WO2023246030A1 - 基于熔盐储热的火电机组灵活运行系统 - Google Patents

基于熔盐储热的火电机组灵活运行系统 Download PDF

Info

Publication number
WO2023246030A1
WO2023246030A1 PCT/CN2022/140497 CN2022140497W WO2023246030A1 WO 2023246030 A1 WO2023246030 A1 WO 2023246030A1 CN 2022140497 W CN2022140497 W CN 2022140497W WO 2023246030 A1 WO2023246030 A1 WO 2023246030A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
outlet end
temperature
inlet end
heat exchanger
Prior art date
Application number
PCT/CN2022/140497
Other languages
English (en)
French (fr)
Inventor
雒青
马汀山
居文平
常东锋
王伟
张建元
王东晔
耿如意
祁文玉
李�昊
骆楠
朱佳鑫
Original Assignee
西安热工研究院有限公司
西安西热节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热节能技术有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023246030A1 publication Critical patent/WO2023246030A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure relates to the technical field of thermal power units, and specifically to a flexible operation system for thermal power units based on molten salt heat storage.
  • the method of achieving deep peak shaving of thermal power units by reducing the minimum output of the boiler device is mostly limited by the minimum stable combustion load of the boiler device.
  • the stable combustion load of the boiler device is too low, equipment such as burners, coal mills, fans, etc.
  • the thermal power unit cannot operate stably under too low load, resulting in the thermal power unit being unable to operate for a long time under too low load.
  • the method of achieving deep peak shaving of the thermal power unit by reducing the minimum output of the boiler device is also limited by the minimum inlet smoke temperature of the denitrification device.
  • the present disclosure proposes a flexible operation system for thermal power units based on molten salt heat storage to improve the peak shaving capability of thermal power units.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • the purpose of this disclosure is to provide a flexible operation system for thermal power units based on molten salt heat storage.
  • embodiments of the present disclosure provide a flexible operation system for thermal power units based on molten salt heat storage, including: a boiler device, a low-temperature tank, a high-temperature tank, a first heat exchanger and a second heat exchanger; the first heat exchanger
  • the liquid inlet end of the heat-absorbing passage of the heat exchanger is connected to the liquid outlet end of the low-temperature tank, and the liquid outlet end of the heat-absorbing passage of the first heat exchanger is connected to the liquid inlet end of the high-temperature tank.
  • the first The steam inlet end of the heat release passage of the heat exchanger is connected to the steam outlet end of the steam-water separator of the boiler device, and the liquid outlet end of the heat release passage of the first heat exchanger is connected to the liquid inlet end of the water-cooled wall of the boiler device. ;
  • the liquid inlet end of the heat release passage of the second heat exchanger is connected to the liquid outlet end of the high temperature tank, and the liquid outlet end of the heat release passage of the second heat exchanger is connected to the liquid inlet end of the low temperature tank.
  • the liquid inlet end of the heat absorption passage of the second heat exchanger is connected to the liquid outlet end of the feed water pump of the boiler device, and the liquid outlet end of the heat absorption passage of the second heat exchanger is connected to the coal-saving end of the boiler device.
  • the liquid inlet end of the device is connected.
  • the boiler device includes: a furnace body; a water-cooling wall, the water-cooling wall is disposed on the inner wall of the furnace body; the steam-water separator, the liquid outlet end of the steam-water separator is connected to the water-cooling wall.
  • the liquid inlet end of the water-cooled wall is connected, and the liquid inlet end of the steam-water separator is connected with the liquid outlet end of the water-cooled wall; the economizer is arranged in the smoke outlet end of the furnace body.
  • the liquid outlet end of the economizer is connected to the liquid inlet end of the water-cooled wall; a high-pressure heater, the liquid outlet end of the high-pressure heater is connected to the liquid inlet end of the economizer, and the high-pressure heating
  • the steam inlet end of the device is connected to the steam outlet end of the high-pressure cylinder of the steam turbine and the steam outlet end of the medium-pressure cylinder of the steam turbine respectively; the water supply pump, the liquid outlet end of the water feed pump and the liquid inlet end of the high-pressure heater Connected; a superheater group, the superheater group is arranged in the furnace body, the steam inlet end of the superheater group is connected to the steam outlet end of the steam-water separator, and the steam outlet end of the superheater group is connected to the steam outlet end of the superheater group.
  • the steam inlet end of the high-pressure cylinder is connected.
  • the flexible operation system of the thermal power unit further includes: a recirculation pump, which is disposed at the liquid outlet end of the heat absorption passage of the first heat exchanger and the liquid inlet end of the water-cooled wall.
  • a recirculation pump which is disposed at the liquid outlet end of the heat absorption passage of the first heat exchanger and the liquid inlet end of the water-cooled wall.
  • the superheater group includes: a horizontal low-temperature superheater, the steam inlet end of the horizontal low-temperature superheater is connected to the steam outlet end of the steam-water separator; a vertical low-temperature superheater, the vertical low-temperature superheater The steam inlet end of the device is connected to the steam outlet end of the horizontal low-temperature superheater; a separation screen superheater, the steam inlet end of the separation screen superheater is connected to the steam outlet end of the vertical low-temperature superheater; the high-temperature superheater, The steam inlet end of the high-temperature superheater is connected to the steam outlet end of the partition screen superheater; the final-stage superheater, the steam inlet end of the final-stage superheater is connected to the steam outlet end of the high-temperature superheater, The steam outlet end of the last-stage superheater is connected to the steam inlet end of the high-pressure
  • the flexible operation system of the thermal power unit further includes: a first valve body, which is disposed in the heat release path between the steam outlet end of the steam-water separator and the first heat exchanger. On the pipeline between the steam inlet ends; a second valve body, the second valve body is arranged on the pipeline between the steam outlet end of the steam water separator and the steam inlet end of the horizontal low temperature superheater; A third valve body, the third valve body is disposed on the pipeline connecting the liquid outlet end of the water feed pump and the liquid inlet end of the high-pressure heater; a fourth valve body, the fourth valve body is disposed On the pipeline between the liquid outlet end of the water feed pump and the liquid inlet end of the heat absorption passage of the second heat exchanger.
  • the boiler device further includes: a high-temperature reheater, the high-temperature reheater is arranged in the furnace body, and the high-temperature reheater is located between the final superheater and the vertical low temperature Between the superheaters, the steam inlet end of the high-temperature reheater is connected to the steam outlet end of the high-pressure cylinder; the final reheater, the final reheater is arranged in the furnace body, and the final reheater is A stage reheater is located between the final stage superheater and the high temperature reheater. The steam inlet end of the final stage reheater is connected to the steam outlet end of the high temperature reheater. The final stage reheater The steam outlet end of the heater is connected to the steam inlet end of the medium pressure cylinder.
  • the flexible operation system of thermal power units further includes: a third heat exchanger; the heat absorption passage of the third heat exchanger is disposed between the liquid outlet end of the heat absorption passage of the first heat exchanger and The liquid inlet end of the high-temperature tank is connected, and the liquid inlet end of the heat absorption passage of the third heat exchanger is connected with the liquid outlet end of the heat absorption passage of the first heat exchanger.
  • the third heat exchanger The liquid outlet end of the heat absorption passage is connected to the liquid inlet end of the high-temperature tank; the heat release passage of the third heat exchanger is arranged between the steam inlet end of the final reheater and the high-temperature reheater.
  • the steam inlet end of the heat release passage of the third heat exchanger is connected to the steam outlet end of the high-temperature reheater, and the steam inlet end of the final reheater is connected to the steam inlet end of the third heat exchanger.
  • the steam outlet end of the heat release passage of the three heat exchangers is connected to the steam outlet end of the high-temperature reheater.
  • the flexible operation system of the thermal power unit further includes: a fifth valve body, the fifth valve body is disposed between the steam inlet end of the heat release passage of the third heat exchanger and the high temperature reheater.
  • the sixth valve body is arranged on the pipeline between the steam inlet end of the final reheater and the steam outlet end of the high temperature reheater. On the pipeline.
  • the flexible operation system of the thermal power unit further includes: a low-temperature molten salt pump.
  • the low-temperature molten salt pump is disposed between the liquid inlet end of the heat absorption passage of the first heat exchanger and the outlet of the low-temperature tank. When the liquid ends are connected, the liquid inlet end of the low-temperature molten salt pump is connected to the liquid outlet end of the low-temperature tank, and the liquid outlet end of the low-temperature molten salt pump is connected to the heat absorption passage of the first heat exchanger.
  • a seventh valve body is arranged on the pipeline between the liquid inlet end of the heat absorption passage of the first heat exchanger and the liquid outlet end of the low-temperature molten salt pump; high temperature Molten salt pump, the high-temperature molten salt pump is arranged between the liquid inlet end of the heat release passage of the second heat exchanger and the liquid outlet end of the high-temperature tank, and the liquid inlet end of the high-temperature molten salt pump is connected to the liquid outlet end of the high-temperature tank.
  • the liquid outlet end of the high-temperature tank is connected, and the liquid outlet end of the high-temperature molten salt pump is connected to the liquid inlet end of the heat release passage of the second heat exchanger; an eighth valve body is provided on The pipeline between the liquid inlet end of the heat release passage of the second heat exchanger and the liquid outlet end of the high-temperature molten salt pump is connected.
  • the flexible operation system of thermal power units further includes: a denitrification device, the smoke inlet end of the denitrification device is connected to the smoke outlet end of the boiler device.
  • the minimum stable combustion load of the boiler device is ensured and the output of the boiler device is reduced through molten salt heat storage, thereby increasing the peak shaving depth of the thermal power unit and improving the peak shaving capacity of the thermal power unit.
  • the thermal power unit is in peak demand, the heat stored in the molten salt is used to ensure the inlet water temperature of the economizer, so as to reduce the heating amount of the steam from the steam turbine to the water from the feed water pump, thereby improving the working capacity of the steam turbine and realizing the efficiency of the thermal power unit. Peak power generation. As a result, the flexible operation of thermal power units is achieved and the peak shaving capacity of thermal power units is effectively improved.
  • Figure 1 is a schematic structural diagram of a flexible operation system for thermal power units based on molten salt heat storage proposed by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a flexible operation system for thermal power units based on molten salt heat storage proposed by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a flexible operation system for thermal power units based on molten salt heat storage proposed by an embodiment of the present disclosure.
  • Boiler device 2. Low-temperature tank, 3. High-temperature tank, 4. First heat exchanger, 5. Second heat exchanger, 6. Furnace body, 7. Water-cooled wall, 8. Steam-water separation 9. Economizer, 10. High-pressure heater, 11. Feed water pump, 12. Recirculation pump, 13. Horizontal low-temperature superheater, 14. Vertical low-temperature superheater, 15. Separation screen superheater, 16. High-temperature superheater 17. Final stage superheater, 18. First valve body, 19. Second valve body, 20. Third valve body, 21. Fourth valve body, 22. High temperature reheater, 23. Final stage reheat 24. Third heat exchanger, 25. Fifth valve body, 26. Sixth valve body, 27. Low temperature molten salt pump, 28. Seventh valve body, 29. High temperature molten salt pump, 30. Eighth valve body.
  • the embodiment of the present disclosure proposes a flexible operation system for thermal power units based on molten salt heat storage, including a boiler device 1, a low-temperature tank 2, a high-temperature tank 3, a first heat exchanger 4 and a second heat exchanger 5.
  • the liquid inlet end of the heat absorption passage of the first heat exchanger 4 is connected to the liquid outlet end of the low temperature tank 2, and the liquid outlet end of the heat absorption passage of the first heat exchanger 4 is connected to the liquid inlet end of the high temperature tank 3.
  • the first The steam inlet end of the heat release passage of the heat exchanger 4 is connected to the steam outlet end of the steam-water separator 8 of the boiler device 1, and the liquid outlet end of the heat release passage of the first heat exchanger 4 is connected to the liquid inlet end of the water-cooled wall 7 of the boiler device 1.
  • the liquid inlet end of the heat release passage of the second heat exchanger 5 is connected to the liquid outlet end of the high temperature tank 3
  • the liquid outlet end of the heat release passage of the second heat exchanger 5 is connected to the liquid inlet end of the low temperature tank 2
  • the second heat exchanger 5 The liquid inlet end of the heat absorption passage of the heat exchanger 5 is connected to the liquid outlet end of the feed water pump 11 of the boiler device 1, and the liquid outlet end of the heat absorption passage of the second heat exchanger 5 is connected to the liquid inlet end of the economizer 9 of the boiler device 1.
  • the steam in the steam-water separator 8 does not enter the heat release passage of the first heat exchanger 4, and the high-temperature molten salt in the high-temperature tank 3 passes through the second heat exchanger 5.
  • the heat release passage then enters the low-temperature tank 2, and all the water from the feed water pump 11 passes through the heat absorption passage of the second heat exchanger 5 and then enters the economizer 9, thereby releasing the heat of the high-temperature molten salt to the feed water. All the outlet water from the water pump 11 and all the outlet water from the feed water pump 11 enter the economizer 9 after being heated.
  • part of the steam in the steam-water separator 8 releases heat and enters the water-cooled wall 7, thereby increasing the working fluid flow in the water-cooled wall 7, reducing the steam volume of the boiler device 1, reducing the output of the boiler device 1, and thereby increasing thermal power.
  • the peak shaving depth of the unit is the maximum shaving depth of the unit.
  • both the first heat exchanger 4 and the second heat exchanger 5 include a heat absorption passage and a heat release passage for heat exchange. Heat can be exchanged directly between the heat absorption passage and the heat release passage, or through a heat exchanger. Thermal medium transfers heat indirectly.
  • the boiler device 1 includes a furnace body 6, a water-cooled wall 7, a steam-water separator 8, an economizer 9, a high-pressure heater 10, a feed water pump 11 and a superheater group.
  • the water-cooled wall 7 Set on the inner wall of the furnace body 6, the liquid outlet end of the steam-water separator 8 is connected to the liquid inlet end of the water-cooled wall 7, the liquid inlet end of the steam-water separator 8 is connected to the liquid outlet end of the water-cooled wall 7, and the economizer 9 is provided In the smoke outlet end of the furnace body 6, the liquid outlet end of the economizer 9 is connected to the liquid inlet end of the water-cooled wall 7, and the liquid outlet end of the high-pressure heater 10 is connected to the liquid inlet end of the economizer 9.
  • the high-pressure heater The steam inlet end of 10 is connected to the steam outlet end of the high-pressure cylinder of the steam turbine and the steam outlet end of the medium-pressure cylinder of the steam turbine respectively.
  • the liquid outlet end of the feed water pump 11 is connected to the liquid inlet end of the high-pressure heater 10.
  • the superheater group is arranged in the furnace body. 6, the steam inlet end of the superheater group is connected to the steam outlet end of the steam-water separator 8, and the steam outlet end of the superheater group is connected to the steam inlet end of the high-pressure cylinder.
  • the water-cooled wall 7 absorbs the radiant heat released by the flame and high-temperature flue gas in the furnace body 6.
  • the water or steam in the water-cooled wall 7 enters the steam-water separator 8 for steam-water separation, and the water in the steam-water separator 8 returns.
  • the steam part in the steam-water separator 8 enters the heat release passage of the first heat exchanger 4 to release heat, so as to reduce the boiler energy consumption.
  • the output of the device 1; when the power demand is large, as shown in Figure 3, all the steam in the steam-water separator 8 enters the superheater group to increase the output of the boiler device 1.
  • the remaining external water or deoxygenated water is pressurized and transported by the water pump 11 and passes through the second heat exchanger 5 in order to absorb heat.
  • the passage and economizer 9 then enter the water-cooled wall 7 to increase the temperature of the smoke outlet of the boiler device 1; when the power demand is high, as shown in Figure 3, external water or deoxygenated water is increased by the water supply pump 11 It is transported under pressure and sequentially passes through the heat absorption passage of the second heat exchanger 5 and the economizer 9 before entering the water wall 7 to increase the output of the boiler device 1 .
  • the steam turbine includes a high-pressure cylinder, an intermediate-pressure cylinder, and a low-pressure cylinder.
  • the main steam generated by the boiler device 1 passes through the high-pressure cylinder, the intermediate-pressure cylinder, and the low-pressure cylinder in sequence and performs work before entering the condenser.
  • the condenser will perform work.
  • the final steam is condensed into condensed water.
  • the condensed water is heated by a low-pressure heater and then enters the deaerator.
  • the outlet water from the deaerator is deaerated water.
  • the low-pressure heater heats the condensed water through the steam outlet of the medium-pressure cylinder and the low-pressure cylinder, and the heated steam enters the liquid outlet end of the condenser.
  • the high-pressure heater 10 passes through the steam outlet of the high-pressure cylinder and the medium-pressure cylinder. The deaerated water is heated, and the heated steam enters the liquid inlet end of the deaerator.
  • the flexible operation system of thermal power units also includes a recirculation pump 12.
  • the recirculation pump 12 is disposed between the liquid outlet end of the heat absorption passage of the first heat exchanger 4 and the liquid inlet of the water-cooled wall 7. Between the two ends, the liquid inlet end of the recirculation pump 12 is connected to the liquid outlet end of the heat absorption passage of the first heat exchanger 4, and the liquid outlet end of the recirculation pump 12 is connected to the liquid inlet end of the water-cooled wall 7.
  • the recirculation pump 12 pressurizes and delivers the water from the heat absorption passage of the first heat exchanger 4 to the water-cooling wall 7 to ensure the stable heat release of part of the steam in the steam-water separator 8 .
  • the superheater group includes a horizontal low-temperature superheater 13, a vertical low-temperature superheater 14, a partition screen superheater 15, a high-temperature superheater 16 and a final superheater 17.
  • the horizontal low-temperature superheater 13 The steam inlet end is connected to the steam outlet end of the steam-water separator 8, the steam inlet end of the vertical low temperature superheater 14 is connected to the steam outlet end of the horizontal low temperature superheater 13, the steam inlet end of the partition screen superheater 15 is connected to the vertical low temperature superheater
  • the steam outlet end of 14 is connected, the steam inlet end of high-temperature superheater 16 is connected with the steam outlet end of partition screen superheater 15, the steam inlet end of final-stage superheater 17 is connected with the steam outlet end of high-temperature superheater 16, and the steam outlet end of final-stage superheater 17 is connected.
  • the steam outlet end of the superheater 17 is connected to the steam inlet end of the high-pressure cylinder of the steam turbine;
  • the partition screen superheater 15, the high temperature superheater 16, the final superheater 17, the vertical low temperature superheater 14, the horizontal low temperature superheater 13 and the economizer 9 are arranged along the direction from the furnace of the furnace body 6 to the smoke outlet end of the furnace body 6 distributed in sequence.
  • the steam in the steam-water separator 8 passes through the horizontal low-temperature superheater 13, the vertical low-temperature superheater 14, the separation screen superheater 15, the high-temperature superheater 16 and the final superheater 17 and is heated to meet the requirements of the high-pressure cylinder of the steam turbine.
  • the main steam enters the high-pressure cylinder of the steam turbine to perform work to generate electricity from the thermal power unit.
  • the flexible operation system of thermal power units also includes a first valve body 18, a second valve body 19, a third valve body 20 and a fourth valve body 21.
  • the first valve body 18 is disposed on On the pipeline between the steam outlet end of the steam-water separator 8 and the steam inlet end of the heat release passage of the first heat exchanger 4, the second valve body 19 is disposed between the steam outlet end of the steam-water separator 8 and the horizontal low-temperature superheater 13
  • the third valve body 20 is disposed on the pipeline between the liquid outlet end of the feed water pump 11 and the liquid inlet end of the high-pressure heater 10, and the fourth valve body 21 is disposed on the feed water pump 11
  • the pipeline between the liquid outlet end of 11 and the liquid inlet end of the heat absorption passage of the second heat exchanger 5 is connected.
  • the boiler When the temperature of the smoke outlet end of the device 1 is high, as shown in Figure 2, the third valve body 20 is opened and the fourth valve body 21 is closed, so that all the water from the feed water pump 11 enters the high-pressure heater 10 to absorb heat, and the boiler device When the temperature of the smoke outlet end of 1 is low, as shown in Figure 1, adjust the opening of the third valve body 20 and the fourth valve body 21 so that part of the water from the water supply pump 11 enters the high-pressure heater 10 to absorb heat, and the rest The effluent water enters the heat absorption passage of the second heat exchanger 5 and absorbs heat.
  • the first valve body 18 and the third valve body 20 are closed, and the second valve body 19 and the fourth valve body 21 are opened, so that all the steam in the steam-water separator 8 is sequentially It enters the horizontal low-temperature superheater 13, the vertical low-temperature superheater 14, the partition superheater 15, the high-temperature superheater 16 and the final superheater 17 to absorb heat, so that all the water output from the feed water pump 11 enters the second heat exchanger 5 absorb heat in the heat-absorbing path.
  • the steam in the steam-water separator 8 it is convenient for the steam in the steam-water separator 8 to be in the heat release passage of the first heat exchanger 4 and horizontally
  • the distribution between the low-temperature superheaters 13 and the distribution of the water output from the feed water pump 11 between the high-pressure heater 10 and the heat absorption passage of the second heat exchanger 5 make the overall use more convenient.
  • the boiler device 1 also includes a high-temperature reheater 22 and a final reheater 23.
  • the high-temperature reheater 22 is disposed in the furnace body 6, and the high-temperature reheater 22 is located in the final stage. Between the first-stage superheater 17 and the vertical low-temperature superheater 14, the steam inlet end of the high-temperature reheater 22 is connected to the steam outlet end of the high-pressure cylinder.
  • the final-stage reheater 23 is arranged in the furnace body 6, and the final-stage reheater 23 is installed in the furnace body 6. 23 is located between the final-stage superheater 17 and the high-temperature reheater 22.
  • the steam inlet end of the final-stage reheater 23 is connected to the steam outlet end of the high-temperature reheater 22.
  • the steam outlet end of the final-stage reheater 23 is connected to the middle The steam inlet end of the pressure cylinder is connected.
  • the outlet steam from the high-pressure cylinder of the steam turbine passes through the high-temperature reheater 22 and the final reheater 23 in sequence and is heated into reheated steam that meets the requirements of the intermediate-pressure cylinder of the steam turbine.
  • the reheated steam enters the intermediate-pressure cylinder of the steam turbine. Work is done in order to realize the power generation of thermal power units.
  • the flexible operation system of thermal power units also includes a third heat exchanger 24.
  • the heat absorption passage of the third heat exchanger 24 is disposed at the outlet of the heat absorption passage of the first heat exchanger 4.
  • the liquid inlet end of the heat absorption passage of the third heat exchanger 24 is connected to the liquid outlet end of the heat absorption passage of the first heat exchanger 4.
  • the liquid outlet end of the heat passage is connected to the liquid inlet end of the high-temperature tank 3, and the heat release passage of the third heat exchanger 24 is arranged between the steam inlet end of the final reheater 23 and the steam outlet end of the high-temperature reheater 22.
  • the steam inlet end of the heat release passage of the third heat exchanger 24 is connected to the steam outlet end of the high temperature reheater 22, and the steam inlet end of the final reheater 23 is respectively connected with the steam outlet end of the heat release passage of the third heat exchanger 24. The end is connected to the steam outlet end of the high temperature reheater 22.
  • the boiler device 1 is at the minimum stable combustion load, and the low-temperature molten salt passes from the low-temperature tank 2 through the heat absorption passage of the first heat exchanger 4 and the third heat exchanger in sequence.
  • the output of the boiler unit 1 can be further reduced through molten salt heat storage while ensuring the minimum stable combustion load of the boiler unit 1, thereby once again increasing the regulation of the thermal power unit. Peak depth further improves the peak shaving capability of thermal power units.
  • the third heat exchanger 24 includes a heat absorption passage and a heat release passage for heat exchange. Heat exchange between the heat absorption passage and the heat release passage can be direct or indirect heat exchange through a heat conduction medium.
  • the flexible operation system of thermal power units also includes a fifth valve body 25 and a sixth valve body 26.
  • the fifth valve body 25 is disposed in the heat release passage of the third heat exchanger 24 to inlet steam.
  • the sixth valve body 26 is disposed on the pipe between the steam inlet end of the final reheater 23 and the steam outlet end of the high-temperature reheater 22. On the road.
  • the arrangement of the fifth valve body 25 and the sixth valve body 26 facilitates the distribution of steam in the high-temperature reheater 22 between the heat release passage of the third heat exchanger 24 and the final reheater 23, so that The overall use is more convenient.
  • the flexible operation system of thermal power units also includes a low-temperature molten salt pump 27, a seventh valve body 28, a high-temperature molten salt pump 29 and an eighth valve body 30.
  • the low-temperature molten salt pump 27 is provided in The liquid inlet end of the heat absorption passage of the first heat exchanger 4 is connected to the liquid outlet end of the low-temperature tank 2.
  • the liquid inlet end of the low-temperature molten salt pump 27 is connected to the liquid outlet end of the low-temperature tank 2.
  • the low-temperature molten salt pump 27 The liquid outlet end is connected to the liquid inlet end of the heat absorption passage of the first heat exchanger 4, and the seventh valve body 28 is provided at the liquid inlet end of the heat absorption passage of the first heat exchanger 4 and is connected to the liquid outlet end of the low-temperature molten salt pump 27.
  • the high-temperature molten salt pump 29 is installed between the liquid inlet end of the heat release passage of the second heat exchanger 5 and the liquid outlet end of the high-temperature tank 3.
  • the liquid inlet end of the high-temperature molten salt pump 29 is connected to the high-temperature tank 3.
  • the liquid outlet end of the high-temperature molten salt pump 29 is connected to the liquid inlet end of the heat release passage of the second heat exchanger 5
  • the eighth valve body 30 is arranged at the inlet of the heat release passage of the second heat exchanger 5.
  • the liquid end is connected to the liquid outlet end of the high-temperature molten salt pump 29 on the pipeline.
  • the low-temperature molten salt in the low-temperature tank 2 is pressurized and transported by the low-temperature molten salt pump 27 and sequentially passes through the heat-absorbing passage of the first heat exchanger 4 and the heat-absorbing passage of the third heat exchanger 24 before entering the high-temperature state.
  • the high-temperature molten salt in the high-temperature tank 3 is pressurized and transported by the high-temperature molten salt pump 29 and enters the low-temperature tank 2 after passing through the heat release path of the third heat exchanger 24. , to ensure the stable heat release of high-temperature molten salt.
  • the low-temperature molten salt pump 27 and the seventh valve body 28 are opened, so that the low-temperature molten salt in the low-temperature tank 2 enters the high-temperature tank 3, where the smoke outlet end of the boiler device 1
  • the high-temperature molten salt pump 29 and the eighth valve are opened to allow the high-temperature molten salt in the high-temperature tank 3 to enter the low-temperature tank 2.
  • the high-temperature molten salt pump 29 and the eighth valve are closed. Eighth valve.
  • the high-temperature molten salt pump 29 and the eighth valve are opened to allow the high-temperature molten salt in the high-temperature tank 3 to enter the low-temperature tank 2, and at the same time the low-temperature molten salt pump 27 and the eighth valve are closed. Seven valve body 28.
  • the body 30 can be a manual switch valve or an electromagnetic switch valve.
  • the flexible operation system of thermal power units also includes a denitrification device, and the smoke inlet end of the denitrification device is connected to the smoke outlet end of the boiler device 1 .
  • the flue gas discharged from the boiler device 1 is denitrated by the denitrification device and then discharged to the outside to meet the smoke exhaust requirements of the thermal power unit.
  • the temperature of the smoke outlet of the boiler device 1 is always maintained. It is higher than the minimum inlet smoke temperature of the denitrification device, thus ensuring the efficient denitrification of the denitrification device.

Abstract

提出基于熔盐储热的火电机组灵活运行系统,包括:锅炉装置、低温罐、高温罐、第一换热器和第二换热器;第一换热器的吸热通路进液端与低温罐的出液端相连,第一换热器的吸热通路出液端与高温罐的进液端相连,第一换热器的放热通路进汽端与锅炉装置的汽水分离器出汽端相连,第一换热器的放热通路出液端与锅炉装置的水冷壁进液端相连。

Description

基于熔盐储热的火电机组灵活运行系统
相关申请的交叉引用
本申请要求在2022年6月21日在中国提交的中国专利申请号202210703817.X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及火电机组技术领域,具体涉及基于熔盐储热的火电机组灵活运行系统。
背景技术
近年来风电、光伏等可再生能源发电的规模和比重大幅提高。然而,可再生能源具有波动性和间歇性等特点,接入电网后,需要常规火电机组增加调峰、顶峰等辅助服务的能力。在燃煤发电机组占据主体电源地位,同时大规模不稳定可再生能源亟待并网的双重背景下,我国火电机组负荷调节能力亟待提高。
目前,通过降低锅炉装置最小出力来实现火电机组深度调峰的方式多受限于锅炉装置的最低稳燃负荷,当锅炉装置的稳燃负荷过低时,燃烧器、磨煤机、风机等设备无法在过低的负荷下稳定运行,导致火电机组无法在过低负荷下长期运行;同时,通过降低锅炉装置最小出力来实现火电机组深度调峰的方式还受限于脱硝装置的最低入口烟温,当锅炉装置的稳燃负荷过低时,锅炉装置的出烟端温度也较低,导致脱硝装置内的催化剂活性降低,造成脱硝装置的脱硝效率急剧下降,无法满足火电机组的排烟要求。由此,本公开提出一种基于熔盐储热的火电机组灵活运行系统,以提高火电机组的调峰能力。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的目的在于提供基于熔盐储热的火电机组灵活运行系统。
为达到上述目的,本公开实施例提供了基于熔盐储热的火电机组灵活运行系统,包括:锅炉装置、低温罐、高温罐、第一换热器和第二换热器;所述第一换热器的吸热通路进液端与所述低温罐的出液端相连,所述第一换热器的吸热通路出液端与所述高温罐的进液端相连,所述第一换热器的放热通路进汽端与所述锅炉装置的汽水分离器出汽端相连,所述第一换热器的放热通路出液端与所述锅炉装置的水冷壁进液端相连;所述第二换热器的放热通路进液端与所述高温罐的出液端相连,所述第二换热器的放热通路出液端与所述低温 罐的进液端相连,所述第二换热器的吸热通路进液端与所述锅炉装置的给水泵出液端相连,所述第二换热器的吸热通路出液端与所述锅炉装置的省煤器进液端相连。
在一些实施例中,所述锅炉装置包括:炉体;水冷壁,所述水冷壁设置在所述炉体的内壁上;所述汽水分离器,所述汽水分离器的出液端与所述水冷壁的进液端相连,所述汽水分离器的进液端与所述水冷壁的出液端相连;所述省煤器,所述省煤器设置在所述炉体的出烟端内,所述省煤器的出液端与所述水冷壁的进液端相连;高压加热器,所述高压加热器的出液端与所述省煤器的进液端相连,所述高压加热器的进汽端分别与汽轮机的高压缸出汽端及所述汽轮机的中压缸出汽端相连;所述给水泵,所述给水泵的出液端与所述高压加热器的进液端相连;过热器组,所述过热器组设置在所述炉体内,所述过热器组的进汽端与所述汽水分离器的出汽端相连,所述过热器组的出汽端与所述高压缸的进汽端相连。
在一些实施例中,所述火电机组灵活运行系统还包括:再循环泵,所述再循环泵设置在所述第一换热器的吸热通路出液端与所述水冷壁的进液端相连之间,所述再循环泵的进液端与所述第一换热器的吸热通路出液端相连,所述再循环泵的出液端与所述水冷壁的进液端相连。
在一些实施例中,所述过热器组包括:水平低温过热器,所述水平低温过热器的进汽端与所述汽水分离器的出汽端相连;垂直低温过热器,所述垂直低温过热器的进汽端与所述水平低温过热器的出汽端相连;分隔屏过热器,所述分隔屏过热器的进汽端与所述垂直低温过热器的出汽端相连;高温过热器,所述高温过热器的进汽端与所述分隔屏过热器的出汽端相连;末级过热器,所述末级过热器的进汽端与所述高温过热器的的出汽端相连,所述末级过热器的出汽端与汽轮机的高压缸进汽端相连;其中,所述分隔屏过热器、所述高温过热器、所述末级过热器、所述垂直低温过热器、所述水平低温过热器及所述省煤器沿所述炉体的炉膛到所述炉体的出烟端方向依次分布。
在一些实施例中,所述火电机组灵活运行系统还包括:第一阀体,所述第一阀体设置在所述汽水分离器的出汽端与所述第一换热器的放热通路进汽端相连之间的管路上;第二阀体,所述第二阀体设置在所述汽水分离器的出汽端与所述水平低温过热器的进汽端相连之间的管路上;第三阀体,所述第三阀体设置在所述给水泵的出液端与所述高压加热器的进液端相连之间的管路上;第四阀体,所述第四阀体设置在所述给水泵的出液端与所述第二换热器的吸热通路进液端相连之间的管路上。
在一些实施例中,所述锅炉装置还包括:高温再热器,所述高温再热器设置在所述炉体内,且所述高温再热器位于所述末级过热器与所述垂直低温过热器之间,所述高温再热器的进汽端与所述高压缸的出汽端相连;末级再热器,所述末级再热器设置在所述炉体内,且所述末级再热器位于所述末级过热器与所述高温再热器之间,所述末级再热器的进汽端 与所述高温再热器的出汽端相连,所述末级再热器的出汽端与所述中压缸的进汽端相连。
在一些实施例中,所述火电机组灵活运行系统还包括:第三换热器;所述第三换热器的吸热通路设置在所述第一换热器的吸热通路出液端与所述高温罐的进液端相连之间,所述第三换热器的吸热通路进液端与所述第一换热器的吸热通路出液端相连,所述第三换热器的吸热通路出液端与所述高温罐的进液端相连;所述第三换热器的放热通路设置在所述末级再热器的进汽端与所述高温再热器的出汽端相连之间,所述第三换热器的放热通路进汽端与所述高温再热器的出汽端相连,所述末级再热器的进汽端分别与所述第三换热器的放热通路出汽端及所述高温再热器的出汽端相连。
在一些实施例中,所述火电机组灵活运行系统还包括:第五阀体,所述第五阀体设置在所述第三换热器的放热通路进汽端与所述高温再热器的出汽端相连之间的管路上;第六阀体,所述第六阀体设置在所述末级再热器的进汽端与所述高温再热器的出汽端相连之间的管路上。
在一些实施例中,所述火电机组灵活运行系统还包括:低温熔盐泵,所述低温熔盐泵设置在所述第一换热器的吸热通路进液端与所述低温罐的出液端相连之间,所述低温熔盐泵的进液端与所述低温罐的出液端相连,所述低温熔盐泵的出液端与所述第一换热器的吸热通路进液端相连;第七阀体,所述第七阀体设置在所述第一换热器的吸热通路进液端与所述低温熔盐泵的出液端相连之间的管路上;高温熔盐泵,所述高温熔盐泵设置在所述第二换热器的放热通路进液端与所述高温罐的出液端相连之间,所述高温熔盐泵的进液端与所述高温罐的出液端相连,所述高温熔盐泵的出液端与所述第二换热器的放热通路进液端相连;第八阀体,所述第八阀体设置在所述第二换热器的放热通路进液端与所述高温熔盐泵的出液端相连之间的管路上。
在一些实施例中,所述火电机组灵活运行系统还包括:脱硝装置,所述脱硝装置的进烟端与所述锅炉装置的出烟端相连。
本公开提供的技术方案可以包括以下有益效果:
在用电需求较小需要火电机组深度调峰时,保证锅炉装置最小稳燃负荷的同时通过熔盐储热降低锅炉装置的出力,从而增大火电机组的调峰深度,提高火电机组的调峰能力,而且,利用熔盐储存的热量提高省煤器的进水温度,从而提高锅炉装置的出烟端温度,进而保证脱硝装置的脱硝效率,满足火电机组的排烟要求;在用电需求较大需要火电机组处于顶峰时,利用熔盐储存的热量保证省煤器的进水温度,以减小汽轮机的出汽对给水泵出水的加热量,从而提高汽轮机的做功能力,实现火电机组的发电顶高峰。由此,实现火电机组的灵活运行,有效提高了火电机组的调峰能力。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的基于熔盐储热的火电机组灵活运行系统的结构示意图;
图2是本公开一实施例提出的基于熔盐储热的火电机组灵活运行系统的结构示意图;
图3是本公开一实施例提出的基于熔盐储热的火电机组灵活运行系统的结构示意图。
如图所示:1、锅炉装置,2、低温罐,3、高温罐,4、第一换热器,5、第二换热器,6、炉体,7、水冷壁,8、汽水分离器,9、省煤器,10、高压加热器,11、给水泵,12、再循环泵,13、水平低温过热器,14、垂直低温过热器,15、分隔屏过热器,16、高温过热器,17、末级过热器,18、第一阀体,19、第二阀体,20、第三阀体,21、第四阀体,22、高温再热器,23、末级再热器,24、第三换热器,25、第五阀体,26、第六阀体,27、低温熔盐泵,28、第七阀体,29、高温熔盐泵,30、第八阀体。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
如图1所示,本公开实施例提出一种基于熔盐储热的火电机组灵活运行系统,包括锅炉装置1、低温罐2、高温罐3、第一换热器4和第二换热器5,第一换热器4的吸热通路进液端与低温罐2的出液端相连,第一换热器4的吸热通路出液端与高温罐3的进液端相连,第一换热器4的放热通路进汽端与锅炉装置1的汽水分离器8出汽端相连,第一换热器4的放热通路出液端与锅炉装置1的水冷壁7进液端相连,第二换热器5的放热通路进液端与高温罐3的出液端相连,第二换热器5的放热通路出液端与低温罐2的进液端相连,第二换热器5的吸热通路进液端与锅炉装置1的给水泵11出液端相连,第二换热器5的吸热通路出液端与锅炉装置1的省煤器9进液端相连。
由此,如图2所示,在用电需求较小时,锅炉装置1处于最小稳燃负荷,低温熔盐由低温罐2经过第一换热器4的吸热通路后进入到高温罐3中,且汽水分离器8中的部分蒸汽经过第一换热器4的放热通路后进入到水冷壁7中,由此,使得汽水分离器8中部分蒸汽内的热量释放到低温熔盐中,使低温熔盐变为高温熔盐,且高温熔盐储存在高温罐3中;
其中,如图1所示,锅炉装置1的出烟端温度较低时,低温熔盐被汽水分离器8中部分蒸汽加热的同时,高温罐3中的高温熔盐经过第二换热器5的放热通路后进入到低温罐2中,且给水泵11的部分出水经过第二换热器5的吸热通路后进入到省煤器9中,由此,使得高温熔盐的热量释放到给水泵11的部分出水中,且该部分出水被加热后进入到省煤器9中。
如图3所示,在用电需求较大时,汽水分离器8中的蒸汽不进入第一换热器4的放热通路,高温罐3中的高温熔盐经过第二换热器5的放热通路后进入到低温罐2中,且给水泵11的全部出水经过第二换热器5的吸热通路后进入到省煤器9中,由此,使得高温熔盐的热量释放到给水泵11的全部出水中,且给水泵11的全部出水被加热后进入到省煤器9中。
可以理解的是,在用电需求较小需要火电机组深度调峰时,保证锅炉装置1最小稳燃负荷的同时通过熔盐储热降低锅炉装置1的出力,从而增大火电机组的调峰深度,提高火电机组的调峰能力,而且,利用熔盐储存的热量提高省煤器9的进水温度,从而提高锅炉装置1的出烟端温度,进而保证脱硝装置的脱硝效率,满足火电机组的排烟要求;在用电需求较大需要火电机组处于顶峰时,利用熔盐储存的热量保证省煤器9的进水温度,以减小汽轮机的出汽对给水泵11出水的加热量,从而提高汽轮机的做功能力,实现火电机组的发电顶高峰。由此,实现火电机组的灵活运行,有效提高了火电机组的调峰能力。
其中,汽水分离器8中部分蒸汽释放热量后进入到水冷壁7中,从而提高水冷壁7中的工质流量,降低锅炉装置1的蒸汽量,减小锅炉装置1的出力,进而增大火电机组的调峰深度。
需要说明的是,第一换热器4和第二换热器5均包括用于换热的吸热通路和放热通路,吸热通路与放热通路之间可直接换热,也可通过导热介质间接换热。
如图1所示,在一些实施例中,锅炉装置1包括炉体6、水冷壁7、汽水分离器8、省煤器9、高压加热器10、给水泵11和过热器组,水冷壁7设置在炉体6的内壁上,汽水分离器8的出液端与水冷壁7的进液端相连,汽水分离器8的进液端与水冷壁7的出液端相连,省煤器9设置在炉体6的出烟端内,省煤器9的出液端与水冷壁7的进液端相连,高压加热器10的出液端与省煤器9的进液端相连,高压加热器10的进汽端分别与汽轮机的高压缸出汽端及汽轮机的中压缸出汽端相连,给水泵11的出液端与高压加热器10的进液端相连,过热器组设置在炉体6内,过热器组的进汽端与汽水分离器8的出汽端相连,过热器组的出汽端与高压缸的进汽端相连。
可以理解的是,水冷壁7吸收炉体6内火焰及高温烟气释放的辐射热,水冷壁7中的水或蒸汽进入到汽水分离器8中进行汽水分离,汽水分离器8中的水返回到水冷壁7中继 续使用,在用电需求较小时,如图2所示,汽水分离器8中的蒸汽部分进入到第一换热器4的放热通路中进行放热,以减小锅炉装置1的出力;在用电需求较大时,如图3所示,汽水分离器8中的蒸汽全部进入到过热器组中,以增大锅炉装置1的出力。
在用电需求较小且锅炉装置1的出烟端温度较高时,如图2所示,外部水或除氧水被给水泵11增压输送并依次经过高压加热器10及省煤器9后进入到水冷壁7中,以保证锅炉装置1的用水;在用电需求较小且锅炉装置1的出烟端温度较低时,如图1所示,部分外部水或除氧水被给水泵11增压输送并依次经过高压加热器10及省煤器9后进入到水冷壁7中,其余外部水或除氧水给水泵11增压输送并依次经过第二换热器5的吸热通路及省煤器9后进入到水冷壁7中,以提高锅炉装置1的出烟端温度;在用电需求较高时,如图3所示,外部水或除氧水被给水泵11增压输送并依次经过第二换热器5的吸热通路及省煤器9后进入到水冷壁7中,以增大锅炉装置1的出力。
需要说明的是,汽轮机包括高压缸、中压缸及低压缸,锅炉装置1产生的主蒸汽依次经过高压缸、中压缸及低压缸并做功后进入到凝汽器中,凝汽器将做功后的蒸汽冷凝为凝结水,凝结水通过低压加热器加热后进入除氧器,除氧器的出水即为除氧水。其中,低压加热器通过中压缸及低压缸的出汽对凝结水进行加热,加热后的蒸汽进入到凝汽器的出液端,高压加热器10通过高压缸及中压缸的出汽对除氧水进行加热,加热后的蒸汽进入到除氧器的进液端。
如图1所示,在一些实施例中,火电机组灵活运行系统还包括再循环泵12,再循环泵12设置在第一换热器4的吸热通路出液端与水冷壁7的进液端相连之间,再循环泵12的进液端与第一换热器4的吸热通路出液端相连,再循环泵12的出液端与水冷壁7的进液端相连。
可以理解的是,再循环泵12将第一换热器4的吸热通路出水增压输送到水冷壁7中,以保证汽水分离器8中部分蒸汽的稳定放热。
如图1所示,在一些实施例中,过热器组包括水平低温过热器13、垂直低温过热器14、分隔屏过热器15、高温过热器16和末级过热器17,水平低温过热器13的进汽端与汽水分离器8的出汽端相连,垂直低温过热器14的进汽端与水平低温过热器13的出汽端相连,分隔屏过热器15的进汽端与垂直低温过热器14的出汽端相连,高温过热器16的进汽端与分隔屏过热器15的出汽端相连,末级过热器17的进汽端与高温过热器16的的出汽端相连,末级过热器17的出汽端与汽轮机的高压缸进汽端相连;
其中,分隔屏过热器15、高温过热器16、末级过热器17、垂直低温过热器14、水平低温过热器13及省煤器9沿炉体6的炉膛到炉体6的出烟端方向依次分布。
可以理解是,汽水分离器8中的蒸汽依次经过水平低温过热器13、垂直低温过热器14、 分隔屏过热器15、高温过热器16及末级过热器17后被加热成满足汽轮机高压缸使用的主蒸汽,主蒸汽进入到汽轮机的高压缸中做功,以实现火电机组的发电。
如图1所示,在一些实施例中,火电机组灵活运行系统还包括第一阀体18、第二阀体19、第三阀体20和第四阀体21,第一阀体18设置在汽水分离器8的出汽端与第一换热器4的放热通路进汽端相连之间的管路上,第二阀体19设置在汽水分离器8的出汽端与水平低温过热器13的进汽端相连之间的管路上,第三阀体20设置在给水泵11的出液端与高压加热器10的进液端相连之间的管路上,第四阀体21设置在给水泵11的出液端与第二换热器5的吸热通路进液端相连之间的管路上。
可以理解的是,在用电需求较小时,如图2所示,调节第一阀体18和第二阀体19的开度,使汽水分离器8中的部分蒸汽进入到第一换热器4的放热通路中放热,其余蒸汽依次进入到水平低温过热器13、垂直低温过热器14、分隔屏过热器15、高温过热器16及末级过热器17中进行吸热,同时,锅炉装置1的出烟端温度较高时,如图2所示,开启第三阀体20,关闭第四阀体21,使给水泵11的全部出水进入到高压加热器10中吸热,锅炉装置1的出烟端温度较低时,如图1所示,调节第三阀体20和第四阀体21的开度,使给水泵11的部分出水进入到高压加热器10中吸热,其余出水进入到第二换热器5的吸热通路中吸热。
在用电需求较大时,如图3所示,关闭第一阀体18和第三阀体20,开启第二阀体19和第四阀体21,使汽水分离器8中的全部蒸汽依次进入到水平低温过热器13、垂直低温过热器14、分隔屏过热器15、高温过热器16及末级过热器17中进行吸热,使给水泵11的全部出水进入到第二换热器5的吸热通路中吸热。
由此,通过第一阀体18、第二阀体19、第三阀体20及第四阀体21的设置,便于汽水分离器8中的蒸汽在第一换热器4放热通路与水平低温过热器13之间的分配以及给水泵11的出水在高压加热器10与第二换热器5吸热通路之间的分配,使整体的使用更为便捷。
如图1所示,在一些实施例中,锅炉装置1还包括高温再热器22和末级再热器23,高温再热器22设置在炉体6内,且高温再热器22位于末级过热器17与垂直低温过热器14之间,高温再热器22的进汽端与高压缸的出汽端相连,末级再热器23设置在炉体6内,且末级再热器23位于末级过热器17与高温再热器22之间,末级再热器23的进汽端与高温再热器22的出汽端相连,末级再热器23的出汽端与中压缸的进汽端相连。
可以理解的是,汽轮机的高压缸出汽依次经过高温再热器22及末级再热器23后被加热成满足汽轮机中压缸使用的再热蒸汽,再热蒸汽进入到汽轮机的中压缸中做功,以实现火电机组的发电。
如图1所示,在一些实施例中,火电机组灵活运行系统还包括第三换热器24,第三换 热器24的吸热通路设置在第一换热器4的吸热通路出液端与高温罐3的进液端相连之间,第三换热器24的吸热通路进液端与第一换热器4的吸热通路出液端相连,第三换热器24的吸热通路出液端与高温罐3的进液端相连,第三换热器24的放热通路设置在末级再热器23的进汽端与高温再热器22的出汽端相连之间,第三换热器24的放热通路进汽端与高温再热器22的出汽端相连,末级再热器23的进汽端分别与第三换热器24的放热通路出汽端及高温再热器22的出汽端相连。
由此,在用电需求较小时,如图2所示,锅炉装置1处于最小稳燃负荷,低温熔盐由低温罐2依次经过第一换热器4的吸热通路及第三换热器24的吸热通路后进入到高温罐3中,且高温再热器22的部分出汽经过第三换热器24的放热通路后进入到末级再热器23中,其余出汽直接进入到末级再热器23中,由此,使得高温再热器22部分出汽的热量释放到第三换热器24吸热通路中的高温熔盐中,使高温熔盐进一步被加热后储存在高温罐3中。
在用电需求较大时,如图3所示,高温再热器22的全部出汽直接进入到末级再热器23中,以增大锅炉装置1的出力。
可以理解的是,在用电需求较小需要火电机组深度调峰时,保证锅炉装置1最小稳燃负荷的同时通过熔盐储热进一步降低锅炉装置1的出力,从而再次增大火电机组的调峰深度,进一步提高火电机组的调峰能力。
需要说明的是,第三换热器24包括用于换热的吸热通路和放热通路,吸热通路与放热通路之间可直接换热,也可通过导热介质间接换热。
如图1所示,在一些实施例中,火电机组灵活运行系统还包括第五阀体25和第六阀体26,第五阀体25设置在第三换热器24的放热通路进汽端与高温再热器22的出汽端相连之间的管路上,第六阀体26设置在末级再热器23的进汽端与高温再热器22的出汽端相连之间的管路上。
可以理解的是,在用电需求较小时,如图2所示,调节第五阀体25和第六阀体26的开度,使高温再热器22的部分出汽进入到第三换热器24中放热,其余出汽直接进入到末级再热器23中吸热。
在用电需求较大时,如图3所示,关闭第五阀体25,开启第六阀体26,使高温再热器22的全部出汽直接进入到末级再热器23中吸热。
由此,通过第五阀体25及第六阀体26的设置,便于高温再热器22中的蒸汽在第三换热器24放热通路与末级再热器23之间的分配,使整体的使用更为便捷。
如图1所示,在一些实施例中,火电机组灵活运行系统还包括低温熔盐泵27、第七阀体28、高温熔盐泵29和第八阀体30,低温熔盐泵27设置在第一换热器4的吸热通路进液端与低温罐2的出液端相连之间,低温熔盐泵27的进液端与低温罐2的出液端相连,低温 熔盐泵27的出液端与第一换热器4的吸热通路进液端相连,第七阀体28设置在第一换热器4的吸热通路进液端与低温熔盐泵27的出液端相连之间的管路上,高温熔盐泵29设置在第二换热器5的放热通路进液端与高温罐3的出液端相连之间,高温熔盐泵29的进液端与高温罐3的出液端相连,高温熔盐泵29的出液端与第二换热器5的放热通路进液端相连,第八阀体30设置在第二换热器5的放热通路进液端与高温熔盐泵29的出液端相连之间的管路上。
可以理解的是,低温罐2内的低温熔盐被低温熔盐泵27增压输送并依次经过第一换热器4的吸热通路及第三换热器24的吸热通路后进入到高温罐3中,以保证低温熔盐的稳定吸热,高温罐3中的高温熔盐被高温熔盐泵29增压输送并经过第三换热器24的放热通路后进入到低温罐2中,以保证高温熔盐的稳定放热。
通过第七阀体28及第八阀体30的设置,便于控制低温罐2与高温罐3之间通路的通断,使整体的使用更为便捷。
在用电需求较小时,如图2所示,开启低温熔盐泵27及第七阀体28,使低温罐2中的低温熔盐进入到高温罐3中,其中,锅炉装置1出烟端温度较低时,开启高温熔盐泵29及第八阀门,使高温罐3中的高温熔盐进入到低温罐2中,锅炉装置1出烟端温度较高时,关闭高温熔盐泵29及第八阀门。
在用电需求较大时,如图3所示,开启高温熔盐泵29及第八阀门,使高温罐3中的高温熔盐进入到低温罐2中,同时关闭低温熔盐泵27及第七阀体28。
需要说明的是,第一阀体18、第二阀体19、第三阀体20、第四阀体21、第五阀体25、第六阀体26、第七阀体28及第八阀体30均可以是手动开关阀,也可以是电磁开关阀。
在一些实施例中,火电机组灵活运行系统还包括脱硝装置,脱硝装置的进烟端与锅炉装置1的出烟端相连。
可以理解的是,锅炉装置1排出的烟气经过脱硝装置脱硝后排出到外部,以满足火电机组的排烟要求,同时,通过熔盐储能的灵活运用,保证锅炉装置1出烟端温度始终高于脱硝装置的最低入口烟温,从而保证了脱硝装置的高效脱硝。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的 实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种基于熔盐储热的火电机组灵活运行系统,其特征在于,包括:锅炉装置、低温罐、高温罐、第一换热器和第二换热器,其中
    所述第一换热器的吸热通路进液端与所述低温罐的出液端相连,所述第一换热器的吸热通路出液端与所述高温罐的进液端相连,所述第一换热器的放热通路进汽端与所述锅炉装置的汽水分离器出汽端相连,所述第一换热器的放热通路出液端与所述锅炉装置的水冷壁进液端相连;并且
    所述第二换热器的放热通路进液端与所述高温罐的出液端相连,所述第二换热器的放热通路出液端与所述低温罐的进液端相连,所述第二换热器的吸热通路进液端与所述锅炉装置的给水泵出液端相连,所述第二换热器的吸热通路出液端与所述锅炉装置的省煤器进液端相连。
  2. 根据权利要求1所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述锅炉装置包括:
    炉体;
    水冷壁,所述水冷壁设置在所述炉体的内壁上;
    所述汽水分离器,所述汽水分离器的出液端与所述水冷壁的进液端相连,所述汽水分离器的进液端与所述水冷壁的出液端相连;
    所述省煤器,所述省煤器设置在所述炉体的出烟端内,所述省煤器的出液端与所述水冷壁的进液端相连;
    高压加热器,所述高压加热器的出液端与所述省煤器的进液端相连,所述高压加热器的进汽端分别与汽轮机的高压缸出汽端及所述汽轮机的中压缸出汽端相连;
    所述给水泵,所述给水泵的出液端与所述高压加热器的进液端相连;和
    过热器组,所述过热器组设置在所述炉体内,所述过热器组的进汽端与所述汽水分离器的出汽端相连,所述过热器组的出汽端与所述高压缸的进汽端相连。
  3. 根据权利要求2所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:
    再循环泵,所述再循环泵设置在所述第一换热器的吸热通路出液端与所述水冷壁的进液端相连之间,所述再循环泵的进液端与所述第一换热器的吸热通路出液端相连,所述再循环泵的出液端与所述水冷壁的进液端相连。
  4. 根据权利要求2所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述过热器组包括:
    水平低温过热器,所述水平低温过热器的进汽端与所述汽水分离器的出汽端相连;
    垂直低温过热器,所述垂直低温过热器的进汽端与所述水平低温过热器的出汽端相连;
    分隔屏过热器,所述分隔屏过热器的进汽端与所述垂直低温过热器的出汽端相连;
    高温过热器,所述高温过热器的进汽端与所述分隔屏过热器的出汽端相连;和
    末级过热器,所述末级过热器的进汽端与所述高温过热器的的出汽端相连,所述末级过热器的出汽端与汽轮机的高压缸进汽端相连,
    其中,所述分隔屏过热器、所述高温过热器、所述末级过热器、所述垂直低温过热器、所述水平低温过热器及所述省煤器沿所述炉体的炉膛到所述炉体的出烟端方向依次分布。
  5. 根据权利要求1-4中任意一项所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:
    第一阀体,所述第一阀体设置在所述汽水分离器的出汽端与所述第一换热器的放热通路进汽端相连之间的管路上;
    第二阀体,所述第二阀体设置在所述汽水分离器的出汽端与所述水平低温过热器的进汽端相连之间的管路上;
    第三阀体,所述第三阀体设置在所述给水泵的出液端与所述高压加热器的进液端相连之间的管路上;和
    第四阀体,所述第四阀体设置在所述给水泵的出液端与所述第二换热器的吸热通路进液端相连之间的管路上。
  6. 根据权利要求4所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述锅炉装置还包括:
    高温再热器,所述高温再热器设置在所述炉体内,且所述高温再热器位于所述末级过热器与所述垂直低温过热器之间,所述高温再热器的进汽端与所述高压缸的出汽端相连;和
    末级再热器,所述末级再热器设置在所述炉体内,且所述末级再热器位于所述末级过热器与所述高温再热器之间,所述末级再热器的进汽端与所述高温再热器的出汽端相连,所述末级再热器的出汽端与所述中压缸的进汽端相连。
  7. 根据权利要求6所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:第三换热器;
    所述第三换热器的吸热通路设置在所述第一换热器的吸热通路出液端与所述高温罐的进液端相连之间,所述第三换热器的吸热通路进液端与所述第一换热器的吸热通路出液端相连,所述第三换热器的吸热通路出液端与所述高温罐的进液端相连;并且
    所述第三换热器的放热通路设置在所述末级再热器的进汽端与所述高温再热器的出汽 端相连之间,所述第三换热器的放热通路进汽端与所述高温再热器的出汽端相连,所述末级再热器的进汽端分别与所述第三换热器的放热通路出汽端及所述高温再热器的出汽端相连。
  8. 根据权利要求7所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:
    第五阀体,所述第五阀体设置在所述第三换热器的放热通路进汽端与所述高温再热器的出汽端相连之间的管路上;和
    第六阀体,所述第六阀体设置在所述末级再热器的进汽端与所述高温再热器的出汽端相连之间的管路上。
  9. 根据权利要求1-8中任意一项所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:
    低温熔盐泵,所述低温熔盐泵设置在所述第一换热器的吸热通路进液端与所述低温罐的出液端相连之间,所述低温熔盐泵的进液端与所述低温罐的出液端相连,所述低温熔盐泵的出液端与所述第一换热器的吸热通路进液端相连;
    第七阀体,所述第七阀体设置在所述第一换热器的吸热通路进液端与所述低温熔盐泵的出液端相连之间的管路上;
    高温熔盐泵,所述高温熔盐泵设置在所述第二换热器的放热通路进液端与所述高温罐的出液端相连之间,所述高温熔盐泵的进液端与所述高温罐的出液端相连,所述高温熔盐泵的出液端与所述第二换热器的放热通路进液端相连;和
    第八阀体,所述第八阀体设置在所述第二换热器的放热通路进液端与所述高温熔盐泵的出液端相连之间的管路上。
  10. 根据权利要求1-9中任意一项所述的基于熔盐储热的火电机组灵活运行系统,其特征在于,所述火电机组灵活运行系统还包括:
    脱硝装置,所述脱硝装置的进烟端与所述锅炉装置的出烟端相连。
PCT/CN2022/140497 2022-06-21 2022-12-20 基于熔盐储热的火电机组灵活运行系统 WO2023246030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210703817.X 2022-06-21
CN202210703817.XA CN114909193B (zh) 2022-06-21 2022-06-21 一种基于熔盐储热的火电机组灵活运行系统

Publications (1)

Publication Number Publication Date
WO2023246030A1 true WO2023246030A1 (zh) 2023-12-28

Family

ID=82772943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140497 WO2023246030A1 (zh) 2022-06-21 2022-12-20 基于熔盐储热的火电机组灵活运行系统

Country Status (2)

Country Link
CN (1) CN114909193B (zh)
WO (1) WO2023246030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909193B (zh) * 2022-06-21 2024-02-27 西安热工研究院有限公司 一种基于熔盐储热的火电机组灵活运行系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370250A1 (en) * 2014-12-31 2017-12-28 Shenzhen Enesoon Science & Technology Co., Ltd. Combined energy supply system of wind, photovoltaic, solar thermal power and medium-based heat storage
CN208204951U (zh) * 2018-03-20 2018-12-07 上海锅炉厂有限公司 采用热熔盐调节的塔式太阳能光热蒸汽发生系统
CN111878183A (zh) * 2020-07-10 2020-11-03 广东粤电靖海发电有限公司 一种燃煤发电机组热力储能调频系统及方法
CN112502800A (zh) * 2020-11-19 2021-03-16 中国电力工程顾问集团中南电力设计院有限公司 火力发电厂灵活性大规模高参数供热系统
CN114233417A (zh) * 2021-12-22 2022-03-25 斯玛特储能技术有限公司 一种储热型深度灵活调峰热力发电系统及储释热方法
CN114909193A (zh) * 2022-06-21 2022-08-16 西安热工研究院有限公司 一种基于熔盐储热的火电机组灵活运行系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329201A (ja) * 2002-05-07 2003-11-19 Babcock Hitachi Kk 排熱回収ボイラと複合発電方法と装置
CN106122938B (zh) * 2016-07-05 2018-03-27 哈尔滨工业大学 一种可灵活调温的电站锅炉二次再热系统
CN106640223B (zh) * 2016-11-29 2018-03-20 武汉都市环保工程技术股份有限公司 低热值煤气发电方法
CN107100684A (zh) * 2017-04-19 2017-08-29 百吉瑞(天津)新能源有限公司 一种热电厂利用锅炉旁路循环深度调峰改造系统
CN208635084U (zh) * 2018-03-20 2019-03-22 北京工业大学 一种利用主蒸汽加热的火电厂蓄热调峰的熔盐蓄热系统
CN109945223B (zh) * 2019-03-11 2020-10-27 西安交通大学 一种全工况辅助脱硝系统及运行方法
CN210289860U (zh) * 2019-06-26 2020-04-10 华电郑州机械设计研究院有限公司 一种利用熔融盐蓄热的两级串联热电调峰系统
CN111928228A (zh) * 2020-09-03 2020-11-13 西安热工研究院有限公司 电站锅炉高温烟气耦合再热蒸汽储热深度调峰系统及方法
CN114382559B (zh) * 2022-01-26 2022-08-30 斯玛特储能技术有限公司 一种双介质储热型调峰热力发电系统及储释热方法
CN114543065B (zh) * 2022-03-18 2023-01-10 清华大学 火电厂机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370250A1 (en) * 2014-12-31 2017-12-28 Shenzhen Enesoon Science & Technology Co., Ltd. Combined energy supply system of wind, photovoltaic, solar thermal power and medium-based heat storage
CN208204951U (zh) * 2018-03-20 2018-12-07 上海锅炉厂有限公司 采用热熔盐调节的塔式太阳能光热蒸汽发生系统
CN111878183A (zh) * 2020-07-10 2020-11-03 广东粤电靖海发电有限公司 一种燃煤发电机组热力储能调频系统及方法
CN112502800A (zh) * 2020-11-19 2021-03-16 中国电力工程顾问集团中南电力设计院有限公司 火力发电厂灵活性大规模高参数供热系统
CN114233417A (zh) * 2021-12-22 2022-03-25 斯玛特储能技术有限公司 一种储热型深度灵活调峰热力发电系统及储释热方法
CN114909193A (zh) * 2022-06-21 2022-08-16 西安热工研究院有限公司 一种基于熔盐储热的火电机组灵活运行系统

Also Published As

Publication number Publication date
CN114909193B (zh) 2024-02-27
CN114909193A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US10968784B2 (en) Flexible coal-fired power generation system and operation method thereof
US11560879B2 (en) Solar-aided coal-fired flexible power generation system and operation method thereof
WO2020181676A1 (zh) 一种全工况辅助脱硝系统及运行方法
WO2022056990A1 (zh) 一种火电厂耦合高效压缩式热泵储能调峰系统及方法
CN109826685B (zh) 一种超临界二氧化碳循环燃煤发电系统及方法
CN112856363B (zh) 一种深度调峰供热机组供热蒸汽参数提升系统及方法
WO2023246030A1 (zh) 基于熔盐储热的火电机组灵活运行系统
CN113153465B (zh) 一种提升供热机组调峰能力的供热和发电解耦方法及系统
CN113154356A (zh) 一种高温蒸汽复合热力系统及其利用方法
CN102494329B (zh) 锅炉烟气余热综合利用装置
WO2023226391A1 (zh) 基于熔盐储热的热电联产机组
WO2022156218A1 (zh) 一种具有双工质的高效超临界二氧化碳锅炉
CN109099498A (zh) 一种由煤粉燃烧烟气分流耦合产生热电解耦的工艺及方法
CN214307058U (zh) 一种具有双工质的高效超临界二氧化碳锅炉
CN210422706U (zh) 一种双工质燃煤发电系统
CN110500567B (zh) 一种高效核能利用系统及方法
CN220793114U (zh) 一种新型超灵活燃煤发电储热半塔式锅炉
CN219571892U (zh) 一种基于化学链储能的燃煤机组启动、热电解耦系统
CN114812247B (zh) 耦合储热的高灵活性燃煤发电系统
CN219034829U (zh) 煤气锅炉发电机组与烧结余热发电机组联合运行系统
CN217712695U (zh) 一种基于熔盐储能的工业供汽系统
CN217400983U (zh) 安全高效的燃气-蒸汽联合循环纯凝发电机组的供热系统
CN219081668U (zh) 基于熔盐储能技术的火电厂深度调峰装置
CN216346223U (zh) 一种应用于余热锅炉入口粉尘的冷却系统
CN219433368U (zh) 一种燃气蒸汽联合循环乏汽供热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947765

Country of ref document: EP

Kind code of ref document: A1