WO2009155754A1 - 一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置 - Google Patents

一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置

Info

Publication number
WO2009155754A1
WO2009155754A1 PCT/CN2008/072224 CN2008072224W WO2009155754A1 WO 2009155754 A1 WO2009155754 A1 WO 2009155754A1 CN 2008072224 W CN2008072224 W CN 2008072224W WO 2009155754 A1 WO2009155754 A1 WO 2009155754A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow
pipe
steam
heat
Prior art date
Application number
PCT/CN2008/072224
Other languages
English (en)
French (fr)
Inventor
管理
Original Assignee
Guan Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guan Li filed Critical Guan Li
Publication of WO2009155754A1 publication Critical patent/WO2009155754A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to a steam-water reciprocating hot-adding and unloading progressive internal circulation pumping water supply technology for micro-condensation power generation, in particular to a steam and steam or steam and steam and water two-phase reciprocating internal circulation boiler feed water cooling system with steam turbine exhausting
  • the organic combination of pot, tank, valve, bend, pump and casing net realized by heat storage synchronously is a random type of boiler feed water of steam turbine exhaust steam micro-condensing closed circulation pump system, replacing conventional cooling tower in quasi-adiabatic insulation environment and
  • the condensing heat exchange heating system power station waste heat recovery power generation is equal to the boiler efficiency of the ultra-high power generation efficiency auxiliary system and micro-condensation power generation technology.
  • the national thermal power plant has an average power efficiency value of less than 40%.
  • the highest power generation efficiency power generation station is a gas turbine combined cycle ultra-supercritical boiler (33Mpa/700°C) only 52%, China Shanghai is building a new 1.2 million kilowatt installed capacity gas turbine combined with natural gas power generation
  • the power generation efficiency is also designed to be 60%.
  • ultra-high-voltage power generation such as ultra-supercritical power not only makes the cost of power plant equipment expensive, but also makes the management cost such as safe operation too high.
  • China's cement industry is at the international leading level of rotary kiln cement clinker production line or high-temperature kiln flue gas waste heat pure low-temperature power generation technology, still inefficient, only cement production line waste heat power generation as an example per ton clinker
  • the total amount of residual heat above at least 600,000 kcal is only 30 to 50 degrees, and the phase overlaps and smoke.
  • the temperature drop curve of the flue gas never intersects with the temperature rise curve of the regenerator working water temperature.
  • the theoretical reason is that the heat flux density of the waste heat boiler output is too low.
  • the main reason is the current steam turbine efficiency parameter.
  • the purpose of the invention is: through the replacement of the cooling tower of the existing thermal power plant, the micro-cooling of the pipe network of the boiler, tank, valve, bend, pump, casing, etc.
  • «Electric internal circulation pump water supply technology innovation The residual heat of the exhaust steam is fully recovered, and it is simultaneously utilized in the low-temperature low-pressure steam output of the primary power combustion boiler power generation cycle or medium, high, and ultra-high pressure steam output, even subcritical, critical, supercritical, ultra-supercritical pressure
  • the base of the pump feed water “waste heat platform”, which is the reheating “heat generation” of the boiler reduces the thermal power plant in the world by 30-50%, and achieves the quasi-full-efficiency power generation of primary energy. At the same time, it will reduce the working pressure standard of the newly built thermal power generation equipment in the world to the medium and high voltage level and achieve 60 to 90% of the power generation efficiency.
  • a flange flat tube plate and a closed flow tube plate are arranged at both ends of the main pipe of the main pressure line, and the plate plate is densely drilled and penetrates a plurality of inner thin tube bundles through the main pipe inner cavity
  • the ends of the bundle are evenly welded or expanded on the tube sheets at both ends, and the inner tube chambers outside the tube bundle and the main tube chamber outside the tube bundle wall are two relatively closed systems.
  • the water supply pipe of the inner tube of the tube bundle is formed by the flange of the flat or concave tube plate or the joint assembly of the pipe joints which are connected with the flow passage unit or the direct, curved, and sleeve connection; the main pipe is provided by each pipe
  • the connecting flanges at both ends of the flow unit are connected to the main pipes, and the two passages of the flow passage unit are relatively closed, and only the flange outer tubes of the plurality of pipe chambers are connected to each other with the first and the tail joints to form an opposite phase with respect to the inner cavity of the tube bundle.
  • the exhaust pipe of the exhaust pipe system; the main pipe and the main pipe are united with a single pipe flat (first), concave (tail) flange one by one straight, curved, upper, lower, left, right three-dimensional direction
  • the sub-tracking type or the parallel connection of a plurality of strings, and the flow-through groups of the flow-through units of each single-series series combination in the parallel connection are mutually closed and closed in the system.
  • Pipes the two ends of the pipe body are divided into high temperature end (with steam inlet and outlet water outlets) and low temperature end (with steam outlet and water supply inlet);
  • the steam exhaust pipe of the power generation cycle system stops correspondingly to the cooling tower or the condensation system (closed tower shut-off valve), the high-temperature end water supply outlet seat (open feed water valve) is connected to the boiler; the low-temperature end exhaust steam outlet seat is connected One to several micro-cooled tanks that are connected to each other (a water-cooled closed sandwich or a water-cooled coil or a coiled-tube heat exchanger that circulates another closed water), the tank is connected to the feed water pump, and the pump is closed The water supply inlet of the low temperature end is inserted into the flow port seat, and the seat is introduced into the water flow to push the water Enter the flow chamber, the water supply pipe, etc.
  • the micro-small power generation system is provided with a double casing (the exhaust steam flows from the outer casing opening of the high temperature end and the double casing through the coupling flange to the outer casing opening of the low temperature end) And closing the micro-cooling tank followed by the feed water pump, the pump continuously closes and pushes the water supply flow and connects to the low-temperature end of the inner casing mouth into the inner casing of the system to form a reverse flow of the feed water flowing in the outer casing inner exhaust flow, to The inner casing of the high-temperature end of the system is circulated to the "micro-solar steam boiler, steam turbine generator set*, micro-condensation cycle power generation of the water supply pipe, and the water supply system of the front and rear unidirectional pass-through system
  • the internal casing of the high-temperature end of the system is circulated to the "micro-solar steam boiler, steam turbine generator set*, micro-condensation cycle power generation of the water supply pipe, and the water supply system of the front and rear un
  • the steam exhaust of the steam turbine, the upper port leads the pump to the water flow; the lower end of the body lowers the outlet steam and closes into the micro-cooling tank and then feeds the feed water pump, and the pump continues to close the push water to the upper water inlet port of the low temperature end.
  • the final integral quasi-adiotherm of the hot-filled feed water flow in the upper semi-circular pipe constitutes the [two-and-a-half pipe heat pipe bundle pumping water supply system of the front and rear unidirectional pass, the inner and outer directional pass, and the system circulation pass)
  • the exhaust steam can only pass into the corresponding external main pipe cavity or the outer casing or the exhaust steam inflow port in the lower semicircular pipe of the high temperature end of the invention, and the only direct flow in the main pipe cavity is exchanged one by one.
  • Unloading cooling close to 100°C when approaching the end of the low-temperature end-of-flow section of the present invention or reaching a safe water source state of a feed water pump of a given design pressure or a feed pump having a density of approximately 1 In the top of the cold tank (the water-cooled interlayer or water-cooled coil provided in the tank body cools the through-flow water to a saturated water flow with a temperature difference slightly lower than 1 ⁇ 100 °C), ⁇ the bottom of the cold tank is connected to the feed water pump to form boiler feed water, water supply pressure
  • the working pressure of the boiler is slightly higher than the working pressure of the boiler to form a high-pressure feed water flow, and the flow is closed to push the water through the low-temperature end of the feed water inlet port, and the seat is correspondingly passed through the heat-transfer heating water flow in the inner thin tube bundle which is connected to each flat and concave tube plate.
  • the reverse thermal unloading outside the wall of the tube bundle is formed at the beginning of the pumping into the inner tube bundle.
  • Relative relative The warm water flow corresponds to the instantaneous heat exchange phase on the heat transfer section to constitute the immediate low temperature heat absorption section of the heat difference (the inner water pipe in the inner pipe bundle is in the section of the water pump under the steady pumping pressure by 1 ⁇ 100 °c temperature difference one by one Progressively absorbs the residual heat of the heat-heating section of the immediate thermal unloading and heats up for a period of time.
  • the feedwater flow in the bundle is lags several successive and gradually heats up.
  • the density of the non-vaporized heat phase section loaded is approximately equal to 1 and the temperature difference of 1 ⁇ 100 °C is maintained under the condition of stable water supply pressure and flow rate.
  • the section is heated one by one and the heat is applied one by one.
  • the water supply flow concentrates more hot water vapor molecules under relatively overpressure conditions to enhance the heat absorption effect of the exhaust steam flow.
  • the heat loading is inevitable.
  • the vaporization section in the tube bundle chamber can even lag to the progressive phase sections of the feedwater heat-loading of the high-temperature end water supply outlet port of the present invention, and the micro-cooling tank can be completely designed.
  • the cooling level is reduced as much as possible to achieve as much quasi-full-efficiency waste heat recovery as possible, at least to keep the feed water temperature at a temperature slightly lower than the temperature difference of the initial thermal unloading phase of the exhaust steam flow by 10 ⁇ 100 °c into the boiler (from From the safety point of view, the feed water for recovering waste heat of the present invention flows into the pot, and the radiation heat of the boiler should be avoided.
  • the surface can be semi-vaporized with safe water supply or with a redesigned reheater or with a new reheat boiler.
  • a low-capacity solar steam boiler as long as the steam output reaches a pressure of 0.7 ⁇ 1.25Mpa, the power generation efficiency of about 90% of the total output value under the boiler output rate can be achieved by the present invention.
  • the present invention will also greatly reduce the cost of power plant equipment and reduce operating costs while replacing and eliminating the cooling tower technology of the current thermal power plant.
  • the present invention replaces the water supply equipment of the conventional power station, not only recovers a large amount of waste heat, but also greatly reduces the boiler feed water to overcome the boiler work due to the presence of the system exhaust steam pressure on the water inlet side of the feed water pump of the present invention.
  • the pressure head parameters required for the pressure reduce the power consumption of the feed pump by two-thirds or more compared to the conventional power plant. (Conventionally, it takes about 3 to 5 kWh per ton of water to power the boiler.
  • the present invention only the power consumption of the boiler feed water is reduced to about 1 Kwh/t, and a 130 t/h boiler can save power consumption of only 230-4.5 million kWh per year after applying the invention.
  • the total exhaust heat of the steam turbine that can be recovered can be roughly utilized by 96% (about 4% of the micro-cooling heat dissipation), which is the total heat consumption of the boiler.
  • this low-voltage power plant compares the energy consumption of the actual 20T/H boiler operation, and its power generation efficiency reaches 80% or more, and the power generation capacity of the equivalent 60T/H conventional boiler is increased by the air space, but the invention is used together.
  • a thermal power plant with a capacity of 1 million kilowatts assumes that the ultra-high-voltage power generation cycle and the cooling tower condensation supporting system with a power generation efficiency of 45% are currently operating.
  • the closed cycle of the present invention can be used.
  • the boiler is reduced by correspondingly reducing the coal combustion amount to reduce the original boiler furnace temperature or using the radiant heating surface semi-water-cooled lining and replacing the small-area hearth and row. It is changed into a reheat boiler that is safe to operate in accordance with the quality of the steam-water mixed supply.
  • the power station uses the present invention to recover 95% of the waste heat of about 50% of the total primary energy consumption, which is originally cooled by the cooling tower, while maintaining the original on-grid power.
  • the economic analysis is: Assuming that the original design heat rate of the power plant is 350g/kwh standard coal, the total coal consumption per year is about 3.4 million/year, because the invention replaces the micro-condensed steam-water reciprocating heat of the cooling tower.
  • Adding and unloading the internal circulation pumping system to contribute water technology about 1.7 million yuan per year (if calculated by ⁇ 600 yuan/year, the annual energy saving benefit is about ⁇ 1 billion), and the whole micro-condensed steam-water reciprocating heat plus The unloading of the internal circulation pump system is about 20 million yuan for the water supply project.
  • the energy cost of recycling the waste heat power generation can be used to return the entire project cost.
  • the power generation efficiency is increased from 35% to 88%, and the investment of ⁇ 4.8 million is relatively reduced by the fixed assets investment of ⁇ 55 million, and the result is energy saving of 650,000/year standard coal (for the society) Take these energy saving
  • the coal can do whatever it takes, even if it is used to go to the city for winter heating, it is equivalent to storing equipment with a total heating capacity of 180 million kcal/hour in North China to burn 2.5 years of sufficient winter heating) or The energy-saving increase of 1.5 billion kWh of electricity (if ⁇ 0.38/kwh standard price, about 5.7 billion yuan).
  • the small and medium-sized coal-fired small thermal power plants with more than two thousand plans that have been shut down in China can be gradually equipped with the technical equipment of the present invention, thereby realizing the epoch-making upgrade of coal-saving technology and revitalizing the country.
  • All medium and small thermal power plants with asset revitalization conditions Assuming that the total installed capacity of all of the power plants in the revitalization target is 50 million kilowatts, the total fixed assets turnover is estimated to be ⁇ 100 billion, based on the construction cost of ⁇ 2,000/kW.
  • the total investment amount of the unified supporting system of the present invention is about 790 million yuan, and all of them are operated in the network (if the average power generation efficiency of each power plant is 30%, the energy saving value is increased to 88% ⁇ 109.8 billion/year.
  • the power generation efficiency of the fully-supported invention is still 88%, and its total coal-saving potential is equivalent to 950 million tons of standard coal.
  • ⁇ 0.38 yuan / kwh meter total coal value is about ⁇ 926.68 billion / year.
  • the cost of the national power supply of the present invention is only about 158 to 30 billion yuan (the oil can be recovered from all technical innovations in the ten days after the supporting operation of the invention).
  • the global energy-saving will be 0.38 ⁇ 0.56.
  • the total value of the yuan/kwh RMB value is about 8 ⁇ 11.84 trillion yuan / year of the value of pure energy-saving profits, and the global power consumption is reduced by 50%, so that the Kyoto Protocol's global greenhouse gas reduction Dozens of goals ahead Completed in the year; we can also focus on developing the global ultra-super-energy-saving power industry and strive for the best possible global energy strategy.
  • the present invention is equivalent to a permanent heat power plant for power generation of conventional high, medium and low pressure or ultra high pressure boilers, which can reduce the tower or condenser system by about 60%, or not Increase the power generation of conventional thermal power plants by increasing the cost of any energy, while still reducing the power consumption by 70% compared with conventional boiler feed water after replacing the boiler feed pump; in subcritical, supercritical, super Supercritical boiler
  • the invention will make due contributions to greenhouse gas emission reduction and substantial energy conservation worldwide, and will also open up a high-efficiency way for the future of the global power technology revolution and the world energy strategy to shift to solar thermal development.
  • Figure 1 is a first embodiment of the present invention, the vertical, vertical, vertical, horizontal random extension of the flat, concave tube plate flange connection of a number of main pipe bundle unit assembly assembly of the pot, machine, tower, can, Valves, bends, pumps, casing networks and other pumps are schematic diagrams of the cross-sectional structure and micro-condensation internal circulation feed water.
  • Fig. 2 is a top view showing the combined structure of the main body bending and connecting array of the main pipe bundle of the inner circulation of the water supply and the exhaust steam in the second embodiment of the present invention.
  • Fig. 3 is a schematic view showing the I-I cross-section and the partial cross-sectional structure of Fig. 2.
  • Fig. 4 is a schematic view showing the structure of a vertical superconducting heat pipe bundle extending and connecting unit in a flat tube sheet in an upper and a lower semicircular pipe according to a third embodiment of the present invention.
  • Figure 5 is a side elevational view of the A-A of Figure 4.
  • Figure 6 is a double flange connection between the coil units of the tube bundle single tube structure of the present invention Schematic diagram of the joint structure of the casing feed pump unit.
  • the external exhaust steam flow is welded to the vertical (horizontal) two bends, the straight joint pipe (send the vertical pipe or the horizontal pipe) 39, elbow header; 40, joint flange; 41, quasi-adiabatic insulation layer (simplified insulation layer); 42, "L” word flange panel; 43, "L” word flange
  • the communication port on the water flow (simple connection to the upper or upper mouth of the water supply); 44, the flange of the single pipe is bent; 45, the single pipe joint flange 180.
  • Elbow (simple pipe elbow); 46, a number of double casing straight, disk unit steam reciprocating hot plus, unloading internal circulation pump system water supply system and each two unit casing first and last connecting section (simplified double casing plate body) Or double-casing combination system); 47, reheating water supply pipe; 48, reheating steam water supply water tank to be improved by boiler (simplified hot water header); 49, self-controlled temperature regulating cooling water system Cold water inlet (simplified cooling water inlet); 50, cooling hot water outlet; 51, steam turbine exhaust (or corresponding feed water) flow direction or exhaust steam flow (simplified flow); 52, pump push water (or exhaust) flow Direction or water supply flow (simple water flow); 53.
  • the outflow section is schematic (tube outflow); 57.
  • Cheng single semicircular pipe unit assembly or scale 58.
  • Flange hole 59.
  • Outer casing of reverse exhaust flow 60.
  • Positive water supply inner casing 61.
  • Double-over-current assembly for double-tube unit connection of cycle power generation; 62, low-temperature end of the lower port of the tank pump (the lower port of the tank pump or the lower port) 63, low-temperature end pump water "return” into the water port (simply back to the water or called the mouth).
  • Fig. 1 the process of the element boiler 1 into the steam turbine 2 is unchanged, except that the tower valve 6 is added to the steam exhaust pipe 5 of the steam turbine 2 leading to the cooling tower 3, and the front side of the valve 6 is 5
  • the pump opening valve 7 of the exhaust steam pump system connecting pipe 21 is connected to the exhaust steam inlet port 20 on the high temperature side of the main flow pipe 10 of the main pipe 10; each of the 10 flow cells is provided with a concave pipe at each end
  • the plate 13 and the flat tube plate 14, the plate 13 and the plate 14 of the unit channel 10 are closed through the welding through cavity in the main pipe cavity 15 on the outer side of the two end plates (13, 14) as the main pipe inner cavity and the unit is single and single
  • the two tubes are combined into a tube bundle 11 of a through-cavity, and a plurality of unit tube bundles 11 are extended to each of the plates (14, 13) coupled by the coupling flange 40 to form a forward feed water flow 52, and the flow 52 is relayed through the system one
  • the mouthpiece 20 is inflow, and the stream 51 is zigzag to the exhaust outlet port 18 on the low temperature side of the main pipe flow unit assembly, the seat 1 8 Following the external exhaust steam pipe 30 continues into the top seat 31 of the micro-cooling tank 24.
  • a water-cooling coil 23 is provided in the tank 24, and the tube 23 is additionally self-sealed from the cooling water inlet 49, and the water is closed from the cooling hot water outlet 50 to the outside of the system.
  • the water-cooling coil 23 is closed to the exhaust steam flow 51, and the flow 51 is discharged to the bottom seat 32 at the bottom of the tank 24 and is connected to the feed water pump 22, and the pump 22 is connected to the pump push-connect pipe 33, and the pipe 33 continues to access the main pipe.
  • the flow-through inlet port 17 of the lower end of the flow unit assembly that is connected to the lower end of the tank 9 opens into the system end flow cavity 13 upward.
  • the seat 17 pushes the pumping pressure against the relatively uniformly closed combined feed water flow conduit 11 in the main conduit flow unit assembly and from the low temperature end to the reverse thermal unloading steam flow 51 in the main conduit chamber 15 outside the heat exchange wall of the conduit 11.
  • the heat is supplied to the water flow 52, and the flow 12 is up to the high temperature end of the high temperature end of the assembly of the main pipe 10, and the water supply outlet seat 19 at the upper portion of the high temperature end cap chamber 9 is pushed outwardly through the water supply pipe 28 into the element boiler 1, or
  • the steam-water reciprocating heat-adding and unloading internal circulation pumping water supply system of the front and rear unidirectional through-in and out-out directional system of the element boiler 1 of the meta-boiler 1 in which the reheating water tank 48 is relocated is introduced.
  • Fig. 2 the three-dimensional combination of the congruent flow-through unit of several main pipes 10 and the plurality of elbow headers 39 are combined into a quasi-adiabatic heat-insulation 41.
  • the pump is a water supply system.
  • the left side flange 40 of the tank 9 is connected to the first flow unit of the main pipe 10, and the left side flange 40 Connect the lower elbow header to 39 fold 180.
  • the second unit is equal to the body, and then the right end of the three connected down the elbow header 39 fold 180.
  • the third unit of the main pipe 10 is placed three times below the projection, and the body is four times connected to the lower elbow header 39 fold 180.
  • the fourth unit of the main pipe 10 is placed four times, and the body is connected to the lower elbow header 39 fold 180.
  • the fifth unit omnipotent of the main pipe 10 is placed under the projection, and the body is folded at the lower left front end by six horizontal folds and the elbow header is 39 fold 180.
  • the sixth unit congruent body of the main pipe 10 is horizontally placed from the left to the right in the lower side, and the right end is suspended from the elbow header 39 by 180. Seven right main pipes from right to left above the projection
  • the micro-cooled electric steam reciprocating heat-adding and unloading internal circulating pump of the tank 9 is the main body of the water supply system; the high-temperature end cap chamber 9 of the main body of the system leads out the feed water outlet port 19, and the low-temperature end cap cavity 9 leads to the water inlet port 17 .
  • the communicating passage 10 is designed to pass through the flow passage assembly of the vertical pipe 38 on the same side of the front end (unit).
  • both ends of the unit of the main pipe 10 are flat tube plates 14, and the tube bundle 11 is welded to the two holes 14 through the cavity 15 and is relatively independently closed with the main pipe cavity 15; the high temperature end cap cavity 9 is led upward.
  • the water supply outlet port 19 is pumped through the curved inflow 53 at the bottom to the fifth five-way junction 10 through the five elbow headers 39; the exhaust flow in the upper end side of the upper top 10
  • the mouthpiece 20 is connected to the tube flow surface 56 at the bottom via a four-way riser 38 Go out and go out 56.
  • the upper and lower semi-circular pipes of the main pipe 10 are matched to the middle-position horizontally-welded heat pipe tube plate 36, and the horizontal position of the through-plate is separated by two oppositely closed, and the water flow direction of the heat transfer pipe 11 of the upper semi-circular heat pipe is formed.
  • the lower semicircular heat pipe heat transfer pipe 10 is in the opposite direction of the steam flow, and only the superconducting heat pipe bundle 35 is combined with the upper unit of the upper fluid in the upper fluid, and the upper unit is straight and curved.
  • the double semi-circular pipe flow unit assembly 57 is relatively independently closed and the lower 10 straight, curved relatively independent closed communication; the assembly 57 enters and exits the steam flow from the lower port 37, and flows to the lower port 62. [ ⁇ 24 The pump 22, the pump 22 is connected to the port 62, and the water supply to the port 62 is finally passed through the upper port 43 to the element boiler 1.
  • the heat pipe tube sheet 36 of the superconducting heat pipe bundle 35 which is vertically and horizontally integrated is horizontally disposed, and the lower half pipe of the lower half heat pipe heat transfer pipe 10 and the upper half pipe of the upper half heat pipe heat pipe 11 are fully symmetrical.
  • the snap-fit is welded on the plate 36, corresponding to the "L" of the track 10 and the track 11, respectively, and the upper and lower sides of the slot flange plate 42 are connected to the exhaust steam port 37 and the two ellipse connecting the water supply port 43 Flat mouth.
  • the left and right sets of double-casing body flow passage unit head and tail section 46 are fully symmetrical first and last ends, and the outer sleeve 59 of each head is directly butted by the coupling flange 40, and the two units
  • the inner sleeves 60 are closed from the tube wall of the outer sleeve 59 where they are located, and are bent outwardly from the outer side of the tube 59, and are respectively bent out of the single-tube flange port 44, and then connected to the inside of the two units by a single-tube elbow 45.
  • the single tube flange port 44 of the sleeve 60 is a double sleeve coupling assembly 61.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

一种用于微冷凝发电的汽水往复加热、 冷却内循环泵系给水装置 技术领域
本发明涉及一种微冷凝发电的汽水往复热加、 卸载递进内循环泵系 给水技术 , 尤其是带有汽轮机排汽的汽与汽或汽与水两相往复内循环锅 炉给水流的冷却与蓄热同步实现的锅、 罐、 阀、 弯、 泵、 套管网等有机 组合为汽轮机排汽微冷凝闭合循环泵系的锅炉给水的随机各型 , 在准绝 热保温环境下代替常规冷却塔和冷凝性换热供热系统的电站余热全回 收发电的准等于锅炉效率的超高发电效率的辅机配套系统和微冷凝发 电技术。 发明背景
目前, 公知的全世界所有的热力发电厂凡采用汽轮机发电技术, 则 无一不是采用冷却塔系统或冷凝换热供热管网系统 , 系统只能是把汽轮 机尾汽冷却到水泵安全给水的温度和密度标准后方可进行正常的锅炉 给水, 否则, 将无法运转。 因此, 全球各个国家无论科技发达程度如何 所发得二次能源的电力都必须白白损失半数以上的一次能源为前提代 价, 既造成了有限矿物能源的浪费和资源锐减, 又严重污染大气和加剧 地球温室效应并带来了诸如地球升温、 两极水山融化、 海平面上升(全 球 80 %的大城市周居在沿海)、 气候反常的灾害曰渐加重等等, 严重地 影响和制约了全球人类社会的可持续发展, 更间接地激化了能源危机为 爆发点的地区争端乃至局部战争。 据统计, 在中国, 全国热电厂的平均 发电效率值不足百分之四十, 在全球, 最高发电效率发电水平的电站是 燃气轮机联合循环超超临界锅炉 ( 33Mpa/700°C )仅只 52 % , 中国上海 正在新建的 120万千瓦装机容量的燃机联合循环发电的天然气等电站的 发电效率也不过设计到 60 %。如此,似乎是说,只有进一步提高到临界、 超临界压力等才能高效发电, 然而超超临界等超高压发电不仅使电站设 备成本造价高昂 , 而且使安全运行等管理成本过高 ......面对全球现行热 力发电的技术和设备都不可避免地要把 50 ~ 80 %的一次能源或被称为 第五能源的一次余热资源冷却掉或者经过低热流密度负载耗热冷却之 后才能获得 20 ~ 30 %第五能源转换率的现状,我们不可能把这些滞后发 展的技术和大量发电站设备在短期内全部淘汰再全面更新换代 , 必须研 究出台适合各国国情和世界现实情况的改进与提高方案来; 再如, 中国 水泥行业等处在国际领先水平的回转窑水泥熟料生产线或高温窑炉烟 气余热纯低温发电技术, 仍然是效率低下, 仅以水泥生产线余热发电为 例每吨熟料至少有六十万大卡以上的余热总量却只发出 30 ~ 50度电量, 换相位重叠"和"烟气余热回收工程中 , 烟气温度下降曲线与余热器工质 水温度升温曲线永不相交" 理论的束缚等造成余热锅炉出力的热流密度 过低之外, 主要的原因还有现水平的汽轮机效率参数将随着蒸汽热流密 度的小幅降低而大幅度减小的"致命性"缺陷; 又如, 现行太阳能聚焦集 热性的蒸汽锅炉汽轮机循环发电技术无法降低十分昂贵的设备造价和 有效提高发电效率, 近二十年来仍停滞在美国西部的上万千瓦级太阳能 发电的试验站水平 (包括塔、 碟、 槽、 烟囱式几种太阳能电站在内)之 上没有明显提高和得到商业推广——二次能源转换效率普遍过低全球 各国均一无例外! 发明内容
本发明的目的是: 通过现役热电厂的取代冷却塔的锅、罐、 阀、 弯、 泵、 套管等管网的微冷 «电的内循环泵给水技术的创新把凡是汽轮机 排汽的余热准全效回收, 并将其同步利用在一次能源燃烧的锅炉发电循 环的低温低压蒸汽出力或中、 高、超高压蒸汽出力乃至于亚临界、临界、 超临界、 超超临界压力的蒸汽出力之中, 作为锅炉再热性"产热"出力循 环的泵给水 "余热平台" 的基数, 使全球各地的热电厂降耗 30 ~ 50 % , 达到一次能源的准全效发电。 与此同时, 把全球未来新建的热力发电的 设备工作压力标准降至中高压水准而实现 60 ~ 90 %的发电效率。
本发明的目的是这样实现的: 在主承压串并的主管道各管两端设法 兰平管板和拢流凹管板, 板板密集钻孔并过主管道内腔穿若干内细管管 束, 束两端均匀地焊接或胀接在两端管板之上, 管束内腔与管束壁外的 主管道腔互为两个相对闭合系。 管束内腔的给水流管道是经与其彼此通 流单元联通或直接、 弯接、 套管连接等管件接头的平、 凹管板或联接总 成的法兰对接构成; 主管道设由各管道通流单元两端的联接法兰联通各 主管道, 道通流单元各自两腔相对闭合而唯由若干管道腔的法兰外联管 彼此各单元首、 尾联接对应相通构成相对于管束内腔的反向排汽流的系 统排汽流管道; 主管道与主管道彼此单元以单管平 (首)、 凹 (尾) 法 兰一一延直、 弯、 上、 下、 左、 右三维方向的顺次接踪式或并设若干串 的多道并联, 并联中每单支串联组合体的各通流单元彼此首尾接踪式伸 延连接体的统一相对闭合又系统内循环相通的隔壁对流的组体管道, 管 道组体两端分为高温端(设排汽入流口座和给水出流口座 )和低温端(设 排汽出流口座和给水入流口座);高温端的排汽入流口座接来现役热电厂 发电循环系统的汽轮机排汽管道而相应停止向冷却塔或冷凝系排汽(关 闭塔截阀), 高温端的给水出流口座(打开给水阀)接去锅炉; 低温端 的排汽出流口座接入一至若干个彼此串并的微冷罐 (罐内设有水冷闭合 夹层或横竖流水或盘旋另系闭合流水的微水冷盘管或蛇管热交换器), 罐继接去给水泵, 泵闭合接通低温端的给水入流口座, 座引给水流推水 进入拢流腔, 给水流管道等直至高温端的高温端帽腔罐上的给水出流口 座, 座接去给水联管, 管通与设有入水逆止系统和安全补水系统并联式 通入锅炉或者锅炉里再热器集箱; 微小型发电系统设有双套管 (排汽流 自高温端外套管口通入并过若干联接法兰连接的双套管通流单元至低 温端的外套管口引出并闭合通入微冷罐继进给水泵, 泵续闭合推出给水 流并接入低温端的内套管口进系统内套管内形成正向于外套管内排汽 流的反向流的给水流 , 流至系统高温端的内套管口顺以 )给水联管推向 锅炉的 "微型太阳能蒸汽锅炉 ·汽轮机发电机组 *微冷凝循环发电,,的前后 单向通内外定向通系统循环总通的给水系统) 的内循环泵系给水装置; 大容量或低温发电系统配套还设有双半圆管道通流单元组合体微冷凝 发电(上下双半圆管道沿横向中位水平上下对扣焊接在热管管板,板中垂 向对称勾布超导热管管束上的给水与排汽双流互为反向隔管板上下流 动而彼此直、 弯单元接踪式组合体, 体高温端下口通入汽轮机排汽流, 上口引出泵压给水流; 体低温端下口引出排汽流并闭合进入微冷罐继而 供入给水泵, 泵续闭合推水接入低温端上口的给水入流口座进入上半圆 管道内形成热加载给水流构成^ [敖冷 电的前后单向通、 内外定向通、 系统循环总通的双半圆管热管束管板泵给水系统) 的最终整体准绝热
360。保温后包装成型。 这样, 当"锅炉 ·汽轮机 ·汽水往复热加、 卸载递进 内循环泵系 *冷却塔"或者是 "锅炉 ·汽轮机 *往复热加、 卸载递进内循环泵 系*冷凝器 "乃至于本发明未来配装的 "再热性高中低压锅炉*高中低压汽 轮机 ·往复热加、 卸载递进内循环泵系" 甚至是 "燃气轮机联合循环超超 临界再热锅炉 ·汽轮机 ·往复热加、 卸载递进内循环泵系"发电循环系统 运行正常, 则所有的冷却塔和冷凝器一律被本发明取代或被短路循环关 闭在本发明配套系统之中。 如此以来, 系统闭合循环而来的任何程度的 真空度和水质将不发生任何改变或影响 , 凡是汽轮机任何参量要求稳定 的排汽之蒸汽只能通入本发明的高温端的对应外主管道腔或外套管或 下半圆管道内通流的排汽入流口座内而唯一顺沿在主管道腔内外向排 流又逐一热卸载性降温, 比及接近本发明的低温端排汽流终段之时已接 近 100°C或达到既定设计压力下的饱和水或密度约等于 1的给水泵的安 全水源状态时, 闭合通入微冷罐顶内 (罐体所设的水冷夹层或水冷盘管 将通流水冷却为温差略低 1 ~ 100°C的饱和水流), ^敖冷罐底通入给水泵 内形成锅炉给水, 给水压力按常规略高于锅炉工作压力形成高压给水 流,流又闭合推水经由低温端的给水入流口座,座对应通去逐段过各平、 凹管板对接的内细管管束内热加载性升温给水流; 由于刚刚经过敖冷罐 的 1 ~ 100°C的敖降温处理,便是在一开始受泵推入内细管管束正向内流 水之初就形成了与管束壁面之外的反向热卸载而来的相对高温水流对 应载热段上的即时热交换相位构成热差的即时低温吸热段(段上内细管 管束内给水流水体在稳速泵压之下一段段逐一按 1 ~ 100 °c温度差递进 吸收即时热卸载的授热段上的余热热量而一段段升温, 当推进在对应热 卸载段上排汽流汽化段时, 则管束内的给水流已是滞后相续若干个即时 渐次热加载的非汽化热相位段上的密度约等于 1而在有条件稳定给水压 力和流量的前提下恪守 1 ~ 100°C温差"秩序"予以一段段逐一热加载吸 热而递次推进, 这就使得给水流在相对超压条件下集中了更多的待吸热 水汽分子强化了对排汽流所授来之热吸收的效果, 同时, 由于给水流超 压于锅炉工作压力 , 必然使热加载在管束腔内的汽化段一如低温发电循 环甚至能够滞后到本发明的高温端给水出流口座接近的给水热加载的 各递进相位段上, 设计合理的话完全可以把微冷罐的冷却量级尽可能地 缩小而实现尽可能地准全效余热回收, 至少可以使给水流温度保持略低 于排汽流初始热卸载相位段温差值 10 ~ 100 °c的温度状态进入锅炉 (从 安全角度考虑, 本发明回收余热的给水流入锅, 应避开锅炉的辐射受热 面方可半汽化安全给水或者配套设计再热器或者配套设计全新的再热 锅炉相配套)。 对于低微容量造型的太阳能蒸汽锅炉, 只要蒸汽出力达 到 0.7 ~ 1.25Mpa压力便可采用本发明实现锅炉出力率下总出力值的 90 %左右的发电效率。 不仅如此, 本发明还将在取代和取締现行热电厂的 冷却塔技术的同时,还大大地缩小电站设备成本和降低运行成本。另夕卜, 本发明取代了常规电站的给水设备, 不仅大量回收了余热, 而且由于本 发明中的给水泵入水一侧的系统排汽流压力的存在相应大大降低了锅 炉给水用以克服锅炉工作压力所需的压头参量, 使给水泵功耗比照常规 电站等比给水泵降低了三分之二或多 (常规情况下, 每向电站锅炉给一 吨水大约要耗 3 ~ 5度电, 而采用了本发明后仅就锅炉给水功耗约降低 到 lKwh/t左右水准, 一座 130t/h的锅炉应用本发明后仅给水节省耗电为 230 ~ 450万度 /年)。
如上一施,一台新设计 20T/H容量的 2.45Mpa工作压力的热效率 90 %的再热锅炉 (不再使用常规的过热器技术、 汽轮机抽汽再热技术、 冷 却塔技术 ), 用以匹配适型号的汽轮机与本发明低压循环微冷凝小型发 电的话。 假定"锅炉 ·汽轮机 ·纯冷凝发电机组"(循环系统暂不计算本发 明的"余热平台"之贡献)仍为常规的发电效率之 20%左右。 在本发明给 水系的微冷凝取代了纯冷凝之后 , 所能回收的汽轮机排汽余热总值大致 可利用 96 % (约相当于仍有 4%微冷散热 ),兹为锅炉承担的"发热总量" 约相当于这个小电厂匹配锅炉的 3 倍或多的容量, 即可认定为"增容了 60T/H的不须燃耗能源的余热平台的发电给水系统"。 那么, 这座低压 发电厂比照实际 20T/H锅炉运行所耗能分析, 其发电效率达到 80 %以 上, 凭空地提高了约相当 60T/H常规锅炉增容后的发电量, 但本发明配 套使用的敖冷 电的汽水往复热加、 卸载递进内循环泵系锅炉给水的 发电辅机的设备造价大约仅仅相当于一个月节能的价值。 如此以来, 这 项成果将影响我国低压发电设备的全面改造而一举提高到国际领先的 发电水平之上, 尤其是电力行业从此告别超高压以上电站昂贵投资而开 辟各国超廉价电力大发展与低温发电自备电厂蓬勃发展同兴并举的新 时代。
如上二施, 一座 100万千瓦装机容量的热电厂,假定现运行发电效 率为 45 %的超高压发电循环与冷却塔冷凝配套系统, 采用本发明而完全 取代冷却塔之后, 可以在本发明配闭合循环正常给水的热加载流"稳定 泵压泵水"之时,相应减少燃煤量以降低原锅炉炉膛温度或者采用辐射 受热面半水冷衬膛和更换小面积炉床、 排的综合措施把锅炉简易改成适 应汽水混供给水质量的安全运行的再热性锅炉。 这样, 该电站在保持原 上网电量不变的出力工况之下 , 利用本发明把原本经冷却塔冷却弃热的 大约占到一次能源耗用总量 50 %以上的余热给 95 %回收并用以使该电 站发电效率再大幅提高, 将其电站的总发电效率最高约为 (45+43 ) % =88 %。 经济性分析是: 假设该电厂的原设计热耗率为 350g/kwh标准煤 的话, 则每年耗煤总量约为 340万 /年左右, 因本发明取代了冷却塔的 微冷凝的汽水往复热加、卸载递进内循环泵系给水技术贡献,约节煤 170 万 /年(若按 ¥ 600元 / 计算, 年节能效益约为 ¥ 10亿元左右), 而整 个微冷凝的汽水往复热加、卸载内循环泵系给水工程投资约 ¥ 2000万元, 约节能运行八天便可因回收余热发电之纯利回报全部工程成本。
如上三施,如果面对一座计划建设供热的城市热网配套的 30万千瓦 现行热电联产的城市居民采暖供热热电厂改建工程。 假定该电站发电效 率为 35 % , 其外的联产供热总出力约为 18000万大卡 /小时, 而常规的 热网建设投资大约需要 ¥ 6000万元左右。 采用了本发明后,把发电效率 从 35 %提高到 88 % , 以此投入 ¥ 480万元而相对减少 ¥ 5500万元固定 资产投资为前提, 结果是节能 65万 /年标准煤(可供社会拿这些节能 的煤随便去干什么都行, 即使是用去城市冬季供暖也相当于在中国华北 地区储备了可供 18000万大卡 /小时总供暖功率的设备燃用 2.5年充足的 冬季供暖的燃料)或者是由节能增产了 15亿度电量(若 ¥ 0.38元 /kwh 标准价计, 约折合 ¥ 5.7 亿元) 的馈赠。 这里应该指出, 即使是该电厂 的全部余热都可以按工业用商品热现价出售 (按中国浙江省杭州地区的 每吨工业用电站余热汽的售价 ¥ 124元 / 计),全年也只不过是 ¥ 3亿元 左右, 本发明将供热联产之热变为发电增产的纯利润几乎提高了一倍之 多。
如上四施, 可以把我国两千多座计划分步关停的中小型煤耗过高的 小火电厂逐步进行本发明技术设备配套, 以此实现划时代的节煤技术升 级并盘活全国各地还具备固定资产盘活条件的所有中小热电厂。 假定这 些所有处于盘活目标电厂的总装机容量为 5000万千瓦, 按建设成本为 ¥ 2000元 /千瓦标准计算的话,估计总固定资产盘活额约为 ¥ 1000亿元。 采用本发明统一配套的总投资额约为 ¥ 7.9亿元, 全部在网运行的话(若 原来各电厂平均发电效率为 30 % ,提高到 88 % ¥ 1098亿 /年节能价值。
如上五施, 在中国热电装机总容量 50000万千瓦, 各电厂平均发电 效率 39 %的话, 本发明全配套后的发电效率仍按 88 %其总节煤潜力约 折合 9.5亿吨标准煤,若按 ¥ 0.38元/ kwh计节煤总价值约为 ¥ 9268亿元 /年。 然而, 全国电力配套本发明的一次成本仅约 ¥ 158 ~ 300亿元(平 均可在本发明配套运行后的十天左右节煤收回全部技改投资) ......。
如上六施, 全世界各国总热电装机 (包括核电在内)假如是 50亿千 瓦装机容量且平均发电效率是 45 %的话,若采用本发明配套所有的电站 节能工程, 实现全球节能按 0.38 ~ 0.56元/ kwh人民币值的平价计总值, 大约为 8 ~ 11.84 万亿元 /年人民币价值的纯节能利润, 并且使全球电力 降耗 50 % , 使《京都议定书》所制定的全球温室气体减排目标提前几十 年完成; 我们也可以着重发展全球超超节能电力产业, 争取尽可能的全 球能源战略优势。
由于采用了上述方案, 本发明相当于为常规的高中低压或者超高压 锅炉发电的各地热电厂搭起了一座座永不耗用的足可以减少 60 %左右 塔或冷凝器系统, 或者说是在不增加任何能源耗费前提之下成倍地提高 了常规热电厂的发电量, 同时还在代替锅炉给水泵之后与常规电站锅炉 给水等比相对减少了 70 %的功耗; 在亚临界、 超临界、 超超临界锅炉发
20 ~ 50 %的发电效率。 本发明将为世界范围内的温室气体减排和大幅度 节能作出应有的贡献, 也将为全球未来各国的电力技术革命和世界能源 战略重心向太阳能热力开发转移开辟超高效率的途径。 附图简要说明
下面结合说明书附图对本发明作进一步说明。
图 1 , 是本发明第一个实施例的塔式直、 竖、 纵、 横随机延接平、 凹管板法兰联接若干主管道管束单元总成组合体的锅、机、塔、罐、 阀、 弯、 泵、 套管网等泵系局剖结构与微冷凝内循环给水示意图。
图 2, 是本发明第二个实施例给水流与排汽流热加、 卸载对流换热 内循环主管道管束总成立体弯接阵式组合结构上视图。
图 3, 是图 2的 I-I剖位、 局剖结构示意图。
图 4, 是本发明第三个实施例的上、 下半圆管道中平管板竖向超导 热管管束延联串并单元结构示意图。
图 5, 是图 4的 A-A剖位侧视图。
图 6, 是本发明的管束单管式结构的盘管单元之间四法兰连接的双 套管给水泵系单元联接总成结构示意图。
图中 1、 元锅炉 (或核电站反应堆)、 再热锅炉、 换热器锅炉 (简元 锅炉或称锅炉); 2、 汽轮机; 3、 冷却塔; 4、 发电机; 5、 汽轮机排汽 管道; 6、 塔轮通汽截止开启切换阀 (简塔截阀); 7、 泵系轮机通汽启 闭开关切换阀 (简泵开阀); 8、 高温端减压安全系; 9、 高 (低)温端 帽腔罐; 10、 夕卜(套) 圆 (或下半圆热管传热管道或外套管)管排汽流 主承压(或每设有劳逸有致的水冷夹层和外周盘制的水冷盘管)管道体 (简主管道或称排汽流道); 11、 内细管泵压给水流管 (单个内管或上 半圆热管传热管道)束管道(简管束或称给水流管道); 12、 外越主管 道法兰过流外闭合的上下下上通流单元排汽(或对应为给水)流道接力 90至 180度弧管排汽流联递相通的法兰对接管 (简法兰外联管); 13、 拢流腔底或顶、 侧底板的穿焊管束的 W管板(简 W管板或称拢流腔); 14、 通流对接给水(或对应为排汽)流管道接力拢流腔的 (法兰)平管 板(简平管板); 15、 主管道(外套管或下半圆管道)排汽(或给水) 流或相对设行反向流内高压腔(简主管道腔); 16、 对接管束(内套管 或上半圆管道)且拢流过流的对应正向给水(或排汽)流凹管板超高压 管束通腔(简管束凹拢腔或给水流通腔); 17、 低温端泵系给水入流口 法兰座(简给水入流口座); 18、 低温端排汽流出流口法兰座(简排汽 出流口座); 19、 高温端给水流出流口法兰座(简给水出流口座); 20、 高温端排汽流入流口法兰座(简排汽入流口座); 21、 排汽泵系联管; 22、 给水泵; 23、 自系闭合入出水水冷盘管 (简水冷盘管); 24、 微水 冷过水竖罐(简微冷罐); 25、 给水逆止阀; 26、 补水软水泵; 27、 软 水水源; 28、 给水联管; 29、 给水阀; 30、 排汽水联管; 31、 竖罐入水 顶口法兰座(简顶口座); 32、 底口座; 33、 泵推联通管; 34、 随机直、 弯、 横、 纵主管道、 管束分级通流单元串连贯通示意组合段(简示意单 元串贯段); 35、 超导热管管束; 36、 横平通设中隔两流上下半圆管道 组合上下相对给、 排水流的超导热管板(简热管管板); 37、 "吕"字口法 兰排汽流下连通口 (简连通排汽流下口或称下口); 38、 外联排汽流递 通焊接竖(横) 两弯、 直头联管 (简递通竖管或横通管); 39、 弯头联 箱; 40、 联接法兰; 41、 准绝热保温层(简保温层); 42、 "吕"字口法兰 面板; 43、 "吕"字口法兰给水流上连通口(简连通给水流上口或称上口); 44、 弯出单管法兰口; 45、 单管联通法兰 180。弯头(简单管弯头); 46、 若干双套管直、 盘单元汽水往复热加、 卸载内循环泵系给水系统及每两 单元体套管首、 尾连接段(简双套管盘体或称双套管组合系统); 47、 再热给水管; 48、 待改进的锅炉增设的再热汽水给水集箱示意 (简再热 水集箱); 49、 自控温调流的冷却水系冷水入口 (简冷却水入口); 50、 冷却热水出口; 51、 汽轮机排汽(或对应给水)流方向或排汽流(简排 汽流); 52、 泵推给水(或排汽)流方向或给水流(简给水流); 53、 弯 头中剖即时继往入流截面示意 (简弯入流); 54、 出流指示; 55、 入流 指示; 56、 递通管排汽流即时继往出流截面示意 (管出流); 57、 上下 两半圆管道中位水平焊接管束管板的给水与排汽双流互为反向流动的 双半圆管热管束管板系统管道件组合的基本单元总成(简双半圆管道单 元总成或称双半圆管道); 58、 法兰孔; 59、 反向排汽流的外套管 (简 外套管); 60、 正向给水流内套管 (简内套管); 61、 外套管口通入排汽 流, 流向低温端, 而内套管内通有反向流的给水流, 流至系统高温端的 内套管口顺以引给水泵泵压推流向锅炉的微型 "锅炉 ·汽轮机发电机组* 微冷凝循环发电"的双套管单元联接的双过流总成(简双套管联接总成); 62、 低温端通^ f敖罐泵的下口 (简通罐泵下口或称下口); 63、 低温端泵 压水 "返回性" 入水给水上口 (简返水上口或称上口)。 实施本发明的方式
在图 1中, 元锅炉 1出力通入汽轮机 2工艺不变, 唯是在汽轮机 2 通向冷却塔 3的汽轮机排汽管道 5之上加设塔截阀 6, 阀 6的前部道 5 支设排汽泵系联管 21的泵开阀 7,管 21接入主管道 10通流单元组合体 的高温端一侧的排汽入流口座 20; 每道 10通流单元两端分别设凹管板 13和平管板 14, 本单元道 10的板 13与板 14过主管道腔 15内闭合穿 过焊接通腔在两端板(13、 14 )的外侧为主管道内腔为本单元与上下单 两向组合成通腔的管束 11 ,若干单元管束 11延联每每以联接法兰 40联 接的板板(14、 13 ) 直通成正向给水流 52, 流 52接力通过的系统单向 给水流管道 11 , 而每上下各通流单元的道腔 15各自闭合唯由各法兰外 联管 12联接而彼此构成系统统一反向通流接力引去汽轮机排汽流 51 自 高温端一侧的排汽入流口座 20入流, 流 51曲折递通到主管道通流单元 组合体的低温端一侧的排汽出流口座 18,座 18继外接排汽水联管 30续 入微冷罐 24的顶口座 31。 罐 24内设水冷盘管 23, 管 23 自冷却水入口 49另外自闭合入水, 水又从冷却热水出口 50闭合引出系统之外。 水冷 盘管 23闭合体外为排汽流 51,流 51向罐 24底部的底口座 32排去并接 管通入给水泵 22, 泵 22继接泵推联通管 33 , 管 33续接入主管道通流 单元组合体的低温端末端接罐 9下部的通流的给水入流口座 17通入系 统末端拢流凹腔 13向上。 座 17向主管道通流单元组合体内的相对统一 闭合的组合给水流管道 11而从低温端正向于管道 11热交换壁外的主管 道腔 15 内的反向热卸载排汽流 51推行泵压之热加载给水流 52, 流 12 直至主管道 10组合体的高温端顶部的高温端帽腔罐 9上部的给水出流 口座 19, 座 19外推经给水联管 28进入元锅炉 1 , 或者是进入改设有再 热水集箱 48的元锅炉 1的微冷凝发电的前后单向通内外定向通系统循 环总通的汽水往复热加、 卸载递进内循环泵系给水系统。 在图 2中, 是若干主管道 10的全等通流单元和若干弯头联箱 39的 立体组合成准绝热保温 41 设备包装环境内的微冷凝发电的汽水往复热 加、 卸载递进内循环泵系给水系统。 其始于前部上顶道 10右端起外设 高温端帽腔罐 9, 罐 9左向法兰 40—接置主管道 10的第一通流单元全 等体,体左侧法兰 40二接垂下弯头联箱 39折 180。自左向右于一单元正 投影下方二置主管道 10 的第二单元全等体, 体再右端三接垂下弯头联 箱 39折 180。自右向左于投影下方三置主管道 10的第三单元全等体,体 复四接垂下弯头联箱 39折 180。自左向右于投影下方四置主管道 10的第 四单元全等体, 体又五接垂下弯头联箱 39折 180。自右向左于投影下方 五置主管道 10 的第五单元全等体, 体于最下方前部左端六接水平折后 弯头联箱 39折 180。自左向右于下方水平六置主管道 10的第六单元全等 体, 体于右端垂上弯头联箱 39折 180。自右向左于投影上方七置主管道
10第七单元全等体 如此向后上下每五置道 10为纵折联且复以四纵 排的最后是第二十单元全等体组合的最终于后部上顶右端接低温端帽 腔罐 9的微冷 电的汽水往复热加、 卸载递进内循环泵系给水系统主 体; 系统主体的高温端帽腔罐 9引出给水出流口座 19, 低温端帽腔罐 9 引开给水入流口座 17 , 唯是高温端的最上道 10的右端体上引开排汽入 流口座 20和低温端的最上道 10的右端体上引出排汽出流口座 18而同 此在自高温端起将每一个上下顺序设计连通的道 10 内道腔 15 于前尾 (单元 )后首(单元 ) 同侧递通竖管 38的通流组合体。
在图 3中, 主管道 10单元的两端均为平管板 14, 管束 11左右穿道 腔 15穿腔焊接两板 14并与主管道腔 15相对独立闭合; 高温端帽腔罐 9 向上引出给水出流口座 19是经由底部的弯入流 53处泵压推至向上五接 置道 10间过五只弯头联箱 39五弯而来; 上顶部道 10右端侧上引开的 排汽入流口座 20是流至底部的管流面 56处经由四 通竖管 38间联 向下出流 56而去。
在图 4中,是若干主管道 10的上下两半圆管道对扣式中位水平焊接 热管管板 36,通板横位隔开了两相对闭合而又形成上半圆热管传热管道 11给水流向与下半圆热管传热管道 10排汽流向相反, 唯由超导热管管 束 35 自下部流体中向上部流体内传导授(受)热的各单元全等体组合 的, 每每是上道 11直、 弯相对独立闭合联通和下道 10直、 弯相对独立 闭合联通的双半圆管道通流单元总成 57; 总成 57自下口 37入排汽流、 流至下口 62接^ [敖冷罐 24、 泵 22, 泵 22接上口 62, 口 62给水流最终经 上口 43接元锅炉 1而去。
在图 5中,水平横设有上下穿为一体的超导热管管束 35的热管管板 36, 下半圆热管传热管道 10的下半圆管与上半圆热管传热管道 11的上 半圆管全对称扣合焊接在板 36之上,对应道 10与道 11的"吕,,字口法兰 板面板 42之下、 上分别开的是连通排汽流口 37和连通给水流口 43的 两椭圆形扁口。
在图 6中, 左、右两组双套管盘体通流单元首、尾段 46的全对称的 首、 尾两头联接, 每头的外套管 59由联接法兰 40直对接, 而两单元的 内套管 60则从各自所在的外套管 59的管壁闭合同向弯出管 59体外一 侧并各设弯出单管法兰口 44, 尔后以单管弯头 45联接两单元的内套管 60的单管法兰口 44双套管联接总成 61。

Claims

权利要求书
1、一种微冷凝发电的汽水往复热加、卸载递进内循环泵系给水技术 , 是在常规的元锅炉 (1)、 汽轮机(2)、 发电机(4)、 冷却塔(3) 的冷 微冷凝发电, 其特征是: 在机(2)与塔(3) 的汽轮机排汽管道(5) 上设塔截阀 (6), 阀 (6)之前支设排汽泵系联管 (21), 管 (21 )顺次 通入主管道(10)通流单元组合体高温端的排汽入流口座(20), 继进 由若干法兰外联管 (12)连通若干主管道(10)通流单元组合体的主管 道腔 ( 15 ), 腔( 15 )递通到低温端的排汽出流口座( 18 ), 座( 18 ) 向 外通经排汽水联管 ( 30 )入内另系入、 出冷却水水冷盘管 ( 23 )的微冷 罐( 24 ) 内, 罐( 24 )底口座( 32 )接给水泵( 22 )的入水口, 泵( 22 ) 的出水口接泵推联通管 (33)续入系统低温端的给水入流口座(17), 座( 17 )通入排汽入、出流经过的若干主管道通流单元组合体内与道( 15 ) 相对闭合的管束, 管束每由若干彼此联接单元组体的拢腔凹管板(13) 与平管板( 14 ) 法兰对接连通的递从给水流管道( 11 ) 而直至高温端帽 腔罐(9)上的给水出流口座(19), 座(19)过给水联管 (28)进入元 锅炉 (1), 元锅炉 (1)复出力通入汽轮机 (2)构成发电给水循环的元 锅炉( 1 )、 汽轮(发电)机( 2 )、 主管道腔 ( 15 )、 管束给水流管道( 11 ) 等微冷凝泵系给水发电的或者具有主管道(10)、 两平管板(14)与管 束(11 )构成主管道管束基本结构通流单元并由弯头联箱 (39)、 联接 法兰 (40)、 排汽入流口座(20)、 给水出流口座(19)、 排汽出流口座 (18)、 泵(22)、 给水入流口座(17)等结构和循环通流特征的汽水往 复内循环泵系给水系统; 或者上下双半圆管道(57) 中位水平焊接热管 管板(36)的构成给水与排汽双流互为反向流动而彼此直、 弯单元接踪 式组合体, 体高温端的连通排汽流下口 (37)通来汽轮机排汽流(51) 排向下半圆管道的主管道腔(15), 腔(15)低温端的下口 (37) 经微 冷罐(24)、 给水泵(22)通向低温端的上口 (43)入去高温端, 高温 端的连通给水出流上口 (43) 引泵压给水流(52) 引自于上半圆管道的 给水流通腔(16) 而去元锅炉 (1) 的双半圆管道汽水内循环泵系给水 往复系统; 或者排汽流(51 ) 自高温端外套管 (59) 口通入并过若干通 流单元由双套管联接总成(61 )联接至低温端的外套管 (59) 口引出并 闭合通入微冷罐 ( 24 )继进给水泵( 22 ), 泵( 22 )续闭合形成给水流 (52)推出并接入低温端的内套管 (60) 口进入系统内套管 (60) 内形 成正向于外套管 (59) 内排汽流(51)反向流的给水流(52), 流(52) 至系统高温端的内套管 (60) 口顺以引水推向锅炉 (1)的 敖型太阳能 蒸汽锅炉 ·汽轮机发电机组,微冷凝循环发电,,的双套管汽水内循环泵系 给水往复系统的前后单向通内外定向通系统循环总通的微冷凝发电的 汽水往复热加、 卸载递进内循环泵系给水原理指导下的现行热电厂超超 节能技术和新型电厂的超高效率发电技术。
2、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 主 管道( 10 )内穿管束( 11 )并在两端分别焊定平管板( 14 )和 W管板( 13 ) 的联接法兰 (40), 而束(11 ) 穿道(10) 的主管道腔(15) 并分别串 通板( 14 )与板( 13 )焊接或胀接为腔为 ( 15 )相对自密闭入出通外, 而腔(15)则唯经两端每开引的法兰外联管 (12)侧向另入出通外待与 上、 下通流单元互通为系统腔( 15 ); 腔( 15 )内的管束给水流管道( 11 ) 则唯径向直通于各道( 10 )的板(13、 14)彼此联接而前后通在束( 11 ) 内外的正反单向接力互通的汽水往复热加、 卸载内循环系统组合体的主 管道管束基本通流单元; 单元间彼此以法兰 (40)与弯头联箱 (39)的 法兰 (40)相连接互通给水流通腔(16)并在设计高温端设高温帽腔罐 (9)开给水出流口座(19), 而于低温端设低温帽腔罐(9) 开给水入 流口座(17); 而若干基本管道通流单元的主管道腔(15) 则由每每此 道腔 ( 15 )之首的联管 ( 12 )与彼道腔 ( 15 )之尾的联管 ( 12 )对接组 成管道通流单元接踪组合互通的系统统一的道腔 ( 15), 其各通流单元 从系统高温端起上管道通流单元之末的相对低温端腔(15) 侧向联管
( 12)用作为排汽入流口座(20),通去下管道通流单元之首端的腔( 15 ), 而尾端的腔(15)设联管 (12)用作为排汽出流口座(18)通向再下管 道通流单元而去;给水泵( 22 )入水侧通来最末的管道通流单元的座( 18 ) 过微冷罐 ( 24 )的排汽流( 51 )闭合而来的既热卸载的凝结水流,泵( 22 ) 复推给水流(52)往口座(17)继入给水流管道(11) 的低温端向内逐 一热加载而去直至经给水出流口座(19)连续稳定地供向锅炉 (1 ) 的 直、 弯三维串、 并延接通流单元立体组合外装准绝热保温层(41) 的前 后单向通内外定向通系统循环总通的微冷凝发电的汽水往复热加、 卸载 递进内循环泵系的通流单元件和通流组合件以及管、 阀、 罐、 泵网系结 构。
3、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 若 干双半圆管道(57)的上下两半圆管道均对扣式中位水平焊接在横位的 热管管板(36)上下管道(57) 由板(36)横位隔成了两相对闭合而又 形成上半圆热管传热给水流管道(11 ), 给水流正向与下半圆热管传热 排汽流管道(10)排汽流向相反, 唯由超导热管管束(35) 自下部流体 中向上部流体内授热的传导授、 受热的各单元全等体组合的每每是上道
( 11 )相对独立闭合联通和下道( 10)相对独立闭合并上下联接通流于 系统高温端下口 (37)闭合通接排汽入流口座(20)和高温端上口 (43) 闭合接给水出流口座(19) 以及系统低温端的下口闭合接排汽出流口座
(18), 座(18) 继入微冷罐 (24)顺接给水泵(22) 最末推水进入给 水入流口座(17), 座(17) 直过道(11 ) 于高温端的上口座(19)推 向元锅炉 (1)的前后单向通内外定向通系统循环总通的汽水往复热加、 卸载递进内循环泵系给水结构。
4、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 汽 轮机 ( 2 )持续排出的排汽流( 51 ) 自高温端排汽入流口座( 20 )起依 次通过首先从高温端逐一入流降温直至降低到 100 °C左右的低温端的各 通流单元组合成的主管道腔( 15 )末, 继于低温端的排汽出流口座( 18 ) 外引而出, 出又闭合进入内腔设有另系入出水的水冷盘管 (23)的微冷 罐(24), 罐(24) 结合保证了低温饱和水质量于底口座(32)通去给 水泵(22), 泵(22)压水通向系统低温端帽腔罐(9)进入管束给水流 管道(11) 沿管束壁自低温端起逐一热加载泵压推进向高温端热加载一 步步吸收道(11)外反向排汽流(51) 的热卸载之热, 热使每节给水流
(52) 的温度始终与即时授热流(51)稳定在温差 1~100°C的水平上, 比及流(52)推至高温帽腔罐(9)从给水出流口座(19)供进元锅炉
(1)之时, 给水温度仍然与汽轮机 (2)的排汽流的最高排汽温度相差 保持 1 ~ 100 °C而实现微冷凝发电的前后单向通内外定向通系统循环总 通的汽水往复热加、 卸载递进内循环泵系给水工作原理与工艺过程。
5、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 双 套管盘体(46)通流单元彼此全对称的首、 尾相接, 每外套管 (59)接 头由联接法兰 (40)直、 弯对接, 而两单元的内套管 (60)则从各自所 在的外套管 (59)的管壁同向闭合弯出管 (59)体外的一侧并各弯出段 设单管法兰口 (44), 尔后以单管弯头 (45)联接两单元的内套管 (60) 的单管法兰口 (44); 系统高温端的外套管 (59) 闭合接排汽入流口座
(20), 高温端的内套管 (11) 闭合接给水出流口座(19); 系统低温端 的外套管 (59) 闭合接排汽出流口座(18), 低温端的内套管 (11 )管 闭合接给水入流口座( 17 );座( 18 )经由微冷罐 ( 24 )引入给水泵( 22 ), 泵(22)推水压入口座(17)过内套管 (60)的给水流通腔(16) 而从 高温端的内套管 (60)通座(19)给水入锅炉 (1 ) 的前后单向通内外 定向通系统循环总通的汽水往复热加、 卸载递进内循环泵系给水系统结 构。
6、根据权利要求 5所述的内循环泵系给水技术, 其具体特征是: 排 汽流(51 ) 自双套管盘体(46)组合通流体的高温端外套管 (59) 口用 作为排汽入流口座(20), 并过若干联接法兰 (40)连接的若干双套管 盘体(46) 直至低温端的外套管 (59) 口闭合接排汽出流口座(18), 座( 18 ) 引出并闭合通入微冷罐( 24 )继进给水泵( 22 ), 泵( 22 )续 闭合推出给水流(52)并接入低温端的内套管 (60) 口用作为给水入流 口座(17) 闭合经系统给水流管道(11 )形成正向于外套管 (59) 内排 汽流(51 )反向流的给水流(52), 流至系统高温端的内套管 (60) 口 用作为给水出流口座( 19 )顺闭合引给水联管( 28 )推向锅炉( 1 )的"微 型太阳能等蒸汽锅炉 ·汽轮机发电机组,微冷凝循环发电"的双套管单元 串并组合的前后单向通内外定向通系统循环总通的汽水往复热加、 卸载 递进内循环泵系给水系统的工作原理及工艺过程。
7、根据权利要求 3所述的内循环泵系给水技术, 其具体特征是: 双 半圆管道(57) 的中位水平焊接热管管板(36)构成上半圆热管传热给 水流管道( 11 )和下半圆热管传热排汽流管道( 10 ) 的两相对闭合的给 水与排汽双流互为反向流动而彼此在道(57) 两端设有的"吕,,字口法兰 面板(42)的上下两口分别直、 弯对应连接接踪式通流单元组合体, 体 高温端的下口 (37)用作为闭合通接的排汽入流口座(20)通入汽轮机 的排汽流(51 ), 高温端的上口 (43) 闭合接给水出流口座(19); 体低 温端的下口 (62) 闭合接排汽出流口座(18) 引出排汽流(51 )并闭合 进入微冷罐 (24)继而入给水泵(22), 泵(22)续于低温端上口 (63) 闭合接给水入流口座( 17 ), 口座( 17 ) 水进入上半圆管道给水流通腔 (16) 内形成逐一热加载给水流(52)并于高温端上口 (43) 闭合接给 水出流口座(19), 口座(19)供向元锅炉(1)的"高中低压大容量锅炉 •汽轮机发电机组,微冷凝循环发电"的双半圆管道热管通流单元串并组 合的前后单向通内外定向通系统循环总通的汽水往复热加、 卸载递进内 循环泵系给水系统的工作原理及工艺过程。
8、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 汽 轮机 (2)排出的排汽流(51 )循环经过单串联或若干支主管道(10) 管束(11)或双半圆管道(57)或双套管组合系统(46)并联的通流单 元组合体的即时互通给水流(52)与排汽流(51)的相对闭合正反方向 流, 是过管束(11) 的内细管管束的热交换壁或热管管板(36)上的超 导热管管束(35)或内套管 (60)的热交换壁把持续不断地逐一热卸载 授热而来的排汽流(51 )从高温高压汽化状态逐一降温到 100°C左右的 低温高压的饱和水状态, 形成了持续不断的满足给水泵(22)安全给水 水质条件的冷凝水流并闭合由泵(22)推水形成了低温超高压的给水流
( 52 ),流( 52 )复以从 100 °C在先由微冷罐( 24 )的自控温水冷盘管( 23 ) 吸热而略略降温的状态开始逐一热加载吸热而去渐次升温成高温高压 排汽流( 51 )仅差 1 ~ 100 °C的汽化给水流( 52 )并不断推向锅炉 ( 1 ) 的以; ί敖冷凝和极少量的弃热而完成全冷凝过程与非燃烧性的余热加热 产热而大量获得热功发电的过程统一有机整合并同步完成的微冷凝发 电工作原理与工艺过程。
9、根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 主 管道(10)和微冷罐 (24) 的内外或设有水冷夹层和水冷盘管 (23) 而 各自独立或统一设冷却水入口 (49)、 冷却热水出口 (50) 自动控温调 节流量和温度值 , 根据微冷量级和调整两流热交换相位温差高低参量的 需要而劳逸有致的微冷凝发电的微冷工作原理与结构工艺。
10、 根据权利要求 1所述的内循环泵系给水技术, 其具体特征是: 微冷罐 (24)或外设水冷盘管 (23)或水冷夹层的设冷却水入口 (49)、 冷却热水出口 (50) 自控温调节流量和根据微冷量级和调整两流热交换 相位温差高低参量的需要而串并联亦劳逸有致的微冷凝发电的微冷工 作原理与结构工艺。
PCT/CN2008/072224 2008-06-24 2008-09-01 一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置 WO2009155754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810126795 2008-06-24
CN200810126795.5 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009155754A1 true WO2009155754A1 (zh) 2009-12-30

Family

ID=41443976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072224 WO2009155754A1 (zh) 2008-06-24 2008-09-01 一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置

Country Status (2)

Country Link
CN (2) CN101614163A (zh)
WO (1) WO2009155754A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251941A (zh) * 2010-05-20 2011-11-23 陈钟 超大功率抛物柱镜面太阳能集热器+热力发电的混合型电站
CN102401737A (zh) * 2011-08-26 2012-04-04 沈阳黎明航空发动机(集团)有限责任公司 一种航空发动机试车台用螺旋式热量收集排气装置
CN109163449B (zh) * 2018-10-31 2024-04-09 王仙君 液体燃料燃烧锅炉
CN109973242A (zh) * 2019-04-23 2019-07-05 沪东重机有限公司 一种基于相变蓄热的发动机余热利用装置及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063142A (zh) * 1990-12-29 1992-07-29 张吉林 低背压再生循环式汽轮机设备
WO2005014981A1 (de) * 2003-07-31 2005-02-17 Siemens Aktiengesellschaft Verfahren und vorrichtung zur ausführung eines thermodynamischen kreisprozesses
US20060010868A1 (en) * 2002-07-22 2006-01-19 Smith Douglas W P Method of converting energy
CN1993536A (zh) * 2004-04-16 2007-07-04 西门子公司 用于执行热力学循环的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063142A (zh) * 1990-12-29 1992-07-29 张吉林 低背压再生循环式汽轮机设备
US20060010868A1 (en) * 2002-07-22 2006-01-19 Smith Douglas W P Method of converting energy
WO2005014981A1 (de) * 2003-07-31 2005-02-17 Siemens Aktiengesellschaft Verfahren und vorrichtung zur ausführung eines thermodynamischen kreisprozesses
CN1993536A (zh) * 2004-04-16 2007-07-04 西门子公司 用于执行热力学循环的方法和装置

Also Published As

Publication number Publication date
CN101614195A (zh) 2009-12-30
CN101614163A (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
CN104963776B (zh) 一种太阳能热互补联合循环发电系统
WO2020181677A1 (zh) 一种太阳能燃煤耦合灵活发电系统及运行方法
CN202281212U (zh) 一种电站锅炉二次再热系统
EP3081770A1 (en) Energy storage system and method
WO2023246030A1 (zh) 基于熔盐储热的火电机组灵活运行系统
WO2009155754A1 (zh) 一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置
CN110332026A (zh) 一种耦合凝抽背供热的抽汽发电供热系统及运行方法
CN203249228U (zh) 一种利用汽轮机抽汽的空气预热系统
CN205351277U (zh) 一种用于孤网运行的背压式汽轮机热力系统
CN110925041B (zh) 一种联合循环高效燃煤发电系统
CN101191699A (zh) 水泥余热回收系统及其余热回收方法
WO2022156218A1 (zh) 一种具有双工质的高效超临界二氧化碳锅炉
CN203036625U (zh) 一种燃煤机组蒸汽热力系统
CN103353107A (zh) 一种从高温高压气体中获取过热蒸汽的装置
CN209621416U (zh) 一种用于联合循环能量梯级利用的蓄热耦合抽汽集成系统
CN210035559U (zh) 一种基于燃气发电机烟气余热梯级综合利用装置
JP7143107B2 (ja) 複合発電プラント
CN206874322U (zh) 一种多压闪蒸有机朗肯循环余热发电的装置
CN206755129U (zh) 一种利用锅炉烟气余热的蒸汽发生装置
CN201110723Y (zh) 一种水泥余热回收系统
CN217055316U (zh) 双循环火力发电系统
CN101625115A (zh) 一种用于微冷凝发电的汽水往复加热、冷却内循环泵系给水装置
CN220103835U (zh) 一种基于换热介质和谷电的固体储能系统
CN216772824U (zh) 利用核能的电热汽联产联供系统
CN217953240U (zh) 地层储能发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.05.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08800736

Country of ref document: EP

Kind code of ref document: A1