WO2010087208A1 - Diffractive optical element and manufacturing method thereof - Google Patents

Diffractive optical element and manufacturing method thereof Download PDF

Info

Publication number
WO2010087208A1
WO2010087208A1 PCT/JP2010/000587 JP2010000587W WO2010087208A1 WO 2010087208 A1 WO2010087208 A1 WO 2010087208A1 JP 2010000587 W JP2010000587 W JP 2010000587W WO 2010087208 A1 WO2010087208 A1 WO 2010087208A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
refractive index
optical
optical element
intermediate layer
Prior art date
Application number
PCT/JP2010/000587
Other languages
French (fr)
Japanese (ja)
Inventor
村田晶子
岡田夕佳
高原範久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010087208A1 publication Critical patent/WO2010087208A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00269Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Definitions

  • the present invention relates to a diffractive optical element, and more particularly to a diffractive optical element constituted by two or more members containing different resins and a method for manufacturing the same.
  • the diffractive optical element has a structure in which a diffraction grating for diffracting light is provided on a base made of an optical material such as glass or resin.
  • a diffractive optical element is used in an optical system of various optical devices including an imaging device and an optical recording device. For example, a lens designed to collect diffracted light of a specific order at one point, or a spatial low-pass filter A polarization hologram or the like is known.
  • a diffractive optical element has the feature that the optical system can be made compact. In contrast to refraction, longer wavelength light diffracts more greatly, so it is possible to improve chromatic aberration and curvature of field of the optical system by combining a diffractive optical element and a normal optical element using refraction. It is.
  • Patent Document 1 provides a diffraction grating on a surface of a base made of an optical material, and covers the diffraction grating with an optical adjustment layer made of an optical material different from that of the base.
  • the refractive indices at the wavelengths ⁇ of the two types of optical materials are n1 ( ⁇ ) and n2 ( ⁇ ), and the depth of the diffraction grating is d, the following formula (When 1) is satisfied, the diffraction efficiency for light of wavelength ⁇ is 100%.
  • the optical material of ⁇ may be combined.
  • a material having a high refractive index and a low wavelength dispersion is combined with a material having a low refractive index and a high wavelength dispersion.
  • Patent Document 1 discloses that glass or resin is used as the first optical material serving as a base and ultraviolet curable resin is used as the second optical material.
  • Patent Document 2 discloses that, in a phase difference type diffractive optical element having a similar structure, glass is used as a first optical material, and an energy beam curable resin having a viscosity of 5000 mPa ⁇ s or less is used as a second optical material. In addition, it is disclosed that the wavelength dependency of diffraction efficiency can be reduced and color unevenness and flare generation due to unnecessary order light can be effectively prevented.
  • the diffraction grating When a resin is used as the first optical material serving as the substrate, it is superior to glass in terms of workability and moldability of the diffraction grating. However, it is difficult to realize various values of refractive index as compared with glass, and the difference in refractive index between the first optical material and the second optical material is small. Therefore, as is clear from Equation (1), the diffraction grating The depth d of becomes larger.
  • Patent Document 3 uses a composite material containing inorganic particles having an average particle diameter of 1 nm to 100 nm in a matrix material made of resin as an optical adjustment layer. is suggesting.
  • this composite material the refractive index and the Abbe number can be controlled by the material of the inorganic particles to be dispersed and the addition amount of the inorganic particles, and the refractive index and the Abbe number that are not found in conventional resins can be obtained. Therefore, by using the composite material for the optical adjustment layer, the degree of freedom in designing the diffraction grating when resin is used as the first optical material as the substrate is increased, the moldability is improved, and the excellent diffraction efficiency is achieved. Wavelength characteristics can be obtained.
  • the inventor of the present application when the base and the optical adjustment layer are made of a resin material, depending on the type of the resin material, the base and the optical adjustment layer may be It has been found that there is a problem in that the substrate swells or dissolves at the contact portion, and the shape of the diffraction grating deviates from the design value.
  • the present invention has been made in view of such problems of the prior art, and even when a resin excellent in productivity and workability is used as a substrate and an optical adjustment layer, a diffractive optical element having good optical characteristics.
  • An object is to provide an element and a method for manufacturing the element.
  • the optical element of the present invention is made of a first optical material containing a first resin, has a base having a diffraction grating on the surface, and a second optical material containing a second resin, and covers the base so as to cover the diffraction grating.
  • An optical adjustment layer provided and a third optical material containing a third resin, and an intermediate layer provided between the base and the optical adjustment layer, wherein the refractive index of the first optical material is It is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is larger than the wavelength dispersion of the refractive index of the second optical material.
  • the second resin is a thermosetting resin or an energy curable resin.
  • the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
  • the refractive index of the third optical material is larger than the refractive index of the first optical material and smaller than the refractive index of the second optical material.
  • the difference in solubility parameter between the first resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
  • the difference in solubility parameter between the second resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
  • the thickness of the intermediate layer is 5% or less of the minimum value of the grating interval of the diffraction grating.
  • the thickness of the intermediate layer is 1% or less of the minimum value of the grating interval of the diffraction grating.
  • the third resin is a thermosetting resin or an energy curable resin.
  • the inorganic particles contain at least one selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina, and silica as a main component.
  • the effective particle size of the inorganic particles is 1 nm or more and 100 nm or less.
  • the first resin is polycarbonate.
  • the intermediate layer has a thickness of 10 nm or more.
  • the method for producing a diffractive optical element includes a step of preparing a base having a diffraction grating on a surface thereof, the first optical material including a first resin, and covering the surface of the diffraction grating of the base Including a step of forming an intermediate layer on a substrate and a step of forming an optical adjustment layer made of a second optical material containing a second resin on the intermediate layer, and the step of forming the intermediate layer includes: A step of disposing a three-resin raw material on the base so as to cover a surface of the diffraction grating of the base; and curing the third resin raw material to form the intermediate layer made of a third optical material. A process.
  • the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
  • the refractive index of the third optical material is larger than the refractive index of the first optical material and smaller than the refractive index of the second optical material.
  • the difference between the solubility parameter of the first resin and the solubility parameter of the raw material of the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
  • the base and the optical adjustment layer are not in direct contact, and the base and the optical adjustment layer are made of a material containing a resin.
  • the resin of the optical adjustment layer penetrates into the substrate, and the diffraction grating shape is prevented from being deformed or the refractive index changing layer is generated.
  • FIG. 6 is a diagram schematically showing a state where a diffraction grating is deformed in a diffractive optical element of a conventional technique.
  • (A) is a figure which shows typically the state in which the refractive index change layer produced
  • (b) is the figure which expanded the part. .
  • (A) And (b) is a figure explaining the relationship between the material of an optical adjustment layer, and unnecessary diffracted light in the diffractive optical element of a prior art in which a refractive index change layer is formed in the interface of a base
  • FIG. 6 is an enlarged schematic view showing a grating portion in the diffractive optical element shown in FIG. 5.
  • FIG. 6 is a graph showing a simulation result of the first-order diffraction efficiency when the thickness of the intermediate layer in the diffractive optical element shown in FIG. 5 is 5% of the minimum pitch. It is a graph explaining the definition of the effective particle diameter of particle
  • (A) to (e) are partial process diagrams for explaining an embodiment of a method for manufacturing a diffractive optical element. It is sectional drawing which shows the other form of the diffractive optical element of this invention. It is sectional drawing of the diffractive optical element of a comparative example. It is a figure which shows the result of the 1st-order diffraction efficiency with respect to the intermediate
  • the inventor of the present application has examined in detail the swelling of the base caused by using a material containing a resin for both the base and the optical adjustment layer in the conventional diffractive optical element. Hereinafter, the examination results will be described.
  • a conventional diffractive optical element 111 shown in FIG. 1 includes a base 101 having a diffraction grating 102 provided on the surface thereof, and an optical adjustment layer 103 provided so as to cover the diffraction grating 102.
  • the optical adjustment layer 103 and the base 101 are formed of an optical material containing a resin and the interaction between the two optical materials is strong, the base 101 may swell at a portion where the base 101 and the optical adjustment layer 103 are in contact with each other.
  • the shape of the diffraction grating 102 is broken as shown in FIG. If the shape of the diffraction grating 102 collapses, a desired order of diffracted light may not be obtained with sufficient intensity, or unnecessary diffracted light may be generated.
  • the inventor of the present application has found that unnecessary diffracted light may be generated in the diffractive optical element 111 even if the shape of the diffraction grating 102 is not changed.
  • 2A in the conventional diffractive optical element 112, when the resin contained in the optical adjustment layer 103 penetrates from the surface of the base 101, the shape of the diffraction grating 102 provided on the surface of the base 101 changes greatly. Even if it does not, the refractive index of the base
  • a layer 101a (hereinafter referred to as “refractive index changing layer”) having a refractive index different from that of the base 101 was formed at the interface between the base 101 and the optical adjustment layer 103.
  • the refractive index changing layer 101a can be confirmed by an optical microscope, and the thickness of the refractive index changing layer 101a is about 500 nm to 5000 nm.
  • the resin contained in the optical adjustment layer 103 is more likely to penetrate into the substrate 101. For this reason, the refractive index changing layer 101a tends to be thick at the tip portion 102t of the diffraction step.
  • the diffractive optical element 112 does not exhibit the optical characteristics as designed. .
  • a diffractive optical element 113 that uses first-order diffracted light using different resins for the substrate 101 (refractive index N1) and the optical adjustment layer 103 (refractive index N2) is considered.
  • the resin constituting the optical adjustment layer 103 permeates into the base 101, whereby the refractive index changing layer 101b having a changed refractive index is generated.
  • the refractive index of the base 101 and the optical adjustment layer 103 satisfies the relationship of N1 ⁇ N2
  • the refractive index N3 of the generated refractive index changing layer 101b satisfies the relationship of N1 ⁇ N3 ⁇ N2.
  • the difference in optical distance of the steps constituting the diffraction grating is caused by the refractive index changing layer 101b formed at the interface. That is, the phase difference becomes smaller than the design value, and Formula (1) is not satisfied.
  • the diffraction efficiency of the diffractive optical element 113 when the light B in the wavelength band to be used is incident that is, the emission efficiency of the first- order diffracted light B 1 becomes lower than the design value.
  • 0th-order diffracted light B 0 is mainly generated as unnecessary diffracted light.
  • the zero-order diffracted light B 0 has a longer focal length than the first-order diffracted light B 1 .
  • a diffractive optical element 114 that uses a first-order diffracted light using a base 101 and an optical adjustment layer 103 ′ formed by dispersing inorganic particles 104 in a matrix material 103 is considered.
  • the matrix material 103 of the optical adjustment layer 103 ′ permeates the base 101, thereby generating the refractive index changing layer 101 c having a changed refractive index.
  • the refractive index N3 of the generated refractive index changing layer 101c is N1> N3 ⁇ N2. Satisfy the relationship. This is because the nanometer-order inorganic particles 4 cannot move to the base 101, and the refractive index changing layer 101c is generated by the permeation of the matrix material 103 having a refractive index lower than that of the base 101.
  • the steps constituting the diffraction grating are formed by the refractive index changing layer 101c formed at the interface.
  • the optical distance difference that is, the phase difference becomes larger than the design value, and the expression (1) is not satisfied.
  • the diffraction efficiency of the diffractive optical element 113 when the light B in the wavelength band to be used is incident that is, the emission efficiency of the first- order diffracted light B 1 becomes lower than the design value.
  • second-order diffracted light B 2 is mainly generated as unnecessary diffracted light.
  • the second-order diffracted light B 2 has a shorter focal length than the first-order diffracted light B 1 .
  • the refractive index changing layer 201d even when the refractive index changing layer 201d is generated, the incident angle and the incident position of the light C incident on the optical adjustment layer 203 are almost the same as when the refractive index changing layer 201d is not generated, and the optical performance is affected. Is small enough to be ignored. That is, even if the refractive index change layer 201d that cannot be observed with an optical microscope is generated, the influence can be ignored.
  • the generation of the refractive index changing layer does not satisfy the diffraction condition (1), and thus the generation of the refractive index changing layer is directly connected to the generation of unnecessary diffracted light. As a result, the diffraction efficiency at the design order is greatly reduced.
  • an uncured resin that is, a monomer or an oligomer is in contact with the substrate in the process of forming the optical adjustment layer.
  • monomers and oligomers have a smaller molecular weight than the cured resin, the reactivity and permeability to the substrate 101 are greater than those after the cured resin. That is, the diffraction grating is easily deformed, and the diffraction efficiency is lowered due to the generation of the refractive index changing layer and the refractive index changing layer.
  • the optical adjustment layer is formed to uniformly disperse the inorganic particles in the matrix material or to adjust the viscosity of the optical adjustment layer in the process of forming the optical adjustment layer.
  • a solvent may be added to the starting material.
  • Such a solvent like the resin material in the optical adjustment layer, causes a refractive index change due to dissolution of the substrate and penetration into the substrate, and causes the above-described problems.
  • the present invention provides an intermediate layer between the base and the optical adjustment layer to suppress the interaction between the base and the optical adjustment layer.
  • FIG. 5A is a cross-sectional view showing a first embodiment of a diffractive optical element according to the present invention.
  • the diffractive optical element 51 includes a base 1, an intermediate layer 3, and an optical adjustment layer 4.
  • the base 1 is made of a first optical material containing a first resin.
  • the optical adjustment layer 4 and the intermediate layer 3 are also made of a second optical material containing a second resin and a third optical material containing a third resin, respectively.
  • the substrate 1 has a main surface 1a, and a diffraction grating 2 is provided on the main surface 1a.
  • a material containing a resin is used as the first optical material is that it is preferable to use a resin rather than glass from the viewpoint of productivity and workability.
  • Optical elements such as lenses can be manufactured with high productivity by molding. In this case, the life of the mold depends on the material to be molded, and the life of the mold is about 10 times longer and the manufacturing cost can be reduced by using resin compared to the case of using glass.
  • the optical element which has a fine shape can be shape
  • the resin it is excellent in fine workability, so that the performance of the diffractive optical element 51 can be improved or the diffractive optical element 51 can be downsized by reducing the pitch of the diffraction grating 2. Furthermore, it is possible to reduce the weight of the diffractive optical element 51.
  • the refractive index characteristic and the wavelength dispersion that can reduce the wavelength dependency of the diffraction efficiency at the design order of the diffractive optical element.
  • the first optical material may contain, in addition to the first resin, one or more components that adjust optical properties such as refractive index and Abbe number and mechanical properties such as impact resistance.
  • the first optical material includes optical particles such as refractive index, inorganic particles for adjusting mechanical properties such as thermal expansion, dyes and pigments that absorb electromagnetic waves in a specific wavelength region, etc.
  • the additive may be included.
  • the main surface 1a of the substrate 1 includes a region r1 where the optical axis O of the diffractive optical element 51 is located, r2 surrounding the region r1, and r3 surrounding the region r2.
  • the main surface 1a has a concave aspheric shape having a lens action in the region r1.
  • a diffraction grating 2 is provided in the region r2 of the main surface 1a. As shown in FIG. 5B, the diffraction grating 2 is constituted by a grating 2a having a concentric step shape centered on the optical axis O.
  • the cross-sectional shape, pitch, and groove depth of the grating 2a are determined.
  • the pitch may be changed so as to decrease continuously or intermittently from the center of the lens toward the periphery, and the grating 2a may be arranged concentrically.
  • the diffraction grating 2 is formed on a flat surface, but may be formed on a curved surface in order to further improve the light collecting function.
  • the diffraction grating 2 when the diffraction grating 2 is formed so that the envelope surface passing through the groove of the diffraction grating is an aspheric surface having a lens action, the chromatic aberration, curvature of field, etc. are improved in a balanced manner by an optimal combination of the refraction action and the diffraction action.
  • a lens having high imaging performance can be obtained.
  • the depth d of the diffraction grating 2 can be determined using Equation (1).
  • the diffraction grating 2 is provided only on one main surface 1a of the base body 1.
  • a diffraction grating may be provided on the other main surface 1b, and diffraction is also performed on the region r1 of the main surface 1a.
  • a grid may be provided.
  • the main surface 1a has a concave shape in the central region r1, and the envelope surface and the main surface 1b passing through the grooves of the diffraction grating in the region r2 are planes.
  • the shape may be independently a plane, a convex shape, and a concave shape.
  • the shape, arrangement, pitch, and diffraction grating depth of the diffraction gratings on both surfaces are not necessarily the same as long as they satisfy the performance required for the diffractive optical element. There is no need to let them. The same applies to the following embodiments.
  • the resin or solvent contained in the optical adjustment layer 4 penetrates into the substrate 1 in the step of heat-curing and energy-curing the optical adjustment layer 4 made of resin (curing by ultraviolet rays, visible light, electron beams, etc.).
  • the diffraction grating 2 provided on the main surface 1a of the base 1 is prevented from being deformed and the refractive index of the base 1 from being changed.
  • the intermediate layer 3 is provided in the region r ⁇ b> 2 in the main surface 1 a of the substrate 1 so as to cover at least the diffraction grating 2.
  • the intermediate layer 3 covers the regions r1 and r2.
  • the intermediate layer 3 is made of the third optical material containing the third resin. It is desirable that the third optical material has sufficient translucency so as not to deteriorate the characteristics of the diffractive optical element 51 and does not erode the substrate 1.
  • the third resin included in the third optical material include acrylic resin, epoxy resin, polyester resin, polystyrene resin, polyolefin resin, polyamide resin, polyimide resin, polyvinyl alcohol, butyral resin, vinyl acetate resin, and fat.
  • resins represented by cyclic polyolefin resin polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, etc., those that do not erode the substrate 1 and satisfy translucency may be appropriately selected. .
  • thermosetting resin or an energy ray curable resin as the third resin because it is excellent in productivity.
  • energy rays used for curing include ultraviolet rays, visible rays, and electron beams.
  • the energy ray curable resin include monomers and oligomers having a methacryl group, an acrylic group, an epoxy group, an oxetane group, and the like, and an ene-thiol resin.
  • the viscosity of the monomer is low in order to apply thinly.
  • An oligomer may be used as a raw material for the third resin. However, the oligomer has a higher viscosity than the monomer. For this reason, when using an oligomer as a raw material of 3rd resin, it is preferable to dilute an oligomer with a solvent and to apply
  • the intermediate layer 3 In order for the intermediate layer 3 not to erode the substrate 1, it is necessary to reduce the interaction between the third optical material of the intermediate layer 3 and the first optical material of the substrate 1. Therefore, there is a difference in solubility parameter between the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, and the solvent contained in the raw material and the first resin of the first optical material. It is preferably 0.8 [cal / cm 3 ] 1/2 or more.
  • the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, the solvent contained in the raw material, and the second constituting the optical adjustment layer 4 The difference in solubility parameter between the optical material and the second resin is preferably 0.8 [cal / cm 3 ] 1/2 or more.
  • the solubility parameter is an index of the intermolecular force of the substance, and it is considered that the closer the solubility parameter, the higher the affinity, that is, the stronger the interaction.
  • There are various derivation methods for the solubility parameter For example, a value obtained by a method of calculating from a molecular structure formula by Fedors et al. Can be used.
  • the solubility parameter used in the present specification is a value obtained by a method of calculating from this molecular structural formula.
  • Examples of the structure that increases the solubility parameter include highly polar functional groups such as OH groups and amide bonds.
  • examples of the structure having a low solubility parameter include a fluorine atom, a hydrocarbon group, and a siloxane bond.
  • FIG. 6 shows changes in the refractive index formed in a region in the vicinity of the surface in contact with the acrylate resin of the substrate when acrylate resins having various SP values (solubility parameters) are formed on the substrate made of aromatic polycarbonate.
  • the result of having measured the refractive index of the layer is shown.
  • the horizontal axis indicates the difference in SP value between the substrate and the acrylate resin formed on the substrate surface, and the vertical axis indicates the refractive index of the refractive index changing layer formed on the substrate surface.
  • a prism coupler manufactured by Metricon Corporation, MODEL 2010 was used for the measurement of the refractive index.
  • the refractive index is almost constant when the difference in SP value between the substrate and the acrylate resin is 0.8 [cal / cm 3 ] 1/2 or more. This is because, if the difference in SP value is 0.8 [cal / cm 3 ] 1/2 or more, the acrylate resin does not penetrate into the substrate so that the refractive index changes, and the interaction occurs substantially. This is probably because it is not. Therefore, even when the above-described resin is used as the first resin of the first optical material constituting the substrate 1, the difference in SP value from the third resin is 0.8 [cal / cm 3 ] 1/2 or more. If it exists, it is thought that interaction does not arise substantially.
  • the cured resin is three-dimensionally cross-linked, so that the resin and solvent contained in the optical adjustment layer 4 penetrate into the substrate 1 and erode. The effect of suppressing this is increased.
  • a transparent inorganic material such as silicon oxide, silicon nitride, titanium oxide, zinc oxide, zirconium oxide, magnesium fluoride, or ITO may be used as the third optical material of the intermediate layer 3.
  • a vacuum process such as sputtering or vapor deposition
  • the manufacturing cost may be increased due to an increase in the cost of the apparatus and an increase in the takt time.
  • the organic material described above it can be formed in a short time using simple equipment, and thus there is an advantage that the manufacturing cost can be reduced.
  • the solubility parameter is defined for organic substances and not for inorganic substances.
  • the solubility parameter of the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, and the solvent contained in the raw material and the first resin of the first optical material When the difference is 0.8 [cal / cm 3 ] 1/2 or more, the interaction between the intermediate layer 3 and the substrate 1 hardly occurs.
  • the intermediate layer 3 is thin, when the intermediate layer 3 cannot be formed with a uniform thickness, the base 1 and the optical adjustment layer 4 are in direct contact with each other or are too thin, so that the first optical material of the base 1 and the optical layer There is a possibility that the interaction of the adjustment layer 4 with the second optical material cannot be suppressed.
  • the thickness of the intermediate layer 3 is 10 nm or more.
  • 10 nm refers to a range including variations such as a manufacturing error of about 10%.
  • the interaction may be sufficiently suppressed, and a thickness of about 11 nm is required. It means that there are cases.
  • FIG. 7 is a schematic cross-sectional view showing the enlarged grating 2a of the diffraction grating 2. As shown in FIG. 7, the intermediate layer 3 is provided so as to cover the surface of the grating 2 a of the diffraction grating 2.
  • the light that passes through the region r11 has the inclined portion 3a of the intermediate layer 3 Advancing from the substrate 1 to the optical adjustment layer 4 across the substrate.
  • the light 40 transmitted through the region r12 corresponding to the thickness t of the intermediate layer 3 is substantially perpendicular to the thickness direction in the wall surface portion 3b of the intermediate layer 3 provided along the wall surface of the grating 2a.
  • the diffraction efficiency of the diffractive optical element 51 is designed to be 100% when Expression (1) is satisfied, and the presence of the intermediate layer 3 is not considered in this Expression (1).
  • the thickness t of the intermediate layer 3 is sufficiently smaller than the distance T of the grating 2a in the diffraction grating 2
  • the optical path difference with respect to the case can be ignored, and a diffraction efficiency close to 100% can be obtained by substantially satisfying the equation (1).
  • the light 40 transmitted through the region r12 is transmitted through the wall surface portion 3b of the intermediate layer 3 by the length of the step d of the grating 2a.
  • the optical path difference with respect to the case without the intermediate layer 3 cannot be ignored.
  • the transmitted light 40 cannot substantially satisfy the formula (1). For this reason, as the thickness t of the intermediate layer 3 increases, the amount of light that cannot satisfy Expression (1) increases, and the diffraction efficiency of the diffraction grating 2 decreases.
  • an intermediate layer 3 having a thickness corresponding to 5% of the minimum value of the grating interval T of the diffraction grating 2 (hereinafter referred to as “minimum pitch”) is provided between the substrate 1 and the optical adjustment layer 4.
  • minimum pitch the wavelength dependence of the diffraction efficiency of the diffraction grating 2 in the case of being provided.
  • the horizontal axis represents the wavelength ( ⁇ m) of light transmitted through the diffractive optical element, and the vertical axis represents the first-order diffraction efficiency (%).
  • a first-order diffraction efficiency of 80% or more can be obtained in the wavelength range of 400 nm to 700 nm.
  • a first-order diffraction efficiency of 95% can be obtained.
  • the thickness of the intermediate layer 3 is preferably 10 nm or more and 5% or less of the minimum pitch of the diffraction grating 2, and more preferably 10 nm or more and 1% or less of the minimum pitch of the diffraction grating 2. It can be said that it is preferable. It is preferable that at least the slope portion 3a and the wall surface portion 3b of the intermediate layer 3 have a uniform thickness.
  • the transmittance of all light rays is 90% or more in the thickness of the intermediate layer 3 to be formed.
  • the refractive index of the intermediate layer 3 may be selected as long as the presence of the intermediate layer 3 does not adversely affect the diffraction efficiency. Regardless of the value of the refractive index, the intermediate layer 3 prevents the diffraction grating shape of the substrate 1 from being deformed and the refractive index from being changed due to the interaction between the substrate 1 and the optical adjustment layer 4, thereby reducing the decrease in diffraction efficiency. Can do.
  • the intermediate layer 3 when the refractive index of the material constituting the intermediate layer 3 is larger than the refractive index of the first optical material constituting the substrate 1 and smaller than the refractive index of the second optical material constituting the optical adjustment layer 4, the intermediate layer 3 An antireflection effect can be achieved.
  • the refractive index change layer is generated by the interaction between the substrate and the optical adjustment layer, and the refractive index change layer becomes thick at the tip of the lattice shape (FIG. 2 (b) tip 101t).
  • the refractive index changing layer is generated, the ratio of the light transmitted through the portion located at the tip of the grating of the refractive index changing layer is increased, and the diffraction efficiency of the optical element is likely to be lowered.
  • the diffraction efficiency is greatly reduced even when the thickness of the other part of the refractive index changing layer is 5% or less of the minimum pitch of the grating interval.
  • the intermediate layer 3 is formed on the lattice 2 of the substrate 1 and can be formed with a substantially uniform thickness although it depends on the forming method. That is, the intermediate layer 3 is not formed as thick as the refractive index changing layer even at the tip portion of the lattice shape. Therefore, practically sufficient diffraction efficiency can be achieved if the thickness of the intermediate layer 3 is 5% or less of the minimum pitch of the lattice spacing as described above.
  • the optical adjustment layer 4 is provided so as to cover the intermediate layer 2 on the main surface 1a of the substrate 1 so as to fill at least the step of the diffraction grating 2 in order to reduce the wavelength dependency of the diffraction efficiency in the diffractive optical element 51. ing.
  • the main surface 1a of the substrate 1 on which the diffraction grating 2 is provided is a flat surface, and therefore the surface of the optical adjustment layer 4 that is not in contact with the substrate 1 is also configured by a flat surface.
  • the lens characteristics are improved by reducing chromatic aberration and curvature of field. Can be made.
  • the substrate 1 and the optical adjustment layer 4 satisfy the formula (1) in the entire wavelength region of light to be used.
  • the first optical material of the substrate 1 and the second optical material of the optical adjustment layer 4 exhibit a tendency that the wavelength dependence of the refractive index is opposite, and cancel each other in the change of the refractive index with respect to the wavelength. It is preferable to provide. More specifically, the refractive index of the first optical material is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is greater than the wavelength dispersion of the refractive index of the second optical material. Is preferred.
  • the refractive index of the first optical material is preferably larger than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is preferably smaller than the wavelength dispersion of the refractive index of the second optical material.
  • the wavelength dispersion of the refractive index is expressed by, for example, the Abbe number. The larger the Abbe number, the smaller the wavelength dispersion of the refractive index. Therefore, the refractive index of the first optical material is preferably smaller than the refractive index of the second optical material, and the Abbe number of the first optical material is preferably smaller than the Abbe number of the second optical material.
  • the refractive index of the first optical material is preferably larger than the refractive index of the second optical material, and the Abbe number of the first optical material is preferably larger than the Abbe number of the second optical material.
  • substrate 1 and the optical adjustment layer 4 each contain resin like this embodiment, it can be used as 2nd resin of a 2nd optical material, and the light to be used is used.
  • the choice of materials can be increased and the refractive index and the Abbe number can be finely adjusted.
  • the composite material uses a resin as a matrix material, the composite material has a feature of being excellent in workability while being a material having both high refractive index and low wavelength dispersion.
  • the resin used as the matrix material of the composite material includes methacrylic resin such as polymethyl methacrylate, epoxy resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate and polycaprolactone; polystyrene resin such as polystyrene.
  • Olefin resin such as polypropylene; polyamide resin such as nylon; polyimide resin such as polyimide and polyetherimide; polyvinyl alcohol; butyral resin; vinyl acetate resin; alicyclic polyolefin resin.
  • engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Also, a mixture or copolymer of these resins (polymers) may be used. Moreover, you may use what modified
  • Examples of the inorganic particles dispersed in the second resin include zirconium oxide, titanium oxide, zinc oxide, tantalum oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, hafnium oxide, lanthanum oxide, scandium oxide, cerium oxide, and oxide.
  • Yttrium, barium titanate, silica, alumina and the like can be used, but are not necessarily limited thereto. Moreover, you may use these complex oxides.
  • the inorganic particles dispersed in the second resin are selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina, and silica. It is more preferable that at least one selected as a main component.
  • the effective particle size of the inorganic particles 4 is preferably 1 nm or more and 100 nm or less. When the effective particle size is 100 nm or less, loss due to Rayleigh scattering can be reduced and the transparency of the optical adjustment layer 3 ′ can be increased. Further, by setting the effective particle size to 1 nm or more, it is possible to suppress the influence of light emission or the like due to the quantum effect.
  • the 2nd optical material may further contain additives, such as a dispersing agent which improves the dispersibility of inorganic particles, a polymerization initiator, and a leveling agent, as needed.
  • the effective particle diameter will be described with reference to FIG.
  • the horizontal axis represents the particle size (nm) of the inorganic particles
  • the left vertical axis represents the frequency (%) of the inorganic particles with respect to the particle size of the horizontal axis.
  • the vertical axis on the right represents the cumulative frequency of particle size.
  • the effective particle size means that the particle size at which the cumulative frequency is 50% in the particle size frequency distribution of the entire inorganic particles is the central particle size (median diameter: d50), and the cumulative frequency is centered on the central particle size. It refers to the particle size range B in the range A of 50%.
  • the range of the effective particle size defined as described above of the inorganic particles 4 is in the range of 1 nm to 100 nm. In order to accurately determine the value of the effective particle size, for example, it is preferable to measure 200 or more inorganic particles.
  • the optical adjustment layer 4 contains a solvent in the raw material of the optical adjustment layer 4 for the purpose of adjusting the workability in the manufacturing process when forming the optical adjustment layer 4 and the surface property of the optical adjustment layer 4. May be.
  • the type of the solvent is appropriately selected from the viewpoints of the solubility of the second resin contained in the second optical material constituting the optical adjustment layer 4 and raw materials such as monomers and oligomers, workability, and surface property control of the optical adjustment layer 4. Selected.
  • the second resin or solvent contained in the second optical material constituting the optical adjustment layer 4 does not interact with the third resin or solvent contained in the third optical material constituting the intermediate layer 3. It is preferable that the difference in solubility parameter between the second resin or solvent and the third resin or solvent contained in the second optical material is 0.8 [cal / cm 3 ] 1/2 or more.
  • the difference in the solubility parameter of the resin or solvent may be 0.8 [cal / cm 3 ] 1/2 or more.
  • the intermediate layer 3 functions as a barrier, the solubility parameter of the second resin and the solvent contained in the second optical material of the optical adjustment layer 4 and the solubility parameter of the first resin of the first optical material constituting the substrate 1.
  • the difference may not be 0.8 [cal / cm 3 ] 1/2 or more. Accordingly, the range of selection of materials that can be used as the first optical material and the second optical material is widened, and it becomes easier to select a material that satisfies the relationship of the expression (1).
  • the intermediate layer is provided between the base and the optical adjustment layer.
  • the substrate and the optical adjustment layer are not in direct contact with each other, and even if a material containing a resin is used for the substrate and the optical adjustment layer, the resin contained in the optical adjustment layer penetrates the substrate and the shape of the diffraction grating is destroyed. Or generation of a refractive index changing layer is suppressed.
  • the thickness of the intermediate layer is 5% or less of the minimum value of the grating spacing of the diffraction grating, the influence of the decrease in diffraction efficiency due to the intermediate layer is suppressed.
  • the solvent does not come into contact with the substrate.
  • the resin material in the optical adjustment layer it is possible to suppress a change in refractive index and a decrease in diffraction efficiency due to the solvent dissolving and penetrating into the substrate.
  • an antireflection layer may be provided on the surface of the optical adjustment layer 4.
  • the material of the antireflection layer is not particularly limited as long as it has a refractive index smaller than that of the optical adjustment layer 4.
  • a resin, a composite material of resin and inorganic particles, an inorganic thin film formed by vacuum deposition, or the like can be used.
  • the inorganic particles used in the composite material as the antireflection layer include silica, alumina, and magnesium oxide having a low refractive index.
  • a nanostructure antireflection shape may be formed on the surface of the optical adjustment layer 4.
  • the antireflection shape of the nanostructure can be easily formed by, for example, a transfer method (nanoimprint) using a mold. Further, a surface layer having an effect of adjusting mechanical properties such as friction resistance and thermal expansion may be separately formed on the surface of the optical adjustment layer 4 or the antireflection layer.
  • FIG. 10 schematically shows the structure of the diffractive optical element 52 manufactured according to this embodiment.
  • the diffractive optical element 52 covers the base 11, the diffraction grating 12 provided on the surface of the base 11, the intermediate layer 13 provided on the surface of the base 11 so as to cover the diffraction grating 2, and the diffraction grating 22.
  • an optical adjustment layer 14 provided on the intermediate layer 13.
  • the second optical material constituting the optical adjustment layer 14 includes a second resin 15 and inorganic particles 16, and is a nanocomposite material in which the inorganic particles 16 are dispersed in the second resin.
  • a base 11 having a diffraction grating 12 formed on the surface is prepared.
  • a method of performing molding by supplying the material of the substrate 11 in a softened or molten state to a mold in which the shape of the diffraction grating 12 is formed, and a diffraction grating shape.
  • an intermediate layer is formed on the diffraction grating 12 of the substrate 11.
  • the intermediate layer is formed by applying a liquid monomer or oligomer, which is the raw material 13 'of the intermediate layer, and then curing, applying a resin having fluidity by heating and melting, cooling and solidifying, and plasma.
  • a method of directly forming an intermediate layer from a raw material 13 ′ such as a monomer or an oligomer by gas phase polymerization represented by polymerization or vapor deposition polymerization.
  • a state in which the liquid raw material 13 ′ is applied by the spray coating device 17 is shown.
  • a transparent inorganic material such as silicon oxide
  • a known inorganic thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method can be used.
  • Examples of a method for curing the applied raw material 13 ′ include irradiation with energy rays such as ultraviolet rays, electron beams, and radiation, and thermal curing. By curing, an intermediate layer 13 is formed on the surface of the diffraction grating 12 as shown in FIG. As described above, when the vapor phase polymerization method is used, the intermediate layer 13 is formed directly instead of the raw material 13 '. Even when a transparent inorganic material such as silicon oxide is used as the third optical material, the intermediate layer 13 can generally be formed directly.
  • an optical adjustment layer is formed on the intermediate layer 13.
  • the method for forming the optical adjustment layer is appropriately selected from existing coating layer formation processes depending on the material and the shape accuracy determined by the characteristics of the diffractive optical element. For example, spray coating, dip coating, coating using a liquid injection nozzle such as a dispenser, spray coating such as an inkjet method, coating by rotation such as spin coating, coating by squeezing such as screen printing or pad printing, transfer, etc. are applied Thereby, an optical adjustment layer can also be formed. Moreover, you may combine these processes suitably.
  • FIG. 11C shows a state in which a monomer or oligomer that is a raw material 14 ′ of the optical adjustment layer is applied on the intermediate layer 13 using a liquid injection nozzle 18 such as a dispenser.
  • a process such as thermal curing or energy beam irradiation can be used.
  • a photopolymerization initiator is added to the uncured resin 14 '.
  • the uncured resin 14 ' is cured with an electron beam, a photopolymerization initiator is usually unnecessary.
  • the solvent is dried before curing as shown in FIG. 11 (d).
  • the solvent can be dried by a method such as heat drying or reduced pressure drying. Depending on the material used, it is necessary to adjust the drying temperature, pressure, time, and the like. However, if the solvent remains, the refractive index of the optical adjustment layer fluctuates and must be completely removed.
  • the raw material 14 ′ is cured in a desired shape using the mold 10, and the mold 10 is removed, and the optical adjustment is performed as shown in FIG. 11 (e).
  • Layer 14 is formed to complete the diffractive optical element 52.
  • the shape of the optical adjustment layer 4 is regulated using the mold 10
  • the raw material 14 ′ of the optical adjustment layer 14 before curing (before drying depending on the material) has a low viscosity, so that it is easy to go around the substrate 11 having the diffraction grating shape formed on the surface, and the entrapment of bubbles is suppressed. This is because the adhesion between the optical adjustment layer 14 after curing and the substrate is also improved.
  • the material constituting the mold 10 may be appropriately selected according to required accuracy and durability.
  • metals such as iron, aluminum, alloys thereof, and brass can be used. You may use the metal which surface-treated, such as nickel plating, as needed.
  • resins such as quartz, glass, epoxy resin, polyester resin, and polyolefin resin can be used. The resin material often shrinks when cured, but when using a composite composed of resin and inorganic particles, it may be considered that the shrinkage rate is lower than when using the resin material alone. desirable.
  • the mold 10 When using the mold 10 to regulate the shape of the optical adjustment layer 14, it is common to perform mold release after the curing step. However, if the raw material 14 ′ of the optical adjustment layer 14 is not deformed before the curing process is performed, the curing process may be performed after first releasing the mold.
  • mold release is performed after curing by energy beam irradiation, energy beam irradiation is performed in a state where the raw material 14 ′ of the optical adjustment layer 14 is regulated by the mold 10.
  • an opaque material such as metal is used as the mold 10
  • energy beam irradiation is performed through the substrate 11 from the surface opposite to the surface on which the raw material 9 of the optical adjustment layer is disposed.
  • the diffractive optical element 52 is completed as shown in FIG.
  • an intermediate layer is provided between the base and the optical adjustment layer.
  • the base and the optical adjustment layer are not in direct contact, and even if a material containing a resin is used for the base and the optical adjustment layer, the resin of the optical adjustment layer penetrates into the base, and the shape of the diffraction grating collapses. Generation of the refractive index changing layer is suppressed.
  • it is not necessary to select a combination of resins contained in the base and the optical adjustment layer from the viewpoint of chemical interaction there is an advantage that the choice of materials for the optical adjustment layer is widened.
  • the intermediate layer is formed by disposing the raw material of the intermediate layer on the substrate and then curing the raw material. For this reason, when the raw material for the optical adjustment layer is disposed on the substrate, the intermediate layer does not contain monomers, oligomers, solvents, etc., and the interaction between the intermediate layer and the raw material for the optical adjustment layer is suppressed. For this reason, there is a merit that options for the material of the optical adjustment layer are further expanded.
  • the diffractive optical element has one diffraction grating, but a diffractive optical element having a plurality of diffraction gratings may be realized.
  • the diffractive optical element 53 includes a base 21, two diffraction gratings 22 provided on the surface of the base 21, an optical adjustment layer 24 provided so as to cover the diffraction grating 22, the base 21, and the optical element. And an intermediate layer 23 provided between the adjustment layers 24.
  • Table 1 summarizes the material and thickness of the intermediate layer, the SP value difference with the substrate, the presence or absence of erosion, and the first-order diffraction efficiency used in the examples and comparative examples described below.
  • Example 1 A diffractive optical element 52 having the structure shown in FIG. 10 was produced by the following method.
  • the diffractive optical element 21 has a lens action and is designed to use first-order diffracted light. This also applies to the following examples and comparative examples.
  • a bisphenol A-based polycarbonate resin (d-line refractive index 1.585, Abbe number 28, SP value 9.8 [cal / cm 3 ] 1/2 ) is injection-molded, so that the envelope of the root of the diffraction grating is obtained.
  • a base body 11 having an aspherical shape and having an annular diffraction grating 2 having a depth of 15 ⁇ m on one side was produced.
  • the effective radius of the lens part is 0.828 mm
  • the number of annular zones is 29
  • the minimum annular zone pitch is 14 ⁇ m
  • the paraxial radius R (curvature radius) of the diffraction surface is ⁇ 1.0144 mm.
  • annealing was performed by holding the base 11 at 120 ° C. for 1 hour.
  • pentaerythritol triacrylate (refractive index: 1.485, SP value 11.3) is applied onto the diffraction grating 2 of the substrate 11 by spray coating, and cured by irradiating with ultraviolet rays to form the intermediate layer 13. did.
  • the thickness of the intermediate layer 13 was 420 nm. This value is 3% of the minimum pitch of the grating interval of the diffraction grating 12.
  • a composite material as a material for the optical adjustment layer 4 was prepared as follows. Alicyclic acrylic resin A (d-line refractive index 1.53, Abbe number 52, SP value 9.0 [cal / cm 3 ] 1/2 ) and zirconium oxide (primary particle size 3 to 10 nm, by light scattering method) A PGME (propylene glycol monomethyl ether) dispersion having an effective particle size of 20 nm and a silane surface treatment agent of 30 wt% was dispersed and mixed so that the weight ratio of zirconium oxide in the solid content was 56 wt%. . The composite material has a cured d-line refractive index of 1.623 and an Abbe number of 43. The light transmittance at a wavelength of 400 to 700 nm at a film thickness of 30 ⁇ m is 90% or more. The SP value of PGME is 10.5 [cal / cm 3 ] 1/2 .
  • this composite material After 0.4 ⁇ L of this composite material is dropped onto the intermediate layer 13 of the base 11 by a dispenser, it is dried by a dryer and pressed with a mold, and the back side of the base (the side opposite to the side on which the composite material is dropped). Then, ultraviolet irradiation (illuminance 120 mW / cm 2 , integrated light quantity 4000 mJ / cm 2 ) was performed and released from the mold to form the optical adjustment layer 14.
  • the surface shape of the optical adjustment layer 14 has an aspherical shape of the diffraction grating 2 of the substrate along the envelope shape at the base of the diffraction grating, and the thickness was 30 ⁇ m.
  • the diffraction efficiency of the diffractive optical element 52 produced by the above steps was measured. Using a white light source and a color filter (R: 640 nm, G: 540 nm, B: 440 nm), using an ultra-precise three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd.) for brightness at each diffraction order at each wavelength. And calculated from the following equation (2). The first-order diffraction efficiency was 90% or more at each wavelength. In addition, higher-order diffracted light higher than third-order diffracted light was not detected.
  • the diffractive optical element of the present invention is characterized by having a high diffraction efficiency with respect to all white light, the first-order diffraction efficiency is required to be 80% or more for all the R, G, and B wavelengths.
  • the diffractive optical element 52 formed by such a method is cut along a cross section passing through the optical axis, and the boundary portion between the substrate 11 and the intermediate layer 12 and the boundary portion between the intermediate layer 12 and the optical adjustment layer 13 are observed with an optical microscope. As a result, no shape change or discoloration due to the interaction of materials was observed.
  • Example 2 A diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1.
  • an epoxy acrylate resin (refractive index: 1.600, SP value: 11.2) diluted with IPA (isopropyl alcohol) was applied, dried after application, and then cured. This is different from the first embodiment.
  • the thickness of the obtained intermediate layer 12 is 700 nm, and this value is 5% of the minimum pitch of the grating interval of the diffraction grating 12.
  • the diffraction efficiency was calculated by the same method as in Example 1. As a result, the diffraction efficiency was 80% or more for all wavelengths of R, G, and B.
  • the diffractive optical element was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
  • Example 3 A diffractive optical element having the same structure as that of Example 1 was produced in the same manner as in Example 1. This example is different from Example 1 in that an acrylate resin (refractive index: 1.65, SP value: 11.1) is used as a raw material for the intermediate layer 12. The thickness of the obtained intermediate layer 12 is 420 nm, and this value is 3% of the minimum pitch of the grating interval of the diffraction grating 12.
  • the diffraction efficiency was calculated by the same method as in Example 1. As a result, the diffraction efficiency was 85% or more for all the R, G, and B wavelengths.
  • the diffractive optical element was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
  • Comparative Example 1 As a comparative example, as shown in FIG. 13, among the diffractive optical elements of Example 1, a diffractive optical element 54 having a structure having no intermediate layer was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the optical adjustment layer 14 was formed directly on the substrate 11 without forming an intermediate layer.
  • the produced diffractive optical element 54 was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, as shown in FIG. It was done. In addition, the diffraction efficiency could not be measured because it did not have a light collecting function due to erosion of the diffraction grating shape.
  • Example 2 a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1.
  • TMPTA trimethylolpropane triacrylate
  • SP value SP value of 9.7
  • the thickness of the intermediate layer is 420 nm (3% of the minimum pitch of the grating interval of the diffraction grating 12).
  • the produced diffractive optical element was cut along a cross section passing through the optical axis, and the boundary between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, erosion due to the interaction of materials was observed as shown in FIG. It was. In addition, the diffraction efficiency could not be measured because it did not have a light collecting function due to erosion of the diffraction grating shape.
  • Comparative Example 3 As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the thickness of the intermediate layer is 840 nm, which is 6% of the minimum pitch.
  • the produced diffractive optical element was cut along a cross section passing through the center, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
  • the diffraction efficiency was calculated by the same method as in Example 1. As a result, the R and G wavelengths were 80% or more, but the B wavelength was 80% or less.
  • Comparative Example 4 As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the thickness of the intermediate layer is 1.12 ⁇ m, which is 8% of the minimum pitch.
  • the produced diffractive optical element was cut along a cross section passing through the center, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
  • the diffraction efficiency was calculated by the same method as in Example 1. As a result, it was 80% or less for all the R, G, and B wavelengths.
  • FIG. 14 shows the results of the first-order diffraction efficiency with respect to the intermediate layer thickness in Examples and Comparative Examples.
  • FIG. 14 also shows the result of the diffraction efficiency obtained by simulation when the thickness of the intermediate layer is 1% of the minimum pitch.
  • an acrylate resin having a refractive index of 1.600 and an Abbe number of 33 was used as the material of the intermediate layer.
  • the intermediate layer has a thickness greater than 5% of the minimum pitch. It can be seen that the diffraction efficiency decreases due to the influence of the above.
  • the diffraction efficiency of the primary light is 80%, and if it is 3% or less of the minimum pitch, the diffraction efficiency of the primary light. Is 85% or more for light of any wavelength, and it is found that the average is 90% or more. Further, from the simulation results, it can be seen that if the thickness of the intermediate layer is 1% or less of the minimum pitch, the diffraction efficiency is 95% or more.
  • the thickness of the intermediate layer is 5% or less of the minimum value of the grating interval of the diffraction grating, the influence of the decrease in diffraction efficiency due to the intermediate layer is suppressed.
  • the difference in solubility parameter between the resin contained in the third optical material of the intermediate layer and the resin contained in the first optical material of the base is 0.8 or more, the generation of the refractive index changing layer is suppressed.
  • the diffractive optical element of the present invention can be suitably used as, for example, a camera lens, a spatial low-pass filter, a polarization hologram, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Disclosed is a diffractive optical element comprising a substrate (1) which is formed of a first optical material including a first resin and which is provided with a diffraction grating (2) on a surface of the substrate, an optical regulation layer (4) which is formed of a second optical material including a second resin and which is provided on the substrate (1)to cover the diffraction grating (2), and an intermediate layer (3) which is formed of a third optical material including a third resin and which is provided between the substrate (1) and the optical regulation layer (4).  The refractive index of the first optical material is smaller than the refractive index of the second optical material and the wavelength dispersion of refractive index of the first optical material is greater than the wavelength dispersion of refractive index of the second optical material.

Description

回折光学素子およびその製造方法Diffractive optical element and manufacturing method thereof
 本発明は、回折光学素子に関し、異なる樹脂を含む2つ以上の部材によって構成される回折光学素子およびその製造方法に関する。 The present invention relates to a diffractive optical element, and more particularly to a diffractive optical element constituted by two or more members containing different resins and a method for manufacturing the same.
 回折光学素子は、ガラスや樹脂等の光学材料からなる基体に光を回折させる回折格子が設けられた構造を備える。回折光学素子は、撮像装置や光学記録装置を含む種々の光学的機器の光学系に用いられており、例えば、特定次数の回折光を1点に集めるように設計されたレンズや、空間ローパスフィルタ、偏光ホログラム等が知られている。 The diffractive optical element has a structure in which a diffraction grating for diffracting light is provided on a base made of an optical material such as glass or resin. A diffractive optical element is used in an optical system of various optical devices including an imaging device and an optical recording device. For example, a lens designed to collect diffracted light of a specific order at one point, or a spatial low-pass filter A polarization hologram or the like is known.
 回折光学素子は、光学系をコンパクトにできるという特長を有する。また、屈折とは逆に長波長の光ほど大きく回折することから、回折光学素子と屈折を利用する通常の光学素子とを組み合わせることにより、光学系の色収差や像面湾曲を改善することも可能である。 A diffractive optical element has the feature that the optical system can be made compact. In contrast to refraction, longer wavelength light diffracts more greatly, so it is possible to improve chromatic aberration and curvature of field of the optical system by combining a diffractive optical element and a normal optical element using refraction. It is.
 しかし、回折効率は理論的に光の波長に依存することから、特定の波長の光における回折効率が最適となるように回折光学素子を設計すると、その他の波長の光では回折効率が低下するという課題が生じる。例えば、カメラ用レンズ等白色光を利用する光学系に回折光学素子を用いる場合、この回折効率の波長依存性によって、色むらや不要次数光によるフレアが生じ、回折光学素子だけで適切な光学特性を有する光学系を構成するのは困難である。 However, since the diffraction efficiency theoretically depends on the wavelength of light, designing a diffractive optical element so that the diffraction efficiency for light of a specific wavelength is optimal reduces the diffraction efficiency for light of other wavelengths. Challenges arise. For example, when a diffractive optical element is used in an optical system that uses white light, such as a camera lens, the wavelength dependence of this diffraction efficiency causes color unevenness and flare due to unnecessary order light. It is difficult to construct an optical system having
 このような課題に対して、特許文献1は、光学材料からなる基体の表面に回折格子を設け、基体と異なる光学材料からなる光学調整層で回折格子を覆うことによって、位相差型の回折光学素子を構成し、光学特性が所定の条件を満たすように2つの光学材料を選択することによって、設計した回折次数での回折効率を波長によらず高くする、つまり、回折効率の波長依存性を低減する方法を開示している。 In order to solve such a problem, Patent Document 1 provides a diffraction grating on a surface of a base made of an optical material, and covers the diffraction grating with an optical adjustment layer made of an optical material different from that of the base. By configuring the element and selecting two optical materials so that the optical characteristics satisfy a predetermined condition, the diffraction efficiency at the designed diffraction order is increased regardless of the wavelength, that is, the wavelength dependence of the diffraction efficiency is increased. A method of reducing is disclosed.
 回折光学素子を透過する光の波長をλとし、2種類の光学材料の波長λにおける屈折率をn1(λ)およびn2(λ)とし、回折格子の深さをdとした場合、下記式(1)を満たす場合、波長λの光に対する回折効率が100%となる。
Figure JPOXMLDOC01-appb-M000001
When the wavelength of light transmitted through the diffractive optical element is λ, the refractive indices at the wavelengths λ of the two types of optical materials are n1 (λ) and n2 (λ), and the depth of the diffraction grating is d, the following formula ( When 1) is satisfied, the diffraction efficiency for light of wavelength λ is 100%.
Figure JPOXMLDOC01-appb-M000001
 したがって、回折効率の波長依存性を低減するためには、使用する光の波長帯域内においてdがほぼ一定となるような波長依存性を持つ屈折率n1(λ)の光学材料と屈折率n2(λ)の光学材料とを組み合わせればよい。一般的には、屈折率が高く、波長分散の低い材料と屈折率が低く波長分散の高い材料とが組み合わされる。特許文献1は、基体となる第1光学材料としてガラスまたは樹脂を用い、第2光学材料として紫外線硬化樹脂を用いることを開示している。 Therefore, in order to reduce the wavelength dependence of the diffraction efficiency, an optical material having a refractive index n1 (λ) and a refractive index n2 (with a wavelength dependence such that d is substantially constant within the wavelength band of the light used. The optical material of λ) may be combined. In general, a material having a high refractive index and a low wavelength dispersion is combined with a material having a low refractive index and a high wavelength dispersion. Patent Document 1 discloses that glass or resin is used as the first optical material serving as a base and ultraviolet curable resin is used as the second optical material.
 特許文献2は、同様の構造を有する位相差型の回折光学素子において、第1光学材料としてガラスを用い、第2光学材料として、粘度が5000mPa・s以下のエネルギー線硬化型樹脂を用いることにより、回折効率の波長依存性を低減して、色むらや不要次数光によるフレア発生等を有効に防止できることを開示している。 Patent Document 2 discloses that, in a phase difference type diffractive optical element having a similar structure, glass is used as a first optical material, and an energy beam curable resin having a viscosity of 5000 mPa · s or less is used as a second optical material. In addition, it is disclosed that the wavelength dependency of diffraction efficiency can be reduced and color unevenness and flare generation due to unnecessary order light can be effectively prevented.
 基体となる第1光学材料としてガラスを用いる場合、樹脂と比較して微細加工が難しいため、回折格子のピッチを狭くし、回折性能を向上させることが容易ではない。このため、光学素子の小型化を図りながら光学性能を高めることが困難である。また、ガラスの成形温度は樹脂より高温であるため、ガラスを成型するための金型の耐久性が樹脂を成形するための金型に比べて低く、生産性にも課題がある。 When glass is used as the first optical material serving as a substrate, it is difficult to perform fine processing as compared with resin, and thus it is not easy to reduce the pitch of the diffraction grating and improve the diffraction performance. For this reason, it is difficult to improve the optical performance while reducing the size of the optical element. In addition, since the glass molding temperature is higher than that of the resin, the durability of the mold for molding the glass is lower than that of the mold for molding the resin, and there is a problem in productivity.
 一方、基体となる第1光学材料として樹脂を用いる場合、回折格子の加工性および成形性の点でガラスより優れる。しかし、ガラスと比べて種々の値の屈折率を実現することが難しく、第1光学材料と第2光学材料との屈折率差が小さくなるため、式(1)から明らかなように、回折格子の深さdは大きくなる。 On the other hand, when a resin is used as the first optical material serving as the substrate, it is superior to glass in terms of workability and moldability of the diffraction grating. However, it is difficult to realize various values of refractive index as compared with glass, and the difference in refractive index between the first optical material and the second optical material is small. Therefore, as is clear from Equation (1), the diffraction grating The depth d of becomes larger.
 その結果、基体自体の加工性は優れるものの、回折格子を形成するための金型を深く加工したり、溝の先端を鋭利な形状に成形したりする必要があり、金型の加工が困難になる。また、回折格子が深くなるほど、基体および金型の少なくとも一方の加工上の制約から回折格子のピッチを大きくする必要がある。このため回折格子の数を増やすことができず、回折光学素子の設計上の制約が大きくなる。 As a result, although the workability of the substrate itself is excellent, it is necessary to deeply process the mold for forming the diffraction grating, or to form the tip of the groove into a sharp shape, making it difficult to process the mold. Become. Further, as the diffraction grating becomes deeper, it is necessary to increase the pitch of the diffraction grating due to processing restrictions on at least one of the base and the mold. For this reason, the number of diffraction gratings cannot be increased, and the restrictions on the design of the diffractive optical element increase.
 このような課題を解決するため、本願の出願人は、特許文献3において、光学調整層として、樹脂からなるマトリクス材中に平均粒径1nm~100nmの無機粒子を含んだコンポジット材料を用いることを提案している。このコンポジット材料は、分散させる無機粒子の材料や無機粒子の添加量によって屈折率およびアッベ数を制御でき、従来の樹脂にはない屈折率およびアッベ数を得ることができる。したがって、コンポジット材料を光学調整層に用いることにより、基体である第1の光学材料として樹脂を用いた場合の回折格子の設計自由度を高くして、成形性を向上させ、かつ優れた回折効率の波長特性を得ることができる。 In order to solve such problems, the applicant of the present application described in Patent Document 3 uses a composite material containing inorganic particles having an average particle diameter of 1 nm to 100 nm in a matrix material made of resin as an optical adjustment layer. is suggesting. In this composite material, the refractive index and the Abbe number can be controlled by the material of the inorganic particles to be dispersed and the addition amount of the inorganic particles, and the refractive index and the Abbe number that are not found in conventional resins can be obtained. Therefore, by using the composite material for the optical adjustment layer, the degree of freedom in designing the diffraction grating when resin is used as the first optical material as the substrate is increased, the moldability is improved, and the excellent diffraction efficiency is achieved. Wavelength characteristics can be obtained.
特開平10-268116号公報Japanese Patent Laid-Open No. 10-268116 特開2001-249208号公報JP 2001-249208 A 国際公開第07/026597号パンフレットInternational Publication No. 07/026597 Pamphlet
 本願発明者は、特許文献1から3に開示された位相差型の回折光学素子において、基体および光学調整層を樹脂材料によって構成する場合、樹脂材料の種類によっては、基体と光学調整層とが接する部分において、基体が膨潤したり溶解したりしてしまい、回折格子の形状が設計値からずれるという問題があることを見出した。 In the phase difference type diffractive optical element disclosed in Patent Documents 1 to 3, the inventor of the present application, when the base and the optical adjustment layer are made of a resin material, depending on the type of the resin material, the base and the optical adjustment layer may be It has been found that there is a problem in that the substrate swells or dissolves at the contact portion, and the shape of the diffraction grating deviates from the design value.
 本発明は、このような従来技術の問題点に鑑みてなされたもので、基体および光学調整層として生産性、加工性に優れた樹脂を用いた場合においても、良好な光学特性を有する回折光学素子およびその製造方法を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and even when a resin excellent in productivity and workability is used as a substrate and an optical adjustment layer, a diffractive optical element having good optical characteristics. An object is to provide an element and a method for manufacturing the element.
 本発明の光学素子は、第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、第2樹脂を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層と、第3樹脂を含む第3光学材料からなり、前記基体と前記光学調整層との間に設けられた中間層とを備え、前記第1光学材料の屈折率は前記第2光学材料の屈折率より小さく、前記第1光学材料の屈折率の波長分散性は前記第2光学材料の屈折率の波長分散性より大きい。 The optical element of the present invention is made of a first optical material containing a first resin, has a base having a diffraction grating on the surface, and a second optical material containing a second resin, and covers the base so as to cover the diffraction grating. An optical adjustment layer provided and a third optical material containing a third resin, and an intermediate layer provided between the base and the optical adjustment layer, wherein the refractive index of the first optical material is It is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is larger than the wavelength dispersion of the refractive index of the second optical material.
 ある好ましい実施形態において、前記第2樹脂は熱硬化性樹脂またはエネルギー硬化性樹脂である。 In a preferred embodiment, the second resin is a thermosetting resin or an energy curable resin.
 ある好ましい実施形態において、前記第2光学材料はさらに無機粒子を含み、前記無機粒子が前記第2樹脂中に分散している。 In a preferred embodiment, the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
 ある好ましい実施形態において、前記第3光学材料の屈折率が、前記第1光学材料の屈折率より大きく、前記第2光学材料の屈折率より小さい。 In a preferred embodiment, the refractive index of the third optical material is larger than the refractive index of the first optical material and smaller than the refractive index of the second optical material.
 ある好ましい実施形態において、前記第1樹脂および前記第3樹脂の溶解度パラメータの差が0.8[cal/cm3]1/2以上である。 In a preferred embodiment, the difference in solubility parameter between the first resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
 ある好ましい実施形態において、前記第2樹脂および前記第3樹脂の溶解度パラメータの差が0.8[cal/cm3]1/2以上である。 In a preferred embodiment, the difference in solubility parameter between the second resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
 ある好ましい実施形態において、前記中間層の厚さは前記回折格子の格子間隔の最小値の5%以下である。 In a preferred embodiment, the thickness of the intermediate layer is 5% or less of the minimum value of the grating interval of the diffraction grating.
 ある好ましい実施形態において、前記中間層の厚さは前記回折格子の格子間隔の最小値の1%以下である。 In a preferred embodiment, the thickness of the intermediate layer is 1% or less of the minimum value of the grating interval of the diffraction grating.
 ある好ましい実施形態において、前記第3樹脂は熱硬化性樹脂またはエネルギー硬化性樹脂である。 In a preferred embodiment, the third resin is a thermosetting resin or an energy curable resin.
 ある好ましい実施形態において、前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化スカンジウム、アルミナおよびシリカからなる群より選ばれる少なくとも1つを主成分として含む。 In a preferred embodiment, the inorganic particles contain at least one selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina, and silica as a main component.
 ある好ましい実施形態において、前記無機粒子の実効粒径は、1nm以上100nm以下である。 In a preferred embodiment, the effective particle size of the inorganic particles is 1 nm or more and 100 nm or less.
 ある好ましい実施形態において、前記第1樹脂はポリカーボネートである。 In a preferred embodiment, the first resin is polycarbonate.
 ある好ましい実施形態において、前記中間層の厚さは10nm以上である。 In a preferred embodiment, the intermediate layer has a thickness of 10 nm or more.
 本発明の回折光学素子の製造方法は、第1樹脂を含む第1の光学材料からなり、表面に回折格子を有する基体を準備する工程と、前記基体の前記回折格子の表面を覆うように前記基体上に中間層を形成する工程と、前記中間層上に、第2樹脂を含む第2光学材料からなる光学調整層を形成する工程とを包含し、前記中間層を形成する工程は、第3樹脂の原料を前記基体の前記回折格子の表面を覆うように前記基体上に配置する工程と、前記第3樹脂の原料を硬化させることにより、第3光学材料からなる前記中間層を形成する工程とをさらに含む。 The method for producing a diffractive optical element according to the present invention includes a step of preparing a base having a diffraction grating on a surface thereof, the first optical material including a first resin, and covering the surface of the diffraction grating of the base Including a step of forming an intermediate layer on a substrate and a step of forming an optical adjustment layer made of a second optical material containing a second resin on the intermediate layer, and the step of forming the intermediate layer includes: A step of disposing a three-resin raw material on the base so as to cover a surface of the diffraction grating of the base; and curing the third resin raw material to form the intermediate layer made of a third optical material. A process.
 ある好ましい実施形態において、前記第2光学材料はさらに無機粒子を含み、前記無機粒子が前記第2樹脂中に分散している。 In a preferred embodiment, the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
 ある好ましい実施形態において、前記第3光学材料の屈折率が、前記第1光学材料の屈折率より大きく、前記第2光学材料の屈折率より小さい。 In a preferred embodiment, the refractive index of the third optical material is larger than the refractive index of the first optical material and smaller than the refractive index of the second optical material.
 ある好ましい実施形態において、前記第1樹脂の溶解度パラメータと前記第3樹脂の原料の溶解度パラメータとの差は、0.8[cal/cm31/2以上である。 In a preferred embodiment, the difference between the solubility parameter of the first resin and the solubility parameter of the raw material of the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
 本発明によれば、基体と光学調整層との間に中間層が設けられているため、基体と光学調整層とが直接接することがなく、基体および光学調整層に樹脂を含む材料を用いても、光学調整層の樹脂が基体へ浸透し、回折格子の形状が崩れたり、屈折率変化層が生成したりすることが抑制される。 According to the present invention, since the intermediate layer is provided between the base and the optical adjustment layer, the base and the optical adjustment layer are not in direct contact, and the base and the optical adjustment layer are made of a material containing a resin. In addition, the resin of the optical adjustment layer penetrates into the substrate, and the diffraction grating shape is prevented from being deformed or the refractive index changing layer is generated.
従来技術の回折光学素子において、回折格子が変形した状態を模式的に示す図である。FIG. 6 is a diagram schematically showing a state where a diffraction grating is deformed in a diffractive optical element of a conventional technique. (a)は従来技術の回折光学素子において、基体と光学調整層の界面に屈折率変化層が生成した状態を模式的に示す図であり、(b)はその一部を拡大した図である。(A) is a figure which shows typically the state in which the refractive index change layer produced | generated in the interface of a base | substrate and an optical adjustment layer in the diffractive optical element of a prior art, (b) is the figure which expanded the part. . (a)および(b)は、基体と光学調整層の界面に屈折率変化層が形成される従来技術の回折光学素子において、光学調整層の材料と不要回折光との関係を説明する図である。(A) And (b) is a figure explaining the relationship between the material of an optical adjustment layer, and unnecessary diffracted light in the diffractive optical element of a prior art in which a refractive index change layer is formed in the interface of a base | substrate and an optical adjustment layer. is there. 基体と光学調整層の界面に屈折率が変化した層が形成される光学素子における光の屈折を模式的に示す図である。It is a figure which shows typically the refraction of the light in the optical element in which the layer from which the refractive index changed was formed in the interface of a base | substrate and an optical adjustment layer. (a)は本発明の回折光学素子の第1の実施形態を示す模式的断面図であり、(b)はその一部を拡大した図である。(A) is typical sectional drawing which shows 1st Embodiment of the diffractive optical element of this invention, (b) is the figure which expanded the part. ポリカーボネートからなる基体上にアクリレート樹脂を形成した場合における、ポリカーボネートとアクリレート樹脂とのSP値の差と基体表面に生成した屈折率変化層の屈折率との関係を示すグラフである。It is a graph which shows the relationship between the difference of SP value of a polycarbonate and an acrylate resin, and the refractive index of the refractive index change layer produced | generated on the surface of a base | substrate when an acrylate resin is formed on the base | substrate which consists of polycarbonates. 図5に示す回折光学素子における格子部分を拡大して示す模式図である。FIG. 6 is an enlarged schematic view showing a grating portion in the diffractive optical element shown in FIG. 5. 図5に示す回折光学素子において中間層の厚さが、最小ピッチの5%である場合の1次回折効率のシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of the first-order diffraction efficiency when the thickness of the intermediate layer in the diffractive optical element shown in FIG. 5 is 5% of the minimum pitch. 粒子の実効粒径の定義を説明するグラフである。It is a graph explaining the definition of the effective particle diameter of particle | grains. 本発明の回折光学素子の製造方法の実施形態によって作製される回折光学素子の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the diffractive optical element produced by embodiment of the manufacturing method of the diffractive optical element of this invention. (a)から(e)は、回折光学素子の製造方法の実施形態を説明するための部分工程図である。(A) to (e) are partial process diagrams for explaining an embodiment of a method for manufacturing a diffractive optical element. 本発明の回折光学素子の他の形態を示す断面図である。It is sectional drawing which shows the other form of the diffractive optical element of this invention. 比較例の回折光学素子の断面図である。It is sectional drawing of the diffractive optical element of a comparative example. 実施例および比較例における中間層厚さに対する1次回折効率の結果を示す図である。It is a figure which shows the result of the 1st-order diffraction efficiency with respect to the intermediate | middle layer thickness in an Example and a comparative example.
 本願発明者は、従来の回折光学素子において、基体および光学調整層の両方に樹脂を含む材料を用いることによって生じる基体の膨潤を詳細に検討した。以下、検討結果を説明する。 The inventor of the present application has examined in detail the swelling of the base caused by using a material containing a resin for both the base and the optical adjustment layer in the conventional diffractive optical element. Hereinafter, the examination results will be described.
 図1に示す従来の回折光学素子111は、表面に回折格子102が設けられた基体101と、回折格子102を覆うように設けられた光学調整層103とを備えている。光学調整層103と基体101とが樹脂を含む光学材料によって形成されており、2つの光学材料の相互作用が強い場合、基体101と光学調整層103とが接する部分において、基体101が膨潤したり溶解したりすることによって、図1に示すように回折格子102の形状が崩れてしまう。回折格子102の形状が崩れると、所望の次数の回折光が十分な強度で得られなかったり、不要な回折光が生じたりする。 A conventional diffractive optical element 111 shown in FIG. 1 includes a base 101 having a diffraction grating 102 provided on the surface thereof, and an optical adjustment layer 103 provided so as to cover the diffraction grating 102. When the optical adjustment layer 103 and the base 101 are formed of an optical material containing a resin and the interaction between the two optical materials is strong, the base 101 may swell at a portion where the base 101 and the optical adjustment layer 103 are in contact with each other. By melting, the shape of the diffraction grating 102 is broken as shown in FIG. If the shape of the diffraction grating 102 collapses, a desired order of diffracted light may not be obtained with sufficient intensity, or unnecessary diffracted light may be generated.
 本願発明者は、回折格子102の形状に変化を生じていなくても、回折光学素子111に不要回折光が発生する場合があることを見出した。図2(a)に示すように従来の回折光学素子112において、光学調整層103に含まれる樹脂が基体101の表面から浸透すると、基体101の表面に設けられた回折格子102の形状が大きく変化しなくても、樹脂の浸透した部分の基体101の屈折率が変化する。この場合基体101と光学調整層103との界面に、基体101と屈折率が異なる層101a(以下「屈折率変化層」と呼ぶ)が形成されることを確認した。この屈折率変化層101aは光学顕微鏡によって確認が可能であり、屈折率変化層101aの厚さは約500nm~5000nmであった。特に、図2(b)に示すように、回折格子102の回折段差の先端部分102tの厚さが薄いため、光学調整層103に含まれる樹脂がより基体101へ浸透しやすい。このため、屈折率変化層101aは、回折段差の先端部分102tにおいて厚くなりやすい。 The inventor of the present application has found that unnecessary diffracted light may be generated in the diffractive optical element 111 even if the shape of the diffraction grating 102 is not changed. 2A, in the conventional diffractive optical element 112, when the resin contained in the optical adjustment layer 103 penetrates from the surface of the base 101, the shape of the diffraction grating 102 provided on the surface of the base 101 changes greatly. Even if it does not, the refractive index of the base | substrate 101 of the part which the resin osmose | permeated changes. In this case, it was confirmed that a layer 101a (hereinafter referred to as “refractive index changing layer”) having a refractive index different from that of the base 101 was formed at the interface between the base 101 and the optical adjustment layer 103. The refractive index changing layer 101a can be confirmed by an optical microscope, and the thickness of the refractive index changing layer 101a is about 500 nm to 5000 nm. In particular, as shown in FIG. 2B, since the thickness of the tip 102t of the diffraction step of the diffraction grating 102 is thin, the resin contained in the optical adjustment layer 103 is more likely to penetrate into the substrate 101. For this reason, the refractive index changing layer 101a tends to be thick at the tip portion 102t of the diffraction step.
 このように、目視や光学顕微鏡による観察によって、回折格子102の形状変化や屈折率変化層101aの生成が確認できた場合には、回折光学素子112は設計通りの光学特性を示さないことが分かる。 As described above, when the shape change of the diffraction grating 102 and the generation of the refractive index change layer 101a can be confirmed by visual observation or observation with an optical microscope, it is understood that the diffractive optical element 112 does not exhibit the optical characteristics as designed. .
 次に、屈折率変化層が回折光学素子中に生成した場合において光学素子の不要回折光が発生するメカニズムを、図3(a)、(b)を参照しながら具体的に説明する。 Next, the mechanism by which the unnecessary diffracted light of the optical element is generated when the refractive index changing layer is generated in the diffractive optical element will be specifically described with reference to FIGS. 3 (a) and 3 (b).
 図3(a)に示すように、基体101(屈折率N1)と光学調整層103(屈折率N2)にそれぞれ異なる樹脂を用いて1次回折光を利用する回折光学素子113を考える。本願発明者の検討によれば、光学調整層103を構成する樹脂が基体101へ浸透することにより、屈折率が変化した屈折率変化層101bが生成する。基体101および光学調整層103の屈折率がN1<N2の関係を満たしている場合、生成する屈折率変化層101bの屈折率N3は、N1<N3<N2の関係を満たす。 As shown in FIG. 3A, a diffractive optical element 113 that uses first-order diffracted light using different resins for the substrate 101 (refractive index N1) and the optical adjustment layer 103 (refractive index N2) is considered. According to the study of the present inventor, the resin constituting the optical adjustment layer 103 permeates into the base 101, whereby the refractive index changing layer 101b having a changed refractive index is generated. When the refractive index of the base 101 and the optical adjustment layer 103 satisfies the relationship of N1 <N2, the refractive index N3 of the generated refractive index changing layer 101b satisfies the relationship of N1 <N3 <N2.
 屈折率N1およびN2が使用する波長帯域内において式(1)を満たすように設計されている場合、界面に形成された屈折率変化層101bにより、回折格子を構成する段差の光学的距離の差つまり位相差が設計値より小さくなり、式(1)を満たさなくなる。この結果、使用する波長帯域内の光Bを入射させた場合の回折光学素子113の回折効率、つまり、1次回折光B1の出射効率が設計値より低くなる。この時、不要回折光として主に0次回折光B0が発生する。0次回折光B0は、1次回折光B1よりも焦点距離が長い。 When the refractive indexes N1 and N2 are designed to satisfy the formula (1) within the wavelength band used, the difference in optical distance of the steps constituting the diffraction grating is caused by the refractive index changing layer 101b formed at the interface. That is, the phase difference becomes smaller than the design value, and Formula (1) is not satisfied. As a result, the diffraction efficiency of the diffractive optical element 113 when the light B in the wavelength band to be used is incident, that is, the emission efficiency of the first- order diffracted light B 1 becomes lower than the design value. At this time, 0th-order diffracted light B 0 is mainly generated as unnecessary diffracted light. The zero-order diffracted light B 0 has a longer focal length than the first-order diffracted light B 1 .
 一方、光学調整層として特許文献3に開示されるようなコンポジット材料を用いる場合も、コンポジット材料に含まれるマトリクス材が基体へ浸透することにより、上述したような問題が生じる。図3(b)に示すように、基体101と、マトリクス材103に無機粒子104を分散させることによって構成された光学調整層103’とを用い、1次回折光を利用する回折光学素子114を考える。基体101および光学調整層103’の屈折率をそれぞれN1およびN2とし、マトリクス材103の屈折率をN4とする。この場合、上述したように、光学調整層103’のマトリクス材103のみが基体101へ浸透することにより、屈折率が変化した屈折率変化層101cが生成する。 On the other hand, when a composite material as disclosed in Patent Document 3 is used as the optical adjustment layer, the above-described problem occurs due to the matrix material contained in the composite material penetrating into the substrate. As shown in FIG. 3B, a diffractive optical element 114 that uses a first-order diffracted light using a base 101 and an optical adjustment layer 103 ′ formed by dispersing inorganic particles 104 in a matrix material 103 is considered. . The refractive indexes of the substrate 101 and the optical adjustment layer 103 'are N1 and N2, respectively, and the refractive index of the matrix material 103 is N4. In this case, as described above, only the matrix material 103 of the optical adjustment layer 103 ′ permeates the base 101, thereby generating the refractive index changing layer 101 c having a changed refractive index.
 基体101、光学調整層103’およびマトリクス材103の屈折率が、N1<N2かつN4<N1の関係を満たしている場合、生成する屈折率変化層101cの屈折率N3は、N1>N3<N2の関係を満たす。ナノメートルオーダの無機粒子4は基体101へ移動することはできず、基体101よりも屈折率の小さいマトリクス材103が浸透することによって、屈折率変化層101cが生成するからである。 When the refractive indexes of the base 101, the optical adjustment layer 103 ′, and the matrix material 103 satisfy the relationship of N1 <N2 and N4 <N1, the refractive index N3 of the generated refractive index changing layer 101c is N1> N3 <N2. Satisfy the relationship. This is because the nanometer-order inorganic particles 4 cannot move to the base 101, and the refractive index changing layer 101c is generated by the permeation of the matrix material 103 having a refractive index lower than that of the base 101.
 上述の場合と同様、屈折率N1およびN2が使用する波長帯域内において式(1)を満たすように設計されている場合、界面に形成された屈折率変化層101cにより、回折格子を構成する段差の光学的距離の差、つまり位相差が設計値より大きくなり、式(1)を満たさなくなる。この結果、使用する波長帯域内の光Bを入射させた場合の回折光学素子113の回折効率、つまり、1次回折光B1の出射効率が設計値より低くなる。この時、不要回折光として主に2次回折光B2が発生する。2次回折光B2は、1次回折光B1よりも焦点距離が短い。 As in the case described above, when the refractive indexes N1 and N2 are designed to satisfy the formula (1) within the wavelength band used, the steps constituting the diffraction grating are formed by the refractive index changing layer 101c formed at the interface. The optical distance difference, that is, the phase difference becomes larger than the design value, and the expression (1) is not satisfied. As a result, the diffraction efficiency of the diffractive optical element 113 when the light B in the wavelength band to be used is incident, that is, the emission efficiency of the first- order diffracted light B 1 becomes lower than the design value. At this time, second-order diffracted light B 2 is mainly generated as unnecessary diffracted light. The second-order diffracted light B 2 has a shorter focal length than the first-order diffracted light B 1 .
 通常の屈折現象のみを利用した光学系においては、図4に示すように、基体201と光学調整層203との間に屈折率変化層201dが生成したとしても、屈折率変化層201dと基体201との屈折率の差が0.01程度であれば、基体201から進入した光Cが、基体201と屈折率変化層201dとの界面で屈折する角度は小さい。また、屈折率変化層201dが薄ければ、屈折した角度で光Cが進む距離も短い。このため、屈折率変化層201dが生成した場合でも、光学調整層203へ入射する光Cの入射角度および入射位置は、屈折率変化層201dが生成しない場合とほとんど変わらず、光学性能への影響は無視し得るほど小さい。つまり、光学顕微鏡によって観察できない程度の屈折率変化層201dが生成してもその影響は無視し得る。 In an optical system using only a normal refraction phenomenon, as shown in FIG. 4, even if the refractive index changing layer 201d is generated between the base 201 and the optical adjustment layer 203, the refractive index changing layer 201d and the base 201 Is about 0.01, the angle at which the light C entering from the base 201 is refracted at the interface between the base 201 and the refractive index changing layer 201d is small. If the refractive index changing layer 201d is thin, the distance that the light C travels at the refracted angle is short. For this reason, even when the refractive index changing layer 201d is generated, the incident angle and the incident position of the light C incident on the optical adjustment layer 203 are almost the same as when the refractive index changing layer 201d is not generated, and the optical performance is affected. Is small enough to be ignored. That is, even if the refractive index change layer 201d that cannot be observed with an optical microscope is generated, the influence can be ignored.
 しかし、上述したように、回折光学素子の場合、屈折率変化層の生成によって、回折の条件(1)を満たさなくなるため、屈折率変化層の生成は不要回折光の発生に直結する。この結果、設計次数における回折効率が大きく低下することになる。 However, as described above, in the case of a diffractive optical element, the generation of the refractive index changing layer does not satisfy the diffraction condition (1), and thus the generation of the refractive index changing layer is directly connected to the generation of unnecessary diffracted light. As a result, the diffraction efficiency at the design order is greatly reduced.
 特に、生産性の観点から光学調整層として紫外線硬化樹脂や熱硬化性樹脂を含む材料を使用する場合、光学調整層を形成する工程において、未硬化状態の樹脂、すなわちモノマーやオリゴマーが基体と接触する。モノマーやオリゴマーは硬化後の樹脂と比較して分子量が小さいことから、基体101への反応性や浸透性が硬化後の樹脂と比較して大きくなる。つまり、上述した回折格子の変形や、屈折率変化層および屈折率変化層の生成に伴う回折効率の低下が発生しやすい。 In particular, when a material containing an ultraviolet curable resin or a thermosetting resin is used as the optical adjustment layer from the viewpoint of productivity, an uncured resin, that is, a monomer or an oligomer is in contact with the substrate in the process of forming the optical adjustment layer. To do. Since monomers and oligomers have a smaller molecular weight than the cured resin, the reactivity and permeability to the substrate 101 are greater than those after the cured resin. That is, the diffraction grating is easily deformed, and the diffraction efficiency is lowered due to the generation of the refractive index changing layer and the refractive index changing layer.
 また、光学調整層にコンポジット材料を用いる場合、無機粒子をマトリクス材中に均一に分散させたり、光学調整層を形成する工程における光学調整層の粘度を調整したりするため、光学調整層を形成する原料中に溶媒を添加することがある。このような溶媒は、光学調整層中の樹脂材料と同様、基体の溶解、および、基体への浸透による屈折率変化を引き起こし、上述した問題の原因となる。 In addition, when using a composite material for the optical adjustment layer, the optical adjustment layer is formed to uniformly disperse the inorganic particles in the matrix material or to adjust the viscosity of the optical adjustment layer in the process of forming the optical adjustment layer. A solvent may be added to the starting material. Such a solvent, like the resin material in the optical adjustment layer, causes a refractive index change due to dissolution of the substrate and penetration into the substrate, and causes the above-described problems.
 本発明はこのような問題を解決するため、基体および光学調整層の間に中間層を設け、基体と光学調整層との相互作用を抑制する。以下、本発明による回折光学素子の実施形態を具体的に説明する。 In order to solve such a problem, the present invention provides an intermediate layer between the base and the optical adjustment layer to suppress the interaction between the base and the optical adjustment layer. Hereinafter, embodiments of the diffractive optical element according to the present invention will be described in detail.
(第1の実施形態)
 図5(a)は本発明による回折光学素子の第1の実施形態を示す断面図である。図5(a)に示すように、回折光学素子51は基体1と、中間層3と、光学調整層4とを備えている。基体1は第1樹脂を含む第1光学材料からなる。光学調整層4および中間層3もそれぞれ、第2樹脂を含む第2光学材料および第3樹脂を含む第3光学材料からなる。
(First embodiment)
FIG. 5A is a cross-sectional view showing a first embodiment of a diffractive optical element according to the present invention. As shown in FIG. 5A, the diffractive optical element 51 includes a base 1, an intermediate layer 3, and an optical adjustment layer 4. The base 1 is made of a first optical material containing a first resin. The optical adjustment layer 4 and the intermediate layer 3 are also made of a second optical material containing a second resin and a third optical material containing a third resin, respectively.
 基体1は主面1aを有し、主面1aには回折格子2が設けられている。第1光学材料として樹脂を含む材料を使用するのは、生産性および加工性の観点で、ガラスよりも樹脂を用いる方が好ましいからである。レンズ等の光学素子は、金型成形によって高い生産性で製造することができる。この場合、金型の寿命は成形する材料に依存し、ガラスを用いる場合に比べて樹脂を用いる方が、金型の寿命が10倍程度長く、製造コストを低減できる。また、回折格子形状等の微細な形状にガラスを成形するのは困難な場合があるが、樹脂であれば、射出成形等の技術を利用できるため、微細な形状を有する光学素子を成形できる。樹脂を用いる場合微細加工性に優れるため、回折格子2のピッチを小さくすることによって回折光学素子51の性能を向上させたり、回折光学素子51の小型化が実現できる。さらに、回折光学素子51の軽量化を図ることも可能である。 The substrate 1 has a main surface 1a, and a diffraction grating 2 is provided on the main surface 1a. The reason why a material containing a resin is used as the first optical material is that it is preferable to use a resin rather than glass from the viewpoint of productivity and workability. Optical elements such as lenses can be manufactured with high productivity by molding. In this case, the life of the mold depends on the material to be molded, and the life of the mold is about 10 times longer and the manufacturing cost can be reduced by using resin compared to the case of using glass. Moreover, although it may be difficult to shape | mold glass to fine shapes, such as a diffraction grating shape, since techniques, such as injection molding, can be utilized if it is resin, the optical element which has a fine shape can be shape | molded. When the resin is used, it is excellent in fine workability, so that the performance of the diffractive optical element 51 can be improved or the diffractive optical element 51 can be downsized by reducing the pitch of the diffraction grating 2. Furthermore, it is possible to reduce the weight of the diffractive optical element 51.
 第1樹脂としては、一般に光学素子の基体として使用される透光性の樹脂材料の中から、回折光学素子の設計次数での回折効率の波長依存性を低減可能な屈折率特性と波長分散性を有する材料を選択する。特に、芳香族ポリカーボネート樹脂、および、芳香族ポリカーボネート構造を含む共重合樹脂が好ましい。 As the first resin, among the translucent resin materials generally used as the base of the optical element, the refractive index characteristic and the wavelength dispersion that can reduce the wavelength dependency of the diffraction efficiency at the design order of the diffractive optical element. Select a material with In particular, an aromatic polycarbonate resin and a copolymer resin containing an aromatic polycarbonate structure are preferable.
 第1光学材料は、第1樹脂以外に、屈折率やアッベ数などの光学特性や耐衝撃性等の力学特性を調整する樹脂を1成分以上含んでいてもよい。また、第1光学材料は第1樹脂以外に、屈折率等の光学特性や、熱膨張性等の力学特性を調整するための無機粒子や、特定の波長領域の電磁波を吸収する染料や顔料等の添加剤を含んでいてもよい。 The first optical material may contain, in addition to the first resin, one or more components that adjust optical properties such as refractive index and Abbe number and mechanical properties such as impact resistance. In addition to the first resin, the first optical material includes optical particles such as refractive index, inorganic particles for adjusting mechanical properties such as thermal expansion, dyes and pigments that absorb electromagnetic waves in a specific wavelength region, etc. The additive may be included.
 基体1の主面1aは、本実施形態では回折光学素子51の光軸Oが位置する領域r1と、領域r1を囲むr2と、領域r2を囲むr3とを含んでいる。主面1aは、領域r1において、レンズ作用を有する凹状の非球面形状を有している。主面1aの領域r2には回折格子2が設けられている。図5(b)に示すように、回折格子2は光軸Oを中心とする同心円状の段差形状を有する格子2aによって構成される。基体1と光学調整層4の光学特性や最終的に得られる回折光学素子51の光学設計から、格子2aの断面形状、ピッチ、溝の深さが決定される。例えば、回折格子2にレンズ作用を持たせる場合には、ピッチをレンズの中心から周辺に向かって連続的または断続的に小さくなるように変化させ、格子2aを同心円状に配置させればよい。本実施形態では回折格子2は、平面上に形成されているが、さらに集光機能作用を高めるため、曲面上に形成してもよい。特に、回折格子の溝を通る包絡面がレンズ作用を有する非球面となるように回折格子2を形成すると、屈折作用と回折作用の最適な組み合わせにより色収差や像面湾曲等をバランスよく改善し、高い撮像性能を有するレンズを得ることが可能となる。回折格子2の深さdは、式(1)を用いて決定することができる。 In the present embodiment, the main surface 1a of the substrate 1 includes a region r1 where the optical axis O of the diffractive optical element 51 is located, r2 surrounding the region r1, and r3 surrounding the region r2. The main surface 1a has a concave aspheric shape having a lens action in the region r1. A diffraction grating 2 is provided in the region r2 of the main surface 1a. As shown in FIG. 5B, the diffraction grating 2 is constituted by a grating 2a having a concentric step shape centered on the optical axis O. From the optical characteristics of the substrate 1 and the optical adjustment layer 4 and the optical design of the finally obtained diffractive optical element 51, the cross-sectional shape, pitch, and groove depth of the grating 2a are determined. For example, when the diffraction grating 2 has a lens action, the pitch may be changed so as to decrease continuously or intermittently from the center of the lens toward the periphery, and the grating 2a may be arranged concentrically. In the present embodiment, the diffraction grating 2 is formed on a flat surface, but may be formed on a curved surface in order to further improve the light collecting function. In particular, when the diffraction grating 2 is formed so that the envelope surface passing through the groove of the diffraction grating is an aspheric surface having a lens action, the chromatic aberration, curvature of field, etc. are improved in a balanced manner by an optimal combination of the refraction action and the diffraction action. A lens having high imaging performance can be obtained. The depth d of the diffraction grating 2 can be determined using Equation (1).
 なお、本実施形態では基体1の1つの主面1aにのみ回折格子2が設けられているが、他の主面1bにも回折格子を設けてもよく、主面1aの領域r1にも回折格子を設けてもよい。また、本実施形態ではおいては、主面1aは中央の領域r1において凹形状を有しており、領域r2における回折格子の溝を通る包絡面および主面1bは平面であるが、これらの形状はそれぞれ独立に、平面、凸形状および凹形状であってもよい。 In the present embodiment, the diffraction grating 2 is provided only on one main surface 1a of the base body 1. However, a diffraction grating may be provided on the other main surface 1b, and diffraction is also performed on the region r1 of the main surface 1a. A grid may be provided. In the present embodiment, the main surface 1a has a concave shape in the central region r1, and the envelope surface and the main surface 1b passing through the grooves of the diffraction grating in the region r2 are planes. The shape may be independently a plane, a convex shape, and a concave shape.
 また、主面1aおよび主面1bに回折格子が設けられる場合、両面の回折格子の形状、配置、ピッチ、回折格子深さは、回折光学素子に要求される性能を満たすものであれば必ずしも一致させる必要はない。これらの点については、以下の実施の形態においても同様である。 Further, when diffraction gratings are provided on the main surface 1a and the main surface 1b, the shape, arrangement, pitch, and diffraction grating depth of the diffraction gratings on both surfaces are not necessarily the same as long as they satisfy the performance required for the diffractive optical element. There is no need to let them. The same applies to the following embodiments.
 中間層3は、樹脂からなる光学調整層4を熱硬化、エネルギー硬化(紫外線、可視光、電子線等による硬化)する工程において、光学調整層4に含まれる樹脂や溶媒が基体1へ浸透し、基体1の主面1aに設けられた回折格子2が変形したり、基体1の屈折率が変化したりすることを防止する。このため、中間層3は少なくとも回折格子2を覆うように、基体1の主面1aにおける領域r2に設けられていることが好ましい。本実施形態では領域r1およびr2を中間層3は覆っている。前述したように中間層3は第3樹脂を含む第3光学材料からなる。第3光学材料は、回折光学素子51の特性を低下させないだけの十分な透光性を有し、かつ基体1を浸食しないものが望ましい。このため、第3光学材料に含まれる第3樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリビニルアルコール、ブチラール樹脂、酢酸ビニル樹脂、脂環式ポリオレフィン樹脂、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート等に代表される樹脂等のうち、基体1を浸食せずかつ透光性を満たすものを適宜選択すればよい。 In the intermediate layer 3, the resin or solvent contained in the optical adjustment layer 4 penetrates into the substrate 1 in the step of heat-curing and energy-curing the optical adjustment layer 4 made of resin (curing by ultraviolet rays, visible light, electron beams, etc.). The diffraction grating 2 provided on the main surface 1a of the base 1 is prevented from being deformed and the refractive index of the base 1 from being changed. For this reason, it is preferable that the intermediate layer 3 is provided in the region r <b> 2 in the main surface 1 a of the substrate 1 so as to cover at least the diffraction grating 2. In the present embodiment, the intermediate layer 3 covers the regions r1 and r2. As described above, the intermediate layer 3 is made of the third optical material containing the third resin. It is desirable that the third optical material has sufficient translucency so as not to deteriorate the characteristics of the diffractive optical element 51 and does not erode the substrate 1. For this reason, examples of the third resin included in the third optical material include acrylic resin, epoxy resin, polyester resin, polystyrene resin, polyolefin resin, polyamide resin, polyimide resin, polyvinyl alcohol, butyral resin, vinyl acetate resin, and fat. Of the resins represented by cyclic polyolefin resin, polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, etc., those that do not erode the substrate 1 and satisfy translucency may be appropriately selected. .
 特に第3樹脂として、熱硬化性樹脂やエネルギー線硬化性樹脂を使用すると、生産性に優れるためより好ましい。硬化に使用されるエネルギー線としては、紫外線、可視光線、電子線等が挙げられる。エネルギー線硬化性樹脂としては、メタクリル基、アクリル基、エポキシ基、オキセタン基等を有するモノマーおよびオリゴマーや、エン-チオール樹脂等が挙げられる。 Particularly, it is more preferable to use a thermosetting resin or an energy ray curable resin as the third resin because it is excellent in productivity. Examples of energy rays used for curing include ultraviolet rays, visible rays, and electron beams. Examples of the energy ray curable resin include monomers and oligomers having a methacryl group, an acrylic group, an epoxy group, an oxetane group, and the like, and an ene-thiol resin.
 第3樹脂の原料としてモノマーを使用する場合、薄く塗布するためにモノマーの粘度は低い方が好ましい。第3樹脂の原料としてオリゴマーを用いてもよい。ただし、オリゴマーはモノマーに比べて粘度が高い。このため、第3樹脂の原料としてオリゴマーを使用する場合、オリゴマーを溶媒で希釈して基体1の回折格子2が形成された領域に塗布するのが好ましい。この場合、使用する溶媒には基体1に浸透しないものを選択する必要がある。 When a monomer is used as a raw material for the third resin, it is preferable that the viscosity of the monomer is low in order to apply thinly. An oligomer may be used as a raw material for the third resin. However, the oligomer has a higher viscosity than the monomer. For this reason, when using an oligomer as a raw material of 3rd resin, it is preferable to dilute an oligomer with a solvent and to apply | coat to the area | region in which the diffraction grating 2 of the base | substrate 1 was formed. In this case, it is necessary to select a solvent that does not penetrate the substrate 1 as the solvent to be used.
 中間層3が基体1を浸食しないためには、中間層3の第3光学材料と基体1の第1光学材料との相互作用を小さくする必要がある。このため、第3光学材料に含まれる第3樹脂、未硬化あるいは未重合状態にある第3樹脂の原料およびその原料に含まれる溶媒と第1光学材料の第1樹脂との溶解度パラメータの差が0.8[cal/cm31/2以上であることが好ましい。以下において詳細に説明するように、第3光学材料に含まれる第3樹脂、未硬化あるいは未重合状態にある第3樹脂の原料およびその原料に含まれる溶媒と光学調整層4を構成する第2光学材料の第2樹脂との溶解度パラメータの差も0.8[cal/cm31/2以上であることが好ましい。 In order for the intermediate layer 3 not to erode the substrate 1, it is necessary to reduce the interaction between the third optical material of the intermediate layer 3 and the first optical material of the substrate 1. Therefore, there is a difference in solubility parameter between the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, and the solvent contained in the raw material and the first resin of the first optical material. It is preferably 0.8 [cal / cm 3 ] 1/2 or more. As will be described in detail below, the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, the solvent contained in the raw material, and the second constituting the optical adjustment layer 4 The difference in solubility parameter between the optical material and the second resin is preferably 0.8 [cal / cm 3 ] 1/2 or more.
 溶解度パラメータは、正則溶液理論における凝集エネルギー密度の平方根であり、ある物質の溶解度パラメータδは、モル体積Vと1モルあたりの凝集エネルギーΔEを用いて、以下の式により定義される。
   δ=(ΔE/V)1/2
The solubility parameter is the square root of the cohesive energy density in regular solution theory, and the solubility parameter δ of a certain substance is defined by the following equation using the molar volume V and cohesive energy ΔE per mol.
δ = (ΔE / V) 1/2
 溶解度パラメータは物質の分子間力の指標であり、溶解度パラメータが近い物質ほど親和性が高い、つまり相互作用が強いと考えられる。溶解度パラメータには、さまざまな導出方法が存在するが、例えばFedorsらによる分子構造式から計算する方法により求めた値等を用いることができる。本願明細書で用いる溶解度パラメータはこの分子構造式から計算する方法によって求めた値である。溶解度パラメータが高くなる構造としては、OH基、アミド結合等高極性の官能基が挙げられる。一方、溶解度パラメータが低くなる構造としては、フッ素原子、炭化水素基、シロキサン結合等が挙げられる。 The solubility parameter is an index of the intermolecular force of the substance, and it is considered that the closer the solubility parameter, the higher the affinity, that is, the stronger the interaction. There are various derivation methods for the solubility parameter. For example, a value obtained by a method of calculating from a molecular structure formula by Fedors et al. Can be used. The solubility parameter used in the present specification is a value obtained by a method of calculating from this molecular structural formula. Examples of the structure that increases the solubility parameter include highly polar functional groups such as OH groups and amide bonds. On the other hand, examples of the structure having a low solubility parameter include a fluorine atom, a hydrocarbon group, and a siloxane bond.
 図6は、芳香族ポリカーボネートからなる基体上にさまざまなSP値(溶解度パラメータ)を有するアクリレート樹脂を形成した場合において、基体のアクリレート樹脂と接している表面近傍の領域に形成された屈性率変化層の屈折率を測定した結果を示している。横軸は、基体と基体表面上に形成したアクリレート樹脂とのSP値の差を示し、縦軸は、基体表面に形成された屈性率変化層の屈折率を示している。屈折率の測定にはプリズムカプラー(メトリコン社製、MODEL2010)を用いた。図6から、基体とアクリレート樹脂のSP値の差が0.8[cal/cm31/2以上であれば、屈折率はほぼ一定値になっていることが分かる。これは、SP値の差が0.8[cal/cm31/2以上であれば、屈折率の変化が生じるほどアクリレート樹脂が基体へ浸透しておらず、実質的に相互作用が生じていないからであると考えられる。したがって、基体1を構成する第1光学材料の第1樹脂として、上述した樹脂を用いた場合でも、第3樹脂とのSP値の差が0.8[cal/cm31/2以上であれば、実質的に相互作用が生じないと考えられる。 FIG. 6 shows changes in the refractive index formed in a region in the vicinity of the surface in contact with the acrylate resin of the substrate when acrylate resins having various SP values (solubility parameters) are formed on the substrate made of aromatic polycarbonate. The result of having measured the refractive index of the layer is shown. The horizontal axis indicates the difference in SP value between the substrate and the acrylate resin formed on the substrate surface, and the vertical axis indicates the refractive index of the refractive index changing layer formed on the substrate surface. A prism coupler (manufactured by Metricon Corporation, MODEL 2010) was used for the measurement of the refractive index. FIG. 6 shows that the refractive index is almost constant when the difference in SP value between the substrate and the acrylate resin is 0.8 [cal / cm 3 ] 1/2 or more. This is because, if the difference in SP value is 0.8 [cal / cm 3 ] 1/2 or more, the acrylate resin does not penetrate into the substrate so that the refractive index changes, and the interaction occurs substantially. This is probably because it is not. Therefore, even when the above-described resin is used as the first resin of the first optical material constituting the substrate 1, the difference in SP value from the third resin is 0.8 [cal / cm 3 ] 1/2 or more. If it exists, it is thought that interaction does not arise substantially.
 第3樹脂にエネルギー線硬化性樹脂あるいは熱硬化性樹脂を用いる場合、硬化した樹脂は3次元的に架橋されているため、光学調整層4に含まれる樹脂や溶媒が基体1へ浸透し浸食するのを抑制する効果は大きくなる。 When an energy beam curable resin or a thermosetting resin is used as the third resin, the cured resin is three-dimensionally cross-linked, so that the resin and solvent contained in the optical adjustment layer 4 penetrate into the substrate 1 and erode. The effect of suppressing this is increased.
 なお、中間層3の第3光学材料として酸化ケイ素、窒化ケイ素、酸化チタン、酸化亜鉛、酸化ジルコニウム、フッ化マグネシウム、ITOなど、透明な無機材料を用いてもよい。ただし、無機材料を用いる場合、スパッタリングや蒸着などの真空プロセスを採用する必要があり、装置の費用の増大およびタクトタイムの長時間化によって製造コストが増大することも考えられる。これに対し、上述した有機材料を用いると、簡易な設備を用い、短時間で形成できるため、製造コストを低減できるというメリットがある。なお、中間層3の第3光学材料として無機材料を用いる場合、無機材料と基体1の第1光学材料や後述する光学調整層4との間では相互作用が生じず、無機材料が浸透することによって基体1の表面に屈折率変化層を形成することはない。また、溶解度パラメータは有機物に対し定義され、無機物には定義されない。 A transparent inorganic material such as silicon oxide, silicon nitride, titanium oxide, zinc oxide, zirconium oxide, magnesium fluoride, or ITO may be used as the third optical material of the intermediate layer 3. However, when an inorganic material is used, it is necessary to employ a vacuum process such as sputtering or vapor deposition, and the manufacturing cost may be increased due to an increase in the cost of the apparatus and an increase in the takt time. On the other hand, when the organic material described above is used, it can be formed in a short time using simple equipment, and thus there is an advantage that the manufacturing cost can be reduced. In addition, when using an inorganic material as the 3rd optical material of the intermediate | middle layer 3, interaction does not arise between an inorganic material, the 1st optical material of the base | substrate 1, and the optical adjustment layer 4 mentioned later, and an inorganic material osmose | permeates. Thus, the refractive index changing layer is not formed on the surface of the substrate 1. In addition, the solubility parameter is defined for organic substances and not for inorganic substances.
 上述したように、第3光学材料に含まれる第3樹脂、未硬化あるいは未重合状態にある第3樹脂の原料およびその原料に含まれる溶媒と第1光学材料の第1樹脂との溶解度パラメータの差が0.8[cal/cm31/2以上であれば、中間層3と基体1との相互作用はほとんど生じない。しかし、中間層3が薄いと、中間層3が均一な厚さで形成できない場合に基体1と光学調整層4とが直接接触したり、薄すぎたりして基体1の第1光学材料と光学調整層4の第2光学材料との相互作用を抑制しきれない可能性がある。このため、中間層3の厚さは10nm以上であることが好ましい。ここで「10nm」とは、10%程度の製造誤差等のバラつきを含む範囲を言う。中間層3の材質や中間層3の形成方法によっては、9nm程度の厚さを中間層3が有しておれば相互作用の抑制が十分である場合もあり、11nm程度の厚さが必要な場合もあるという意味である。 As described above, the solubility parameter of the third resin contained in the third optical material, the raw material of the third resin in an uncured or unpolymerized state, and the solvent contained in the raw material and the first resin of the first optical material When the difference is 0.8 [cal / cm 3 ] 1/2 or more, the interaction between the intermediate layer 3 and the substrate 1 hardly occurs. However, if the intermediate layer 3 is thin, when the intermediate layer 3 cannot be formed with a uniform thickness, the base 1 and the optical adjustment layer 4 are in direct contact with each other or are too thin, so that the first optical material of the base 1 and the optical layer There is a possibility that the interaction of the adjustment layer 4 with the second optical material cannot be suppressed. For this reason, it is preferable that the thickness of the intermediate layer 3 is 10 nm or more. Here, “10 nm” refers to a range including variations such as a manufacturing error of about 10%. Depending on the material of the intermediate layer 3 and the method of forming the intermediate layer 3, if the intermediate layer 3 has a thickness of about 9 nm, the interaction may be sufficiently suppressed, and a thickness of about 11 nm is required. It means that there are cases.
 また、中間層3が厚くなると、回折光学素子51の光学特性、特に回折格子2の回折効率の低下を招く。以下、この回折効率の低下について説明する。図7は、回折格子2の格子2aを拡大して示す模式的断面図である。図7に示すように、回折格子2の格子2aの表面を覆うように中間層3が設けられている。回折格子2における格子2aの間隔をTとした場合、格子2a間において、基体1から光学調整層4側へ透過する光40のうち、領域r11を透過するものは中間層3の傾斜部分3aを横切って基体1から光学調整層4へ進む。これに対し、中間層3の厚さtに対応した領域r12を透過する光40は、格子2aの壁面に沿って設けられた中間層3の壁面部分3b内を厚さ方向に対してほぼ垂直な方向、つまり、中間層3と平行に進む。 Further, when the intermediate layer 3 is thick, the optical characteristics of the diffractive optical element 51, particularly the diffraction efficiency of the diffraction grating 2, is reduced. Hereinafter, this decrease in diffraction efficiency will be described. FIG. 7 is a schematic cross-sectional view showing the enlarged grating 2a of the diffraction grating 2. As shown in FIG. As shown in FIG. 7, the intermediate layer 3 is provided so as to cover the surface of the grating 2 a of the diffraction grating 2. Assuming that the interval between the gratings 2a in the diffraction grating 2 is T, among the light 40 transmitted from the base 1 to the optical adjustment layer 4 side between the gratings 2a, the light that passes through the region r11 has the inclined portion 3a of the intermediate layer 3 Advancing from the substrate 1 to the optical adjustment layer 4 across the substrate. On the other hand, the light 40 transmitted through the region r12 corresponding to the thickness t of the intermediate layer 3 is substantially perpendicular to the thickness direction in the wall surface portion 3b of the intermediate layer 3 provided along the wall surface of the grating 2a. Direction, that is, parallel to the intermediate layer 3.
 前述したように回折光学素子51の回折効率は、式(1)を満たす場合に100%となるように設計されており、この式(1)に中間層3の存在は考慮されていない。しかし、回折格子2における格子2aの間隔をTに比べて中間層3の厚さtが十分に小さい場合には、領域r11において、中間層の傾斜部分3aを横切ることによって生じる中間層3がない場合に対する光路差は無視することができ、実質的に式(1)を満たすことによって100%に近い回折効率を得ることができる。これに対し、領域r12を透過する光40は中間層3の壁面部分3bを格子2aの段差dの長さだけ透過するため、中間層3がない場合に対する光路差は無視できず、領域r12を透過した光40は実質的に式(1)を満たすことができない。このため、中間層3の厚さtが大きくなるにつれて、式(1)を満たすことができない光の量が増大し、回折格子2の回折効率は低下する。 As described above, the diffraction efficiency of the diffractive optical element 51 is designed to be 100% when Expression (1) is satisfied, and the presence of the intermediate layer 3 is not considered in this Expression (1). However, in the case where the thickness t of the intermediate layer 3 is sufficiently smaller than the distance T of the grating 2a in the diffraction grating 2, there is no intermediate layer 3 generated by crossing the inclined portion 3a of the intermediate layer in the region r11. The optical path difference with respect to the case can be ignored, and a diffraction efficiency close to 100% can be obtained by substantially satisfying the equation (1). On the other hand, the light 40 transmitted through the region r12 is transmitted through the wall surface portion 3b of the intermediate layer 3 by the length of the step d of the grating 2a. Therefore, the optical path difference with respect to the case without the intermediate layer 3 cannot be ignored. The transmitted light 40 cannot substantially satisfy the formula (1). For this reason, as the thickness t of the intermediate layer 3 increases, the amount of light that cannot satisfy Expression (1) increases, and the diffraction efficiency of the diffraction grating 2 decreases.
 図8は、基体1と光学調整層4との間に、厚さが、回折格子2の格子間隔Tの最小値(以下、「最小ピッチ」と呼ぶ)の5%に相当する中間層3が設けられている場合の回折格子2の回折効率の波長依存性を示すシミュレーション結果である。図8において、横軸は回折光学素子を透過する光の波長(μm)を、縦軸は1次回折効率(%)を表す。図8に示すように、波長400nm~700nmの範囲で80%以上の1次回折効率が得られることが分かった。詳細な検討によれば、中間層3の厚さが回折格子2の格子間隔の最小ピッチの1%以内である場合、95%の1次回折効率が得られること分かった。 In FIG. 8, an intermediate layer 3 having a thickness corresponding to 5% of the minimum value of the grating interval T of the diffraction grating 2 (hereinafter referred to as “minimum pitch”) is provided between the substrate 1 and the optical adjustment layer 4. It is a simulation result which shows the wavelength dependence of the diffraction efficiency of the diffraction grating 2 in the case of being provided. In FIG. 8, the horizontal axis represents the wavelength (μm) of light transmitted through the diffractive optical element, and the vertical axis represents the first-order diffraction efficiency (%). As shown in FIG. 8, it was found that a first-order diffraction efficiency of 80% or more can be obtained in the wavelength range of 400 nm to 700 nm. According to a detailed examination, it was found that when the thickness of the intermediate layer 3 is within 1% of the minimum pitch of the grating interval of the diffraction grating 2, a first-order diffraction efficiency of 95% can be obtained.
 これらの結果から、中間層3の厚さは、10nm以上、回折格子2の最小ピッチの5%以下であることが好ましく、10nm以上、回折格子2の最小ピッチの1%以下であることがより好ましいと言える。少なくとも中間層3のうち、斜面部分3aおよび壁面部分3bのそれぞれにおいては、厚さが均一であることが好ましい。 From these results, the thickness of the intermediate layer 3 is preferably 10 nm or more and 5% or less of the minimum pitch of the diffraction grating 2, and more preferably 10 nm or more and 1% or less of the minimum pitch of the diffraction grating 2. It can be said that it is preferable. It is preferable that at least the slope portion 3a and the wall surface portion 3b of the intermediate layer 3 have a uniform thickness.
 中間層3の透光性に関しては、形成する中間層3の厚さにおいて全光線の透過率が90%以上であればよい。また、中間層3の屈折率は、前述したように中間層3の存在が回折効率に悪影響を与えない範囲で中間層3の厚さを選択すればよい。中間層3は、その屈折率の値にかかわらず、基体1と光学調整層4との相互作用による基体1の回折格子形状の変形および屈折率変化を防止するため、回折効率低下を低減することができる。特に、中間層3を構成する材料の屈折率が基体1を構成する第1光学材料の屈折率より大きく、光学調整層4を構成する第2光学材料の屈折率より小さい場合、中間層3によって反射防止の効果を奏することができる。 Regarding the translucency of the intermediate layer 3, it is sufficient that the transmittance of all light rays is 90% or more in the thickness of the intermediate layer 3 to be formed. Further, as described above, the refractive index of the intermediate layer 3 may be selected as long as the presence of the intermediate layer 3 does not adversely affect the diffraction efficiency. Regardless of the value of the refractive index, the intermediate layer 3 prevents the diffraction grating shape of the substrate 1 from being deformed and the refractive index from being changed due to the interaction between the substrate 1 and the optical adjustment layer 4, thereby reducing the decrease in diffraction efficiency. Can do. In particular, when the refractive index of the material constituting the intermediate layer 3 is larger than the refractive index of the first optical material constituting the substrate 1 and smaller than the refractive index of the second optical material constituting the optical adjustment layer 4, the intermediate layer 3 An antireflection effect can be achieved.
 なお、図2(b)を参照して説明したように、屈折率変化層は基体と光学調整層との相互作用によって生成し、格子形状の先端部分において、屈折率変化層は厚くなる(図2(b)の先端101t)。このため、屈折率変化層が生成する場合、この屈折率変化層の格子の先端に位置する部分を透過する光の割合が多くなり、光学素子の回折効率が低下しやすい。その結果、屈折率変化層の他の部分の厚さが、格子間隔の最小ピッチ5%以下でも回折効率が大きく低下すると考えられる。 As described with reference to FIG. 2B, the refractive index change layer is generated by the interaction between the substrate and the optical adjustment layer, and the refractive index change layer becomes thick at the tip of the lattice shape (FIG. 2 (b) tip 101t). For this reason, when the refractive index changing layer is generated, the ratio of the light transmitted through the portion located at the tip of the grating of the refractive index changing layer is increased, and the diffraction efficiency of the optical element is likely to be lowered. As a result, it is considered that the diffraction efficiency is greatly reduced even when the thickness of the other part of the refractive index changing layer is 5% or less of the minimum pitch of the grating interval.
 これに対し、中間層3は基体1の格子2上に形成され、形成方法にも依存するものの概ね均一な厚さで形成することが可能である。つまり、中間層3は、格子形状の先端部分においても、屈折率変化層のように厚く形成されることはない。このため、中間層3の厚さが上述したように格子間隔の最小ピッチ5%以下であれば実用上十分な回折効率が達成できる。 On the other hand, the intermediate layer 3 is formed on the lattice 2 of the substrate 1 and can be formed with a substantially uniform thickness although it depends on the forming method. That is, the intermediate layer 3 is not formed as thick as the refractive index changing layer even at the tip portion of the lattice shape. Therefore, practically sufficient diffraction efficiency can be achieved if the thickness of the intermediate layer 3 is 5% or less of the minimum pitch of the lattice spacing as described above.
 光学調整層4は、回折光学素子51における回折効率の波長依存性を低減する目的で、少なくとも回折格子2の段差を埋めるように基体1の主面1a上の中間層2を覆うように設けられている。本実施形態では、基体1の回折格子2が設けられた主面1aが平面であるため、光学調整層4の基体1と接していない側の面も平面によって構成している。しかし、表面を非球面形状にすることによる屈折の効果と、基体の回折格子形状の上に形成することによる回折の効果を融合させることによって、色収差および像面湾曲を低減させてレンズ特性を向上させることができる。 The optical adjustment layer 4 is provided so as to cover the intermediate layer 2 on the main surface 1a of the substrate 1 so as to fill at least the step of the diffraction grating 2 in order to reduce the wavelength dependency of the diffraction efficiency in the diffractive optical element 51. ing. In the present embodiment, the main surface 1a of the substrate 1 on which the diffraction grating 2 is provided is a flat surface, and therefore the surface of the optical adjustment layer 4 that is not in contact with the substrate 1 is also configured by a flat surface. However, by combining the effect of refraction by making the surface aspherical and the effect of diffraction by forming it on the diffraction grating shape of the substrate, the lens characteristics are improved by reducing chromatic aberration and curvature of field. Can be made.
 回折効率の波長依存性を低減するためには、基体1および光学調整層4は、使用する光の全波長領域において式(1)を満たすことが好ましい。このためには、基体1の第1光学材料と光学調整層4の第2光学材料とは、屈折率の波長依存性が逆の傾向を示し、波長に対する屈折率の変化を互いに打ち消し合う特性を備えていることが好ましい。より具体的には、第1光学材料の屈折率は第2光学材料の屈折率より小さく、第1光学材料の屈折率の波長分散性は第2光学材料の屈折率の波長分散性より大きいことが好ましい。または、第1光学材料の屈折率は第2光学材料の屈折率より大きく、第1光学材料の屈折率の波長分散性は第2光学材料の屈折率の波長分散性より小さいことが好ましい。屈折率の波長分散性は、たとえば、アッベ数によって表わされる。アッベ数が大きいほど屈折率の波長分散性は小さい。したがって、第1光学材料の屈折率は第2光学材料の屈折率より小さく、かつ、第1光学材料のアッベ数は第2光学材料のアッベ数よりも小さいことが好ましい。または、第1光学材料の屈折率は第2光学材料の屈折率より大きく、かつ、第1光学材料のアッベ数は第2光学材料のアッベ数よりも大きいことが好ましい。 In order to reduce the wavelength dependency of diffraction efficiency, it is preferable that the substrate 1 and the optical adjustment layer 4 satisfy the formula (1) in the entire wavelength region of light to be used. For this purpose, the first optical material of the substrate 1 and the second optical material of the optical adjustment layer 4 exhibit a tendency that the wavelength dependence of the refractive index is opposite, and cancel each other in the change of the refractive index with respect to the wavelength. It is preferable to provide. More specifically, the refractive index of the first optical material is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is greater than the wavelength dispersion of the refractive index of the second optical material. Is preferred. Alternatively, the refractive index of the first optical material is preferably larger than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is preferably smaller than the wavelength dispersion of the refractive index of the second optical material. The wavelength dispersion of the refractive index is expressed by, for example, the Abbe number. The larger the Abbe number, the smaller the wavelength dispersion of the refractive index. Therefore, the refractive index of the first optical material is preferably smaller than the refractive index of the second optical material, and the Abbe number of the first optical material is preferably smaller than the Abbe number of the second optical material. Alternatively, the refractive index of the first optical material is preferably larger than the refractive index of the second optical material, and the Abbe number of the first optical material is preferably larger than the Abbe number of the second optical material.
 本実施形態のように基体1および光学調整層4を構成する第1光学材料および第2光学材料がそれぞれ樹脂を含む場合、第2光学材料の第2樹脂として用いることのできる、使用する光の全波長領域において式(1)を満たすような高屈折率かつ低波長分散性を有する樹脂は一般に少ない。このような場合、高屈折率を有する無機粒子が第2樹脂に分散したコンポジット材料を第2光学材料として用いることにより、材料の選択肢が増やせるとともに、屈折率・アッベ数の微調整が可能となる。また、コンポジット材料は樹脂をマトリクス材とするため、高屈折率と低波長分散性を両立する材料でありながら、加工性にも優れているという特長を有する。 When the 1st optical material and 2nd optical material which comprise the base | substrate 1 and the optical adjustment layer 4 each contain resin like this embodiment, it can be used as 2nd resin of a 2nd optical material, and the light to be used is used. In general, there are few resins having a high refractive index and low wavelength dispersion that satisfy the formula (1) in the entire wavelength region. In such a case, by using a composite material in which inorganic particles having a high refractive index are dispersed in the second resin as the second optical material, the choice of materials can be increased and the refractive index and the Abbe number can be finely adjusted. . In addition, since the composite material uses a resin as a matrix material, the composite material has a feature of being excellent in workability while being a material having both high refractive index and low wavelength dispersion.
 この場合、コンポジット材料のマトリクス材となる樹脂、つまり第2樹脂としては、ポリメタクリル酸メチル等のメタクリル樹脂、エポキシ樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリカプロラクトン等のポリエステル樹脂;ポリスチレン等のポリスチレン樹脂;ポリプロピレン等のオレフィン樹脂;ナイロン等のポリアミド樹脂;ポリイミドやポリエーテルイミド等のポリイミド樹脂;ポリビニルアルコール;ブチラール樹脂;酢酸ビニル樹脂;脂環式ポリオレフィン樹脂を用いることができる。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。また、これらの樹脂(高分子)の混合体や共重合体を用いてもよい。また、これらの樹脂を変性したものを用いてもよい。特に第2樹脂として、熱硬化性樹脂やエネルギー線硬化樹脂を使用すると、生産性に優れるためより好ましい。エネルギー線硬化樹脂としては、第3樹脂として例示したものと同様の樹脂を使用することができる。 In this case, the resin used as the matrix material of the composite material, that is, the second resin includes methacrylic resin such as polymethyl methacrylate, epoxy resin; polyester resin such as polyethylene terephthalate, polybutylene terephthalate and polycaprolactone; polystyrene resin such as polystyrene. Olefin resin such as polypropylene; polyamide resin such as nylon; polyimide resin such as polyimide and polyetherimide; polyvinyl alcohol; butyral resin; vinyl acetate resin; alicyclic polyolefin resin. Further, engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Also, a mixture or copolymer of these resins (polymers) may be used. Moreover, you may use what modified | denatured these resin. In particular, it is more preferable to use a thermosetting resin or an energy beam curable resin as the second resin because of excellent productivity. As the energy ray curable resin, a resin similar to that exemplified as the third resin can be used.
 第2樹脂に分散させる無機粒子としては、例えば、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化タンタル、酸化ニオブ、酸化タングステン、酸化インジウム、酸化スズ、酸化ハフニウム、酸化ランタン、酸化スカンジウム、酸化セリウム、酸化イットリウム、チタン酸バリウム、シリカ、アルミナ等を使用できるが、必ずしもこれらに限定されるものではない。また、これらの複合酸化物を用いてもよい。これらの中でも特に、コンポジット材料の低波長分散性を確保する観点から、第2樹脂に分散させる無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化スカンジウム、アルミナおよびシリカからなる群より選ばれる少なくとも1つを主成分として含むことがより好ましい。 Examples of the inorganic particles dispersed in the second resin include zirconium oxide, titanium oxide, zinc oxide, tantalum oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, hafnium oxide, lanthanum oxide, scandium oxide, cerium oxide, and oxide. Yttrium, barium titanate, silica, alumina and the like can be used, but are not necessarily limited thereto. Moreover, you may use these complex oxides. Among these, from the viewpoint of ensuring the low wavelength dispersibility of the composite material, the inorganic particles dispersed in the second resin are selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina, and silica. It is more preferable that at least one selected as a main component.
 無機粒子4の実効粒径は、1nm以上100nm以下であることが好ましい。実効粒径が100nm以下であることにより、レイリー散乱による損失を低減させ、光学調整層3’の透明性を高くすることができる。また、実効粒径を1nm以上とすることにより、量子効果による発光等の影響を抑制することができる。第2光学材料は、必要に応じて、無機粒子の分散性を改善する分散剤や、重合開始剤、レベリング剤等の添加剤をさらに含んでいてもよい。 The effective particle size of the inorganic particles 4 is preferably 1 nm or more and 100 nm or less. When the effective particle size is 100 nm or less, loss due to Rayleigh scattering can be reduced and the transparency of the optical adjustment layer 3 ′ can be increased. Further, by setting the effective particle size to 1 nm or more, it is possible to suppress the influence of light emission or the like due to the quantum effect. The 2nd optical material may further contain additives, such as a dispersing agent which improves the dispersibility of inorganic particles, a polymerization initiator, and a leveling agent, as needed.
 ここで実効粒径について図9を参照しながら説明する。図9において、横軸は無機粒子の粒径(nm)を表し、左側の縦軸は横軸の粒径に対する無機粒子の頻度(%)を示す。また、右側の縦軸は粒径の累積頻度を表している。実効粒径とは、無機粒子全体のうち、その粒径頻度分布において、累積頻度が50%となる粒径を中心粒径(メジアン径:d50)とし、その中心粒径を中心として累積頻度が50%の範囲Aにある粒径範囲Bのことを指す。したがって、無機粒子4のこのように定義される実効粒径の範囲が1nm以上100nm以下の範囲内であることが好ましい。実効粒径の値を精度よく求めるためには、たとえば、200個以上の無機粒子を測定することが好ましい。 Here, the effective particle diameter will be described with reference to FIG. In FIG. 9, the horizontal axis represents the particle size (nm) of the inorganic particles, and the left vertical axis represents the frequency (%) of the inorganic particles with respect to the particle size of the horizontal axis. The vertical axis on the right represents the cumulative frequency of particle size. The effective particle size means that the particle size at which the cumulative frequency is 50% in the particle size frequency distribution of the entire inorganic particles is the central particle size (median diameter: d50), and the cumulative frequency is centered on the central particle size. It refers to the particle size range B in the range A of 50%. Therefore, it is preferable that the range of the effective particle size defined as described above of the inorganic particles 4 is in the range of 1 nm to 100 nm. In order to accurately determine the value of the effective particle size, for example, it is preferable to measure 200 or more inorganic particles.
 光学調整層4は、光学調整層4を形成する際における製造工程上の作業性や、光学調整層4の表面性を調節する等の目的により、光学調整層4の原料中に溶媒を含有してもよい。溶媒の種類は、光学調整層4を構成する第2光学材料に含まれる第2樹脂およびそのモノマーやオリゴマーなどの原料の溶解性、作業性、ならびに光学調整層4の表面性制御の観点から適宜選択される。 The optical adjustment layer 4 contains a solvent in the raw material of the optical adjustment layer 4 for the purpose of adjusting the workability in the manufacturing process when forming the optical adjustment layer 4 and the surface property of the optical adjustment layer 4. May be. The type of the solvent is appropriately selected from the viewpoints of the solubility of the second resin contained in the second optical material constituting the optical adjustment layer 4 and raw materials such as monomers and oligomers, workability, and surface property control of the optical adjustment layer 4. Selected.
 前述したように、光学調整層4を構成する第2光学材料に含まれる第2樹脂や溶媒は、中間層3を構成する第3光学材料に含まれる第3樹脂や溶媒と相互作用を起こさないことが好ましく、第2光学材料に含まれる第2樹脂や溶媒と第3樹脂や溶媒との溶解度パラメータの差が0.8[cal/cm3]1/2以上であることが好ましい。ただし、光学調整層4を形成する際、中間層3がすでに硬化または重合している場合には、硬化した第3光学材料に含まれる有機物質に対して、第2光学材料に含まれる第2樹脂や溶媒の溶解度パラメータの差が0.8[cal/cm3]1/2以上であればよい。 As described above, the second resin or solvent contained in the second optical material constituting the optical adjustment layer 4 does not interact with the third resin or solvent contained in the third optical material constituting the intermediate layer 3. It is preferable that the difference in solubility parameter between the second resin or solvent and the third resin or solvent contained in the second optical material is 0.8 [cal / cm 3 ] 1/2 or more. However, when the optical adjustment layer 4 is formed, if the intermediate layer 3 is already cured or polymerized, the second optical material included in the second optical material is compared with the organic material included in the cured third optical material. The difference in the solubility parameter of the resin or solvent may be 0.8 [cal / cm 3 ] 1/2 or more.
 この場合、中間層3がバリアとして機能するため、光学調整層4の第2光学材料に含まれる第2樹脂や溶媒の溶解度パラメータと基体1を構成する第1光学材料の第1樹脂の溶解度パラメータとの差は0.8[cal/cm3]1/2以上でなくてもよい。これによって、第1光学材料および第2光学材料として用いることのできる材料の選択の幅が広がり、式(1)の関係を満たす材料を選択しやすくなる。 In this case, since the intermediate layer 3 functions as a barrier, the solubility parameter of the second resin and the solvent contained in the second optical material of the optical adjustment layer 4 and the solubility parameter of the first resin of the first optical material constituting the substrate 1. The difference may not be 0.8 [cal / cm 3 ] 1/2 or more. Accordingly, the range of selection of materials that can be used as the first optical material and the second optical material is widened, and it becomes easier to select a material that satisfies the relationship of the expression (1).
 本実施形態の回折光学素子によれば、基体と光学調整層との間に中間層が設けられている。このため、基体と光学調整層とが直接接することがなく、基体および光学調整層に樹脂を含む材料を用いても、光学調整層に含まれる樹脂が基体へ浸透し、回折格子の形状が崩れたり、屈折率変化層が生成したりすることが抑制される。また、中間層の厚さが回折格子の格子間隔の最小値の5%以下であるため、中間層による回折効率の低下の影響が抑制される。その結果、基体および光学調整層に樹脂を用いて高い回折効率を有する回折光学素子を実現することが可能となる。また、基体および光学調整層に含まれる樹脂の組み合わせを化学的な相互作用の観点から選択する必要がなくなるため、光学調整層の材料の選択肢が広がるというメリットがある。特に、生産性の観点から、光学調整層として紫外線硬化樹脂や熱硬化性樹脂を含む材料を使用する場合に、光学調整層を形成する工程において、光学調整層を構成する未硬化状態の樹脂が基体と接触することがない。これにより、光学調整層の基体への反応や浸透を抑制することができ、回折効率の低下を抑制することができる。また、光学調整層にコンポジット材料を用いた場合においても同様に、光学調整層を形成する原料中に溶媒を添加したものを使用しても、この溶媒が基体に接触することがない。これにより、光学調整層中の樹脂材料と同様、溶媒が基体へ溶解・浸透することによる屈折率変化ひいては回折効率の低下を抑制することができる。 According to the diffractive optical element of this embodiment, the intermediate layer is provided between the base and the optical adjustment layer. For this reason, the substrate and the optical adjustment layer are not in direct contact with each other, and even if a material containing a resin is used for the substrate and the optical adjustment layer, the resin contained in the optical adjustment layer penetrates the substrate and the shape of the diffraction grating is destroyed. Or generation of a refractive index changing layer is suppressed. Further, since the thickness of the intermediate layer is 5% or less of the minimum value of the grating spacing of the diffraction grating, the influence of the decrease in diffraction efficiency due to the intermediate layer is suppressed. As a result, it is possible to realize a diffractive optical element having high diffraction efficiency by using a resin for the substrate and the optical adjustment layer. Further, since it is not necessary to select a combination of resins contained in the base and the optical adjustment layer from the viewpoint of chemical interaction, there is an advantage that the choice of materials for the optical adjustment layer is widened. In particular, from the viewpoint of productivity, when a material containing an ultraviolet curable resin or a thermosetting resin is used as the optical adjustment layer, in the step of forming the optical adjustment layer, the uncured resin constituting the optical adjustment layer is There is no contact with the substrate. Thereby, reaction and penetration of the optical adjustment layer into the substrate can be suppressed, and a decrease in diffraction efficiency can be suppressed. Similarly, when a composite material is used for the optical adjustment layer, even if a material in which a solvent is added to the raw material for forming the optical adjustment layer is used, the solvent does not come into contact with the substrate. Thereby, similarly to the resin material in the optical adjustment layer, it is possible to suppress a change in refractive index and a decrease in diffraction efficiency due to the solvent dissolving and penetrating into the substrate.
 なお、本実施形態の回折光学素子51において、光学調整層4の表面に反射防止層を設けてもよい。反射防止層の材料としては、光学調整層4より小さい屈折率を有する材料であれば特に制限はない。例えば、樹脂、又は樹脂と無機粒子とのコンポジット材料のいずれか、あるいは真空蒸着等で形成された無機薄膜等を用いることができる。反射防止層としてのコンポジット材料に使用される無機粒子としては、屈折率の小さいシリカ、アルミナ、酸化マグネシウム等が挙げられる。また、光学調整層4の表面にナノ構造の反射防止形状を形成してもよい。ナノ構造の反射防止形状は、例えば型による転写工法(ナノインプリント)で容易に形成することができる。また、光学調整層4または反射防止層の表面に、耐摩擦性、熱膨張性等の力学特性を調整する作用を有する表面層を別途形成してもよい。 In the diffractive optical element 51 of this embodiment, an antireflection layer may be provided on the surface of the optical adjustment layer 4. The material of the antireflection layer is not particularly limited as long as it has a refractive index smaller than that of the optical adjustment layer 4. For example, either a resin, a composite material of resin and inorganic particles, an inorganic thin film formed by vacuum deposition, or the like can be used. Examples of the inorganic particles used in the composite material as the antireflection layer include silica, alumina, and magnesium oxide having a low refractive index. Further, a nanostructure antireflection shape may be formed on the surface of the optical adjustment layer 4. The antireflection shape of the nanostructure can be easily formed by, for example, a transfer method (nanoimprint) using a mold. Further, a surface layer having an effect of adjusting mechanical properties such as friction resistance and thermal expansion may be separately formed on the surface of the optical adjustment layer 4 or the antireflection layer.
(第2の実施形態)
 以下、本発明による回折格子の製造方法の実施形態を説明する。
(Second Embodiment)
Hereinafter, embodiments of a method for manufacturing a diffraction grating according to the present invention will be described.
 図10は本実施形態によって作製される回折光学素子52の構造を模式的に示している。回折光学素子52は、基体11と、基体11の表面に設けられた回折格子12と、回折格子2を覆うように基体11の表面に設けられた中間層13と、回折格子22を覆うように中間層13上に設けられた光学調整層14とを備える。光学調整層14を構成する第2光学材料は第2樹脂15および無機粒子16を含んでおり、第2樹脂に無機粒子16が分散したナノコンポジット材料である。 FIG. 10 schematically shows the structure of the diffractive optical element 52 manufactured according to this embodiment. The diffractive optical element 52 covers the base 11, the diffraction grating 12 provided on the surface of the base 11, the intermediate layer 13 provided on the surface of the base 11 so as to cover the diffraction grating 2, and the diffraction grating 22. And an optical adjustment layer 14 provided on the intermediate layer 13. The second optical material constituting the optical adjustment layer 14 includes a second resin 15 and inorganic particles 16, and is a nanocomposite material in which the inorganic particles 16 are dispersed in the second resin.
 図11(a)に示すように、まず、表面に回折格子12を形成した基体11を用意する。例えば、射出成形やプレス成形等に代表されるように、回折格子12の形状が形成された型に基体11の材料を軟化または溶融させた状態で供給し、成形を行う方法、回折格子形状を形成した型に樹脂原料であるモノマーやオリゴマー等を注型し、加熱及び/又はエネルギー線照射により樹脂原料を重合する方法、あるいは、あらかじめ成形した基体12に切削、研磨等により回折格子12を形成する方法等が挙げられる。これら以外の方法によって回折格子12を形成した基体11を用意してもよい。 As shown in FIG. 11A, first, a base 11 having a diffraction grating 12 formed on the surface is prepared. For example, as represented by injection molding, press molding, etc., a method of performing molding by supplying the material of the substrate 11 in a softened or molten state to a mold in which the shape of the diffraction grating 12 is formed, and a diffraction grating shape. A method of polymerizing the resin raw material by heating and / or irradiation with energy rays, or forming the diffraction grating 12 on the preformed substrate 12 by cutting, polishing, or the like, by casting a resin raw material monomer or oligomer into the formed mold And the like. You may prepare the base | substrate 11 in which the diffraction grating 12 was formed by methods other than these.
 続いて、図11(b)に示すように、基体11の回折格子12上に、中間層を形成する。中間層の形成方法には、中間層の原料13’である液状のモノマーまたはオリゴマーを塗布した後硬化させる方法、加熱溶融により流動性を持たせた樹脂を塗布した後、冷却固化させる方法、プラズマ重合や蒸着重合等に代表される気相重合によってモノマーやオリゴマーなどの原料13’から中間層を直接形成する方法等が挙げられる。図では、液状の原料13’をスプレーコーティング装置17によって塗布する状態を示している。また、第3光学材料として酸化ケイ素などの透明な無機材料を用いる場合には、蒸着法、スパッタ法、CVD法など公知の無機薄膜形成方法を用いることができる。 Subsequently, as shown in FIG. 11B, an intermediate layer is formed on the diffraction grating 12 of the substrate 11. The intermediate layer is formed by applying a liquid monomer or oligomer, which is the raw material 13 'of the intermediate layer, and then curing, applying a resin having fluidity by heating and melting, cooling and solidifying, and plasma. Examples thereof include a method of directly forming an intermediate layer from a raw material 13 ′ such as a monomer or an oligomer by gas phase polymerization represented by polymerization or vapor deposition polymerization. In the figure, a state in which the liquid raw material 13 ′ is applied by the spray coating device 17 is shown. When a transparent inorganic material such as silicon oxide is used as the third optical material, a known inorganic thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method can be used.
 中間層の原料13’を塗布する方法としては、例えばディップコート、ディスペンサー等の注液ノズルを用いた塗布、インクジェット法やスプレーコート等による噴射塗布、スピンコーティング等の回転による塗布、スクリーン印刷やパッド印刷等スキージングによる塗布、転写等を用いることができる。またこれらの方法を適宜組み合わせてもよい。塗布された原料13’の硬化方法としては、例えば、紫外線、電子線、放射線等のエネルギー線照射や、熱硬化等が挙げられる。硬化により、図11(c)に示すように、回折格子12の表面に中間層13が形成される。前述したように、気相重合法を用いる場合には、原料13’の代わりに直接中間層13が形成される。第3光学材料として酸化ケイ素などの透明な無機材料を用いる場合も、一般的には中間層13を直接形成することができる。 Examples of the method of applying the intermediate layer raw material 13 'include dip coating, coating using a liquid injection nozzle such as a dispenser, spray coating by an ink jet method or spray coating, coating by rotation such as spin coating, screen printing or padding. Application by squeezing such as printing, transfer, or the like can be used. Moreover, you may combine these methods suitably. Examples of a method for curing the applied raw material 13 ′ include irradiation with energy rays such as ultraviolet rays, electron beams, and radiation, and thermal curing. By curing, an intermediate layer 13 is formed on the surface of the diffraction grating 12 as shown in FIG. As described above, when the vapor phase polymerization method is used, the intermediate layer 13 is formed directly instead of the raw material 13 '. Even when a transparent inorganic material such as silicon oxide is used as the third optical material, the intermediate layer 13 can generally be formed directly.
 次に光学調整層を中間層13の上に形成する。光学調整層の形成方法は、その材料、ならびに回折光学素子の特性より決定される形状精度により、既存のコーティング層形成プロセスから適宜選定される。例えば、スプレーコート、ディップコート、ディスペンサー等の注液ノズルを用いた塗布、インクジェット法等の噴射塗布、スピンコーティング等の回転による塗布、スクリーン印刷やパッド印刷などスキージングによる塗布、転写などを適用することにより、光学調整層を形成することもできる。またこれらのプロセスを適宜組み合わせてもよい。図11(c)では、ディスペンサー等の注液ノズル18を用いて中間層13の上に光学調整層の原料14’となるモノマーやオリゴマーを塗布した状態を示している。 Next, an optical adjustment layer is formed on the intermediate layer 13. The method for forming the optical adjustment layer is appropriately selected from existing coating layer formation processes depending on the material and the shape accuracy determined by the characteristics of the diffractive optical element. For example, spray coating, dip coating, coating using a liquid injection nozzle such as a dispenser, spray coating such as an inkjet method, coating by rotation such as spin coating, coating by squeezing such as screen printing or pad printing, transfer, etc. are applied Thereby, an optical adjustment layer can also be formed. Moreover, you may combine these processes suitably. FIG. 11C shows a state in which a monomer or oligomer that is a raw material 14 ′ of the optical adjustment layer is applied on the intermediate layer 13 using a liquid injection nozzle 18 such as a dispenser.
 原料14’の硬化には、熱硬化やエネルギー線照射などのプロセスを用いることができる。例えば、紫外線で硬化させる場合には、未硬化樹脂14’に光重合開始剤を加える。電子線で未硬化樹脂14’を硬化させる場合には光重合開始剤は通常必要ない。また、原料14’が溶媒を含んでいる場合には図11(d)に示すように、硬化の前に溶媒を乾燥させる。溶媒の乾燥は、加熱乾燥、減圧乾燥などの方法によって行うことができる。使用する材料により、乾燥温度、圧力、時間などを調整する必要があるが、溶媒が残存していると、光学調整層の屈折率が変動する要因となるため、完全に除去する必要がある。 For the curing of the raw material 14 ′, a process such as thermal curing or energy beam irradiation can be used. For example, in the case of curing with ultraviolet rays, a photopolymerization initiator is added to the uncured resin 14 '. When the uncured resin 14 'is cured with an electron beam, a photopolymerization initiator is usually unnecessary. If the raw material 14 'contains a solvent, the solvent is dried before curing as shown in FIG. 11 (d). The solvent can be dried by a method such as heat drying or reduced pressure drying. Depending on the material used, it is necessary to adjust the drying temperature, pressure, time, and the like. However, if the solvent remains, the refractive index of the optical adjustment layer fluctuates and must be completely removed.
 その後、図11(d)に示すように、型10を用いて原料14’を所望の形状に成形した状態で硬化させ、型10をはずして、図11(e)に示すように、光学調整層14を形成し、回折光学素子52を完成させる。型10を使用して光学調整層4の形状を規制する場合は、光学調整層14の原料14’を型に配置し、乾燥後基体11に押圧する方法をとることも可能である。しかし、光学調整層14の原料14’を基体11側に配置する方がより好ましい。これは、硬化前(材料によっては乾燥前)の光学調整層14の原料14’が低粘度であることから、回折格子形状を表面に形成した基体11に回り込みやすく、気泡の噛み込み等が抑えられ、かつ硬化後の光学調整層14と基体との密着性も高くなるためである。 Thereafter, as shown in FIG. 11 (d), the raw material 14 ′ is cured in a desired shape using the mold 10, and the mold 10 is removed, and the optical adjustment is performed as shown in FIG. 11 (e). Layer 14 is formed to complete the diffractive optical element 52. In the case where the shape of the optical adjustment layer 4 is regulated using the mold 10, it is possible to arrange the raw material 14 ′ of the optical adjustment layer 14 in the mold and press it against the substrate 11 after drying. However, it is more preferable to arrange the raw material 14 ′ of the optical adjustment layer 14 on the base 11 side. This is because the raw material 14 ′ of the optical adjustment layer 14 before curing (before drying depending on the material) has a low viscosity, so that it is easy to go around the substrate 11 having the diffraction grating shape formed on the surface, and the entrapment of bubbles is suppressed. This is because the adhesion between the optical adjustment layer 14 after curing and the substrate is also improved.
 型10を構成する材料は、要求される精度や耐久性に応じて適宜選択すればよい。例えば、鉄やアルミニウム、これらの合金、真鍮等の金属を用いることができる。必要に応じて、ニッケルめっきなどの表面処理を行った金属を使用してもよい。また、石英やガラス、エポキシ樹脂、ポリエステル樹脂、ポリオレフィン樹脂などの樹脂も使用することが可能である。なお、樹脂材料は硬化時に収縮することが多いが、樹脂および無機粒子により構成されるコンポジットを使用する場合は、樹脂材料単独で使用する場合より収縮率が低下することを考慮しておくことが望ましい。 The material constituting the mold 10 may be appropriately selected according to required accuracy and durability. For example, metals such as iron, aluminum, alloys thereof, and brass can be used. You may use the metal which surface-treated, such as nickel plating, as needed. In addition, resins such as quartz, glass, epoxy resin, polyester resin, and polyolefin resin can be used. The resin material often shrinks when cured, but when using a composite composed of resin and inorganic particles, it may be considered that the shrinkage rate is lower than when using the resin material alone. desirable.
 型10を使用して光学調整層14の形状を規制する場合、硬化工程後に離型を行うのが一般的である。しかし、硬化工程実施前の状態で光学調整層14の原料14’が変形しないのであれば、先に離型を行ってから硬化工程を実施してもよい。エネルギー線照射による硬化後に離型を行う場合、エネルギー線照射は光学調整層14の原料14’が型10で規制された状態で実施される。型10として金属などの不透明な材質を使用する場合は、光学調整層の原料9を配置した面と反対の面から、基体11を介してエネルギー線照射を実施する。一方、型10としてエネルギー線に対して透明な材質、例えば紫外線に対する石英等を使用すれば、光学調整層14の原料14’を配置した面から型10を介してエネルギー線照射を実施することが可能である。 When using the mold 10 to regulate the shape of the optical adjustment layer 14, it is common to perform mold release after the curing step. However, if the raw material 14 ′ of the optical adjustment layer 14 is not deformed before the curing process is performed, the curing process may be performed after first releasing the mold. When mold release is performed after curing by energy beam irradiation, energy beam irradiation is performed in a state where the raw material 14 ′ of the optical adjustment layer 14 is regulated by the mold 10. When an opaque material such as metal is used as the mold 10, energy beam irradiation is performed through the substrate 11 from the surface opposite to the surface on which the raw material 9 of the optical adjustment layer is disposed. On the other hand, if a material transparent to energy rays, such as quartz for ultraviolet rays, is used as the mold 10, energy beam irradiation can be performed through the mold 10 from the surface on which the raw material 14 ′ of the optical adjustment layer 14 is disposed. Is possible.
 これにより図11(e)に示すように、回折光学素子52が完成する。 Thereby, the diffractive optical element 52 is completed as shown in FIG.
 本実施形態の回折光学素子の製造方法によれば、基体と光学調整層との間に中間層が設けられる。このため、基体と光学調整層とが直接接することがなく、基体および光学調整層に樹脂を含む材料を用いても、光学調整層の樹脂が基体へ浸透し、回折格子の形状が崩れたり、屈折率変化層が生成したりすることが抑制される。その結果、基体および光学調整層に樹脂を用いて高い回折効率有する回折光学素子を実現することが可能となる。また、基体および光学調整層に含まれる樹脂の組み合わせを化学的な相互作用の観点から選択する必要がなくなるため、光学調整層の材料の選択肢が広がるというメリットがある。 According to the method for manufacturing a diffractive optical element of this embodiment, an intermediate layer is provided between the base and the optical adjustment layer. For this reason, the base and the optical adjustment layer are not in direct contact, and even if a material containing a resin is used for the base and the optical adjustment layer, the resin of the optical adjustment layer penetrates into the base, and the shape of the diffraction grating collapses. Generation of the refractive index changing layer is suppressed. As a result, it is possible to realize a diffractive optical element having high diffraction efficiency by using a resin for the base and the optical adjustment layer. Further, since it is not necessary to select a combination of resins contained in the base and the optical adjustment layer from the viewpoint of chemical interaction, there is an advantage that the choice of materials for the optical adjustment layer is widened.
 特に、中間層の原料を基体上に配置し、その後、原料を硬化させることによって中間層を形成する。このため、光学調整層の原料を基体上に配置する際、中間層にモノマーやオリゴマー、溶媒などは含まれず、中間層と光学調整層の原料との相互作用が抑制される。このため、さらに光学調整層の材料の選択肢が広がるというメリットがある。 Particularly, the intermediate layer is formed by disposing the raw material of the intermediate layer on the substrate and then curing the raw material. For this reason, when the raw material for the optical adjustment layer is disposed on the substrate, the intermediate layer does not contain monomers, oligomers, solvents, etc., and the interaction between the intermediate layer and the raw material for the optical adjustment layer is suppressed. For this reason, there is a merit that options for the material of the optical adjustment layer are further expanded.
 なお、上記第1および第2の実施形態では、回折光学素子は1つの回折格子を有していたが、回折格子を複数有する回折光学素子を実現してもよい。例えば図12に示すように回折光学素子53は、基体21と基体21の表面に設けられた2つの回折格子22と、回折格子22を覆うように設けられた光学調整層24と基体21および光学調整層24の間に設けられた中間層23とを備える。 In the first and second embodiments, the diffractive optical element has one diffraction grating, but a diffractive optical element having a plurality of diffraction gratings may be realized. For example, as shown in FIG. 12, the diffractive optical element 53 includes a base 21, two diffraction gratings 22 provided on the surface of the base 21, an optical adjustment layer 24 provided so as to cover the diffraction grating 22, the base 21, and the optical element. And an intermediate layer 23 provided between the adjustment layers 24.
 以下、本発明による回折光学素子を作製し、特性を評価した結果を具体的に説明する。なお、表1に実施例および以下説明する比較例に用いた、中間層の材料、厚さ、基体とのSP値差、浸食の有無および1次回折効率についてまとめている。 Hereinafter, the results of producing the diffractive optical element according to the present invention and evaluating the characteristics will be described in detail. Table 1 summarizes the material and thickness of the intermediate layer, the SP value difference with the substrate, the presence or absence of erosion, and the first-order diffraction efficiency used in the examples and comparative examples described below.
(実施例1)
 図10に示す構造を備えた回折光学素子52を次の方法により作製した。回折光学素子21はレンズ作用を有し、1次回折光を利用するように設計されている。この点は以下の実施例、および比較例についても同様である。
Example 1
A diffractive optical element 52 having the structure shown in FIG. 10 was produced by the following method. The diffractive optical element 21 has a lens action and is designed to use first-order diffracted light. This also applies to the following examples and comparative examples.
 まず、ビスフェノールA系ポリカーボネート樹脂(d線屈折率1.585、アッベ数28、SP値9.8[cal/cm31/2)を射出成形することにより、回折格子の根元の包絡線が非球面形状であり、深さ15μmの輪帯状回折格子2を片面に有する基体11を作製した。レンズ部有効半径は0.828mm、輪帯数は29本、最小輪帯ピッチ14μm、回折面の近軸R(曲率半径)は-1.0144mmである。次に、基体11を120℃で1時間保持することにより、アニール処理を施した。 First, a bisphenol A-based polycarbonate resin (d-line refractive index 1.585, Abbe number 28, SP value 9.8 [cal / cm 3 ] 1/2 ) is injection-molded, so that the envelope of the root of the diffraction grating is obtained. A base body 11 having an aspherical shape and having an annular diffraction grating 2 having a depth of 15 μm on one side was produced. The effective radius of the lens part is 0.828 mm, the number of annular zones is 29, the minimum annular zone pitch is 14 μm, and the paraxial radius R (curvature radius) of the diffraction surface is −1.0144 mm. Next, annealing was performed by holding the base 11 at 120 ° C. for 1 hour.
 次に、ペンタエリスリトールトリアクリレート(屈折率1.485、SP値11.3)をスプレーコートにて基体11の回折格子2上に塗布し、紫外線を照射することにより硬化させ、中間層13を形成した。中間層13の厚さは420nmであった。この値は、回折格子12の格子間隔の最小ピッチの3%である。 Next, pentaerythritol triacrylate (refractive index: 1.485, SP value 11.3) is applied onto the diffraction grating 2 of the substrate 11 by spray coating, and cured by irradiating with ultraviolet rays to form the intermediate layer 13. did. The thickness of the intermediate layer 13 was 420 nm. This value is 3% of the minimum pitch of the grating interval of the diffraction grating 12.
 次に光学調整層4の材料となるコンポジット材料を次のように調製した。脂環式アクリル系樹脂A(d線屈折率1.53、アッベ数52、SP値9.0[cal/cm31/2)に酸化ジルコニウム(一次粒径3~10nm、光散乱法による実効粒径20nm、シラン系表面処理剤を30重量%含有)のPGME(プロピレングリコールモノメチルエーテル)分散液を、固形分中における酸化ジルコニウムの重量比が56重量%となるように分散し、混合した。なお、このコンポジット材料の硬化後のd線屈折率は1.623であり、アッベ数は43である。膜厚30μmでの波長400~700nmにおける光線透過率は90%以上である。また、PGMEのSP値は10.5[cal/cm31/2である。 Next, a composite material as a material for the optical adjustment layer 4 was prepared as follows. Alicyclic acrylic resin A (d-line refractive index 1.53, Abbe number 52, SP value 9.0 [cal / cm 3 ] 1/2 ) and zirconium oxide (primary particle size 3 to 10 nm, by light scattering method) A PGME (propylene glycol monomethyl ether) dispersion having an effective particle size of 20 nm and a silane surface treatment agent of 30 wt% was dispersed and mixed so that the weight ratio of zirconium oxide in the solid content was 56 wt%. . The composite material has a cured d-line refractive index of 1.623 and an Abbe number of 43. The light transmittance at a wavelength of 400 to 700 nm at a film thickness of 30 μm is 90% or more. The SP value of PGME is 10.5 [cal / cm 3 ] 1/2 .
 このコンポジット材料を、基体11の中間層13上にディスペンサーにより0.4μL滴下した後、乾燥機にて乾燥させ、型で押圧した状態で、基体の裏面(コンポジット材料を滴下した側と反対側)から、紫外線照射(照度120mW/cm2、積算光量4000mJ/cm2)を行い、型から離型し、光学調整層14を形成した。光学調整層14の表面形状は、基体の回折格子2を回折格子の根元の包絡線形状に沿った非球面形状を有し、厚さは30μmであった。 After 0.4 μL of this composite material is dropped onto the intermediate layer 13 of the base 11 by a dispenser, it is dried by a dryer and pressed with a mold, and the back side of the base (the side opposite to the side on which the composite material is dropped). Then, ultraviolet irradiation (illuminance 120 mW / cm 2 , integrated light quantity 4000 mJ / cm 2 ) was performed and released from the mold to form the optical adjustment layer 14. The surface shape of the optical adjustment layer 14 has an aspherical shape of the diffraction grating 2 of the substrate along the envelope shape at the base of the diffraction grating, and the thickness was 30 μm.
 以上の工程によって作製した回折光学素子52の回折効率を測定した。白色光源とカラーフィルター(R:640nm、G:540nm、B:440nm)を用いて、各波長における、各回折次数での輝度を超精密3次元測定装置(三鷹光器(株)製)を用いて測定し、以下の式(2)より算出した。1次回折効率は各波長で90%以上であった。なお、3次回折光以上の高次の回折光は検出されなかった。
Figure JPOXMLDOC01-appb-M000002
The diffraction efficiency of the diffractive optical element 52 produced by the above steps was measured. Using a white light source and a color filter (R: 640 nm, G: 540 nm, B: 440 nm), using an ultra-precise three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd.) for brightness at each diffraction order at each wavelength. And calculated from the following equation (2). The first-order diffraction efficiency was 90% or more at each wavelength. In addition, higher-order diffracted light higher than third-order diffracted light was not detected.
Figure JPOXMLDOC01-appb-M000002
 本発明の回折光学素子は白色光すべてに対して高い回折効率を有することが特徴であることから、1次回折効率は、R、G,Bの各波長すべてにおいて、80%以上必要である。このような方法で形成した回折光学素子52を、光軸を通る断面で切断し、基体11と中間層12との境界部分および中間層12と光学調整層13との境界部分を光学顕微鏡で観察した結果、材料の相互作用による形状変化や変色は観察されなかった。 Since the diffractive optical element of the present invention is characterized by having a high diffraction efficiency with respect to all white light, the first-order diffraction efficiency is required to be 80% or more for all the R, G, and B wavelengths. The diffractive optical element 52 formed by such a method is cut along a cross section passing through the optical axis, and the boundary portion between the substrate 11 and the intermediate layer 12 and the boundary portion between the intermediate layer 12 and the optical adjustment layer 13 are observed with an optical microscope. As a result, no shape change or discoloration due to the interaction of materials was observed.
(実施例2)
 実施例1と同じ構造を備えた回折光学素子を、実施例1と同様の方法により作製した。本実施例は、中間層12の原料として、エポキシアクリレート樹脂(屈折率1.600、SP値11.2)をIPA(イソプロピルアルコール)で希釈したものを用い、塗布した後に乾燥させてから、硬化させた点で実施例1と異なっている。得られた中間層12の厚さは、700nmであり、この値は、回折格子12の格子間隔の最小ピッチの5%である。
(Example 2)
A diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. In this example, as a raw material for the intermediate layer 12, an epoxy acrylate resin (refractive index: 1.600, SP value: 11.2) diluted with IPA (isopropyl alcohol) was applied, dried after application, and then cured. This is different from the first embodiment. The thickness of the obtained intermediate layer 12 is 700 nm, and this value is 5% of the minimum pitch of the grating interval of the diffraction grating 12.
 回折効率を実施例1と同様の方法で算出したところ、R、G,Bの各波長すべてにおいて、80%以上であった。 The diffraction efficiency was calculated by the same method as in Example 1. As a result, the diffraction efficiency was 80% or more for all wavelengths of R, G, and B.
 回折光学素子を、光軸を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、材料の相互作用による浸食は観察されなかった。 The diffractive optical element was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
(実施例3)
 実施例1と同じ構造を備えた構成の回折光学素子を、実施例1と同様の方法により作製した。本実施例は、中間層12の原料として、アクリレート樹脂(屈折率1.65、SP値11.1)を用いた点で実施例1と異なっている。得られた中間層12の厚さは、420nmであり、この値は、回折格子12の格子間隔の最小ピッチの3%である。
(Example 3)
A diffractive optical element having the same structure as that of Example 1 was produced in the same manner as in Example 1. This example is different from Example 1 in that an acrylate resin (refractive index: 1.65, SP value: 11.1) is used as a raw material for the intermediate layer 12. The thickness of the obtained intermediate layer 12 is 420 nm, and this value is 3% of the minimum pitch of the grating interval of the diffraction grating 12.
 回折効率を実施例1と同様の方法で算出したところ、R、G,Bの各波長すべてにおいて、85%以上であった。 The diffraction efficiency was calculated by the same method as in Example 1. As a result, the diffraction efficiency was 85% or more for all the R, G, and B wavelengths.
 回折光学素子を、光軸を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、材料の相互作用による浸食は観察されなかった。 The diffractive optical element was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
(比較例1)
 比較例として、図13に示すように、実施例1の回折光学素子のうち、中間層が存在しない構造の回折光学素子54を、実施例1と同様の方法により作製した。本比較例は、中間層を形成せずに、基体11上に、直接、光学調整層14を形成して作製した点で実施例1と異なる。
(Comparative Example 1)
As a comparative example, as shown in FIG. 13, among the diffractive optical elements of Example 1, a diffractive optical element 54 having a structure having no intermediate layer was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the optical adjustment layer 14 was formed directly on the substrate 11 without forming an intermediate layer.
 作製した回折光学素子54を、光軸を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、図2(a)に示すように材料の相互作用による浸食が観察された。また、回折格子形状の浸食により、集光機能を有しなかったため、回折効率を測定することができなかった。 The produced diffractive optical element 54 was cut along a cross section passing through the optical axis, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, as shown in FIG. It was done. In addition, the diffraction efficiency could not be measured because it did not have a light collecting function due to erosion of the diffraction grating shape.
(比較例2)
 比較例として、実施例1と同じ構造の回折光学素子を、実施例1と同様の方法により作製した。本比較例は、中間層として、基体のポリカーボネートのSP値との差が、0.1以下である、トリメチロールプロパントリアクリレート(TMPTA)(屈折率1.475、SP値9.7)を用いて形成した点で実施例1と異なる。
(Comparative Example 2)
As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. In this comparative example, trimethylolpropane triacrylate (TMPTA) (refractive index: 1.475, SP value of 9.7) having a difference from the SP value of the base polycarbonate of 0.1 or less is used as the intermediate layer. This is different from the first embodiment in that it is formed.
 中間層の厚さは、420nm(回折格子12の格子間隔の最小ピッチの3%)である。 The thickness of the intermediate layer is 420 nm (3% of the minimum pitch of the grating interval of the diffraction grating 12).
 作製した回折光学素子を、光軸を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、図2(a)に示すように材料の相互作用による浸食が観察された。また、回折格子形状の浸食により、集光機能を有しなかったため、回折効率を測定することができなかった。 The produced diffractive optical element was cut along a cross section passing through the optical axis, and the boundary between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, erosion due to the interaction of materials was observed as shown in FIG. It was. In addition, the diffraction efficiency could not be measured because it did not have a light collecting function due to erosion of the diffraction grating shape.
(比較例3)
 比較例として、実施例1と同じ構造の回折光学素子を、実施例1と同様の方法により作製した。本比較例は、中間層の厚さが最小ピッチの6%である840nmである点で実施例1と異なる。
(Comparative Example 3)
As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the thickness of the intermediate layer is 840 nm, which is 6% of the minimum pitch.
 作製した回折光学素子を、中心を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、材料の相互作用による浸食は観察されなかった。 The produced diffractive optical element was cut along a cross section passing through the center, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
 回折効率を実施例1と同様の方法で算出したところ、R、Gの波長では80%以上であったが、Bの波長では80%以下であった。 The diffraction efficiency was calculated by the same method as in Example 1. As a result, the R and G wavelengths were 80% or more, but the B wavelength was 80% or less.
(比較例4)
 比較例として、実施例1と同じ構造の回折光学素子を、実施例1と同様の方法により作製した。本比較例は、中間層の厚さが最小ピッチの8%である1.12μmである点で実施例1と異なる。
(Comparative Example 4)
As a comparative example, a diffractive optical element having the same structure as in Example 1 was produced by the same method as in Example 1. This comparative example differs from Example 1 in that the thickness of the intermediate layer is 1.12 μm, which is 8% of the minimum pitch.
 作製した回折光学素子を、中心を通る断面で切断し、基体と光学調整層の境界部分を光学顕微鏡で観察した結果、材料の相互作用による浸食は観察されなかった。 The produced diffractive optical element was cut along a cross section passing through the center, and the boundary portion between the substrate and the optical adjustment layer was observed with an optical microscope. As a result, no erosion due to the interaction of the materials was observed.
 回折効率を実施例1と同様の方法で算出したところ、R、G、Bの各波長すべてにおいて80%以下であった。 The diffraction efficiency was calculated by the same method as in Example 1. As a result, it was 80% or less for all the R, G, and B wavelengths.
 実施例および比較例における中間層厚さに対する1次回折効率の結果を図14に示す。図14には、中間層の厚さが最小ピッチの1%である場合の回折効率をシミュレーションによって求めた結果も示している。なお、シミュレーションは、中間層の材料に屈折率1.600、アッベ数33のアクリレート樹脂を用いた。

FIG. 14 shows the results of the first-order diffraction efficiency with respect to the intermediate layer thickness in Examples and Comparative Examples. FIG. 14 also shows the result of the diffraction efficiency obtained by simulation when the thickness of the intermediate layer is 1% of the minimum pitch. In the simulation, an acrylate resin having a refractive index of 1.600 and an Abbe number of 33 was used as the material of the intermediate layer.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2、3の結果から分かるように、中間層と基体との溶解度パラメータの差が0.8以上であれば、中間層に含まれる物質が基体へ浸透し、屈折率変化層が生成するのを抑制できる。また、中間層の厚さが最小ピッチの5%以下であれば、1次光の回折効率がどの波長の光に対しても80%以上となり、ほぼ設計どおりの光学特性を有する回折光学素子を実現できるのが分かる。 As can be seen from the results of Examples 1, 2, and 3, if the difference in solubility parameter between the intermediate layer and the substrate is 0.8 or more, the substance contained in the intermediate layer penetrates into the substrate, and the refractive index changing layer is formed. Generation can be suppressed. Further, if the thickness of the intermediate layer is 5% or less of the minimum pitch, the diffraction efficiency of the primary light is 80% or more for light of any wavelength, and a diffractive optical element having optical characteristics almost as designed is obtained. I can see that this is possible.
 一方、比較例1の結果から分かるように、中間層を形成しない場合には、光学調整層が基体へ浸透する結果、屈折率変化層が生成し、回折効率が著しく低下してしまう。また、比較例2の結果から分かるように、中間層に含まれる物質が基体へ浸透する場合にも、屈折率変化層が生成し、回折効率が著しく低下してしまう。 On the other hand, as can be seen from the results of Comparative Example 1, when the intermediate layer is not formed, the optical adjustment layer penetrates into the substrate, resulting in the formation of a refractive index change layer, which significantly reduces the diffraction efficiency. Further, as can be seen from the result of Comparative Example 2, even when the substance contained in the intermediate layer penetrates into the substrate, a refractive index changing layer is generated, and the diffraction efficiency is remarkably lowered.
 さらに、比較例3の結果から分かるように、中間層と基体との溶解度パラメータの差が0.8以上であっても、中間層の厚さが最小ピッチの5%よりも大きい場合、中間層の影響によって回折効率が低下するのが分かる。 Furthermore, as can be seen from the results of Comparative Example 3, even when the difference in solubility parameter between the intermediate layer and the substrate is 0.8 or more, the intermediate layer has a thickness greater than 5% of the minimum pitch. It can be seen that the diffraction efficiency decreases due to the influence of the above.
 図14に示すように、中間層の厚さが最小ピッチの5%以下であれば、1次光の回折効率が80%となり、最小ピッチの3%以下であれば、1次光の回折効率がどの波長の光に対しても85%以上であり、平均では、90%以上になることが分かる。また、シミュレーションの結果から中間層の厚さが最小ピッチの1%以下であれば、回折効率は95%以上得られることが分かる。 As shown in FIG. 14, if the thickness of the intermediate layer is 5% or less of the minimum pitch, the diffraction efficiency of the primary light is 80%, and if it is 3% or less of the minimum pitch, the diffraction efficiency of the primary light. Is 85% or more for light of any wavelength, and it is found that the average is 90% or more. Further, from the simulation results, it can be seen that if the thickness of the intermediate layer is 1% or less of the minimum pitch, the diffraction efficiency is 95% or more.
 このように、実施例の光学素子によれば、中間層の厚さが回折格子の格子間隔の最小値の5%以下であるため、中間層による回折効率の低下の影響が抑制される。また、中間層の第3光学材料に含まれる樹脂と基体の第1光学材料に含まれる樹脂との溶解度パラメータの差が0.8以上であるため、屈折率変化層が生成することが抑制される。 Thus, according to the optical element of the example, since the thickness of the intermediate layer is 5% or less of the minimum value of the grating interval of the diffraction grating, the influence of the decrease in diffraction efficiency due to the intermediate layer is suppressed. In addition, since the difference in solubility parameter between the resin contained in the third optical material of the intermediate layer and the resin contained in the first optical material of the base is 0.8 or more, the generation of the refractive index changing layer is suppressed. The
 本発明の回折光学素子は、例えばカメラのレンズ、空間ローパスフィルタ、偏光ホログラム等として好適に用いることができる。 The diffractive optical element of the present invention can be suitably used as, for example, a camera lens, a spatial low-pass filter, a polarization hologram, or the like.
1、11、21、101 基体
2、12、22、102 回折格子
3、14、24、103 光学調整層
4、13、23 中間層
10 型
17 スプレーコーティング装置
18 ディスペンサー
101a 屈折率変化層
51、52、53、54、111、112 回折光学素子
1, 11, 21, 101 Substrate 2, 12, 22, 102 Diffraction gratings 3, 14, 24, 103 Optical adjustment layers 4, 13, 23 Intermediate layer 10 Mold 17 Spray coating device 18 Dispenser 101a Refractive index changing layers 51, 52 53, 54, 111, 112 Diffractive optical element

Claims (17)

  1.  第1樹脂を含む第1光学材料からなり、表面に回折格子を有する基体と、
     第2樹脂を含む第2光学材料からなり、前記回折格子を覆うように前記基体に設けられた光学調整層と、
     第3樹脂を含む第3光学材料からなり、前記基体と前記光学調整層との間に設けられた中間層と
    を備え、
     前記第1光学材料の屈折率は前記第2光学材料の屈折率より小さく、前記第1光学材料の屈折率の波長分散性は前記第2光学材料の屈折率の波長分散性より大きい光学素子。
    A substrate made of a first optical material containing a first resin and having a diffraction grating on its surface;
    An optical adjustment layer made of a second optical material containing a second resin and provided on the base so as to cover the diffraction grating;
    It comprises a third optical material containing a third resin, and comprises an intermediate layer provided between the base and the optical adjustment layer,
    The refractive index of the first optical material is smaller than the refractive index of the second optical material, and the wavelength dispersion of the refractive index of the first optical material is larger than the wavelength dispersion of the refractive index of the second optical material.
  2.  前記第2樹脂は熱硬化性樹脂またはエネルギー硬化性樹脂である請求項1に記載の回折光学素子。 The diffractive optical element according to claim 1, wherein the second resin is a thermosetting resin or an energy curable resin.
  3.  前記第2光学材料はさらに無機粒子を含み、前記無機粒子が前記第2樹脂中に分散している請求項2に記載の回折光学素子。 The diffractive optical element according to claim 2, wherein the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
  4.  前記第3光学材料の屈折率が、前記第1光学材料の屈折率より大きく、前記第2光学材料の屈折率より小さい請求項3に記載の回折光学素子。 The diffractive optical element according to claim 3, wherein a refractive index of the third optical material is larger than a refractive index of the first optical material and smaller than a refractive index of the second optical material.
  5.  前記第1樹脂および前記第3樹脂の溶解度パラメータの差が0.8[cal/cm3]1/2以上である請求項4に記載の回折光学素子。 The diffractive optical element according to claim 4, wherein a difference in solubility parameter between the first resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
  6.  前記第2樹脂および前記第3樹脂の溶解度パラメータの差が0.8[cal/cm3]1/2以上である請求項5に記載の回折光学素子。 The diffractive optical element according to claim 5, wherein a difference in solubility parameter between the second resin and the third resin is 0.8 [cal / cm 3 ] 1/2 or more.
  7.  前記中間層の厚さは前記回折格子の格子間隔の最小値の5%以下である請求項6記載の回折光学素子。 The diffractive optical element according to claim 6, wherein the thickness of the intermediate layer is 5% or less of the minimum value of the grating interval of the diffraction grating.
  8.  前記中間層の厚さは前記回折格子の格子間隔の最小値の1%以下である請求項7に記載の回折光学素子。 The diffractive optical element according to claim 7, wherein a thickness of the intermediate layer is 1% or less of a minimum value of a grating interval of the diffraction grating.
  9.  前記第3樹脂は熱硬化性樹脂またはエネルギー硬化性樹脂である請求項8に記載の回折光学素子。 The diffractive optical element according to claim 8, wherein the third resin is a thermosetting resin or an energy curable resin.
  10.  前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化スカンジウム、アルミナおよびシリカからなる群より選ばれる少なくとも1つを主成分として含む請求項3に記載の回折光学素子。 The diffractive optical element according to claim 3, wherein the inorganic particles contain at least one selected from the group consisting of zirconium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, scandium oxide, alumina and silica as a main component.
  11.  前記無機粒子の実効粒径は、1nm以上100nm以下である請求項10に記載の回折光学素子。 The diffractive optical element according to claim 10, wherein an effective particle diameter of the inorganic particles is 1 nm or more and 100 nm or less.
  12.  前記第1樹脂はポリカーボネートである請求項1に記載の回折光学素子。 The diffractive optical element according to claim 1, wherein the first resin is polycarbonate.
  13.  前記中間層の厚さは10nm以上である請求項7に記載の回折光学素子。 The diffractive optical element according to claim 7, wherein the intermediate layer has a thickness of 10 nm or more.
  14.  第1樹脂を含む第1の光学材料からなり、表面に回折格子を有する基体を準備する工程と、
     前記基体の前記回折格子の表面を覆うように前記基体上に中間層を形成する工程と、
     前記中間層上に、第2樹脂を含む第2光学材料からなる光学調整層を形成する工程と
    を包含し、
     前記中間層を形成する工程は、
     第3樹脂の原料を前記基体の前記回折格子の表面を覆うように前記基体上に配置する工程と、
     前記第3樹脂の原料を硬化させることにより、第3光学材料からなる前記中間層を形成する工程と
    をさらに含む、回折光学素子の製造方法。
    A step of preparing a substrate made of a first optical material containing a first resin and having a diffraction grating on the surface;
    Forming an intermediate layer on the base so as to cover the surface of the diffraction grating of the base;
    Forming an optical adjustment layer made of a second optical material containing a second resin on the intermediate layer,
    The step of forming the intermediate layer includes
    Disposing a third resin material on the base so as to cover the surface of the diffraction grating of the base;
    And a step of forming the intermediate layer made of a third optical material by curing the raw material of the third resin.
  15.  前記第2光学材料はさらに無機粒子を含み、前記無機粒子が前記第2樹脂中に分散している、請求項14に記載の回折光学素子の製造方法。 The method of manufacturing a diffractive optical element according to claim 14, wherein the second optical material further includes inorganic particles, and the inorganic particles are dispersed in the second resin.
  16.  前記第3光学材料の屈折率が、前記第1光学材料の屈折率より大きく、前記第2光学材料の屈折率より小さい、請求項15に記載の回折光学素子の製造方法。 The method of manufacturing a diffractive optical element according to claim 15, wherein a refractive index of the third optical material is larger than a refractive index of the first optical material and smaller than a refractive index of the second optical material.
  17.  前記第1樹脂の溶解度パラメータと前記第3樹脂の原料の溶解度パラメータとの差は、0.8[cal/cm31/2以上である、請求項16に記載の回折光学素子の製造方法。 The method of manufacturing a diffractive optical element according to claim 16, wherein a difference between the solubility parameter of the first resin and the solubility parameter of the raw material of the third resin is 0.8 [cal / cm 3 ] 1/2 or more. .
PCT/JP2010/000587 2009-02-02 2010-02-01 Diffractive optical element and manufacturing method thereof WO2010087208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-021824 2009-02-02
JP2009021824 2009-02-02

Publications (1)

Publication Number Publication Date
WO2010087208A1 true WO2010087208A1 (en) 2010-08-05

Family

ID=42395470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000587 WO2010087208A1 (en) 2009-02-02 2010-02-01 Diffractive optical element and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2010087208A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038595A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Image-capturing device
WO2019031387A1 (en) * 2017-08-11 2019-02-14 ナルックス株式会社 Mold manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237001A (en) * 1987-03-26 1988-10-03 Kuraray Co Ltd Transmitting phase lattice or lens and production thereof
JPH10268116A (en) * 1997-03-27 1998-10-09 Minolta Co Ltd Diffraction optical element
JP2008191299A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Optical material comprising composite material and optical component using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237001A (en) * 1987-03-26 1988-10-03 Kuraray Co Ltd Transmitting phase lattice or lens and production thereof
JPH10268116A (en) * 1997-03-27 1998-10-09 Minolta Co Ltd Diffraction optical element
JP2008191299A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Optical material comprising composite material and optical component using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038595A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Image-capturing device
WO2019031387A1 (en) * 2017-08-11 2019-02-14 ナルックス株式会社 Mold manufacturing method
JPWO2019031387A1 (en) * 2017-08-11 2020-07-09 ナルックス株式会社 Mold manufacturing method
US11186512B2 (en) 2017-08-11 2021-11-30 Nalux Co., Ltd. Mold manufacturing method
JP7076147B2 (en) 2017-08-11 2022-05-27 ナルックス株式会社 Mold manufacturing method

Similar Documents

Publication Publication Date Title
JP4567094B2 (en) Diffractive optical element and method of manufacturing diffractive optical element
JP4077508B2 (en) Lens manufacturing method
JP4142734B2 (en) Diffractive optical element
JP5271457B1 (en) Diffractive optical element and method of manufacturing diffractive optical element
US8154803B2 (en) Diffractive optical element with improved light transmittance
JP4547467B1 (en) Diffractive optical element
JP2010102000A (en) Diffractive optical element and method for manufacturing the same
US7901787B2 (en) Resin composite-type optical element and process for producing the resin composite-type optical element
EP2081056B1 (en) Laminated diffractive optical element and resin composition therefor
JP6364626B2 (en) Diffraction optical element, method of manufacturing diffractive optical element, and mold used for manufacturing method of diffractive optical element
JP2020531908A (en) Diffractive light guide plate and manufacturing method of diffractive light guide plate
JP5596859B2 (en) Diffractive optical element
WO2013175801A1 (en) Diffraction optical element and manufacturing method therefor
JP2007291291A (en) Composite material and optical component obtained using the same
WO2010087208A1 (en) Diffractive optical element and manufacturing method thereof
JP2008191299A (en) Optical material comprising composite material and optical component using the same
WO2010140341A1 (en) Diffractive optical element
JP2011202067A (en) Nanocomposite material, optical lens or window material having nanocomposite material, and method of manufacturing nanocomposite material
JP2006232907A (en) Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element
JP2007191687A (en) Material for forming organic-inorganic composite, organic-inorganic composite, its manufacturing method and optical device
JP7224834B2 (en) Diffractive optical element, resin composition, optical equipment
JP2007291197A (en) Composite material and optical component obtained using the same
JP2021085950A (en) Diffraction optical element, optical instrument, and imaging apparatus
JP2011247925A (en) Composite optical element, method for manufacturing composite optical element, imaging device having composite optical element, and optical recording and reproducing device having composite optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP