WO2023226391A1 - 基于熔盐储热的热电联产机组 - Google Patents

基于熔盐储热的热电联产机组 Download PDF

Info

Publication number
WO2023226391A1
WO2023226391A1 PCT/CN2022/140150 CN2022140150W WO2023226391A1 WO 2023226391 A1 WO2023226391 A1 WO 2023226391A1 CN 2022140150 W CN2022140150 W CN 2022140150W WO 2023226391 A1 WO2023226391 A1 WO 2023226391A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
molten salt
outlet end
heater
inlet end
Prior art date
Application number
PCT/CN2022/140150
Other languages
English (en)
French (fr)
Inventor
王东晔
马汀山
居文平
常东锋
王伟
余小兵
雒青
张建元
祁文玉
耿如意
Original Assignee
西安热工研究院有限公司
西安西热节能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 西安西热节能技术有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023226391A1 publication Critical patent/WO2023226391A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • F22B33/185Combinations of steam boilers with other apparatus in combination with a steam accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/325Schematic arrangements or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/50Feed-water heaters, i.e. economisers or like preheaters incorporating thermal de-aeration of feed-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present disclosure relates to the technical field of cogeneration units, and specifically to cogeneration units based on molten salt heat storage.
  • the power plant not only produces electric energy, but also uses the steam produced by the turbine generator to provide heat to users. It is called a cogeneration unit.
  • the cogeneration unit can produce electric energy and thermal energy at the same time. Compared with producing electric energy and thermal energy separately, method, which effectively saves fuel and reduces production costs.
  • thermoelectric decoupling methods include bypass compensated heating thermoelectric decoupling technology, heat storage compensated heating thermoelectric decoupling technology, electric heating compensated heating thermoelectric decoupling technology, etc. , but all have shortcomings such as low energy efficiency and large investment. Therefore, there is an urgent need for a cogeneration unit that can improve thermoelectric decoupling capabilities.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • the present disclosure provides a cogeneration unit based on molten salt heat storage.
  • a cogeneration unit based on molten salt heat storage including: a boiler, a high-pressure cylinder, a medium-pressure cylinder, a low-pressure cylinder, a first molten salt heater, a second molten salt heater and Salt storage device; the steam outlet end of the high-pressure cylinder is connected to the steam inlet end of the boiler, and the steam inlet end of the low-pressure cylinder is connected to the steam outlet end of the medium-pressure cylinder; the first molten salt heater The steam inlet end of the steam passage is connected to the first steam outlet end of the boiler, and the steam outlet end of the steam passage of the first molten salt heater is respectively connected to the steam inlet end of the boiler and the steam inlet end of the high-pressure cylinder.
  • the steam inlet end of the steam passage of the second molten salt heater is connected to the second steam outlet end of the boiler, and the steam outlet end of the steam passage of the second molten salt heater is respectively connected with the medium pressure cylinder
  • the steam inlet end is connected to the steam inlet end of the low-pressure cylinder; the molten salt passages of the first molten salt heater and the second molten salt heater are sequentially arranged on the molten salt passage of the salt storage device.
  • the cogeneration unit further includes: a first valve body, which is disposed between the steam outlet end of the steam passage of the first molten salt heater and the steam inlet of the high-pressure cylinder.
  • the second valve body is arranged between the steam outlet end of the steam passage of the first molten salt heater and the steam inlet end of the boiler; the first pressure reducing valve, The first pressure reducing valve is arranged between the second valve body and the steam inlet end of the boiler.
  • the cogeneration unit further includes: a third valve body, which is disposed between the steam outlet end of the steam passage of the second molten salt heater and the inlet of the medium-pressure cylinder. Between the steam end connection; the fourth valve body, the fourth valve body is arranged between the steam outlet end of the steam passage of the second molten salt heater and the steam inlet end of the low pressure cylinder; the second pressure reduction valve, the second pressure reducing valve is arranged between the fourth valve body and the steam inlet end of the low-pressure cylinder.
  • the cogeneration unit further includes: a deaerator, the liquid inlet end of the deaerator is connected to the steam outlet end of the high-pressure cylinder, the steam outlet end of the medium-pressure cylinder and the The liquid outlet end of the low-pressure cylinder is connected, and the liquid outlet end of the deaerator is connected to the liquid inlet end of the boiler.
  • the cogeneration unit further includes: a condenser, the steam inlet end of the condenser is connected to the steam outlet end of the low-pressure cylinder, and the steam outlet end of the condenser is connected to the steam outlet end of the low-pressure cylinder.
  • the liquid inlet end of the deaerator is connected.
  • the cogeneration unit further includes: a high-pressure heater, the liquid inlet end of the high-pressure heater is connected to the liquid outlet end of the deaerator, and the liquid outlet end of the high-pressure heater is connected to The liquid inlet end of the boiler is connected, the steam inlet end of the high-pressure heater is connected to the steam outlet end of the high-pressure cylinder and the steam outlet end of the medium-pressure cylinder, and the steam outlet end of the high-pressure heater is connected to the steam outlet end of the high-pressure cylinder.
  • the steam inlet end of the deaerator is connected to a low-pressure heater.
  • the liquid inlet end of the low-pressure heater is connected to the liquid outlet end of the condenser.
  • the liquid outlet end of the low-pressure heater is connected to the deaerator.
  • the liquid inlet end of the low-pressure heater is connected to the steam outlet end of the low-pressure cylinder, and the steam outlet end of the low-pressure heater is connected to the liquid outlet end of the condenser.
  • the cogeneration unit further includes: a fourth pump body, which is disposed between the liquid inlet end of the low-pressure heater and the liquid outlet end of the condenser. ;
  • the fifth pump body is arranged between the liquid inlet end of the high-pressure heater and the liquid outlet end of the deaerator.
  • the salt storage device includes: a low-temperature tank, the liquid outlet end of the low-temperature tank is connected to the liquid inlet end of the molten salt passage of the second molten salt heater, and the second molten salt heater The liquid outlet end of the molten salt passage is connected to the liquid inlet end of the molten salt passage of the first molten salt heater; a high-temperature tank, the liquid inlet end of the high-temperature tank is connected to the molten salt passage outlet of the first molten salt heater.
  • the liquid end is connected; a heat exchanger, the liquid inlet end of the molten salt passage of the heat exchanger is connected to the liquid outlet end of the high temperature tank, and the liquid outlet end of the molten salt passage of the heat exchanger is connected to the inlet end of the low temperature tank.
  • the liquid ends are connected, the liquid inlet end of the vapor-liquid passage of the heat exchanger is connected to the liquid outlet end of the deaerator, and the steam outlet end of the vapor-liquid passage of the heat exchanger is connected to the steam inlet end of the external steam device. .
  • the salt storage device further includes: a first pump body, which is disposed between the liquid outlet end of the cryogenic tank and the molten salt passage of the second molten salt heater.
  • the second pump body the second pump body is arranged between the liquid inlet end of the molten salt passage of the heat exchanger and the liquid outlet end of the high temperature tank;
  • the third pump body the The third pump body is arranged between the liquid inlet end of the vapor-liquid passage of the heat exchanger and the liquid outlet end of the deaerator.
  • the cogeneration unit further includes: a generator, and the power output end of the low-pressure cylinder is connected to the power input end of the generator.
  • the main steam temperature and reheat steam temperature are flexibly adjusted through molten salt heat storage, which effectively improves the thermoelectric decoupling capability of the cogeneration unit, and is easy to retrofit on the original basis, with low retrofit costs.
  • Figure 1 is a schematic structural diagram of a cogeneration unit based on molten salt heat storage proposed by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a cogeneration unit based on molten salt heat storage proposed by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a cogeneration unit based on molten salt heat storage proposed by an embodiment of the present disclosure.
  • the embodiment of the present disclosure proposes a cogeneration unit based on molten salt heat storage, including: a boiler 1, a high-pressure cylinder 2, a medium-pressure cylinder 3, a low-pressure cylinder 4, a first molten salt heater 5,
  • the second molten salt heater 6 and salt storage device the steam outlet end of the high-pressure cylinder 2 is connected to the steam inlet end of the boiler 1, the steam inlet end of the low-pressure cylinder 4 is connected to the steam outlet end of the medium-pressure cylinder 3, the first molten salt
  • the steam inlet end of the steam passage of the heater 5 is connected to the first steam outlet end of the boiler 1, and the steam outlet end of the steam passage of the first molten salt heater 5 is connected to the steam inlet end of the boiler 1 and the steam inlet end of the high-pressure cylinder 2 respectively.
  • the steam inlet end of the steam passage of the second molten salt heater 6 is connected with the second steam outlet end of the boiler 1, and the steam outlet end of the steam passage of the second molten salt heater 6 is respectively connected with the steam inlet end of the medium pressure cylinder 3 and the low pressure
  • the steam inlet end of the cylinder 4 is connected, and the molten salt passages of the first molten salt heater 5 and the second molten salt heater 6 are sequentially arranged on the molten salt passage of the salt storage device.
  • the main steam in the boiler 1 passes through the first steam outlet end of the boiler 1 and the steam passage of the first molten salt heater 5 and then enters the high-pressure cylinder 2 to perform work.
  • the steam After the steam has been reheated by the boiler 1, it passes through the second steam outlet end of the boiler 1 and the steam passage of the second molten salt heater 6, and then enters the intermediate pressure cylinder 3 to continue to do work.
  • the steam enters the low-pressure cylinder 4 and continues to do work;
  • the steam passes through the steam passage of the first molten salt heater 5 and the steam passage of the second molten salt heater 6, it exchanges heat with the molten salt in the salt storage device, thereby reducing the amount of steam entering the high-pressure cylinder 2 and the middle
  • the temperature of the pressure cylinder 3 is adjusted to adjust the cylinder efficiency of the high-pressure cylinder 2 and the medium-pressure cylinder 3, thereby adjusting the energy distribution ratio of the output of the medium-pressure cylinder 3.
  • the power generated by the medium-pressure cylinder 3 is reduced, and the power generation of the cogeneration unit is reduced.
  • the heat dissipation is increased, and thermoelectric decoupling is finally achieved;
  • the main steam in the boiler 1 can also be made to pass through the first steam outlet end of the boiler 1 and the steam passage of the first molten salt heater 5 in sequence and then enter the boiler 1 for reheating.
  • the steam sequentially passes through the second steam outlet end of the boiler 1 and the steam passage of the second molten salt heater 6 and then enters the low-pressure cylinder 4 to perform work. Therefore, in the combined heat and power unit, only the low-pressure cylinder 4 performs work, while the high-pressure cylinder 2 and the middle Pressure cylinder 3 does no work and achieves deep thermoelectric decoupling;
  • the overall main steam temperature and reheat steam temperature are flexibly adjusted through molten salt heat storage, which effectively improves the thermoelectric decoupling capability of the cogeneration unit, and is easy to retrofit on the original basis, with low retrofit costs.
  • both the first molten salt heater 5 and the second molten salt heater 6 include a steam passage and a molten salt passage for heat exchange, so that when the steam passes through the steam passage and the molten salt passes through the molten salt passage, they can be exchanged. hot.
  • the cogeneration unit also includes a first valve body 10, a second valve body 11 and a first pressure reducing valve 12.
  • the first valve body 10 is disposed on the first molten salt heater.
  • the second valve body 11 is provided between the steam outlet end of the steam passage of the first molten salt heater 5 and the steam inlet end of the boiler 1,
  • the first pressure reducing valve 12 is arranged between the second valve body 11 and the steam inlet end of the boiler 1 .
  • the temperature of the main steam can be reduced to 330 degrees Celsius, and after passing through the first pressure reducing valve 12, the pressure of the main steam can be reduced to 3.0 MPa. .
  • the cogeneration unit also includes a third valve body 13, a fourth valve body 14 and a second pressure reducing valve 15.
  • the third valve body 13 is disposed in the second molten salt heater.
  • the fourth valve body 14 is disposed between the steam outlet end of the steam passage of the second molten salt heater 6 and the steam inlet end of the low-pressure cylinder 4.
  • the second pressure reducing valve 15 is disposed between the fourth valve body 14 and the steam inlet end of the low-pressure cylinder 4 .
  • the temperature of the reheated steam can be reduced to 300 degrees Celsius, and after passing through the second pressure reducing valve 15, the pressure of the reheated steam can be reduced to 0.8 MPa.
  • the cogeneration unit also includes a deaerator 16.
  • the liquid inlet end of the deaerator 16 is connected to the steam outlet end of the high-pressure cylinder 2 and the medium-pressure cylinder respectively.
  • the steam outlet end of 3 is connected to the liquid outlet end of low-pressure cylinder 4, and the liquid outlet end of deaerator 16 is connected to the liquid inlet end of boiler 1.
  • the steam after work in the high-pressure cylinder 2 the steam after work in the medium-pressure cylinder 3 and the condensed water in the low-pressure cylinder 4 are deaerated by the deaerator 16 and then enter the boiler 1 for recycling, which can not only reduce The energy consumption of boiler 1 is reduced, and the waste of water resources is avoided, which effectively reduces the operating cost of the cogeneration unit, and the deaerated water can avoid corrosion of equipment, pipes, etc., effectively extending the service life of the cogeneration unit. .
  • the cogeneration unit also includes a condenser 17.
  • the steam inlet end of the condenser 17 is connected to the steam outlet end of the low-pressure cylinder 4.
  • the condenser 17 The steam outlet end of 17 is connected with the liquid inlet end of deaerator 16.
  • the condenser 17 condenses the steam after performing work in the low-pressure cylinder 4 into water, thereby recycling it, further reducing the operating cost of the cogeneration unit.
  • the cogeneration unit also includes a high-pressure heater 18 and a low-pressure heater 19.
  • the liquid inlet end of the high-pressure heater 18 is connected to the liquid outlet of the deaerator 16. end is connected, the liquid outlet end of the high-pressure heater 18 is connected to the liquid inlet end of the boiler 1, the steam inlet end of the high-pressure heater 18 is connected to the steam outlet end of the high-pressure cylinder 2 and the steam outlet end of the medium-pressure cylinder 3 respectively, and the high-pressure heating
  • the steam outlet end of the device 18 is connected to the steam inlet end of the deaerator 16, the liquid inlet end of the low-pressure heater 19 is connected to the liquid outlet end of the condenser 17, and the liquid outlet end of the low-pressure heater 19 is connected to the outlet end of the deaerator 16.
  • the liquid inlet end is connected, the steam inlet end of the low-pressure heater 19 is connected with the steam outlet end of the low-pressure cylinder 4, and the steam outlet end of the low-pressure heater
  • the high-pressure heater 18 uses the steam after work in the high-pressure cylinder 2 and the steam after work in the medium-pressure cylinder 3 to heat the water from the deaerator 16 to the boiler 1, while the low-pressure heater 19 uses the water after work in the low-pressure cylinder 4
  • the steam heats the water from the condenser 17 to the deaerator 16, thereby reducing the energy consumption of the boiler 1 and reducing the operating cost of the cogeneration unit.
  • the cogeneration unit also includes a fourth pump body 23 and a fifth pump body 24.
  • the fourth pump body 23 is disposed at the liquid inlet of the low-pressure heater 19.
  • the fifth pump body 24 is disposed between the liquid inlet end of the high-pressure heater 18 and the liquid outlet end of the deaerator 16 .
  • the salt storage device includes a low-temperature tank 7, a high-temperature tank 8 and a heat exchanger 9.
  • the liquid outlet end of the low-temperature tank 7 is connected to the second molten salt heater 6
  • the liquid inlet end of the molten salt passage of the second molten salt heater 6 is connected to the liquid inlet end of the molten salt passage of the first molten salt heater 5, and the liquid inlet end of the high temperature tank 8 is connected to the liquid inlet end of the molten salt passage of the first molten salt heater 5.
  • the liquid outlet end of the molten salt passage of the molten salt heater 5 is connected, the liquid inlet end of the molten salt passage of the heat exchanger 9 is connected to the liquid outlet end of the high temperature tank 8, and the liquid outlet end of the molten salt passage of the heat exchanger 9 is connected to the low temperature tank 7
  • the liquid inlet end of the heat exchanger 9 is connected with the liquid outlet end of the deaerator 16, and the steam outlet end of the vapor liquid channel of the heat exchanger 9 is connected with the steam inlet end of the external steam device.
  • the molten salt in the low-temperature tank 7 passes through the molten salt passage of the first molten salt heater 5 and the molten salt passage of the second molten salt heater 6 in sequence and then enters the high-temperature tank 8 for storage.
  • the molten salt passes through the molten salt passage of the heat exchanger 9 and then enters the cryogenic tank 7 for storage;
  • the steam in the heat exchanger 9 heats the molten salt, which not only realizes the cooling of the steam, but also realizes the heat storage of the molten salt.
  • the molten salt passes through the molten salt passage of the heat exchanger 9, it transfers the water in the vapor-liquid passage of the heat exchanger 9 Heating to convert water into steam for use by external steam-consuming devices;
  • part of the water at the liquid outlet of the deaerator 16 enters the boiler 1 for recycling, and the other part is converted into steam by the heat exchanger 9 and used by the external steam device, avoiding the use of main steam for heating, effectively improving the overall efficiency.
  • Thermal economy at the same time, the salt storage device is used to heat the water from the deaerator 16 to the external steam device to realize steam supply while performing thermoelectric decoupling, which effectively reduces the energy consumption of the cogeneration unit and improves the efficiency of the cogeneration unit. economic benefits of the production unit.
  • the heat exchanger 9 includes a molten salt passage and a vapor-liquid passage for heat exchange, so that heat can be exchanged when the molten salt passes through the molten salt passage and the water passes through the vapor-liquid passage.
  • the salt storage device further includes a first pump body 20, a second pump body 21 and a third pump body 22.
  • the first pump body 20 is disposed in the cryogenic tank. 7 is connected to the liquid inlet end of the molten salt passage of the second molten salt heater 6, and the second pump body 21 is arranged between the liquid inlet end of the molten salt passage of the heat exchanger 9 and the liquid outlet end of the high temperature tank 8 During the connection, the third pump body 22 is disposed between the liquid inlet end of the vapor-liquid passage of the heat exchanger 9 and the liquid outlet end of the deaerator 16 .
  • the molten salt between the low-temperature tank 7 and the high-temperature tank 8 can circulate smoothly, ensuring the heat storage and release of the molten salt.
  • the arrangement of the pump body 22 enables the water at the liquid outlet of the deaerator 16 to smoothly pass through the vapor-liquid passage of the heat exchanger 9 and enter the external steam device, ensuring a stable steam supply for the cogeneration unit.
  • the cogeneration unit also includes a generator 25, and the power output end of the low-pressure cylinder 4 is connected to the power input end of the generator 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

提出基于熔盐储热的热电联产机组,包括:锅炉、高压缸、中压缸、低压缸、第一熔盐加热器、第二熔盐加热器和储盐装置;第一熔盐加热器的蒸汽通路进汽端与锅炉的第一出汽端相连,第一熔盐加热器的蒸汽通路出汽端分别与锅炉的进汽端及高压缸的进汽端相连;第二熔盐加热器的蒸汽通路进汽端与锅炉的第二出汽端相连,第二熔盐加热器的蒸汽通路出汽端分别与中压缸的进汽端及低压缸的进汽端相连。

Description

基于熔盐储热的热电联产机组
相关申请的交叉引用
本申请要求在2022年5月23日在中国提交的中国专利申请号202210565683.X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及热电联产机组技术领域,具体涉及基于熔盐储热的热电联产机组。
背景技术
发电厂既生产电能,又利用汽轮发电机作过功的蒸汽对用户供热的生产方式,称为热电联产机组,热电联产机组能够同时生产电能和热能,较之分别生产电能和热能的方式,其有效节约了燃料,降低了生产成本。
在热电联产机组中,为提高调峰能力,常用的热电解耦方法有旁路补偿供热热电解耦技术、储热补偿供热热电解耦技术、电加热补偿供热热电解耦技术等,但均存在能效低、投资大等缺陷,因此,亟需一种能够提高热电解耦能力的热电联产机组。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提供了基于熔盐储热的热电联产机组。
为达到上述目的,本公开实施例提供了基于熔盐储热的热电联产机组,包括:锅炉、高压缸、中压缸、低压缸、第一熔盐加热器、第二熔盐加热器和储盐装置;所述高压缸的出汽端与所述锅炉的进汽端相连,所述低压缸的进汽端与所述中压缸的出汽端相连;所述第一熔盐加热器的蒸汽通路进汽端与所述锅炉的第一出汽端相连,所述第一熔盐加热器的蒸汽通路出汽端分别与所述锅炉的进汽端及所述高压缸的进汽端相连;所述第二熔盐加热器的蒸汽通路进汽端与所述锅炉的第二出汽端相连,所述第二熔盐加热器的蒸汽通路出汽端分别与所述中压缸的进汽端及所述低压缸的进汽端相连;所述第一熔盐加热器和所述第二熔盐加热器的熔盐通路依次设置在所述储盐装置的熔盐通路上。
在一些实施例中,所述热电联产机组还包括:第一阀体,所述第一阀体设置在所述第一熔盐加热器的蒸汽通路出汽端与所述高压缸的进汽端相连之间;第二阀体,所述第二阀体设置在所述第一熔盐加热器的蒸汽通路出汽端与所述锅炉的进汽端相连之间;第一减压阀,所述第一减压阀设置在所述第二阀体与所述锅炉的进汽端相连之间。
在一些实施例中,所述热电联产机组还包括:第三阀体,所述第三阀体设置在所述第二熔盐加热器的蒸汽通路出汽端与所述中压缸的进汽端相连之间;第四阀体,所述第四阀体设置在所述第二熔盐加热器的蒸汽通路出汽端与所述低压缸的进汽端相连之间;第二减压阀,所述第二减压阀设置在所述第四阀体与所述低压缸的进汽端相连之间。
在一些实施例中,所述热电联产机组还包括:除氧器,所述除氧器的进液端分别与所述高压缸的出汽端、所述中压缸的出汽端及所述低压缸的出液端相连,所述除氧器的出液端与所述锅炉的进液端相连。
在一些实施例中,所述热电联产机组还包括:凝汽器,所述凝汽器的进汽端与所述低压缸的出汽端相连,所述凝汽器的出汽端与所述除氧器的进液端相连。
在一些实施例中,所述热电联产机组还包括:高压加热器,所述高压加热器的进液端与所述除氧器的出液端相连,所述高压加热器的出液端与所述锅炉的进液端相连,所述高压加热器的进汽端分别与所述高压缸的出汽端及所述中压缸的出汽端相连,所述高压加热器的出汽端与所述除氧器的进汽端相连;低压加热器,所述低压加热器的进液端与所述凝汽器的出液端相连,所述低压加热器的出液端与所述除氧器的进液端相连,所述低压加热器的进汽端与所述低压缸的出汽端相连,所述低压加热器的出汽端与所述凝汽器的出液端相连。
在一些实施例中,所述热电联产机组还包括:第四泵体,所述第四泵体设置在所述低压加热器的进液端与所述凝汽器的出液端相连之间;第五泵体,所述第五泵体设置在所述高压加热器的进液端与所述除氧器的出液端相连之间。
在一些实施例中,所述储盐装置包括:低温罐,所述低温罐的出液端与所述第二熔盐加热器的熔盐通路进液端相连,所述第二熔盐加热器的熔盐通路出液端与所述第一熔盐加热器的熔盐通路进液端相连;高温罐,所述高温罐的进液端与所述第一熔盐加热器的熔盐通路出液端相连;换热器,所述换热器的熔盐通路进液端与所述高温罐的出液端相连,所述换热器的熔盐通路出液端与所述低温罐的进液端相连,所述换热器的汽液通路进液端与所述除氧器的出液端相连,所述换热器的汽液通路出汽端与外部用汽装置的进汽端相连。
在一些实施例中,所述储盐装置还包括:第一泵体,所述第一泵体设置在所述低温罐的出液端与所述第二熔盐加热器的熔盐通路进液端相连之间;第二泵体,所述第二泵体设置在所述换热器的熔盐通路进液端与所述高温罐的出液端相连之间;第三泵体,所述第三泵体设置在所述换热器的汽液通路进液端与所述除氧器的出液端相连之间。
在一些实施例中,所述热电联产机组还包括:发电机,所述低压缸的动力输出端与所述发电机的动力输入端相连。
本公开提供的技术方案可以包括以下有益效果:
整体通过熔盐储热的方式对主蒸汽温度和再热蒸汽温度灵活调节,有效提高了热电联产机组的热电解耦能力,且便于在原有基础上改造,改造成本较低。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例提出的基于熔盐储热的热电联产机组的结构示意图;
图2是本公开一实施例提出的基于熔盐储热的热电联产机组的结构示意图;
图3是本公开一实施例提出的基于熔盐储热的热电联产机组的结构示意图。
如图所示:1、锅炉,2、高压缸,3、中压缸,4、低压缸,5、第一熔盐加热器,6、第二熔盐加热器,7、低温罐,8、高温罐,9、换热器,10、第一阀体,11、第二阀体,12、第一减压阀,13、第三阀体,14、第四阀体,15、第二减压阀,16、除氧器,17、凝汽器,18、高压加热器,19、低压加热器,20、第一泵体,21、第二泵体,22、第三泵体,23、第四泵体,24、第五泵体,25、发电机。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。相反,本公开的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
如图1所示,本公开实施例提出一种基于熔盐储热的热电联产机组,包括:锅炉1、高压缸2、中压缸3、低压缸4、第一熔盐加热器5、第二熔盐加热器6和储盐装置,高压缸2的出汽端与锅炉1的进汽端相连,低压缸4的进汽端与中压缸3的出汽端相连,第一熔盐加热器5的蒸汽通路进汽端与锅炉1的第一出汽端相连,第一熔盐加热器5的蒸汽通路出汽端分别与锅炉1的进汽端及高压缸2的进汽端相连,第二熔盐加热器6的蒸汽通路进汽端与锅炉1的第二出汽端相连,第二熔盐加热器6的蒸汽通路出汽端分别与中压缸3的进汽端及低压缸4的进汽端相连,第一熔盐加热器5和第二熔盐加热器6的熔盐通路依次设置在储盐装置的熔盐通路上。
可以理解的是,如图2所示,锅炉1内的主蒸汽依次经过锅炉1的第一出汽端及第一熔盐加热器5的蒸汽通路后进入高压缸2内做功,高压缸2内做功后的蒸汽经过锅炉1再 热后,依次经过锅炉1的第二出汽端及第二熔盐加热器6的蒸汽通路后进入中压缸3内继续做功,中压缸3内做功后的蒸汽进入低压缸4内继续做功;
其中,在蒸汽经过第一熔盐加热器5的蒸汽通路和第二熔盐加热器6的蒸汽通路时,其与储盐装置中的熔盐进行换热,从而降低蒸汽进入高压缸2和中压缸3时的温度,实现高压缸2和中压缸3的缸效调节,进而实现中压缸3出力的能量分配比调节,由此中压缸3做功发电量降低,热电联产机组的排出热量提高,最终实现热电解耦;
而且,如图3所示,还可使锅炉1内的主蒸汽依次经过锅炉1的第一出汽端及第一熔盐加热器5的蒸汽通路后进入锅炉1内再热,再热后的蒸汽依次经过锅炉1的第二出汽端及第二熔盐加热器6的蒸汽通路后进入低压缸4内做功,由此使热电联产机组仅存在低压缸4做功,而高压缸2和中压缸3不做功,实现深度热电解耦;
由此,整体通过熔盐储热的方式对主蒸汽温度和再热蒸汽温度灵活调节,有效提高了热电联产机组的热电解耦能力,且便于在原有基础上改造,改造成本较低。
需要说明的是,第一熔盐加热器5和第二熔盐加热器6均包括用于换热的蒸汽通路和熔盐通路,从而在蒸汽通过蒸汽通路且熔盐通过熔盐通路时能够换热。
在一些实施例中,如图1所示,热电联产机组还包括第一阀体10、第二阀体11和第一减压阀12,第一阀体10设置在第一熔盐加热器5的蒸汽通路出汽端与高压缸2的进汽端相连之间,第二阀体11设置在第一熔盐加热器5的蒸汽通路出汽端与锅炉1的进汽端相连之间,第一减压阀12设置在第二阀体11与锅炉1的进汽端相连之间。
可以理解的是,如图2所示,第一阀体10开启,且第二阀体11关闭时,则锅炉1内的主蒸汽依次经过锅炉1的第一出汽端及第一熔盐加热器5的蒸汽通路后进入高压缸2内做功,且高压缸2内做功后的蒸汽再经过锅炉1再热;如图3所示,第一阀体10关闭,且第二阀体11开启时,则锅炉1内的主蒸汽依次经过锅炉1的第一出汽端及第一熔盐加热器5的蒸汽通路后进行减压,减压后的主蒸汽直接进入锅炉1内再热,使高压缸2不做功。由此实现主蒸汽温度的灵活调节,提高热电联产机组的热电解耦能力。
在一些实施例中,主蒸汽在经过第一熔盐加热器5的蒸汽通路后,其温度可降低至330摄氏度,主蒸汽在经过第一减压阀12后,其压力可降低至3.0兆帕。
在一些实施例中,如图1所示,热电联产机组还包括第三阀体13、第四阀体14和第二减压阀15,第三阀体13设置在第二熔盐加热器6的蒸汽通路出汽端与中压缸3的进汽端相连之间,第四阀体14设置在第二熔盐加热器6的蒸汽通路出汽端与低压缸4的进汽端相连之间,第二减压阀15设置在第四阀体14与低压缸4的进汽端相连之间。
可以理解的是,如图2所示,第三阀体13开启,且第四阀体14关闭时,则锅炉1内的再热蒸汽依次经过锅炉1的第二出汽端及第二熔盐加热器6的蒸汽通路后进入中压缸3 内做功,且在中压缸3内做功后蒸汽再进入到低压缸4内做功;如图3所示,第三阀体13关闭,且第四阀体14开启时,则锅炉1内的再热蒸汽依次经过锅炉1的第二出汽端及第二熔盐加热器6的蒸汽通路后进行减压,减压后的再热蒸汽直接进入到低压缸4内做功。由此实现再热蒸汽温度的灵活调节,提高热电联产机组的热电解耦能力。
在一些实施例中,再热蒸汽在经过第二熔盐加热器6的蒸汽通路后,其温度可降低至300摄氏度,再热蒸汽在经过第二减压阀15后,其压力可降低至0.8兆帕。
在一些实施例中,如图1、图2和图3所示,热电联产机组还包括除氧器16,除氧器16的进液端分别与高压缸2的出汽端、中压缸3的出汽端及低压缸4的出液端相连,除氧器16的出液端与锅炉1的进液端相连。
可以理解的是,高压缸2内做功后的蒸汽、中压缸3内做功后的蒸汽及低压缸4的冷凝水在经过除氧器16除氧后进入到锅炉1中循环使用,不仅能够降低锅炉1的能耗,而且避免水资源的浪费,有效降低了热电联产机组的运行成本,且除氧后的水能够避免对设备、管道等造成腐蚀,有效延长了热电联产机组的使用寿命。
在一些实施例中,如图1、图2和图3所示,热电联产机组还包括凝汽器17,凝汽器17的进汽端与低压缸4的出汽端相连,凝汽器17的出汽端与除氧器16的进液端相连。
可以理解的是,凝汽器17将低压缸4内做功后的蒸汽冷凝成水,从而循环使用,进一步降低了热电联产机组的运行成本。
在一些实施例中,如图1、图2和图3所示,热电联产机组还包括高压加热器18和低压加热器19,高压加热器18的进液端与除氧器16的出液端相连,高压加热器18的出液端与锅炉1的进液端相连,高压加热器18的进汽端分别与高压缸2的出汽端及中压缸3的出汽端相连,高压加热器18的出汽端与除氧器16的进汽端相连,低压加热器19的进液端与凝汽器17的出液端相连,低压加热器19的出液端与除氧器16的进液端相连,低压加热器19的进汽端与低压缸4的出汽端相连,低压加热器19的出汽端与凝汽器17的出液端相连。
可以理解的是,高压加热器18利用高压缸2内做功后的蒸汽和中压缸3做功后的蒸汽加热除氧器16到锅炉1的水,同时低压加热器19利用低压缸4内做功后的蒸汽加热凝汽器17到除氧器16的水,由此减小锅炉1的能耗,降低热电联产机组的运行成本。
在一些实施例中,如图1、图2和图3所示,热电联产机组还包括第四泵体23和第五泵体24,第四泵体23设置在低压加热器19的进液端与凝汽器17的出液端相连之间,第五泵体24设置在高压加热器18的进液端与除氧器16的出液端相连之间。
可以理解的是,通过第四泵体23和第五泵体24的设置,使凝汽器17出液端的水能够顺利输送到除氧器16,并使除氧器16出液端的水能够顺利输送到锅炉1,从而保证水的循 环使用。
在一些实施例中,如图1、图2和图3所示,储盐装置包括低温罐7、高温罐8和换热器9,低温罐7的出液端与第二熔盐加热器6的熔盐通路进液端相连,第二熔盐加热器6的熔盐通路出液端与第一熔盐加热器5的熔盐通路进液端相连,高温罐8的进液端与第一熔盐加热器5的熔盐通路出液端相连,换热器9的熔盐通路进液端与高温罐8的出液端相连,换热器9的熔盐通路出液端与低温罐7的进液端相连,换热器9的汽液通路进液端与除氧器16的出液端相连,换热器9的汽液通路出汽端与外部用汽装置的进汽端相连。
可以理解的是,低温罐7中的熔盐依次经过第一熔盐加热器5的熔盐通路和第二熔盐加热器6的熔盐通路后进入到高温罐8内储存,高温罐8中的熔盐经过换热器9的熔盐通路后进入到低温罐7内储存;
其中,熔盐在经过第一熔盐加热器5的熔盐通路和第二熔盐加热器6的熔盐通路时,第一熔盐加热器5蒸汽通路和第二熔盐加热器6蒸汽通路内的蒸汽对熔盐进行加热,不仅实现蒸汽的降温,而且还实现熔盐的储热,熔盐在经过换热器9的熔盐通路时,其将换热器9汽液通路内的水加热,以使水转换成蒸汽,从而供外部用汽装置的使用;
由此,除氧器16出液端的水一部分进入到锅炉1中循环使用,另一部分被换热器9转换为蒸汽后供外部用汽装置使用,避免使用主蒸汽进行供热,有效提高了整体的热经济性;同时,利用储盐装置加热除氧器16到外部用汽装置的水,在进行热电解耦的同时实现供汽,有效降低了热电联产机组的能耗,提高了热电联产机组的经济效益。
需要说明的是,换热器9包括用于换热的熔盐通路和汽液通路,从而在熔盐经过熔盐通路且水经过汽液通路时能够换热。
在一些实施例中,如图1、图2和图3所示,储盐装置还包括第一泵体20、第二泵体21和第三泵体22,第一泵体20设置在低温罐7的出液端与第二熔盐加热器6的熔盐通路进液端相连之间,第二泵体21设置在换热器9的熔盐通路进液端与高温罐8的出液端相连之间,第三泵体22设置在换热器9的汽液通路进液端与除氧器16的出液端相连之间。
可以理解的是,通过第一泵体20和第二泵体21的设置,使低温罐7和高温罐8之间的熔盐能够顺利循环,保证熔盐的储热及放热,通过第三泵体22的设置,使除氧器16出液端的水能够顺利经过换热器9汽液通路并进入到外部用汽装置内,保证热电联产机组的稳定供汽。
在一些实施例中,如图1、图2和图3所示,热电联产机组还包括发电机25,低压缸4的动力输出端与发电机25的动力输入端相连。
可以理解的是,高压缸2内蒸汽的做功、中压缸3内蒸汽的做功及低压缸4内蒸汽的做功传递到发电机25的动力输入端,从而实现发电。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种基于熔盐储热的热电联产机组,其特征在于,包括:锅炉、高压缸、中压缸、低压缸、第一熔盐加热器、第二熔盐加热器和储盐装置,其中
    所述高压缸的出汽端与所述锅炉的进汽端相连,所述低压缸的进汽端与所述中压缸的出汽端相连;
    所述第一熔盐加热器的蒸汽通路进汽端与所述锅炉的第一出汽端相连,所述第一熔盐加热器的蒸汽通路出汽端分别与所述锅炉的进汽端及所述高压缸的进汽端相连;
    所述第二熔盐加热器的蒸汽通路进汽端与所述锅炉的第二出汽端相连,所述第二熔盐加热器的蒸汽通路出汽端分别与所述中压缸的进汽端及所述低压缸的进汽端相连;并且
    所述第一熔盐加热器和所述第二熔盐加热器的熔盐通路依次设置在所述储盐装置的熔盐通路上。
  2. 根据权利要求1所述基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    第一阀体,所述第一阀体设置在所述第一熔盐加热器的蒸汽通路出汽端与所述高压缸的进汽端相连之间;
    第二阀体,所述第二阀体设置在所述第一熔盐加热器的蒸汽通路出汽端与所述锅炉的进汽端相连之间;和
    第一减压阀,所述第一减压阀设置在所述第二阀体与所述锅炉的进汽端相连之间。
  3. 根据权利要求1或2所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    第三阀体,所述第三阀体设置在所述第二熔盐加热器的蒸汽通路出汽端与所述中压缸的进汽端相连之间;
    第四阀体,所述第四阀体设置在所述第二熔盐加热器的蒸汽通路出汽端与所述低压缸的进汽端相连之间;和
    第二减压阀,所述第二减压阀设置在所述第四阀体与所述低压缸的进汽端相连之间。
  4. 根据权利要求1至3中任一项所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    除氧器,所述除氧器的进液端分别与所述高压缸的出汽端、所述中压缸的出汽端及所述低压缸的出液端相连,所述除氧器的出液端与所述锅炉的进液端相连。
  5. 根据权利要求4所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    凝汽器,所述凝汽器的进汽端与所述低压缸的出汽端相连,所述凝汽器的出汽端与所述除氧器的进液端相连。
  6. 根据权利要求5所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    高压加热器,所述高压加热器的进液端与所述除氧器的出液端相连,所述高压加热器的出液端与所述锅炉的进液端相连,所述高压加热器的进汽端分别与所述高压缸的出汽端及所述中压缸的出汽端相连,所述高压加热器的出汽端与所述除氧器的进汽端相连;和
    低压加热器,所述低压加热器的进液端与所述凝汽器的出液端相连,所述低压加热器的出液端与所述除氧器的进液端相连,所述低压加热器的进汽端与所述低压缸的出汽端相连,所述低压加热器的出汽端与所述凝汽器的出液端相连。
  7. 根据权利要求6所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    第四泵体,所述第四泵体设置在所述低压加热器的进液端与所述凝汽器的出液端相连之间;和
    第五泵体,所述第五泵体设置在所述高压加热器的进液端与所述除氧器的出液端相连之间。
  8. 根据权利要求4至7中任一项所述的基于熔盐储热的热电联产机组,其特征在于,所述储盐装置包括:
    低温罐,所述低温罐的出液端与所述第二熔盐加热器的熔盐通路进液端相连,所述第二熔盐加热器的熔盐通路出液端与所述第一熔盐加热器的熔盐通路进液端相连;
    高温罐,所述高温罐的进液端与所述第一熔盐加热器的熔盐通路出液端相连;和
    换热器,所述换热器的熔盐通路进液端与所述高温罐的出液端相连,所述换热器的熔盐通路出液端与所述低温罐的进液端相连,所述换热器的汽液通路进液端与所述除氧器的出液端相连,所述换热器的汽液通路出汽端与外部用汽装置的进汽端相连。
  9. 根据权利要求8所述的基于熔盐储热的热电联产机组,其特征在于,所述储盐装置还包括:
    第一泵体,所述第一泵体设置在所述低温罐的出液端与所述第二熔盐加热器的熔盐通路进液端相连之间;
    第二泵体,所述第二泵体设置在所述换热器的熔盐通路进液端与所述高温罐的出液端相连之间;和
    第三泵体,所述第三泵体设置在所述换热器的汽液通路进液端与所述除氧器的出液端相连之间。
  10. 根据权利要求1至9中任一项所述的基于熔盐储热的热电联产机组,其特征在于,所述热电联产机组还包括:
    发电机,所述低压缸的动力输出端与所述发电机的动力输入端相连。
PCT/CN2022/140150 2022-05-23 2022-12-19 基于熔盐储热的热电联产机组 WO2023226391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565683.XA CN114992619B (zh) 2022-05-23 2022-05-23 一种基于熔盐储热的热电联产机组
CN202210565683.X 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023226391A1 true WO2023226391A1 (zh) 2023-11-30

Family

ID=83027151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140150 WO2023226391A1 (zh) 2022-05-23 2022-12-19 基于熔盐储热的热电联产机组

Country Status (2)

Country Link
CN (1) CN114992619B (zh)
WO (1) WO2023226391A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992619B (zh) * 2022-05-23 2023-11-03 西安热工研究院有限公司 一种基于熔盐储热的热电联产机组
CN116045352A (zh) * 2023-01-13 2023-05-02 西安热工研究院有限公司 一种基于熔盐储能的热电联产机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749961A (zh) * 2009-12-30 2010-06-23 北京世纪源博科技有限责任公司 烧结生产线饱和蒸汽余热发电系统
CN101807443A (zh) * 2010-03-25 2010-08-18 华北电力大学 一种基于压水堆和高温气冷堆的混合热力循环系统
CN207831468U (zh) * 2017-12-08 2018-09-07 国家电投集团科学技术研究院有限公司 火电再热机组调峰系统
CN208418894U (zh) * 2018-05-31 2019-01-22 百吉瑞(天津)新能源有限公司 一种电厂深度调峰与灵活性改造的熔盐储能供热系统
WO2020181675A1 (zh) * 2019-03-11 2020-09-17 西安交通大学 一种灵活燃煤发电系统及运行方法
CN215061976U (zh) * 2021-07-13 2021-12-07 华电国际电力股份有限公司天津开发区分公司 一种中低压供汽可调的超临界双抽背压机组热电解耦系统
CN114992619A (zh) * 2022-05-23 2022-09-02 西安热工研究院有限公司 一种基于熔盐储热的热电联产机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB761617A (en) * 1953-09-08 1956-11-14 Foster Wheeler Ltd Improvements in and relating to the generation of steam power
EP2647841B1 (en) * 2012-04-02 2020-09-23 General Electric Technology GmbH Solar thermal power system
CN108518324B (zh) * 2018-03-20 2021-01-05 华北电力大学 一种带蓄能的塔式太阳能光热耦合燃煤发电系统
CN114216108B (zh) * 2021-12-07 2024-02-06 北京工业大学 一种混合加热熔盐储热调峰系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749961A (zh) * 2009-12-30 2010-06-23 北京世纪源博科技有限责任公司 烧结生产线饱和蒸汽余热发电系统
CN101807443A (zh) * 2010-03-25 2010-08-18 华北电力大学 一种基于压水堆和高温气冷堆的混合热力循环系统
CN207831468U (zh) * 2017-12-08 2018-09-07 国家电投集团科学技术研究院有限公司 火电再热机组调峰系统
CN208418894U (zh) * 2018-05-31 2019-01-22 百吉瑞(天津)新能源有限公司 一种电厂深度调峰与灵活性改造的熔盐储能供热系统
WO2020181675A1 (zh) * 2019-03-11 2020-09-17 西安交通大学 一种灵活燃煤发电系统及运行方法
CN215061976U (zh) * 2021-07-13 2021-12-07 华电国际电力股份有限公司天津开发区分公司 一种中低压供汽可调的超临界双抽背压机组热电解耦系统
CN114992619A (zh) * 2022-05-23 2022-09-02 西安热工研究院有限公司 一种基于熔盐储热的热电联产机组

Also Published As

Publication number Publication date
CN114992619B (zh) 2023-11-03
CN114992619A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023226391A1 (zh) 基于熔盐储热的热电联产机组
CN106610044A (zh) 一种扩大热电联产集中供热规模的系统
CN107989757B (zh) 具有储热功能的太阳能空气透平发电系统及其控制方法
CN105736068A (zh) 与无再热汽轮机排汽供热耦合的高背压热电联产系统
WO2023246030A1 (zh) 基于熔盐储热的火电机组灵活运行系统
CN114382559B (zh) 一种双介质储热型调峰热力发电系统及储释热方法
CN208519750U (zh) 一种利用主蒸汽加热的火电厂熔盐蓄热调峰系统
CN112502800A (zh) 火力发电厂灵活性大规模高参数供热系统
WO2023178872A1 (zh) 基于高低参数组合熔盐实现火电机组改造的系统及方法
CN214741510U (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统
CN213953702U (zh) 火力发电厂灵活性大规模高参数供热系统
CN110925041B (zh) 一种联合循环高效燃煤发电系统
CN109139147B (zh) 一种分流再压缩超临界二氧化碳热电联产系统及运行方法
WO2023029404A1 (zh) 一种可实现能量梯级回收利用的高效灵活供热发电系统
CN216381531U (zh) 主蒸汽作为储热热源的熔盐储热耦合超临界火电机组系统
CN105551554A (zh) 高温气冷堆直接制氢耦合蒸汽循环发电系统及其方法
CN111780198B (zh) 一种给水减温供热的热电负荷宽域调整系统
CN209875234U (zh) 生物质直燃热电联产系统
CN217712695U (zh) 一种基于熔盐储能的工业供汽系统
CN206310568U (zh) 给水泵汽轮机低真空运行循环水采暖供热系统
CN217816968U (zh) 一种储热调峰及节能供汽热力系统
WO2023221243A1 (zh) 基于发电机组的多罐储放热系统
CN216047595U (zh) 一种利用熔盐储热实现机组热电解耦的系统
CN217080588U (zh) 一种热电联产供热发电系统
CN213930897U (zh) 一种用于替换发电厂的凝汽器和低压加热器的改造系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943578

Country of ref document: EP

Kind code of ref document: A1