WO2009157310A1 - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
WO2009157310A1
WO2009157310A1 PCT/JP2009/060605 JP2009060605W WO2009157310A1 WO 2009157310 A1 WO2009157310 A1 WO 2009157310A1 JP 2009060605 W JP2009060605 W JP 2009060605W WO 2009157310 A1 WO2009157310 A1 WO 2009157310A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
optical system
imaging optical
cut coat
refractive index
Prior art date
Application number
PCT/JP2009/060605
Other languages
French (fr)
Japanese (ja)
Inventor
節夫 徳弘
明子 原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2009801156654A priority Critical patent/CN102016677B/en
Priority to JP2010517863A priority patent/JPWO2009157310A1/en
Publication of WO2009157310A1 publication Critical patent/WO2009157310A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the present invention relates to an imaging optical system.
  • a plurality of curable resin lens portions are provided on a wafer-shaped glass substrate (so-called “wafer lenses” are manufactured), and the wafer-shaped glass substrate is provided for each lens portion.
  • Attempts have been made to cut and fragment and use each one as an imaging lens.
  • an IR (Infrared Rays) cut coat is formed on a glass substrate of an imaging lens.
  • Patent Document 1 There is a description that an IR cut coat is formed on at least one surface.
  • the main object of the present invention is to provide an imaging optical system in which an IR cut member can be provided without causing a problem with the adhesion between the IR cut coat and the lens portion.
  • An imaging optical system in which a plurality of imaging lenses each having a lens portion made of a curable resin formed on a glass substrate are stacked with a spacer interposed therebetween, There is a portion where the lens portions are concave between the imaging lenses adjacent to each other, and a spacer is disposed in close contact with the portion so as not to contact the lens portion.
  • An imaging optical system characterized in that is formed is provided.
  • the IR cut coat is formed on the spacer disposed in the portion where the lens portions are concave, the adhesion between the IR cut coat and the lens portion is not a problem in the imaging optical system.
  • An IR cut member can be provided.
  • an imaging unit 1 mainly includes an imaging optical system 2, a sensor device 4, and a casing 5, and the imaging optical system 2 and the sensor device 4 are a casing 5. It has a covered configuration (in FIG. 1, the internal configuration of the imaging optical system 2 is omitted for the sake of clarity).
  • the casing 5 includes a cylindrical cylindrical portion 51 and a rectangular parallelepiped base portion 53.
  • the cylindrical portion 51 and the base portion 53 are integrally formed, and the cylindrical portion 51 is erected on the base portion 53.
  • the imaging optical system 2 is disposed inside the cylindrical portion 51.
  • a circular light transmission hole 51 a is formed in the top plate portion of the cylindrical portion 51.
  • the sensor device 4 is disposed in the base portion 53 (bottom portion). For example, a CCD or CMOS is used as the sensor device 4.
  • the imaging optical system 2 is mainly composed of three groups of imaging lenses 10, 20, and 30.
  • the imaging lens 10 has a glass substrate 11.
  • a lens portion 12 is formed on the front surface (upper surface) of the glass substrate 11, and a lens portion 13 is formed on the rear surface (lower surface) of the glass substrate 11.
  • the lens portion 12 has a convex shape, and the lens portion 13 has a concave shape at the center.
  • the imaging lens 20 has a glass substrate 21.
  • a lens portion 22 is formed on the front surface (upper surface) of the glass substrate 21, and a lens portion 23 is formed on the rear surface (lower surface) of the glass substrate 21.
  • the lens portion 22 has a concave shape, and the lens portion 23 has a convex shape.
  • plate-like spacers are arranged in close contact with each other so that the lens portions do not contact the lens portions between the imaging lenses 10 and 20 adjacent to each other so as not to contact the lens portions.
  • An IR cut coat is formed on the spacer.
  • the imaging lens 30 has a glass substrate 31.
  • a lens portion 32 is formed on the front surface (upper surface) of the glass substrate 31, and a lens portion 33 is formed on the rear surface (lower surface) of the glass substrate 31.
  • the lens portion 32 has a convex portion at the center and the peripheral portion, and the lens portion 33 has a concave shape at the center.
  • These lens portions 12, 13, 22, 23, 32, and 33 are made of curable resins 12A, 13A, 22A, 23A, 32A, and 33A, respectively.
  • a photocurable resin such as an acrylic resin, an allyl ester resin, and an epoxy resin, or a thermosetting resin can be preferably used. Of these, a photocurable resin is preferable.
  • the usable resin will be described below.
  • the curable resins 12A, 13A, 22A, 23A, 32A, and 33A may be the same type of resin for each of the lens portions 12, 13, 22, 23, 32, and 33, or may be different resins. .
  • Curable resin any one of the following (1) acrylic resin, (2) allyl ester resin, and (3) epoxy resin is preferably used.
  • (1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used.
  • (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
  • 2-alkyl-2-adamantyl (meth) acrylate see Japanese Patent Laid-Open No. 2002-193883
  • adamantyl di (meth) acrylate Japanese Patent Laid-Open No. 57-5000785
  • diallyl adamantyl dicarboxylate Japanese Patent Laid-Open No. 60-100537.
  • Perfluoroadamantyl acrylate (JP 2004-123687), manufactured by Shin-Nakamura Chemical Co., Ltd., 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5-adamantanetriol triacrylate, Saturated carboxylic acid adamantyl ester (JP 2000-119220), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (see JP 2001-253835), 1,1′-biadamantane compound (US patent) No.
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
  • thermal polymerization initiator examples include hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxy carbonate, peroxy ketal, and ketone peroxide. Specifically, benzoyl peroxide, diisopropyl peroxy carbonate, t-butyl peroxy (2-ethylhexanoate) dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide Side, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide and the like can be used.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • photopolymerization initiator examples include benzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin isobutyl ether, benzyl methyl ketal, azobisisobutyronitrile, hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1- Phenylpropan-1-one or the like can be used.
  • These photopolymerization initiators may be used alone or in combination of two or more. If necessary, a photosensitizer such as an amine compound or a phosphorus compound can be added to speed up the polymerization.
  • Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
  • Bromine-containing (meth) allyl ester not containing an aromatic ring see JP-A-2003-66201
  • allyl (meth) acrylate see JP-A-5-286896
  • allyl ester resin JP-A-5-286896
  • JP 2003-66201 A a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound
  • JP 2003-128725 A an acrylate compound
  • an acrylic And ester compounds see JP 2005-2064 A.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator.
  • Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
  • Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
  • curing agent is used when comprising curable resin material, and there is no limitation in particular.
  • an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • a hardening accelerator is contained as needed.
  • the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin.
  • 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
  • [Photopolymerization initiator] As the photopolymerization initiator, a radical photopolymerization initiator or a cationic photopolymerization initiator can be used.
  • photo radical polymerization agent examples include ⁇ -diketones such as benzyl and diacetyl, acyloins such as benzoin, acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, thioxanthone, and 2,4-diethyl.
  • Benzophenones such as thioxanthone, thioxanthone-4-sulfonic acid, benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, acetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ ′ -Dimethoxyacetoxybenzophenone, 2,2'-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propyl Acetophenones such as ropanone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, quinones such as anthraquinone and 1,4-naphthoquinone, phenacyl chloride, tribromomethyl Examples thereof include halogen
  • cationic photopolymerization initiator commercially available products as shown below can be used.
  • Commercially available products that can be suitably used include Uvacure 1590 (manufactured by Daicel Cytec Co., Ltd.), UVI-6950, UVI-6970, UVI-6974, UVI-6990 (above, Union Carbide), Adekaoptomer SP-150 SP-151, SP-170, SP-171 (above, manufactured by ADEKA Corporation), Irgacure 261 (above, manufactured by Ciba Geigy), CI-2481, CI-2624, CI-2638, CI-2064 (above, Nippon Soda Co., Ltd.), CD-1010, CD-1011, CD-1012 (above, manufactured by Sartomer), DTS-102, DTS-103, NAT-103, NDS-103, TPS-103, MDS-103 , MPI-103, BBI-103 (Midori Chemical Co., Ltd.) It can
  • a spacer 40 having an IR cut coat is interposed between the imaging lens 10 and the imaging lens 20.
  • the spacer 40 is a glass plate-like member and has a function of keeping the imaging lens 10 and the imaging lens 20 at a constant interval.
  • the IR cut coat 110 is preferably formed on the front surface 42 (upper surface) of the spacer 40, and the IR cut coat 120 is formed on the rear surface 44 (lower surface) of the spacer 40.
  • the IR cut coat 110 is configured to reflect infrared light having a wavelength of 650 nm to 800 nm
  • the IR cut coat 120 is configured to reflect infrared light having a wavelength of 800 nm to 1000 nm. It is preferable to configure the IR cut coat so as to have the performance of cutting the entire infrared light with a wavelength of 650 nm to 1000 nm.
  • IR cut coats 110 and 120 are films for shielding infrared rays, and have a transmittance of 50% or more for light having a wavelength of 365 nm. Specifically, the IR cut coats 110 and 120 are formed by alternately laminating a plurality of low refractive index layers A1 and A2 made of a low refractive index material and high refractive index layers B1 and B2 made of a high refractive index material. It is an alternating multilayer film. In the IR cut coats 110 and 120, the low refractive index layers A 1 and A 2 are preferably in direct contact with the spacer 40.
  • the low refractive index material constituting the low refractive index layers A1 and A2 SiO 2 or the like is used.
  • the high-refractive index material constituting the high refractive index layer B1 B2 TiO 2, Ta 2 O 5, Nb 2 O 3, ZrO 2 and the like are used.
  • the low refractive index layers A1 and A2 may be made of different materials, and the high refractive index layers B1 and B2 may be made of different materials.
  • the IR cut coats 110 and 120 are usually composed of about 10 to 40 layers, but the number of layers may be the same or different.
  • the IR cut coats 110 and 120 are respectively formed on both surfaces of the spacer 40, that is, on the surfaces 42 and 44 of the spacer 40 in contact with the lens portion 13 and the lens portion 22, one surface (surface 42) of the spacer 40.
  • the film stress when the IR cut coat 110 is formed can be offset (relaxed) by forming the IR cut coat 120 on the other surface (back surface 44).
  • the total thickness of the IR cut coat formed on both sides is set so that the film stress due to the formation of the IR cut coat can be offset each other. It is preferable to arrange so that there is not much difference. Accordingly, in the spacer 40, the total film thickness ratio r of the total film thickness r1 of the IR cut coat 110 formed on the front surface 42 and the total film thickness r2 of the IR cut coat 120 formed on the back surface 44 is preferably It is preferable that the condition (1) is satisfied.
  • the total thickness r (A1) of the low refractive index layer A1 of the IR cut coat 110 preferably formed on the front surface 42 and the IR cut coat 120 formed on the back surface 44 are preferably used.
  • the high refractive index of the IR cut coat 110 formed on the surface 42 in which the total film thickness ratio r (A) to the total film thickness r (A2) of the low refractive index layer A2 satisfies the condition of the formula (2).
  • the total film thickness ratio r (B) between the total film thickness r (B1) of the layer B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat 120 formed on the back surface 44 is expressed by the formula ( It is preferable that the condition of 3) is satisfied.
  • the spacer member is often a thin plate member having a thickness of about 0.1 mm to 0.3 mm, if the IR cut coats 110 and 120 do not satisfy the above formulas (1) to (3), the stress cannot be relaxed. As a result, spacers are warped and deformed, and assembly accuracy cannot be maintained.
  • a spacer 50 is interposed between the imaging lens 20 and the imaging lens 30 as shown in FIG.
  • An opening 52 is formed in a portion corresponding to the lens portions 23 and 32 of the spacer 50, and the lens portion 23 of the imaging lens 20 and the lens portion 32 of the imaging lens 30 are opposed to each other through the opening 52. is doing.
  • the photocurable resin 12A is applied to a mold having a plurality of shapes corresponding to the lens portion 12, and the wafer-like glass substrate 11 is pressed against the mold to fill the cavity of the mold with the photocurable resin 12A. To do. Thereafter, light is irradiated from above the glass substrate 11 to cure the photocurable resin 12A. As a result, a plurality of lens portions 12 are formed on the glass substrate 11. Thereafter, the glass substrate 11 is turned over, and a plurality of lens portions 13 are formed on the glass substrate 11 in the same manner as described above.
  • the plurality of lens portions 22, 23, 32, 33 are formed on both the front and back surfaces of the glass substrates 21, 31 in the same manner as the plurality of lens portions 12, 13 are formed on the front and back surfaces of the glass substrate 11.
  • IR cut coats 110 and 120 are formed on both the front and back surfaces of the spacer 40, respectively.
  • a method of forming the IR cut coats 110 and 120 a known vacuum deposition method, sputtering, a CVD (Chemical Vapor Deposition) method, or the like is used.
  • the glass substrate 11, the spacer 40, the glass substrate 21, the spacer 50, and the glass substrate 31 are bonded to each other with an adhesive and cut into the lens portions 12, 13, 22, 23, 32, and 33 using an end mill or the like. Then, a plurality of imaging optical systems 2 are manufactured. Thereafter, the imaging optical system 2 is incorporated into (attached to) the cylindrical portion 51 of the casing 5, and the sensor device 4 is installed on the base portion 53 to manufacture the imaging unit 1.
  • the three groups of imaging lenses 10, 20, 30 are stacked with the spacers 40, 50 interposed therebetween, and between the imaging lenses 10, 20 adjacent to each other.
  • the lens portions 13 and 22 have a concave shape, and the IR cut coats 110 and 120 are formed on the spacers 40 arranged at the portions. Therefore, an IR cut member can be provided in the imaging optical system 2 without causing a problem with the adhesion between the IR cut coats 110 and 120 and the lens portions 12, 13, 22, 23, 32, and 33.
  • the lens portions 13 and 22 are concave and opposed to each other, it is not necessary to provide an opening corresponding to the lens portions 13 and 22 in the spacer 40 disposed at that portion, and the spacer 40 is punched out. Save time and effort.
  • the IR cut coats 110 and 120 are formed on the spacer 40 so as to have the relationships of the above formulas (1) to (3), the stress due to the formation of the IR cut coat can be alleviated and the spacer is warped. Can be accurately controlled. Further, it is not necessary to provide a separate IR cut filter in the imaging optical system 2, and the configuration itself of the imaging optical system 2 can be simplified.
  • Imaging unit 1 Imaging unit 2
  • Imaging optical system 4 Sensor device 5 Casing 51 Cylindrical part 51a Light transmission hole 53 Base part 10, 20, 30 Imaging lens 11, 21, 31 Glass substrate 12, 13, 22, 23, 32, 33 Lens part 40, 50 Spacer 52 Opening 110, 120 IR cut coat

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

Provided is an imaging optical system wherein an IR cut member can be arranged without having a trouble of adhesion between an IR cut coat and a lens section.  In the imaging optical system, a plurality of imaging lenses (10, 20, 30), each of which having  the hardening resin lens section on a glass substrate, are laminated by having spacers (40, 50) therebetween.  Between the adjacent imaging lenses (10, 20), a portion where the lens sections (13, 22) have concave shapes to each other exists, and the spacer (40) arranged at such portion has an IR cut coat formed thereon.

Description

撮像光学系Imaging optical system
 本発明は撮像光学系に関する。 The present invention relates to an imaging optical system.
 従来から、光学レンズの製造分野においては、ウエハ状のガラス基板に対し硬化性樹脂製のレンズ部を複数設け(所謂「ウエハレンズ」を作製し)、そのウエハ状のガラス基板をレンズ部ごとに切断・断片化してその1つ1つを撮像用レンズとして使用しようという試みがなされている。近年では、これを応用した技術として、撮像用レンズのガラス基板に対しIR(Infrared Rays,赤外線)カットコートを形成した例が開示されており(特許文献1参照)、ガラス基板の表裏両面のうち少なくとも一方の面にIRカットコートが形成される旨の記載がされている。 Conventionally, in the field of manufacturing optical lenses, a plurality of curable resin lens portions are provided on a wafer-shaped glass substrate (so-called “wafer lenses” are manufactured), and the wafer-shaped glass substrate is provided for each lens portion. Attempts have been made to cut and fragment and use each one as an imaging lens. In recent years, an example in which an IR (Infrared Rays) cut coat is formed on a glass substrate of an imaging lens has been disclosed as a technology that applies this (see Patent Document 1). There is a description that an IR cut coat is formed on at least one surface.
米国特許出願公開2007/0024958号公報US Patent Application Publication No. 2007/0024958
 しかしながら、特許文献1の手法によれば、ガラス基板にIRカットコートを形成してその上に硬化性樹脂製のレンズ部を形成するから、IRカットコートに対しレンズ部が十分に密着するか否か問題となる場合がある。 However, according to the technique of Patent Document 1, since an IR cut coat is formed on a glass substrate and a lens portion made of a curable resin is formed thereon, whether or not the lens portion is sufficiently adhered to the IR cut coat. Or may be a problem.
 本発明の主な目的は、IRカットコートとレンズ部との密着性を問題とせずにIRカット部材を設けることができる撮像光学系を提供することにある。 The main object of the present invention is to provide an imaging optical system in which an IR cut member can be provided without causing a problem with the adhesion between the IR cut coat and the lens portion.
 本発明によれば、
 ガラス基板に硬化性樹脂製のレンズ部を形成した複数の撮像用レンズを、スペーサを介在させながら積層した撮像光学系であって、
 互いに隣り合う前記撮像用レンズ間で前記レンズ部同士が凹状を呈する部位が存在し、その部位にレンズ部に接触しないように密着してスペーサが配置され、配置される前記スペーサにはIRカットコートが形成されていることを特徴とする撮像光学系が提供される。
According to the present invention,
An imaging optical system in which a plurality of imaging lenses each having a lens portion made of a curable resin formed on a glass substrate are stacked with a spacer interposed therebetween,
There is a portion where the lens portions are concave between the imaging lenses adjacent to each other, and a spacer is disposed in close contact with the portion so as not to contact the lens portion. An imaging optical system characterized in that is formed is provided.
 本発明によれば、レンズ部同士が凹状を呈する部位に配置されたスペーサにIRカットコートが形成されているため、撮像光学系において、IRカットコートとレンズ部との密着性を問題とせずにIRカット部材を設けることができる。 According to the present invention, since the IR cut coat is formed on the spacer disposed in the portion where the lens portions are concave, the adhesion between the IR cut coat and the lens portion is not a problem in the imaging optical system. An IR cut member can be provided.
本発明の好ましい実施形態に係る撮像ユニットの概略構成を示す分解斜視図である。It is a disassembled perspective view which shows schematic structure of the imaging unit which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る撮像光学系の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the imaging optical system which concerns on preferable embodiment of this invention.
 次に、図面を参照しながら本発明の好ましい実施形態について説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.
 図1に示す通り、本発明の好ましい実施形態に係る撮像ユニット1は主に、撮像光学系2、センサデバイス4及びケーシング5で構成されており、撮像光学系2及びセンサデバイス4がケーシング5で覆われた構成を有している(図1ではその内容を明瞭にするため撮像光学系2の内部構成を省略している。)。 As shown in FIG. 1, an imaging unit 1 according to a preferred embodiment of the present invention mainly includes an imaging optical system 2, a sensor device 4, and a casing 5, and the imaging optical system 2 and the sensor device 4 are a casing 5. It has a covered configuration (in FIG. 1, the internal configuration of the imaging optical system 2 is omitted for the sake of clarity).
 ケーシング5は円筒状の円筒部51と直方体状のベース部53とで構成されている。円筒部51とベース部53は一体に成形されており、円筒部51がベース部53上に立設されている。円筒部51の内部には撮像光学系2が配置されている。円筒部51の天板部には円形状の光透過孔51aが形成されている。ベース部53の内部(底部)にはセンサデバイス4が配置されている。センサデバイス4としては例えばCCDやCMOSなどが使用される。 The casing 5 includes a cylindrical cylindrical portion 51 and a rectangular parallelepiped base portion 53. The cylindrical portion 51 and the base portion 53 are integrally formed, and the cylindrical portion 51 is erected on the base portion 53. The imaging optical system 2 is disposed inside the cylindrical portion 51. A circular light transmission hole 51 a is formed in the top plate portion of the cylindrical portion 51. The sensor device 4 is disposed in the base portion 53 (bottom portion). For example, a CCD or CMOS is used as the sensor device 4.
 図2に示す通り、撮像光学系2は主に3群の撮像用レンズ10,20,30で構成されている。撮像用レンズ10はガラス基板11を有している。ガラス基板11の表面(上面)にはレンズ部12が形成されており、ガラス基板11の裏面(下面)にはレンズ部13が形成されている。レンズ部12は凸状を呈しており、レンズ部13は中央部が凹状を呈している。 As shown in FIG. 2, the imaging optical system 2 is mainly composed of three groups of imaging lenses 10, 20, and 30. The imaging lens 10 has a glass substrate 11. A lens portion 12 is formed on the front surface (upper surface) of the glass substrate 11, and a lens portion 13 is formed on the rear surface (lower surface) of the glass substrate 11. The lens portion 12 has a convex shape, and the lens portion 13 has a concave shape at the center.
 撮像用レンズ20はガラス基板21を有している。ガラス基板21の表面(上面)にはレンズ部22が形成されており、ガラス基板21の裏面(下面)にはレンズ部23が形成されている。レンズ部22は凹状を呈しており、レンズ部23は凸状を呈している。 The imaging lens 20 has a glass substrate 21. A lens portion 22 is formed on the front surface (upper surface) of the glass substrate 21, and a lens portion 23 is formed on the rear surface (lower surface) of the glass substrate 21. The lens portion 22 has a concave shape, and the lens portion 23 has a convex shape.
 本発明においては、互いに隣り合う前記撮像用レンズ10、20間で前記レンズ部同士が凹状を呈する部位に、レンズ部に接触しないように密着して板状のスペーサが配置されており、配置される前記スペーサにIRカットコートが形成されていることが特徴である。 In the present invention, plate-like spacers are arranged in close contact with each other so that the lens portions do not contact the lens portions between the imaging lenses 10 and 20 adjacent to each other so as not to contact the lens portions. An IR cut coat is formed on the spacer.
 撮像用レンズ30はガラス基板31を有している。ガラス基板31の表面(上面)にはレンズ部32が形成されており、ガラス基板31の裏面(下面)にはレンズ部33が形成されている。レンズ部32は中央部と周縁部とが凸状を呈しており、レンズ部33は中央部が凹状を呈している。 The imaging lens 30 has a glass substrate 31. A lens portion 32 is formed on the front surface (upper surface) of the glass substrate 31, and a lens portion 33 is formed on the rear surface (lower surface) of the glass substrate 31. The lens portion 32 has a convex portion at the center and the peripheral portion, and the lens portion 33 has a concave shape at the center.
 この様にレンズ部同士が凹状を呈する部位に、スペーサとして、IRカットコートが表面に形成されているものを用いることで、IRカットコートとレンズ部(この場合、レンズ部13,あるいは22)との密着性を問題とせずにIRカットコートを設けることができる。 In this way, by using a part having an IR cut coat formed on the surface as a spacer at a part where the lens parts are concave, the IR cut coat and the lens part (in this case, the lens part 13 or 22) It is possible to provide an IR cut coat without causing any problem of adhesion.
 これらレンズ部12,13,22,23,32,33はそれぞれ硬化性樹脂12A,13A,22A,23A,32A,33Aで構成されている。硬化性樹脂12A,13A,22A,23A,32A,33Aとしては、好ましくはアクリル樹脂やアリルエステル樹脂、エポキシ樹脂など光硬化性樹脂、また熱硬化性樹脂が使用可能である。なかでは光硬化性樹脂が好ましい。下記では使用可能な樹脂について説明する。 These lens portions 12, 13, 22, 23, 32, and 33 are made of curable resins 12A, 13A, 22A, 23A, 32A, and 33A, respectively. As the curable resins 12A, 13A, 22A, 23A, 32A, and 33A, a photocurable resin such as an acrylic resin, an allyl ester resin, and an epoxy resin, or a thermosetting resin can be preferably used. Of these, a photocurable resin is preferable. The usable resin will be described below.
 なお、硬化性樹脂12A,13A,22A,23A,32A,33Aはレンズ部12,13,22,23,32,33ごとに同じ種類の樹脂であってもよいし、異なる樹脂であってもよい。
(1)硬化性樹脂
 硬化性樹脂としては、以下の、(1)アクリル樹脂、(2)アリルエステル樹脂、(3)エポキシ樹脂,のいずれかが好適に使用され、下記ではこれら物質について具体的に説明する。
(1)アクリル樹脂
 重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
The curable resins 12A, 13A, 22A, 23A, 32A, and 33A may be the same type of resin for each of the lens portions 12, 13, 22, 23, 32, and 33, or may be different resins. .
(1) Curable resin As the curable resin, any one of the following (1) acrylic resin, (2) allyl ester resin, and (3) epoxy resin is preferably used. Explained.
(1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
 特に脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報参照)、アダマンチルジ(メタ)アクリレート(特開昭57-500785)、アダマンチルジカルボン酸ジアリル(特開昭60―100537)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687)、新中村化学製 2-メチル-2-アダマンチルメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220)、3,3’-ジアルコキシカルボニル-1,1’ビアダマンタン(特開2001-253835号公報参照)、1,1’-ビアダマンタン化合物(米国特許第3342880号明細書参照)、テトラアダマンタン(特開2006-169177号公報参照)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報参照)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報参照)等が挙げられる。 (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylate, di (meth) acrylate of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (see Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-100537). ), Perfluoroadamantyl acrylate (JP 2004-123687), manufactured by Shin-Nakamura Chemical Co., Ltd., 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5-adamantanetriol triacrylate, Saturated carboxylic acid adamantyl ester (JP 2000-119220), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (see JP 2001-253835), 1,1′-biadamantane compound (US patent) No. 33 2880), tetraadamantane (see JP 2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantane dicarboxylate di-tert-butyl Curable resins having an adamantane skeleton (see JP-A-2001-322950), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantane (JP-A-11-35522, JP-A-10-130371) For example).
 また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート、などが挙げられる。 It is also possible to contain other reactive monomers. In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
 多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
[熱重合開始剤]
 当該熱重合開始剤としては、例えば、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシカーボネート、パーオキシケタール、ケトンパーオキサイド等が挙げられる。具体的にはベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシ(2-エチルヘキサノエート)ジクミルパーオキサイド、ジt-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルハイドロパーキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等を用いることができる。これらの熱重合開始剤は単独で用いても、2種以上を併用してもよい。
[光重合開始剤]
 当該光重合開始剤としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンジルメチルケタール、アゾビスイソブチロニトリル、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等を使用することができる。これらの光重合開始剤は、単独で用いても、2種以上を併用してもよい。必要に応じてアミン化合物、又はリン化合物等の光増感剤を添加し、重合をより迅速化することができる。
(2)アリルエステル樹脂
 アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol Such as Li (meth) acrylate.
[Thermal polymerization initiator]
Examples of the thermal polymerization initiator include hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, peroxy carbonate, peroxy ketal, and ketone peroxide. Specifically, benzoyl peroxide, diisopropyl peroxy carbonate, t-butyl peroxy (2-ethylhexanoate) dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, t-butyl hydroperoxide Side, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide and the like can be used. These thermal polymerization initiators may be used alone or in combination of two or more.
[Photopolymerization initiator]
Examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin ethyl ether, benzoin isobutyl ether, benzyl methyl ketal, azobisisobutyronitrile, hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1- Phenylpropan-1-one or the like can be used. These photopolymerization initiators may be used alone or in combination of two or more. If necessary, a photosensitizer such as an amine compound or a phosphorus compound can be added to speed up the polymerization.
(2) Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報参照)、アリル(メタ)アクリレート(特開平5-286896号公報参照)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報参照)、アクリル酸エステルとエポキシ基含有不飽和化合物の共重合化合物(特開2003-128725号公報参照)、アクリレート化合物(特開2003-147072号公報参照)、アクリルエステル化合物(特開2005-2064号公報参照)等が挙げられる。
(3)エポキシ樹脂
 エポキシ樹脂としては、エポキシ基を持ち光又は熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
Bromine-containing (meth) allyl ester not containing an aromatic ring (see JP-A-2003-66201), allyl (meth) acrylate (see JP-A-5-286896), allyl ester resin (JP-A-5-286896) , JP 2003-66201 A), a copolymer of an acrylate ester and an epoxy group-containing unsaturated compound (see JP 2003-128725 A), an acrylate compound (see JP 2003-147072 A), an acrylic And ester compounds (see JP 2005-2064 A).
(3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator. Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。 Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
 硬化剤は硬化性樹脂材料を構成する上で使用されるものであり特に限定はない。硬化剤としては、酸無水物硬化剤やフェノール硬化剤等を好ましく使用することができる。酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がなく、熱硬化性樹脂の透明性を損なわないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは2種以上を混合して用いてもよい。
[光重合開始剤]
 光重合開始剤としては、光ラジカル重合開始剤または光カチオン重合開始剤などを使用することができる。
A hardening | curing agent is used when comprising curable resin material, and there is no limitation in particular. As the curing agent, an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used. Specific examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride. Moreover, a hardening accelerator is contained as needed. The curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin. For example, 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
[Photopolymerization initiator]
As the photopolymerization initiator, a radical photopolymerization initiator or a cationic photopolymerization initiator can be used.
 光ラジカル重合剤としては、たとえば、ベンジル、ジアセチルなどのα-ジケトン類、ベンゾインなどのアシロイン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのアシロインエーテル類、チオキサントン、2,4-ジエチルチオキサントン、チオキサントン-4-スルホン酸、ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノンなどのベンゾフェノン類、アセトフェノン、p-ジメチルアミノアセトフェノン、α,α'-ジメトキシアセトキシベンゾフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オンなどのアセトフェノン類、アントラキノン、1,4-ナフトキノンなどのキノン類、フェナシルクロライド、トリブロモメチルフェニルスルホン、トリス(トリクロロメチル)-s-トリアジンなどのハロゲン化合物、ジ-t-ブチルパーオキサイドなどの過酸化物などが挙げられる。 Examples of the photo radical polymerization agent include α-diketones such as benzyl and diacetyl, acyloins such as benzoin, acyloin ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether, thioxanthone, and 2,4-diethyl. Benzophenones such as thioxanthone, thioxanthone-4-sulfonic acid, benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, acetophenone, p-dimethylaminoacetophenone, α, α ′ -Dimethoxyacetoxybenzophenone, 2,2'-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propyl Acetophenones such as ropanone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, quinones such as anthraquinone and 1,4-naphthoquinone, phenacyl chloride, tribromomethyl Examples thereof include halogen compounds such as phenylsulfone and tris (trichloromethyl) -s-triazine, and peroxides such as di-t-butyl peroxide.
 また光カチオン重合開始剤としては、以下に示すような市販品を使用することができる。好適に使用できる市販品としては、Uvacure1590(ダイセル・サイテック(株)製)、UVI-6950、UVI-6970、UVI-6974、UVI-6990(以上、ユニオンカーバイド社製)、アデカオプトマーSP-150、SP-151、SP-170、SP-171(以上、(株)ADEKA製)、Irgacure 261(以上、チバガイギー社製)、CI-2481、CI-2624、CI-2639、CI-2064(以上、日本曹達(株)製)、CD-1010、CD-1011、CD-1012(以上、サートマー社製)、DTS-102、DTS-103、NAT-103、NDS-103、TPS-103、MDS-103、MPI-103、BBI-103(以上、みどり化学(株)製)などを挙げることができる。 Further, as the cationic photopolymerization initiator, commercially available products as shown below can be used. Commercially available products that can be suitably used include Uvacure 1590 (manufactured by Daicel Cytec Co., Ltd.), UVI-6950, UVI-6970, UVI-6974, UVI-6990 (above, Union Carbide), Adekaoptomer SP-150 SP-151, SP-170, SP-171 (above, manufactured by ADEKA Corporation), Irgacure 261 (above, manufactured by Ciba Geigy), CI-2481, CI-2624, CI-2638, CI-2064 (above, Nippon Soda Co., Ltd.), CD-1010, CD-1011, CD-1012 (above, manufactured by Sartomer), DTS-102, DTS-103, NAT-103, NDS-103, TPS-103, MDS-103 , MPI-103, BBI-103 (Midori Chemical Co., Ltd.) It can gel.
 図2に示す通り、本発明においては、撮像用レンズ10と撮像用レンズ20との間には、IRカットコートを有するスペーサ40が介在している。スペーサ40はガラス製の板状部材であり、撮像用レンズ10と撮像用レンズ20とを一定の間隔に保つ機能を有している。本発明において好ましくは、スペーサ40の表面42(上面)にはIRカットコート110が形成されており、スペーサ40の裏面44(下面)にはIRカットコート120が形成されている。 As shown in FIG. 2, in the present invention, a spacer 40 having an IR cut coat is interposed between the imaging lens 10 and the imaging lens 20. The spacer 40 is a glass plate-like member and has a function of keeping the imaging lens 10 and the imaging lens 20 at a constant interval. In the present invention, the IR cut coat 110 is preferably formed on the front surface 42 (upper surface) of the spacer 40, and the IR cut coat 120 is formed on the rear surface 44 (lower surface) of the spacer 40.
 IRカットコート110は、例えば、波長650nm~800nmの赤外光を、またIRカットコート120は800nm~1000nmの赤外光を反射するように構成され、二つのIRカットコート110、120によってあわせて波長650nm~1000nmの赤外光全域をカットする性能を持たせるようIRカットコートを構成するのが好ましい。 For example, the IR cut coat 110 is configured to reflect infrared light having a wavelength of 650 nm to 800 nm, and the IR cut coat 120 is configured to reflect infrared light having a wavelength of 800 nm to 1000 nm. It is preferable to configure the IR cut coat so as to have the performance of cutting the entire infrared light with a wavelength of 650 nm to 1000 nm.
 IRカットコート110,120は赤外線を遮光するための膜であり、波長365nmの光に対しては50%以上の透過率を有している。詳しくは、IRカットコート110,120は低屈折率材料から構成された低屈折率層A1,A2と、高屈折率材料から構成された高屈折率層B1,B2とを、交互に複数積層した交互多層膜である。IRカットコート110,120においては、好ましくは低屈折率層A1,A2がスペーサ40に対し直に接している。 IR cut coats 110 and 120 are films for shielding infrared rays, and have a transmittance of 50% or more for light having a wavelength of 365 nm. Specifically, the IR cut coats 110 and 120 are formed by alternately laminating a plurality of low refractive index layers A1 and A2 made of a low refractive index material and high refractive index layers B1 and B2 made of a high refractive index material. It is an alternating multilayer film. In the IR cut coats 110 and 120, the low refractive index layers A 1 and A 2 are preferably in direct contact with the spacer 40.
 低屈折率層A1,A2を構成する低屈折率材料としてはSiOなどが使用される。他方、高屈折率層B1,B2を構成する高屈折率材料としてはTiO,Ta,Nb,ZrOなどが使用される。IRカットコート110,120は低屈折率層A1,A2が互いに異なる材料で構成されていてもよいし、高屈折率層B1,B2も互いに異なる材料で構成されていてもよい。またIRカットコート110,120は通常10~40層程度で構成されるが、その層数は互いに同じであってもよいし、異なっていてもよい。 As the low refractive index material constituting the low refractive index layers A1 and A2, SiO 2 or the like is used. On the other hand, as the high-refractive index material constituting the high refractive index layer B1, B2 TiO 2, Ta 2 O 5, Nb 2 O 3, ZrO 2 and the like are used. In the IR cut coats 110 and 120, the low refractive index layers A1 and A2 may be made of different materials, and the high refractive index layers B1 and B2 may be made of different materials. The IR cut coats 110 and 120 are usually composed of about 10 to 40 layers, but the number of layers may be the same or different.
 IRカットコート110,120が、スペーサ40の両面、即ち、レンズ部13またレンズ部22に接したスペーサ40の表面42また44に対しそれぞれ形成されるので、スペーサ40の一方の面(表面42)にIRカットコート110を形成した際の膜応力を、他方の面(裏面44)へのIRカットコート120の形成により相殺(緩和)することが出来る。 Since the IR cut coats 110 and 120 are respectively formed on both surfaces of the spacer 40, that is, on the surfaces 42 and 44 of the spacer 40 in contact with the lens portion 13 and the lens portion 22, one surface (surface 42) of the spacer 40. The film stress when the IR cut coat 110 is formed can be offset (relaxed) by forming the IR cut coat 120 on the other surface (back surface 44).
 互いに応力を緩和して、スペーサ自体、また密着部分の変形、反り等を防ぐには、IRカットコートの形成による膜応力が互いに相殺されるよう、両面に形成されるIRカットコートを総膜厚が余り違わないよう配置することが好ましい。従って、スペーサ40では、好ましくは表面42に形成されたIRカットコート110の総膜厚r1と、裏面44に形成されたIRカットコート120の総膜厚r2との総膜厚比率rが、式(1)の条件を満たしていることが好ましい。 In order to relieve each other's stress and prevent deformation, warpage, etc. of the spacer itself and the close contact portion, the total thickness of the IR cut coat formed on both sides is set so that the film stress due to the formation of the IR cut coat can be offset each other. It is preferable to arrange so that there is not much difference. Accordingly, in the spacer 40, the total film thickness ratio r of the total film thickness r1 of the IR cut coat 110 formed on the front surface 42 and the total film thickness r2 of the IR cut coat 120 formed on the back surface 44 is preferably It is preferable that the condition (1) is satisfied.
  0.9≦r(=r1/r2)≦1.1 … (1)
 また、そのためには、さらにスペーサ40では、好ましくは表面42に形成されたIRカットコート110の低屈折率層A1の総膜厚r(A1)と、裏面44に形成されたIRカットコート120の低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、表面42に形成されたIRカットコート110の高屈折率層B1の総膜厚r(B1)と、裏面44に形成されたIRカットコート120の高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たしていることが好ましい。
0.9 ≦ r (= r1 / r2) ≦ 1.1 (1)
For this purpose, in the spacer 40, the total thickness r (A1) of the low refractive index layer A1 of the IR cut coat 110 preferably formed on the front surface 42 and the IR cut coat 120 formed on the back surface 44 are preferably used. The high refractive index of the IR cut coat 110 formed on the surface 42 in which the total film thickness ratio r (A) to the total film thickness r (A2) of the low refractive index layer A2 satisfies the condition of the formula (2). The total film thickness ratio r (B) between the total film thickness r (B1) of the layer B1 and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat 120 formed on the back surface 44 is expressed by the formula ( It is preferable that the condition of 3) is satisfied.
  0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
  0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
 スペーサ部材は、多くは、0.1mmから0.3mm程度の薄い板状部材であるため、IRカットコート110、120が以上式(1)~(3)を満たさない場合、応力緩和が出来ずにスペーサの反りや変形が起きるため組み立ての精度が保てない。また、スペーサ部材の製造自体においても複数の部材を同じ基板に製造するため例えば片面の応力変形が大きいと(前記式(1)~(3)の範囲を超えると)、基板の反りが大きくなり、打ち抜き精度等も問題となる。
0.9 ≦ r (A) (= r (A1) / r (A2)) ≦ 1.1 (2)
0.9 ≦ r (B) (= r (B1) / r (B2)) ≦ 1.1 (3)
Since the spacer member is often a thin plate member having a thickness of about 0.1 mm to 0.3 mm, if the IR cut coats 110 and 120 do not satisfy the above formulas (1) to (3), the stress cannot be relaxed. As a result, spacers are warped and deformed, and assembly accuracy cannot be maintained. Also in the manufacture of the spacer member itself, since a plurality of members are manufactured on the same substrate, for example, if the stress deformation on one side is large (exceeding the range of the above formulas (1) to (3)), the warpage of the substrate increases. The punching accuracy is also a problem.
 本発明の光学撮像系においては、図2に示す通り、撮像用レンズ20と撮像用レンズ30との間にはスペーサ50が介在している。スペーサ50のレンズ部23,32に対応する部分には、開口部52が形成されており、開口部52を介して撮像用レンズ20のレンズ部23と撮像用レンズ30のレンズ部32とが対向している。 In the optical imaging system of the present invention, a spacer 50 is interposed between the imaging lens 20 and the imaging lens 30 as shown in FIG. An opening 52 is formed in a portion corresponding to the lens portions 23 and 32 of the spacer 50, and the lens portion 23 of the imaging lens 20 and the lens portion 32 of the imaging lens 30 are opposed to each other through the opening 52. is doing.
 以上の撮像ユニット1では、外部光が光透過孔51aを通じて撮像光学系2に入射・透過し、その出射光がセンサデバイス4に入射し、センサデバイス4において光電変換され、画像が形成される。 In the imaging unit 1 described above, external light is incident / transmitted to the imaging optical system 2 through the light transmission hole 51a, and the emitted light is incident on the sensor device 4 and is photoelectrically converted in the sensor device 4 to form an image.
 続いて、撮像ユニット1の製造方法(撮像用レンズ10,20,30の製造方法を含む。)について簡単に説明する。 Subsequently, a method for manufacturing the imaging unit 1 (including a method for manufacturing the imaging lenses 10, 20, and 30) will be briefly described.
 始めに、レンズ部12に対応した形状を複数有する金型に光硬化性樹脂12Aを塗布し、これに対しウエハ状のガラス基板11を押圧して金型のキャビティに光硬化性樹脂12Aを充填する。その後、ガラス基板11の上方から光を照射して光硬化性樹脂12Aを硬化させる。その結果ガラス基板11に複数のレンズ部12が形成される。その後、ガラス基板11を裏返し、上記と同様にしてガラス基板11に複数のレンズ部13を形成する。 First, the photocurable resin 12A is applied to a mold having a plurality of shapes corresponding to the lens portion 12, and the wafer-like glass substrate 11 is pressed against the mold to fill the cavity of the mold with the photocurable resin 12A. To do. Thereafter, light is irradiated from above the glass substrate 11 to cure the photocurable resin 12A. As a result, a plurality of lens portions 12 are formed on the glass substrate 11. Thereafter, the glass substrate 11 is turned over, and a plurality of lens portions 13 are formed on the glass substrate 11 in the same manner as described above.
 その後、ガラス基板11の表裏両面に複数のレンズ部12,13を形成したのと同様に、ガラス基板21,31の表裏両面にも複数のレンズ部22,23,32,33を形成する。 Thereafter, the plurality of lens portions 22, 23, 32, 33 are formed on both the front and back surfaces of the glass substrates 21, 31 in the same manner as the plurality of lens portions 12, 13 are formed on the front and back surfaces of the glass substrate 11.
 またこれとは別に、スペーサ40の表裏両面に対しそれぞれIRカットコート110,120を形成する。IRカットコート110,120の形成方法としては、公知の真空蒸着法やスパッタ、CVD(Chemical Vapour Deposition)法などを使用する。 Separately, IR cut coats 110 and 120 are formed on both the front and back surfaces of the spacer 40, respectively. As a method of forming the IR cut coats 110 and 120, a known vacuum deposition method, sputtering, a CVD (Chemical Vapor Deposition) method, or the like is used.
 その後、接着剤により、ガラス基板11,スペーサ40,ガラス基板21,スペーサ50,ガラス基板31を互いに接着し、エンドミルなどを使用してレンズ部12,13,22,23,32,33ごとに切断して断片化し、複数の撮像光学系2を製造する。その後は、当該撮像光学系2をケーシング5の円筒部51に組み込むとともに(接着するとともに)、ベース部53にセンサデバイス4を設置し、撮像ユニット1が製造される。 Thereafter, the glass substrate 11, the spacer 40, the glass substrate 21, the spacer 50, and the glass substrate 31 are bonded to each other with an adhesive and cut into the lens portions 12, 13, 22, 23, 32, and 33 using an end mill or the like. Then, a plurality of imaging optical systems 2 are manufactured. Thereafter, the imaging optical system 2 is incorporated into (attached to) the cylindrical portion 51 of the casing 5, and the sensor device 4 is installed on the base portion 53 to manufacture the imaging unit 1.
 以上の本実施形態に係る撮像光学系2では、3群の撮像用レンズ10,20,30が、スペーサ40,50を介在させながら積層されており、互いに隣り合う撮像用レンズ10,20間でレンズ部13,22同士が凹状を呈し、その部位に配置されるスペーサ40にはIRカットコート110,120が形成されている。そのため、IRカットコート110,120とレンズ部12,13,22,23,32,33との密着性を問題とせずに、撮像光学系2中にIRカット部材を設けることができる。 In the imaging optical system 2 according to the present embodiment described above, the three groups of imaging lenses 10, 20, 30 are stacked with the spacers 40, 50 interposed therebetween, and between the imaging lenses 10, 20 adjacent to each other. The lens portions 13 and 22 have a concave shape, and the IR cut coats 110 and 120 are formed on the spacers 40 arranged at the portions. Therefore, an IR cut member can be provided in the imaging optical system 2 without causing a problem with the adhesion between the IR cut coats 110 and 120 and the lens portions 12, 13, 22, 23, 32, and 33.
 また、レンズ部13,22が互いに凹状を呈し対向配置されているから、その部位に配置されるスペーサ40にはレンズ部13,22に対応した開口部を設ける必要がなく、スペーサ40を打ち抜くといった手間を省くことができる。さらに、スペーサ40にIRカットコート110,120を、前記式(1)~(3)の関係を有するように形成しているため、IRカットコートの形成による応力を互いに緩和でき、スペーサの反り変形を正確に抑制できる。また、撮像光学系2中に別途IRカットフィルタを設ける必要がなく、撮像光学系2の構成自体を簡略化することができる。 Further, since the lens portions 13 and 22 are concave and opposed to each other, it is not necessary to provide an opening corresponding to the lens portions 13 and 22 in the spacer 40 disposed at that portion, and the spacer 40 is punched out. Save time and effort. Further, since the IR cut coats 110 and 120 are formed on the spacer 40 so as to have the relationships of the above formulas (1) to (3), the stress due to the formation of the IR cut coat can be alleviated and the spacer is warped. Can be accurately controlled. Further, it is not necessary to provide a separate IR cut filter in the imaging optical system 2, and the configuration itself of the imaging optical system 2 can be simplified.
 1 撮像ユニット
 2 撮像光学系
 4 センサデバイス
 5 ケーシング
  51 円筒部
  51a 光透過孔
  53 ベース部
 10,20,30 撮像用レンズ
 11,21,31 ガラス基板
 12,13,22,23,32,33 レンズ部
 40,50 スペーサ
 52 開口部
 110,120 IRカットコート
DESCRIPTION OF SYMBOLS 1 Imaging unit 2 Imaging optical system 4 Sensor device 5 Casing 51 Cylindrical part 51a Light transmission hole 53 Base part 10, 20, 30 Imaging lens 11, 21, 31 Glass substrate 12, 13, 22, 23, 32, 33 Lens part 40, 50 Spacer 52 Opening 110, 120 IR cut coat

Claims (4)

  1.  ガラス基板に硬化性樹脂製のレンズ部を形成した複数の撮像用レンズを、スペーサを介在させながら積層した撮像光学系であって、
     互いに隣り合う前記撮像用レンズ間で前記レンズ部同士が凹状を呈する部位が存在し、その部位に配置される前記スペーサにはIRカットコートが形成されていることを特徴とする撮像光学系。
    An imaging optical system in which a plurality of imaging lenses each having a lens portion made of a curable resin formed on a glass substrate are stacked with a spacer interposed therebetween,
    An imaging optical system, wherein a portion where the lens portions exhibit a concave shape exists between the imaging lenses adjacent to each other, and an IR cut coat is formed on the spacer disposed in the portion.
  2.  請求項1に記載の撮像光学系において、
     前記スペーサの表裏両面に対しそれぞれ前記IRカットコートが形成されており、
     前記スペーサの一方の面に形成されたIRカットコートの総膜厚r1と、前記スペーサの他方の面に形成されたIRカットコートの総膜厚r2との総膜厚比率rが、式(1)の条件を満たすことを特徴とする撮像光学系。
       0.9≦r(=r1/r2)≦1.1 … (1)
    The imaging optical system according to claim 1,
    The IR cut coat is formed on both the front and back surfaces of the spacer,
    The total film thickness ratio r of the total film thickness r1 of the IR cut coat formed on one surface of the spacer and the total film thickness r2 of the IR cut coat formed on the other surface of the spacer is expressed by the formula (1). The imaging optical system characterized by satisfying the condition of
    0.9 ≦ r (= r1 / r2) ≦ 1.1 (1)
  3.  請求項1又は2に記載の撮像光学系において、
     前記スペーサの表裏両面に対しそれぞれ前記IRカットコートが形成されており、
     前記IRカットコートが、低屈折率材料から構成された低屈折率層Aと、高屈折率材料から構成された高屈折率層Bとを交互に複数積層した交互多層膜であり、
     前記スペーサの一方の面に形成されたIRカットコートの低屈折率層A1の総膜厚r(A1)と、前記スペーサの他方の面に形成されたIRカットコートの低屈折率層A2の総膜厚r(A2)との総膜厚比率r(A)が、式(2)の条件を満たし、かつ、前記スペーサの一方の面に形成されたIRカットコートの高屈折率層B1の総膜厚r(B1)と、前記スペーサの他方の面に形成されたIRカットコートの高屈折率層B2の総膜厚r(B2)との総膜厚比率r(B)が、式(3)の条件を満たすことを特徴とする撮像光学系。
      0.9≦r(A)(=r(A1)/r(A2))≦1.1 … (2)
      0.9≦r(B)(=r(B1)/r(B2))≦1.1 … (3)
    The imaging optical system according to claim 1 or 2,
    The IR cut coat is formed on both the front and back surfaces of the spacer,
    The IR cut coat is an alternating multilayer film in which a plurality of low refractive index layers A made of a low refractive index material and high refractive index layers B made of a high refractive index material are alternately stacked.
    The total thickness r (A1) of the IR cut coat low refractive index layer A1 formed on one surface of the spacer and the IR cut coat low refractive index layer A2 formed on the other surface of the spacer. The total film thickness ratio r (A) to the film thickness r (A2) satisfies the condition of the formula (2), and the total of the high refractive index layers B1 of the IR cut coat formed on one surface of the spacer The total film thickness ratio r (B) between the film thickness r (B1) and the total film thickness r (B2) of the high refractive index layer B2 of the IR cut coat formed on the other surface of the spacer is expressed by the equation (3). The imaging optical system characterized by satisfying the condition of
    0.9 ≦ r (A) (= r (A1) / r (A2)) ≦ 1.1 (2)
    0.9 ≦ r (B) (= r (B1) / r (B2)) ≦ 1.1 (3)
  4.  請求項1~3のいずれか一項に記載の撮像光学系において、
     前記硬化性樹脂が光硬化性樹脂であり、
     前記光硬化性樹脂がアクリル樹脂又はエポキシ樹脂であることを特徴とする撮像光学系。
    The imaging optical system according to any one of claims 1 to 3,
    The curable resin is a photocurable resin,
    An imaging optical system, wherein the photocurable resin is an acrylic resin or an epoxy resin.
PCT/JP2009/060605 2008-06-25 2009-06-10 Imaging optical system WO2009157310A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801156654A CN102016677B (en) 2008-06-25 2009-06-10 Imaging optical system
JP2010517863A JPWO2009157310A1 (en) 2008-06-25 2009-06-10 Imaging optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-165415 2008-06-25
JP2008165415 2008-06-25

Publications (1)

Publication Number Publication Date
WO2009157310A1 true WO2009157310A1 (en) 2009-12-30

Family

ID=41444379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060605 WO2009157310A1 (en) 2008-06-25 2009-06-10 Imaging optical system

Country Status (3)

Country Link
JP (1) JPWO2009157310A1 (en)
CN (1) CN102016677B (en)
WO (1) WO2009157310A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117904A1 (en) * 2011-02-28 2012-09-07 富士フイルム株式会社 Lens module and imaging device
JP2013003542A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Optical element assembly, optical element, production method of optical element assembly, and production method of optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615112A (en) * 2015-03-16 2018-01-19 肖特玻璃科技(苏州)有限公司 Camera model including NIR cut-off filters and the method for producing it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299921A (en) * 1986-06-20 1987-12-26 Matsushita Electric Ind Co Ltd Lens assembling body
JP2003179786A (en) * 2001-12-11 2003-06-27 Nippon Sheet Glass Co Ltd Image pickup optical system and electronic imaging apparatus using the same
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2006173855A (en) * 2004-12-14 2006-06-29 Shinko Electric Ind Co Ltd Imaging module and infrared ray-cut film attached spacer
JP2007193264A (en) * 2006-01-23 2007-08-02 Sony Corp Optical low pass filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023321A (en) * 2000-09-29 2006-01-26 Matsushita Electric Ind Co Ltd Imaging lens, imaging unit and miniature electronic camera
JP2004020653A (en) * 2002-06-12 2004-01-22 Fujikura Ltd Dielectric multilayer film filter element and optical part using the same
JP2006227324A (en) * 2005-02-17 2006-08-31 Citizen Electronics Co Ltd Solid-state imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299921A (en) * 1986-06-20 1987-12-26 Matsushita Electric Ind Co Ltd Lens assembling body
JP2003179786A (en) * 2001-12-11 2003-06-27 Nippon Sheet Glass Co Ltd Image pickup optical system and electronic imaging apparatus using the same
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2006173855A (en) * 2004-12-14 2006-06-29 Shinko Electric Ind Co Ltd Imaging module and infrared ray-cut film attached spacer
JP2007193264A (en) * 2006-01-23 2007-08-02 Sony Corp Optical low pass filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117904A1 (en) * 2011-02-28 2012-09-07 富士フイルム株式会社 Lens module and imaging device
JP2013003542A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Optical element assembly, optical element, production method of optical element assembly, and production method of optical element

Also Published As

Publication number Publication date
CN102016677A (en) 2011-04-13
JPWO2009157310A1 (en) 2011-12-08
CN102016677B (en) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2009157273A1 (en) Imaging optical system, and imaging lens manufacturing method
WO2011055655A1 (en) Image pickup device, optical unit, wafer lens laminated body, and method for manufacturing wafer lens laminated body
US8540440B2 (en) Image capture lens, wafer lens, wafer lens laminate, method of manufacturing image capture lens, image capture lens intermediate product, method of manufacturing image capture lens intermediate product
KR20070108354A (en) Resin composition for optical material, resin film for optical material and optical waveguide using same
US20170114245A1 (en) Dispersion composition, curable composition using the same, transparent film, microlens and solid-state imaging device
KR20120002484A (en) Photosensitive composition, pattern forming material, and photosensitive film, pattern forming method, pattern film, low refractive index film, optical device and solid-state imaging device each using the same
JP2013001091A (en) Method of manufacturing optical element
WO2009157310A1 (en) Imaging optical system
WO2011136139A1 (en) Method for producing wafer lens member, method for producing image-capturing lens, method for producing image-capturing module, and method for producing electronic device mounted with image-capturing module
US20130037976A1 (en) Lens Array Production Method and Laminated Lens Array Production Method
WO2020085499A1 (en) Film-like substance for optical member and composition for optical member
US20190112405A1 (en) Resin precursor composition for optical materials, optical element obtained from the composition, and diffractive optical element configured using the optical element
JP2013125059A (en) Lens unit and method of manufacturing the same, and lens unit complex and method of manufacturing the same
JP6070214B2 (en) Lens member, optical waveguide with lens member, and manufacturing method thereof
JP4282070B2 (en) Optical waveguide and method for manufacturing the same
JP2011237472A (en) Imaging lens
JP5668446B2 (en) Imaging lens, wafer lens with spacer, and wafer lens laminate
JP2015025907A (en) Method for manufacturing optical waveguide and optical waveguide obtained thereby
WO2010087208A1 (en) Diffractive optical element and manufacturing method thereof
JP2006011274A (en) Method for manufacturing optical waveguide
JP5987469B2 (en) Optical waveguide
JP2015049318A (en) Optical transmission member and manufacturing method of the same and optical multiplexer, light source unit using these, illumination device, and image projection device
JP6248612B2 (en) Optical waveguide with marker
JP2006053243A (en) Optical waveguide
JPWO2021231789A5 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115665.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517863

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770020

Country of ref document: EP

Kind code of ref document: A1