたスライドテーブル2を移動したが、走査光学系(ガルバノミラー14、レンズユニット15)側を移動することもできる。 Further, when the chamfering process is performed along the edge line EL, the slide table 2 on which the substrate G is placed is moved in the chamfering apparatus LM in FIG. 2, but the scanning optical system (galvano mirror 14, lens unit 15) side is moved. It can also be moved.
 以上、ガラス基板についての面取り加工について説明したが、他の脆性材料基板についても、それぞれの基板材料の吸収特性に応じて使用可能なレーザ光源を選択することにより、同様の面取り加工を実現することができる。 The chamfering process for the glass substrate has been described above. For other brittle material substrates, the same chamfering process can be realized by selecting a laser light source that can be used according to the absorption characteristics of each substrate material. Can do.
 本発明は、ガラス基板等の脆性材料基板の面取り加工に利用される。 The present invention is used for chamfering a brittle material substrate such as a glass substrate.

Claims (8)

  1.  脆性材料基板の面取り加工を行う面取り加工装置であって、
     レーザ光源と、
     前記レーザ光源から放射されたレーザビームを集光して前記基板に導く集光部材と、
     前記レーザ光源から前記集光部材を介して前記基板に至るまでのレーザビームの光路上に設けられ、レーザビームの入射光路を偏向してレーザビームが形成する集光点の位置を走査させるビーム偏向部と、
     面取り加工を行うエッジラインに対し、前記エッジラインを端辺とする2つの隣接面の斜め前方からエッジラインに向けてレーザビームが照射され、エッジライン近傍の基板表面又は基板内部に前記集光点がエッジラインと交差する面に沿って走査されるように基板を支持する基板支持部とを備え、
     前記集光部材は、エッジラインと交差する面に形成される集光点の走査軌跡が集光部材からみて凹状又は直線状になる光学パラメータを有する光学素子ユニットからなることを特徴とする面取り加工装置。
    A chamfering device for chamfering a brittle material substrate,
    A laser light source;
    A condensing member that condenses the laser beam emitted from the laser light source and guides it to the substrate;
    Beam deflection is provided on the optical path of the laser beam from the laser light source to the substrate through the condensing member, and deflects the incident optical path of the laser beam to scan the position of the condensing point formed by the laser beam. And
    With respect to the edge line to be chamfered, a laser beam is irradiated toward the edge line from diagonally forward of two adjacent surfaces having the edge line as an end, and the condensing point is formed on the substrate surface in the vicinity of the edge line or inside the substrate. A substrate support for supporting the substrate so that the substrate is scanned along a plane intersecting the edge line,
    The condensing member is composed of an optical element unit having an optical parameter in which a scanning locus of a condensing point formed on a surface intersecting with an edge line is concave or linear when viewed from the condensing member. apparatus.
  2.  集光部材が、fθレンズ又はfθミラーからなる光学素子ユニットである請求項1に記載の面取り加工装置。 2. The chamfering apparatus according to claim 1, wherein the light collecting member is an optical element unit including an fθ lens or an fθ mirror.
  3.  集光部材が、テレセントリックでないfθレンズと平面平行板とを組み合わせた光学素子ユニットである請求項1に記載の面取り加工装置。 2. The chamfering apparatus according to claim 1, wherein the condensing member is an optical element unit in which a non-telecentric fθ lens and a plane parallel plate are combined.
  4.  前記集光点が前記エッジラインに沿って相対移動するように基板側又はレーザビーム側を移動させる送り機構を備えた請求項1に記載の面取り加工装置。 2. The chamfering apparatus according to claim 1, further comprising a feed mechanism that moves the substrate side or the laser beam side so that the condensing point relatively moves along the edge line.
  5.  前記基板支持部は基板を水平に載置するテーブルからなり、前記集光部材およびビーム偏向部は水平に載置された基板のエッジラインに対し斜め45度方向を中心方向にして前記集光点が走査されるように配置される請求項1に記載の面取り加工装置。 The substrate support portion is composed of a table for horizontally placing the substrate, and the light condensing member and the beam deflecting portion are the light condensing points with a 45 ° oblique direction as a center direction with respect to the edge line of the horizontally placed substrate. The chamfering apparatus according to claim 1, wherein the chamfering apparatus is arranged to be scanned.
  6.  ビーム偏向部はガルバノミラー又はポリゴンミラーにより構成される請求項1に記載の面取り加工装置。 2. The chamfering apparatus according to claim 1, wherein the beam deflection unit is constituted by a galvanometer mirror or a polygon mirror.
  7.  前記集光部材の前記平面平行板が揺動可能に構成され、ビーム偏向部として兼用される請求項3に記載の面取り加工装置。 4. The chamfering apparatus according to claim 3, wherein the plane parallel plate of the light collecting member is configured to be swingable and also serves as a beam deflecting unit.
  8.  前記基板又は前記集光部材の位置をレーザビームの照射方向に移動することにより前記集光点の基板に対する深さ方向の位置を調整する深さ調整機構をさらに備えた請求項1に記載の面取り加工装置。 2. The chamfering according to claim 1, further comprising a depth adjusting mechanism that adjusts a position of the condensing point in a depth direction with respect to the substrate by moving a position of the substrate or the condensing member in a laser beam irradiation direction. Processing equipment.
PCT/JP2009/060716 2008-06-25 2009-06-11 Chamfering apparatus WO2009157319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980131178.7A CN102123817B (en) 2008-06-25 2009-06-11 Chamfering apparatus
JP2010517888A JP5320395B2 (en) 2008-06-25 2009-06-11 Chamfering device
KR1020117001391A KR101306673B1 (en) 2008-06-25 2009-06-11 Chamfering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-166034 2008-06-25
JP2008166034 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157319A1 true WO2009157319A1 (en) 2009-12-30

Family

ID=41444388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060716 WO2009157319A1 (en) 2008-06-25 2009-06-11 Chamfering apparatus

Country Status (5)

Country Link
JP (1) JP5320395B2 (en)
KR (1) KR101306673B1 (en)
CN (1) CN102123817B (en)
TW (1) TWI414383B (en)
WO (1) WO2009157319A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512131A (en) * 2008-12-17 2012-05-31 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method of laser processing glass into a shape with chamfered edges
JP2015124142A (en) * 2013-12-27 2015-07-06 三星ダイヤモンド工業株式会社 Method for chamfering glass substrate and laser processing apparatus
TWI607818B (en) * 2015-06-02 2017-12-11 Kawasaki Heavy Ind Ltd Chamfering device and chamfering method
JP2019212761A (en) * 2018-06-05 2019-12-12 株式会社ディスコ Chamfering method
JP6932865B1 (en) * 2021-03-19 2021-09-08 株式会社東京精密 Reformer and reformer method for wafer edge
JP2022145423A (en) * 2021-03-19 2022-10-04 株式会社東京精密 Wafer edge part modification device and modification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024795A1 (en) * 2012-08-08 2014-02-13 住友化学株式会社 Optical display device production method and optical display device production system
KR102125993B1 (en) * 2014-03-31 2020-06-23 동우 화인켐 주식회사 A window substrate and method of champering the same
CN106552996A (en) * 2015-09-24 2017-04-05 武汉吉事达激光设备有限公司 Glass laser chamfering method and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248423A (en) * 1988-08-08 1990-02-19 Matsushita Electric Ind Co Ltd Chamfering method
JPH02241684A (en) * 1989-03-13 1990-09-26 Tokai Rika Co Ltd Method for chamfering glass member
JPH09225665A (en) * 1996-02-22 1997-09-02 Seiko Epson Corp Method for chamfering glass substrate, glass substrate for liquid crystal panel using the method and liquid crystal panel
JP2006273695A (en) * 2005-03-30 2006-10-12 Japan Steel Works Ltd:The Apparatus for and method of treating cut surface of glass plate
JP2007245235A (en) * 2006-02-14 2007-09-27 Shibaura Mechatronics Corp Laser machining apparatus and laser machining method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011208A4 (en) * 1997-06-11 1999-06-01 Cuvelier Georges Capping METHOD FOR GLASS PIECES.
JPH1167700A (en) * 1997-08-22 1999-03-09 Hamamatsu Photonics Kk Manufacture of semiconductor wafer
JP2002241141A (en) * 2001-02-08 2002-08-28 Nippon Steel Techno Research Corp Working method for glass by means of laser and device therefor
KR100820689B1 (en) * 2001-08-10 2008-04-10 미쓰보시 다이야몬도 고교 가부시키가이샤 Brittle material substrate chamfering method and chamfering device
EP1498243A4 (en) * 2002-03-12 2008-04-23 Mitsuboshi Diamond Ind Co Ltd Method and device for processing fragile material
WO2007119740A1 (en) * 2006-04-13 2007-10-25 Toray Engineering Co., Ltd. Scribing method, scribing apparatus, and scribed substrate scribed by the method or apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248423A (en) * 1988-08-08 1990-02-19 Matsushita Electric Ind Co Ltd Chamfering method
JPH02241684A (en) * 1989-03-13 1990-09-26 Tokai Rika Co Ltd Method for chamfering glass member
JPH09225665A (en) * 1996-02-22 1997-09-02 Seiko Epson Corp Method for chamfering glass substrate, glass substrate for liquid crystal panel using the method and liquid crystal panel
JP2006273695A (en) * 2005-03-30 2006-10-12 Japan Steel Works Ltd:The Apparatus for and method of treating cut surface of glass plate
JP2007245235A (en) * 2006-02-14 2007-09-27 Shibaura Mechatronics Corp Laser machining apparatus and laser machining method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512131A (en) * 2008-12-17 2012-05-31 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method of laser processing glass into a shape with chamfered edges
JP2015124142A (en) * 2013-12-27 2015-07-06 三星ダイヤモンド工業株式会社 Method for chamfering glass substrate and laser processing apparatus
TWI607818B (en) * 2015-06-02 2017-12-11 Kawasaki Heavy Ind Ltd Chamfering device and chamfering method
JP2019212761A (en) * 2018-06-05 2019-12-12 株式会社ディスコ Chamfering method
JP7166794B2 (en) 2018-06-05 2022-11-08 株式会社ディスコ Chamfering method
JP6932865B1 (en) * 2021-03-19 2021-09-08 株式会社東京精密 Reformer and reformer method for wafer edge
JP2022144435A (en) * 2021-03-19 2022-10-03 株式会社東京精密 Wafer edge part modification device and modification method
JP2022145423A (en) * 2021-03-19 2022-10-04 株式会社東京精密 Wafer edge part modification device and modification method
JP7221345B2 (en) 2021-03-19 2023-02-13 株式会社東京精密 Wafer edge modification apparatus and modification method

Also Published As

Publication number Publication date
CN102123817A (en) 2011-07-13
JP5320395B2 (en) 2013-10-23
KR101306673B1 (en) 2013-09-10
KR20110030622A (en) 2011-03-23
TW201002460A (en) 2010-01-16
CN102123817B (en) 2016-04-27
JPWO2009157319A1 (en) 2011-12-08
TWI414383B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
JP5102846B2 (en) Method and apparatus for chamfering a brittle material substrate
JP5320395B2 (en) Chamfering device
JP5113462B2 (en) Method for chamfering a brittle material substrate
US6211488B1 (en) Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
TWI413622B (en) And a scribing device for forming a brittle material substrate
JP5632751B2 (en) Processing object cutting method
US7772522B2 (en) Method for scribing substrate of brittle material and scriber
JP5060880B2 (en) Fragment material substrate cutting apparatus and method
TWI375602B (en)
JP5670647B2 (en) Processing object cutting method
JP2000156358A (en) Method and device for processing transparent medium using laser
JPWO2003015976A1 (en) Method and apparatus for chamfering brittle material substrate
CN101397185A (en) Laser processing device
JP2009082927A5 (en)
JP4134033B2 (en) Scribing apparatus and scribing method for brittle material substrate
KR100583889B1 (en) Scribing device for fragile material substrate
JP2007021557A (en) Laser beam irradiation apparatus and laser beam scribing method
KR100551527B1 (en) Method and device for scribing brittle material substrate
JP5444158B2 (en) Cleaving method of brittle material substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131178.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517888

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117001391

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09770029

Country of ref document: EP

Kind code of ref document: A1