WO2009153936A1 - Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof - Google Patents

Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof Download PDF

Info

Publication number
WO2009153936A1
WO2009153936A1 PCT/JP2009/002615 JP2009002615W WO2009153936A1 WO 2009153936 A1 WO2009153936 A1 WO 2009153936A1 JP 2009002615 W JP2009002615 W JP 2009002615W WO 2009153936 A1 WO2009153936 A1 WO 2009153936A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
resin
iron
manganese
composition
Prior art date
Application number
PCT/JP2009/002615
Other languages
French (fr)
Japanese (ja)
Inventor
清水清也
小林功治
Original Assignee
丸尾カルシウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸尾カルシウム株式会社 filed Critical 丸尾カルシウム株式会社
Priority to JP2010517697A priority Critical patent/JP5404621B2/en
Priority to CN200980132795.9A priority patent/CN102123947B/en
Publication of WO2009153936A1 publication Critical patent/WO2009153936A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention provides a magnesium hydroxide composition that imparts higher flame retardancy and better hue than conventional magnesium hydroxide to a resin, a method for producing the same, and heat deterioration resistance obtained by blending the resin with the resin,
  • the present invention relates to a resin composition excellent in flame retardancy and a molded product comprising the same. More specifically, the magnesium hydroxide particles having excellent dispersibility when blended with the resin improve the flame retardancy by containing a specific metal element, and further the hue deterioration caused by the inclusion of the metal element.
  • the present invention relates to a magnesium hydroxide composition characterized by being hardly present, a production method thereof, a resin composition excellent in heat deterioration resistance and flame retardancy obtained by blending it with a resin, and a molded article comprising the same.
  • Synthetic resins are used in various fields because the resin itself is lighter and stronger than metal, easy to mold, and inexpensive. However, since resin is much easier to burn than metal, there is a demand for flame retardancy for resin molded products, and the demand is high and severe. In order to meet the demand for flame retardancy, flame retardants using halogen compounds and antimony trioxide in combination have been proposed and widely used.
  • halogen compound is exposed to high temperatures during molding processing, and partly decomposes at that temperature to generate halogen gas, which corrodes the processing machine and molding machine.
  • Heat resistance and weather resistance of resins and rubbers There are problems in manufacturing and physical properties such as adversely affecting the above.
  • halogen gas is toxic to the human body, it not only deteriorates the working environment during production, but also when a fire occurs during use by compounding with resin or rubber, and molded products When it is disposed of or incinerated, there is a problem that a large amount of smoke containing toxic gas is generated.
  • the generation of toxic gases at the time of a fire is a serious problem, and it is used for the purpose of increasing the evacuation time of people who are indoors, for example, by delaying the spread of fire by making flame-retardant resin molded products in the event of a fire Nevertheless, the poisonous gas can have a negative effect on health and can even lead to the loss of human life.
  • Such a case is the end of the end as the purpose of the original use of the halogen compound and should be avoided absolutely.
  • phosphorus flame retardants are mentioned as flame retardants other than halogen flame retardants. However, since many phosphorus-based flame retardants are liquid, they degrade mechanical strength such as impact resistance of blended resin molded products, and are easily hydrolyzed.
  • magnesium hydroxide has a dehydration and decomposition start temperature of 340 ° C., it has an advantage that it can be blended into most resins.
  • Magnesium hydroxide is a natural or heavy product that is finely pulverized from natural mineral brucite and classified as necessary to adjust the particle size. There is a compound obtained by purifying bitter juice containing magnesium chloride as a by-product as a main component and then reacting with alkali.
  • magnesium hydroxide particles are desired to be fine, uniform and excellent in dispersibility in order not to impair the appearance, strength, durability and the like of the resin molded product obtained by blending them.
  • a resin molded product for example, when used in molded products such as the above-mentioned electric wires, cables, and automobile harnesses, fine, uniform, and highly dispersible particles are used.
  • the surface of the molded product has more irregularities and convex portions, and the appearance is impaired.
  • Natural products have the advantage that they can be manufactured and adjusted at low cost because the raw material is mineral and the particle size adjustment method is relatively simple, such as pulverization and classification.
  • the particle size adjustment method is relatively simple, such as pulverization and classification.
  • the shape of the particles becomes non-uniform when pulverized, a uniform flame retardant effect cannot be expected when the flame retardant properties are exhibited by decomposition and dehydration, which is not preferable.
  • a method of performing a surface treatment simultaneously with pulverization by adding a surface treatment agent at the time of pulverization has been proposed, but the above problems have not been solved in terms of cost and dispersibility. Furthermore, since natural ore is used as a raw material, there are concerns about coloring due to impurities contained therein, asbestos content, and the like, and it is difficult to remove them at low cost with the current technology. Therefore, there is a problem of losing cost merit, which is the greatest advantage of using natural products.
  • the compound magnesium hydroxide can be removed at a relatively low cost by selecting or refining raw materials other than undesired impurities such as asbestos and natural ores. Furthermore, since the particle size and dispersion
  • magnesium hydroxide obtained by the method of synthesizing magnesium hydroxide proposed in Patent Document 1 has a specific shape and particle size because its crystal structure has less structural distortion than conventional magnesium hydroxide.
  • it has features such as low secondary aggregation, excellent dispersibility, and small residual water molecules or air, and is used for the above-mentioned applications.
  • the UL-94 flame retardant standard which is one of the flame retardant indicators for electric wires, cables, etc., it must be blended in a large amount with the resin. It has the problem of reducing impact strength, elongation, tensile strength, and the like.
  • Patent Document 2 proposes that a composite metal hydroxide is obtained by including any one of manganese, iron, cobalt, nickel, copper, and zinc in a magnesium hydroxide crystal.
  • a composite metal hydroxide is obtained by including any one of manganese, iron, cobalt, nickel, copper, and zinc in a magnesium hydroxide crystal.
  • the composite metal hydroxide particles of Patent Document 2 need to be blended in a relatively large amount with resin or rubber.
  • the secondary purpose of coloring and distinguishing each wire there is a problem that it is restricted by the remarkable coloring of the particles themselves. have.
  • the metal hydroxide has a flame retardant action when its hydroxyl group decomposes and dehydrates.
  • the above metal elements have an atomic weight greater than that of magnesium, they are blended in the same proportion as conventional magnesium hydroxide. There is a problem that the number of hydroxyl groups is relatively reduced and the flame retardancy is lowered. Although it is possible to cope with the problem by increasing the blending ratio, a decrease in moldability and strength physical properties of the resin molded product due to an increase in the blending ratio becomes a new problem. Furthermore, chlorides of the above metal elements are obtained during the reaction, but nickel, chromium, and cobalt chlorides are expensive and require strict consideration for the environment when used and disposed of. There are many problems that must be solved in order to produce and use inexpensively and in large quantities.
  • Patent Document 3 the impurities and physical properties mixed as solid solution or impurities in the magnesium hydroxide particles are examined, and contrary to Patent Document 2, iron, manganese, cobalt, chromium, copper, vanadium, It has been found that if nickel is present as an impurity in a specific amount or more, it will affect the thermal degradation of the resin, and it has been proposed to strictly limit the content thereof to a specific amount or less.
  • the particles obtained in Patent Document 3 are intended to improve the flame retardancy by improving the heat deterioration resistance when blended with a resin or rubber, the heat deterioration resistance is not necessarily sufficient, and the hue or resin The problem of adding a large amount to rubber and rubber has not been solved.
  • the present invention may be formulated in a relatively small amount, and therefore, it is excellent in flame retardancy and its sustainability without causing deterioration in physical properties, and imparts excellent heat deterioration resistance and hue to the resin.
  • the present invention provides a magnesium hydroxide composition that can be used, a method for producing the same, a resin composition comprising the composition, and a molded product thereof.
  • the present inventors have formulated a magnesium hydroxide composition containing a specific amount of iron and / or manganese and a sulfur component into the resin.
  • a magnesium hydroxide composition containing a specific amount of iron and / or manganese and a sulfur component into the resin.
  • it is excellent in flame retardancy and its sustainability, and by containing a sulfur component, coloring and thermal deterioration caused by iron and manganese are suppressed, and as a result, it is difficult to impair the strength physical properties of the resin.
  • Magnesium hydroxide composition capable of obtaining molded articles such as resin compositions, electric wires, cables, electronic parts, etc. excellent in flammability and sustainability, heat resistance deterioration and hue, manufacturing method thereof, and water thereof
  • a resin composition obtained by blending a magnesium oxide composition and a molded product thereof have been found, and the present invention has been completed.
  • the first of the present invention consists of magnesium hydroxide particles containing iron and / or manganese and sulfur, and the content M of iron and / or manganese measured with an atomic absorption spectrophotometer is based on the magnesium hydroxide particles.
  • the magnesium hydroxide composition is characterized in that it is in the range of 10 to 1000 ppm, and the sulfur content S measured by the infrared absorption method is in the range of 10 to 1800 ppm with respect to the magnesium hydroxide particles.
  • the magnesium hydroxide composition is characterized in that the ratio S / M of the sulfur content S to the iron and / or manganese content M is in the range of 1.0 to 1.8.
  • the magnesium hydroxide composition is characterized in that the whiteness W is 98 or more, the L value is 78 or more, and the b value is 3.5 or less.
  • magnesium hydroxide composition is surface-treated with at least one surface treatment agent.
  • the 50% average particle size Dp 50 measured with a laser diffraction / scattering particle size distribution meter is 0.5 to 2.0 ⁇ m
  • the maximum particle size D Max measured with a laser diffraction / scattering particle size distribution meter is 6. 5 ⁇ m or less
  • magnesium hydroxide composition characterized by nitrogen adsorption method with measured BET specific surface area Sw is 1 ⁇ 10m 2 / g.
  • magnesium hydroxide particles obtained by reacting a magnesium chloride solution and a hydroxide solution, or surface-treated magnesium hydroxide particles obtained by surface-treating them, an iron chloride solution and / or a manganese chloride solution,
  • a method for producing a magnesium hydroxide composition comprising adding a solution mixed with a sulfur compound.
  • the amount of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 10 to 1000 ppm with respect to the magnesium hydroxide particles or the surface-treated magnesium hydroxide particles obtained by surface-treating the particles. It is a manufacturing method of the magnesium hydroxide composition characterized by being.
  • the ratio Sm / Mm of the number of moles Sm of sulfur in the sulfur compound to the number of moles Mm of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 1.9 to 3.3. It is a manufacturing method of the magnesium hydroxide composition characterized by the above-mentioned.
  • the method for producing a magnesium hydroxide composition is characterized in that the sulfur compound is at least one reducing agent selected from a thiosulfuric acid compound and dechlorin.
  • a fourth aspect of the present invention is a resin composition obtained by blending the above magnesium hydroxide composition into a resin.
  • a fifth aspect of the present invention is a molded product obtained by molding the above resin composition.
  • the magnesium hydroxide composition of the present invention contains a specific amount of iron and / or manganese and a sulfur component, it is excellent in flame retardancy and its sustainability when blended in a resin, and iron is added by the sulfur component. Resin composition and electric wires and cables excellent in flame retardancy and sustainability, heat resistance deterioration and hue, without inhibiting coloring and thermal deterioration caused by copper and manganese, without impairing the strength physical properties of the resin
  • a magnesium hydroxide composition capable of obtaining a molded article such as an electronic component can be provided.
  • the magnesium hydroxide composition of the present invention comprises magnesium hydroxide particles containing iron and / or manganese and sulfur, and the content M of iron and / or manganese is in the range of 10 to 1000 ppm with respect to the magnesium hydroxide particles.
  • the sulfur content S is in the range of 10 to 1800 ppm with respect to the magnesium hydroxide particles.
  • the content M of iron and / or manganese in the magnesium hydroxide composition exceeds 1000 ppm, it is preferable in terms of improvement in sustainability of flame retardancy, but coloration becomes remarkable, and further, these metals contribute to heat deterioration of the resin. Adversely affected. The reason for this is not clear, but it is unlikely that all the added iron and / or manganese will react completely with the sulfur compound, and as the added amount increases, the remaining iron and / or manganese that does not react with the sulfur compound is oxidized. It is presumed that the resin is colored or radicalized to adversely affect the thermal degradation of the resin.
  • the ratio of magnesium hydroxide particles that provide a relatively flame-retardant action decreases, and the resin contains sufficient flame retardancy. Can no longer be granted.
  • the content M of iron and / or manganese is less than 10 ppm, it is preferable in terms of hue and heat deterioration, but in terms of flame retardancy, there is no significant difference from the case where magnesium hydroxide particles are used alone, and flame retardancy. The effect of improving the sex and its sustainability is reduced.
  • the total amount M of iron and manganese is preferably 100 to 1000 ppm, more preferably 200 to 500 ppm.
  • content of iron and manganese was measured with Shimadzu Corporation atomic absorption spectrophotometer AA6700F.
  • the magnesium hydroxide composition contains sulfur within the above range, the resin is unlikely to be thermally deteriorated despite the fact that it contains iron or manganese, and a good hue is achieved with the magnesium hydroxide of the present invention. It can be applied to a composition, a resin composition, and a molded article.
  • the reason and mechanism for preventing thermal degradation and imparting a good hue by containing sulfur in the above range is not clear, but in the magnesium hydroxide composition, sulfur is a sulfate or sulfite of iron or manganese, It is presumed that it is in the form of complex compounds such as sulfur-containing double salts and sulfur-containing complex salts, and the activity of iron and manganese is suppressed.
  • the sulfur content S exceeds 1800 ppm, the hue of the magnesium hydroxide composition itself, and the resin composition and molded body containing the magnesium hydroxide composition deteriorate.
  • the reason why the hue deteriorates is not clear, but not only the sulfur compound reacts with iron and manganese, but also magnesium and other impurities such as calcium and sulfites are generated and the content increases. It is guessed.
  • the sulfur content S is less than 10 ppm, not only the hue is deteriorated, but also the heat deterioration property is deteriorated when the resin molded body is obtained.
  • the sulfur content S is preferably 100 to 1800 ppm, more preferably 200 to 800 ppm.
  • the sulfur content was measured by an infrared absorption method, specifically, carbon manufactured by LECO and a sulfur analyzer CS-444.
  • the ratio S / M of the sulfur content S to the iron and / or manganese content M is preferably in the range of 1.0 to 1.8, more preferably 1.2 to 1.5.
  • the ratio S / M exceeds 1.8, the hue of the magnesium hydroxide composition itself, and the resin composition and molded body containing the magnesium hydroxide composition tend to deteriorate. The reason for this tendency is not clear, but not only sulfur compounds react with iron and manganese, but also magnesium and other impurities such as calcium and sulfites are produced, and their content is high. Presumed to be.
  • the whiteness W as a powder of the magnesium hydroxide composition measured with a ket type phototube whiteness meter is preferably 98 or more, more preferably 100 or more. Particularly preferably, it is 102 or more.
  • the resin composition formed by blending the magnesium hydroxide composition of the present invention and the molded body prepared therefrom are colored by the magnesium hydroxide composition. In some cases, it is preferable to adjust the hue, so that the strength of the molded body tends to be reduced accordingly.
  • the whiteness W was measured with a powder whiteness meter C-100-3 manufactured by KETT.
  • the magnesium hydroxide composition is dispersed in di-2-ethylhexyl phthalate (hereinafter abbreviated as DOP) at a ratio of 1: 2, and the color of the mixture (hereinafter abbreviated as DOP wet color) is expressed in Hunter Lab color.
  • DOP di-2-ethylhexyl phthalate
  • the L value when expressed in a system is preferably 78 or more, more preferably 80 or more, and still more preferably 81.5 or more.
  • the b value of the DOP wet color is preferably 3.5 or less, more preferably 2.8 or less, and still more preferably 2.0 or less.
  • the resin composition formed by blending the magnesium hydroxide composition and the molded body produced therefrom are affected by the hue of the magnesium hydroxide composition. Since it is colored, there may be a case where it is unavoidable to add a colorant or the like to adjust the hue for this correction, so that the strength and the like of the molded product tend to be weakened.
  • the measurement by the Hunter Lab color system in this invention was measured by Nippon Denshoku Industries Co., Ltd. colorimetric color difference meter ZE2000.
  • the magnesium hydroxide composition of the present invention preferably satisfies specific particle size characteristics. That is, the 50% average particle diameter Dp 50 of the magnesium hydroxide composition measured by a laser diffraction / scattering particle size distribution meter is preferably 0.5 to 2.0 ⁇ m, more preferably 0.5 to 1.5 ⁇ m, More preferably, it is in the range of 0.5 to 1.2 ⁇ m, and the maximum particle diameter D Max of the magnesium hydroxide composition measured by a laser diffraction / scattering particle size distribution meter is preferably 6.5 ⁇ m or less.
  • a BET specific surface area Sw by a nitrogen adsorption method is 1 ⁇ 10m 2 / g, more preferably 2 ⁇ 7m 2 / It is preferable to be in the range of g.
  • the magnesium hydroxide composition of the present invention satisfies the above-mentioned 50% average particle diameter Dp 50 , maximum particle diameter D Max , and BET specific surface area Sw, it is blended into a resin and exhibits its effectiveness as a flame retardant. At this time, it can be dispersed throughout the resin, and since it is finer, it has a large area in contact with the particles in the event of a fire and is effective as a flame retardant because it can be easily dehydrated by decomposition of hydroxyl groups. Further, in order to exhibit the effect as a flame retardant, the shape of the particles is preferably a flat shape.
  • the 50% average particle diameter Dp 50 is less than 0.5 ⁇ m, the surface energy of the particles increases because of being too fine, and aggregates and stabilizes. Therefore, when blending into a resin or molding a resin composition Aggregates are easily generated. Further, when large particles that are strongly aggregated are present in the resin molded product, there are cases where the surface of the molded product has more spots and convex portions than the fine, uniform, and dispersible particles, and the appearance may be impaired. Furthermore, the detailed mechanism of strength properties such as impact resistance and tensile strength is not clear at present. However, if large particles are present in the resin, the stress is applied to the molded body in the same way as when the resin is stressed.
  • the average particle diameter Dp 50 exceeds 2.0 ⁇ m, large particles are present in the resin molded product, so that the appearance of the molded body is impaired as in the case where the average particle diameter Dp 50 is less than 0.5 ⁇ m. In some cases, problems such as deterioration of strength properties such as impact resistance and tensile strength and deterioration of durability may occur.
  • the maximum particle diameter D Max exceeds 6.5 ⁇ m, a large number of coarse particles are present in the resin regardless of single particles or agglomerated particles.
  • the average particle diameter Dp 50 exceeds 2.0 ⁇ m, there is a tendency that the appearance of the molded body is impaired, the strength physical properties such as impact resistance and tensile strength are lowered, and the durability is lowered.
  • the 50% average particle diameter Dp 50 and the maximum particle diameter D Max were measured using a Microtrac FRA laser diffraction / scattering particle size distribution meter manufactured by Lees & Northrup, with the solvent as methanol.
  • the BET specific surface area Sw is less than 1 m 2 / g, a large number of single particles are present in the magnesium hydroxide composition, and as in the case where the average particle diameter Dp 50 exceeds 2.0 ⁇ m, There is a tendency for the appearance of the molded article to be impaired, causing problems such as a reduction in strength properties such as impact resistance and tensile strength, and a reduction in durability.
  • the Sw exceeds 10 m 2 / g, fine particles increase in the magnesium hydroxide composition, and aggregates are formed when the resin composition is molded during storage or compounding into a resin.
  • the average particle diameter Dp 50 exceeds 2.0 ⁇ m, the appearance of the molded body is impaired, the strength physical properties such as impact resistance and tensile strength are lowered, and the durability is lowered. Tend to occur.
  • the nitrogen adsorption BET specific surface area was measured with NOVA2000 manufactured by Yuasa Ionics Co., Ltd.
  • the magnesium hydroxide composition of the present invention when blended in a resin composition, improves various physical properties such as durability and strength, and improves particle stability, dispersibility, affinity with resin and imparts water repellency.
  • a surface treatment agent include fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, resin acids, salts of these metal salts, amine salts, esters thereof, surfactants, coupling agents, and phosphoric acid.
  • An ester etc. are mentioned, These are used individually or in combination of 2 or more types as needed.
  • the above-mentioned surface treatment agent may be appropriately selected from the viewpoints of the above various physical properties, applications, environmental influences, handling properties, and cost.
  • EEA or EVA resin used as a resin for coating eco wires surface treatment with fatty acids, metal salts thereof, and silane coupling agents is preferable from the viewpoint of hue, and silane coupling agents are more suitable for demands of hue and recent flame retardancy and strength properties. preferable.
  • fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, and resin acids used in the present invention include acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, Saturated fatty acids such as arachidic acid, behenic acid, lignoceric acid; unsaturated fatty acids such as sorbic acid, elaidic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, cetoleic acid, erucic acid, ricinoleic acid; cyclopentane ring and cyclohexane Ring-containing alicyclic carboxylic acids such as naphthenic acid; benzene carboxylic acids such as benzoic acid and phthalic acid; aromatic carboxylic acids such as naphthoic acid and naphthalene carboxylic acid such as naphthalic
  • fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, metal salt of resin acid, and amine salt include potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, barium stearate, calcium stearate, stearin.
  • Saturated fatty acid salts such as zinc oxide, potassium stearate, cobalt (II) stearate, tin (IV) stearate, sodium stearate, lead (II) stearate; zinc oleate, potassium oleate, cobalt oleate (II) ), Unsaturated fatty acid salts such as sodium oleate and potassium diethanolamine salt; alicyclic carboxylates such as lead naphthenate and lead cyclohexylbutyrate; aromatic carboxylates such as sodium benzoate and sodium salicylate; sodium abietate, Abbie Potassium phosphate, sodium pimaric acid, potassium pimaric acid, sodium palustric acid, potassium palustric acid, sodium neoabietic acid, resin acid salts such as potassium neoabietic acid.
  • the previously described fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, resin acid, lithium, sodium, potassium, rubidium, beryllium , Magnesium, Calcium, Strontium, Barium, Zinc, Aluminum, Lead, Cobalt, Tin, Compounds with acyl group are mixed and reacted to make fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, metal salt of resin acid, amine You may make a salt suitably.
  • fatty acid alicyclic carboxylic acid, aromatic carboxylic acid, and resin acid metal salts
  • stearic acid or palmitic acid is mainly used in terms of reactivity with magnesium hydroxide, particle stability, dispersibility, and cost.
  • the use of mixed soap as a component is preferred.
  • esters of fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids and resin acids include, for example, ethyl caproate, vinyl caproate, diisopropyl adipate, ethyl caprylate, allyl caprate, ethyl caprate, vinyl caprate, Diethyl sebacate, diisopropyl sebacate, cetyl isooctanoate, octyldodecyl dimethyloctanoate, methyl laurate, butyl laurate, lauryl laurate, methyl myristate, isopropyl myristate, cetyl myristate, myristyl myristate, isocetyl myristate, Octyldodecyl myristate, isotridecyl myristate, methyl palmitate, isopropyl palmitate, octyl palmitate, cetyl palmitate, iso
  • the surfactant a group consisting of a polymer of a monomer having a vinyl group and its alkali metal salt, ammonium, and a partially or completely neutralized product with an amine, for example, ⁇ , ⁇ -monoethylenic monomer.
  • sulfates such as alkyl ether sulfuric acid, alkyl aryl ether sulfuric acid, alkyl sulfuric acid ester, sulfuric acid ether, sulfuric acid ester, in terms of dispersibility and stability of magnesium hydroxide particles themselves, improved affinity with resin, and cost. Is preferred.
  • silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyl, tris ( ⁇ -methoxyethoxy) silane, ⁇ -chloropropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane , ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, and the like.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, 2-ethylhexyl phosphate, butoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, Cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol diphenyl phosphate, various aromatic condensed phosphates, 2-chloroethyl-chloropropyl phosphate, dichloropropyl phosphate, tribromoneopentyl Phosphate, halogen-containing condensed phosphoric acid, bis-2-ethylhexylphos P
  • the amount of the surface treatment agent to be treated is appropriately selected depending on the type and use of the resin used in the resin composition obtained in the present invention. For example, when blended in a synthetic resin, the amount is 100 parts by weight of the particles. The amount is usually 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight. When the treatment amount of the surface treatment agent is less than 0.01 parts by weight, the effect of improving the handling during the production of the resin composition or the molded product is not recognized, and the magnesium hydroxide particles in the unsurface-treated part in the resin The effect of the surface treatment agent is not recognized, as in the case of untreated magnesium hydroxide particles, such as whitening that moisture adsorbs and reacts with the carbon dioxide gas dissolved in the atmosphere to cause whitening.
  • the surface treatment amount exceeds 10 parts by weight, for example, when a molded body is prepared by blending with a resin, the strength of the resin is remarkably lowered, and in some cases, even the shape of the molded body cannot be maintained.
  • the action and effect of the magnesium hydroxide composition of the present invention can be appropriately selected depending on the purpose of use.
  • a magnesium hydroxide composition having a high content of iron and / or manganese and sulfur is selected for the purpose of greatly improving the flame retardancy, or flame retardancy
  • the magnesium hydroxide composition of the present invention for example, after mixing a magnesium chloride solution and a hydroxide solution such as sodium hydroxide, calcium hydroxide, ammonium hydroxide in a certain ratio, Then, hydrothermal reaction is performed in an autoclave at 120 ° C. or more for 2 hours or more, and a method of dehydration and washing as appropriate, or slaked lime is added to seawater to obtain magnesium hydroxide particles, which are calcined to produce magnesium oxide And then reacting with water to obtain magnesium hydroxide particles. Any of these methods may be used, but the former method is preferable from the viewpoints of particle size, dispersibility, impurity content, hue, and cost.
  • the upper limit of temperature and time is not particularly limited, from the viewpoint of energy cost and productivity, about 300 ° C. and about 8 hours are preferable, and further, the lower the temperature and the shorter the time.
  • Iron and / or manganese is preferably added after the production of magnesium hydroxide particles for the purpose of increasing the probability of existing on the surface of the magnesium hydroxide particles.
  • a sulfur component you may exist in the magnesium chloride which is a raw material, and may add after the production
  • bitter juice produced as a by-product during salt production from seawater can be obtained easily and inexpensively, but it is necessary to desulfurize it and further remove trace impurities such as potassium chloride.
  • the magnesium hydroxide composition of the present invention can use sulfate ions contained in bitter juice, it is advantageous because the cost and labor required for its removal can be reduced.
  • a sulfur component should also be added after the production of magnesium hydroxide particles. Is preferred. Which method should be selected may be selected in consideration of the cost required for them, handling, and physical properties of the particles obtained.
  • the sulfur component is added after the production of magnesium hydroxide particles, it is preferably carried out simultaneously with the addition of iron and / or manganese.
  • the iron chloride solution and the solution containing the sulfur component are mixed in advance, and the magnesium hydroxide particles or the surface is added. More preferably, it is added to the treated magnesium hydroxide particles and supported on the surface thereof.
  • the content of iron and / or manganese in the iron chloride solution and / or manganese chloride solution added to the magnesium hydroxide particles or the surface-treated magnesium hydroxide particles is in the range of 10 to 1000 ppm with respect to the magnesium hydroxide particles. Preferably, it is in the range of 100 to 1000 ppm, more preferably in the range of 200 to 500 ppm.
  • the iron and / or manganese content is less than 10 ppm, the flame retardancy is not sufficient.
  • the content exceeds 1000 ppm the hue of the magnesium hydroxide composition itself, the resin composition containing the same and the molded product tends to deteriorate. There is.
  • the number of moles of sulfur in the sulfur compound relative to the number of moles of iron and / or manganese in the iron chloride solution and / or manganese chloride solution Mm
  • the Sm ratio Sm / Mm is preferably in the range of 1.9 to 3.3, and more preferably in the range of 2.1 to 2.8.
  • the molar ratio Sm / Mm is less than 1.9, the hue and heat deterioration of the magnesium hydroxide composition itself, the resin composition and molded product containing the magnesium hydroxide composition are deteriorated. Tend to get worse.
  • the sulfur compound is a reducing agent selected from one or more of thiosulfuric acid and dechlorin.
  • thiosulfate-based reducing agents include hydrosulfite (sodium hyposulfite), Rongalite C (sodium formaldehyde sulfoxylate), Rongalite Z (zinc formaldehyde sulfoxylate), hypo (sodium thiosulfate), sulfite (sulfurous acid) Sodium), sulfur monosulfide, hydroxylamine sulfate, etc., but hypo and hydrosulfite are preferable in terms of environment, cost, and handling, and hydrosulfite is particularly preferable in terms of cost because hydrosulfite is effective in a small amount. Used.
  • an iron chloride solution and / or a solution prepared by previously mixing a manganese chloride solution and a sulfur compound is added to either magnesium hydroxide particles or surface-treated magnesium hydroxide particles.
  • it may be added together with the surface treatment agent during the surface treatment.
  • magnesium hydroxide particles or surface-treated magnesium hydroxide particles are in a dry powder or suspension state, they are effective in improving the hue of the particles and the hue when blended with the resin, and flame retardancy. Show.
  • magnesium hydroxide particles are subjected to wet surface treatment and then a solution in which a sulfur compound is mixed in advance in an iron chloride solution and / or a manganese chloride solution is dried.
  • a solution in which a sulfur compound is mixed in advance in an iron chloride solution and / or a manganese chloride solution is dried.
  • it is good in terms of flame retardancy and hue.
  • the uniformity of their loading on magnesium hydroxide particles or surface-treated magnesium hydroxide particles is further improved by adding iron and / or manganese after surface treatment in a wet manner. It is estimated that
  • iron (II) chloride, iron (III) chloride or manganese chloride iron or manganese is added. It may be adjusted by dissolving in water so as to be in the above range.
  • the molar ratio of magnesium in the magnesium chloride solution to be mixed to the hydroxyl group in the hydroxide solution is 1: 2.
  • ⁇ 2: 3 the temperature of both liquids is 20 ° C ⁇ 10 ° C, and the hydroxide solution is added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring, and then the temperature rises to 120 ° C or higher within 4 hours by autoclave. It is preferable to warm and hold at that temperature for 1 hour or longer.
  • Dp 50 tends to increase and tends to approach 2.0 ⁇ m.
  • the liquid temperature of both liquids approaches 10 ° C. or 30 ° C.
  • Dp 50 increases and tends to approach 2.0 ⁇ m.
  • Stirring should be appropriately selected depending on the amount of liquid, but if the stirring force is too strong or too weak, Dp 50 tends to increase and approach 2.0 ⁇ m.
  • the temperature rise in the autoclave when the time to reach 120 ° C. or higher is short, Dp 50 tends to decrease and approaches 0.5 ⁇ m, and when close to 4 hours, Dp 50 increases and is close to 2.0 ⁇ m. Tend to be.
  • Dp 50 tends to increase, and when it is less than 1 hour, Dp 50 exceeds 2.0 ⁇ m, and when the retention time increases, the particle size tends to decrease. Although there is no significant change in Dp 50 even after holding for 8 hours or more.
  • the magnesium in the magnesium chloride solution to be mixed and the hydroxyl groups in the hydroxide solution are mixed as in the case of the average particle diameter Dp 50 .
  • the molar ratio was 1: 2 to 2: 3
  • the temperature of both solutions was 20 ° C. ⁇ 10 ° C.
  • the hydroxide solution was added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring. It is preferable that the temperature is raised to 120 ° C. or higher within the time and maintained at that temperature for 1 hour or longer.
  • D Max tends to be close to a large value of 6.5 ⁇ m.
  • the liquid temperature of both liquids approaches 10 ° C. or 30 ° C.
  • D Max increases and tends to be close to 6.5 ⁇ m.
  • Stirring should be appropriately selected depending on the amount of the liquid, but D Max tends to increase and approach 6.5 ⁇ m even if the stirring force is too strong or too weak.
  • D Max decreases the short time to reach the above 120 ° C., the D Max approaches the 4 hours tend to become closer to the larger becomes 6.5 [mu] m.
  • the holding time at 120 ° C. or higher in the autoclave is short, D Max tends to increase.
  • D Max exceeds 6.5 ⁇ m, but when the holding time is increased, D Max tends to decrease. There is.
  • magnesium and hydroxide in the mixed magnesium chloride solution are mixed.
  • the hydroxide solution was added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring, with the molar ratio of hydroxyl groups in the product solution being 1: 2 to 2: 3, the liquid temperature of both solutions being 20 ° C. ⁇ 10 ° C., Furthermore, it is preferable that the temperature is raised to 120 ° C. or higher within 4 hours in an autoclave and maintained at that temperature for 1 hour or longer. It has been found that these conditions influence each other.
  • Sw becomes small, and if it approaches 4 hours, Sw tends to approach 10 m 2 / g. If the holding time at 120 ° C. or higher in the autoclave is short, Sw tends to increase, and if it is less than 1 hour, Sw exceeds 10 m 2 / g. If the holding time is lengthened, Sw tends to be small, but even if it is lengthened for 8 hours or more, there is no significant change in Sw.
  • a surface-treated or untreated suspension of magnesium hydroxide composition to which iron chloride and / or manganese chloride and a sulfur compound are added may be washed, dehydrated, granulated, dried, pulverized, classified, etc., if necessary. By appropriately selecting the means, a final product form as a magnesium hydroxide composition is obtained.
  • the magnesium hydroxide composition of the present invention obtained as described above is blended with various resins to form a resin composition.
  • the magnesium hydroxide composition of the present invention is blended in a proportion of preferably 15 to 80 wt%, more preferably 20 to 70 wt%, based on the total weight with the resin.
  • the resin used in the resin composition of the present invention may be any resin as long as it is usually used as a molded product, and examples thereof include thermoplastic resins, thermosetting resins, and synthetic rubbers.
  • Thermoplastic resins include polyolefins such as polymers or copolymers of C2 to C8 olefins ( ⁇ -olefins) such as polyethylene, polypropylene, ethylene / propylene copolymers, polybutene, poly-4-methylpentene-1, etc.
  • polyolefins such as polymers or copolymers of C2 to C8 olefins ( ⁇ -olefins) such as polyethylene, polypropylene, ethylene / propylene copolymers, polybutene, poly-4-methylpentene-1, etc.
  • thermoplastic resins preferred examples include polyolefin resins or copolymers thereof.
  • resins used for various general-purpose electric wires and cables such as EEA resins and EVA resins. When used, it is suitable because it provides mechanical strength in addition to hue and flame retardancy.
  • thermosetting resin examples include an epoxy resin, a phenol resin, a melamine resin, an unsaturated polyester resin, an alkyd resin, and a urea resin.
  • synthetic rubber examples include EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, butadiene rubber, acrylic rubber, silicone rubber, and fluorine rubber.
  • the resin composition of the present invention has excellent flame retardancy, the blending ratio of the magnesium hydroxide composition particles of the present invention can be reduced by further adding a flame retardant aid, and the flame retardant effect is further improved. It can be made.
  • a flame retardant aid red phosphorus, carbon powder or a mixture thereof is preferable.
  • red phosphorus for example, red phosphorus whose surface is coated with a thermosetting resin, polyolefin, carboxylic acid polymer, titanium oxide, titanium aluminum condensate, or the like can be used in addition to normal red phosphorus for a flame retardant.
  • the carbon powder include carbon black, activated carbon, and graphite.
  • the carbon black may be prepared by any method of an oil furnace method, a channel method, a thermal method, or an acetylene method.
  • the flame retardant aid is blended, it is preferably added in the range of 0.5 to 20 wt%, more preferably 1 to 15 wt% with respect to the entire resin composition.
  • additives can be blended in addition to the above components as long as the efficacy of the present invention is not impaired.
  • additives include antioxidants, antistatic agents, pigments, foaming agents, plasticizers, fillers, reinforcing agents, crosslinking agents, light stabilizers, ultraviolet absorbers, and lubricants.
  • a flame retardant such as bromine, phosphorus, nitrogen or inorganic metal other than magnesium hydroxide particles.
  • the resin composition of the present invention is formed into a molded product by various molding methods.
  • the molded article of the present invention can be obtained from the resin composition obtained as described above by a known method such as extrusion molding, injection molding or calendar molding. According to the molded article of the present invention, since the magnesium hydroxide composition of the present invention is blended, the flame retardancy and its continuity are excellent, and the appearance of the molded article is also excellent.
  • Applications of such molded products include wire coverings such as the above-mentioned electric wires and cables, housings for home appliances, wallpaper for building materials, foam insulation, mattresses, connector connection parts for electrical and electronic components, semiconductors Sealing material, prepreg, multilayer circuit board, laminated board for circuit board, and the like.
  • the present invention will be described in detail based on examples and comparative examples. However, the present invention is not limited to these examples.
  • the average particle size and the maximum particle size of the magnesium hydroxide composition were measured with a Microtrac FRA laser diffraction scattering particle size distribution meter manufactured by Lees & Northrup, and the BET specific surface area was Measured with NOVA2000 manufactured by Ionics Co., Ltd.
  • the iron and manganese contents were measured with an atomic absorption spectrophotometer AA6700F manufactured by Shimadzu Corporation.
  • Sulfur was measured with carbon and sulfur analyzer CS-444 manufactured by LECO.
  • the whiteness was measured with a powder whiteness meter C-100-3 manufactured by KETT, and the DOP wet color was measured with a colorimetric color difference meter ZE2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the magnesium chloride solution used as a raw material for the magnesium hydroxide particles in Examples and Comparative Examples of the present invention was prepared by the method described below.
  • ⁇ Preparation of magnesium chloride solution 1> The salt water collected from the salt fields is roughly purified by removing foreign substances and humic substances by sand filtration and adsorption with activated carbon, and then the sulfate ion and equimolar calcium chloride contained in the brine after rough purification are brined.
  • sulfate ions in brine were precipitated as calcium sulfate and filtered to remove calcium sulfate, thereby producing a purified bitter solution containing magnesium chloride as a main component.
  • the obtained purified bitter solution was a magnesium chloride solution with a Baume specific gravity of 1.33 and contained 2360 ppm of sulfur with respect to magnesium chloride.
  • ⁇ Preparation of magnesium chloride solution 2> The salt water collected from the salt fields is roughly purified by removing foreign substances and humic substances by sand filtration and adsorption with activated carbon, and then the sulfate ion and equimolar barium chloride contained in the brine after rough purification are brined. In addition to this, sulfate ions in the brine were precipitated as barium sulfate, filtered to remove calcium sulfate, and a purified bitter solution containing magnesium chloride as a main component was prepared. The obtained purified bitter solution was a magnesium chloride solution with a Baume specific gravity of 1.33 and contained 0.8 ppm of sulfur with respect to magnesium chloride.
  • Example 1 Barium chloride corresponding to 90% of the number of moles of sulfur remaining in the magnesium chloride solution 1 was added to the bitter solution to precipitate barium sulfate, followed by filtration and further concentration or dilution to obtain a chloride with a Baume specific gravity of 1.3. A magnesium solution was prepared. 5 L of the obtained solution was charged into a 10 L autoclave to adjust the liquid temperature to 20 ° C., and 5 L of lime milk having a concentration of 12 wt% adjusted to the liquid temperature of 20 ° C. was added over 5 minutes under stirring conditions.
  • magnesium hydroxide particles are reacted to form magnesium hydroxide particles, and after the addition of lime milk, the autoclave is heated with stirring, and the liquid temperature in the autoclave is increased to 160 ° C. over 2 hours and 4 hours. Maintained. After that, cooling by natural heat dissipation is performed, and the resulting reaction suspension of magnesium hydroxide particles is dehydrated with a centrifugal dehydrator, washed with tap water, and the electrical conductivity of the waste water is higher than the electrical conductivity of tap water. Washing was terminated when it dropped to a level as high as 20 ⁇ S / cm.
  • Vinyl trimethoxysilane equivalent to 0.5 wt% with respect to the magnesium hydroxide particles in the magnesium hydroxide particle suspension is mixed and dissolved in a 1 wt% acetic acid solution, and the vinyl triethoxylane-acetic acid mixed solution is dissolved in water.
  • Surface treatment was performed by adding to the magnesium oxide particle suspension.
  • iron (III) chloride whose iron content is 210 ppm with respect to the magnesium hydroxide particles in the magnesium hydroxide particle suspension is added to the magnesium hydroxide particle suspension, and after sufficient stirring, the suspension The liquid was dried with a spray dryer to obtain a magnesium hydroxide composition.
  • Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Examples 2-7 A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the conditions described in Table 1 were changed. Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • iron (III) chloride corresponding to an iron content of 450 ppm and manganese chloride corresponding to a manganese content of 45 ppm were added.
  • Example 8 A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the charging time of lime milk charged into the magnesium chloride solution in the autoclave was changed to 12 minutes. Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Example 9 The magnesium chloride solution 2 was diluted to prepare a magnesium chloride solution having a Baume specific gravity of 1.3, and 5 L of the obtained solution was charged into a 10 L autoclave to adjust the liquid temperature to 20 ° C., and the liquid temperature was adjusted to 20 ° C. Add 5 liters of lime milk with a concentration of 12 wt% over 5 minutes under stirring conditions, react magnesium chloride with calcium hydroxide to produce magnesium hydroxide, and heat the autoclave while stirring after the lime milk is charged. The liquid temperature in the autoclave was raised to 160 ° C. in 2.5 hours and then maintained for 4 hours.
  • iron (III) chloride whose iron content is 210 ppm with respect to the magnesium hydroxide particles in the surface-treated magnesium hydroxide particle suspension is 2.2 times the number of moles of iron (III) chloride.
  • the hydrosulfite containing sulfur is dissolved in 100 g of water, added to the magnesium hydroxide particle suspension, and after sufficient stirring, the suspension is dried with a spray drier to obtain a magnesium hydroxide composition.
  • Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Examples 10-15 A magnesium hydroxide composition was prepared in the same manner as in Example 9 except that the conditions described in Table 2 were changed. Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Example 16 A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the charging time of the lime milk charged into the magnesium hydroxide solution in the autoclave was changed to 12 minutes. Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Comparative Examples 1-7 A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the conditions described in Table 3 were changed. Table 3 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
  • Examples 17 to 32, Comparative Examples 8 to 14 125 parts of the magnesium hydroxide compositions obtained in Examples 1 to 16 and Comparative Examples 1 to 7 were added to 100 parts by weight of ethylene-ethyl acrylate resin (trade name EVAFLEX-EEA) manufactured by Mitsui, DuPont Polychemical Co., Ltd. 2 parts calcium stearate as a lubricant, 0.2 part by weight of Adeka Stub AO-60 manufactured by Asahi Denka Kogyo Co., Ltd. as a stabilizer, and a laboratory blast mill 4C150-01 manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the resin composition was obtained by kneading with 2D25W.
  • the obtained resin composition was press-molded at 150 ° C. to prepare a 3 mm thick sheet.
  • ⁇ Hue evaluation of molded resin> The obtained sheet was molded into a flat plate of 40 mm in length and width, the whiteness W was measured, and represented by L value and b value of Hunter Lab color system.
  • ⁇ Flame retardance evaluation of resin moldings> A test piece having a length of 150 mm and a width of 6.5 mm was prepared as a molded body for a combustion test by the oxygen index method, and the oxygen index was measured in accordance with JISK7201. Further, during the measurement of the oxygen index of the compact, the degree of char formation was visually observed.
  • the heat generation rate is obtained using a corn calorimeter, the time T1 from the ignition until reaching the maximum calorific value (kw / m 2 ), and the maximum calorific value
  • the heat-resistant deterioration of the molded body was tested by cutting the prepared sheet into a 50 mm length and 25 mm width and hanging it on a rotating ring in a gear oven with a 50 ° C. damper opening at 50 ° C.
  • the time until whitening due to precipitation of particles on one surface and the time until 10% of the weight was reduced were determined.
  • the dumbbell used in the test was dumbbell-shaped No. 1 according to JISK6251.
  • Tables 4 to 6 show the evaluation results of the resin moldings of Examples 17 to 32 and Comparative Examples 8 to 14, respectively.
  • the magnesium hydroxide composition of the present invention represented by the examples is a resin composition having a good balance of hue, flame retardancy and durability, heat deterioration resistance, and strength. And a molded object can be provided.
  • a magnesium hydroxide composition that does not satisfy the requirements of the present invention provides a resin composition and a molded body having a good balance of hue, flame retardancy and its sustainability, and strength. I can't. Specifically, since the magnesium hydroxide composition of Comparative Example 1 has a low content of iron and manganese, the resin composition of Comparative Example 8 using the composition shows no char formation and persistence. It is inferior in nature.
  • the resin composition of Comparative Example 9 using the composition is inferior in the L value and b value of the hue, and also deteriorated in heat resistance. Slightly inferior in sex (time to 10% weight loss).
  • the resin composition of Comparative Example 10 using the composition is inferior in heat resistance deterioration (time to 10% weight loss). . *
  • the resin composition of Comparative Example 11 using the composition is inferior in heat resistance deterioration (time to 10% weight loss).
  • the b value of the hue is slightly inferior.
  • the resin composition of Comparative Example 12 using the composition has a hue b value and heat deterioration resistance (time to 10% weight loss). ).
  • the resin composition of Comparative Example 14 using the composition does not show the formation of char and is also durable. Inferior.
  • the magnesium hydroxide composition of the present invention contains a metal element of iron and / or manganese and sulfur, so that the flame retardancy and its persistence can be achieved with a relatively small amount of blending, and without causing deterioration of physical properties.
  • a metal element of iron and / or manganese and sulfur in addition to excellent heat resistance, it can impart excellent heat resistance and hue to the resin, so it is useful especially in the field of resin compositions for molded products used under severe conditions such as electric wires, cables and electronic parts. is there.

Abstract

Provided is a magnesium hydrate composition comprising magnesium hydrate particles containing iron and/or manganese and sulfur. The content (M) of the iron and/or manganese as measured using an atomic absorption spectrophotometer is in the range of 10-1,000 ppm with respect to the magnesium hydrate particles, the content (S) of the sulfur as measured using an infrared absorption method is in the range of 10-1,800 ppm with respect to the magnesium hydrate particles, and the ratio (S/M) of the content (S) of the sulfur to the content (M) of the iron and/or manganese is in the range of 1.0-1.8. The magnesium hydrate composition has excellent flame retardancy and sustainability thereof when mixed with a resin, and excellent thermal deterioration resistance and a good hue can be imparted.

Description

水酸化マグネシウム組成物、その製造方法、並びに樹脂組成物及びその成形品Magnesium hydroxide composition, process for producing the same, resin composition and molded article thereof
 本発明は、樹脂に対して、従来の水酸化マグネシウムよりも高い難燃性と良好な色相を付与する水酸化マグネシウム組成物及びその製造方法、並びにそれを樹脂に配合してなる耐熱劣化性、難燃性に優れた樹脂組成物及びそれからなる成形品に関する。更に詳しくは、樹脂に配合した際に分散性の優れた水酸化マグネシウム粒子が、特定の金属元素を含有することでその難燃性が向上し、更に金属元素の含有が原因で生じる色相悪化が殆どないことを特長とする水酸化マグネシウム組成物、その製造方法、並びにそれを樹脂に配合してなる耐熱劣化性、難燃性に優れた樹脂組成物及びそれからなる成形品に関する。 The present invention provides a magnesium hydroxide composition that imparts higher flame retardancy and better hue than conventional magnesium hydroxide to a resin, a method for producing the same, and heat deterioration resistance obtained by blending the resin with the resin, The present invention relates to a resin composition excellent in flame retardancy and a molded product comprising the same. More specifically, the magnesium hydroxide particles having excellent dispersibility when blended with the resin improve the flame retardancy by containing a specific metal element, and further the hue deterioration caused by the inclusion of the metal element. The present invention relates to a magnesium hydroxide composition characterized by being hardly present, a production method thereof, a resin composition excellent in heat deterioration resistance and flame retardancy obtained by blending it with a resin, and a molded article comprising the same.
 合成樹脂は、樹脂自体が金属に比べて軽い割に強度が強いこと、成形性が容易であること、安価である等の理由から、様々な分野で使用されている。しかし、樹脂は金属よりもはるかに燃焼しやすいため、樹脂成形品に対する難燃性への要求がなされており、その要求は高度かつ厳しいものになっている。この難燃化の要求に応える目的で、従来、ハロゲン化合物と三酸化アンチモンを併用する難燃剤が提案され、幅広く実施されてきた。 Synthetic resins are used in various fields because the resin itself is lighter and stronger than metal, easy to mold, and inexpensive. However, since resin is much easier to burn than metal, there is a demand for flame retardancy for resin molded products, and the demand is high and severe. In order to meet the demand for flame retardancy, flame retardants using halogen compounds and antimony trioxide in combination have been proposed and widely used.
 しかしながら、このハロゲン化合物は、成形加工時に高温に曝され、その温度によって一部が分解してハロゲンガスが発生することにより、加工機や成形機を腐食させる、樹脂及びゴムの耐熱性、耐候性に対して悪影響を及ぼす等の製造上、物性上の問題を有している。また、ハロゲンガスは人体に対して毒性を有していることから、製造時の作業環境を悪化させるだけでなく、樹脂やゴムに配合して使用中に火災等が起こった場合や、成形品を廃棄、焼却処分する際に、有毒ガスを含む多量の煙を発生させる等の問題を有している。特に、火災時の有毒ガスの発生は重大な問題であり、火災の発生時に樹脂成形品を難燃化させることで延焼を遅らせ、例えば屋内にいた人々の退避時間を稼ぐ目的で使用しているにも拘らず、その有毒ガスによって健康に悪影響を及ぼし、ひいては人命を失う虞れすらある。このようなことはハロゲン化合物の本来の使用の目的として本末転倒であり絶対に避けるべきものである。
 また、ハロゲン系難燃剤以外の難燃剤としてリン系難燃剤が挙げられる。しかしながら、リン系難燃剤は、液状のものが多いことから、配合された樹脂成形品の耐衝撃性等の機械的強度を低下させる、加水分解しやすいため、成形品の長期耐水性や耐候性が劣る、リン化合物の染み出しによる環境ホルモン汚染の恐れがあるといった、解決せねばならない多くの問題を抱えており、例えば電線、ケーブル、自動車用ハーネス等に要求されるUL-94規格を満たした上で、更に長期に渡る耐水性や耐候性、環境への影響をなくすことは、現状の技術で困難である。
However, this halogen compound is exposed to high temperatures during molding processing, and partly decomposes at that temperature to generate halogen gas, which corrodes the processing machine and molding machine. Heat resistance and weather resistance of resins and rubbers There are problems in manufacturing and physical properties such as adversely affecting the above. In addition, since halogen gas is toxic to the human body, it not only deteriorates the working environment during production, but also when a fire occurs during use by compounding with resin or rubber, and molded products When it is disposed of or incinerated, there is a problem that a large amount of smoke containing toxic gas is generated. In particular, the generation of toxic gases at the time of a fire is a serious problem, and it is used for the purpose of increasing the evacuation time of people who are indoors, for example, by delaying the spread of fire by making flame-retardant resin molded products in the event of a fire Nevertheless, the poisonous gas can have a negative effect on health and can even lead to the loss of human life. Such a case is the end of the end as the purpose of the original use of the halogen compound and should be avoided absolutely.
Moreover, phosphorus flame retardants are mentioned as flame retardants other than halogen flame retardants. However, since many phosphorus-based flame retardants are liquid, they degrade mechanical strength such as impact resistance of blended resin molded products, and are easily hydrolyzed. Therefore, long-term water resistance and weather resistance of molded products Has a number of problems that need to be solved, such as the inferiority and the risk of environmental hormone contamination due to the seepage of phosphorus compounds. For example, it meets UL-94 standards required for electric wires, cables, automotive harnesses, etc. On the other hand, it is difficult to eliminate the influence on water resistance, weather resistance, and environment over a long period of time with the current technology.
 このため、上記問題を有しない非ハロゲン系難燃剤への要求が高まり、例えば水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物が注目されてきた。しかし、水酸化アルミニウムは約190℃から分解、脱水するため、成形加工時の温度が190℃以上の樹脂に配合すると、加工時に水酸化アルミニウムが分解、脱水して発泡し、製造上のハンドリングが困難になるだけでなく、樹脂やゴムの強度や耐候性等の物性を低下させ製品の外観も損なうなど商品価値を著しく損なうため、使用される樹脂が限定されるという問題を含んでいる。 For this reason, demand for non-halogen flame retardants that do not have the above problems has increased, and metal hydroxides such as aluminum hydroxide and magnesium hydroxide have attracted attention. However, since aluminum hydroxide is decomposed and dehydrated from about 190 ° C, if it is blended with a resin having a molding process temperature of 190 ° C or higher, the aluminum hydroxide decomposes, dehydrates and foams during processing, and manufacturing handling This not only makes it difficult, but also has a problem that the resin to be used is limited because the commercial value is remarkably impaired, for example, the physical properties such as the strength and weather resistance of the resin and rubber are lowered and the appearance of the product is also impaired.
 一方、水酸化マグネシウムは、脱水、分解開始温度が340℃であるため、殆どの樹脂への配合が可能であるという利点を有している。そして水酸化マグネシウムには、天然の鉱物であるブルーサイトを微細に粉砕し、必要に応じて分級して粒度を調整した天然品ないし重質品と呼ばれるものと、海水中の塩化マグネシウムや製塩時に副生する塩化マグネシウムを主成分とする苦汁を精製後、アルカリと反応させて得られる化合品とがある。 On the other hand, since magnesium hydroxide has a dehydration and decomposition start temperature of 340 ° C., it has an advantage that it can be blended into most resins. Magnesium hydroxide is a natural or heavy product that is finely pulverized from natural mineral brucite and classified as necessary to adjust the particle size. There is a compound obtained by purifying bitter juice containing magnesium chloride as a by-product as a main component and then reacting with alkali.
 これらの水酸化マグネシウム粒子には、それらを配合して得られる樹脂成形品の外観、強度、耐久性等を損なわないために、微細で均一かつ分散性の優れた粒子が望まれる。単一または強固に凝集した大きな粒子が樹脂成形品中に存在すると、例えば上述の電線、ケーブル、自動車用ハーネスといった成形品に使用された場合に、微細で均一かつ分散性の優れた粒子が用いられた成形品よりも、成形品表面のブツや凸部分が多くなり外観を損ねる。また、水酸化マグネシウムを初めとする無機粒子を樹脂やゴムに配合すると、耐衝撃性や引張強度が向上することはよく知られており一般に使われているが、それが無機粒子の粒径に依存し、粒径が大きいと強度物性が低下することも同様に知られている。現時点ではその詳細なメカニズムは明らかでないが、単一または凝集した粒子に関係なく大きな粒子が樹脂中にあると、樹脂成形体の強度が所望の物性を満たさない。更に成形品の表面に露出しやすくなり、大気中の水分と炭酸ガスを取り込んで水酸化マグネシウムが炭酸マグネシウムに変化し、その体積変化や変質によって樹脂界面との剥離や離脱を生じ、成形品の耐久性を損ねる等の理由により商品価値を低下させる。 These magnesium hydroxide particles are desired to be fine, uniform and excellent in dispersibility in order not to impair the appearance, strength, durability and the like of the resin molded product obtained by blending them. When single or strongly aggregated large particles are present in a resin molded product, for example, when used in molded products such as the above-mentioned electric wires, cables, and automobile harnesses, fine, uniform, and highly dispersible particles are used. As compared to the molded product, the surface of the molded product has more irregularities and convex portions, and the appearance is impaired. In addition, it is well known and generally used to improve impact resistance and tensile strength when inorganic particles such as magnesium hydroxide are blended with resin or rubber. It is also known that when the particle size is large, the strength properties are lowered. Although the detailed mechanism is not clear at present, the strength of the resin molded article does not satisfy the desired physical properties when large particles are present in the resin regardless of single or aggregated particles. Furthermore, it becomes easy to be exposed on the surface of the molded product, and it takes in moisture and carbon dioxide in the atmosphere, and magnesium hydroxide changes to magnesium carbonate. The product value is reduced for reasons such as impairing durability.
 天然品は、原料が鉱物であることから粒子の粒度調整方法が粉砕、分級と比較的簡便であるため、安価に製造、調整が可能である利点を有している。しかし、粗大な粒子をなくす目的で粉砕を必要以上に強くしたり繰り返したりすると、微細な粒子同士がその表面エネルギーによって強固で粗大な凝集体を生成するという粉体としての問題を有しており、それを解決する手段は、粉砕、分級のいずれ方法でも現時点では見出せていない。また、粉砕すると粒子の形状は不均一になるため、分解、脱水による難燃性を発揮する場合に均一な難燃効果が望めず好ましくない。粉砕時に表面処理剤を添加することで、粉砕と同時に表面処理を行う方法も提案されているが、コストと分散性の点で上記の問題解決には至っていない。
 更に、天然の鉱石を原料とする為、含有する不純物による着色やアスベスト含有等の懸念があり、それらを安価に除去することは現在の技術では困難である。従って、天然品を使用する最大の利点であるコストメリットを失うという問題を抱えている。
Natural products have the advantage that they can be manufactured and adjusted at low cost because the raw material is mineral and the particle size adjustment method is relatively simple, such as pulverization and classification. However, there is a problem as a powder that fine particles form strong and coarse aggregates by their surface energy when grinding is strengthened more than necessary or repeated for the purpose of eliminating coarse particles. No means for solving this has been found at present at any of the pulverization and classification methods. Moreover, since the shape of the particles becomes non-uniform when pulverized, a uniform flame retardant effect cannot be expected when the flame retardant properties are exhibited by decomposition and dehydration, which is not preferable. A method of performing a surface treatment simultaneously with pulverization by adding a surface treatment agent at the time of pulverization has been proposed, but the above problems have not been solved in terms of cost and dispersibility.
Furthermore, since natural ore is used as a raw material, there are concerns about coloring due to impurities contained therein, asbestos content, and the like, and it is difficult to remove them at low cost with the current technology. Therefore, there is a problem of losing cost merit, which is the greatest advantage of using natural products.
 一方、化合品の水酸化マグネシウムは、アスベスト等の好ましくない不純物を含まない原料や天然鉱石以外のものを選択したり、精製を施すことで比較的安価に除去することが可能である。更に反応条件を調整することで、生成する粒子の粒度や分散がある程度調整可能であるため、近年、特に電線やケーブル、電子部品等の用途に使用されている。 On the other hand, the compound magnesium hydroxide can be removed at a relatively low cost by selecting or refining raw materials other than undesired impurities such as asbestos and natural ores. Furthermore, since the particle size and dispersion | distribution of the particle | grains to produce | generate can be adjusted to some extent or more by adjusting reaction conditions, it is used especially for uses, such as an electric wire, a cable, and an electronic component, in recent years.
 例えば、特許文献1で提案された水酸化マグネシウムの合成法で得られる水酸化マグネシウムは、その結晶構造が従来の水酸化マグネシウムに比べて構造上の歪みが小さいことから特定の形状と粒度を有し、二次凝集が少なく分散性に優れ、水分子又は空気の残留が小さい等の特徴を有し、上述の用途に利用されている。
 しかし、電線、ケーブル等の難燃性の指標の一つであるUL-94難燃規格を満足する為には樹脂に大量に配合しなければならず、それにより成形品本来の物性、特にアイゾッド衝撃強度、伸び、引張り強度等を低下させるという問題を有している。
For example, magnesium hydroxide obtained by the method of synthesizing magnesium hydroxide proposed in Patent Document 1 has a specific shape and particle size because its crystal structure has less structural distortion than conventional magnesium hydroxide. In addition, it has features such as low secondary aggregation, excellent dispersibility, and small residual water molecules or air, and is used for the above-mentioned applications.
However, in order to satisfy the UL-94 flame retardant standard, which is one of the flame retardant indicators for electric wires, cables, etc., it must be blended in a large amount with the resin. It has the problem of reducing impact strength, elongation, tensile strength, and the like.
 また、特許文献2では、水酸化マグネシウムの結晶内にマンガン、鉄、コバルト、ニッケル、銅、亜鉛の何れか1種を含有せしめて複合金属水酸化物とすることが提案されている。水酸化マグネシウムの結晶の一部を複合金属塩の水酸化物とすることで、その分解、脱水温度を低下させて難燃性を向上させ、特許文献1の水酸化マグネシウム粒子の大量配合に伴う課題を解決しようとしたものである。しかしながら、水酸化マグネシウムの結晶構造中に取り込んだ金属元素は水酸化物として結晶中に存在する為、粒子自体の着色が著しいという問題がある。
 電線やケーブル、電子部品等の成形品に使用される場合、特許文献2の複合金属水酸化物粒子でも、樹脂やゴムに比較的大量に配合する必要があるため、例えば自動車用ハーネスに使用される場合、電線被覆という本来の目的には直接関与するものではないが、各々の電線を着色して区別するという二次的な目的においては、粒子自体の著しい着色のために制約を受けるという問題を有している。樹脂やゴムに色相調整剤を加えて色相を調整することも可能であるが、樹脂に配合する水酸化マグネシウムの量が大量であることから、色相調整剤も大量に添加する必要があり、そのことによる成形性や耐候性、耐久性への影響を考慮すると色相調整剤の使用は限定される。
 また、金属水酸化物はその水酸基が分解して脱水することにより難燃作用をもたらすが、上述の金属元素はマグネシウムより原子量が大きいため、従来の水酸化マグネシウムと同じ割合で樹脂に配合すると配合される水酸基が相対的に減少し、難燃性が低下する問題を有している。配合割合を多くすることで対処は可能であるが、配合割合が増えることによる、成形性や樹脂成形品の強度物性の低下が新たな問題となる。
 更に、上述の金属元素の塩化物を反応時に添加して得ているが、ニッケル、クロム、コバルトの塩化物は高価であり、また使用、廃棄するに際して環境への厳しい配慮が必要になるなど、安価かつ大量に生産、使用するには解決せねばならない課題が多い。
Patent Document 2 proposes that a composite metal hydroxide is obtained by including any one of manganese, iron, cobalt, nickel, copper, and zinc in a magnesium hydroxide crystal. By making a part of the magnesium hydroxide crystal a hydroxide of a composite metal salt, its decomposition and dehydration temperature is lowered to improve flame retardancy, and accompanying the mass mixing of magnesium hydroxide particles of Patent Document 1 It is an attempt to solve the problem. However, since the metal element taken into the crystal structure of magnesium hydroxide exists in the crystal as a hydroxide, there is a problem that the color of the particle itself is remarkably colored.
When used for molded products such as electric wires, cables, and electronic parts, the composite metal hydroxide particles of Patent Document 2 need to be blended in a relatively large amount with resin or rubber. However, in the secondary purpose of coloring and distinguishing each wire, there is a problem that it is restricted by the remarkable coloring of the particles themselves. have. It is also possible to adjust the hue by adding a hue adjuster to resin or rubber, but since the amount of magnesium hydroxide blended in the resin is large, it is also necessary to add a large amount of hue adjuster. Considering the influence on moldability, weather resistance, and durability due to this, the use of the hue adjusting agent is limited.
In addition, the metal hydroxide has a flame retardant action when its hydroxyl group decomposes and dehydrates. However, since the above metal elements have an atomic weight greater than that of magnesium, they are blended in the same proportion as conventional magnesium hydroxide. There is a problem that the number of hydroxyl groups is relatively reduced and the flame retardancy is lowered. Although it is possible to cope with the problem by increasing the blending ratio, a decrease in moldability and strength physical properties of the resin molded product due to an increase in the blending ratio becomes a new problem.
Furthermore, chlorides of the above metal elements are obtained during the reaction, but nickel, chromium, and cobalt chlorides are expensive and require strict consideration for the environment when used and disposed of. There are many problems that must be solved in order to produce and use inexpensively and in large quantities.
 また、特許文献3では、水酸化マグネシウム粒子中に固溶体ないし夾雑物として混入している不純物と物性について検討を行い、特許文献2とは反対に、鉄、マンガン、コバルト、クロム、銅、バナジウム、ニッケルが不純物として特定量以上存在すると、樹脂の熱劣化に影響を与えることを見出し、それらの含有量を特定量以下に厳しく制限することを提案している。
 しかしながら、特許文献3で得られる粒子は、樹脂やゴムに配合した場合の耐熱劣化性の向上による難燃性向上を図っているが、耐熱劣化性は必ずしも十分とは云い難く、また色相や樹脂やゴムへ大量に配合することについての課題はなんら解決されていない。
In Patent Document 3, the impurities and physical properties mixed as solid solution or impurities in the magnesium hydroxide particles are examined, and contrary to Patent Document 2, iron, manganese, cobalt, chromium, copper, vanadium, It has been found that if nickel is present as an impurity in a specific amount or more, it will affect the thermal degradation of the resin, and it has been proposed to strictly limit the content thereof to a specific amount or less.
However, although the particles obtained in Patent Document 3 are intended to improve the flame retardancy by improving the heat deterioration resistance when blended with a resin or rubber, the heat deterioration resistance is not necessarily sufficient, and the hue or resin The problem of adding a large amount to rubber and rubber has not been solved.
 また、近年の難燃性向上への要求の一つに、継続的な難燃性の発現が挙げられている。水酸化マグネシウムの如き金属水酸化物は、一旦、分解、脱水した後は難燃性に何ら関与しないため持続性に欠けるという問題を有しているが、上述の特許文献1~3では持続的な難燃性の課題についての改善策は何ら提案されていない。 In addition, one of the recent demands for improving flame retardancy is the continuous expression of flame retardancy. Metal hydroxides such as magnesium hydroxide have the problem of lack of sustainability because they do not contribute to flame retardancy once they are decomposed and dehydrated. No improvement measures have been proposed for the problem of flame retardancy.
特開昭52-115799号公報JP 52-115799 A 特開平6-41441号公報JP-A-6-41441 特開平9-227784号公報JP-A-9-227784
 本発明は、かかる実情に鑑み、比較的少量の配合でよく、従って、物性の低下を引き起こすことなく、難燃性とその持続性に優れるとともに、優れた耐熱劣化性及び色相を樹脂に付与することのできる水酸化マグネシウム組成物及びその製造方法、並びに該組成物を配合してなる樹脂組成物及びその成形品を提供するものである。 In view of the actual situation, the present invention may be formulated in a relatively small amount, and therefore, it is excellent in flame retardancy and its sustainability without causing deterioration in physical properties, and imparts excellent heat deterioration resistance and hue to the resin. The present invention provides a magnesium hydroxide composition that can be used, a method for producing the same, a resin composition comprising the composition, and a molded product thereof.
 本発明者らは、上記の課題の解決を目的として鋭意検討を行なった結果、特定量の鉄及び/又はマンガンと硫黄成分を含有してなる水酸化マグネシウムの組成物が、樹脂に配合された場合に、難燃性とその持続性に優れ、かつ硫黄成分を含有することにより鉄やマンガンが原因で発生する着色や熱劣化が抑制され、その結果、樹脂の強度物性を損なうことなく、難燃性及びその持続性に優れ、耐熱劣化性及び色相に優れた樹脂組成物や電線やケーブル、電子部品等の成形品を得ることが可能な水酸化マグネシウム組成物、その製造方法、並びにその水酸化マグネシウム組成物を配合してなる樹脂組成物及びその成形品を見出し、本発明を完成するに至った。 As a result of intensive studies aimed at solving the above problems, the present inventors have formulated a magnesium hydroxide composition containing a specific amount of iron and / or manganese and a sulfur component into the resin. In this case, it is excellent in flame retardancy and its sustainability, and by containing a sulfur component, coloring and thermal deterioration caused by iron and manganese are suppressed, and as a result, it is difficult to impair the strength physical properties of the resin. Magnesium hydroxide composition capable of obtaining molded articles such as resin compositions, electric wires, cables, electronic parts, etc. excellent in flammability and sustainability, heat resistance deterioration and hue, manufacturing method thereof, and water thereof A resin composition obtained by blending a magnesium oxide composition and a molded product thereof have been found, and the present invention has been completed.
 即ち、本発明の第一は、鉄及び/又はマンガンと硫黄とを含む水酸化マグネシウム粒子からなり、原子吸光分光光度計で測定した鉄及び/又はマンガンの含有量Mが水酸化マグネシウム粒子に対し10~1000ppmの範囲であり、赤外線吸収法で測定した硫黄の含有量Sが水酸化マグネシウム粒子に対し10~1800ppmの範囲であることを特徴とする水酸化マグネシウム組成物である。 That is, the first of the present invention consists of magnesium hydroxide particles containing iron and / or manganese and sulfur, and the content M of iron and / or manganese measured with an atomic absorption spectrophotometer is based on the magnesium hydroxide particles. The magnesium hydroxide composition is characterized in that it is in the range of 10 to 1000 ppm, and the sulfur content S measured by the infrared absorption method is in the range of 10 to 1800 ppm with respect to the magnesium hydroxide particles.
 好ましい態様として、鉄及び/又はマンガンの含有量Mに対する硫黄の含有量Sの比S/Mが1.0~1.8の範囲であることを特徴とする水酸化マグネシウム組成物である。 In a preferred embodiment, the magnesium hydroxide composition is characterized in that the ratio S / M of the sulfur content S to the iron and / or manganese content M is in the range of 1.0 to 1.8.
 更に好ましい態様として、白色度Wが98以上、L値が78以上、b値が3.5以下であることを特徴とする水酸化マグネシウム組成物である。 As a more preferred embodiment, the magnesium hydroxide composition is characterized in that the whiteness W is 98 or more, the L value is 78 or more, and the b value is 3.5 or less.
 また、好ましい態様として、脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸、これらの金属塩、これらのアミン塩、これらのエステル、界面活性剤、カップリング剤、燐酸エステルから選択された少なくとも1種の表面処理剤で表面処理されていることを特徴とする水酸化マグネシウム組成物である。 Further, as a preferred embodiment, selected from fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, resin acids, metal salts thereof, amine salts thereof, esters thereof, surfactants, coupling agents, and phosphate esters. The magnesium hydroxide composition is surface-treated with at least one surface treatment agent.
 また、好ましい態様として、レーザー回折散乱式粒度分布計で測定した50%平均粒子径Dp50が0.5~2.0μm、レーザー回折散乱式粒度分布計で測定した最大粒子径DMax が6.5μm以下、窒素吸着法で測定したBET比表面積Swが1~10m/gであることを特徴とする水酸化マグネシウム組成物である。 Further, as a preferred embodiment, the 50% average particle size Dp 50 measured with a laser diffraction / scattering particle size distribution meter is 0.5 to 2.0 μm, and the maximum particle size D Max measured with a laser diffraction / scattering particle size distribution meter is 6. 5μm or less, and magnesium hydroxide composition characterized by nitrogen adsorption method with measured BET specific surface area Sw is 1 ~ 10m 2 / g.
 本発明の第二は、硫酸イオンを含む塩化マグネシウム溶液と水酸化物溶液を反応させて得られる水酸化マグネシウム粒子、又はそれを表面処理して得られる表面処理水酸化マグネシウム粒子に、塩化鉄溶液及び/又は塩化マンガン溶液を添加することを特徴とする水酸化マグネシウム組成物の製造方法である。 In the second aspect of the present invention, magnesium hydroxide particles obtained by reacting a magnesium chloride solution containing sulfate ions with a hydroxide solution, or surface-treated magnesium hydroxide particles obtained by subjecting the magnesium hydroxide particles to surface treatment, an iron chloride solution And / or a manganese chloride solution is added.
 本発明の第三は、塩化マグネシウム溶液と水酸化物溶液を反応させて得られる水酸化マグネシウム粒子、又はそれを表面処理した表面処理水酸化マグネシウム粒子に、塩化鉄溶液及び/又は塩化マンガン溶液と硫黄化合物を混合した溶液を添加することを特徴とする水酸化マグネシウム組成物の製造方法である。 In the third aspect of the present invention, magnesium hydroxide particles obtained by reacting a magnesium chloride solution and a hydroxide solution, or surface-treated magnesium hydroxide particles obtained by surface-treating them, an iron chloride solution and / or a manganese chloride solution, A method for producing a magnesium hydroxide composition, comprising adding a solution mixed with a sulfur compound.
 好ましい態様として、塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンの量が、水酸化マグネシウム粒子又はそれを表面処理してなる表面処理水酸化マグネシウム粒子に対して、10~1000ppmであることを特徴とする水酸化マグネシウム組成物の製造方法である。 In a preferred embodiment, the amount of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 10 to 1000 ppm with respect to the magnesium hydroxide particles or the surface-treated magnesium hydroxide particles obtained by surface-treating the particles. It is a manufacturing method of the magnesium hydroxide composition characterized by being.
 好ましい態様として、塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンのモル数Mmに対する硫黄化合物中の硫黄のモル数Smの比Sm/Mmが、1.9~3.3であることを特徴とする水酸化マグネシウム組成物の製造方法である。 In a preferred embodiment, the ratio Sm / Mm of the number of moles Sm of sulfur in the sulfur compound to the number of moles Mm of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 1.9 to 3.3. It is a manufacturing method of the magnesium hydroxide composition characterized by the above-mentioned.
 好ましい態様として、硫黄化合物が、チオ硫酸化合物、デクロリンから選択される少なくとも1種の還元剤であることを特徴とする水酸化マグネシウム組成物の製造方法である。 In a preferred embodiment, the method for producing a magnesium hydroxide composition is characterized in that the sulfur compound is at least one reducing agent selected from a thiosulfuric acid compound and dechlorin.
 本発明の第四は、上記水酸化マグネシウム組成物を樹脂に配合してなることを特徴とする樹脂組成物である。 A fourth aspect of the present invention is a resin composition obtained by blending the above magnesium hydroxide composition into a resin.
 本発明の第五は、上記樹脂組成物を成形してなることを特徴とする成形品である。 A fifth aspect of the present invention is a molded product obtained by molding the above resin composition.
 本発明の水酸化マグネシウム組成物は、特定量の鉄及び/又はマンガンと硫黄成分を含有してなるので、樹脂に配合された場合に難燃性とその持続性に優れるとともに、硫黄成分により鉄やマンガンが原因で発生する着色や熱劣化を抑制され、樹脂の強度物性を損なうことなく、難燃性及びその持続性に優れ、耐熱劣化性及び色相に優れた樹脂組成物や電線やケーブル、電子部品等の成形品を得ることが可能な水酸化マグネシウム組成物を提供することができる。 Since the magnesium hydroxide composition of the present invention contains a specific amount of iron and / or manganese and a sulfur component, it is excellent in flame retardancy and its sustainability when blended in a resin, and iron is added by the sulfur component. Resin composition and electric wires and cables excellent in flame retardancy and sustainability, heat resistance deterioration and hue, without inhibiting coloring and thermal deterioration caused by copper and manganese, without impairing the strength physical properties of the resin A magnesium hydroxide composition capable of obtaining a molded article such as an electronic component can be provided.
 本発明の水酸化マグネシウム組成物は、鉄及び/又はマンガンと硫黄とを含む水酸化マグネシウム粒子からなり、鉄及び/又はマンガンの含有量Mが水酸化マグネシウム粒子に対し10~1000ppmの範囲であり、硫黄の含有量Sが水酸化マグネシウム粒子に対し10~1800ppmの範囲であることを特徴とする。
 本発明の水酸化マグネシウム組成物が上記範囲で鉄やマンガンを含有することにより、樹脂に配合され、難燃剤としてその効能を発揮する際に、水酸化マグネシウム粒子の粒子表面より遊離した鉄やマンガンが樹脂中で脱水素触媒の如き働きを行い、樹脂中の水素原子を取り去り炭素のみを残す。この残された炭素がチャーと呼ばれる不燃性炭素を生成することで難燃性を向上させ、更に、それが樹脂の分解、燃焼を阻害し続けることで難燃剤としての持続性をより向上させる。
The magnesium hydroxide composition of the present invention comprises magnesium hydroxide particles containing iron and / or manganese and sulfur, and the content M of iron and / or manganese is in the range of 10 to 1000 ppm with respect to the magnesium hydroxide particles. The sulfur content S is in the range of 10 to 1800 ppm with respect to the magnesium hydroxide particles.
When the magnesium hydroxide composition of the present invention contains iron or manganese in the above range, it is incorporated into the resin, and when it exhibits its effectiveness as a flame retardant, iron or manganese released from the particle surface of the magnesium hydroxide particles. Acts as a dehydrogenation catalyst in the resin, removing the hydrogen atoms in the resin and leaving only carbon. The remaining carbon improves the flame retardancy by generating non-combustible carbon called char, and further improves the sustainability as a flame retardant by continuing to inhibit the decomposition and combustion of the resin.
 水酸化マグネシウム組成物の鉄及び/又はマンガンの含有量Mが1000ppmを超えると、難燃性の持続性向上の点では好ましいが、着色が著しくなり、更にそれらの金属が樹脂の熱劣化性に悪影響を与える。その理由は明らかでないが、添加した全ての鉄及び/又はマンガンが完全に硫黄化合物と反応するとは考えにくく、添加量が増えることにより硫黄化合物と反応せずに残った鉄及び/又はマンガンが酸化されて着色したり、それらがラジカル化することで樹脂の熱劣化性に悪影響を与えると推測される。また、水酸化マグネシウム組成物中に占める鉄及び/又はマンガンの重量割合が増えることにより、相対的に難燃作用をもたらす水酸化マグネシウム粒子の割合が減り、十分な難燃性を配合する樹脂に付与できなくなる。
 一方、鉄及び/又はマンガンの含有量Mが10ppm未満の場合、色相や熱劣化性の点では好ましいが、難燃性の点で水酸化マグネシウム粒子単独で用いた場合と大差がなく、難燃性とその持続性を向上させる効果が小さくなる。鉄とマンガンの合計量Mは、好ましくは100~1000ppm、より好ましくは200~500ppmである。
 なお、鉄とマンガンの含有量は、島津製作所(株)製原子吸光分光光度計AA6700Fで測定した。
When the content M of iron and / or manganese in the magnesium hydroxide composition exceeds 1000 ppm, it is preferable in terms of improvement in sustainability of flame retardancy, but coloration becomes remarkable, and further, these metals contribute to heat deterioration of the resin. Adversely affected. The reason for this is not clear, but it is unlikely that all the added iron and / or manganese will react completely with the sulfur compound, and as the added amount increases, the remaining iron and / or manganese that does not react with the sulfur compound is oxidized. It is presumed that the resin is colored or radicalized to adversely affect the thermal degradation of the resin. In addition, by increasing the weight ratio of iron and / or manganese in the magnesium hydroxide composition, the ratio of magnesium hydroxide particles that provide a relatively flame-retardant action decreases, and the resin contains sufficient flame retardancy. Can no longer be granted.
On the other hand, when the content M of iron and / or manganese is less than 10 ppm, it is preferable in terms of hue and heat deterioration, but in terms of flame retardancy, there is no significant difference from the case where magnesium hydroxide particles are used alone, and flame retardancy. The effect of improving the sex and its sustainability is reduced. The total amount M of iron and manganese is preferably 100 to 1000 ppm, more preferably 200 to 500 ppm.
In addition, content of iron and manganese was measured with Shimadzu Corporation atomic absorption spectrophotometer AA6700F.
 また、水酸化マグネシウム組成物が上記の範囲で硫黄を含有することにより、鉄やマンガンを含有しているにも関わらず、樹脂の熱劣化が生じにくく、良好な色相を本発明の水酸化マグネシウム組成物や樹脂組成物、及び成形品に付与することができる。上記の範囲で硫黄を含有することで、熱劣化を防ぎ、良好な色相を付与せしめる理由やメカニズムは明確でないが、水酸化マグネシウム組成物中において、硫黄が鉄やマンガンの硫酸塩又は亜硫酸塩、含硫黄の複塩や含硫黄錯塩等の複合化合物の形態になり、鉄やマンガンの活性が抑えられる為と推測される。 In addition, since the magnesium hydroxide composition contains sulfur within the above range, the resin is unlikely to be thermally deteriorated despite the fact that it contains iron or manganese, and a good hue is achieved with the magnesium hydroxide of the present invention. It can be applied to a composition, a resin composition, and a molded article. The reason and mechanism for preventing thermal degradation and imparting a good hue by containing sulfur in the above range is not clear, but in the magnesium hydroxide composition, sulfur is a sulfate or sulfite of iron or manganese, It is presumed that it is in the form of complex compounds such as sulfur-containing double salts and sulfur-containing complex salts, and the activity of iron and manganese is suppressed.
 硫黄の含有量Sが1800ppmを超えると、水酸化マグネシウム組成物自体、並びにそれを配合した樹脂組成物及び成形体の色相が悪化する。色相が悪化する理由は明らかでないが、硫黄の化合物が鉄やマンガンと反応するだけでなく、マグネシウムや他の不純物であるカルシウム等の硫酸塩や亜硫酸塩が生成し、その含有量が多くなる為と推測される。一方、硫黄の含有量Sが10ppm未満の場合は、色相が悪くなるだけでなく樹脂成形体となった場合にその熱劣化性が悪化する。この理由も明らかでないが、硫黄の化合物が少ない為に水酸化マグネシウム粒子が含有する鉄やマンガンに十分に作用しきれず、鉄やマンガンの水酸化物による着色や、ラジカル化を抑えることが出来ないためと推測される。硫黄の含有量Sは、好ましくは100~1800ppm、より好ましくは200~800ppmである。
 なお、硫黄の含有量は、赤外線吸収法、具体的にはLECO社製炭素、硫黄分析装置CS-444で測定した。
When the sulfur content S exceeds 1800 ppm, the hue of the magnesium hydroxide composition itself, and the resin composition and molded body containing the magnesium hydroxide composition deteriorate. The reason why the hue deteriorates is not clear, but not only the sulfur compound reacts with iron and manganese, but also magnesium and other impurities such as calcium and sulfites are generated and the content increases. It is guessed. On the other hand, when the sulfur content S is less than 10 ppm, not only the hue is deteriorated, but also the heat deterioration property is deteriorated when the resin molded body is obtained. The reason for this is not clear, but due to the small amount of sulfur compounds, the magnesium hydroxide particles do not fully work on iron and manganese, and coloring by iron and manganese hydroxides and radicalization cannot be suppressed. It is presumed that. The sulfur content S is preferably 100 to 1800 ppm, more preferably 200 to 800 ppm.
The sulfur content was measured by an infrared absorption method, specifically, carbon manufactured by LECO and a sulfur analyzer CS-444.
 硫黄の含有量Sの鉄及び/又はマンガンの含有量Mに対する比S/Mは、好ましくは1.0~1.8、さらに好ましくは1.2~1.5の範囲である。
 比S/Mが1.8を超えると、水酸化マグネシウム組成物自体、並びにそれを配合した樹脂組成物及び成形体の色相が悪化する傾向にある。このような傾向を示す理由は明らかでないが、硫黄の化合物が鉄やマンガンと反応するだけでなく、マグネシウムや他の不純物であるカルシウム等の硫酸塩や亜硫酸塩が生成し、その含有量が多くなる為と推測される。
 一方、比S/Mが1.0未満の場合は、色相が悪化する傾向にあるばかりでなく、樹脂成形体となった場合にその熱劣化性も悪化する傾向を示す。この理由も明らかでないが、硫黄の化合物が少ない為に水酸化マグネシウム粒子が含有する鉄やマンガンに十分に作用しきれず、鉄やマンガンの水酸化物による着色や、ラジカル化を抑えることが出来ないためと推測される。
The ratio S / M of the sulfur content S to the iron and / or manganese content M is preferably in the range of 1.0 to 1.8, more preferably 1.2 to 1.5.
When the ratio S / M exceeds 1.8, the hue of the magnesium hydroxide composition itself, and the resin composition and molded body containing the magnesium hydroxide composition tend to deteriorate. The reason for this tendency is not clear, but not only sulfur compounds react with iron and manganese, but also magnesium and other impurities such as calcium and sulfites are produced, and their content is high. Presumed to be.
On the other hand, when the ratio S / M is less than 1.0, not only does the hue tend to deteriorate, but also the thermal deterioration property tends to deteriorate when it becomes a resin molded body. The reason for this is not clear, but due to the small amount of sulfur compounds, the magnesium hydroxide particles do not fully work on iron and manganese, and coloring by iron and manganese hydroxides and radicalization cannot be suppressed. It is presumed that.
 本発明の水酸化マグネシウム組成物の色相は、ケット式光電管白色度計で測定した水酸化マグネシウム組成物の粉体としての白色度Wは、好ましくは98以上であり、さらに好ましくは100以上であり、特に好ましくは102以上である。 As for the hue of the magnesium hydroxide composition of the present invention, the whiteness W as a powder of the magnesium hydroxide composition measured with a ket type phototube whiteness meter is preferably 98 or more, more preferably 100 or more. Particularly preferably, it is 102 or more.
 白色度Wが98未満の場合、本発明の水酸化マグネシウム組成物を配合してなる樹脂組成物やそれから作成した成形体が、水酸化マグネシウム組成物により着色されるため、着色剤等を配合してその色相を調整したほうが好ましい場合が生じ得るため、その分成形体の強度が弱くなる傾向がある。
 なお、白色度Wは、KETT社製粉体白度計C-100-3で測定した。
When the whiteness W is less than 98, the resin composition formed by blending the magnesium hydroxide composition of the present invention and the molded body prepared therefrom are colored by the magnesium hydroxide composition. In some cases, it is preferable to adjust the hue, so that the strength of the molded body tends to be reduced accordingly.
The whiteness W was measured with a powder whiteness meter C-100-3 manufactured by KETT.
 また、水酸化マグネシウム組成物をフタル酸ジ-2-エチルヘキシル(以下、DOPと略記)中に1:2の割合で分散させ、その混合物の色相(以下、DOP濡色と略記)をハンターLab表色系で表した時のL値は、好ましくは78以上であり、より好ましくは80以上、更に好ましくは81.5以上である。
 更に、DOP濡色のb値は、好ましくは3.5以下、より好ましくは2.8以下、更に好ましくは2.0以下である。
In addition, the magnesium hydroxide composition is dispersed in di-2-ethylhexyl phthalate (hereinafter abbreviated as DOP) at a ratio of 1: 2, and the color of the mixture (hereinafter abbreviated as DOP wet color) is expressed in Hunter Lab color. The L value when expressed in a system is preferably 78 or more, more preferably 80 or more, and still more preferably 81.5 or more.
Furthermore, the b value of the DOP wet color is preferably 3.5 or less, more preferably 2.8 or less, and still more preferably 2.0 or less.
 L値が78未満である場合やb値が3.5を超える場合、水酸化マグネシウム組成物を配合してなる樹脂組成物やそれから作成した成形体が、水酸化マグネシウム組成物の色相の影響により着色されるため、この補正のために着色剤等を配合してその色相を調整せざるを得ない場合も生じ得るため、それにより成形体の強度等が弱くなる傾向がある。
 なお、本発明におけるハンターLab表色系による測定は、日本電色工業(株)製測色色差計ZE2000で測定した。
When the L value is less than 78 or when the b value exceeds 3.5, the resin composition formed by blending the magnesium hydroxide composition and the molded body produced therefrom are affected by the hue of the magnesium hydroxide composition. Since it is colored, there may be a case where it is unavoidable to add a colorant or the like to adjust the hue for this correction, so that the strength and the like of the molded product tend to be weakened.
In addition, the measurement by the Hunter Lab color system in this invention was measured by Nippon Denshoku Industries Co., Ltd. colorimetric color difference meter ZE2000.
 本発明の水酸化マグネシウム組成物は、特定の粒度特性を満足することが好ましい。即ち、レーザー回折散乱式粒度分布計により測定した水酸化マグネシウム組成物の50%平均粒子径Dp50が0.5~2.0μmであることが好ましく、より好ましくは0.5~1.5μm、更に好ましくは0.5~1.2μmの範囲にあり、また、レーザー回折散乱式粒度分布計により測定した水酸化マグネシウム組成物の最大粒子径DMax が6.5μm以下であることが好ましく、より好ましくは5.5μm以下、更に好ましくは4.5μm以下の範囲にあり、更に、窒素吸着法によるBET比表面積Swが1~10m/gであることが好ましく、より好ましくは2~7m/gの範囲にあることが好適である。 The magnesium hydroxide composition of the present invention preferably satisfies specific particle size characteristics. That is, the 50% average particle diameter Dp 50 of the magnesium hydroxide composition measured by a laser diffraction / scattering particle size distribution meter is preferably 0.5 to 2.0 μm, more preferably 0.5 to 1.5 μm, More preferably, it is in the range of 0.5 to 1.2 μm, and the maximum particle diameter D Max of the magnesium hydroxide composition measured by a laser diffraction / scattering particle size distribution meter is preferably 6.5 μm or less. preferably 5.5μm or less, more preferably in the range of not less than 4.5 [mu] m, further preferably a BET specific surface area Sw by a nitrogen adsorption method is 1 ~ 10m 2 / g, more preferably 2 ~ 7m 2 / It is preferable to be in the range of g.
 本発明の水酸化マグネシウム組成物が上述の50%平均粒子径Dp50、最大粒子径DMax 、及びBET比表面積Swを満足することによって、樹脂に配合されて、難燃剤としてその効能を発揮する際に、樹脂中全体に分散して存在することが出来、更に微細であるから火災時に粒子と接する面積が多く、水酸基の分解による脱水がしやすくなるため難燃剤として有効である。また、難燃剤としての効能を発揮する上で、粒子の形状としては平板な形状であることが望ましい。 When the magnesium hydroxide composition of the present invention satisfies the above-mentioned 50% average particle diameter Dp 50 , maximum particle diameter D Max , and BET specific surface area Sw, it is blended into a resin and exhibits its effectiveness as a flame retardant. At this time, it can be dispersed throughout the resin, and since it is finer, it has a large area in contact with the particles in the event of a fire and is effective as a flame retardant because it can be easily dehydrated by decomposition of hydroxyl groups. Further, in order to exhibit the effect as a flame retardant, the shape of the particles is preferably a flat shape.
 50%平均粒子径Dp50が0.5μm未満の場合、微細すぎるために粒子の表面エネルギーが大きくなり、凝集して安定化を図るため、樹脂への配合時や樹脂組成物を成形する際に凝集体を生成しやすくなる。また、強固に凝集した大きな粒子が樹脂成形品中に存在すると、微細で均一かつ分散性の優れた粒子に比べて成形品表面にブツや凸部分が多くなり外観を損ねる場合がある。更に、耐衝撃性や引張強度といった強度物性についても、現時点ではその詳細なメカニズムは明らかでないが、大きな粒子が樹脂中に存在すると、成形体に応力が加わった時に樹脂と同様に撓んでエネルギーを吸収しないため、樹脂界面での剥離や粒子の破壊を生じ、樹脂成形体の強度が所望の物性を満たさなくなる場合がある。更にまた、粒子が成形品の表面に露出しやすくなり、大気中の水分と炭酸ガスを取り込んで水酸化マグネシウムが炭酸マグネシウムに変化し、それによって体積変化や表面の変質により樹脂界面との剥離や離脱を生じ、成形品としての耐久性を低下させる等の問題が生じる場合がある。また、0.5μm未満の小さな粒子の場合、全ての粒子の表面に均一に鉄及び/又はマンガンを担持させることが現時点での技術では困難であることから、樹脂組成物や成形品に配合された場合に難燃性の持続性付与の点で劣る傾向がある。
 一方、平均粒子径Dp50が2.0μmを超えると、大きな粒子が樹脂成形品中に存在するため、上記した平均粒子径Dp50が0.5μm未満の場合と同様、成形体の外観を損ね、耐衝撃性や引張強度等の強度物性を低下させ、耐久性を低下させる等の問題が生じる場合がある。
When the 50% average particle diameter Dp 50 is less than 0.5 μm, the surface energy of the particles increases because of being too fine, and aggregates and stabilizes. Therefore, when blending into a resin or molding a resin composition Aggregates are easily generated. Further, when large particles that are strongly aggregated are present in the resin molded product, there are cases where the surface of the molded product has more spots and convex portions than the fine, uniform, and dispersible particles, and the appearance may be impaired. Furthermore, the detailed mechanism of strength properties such as impact resistance and tensile strength is not clear at present. However, if large particles are present in the resin, the stress is applied to the molded body in the same way as when the resin is stressed. Since it does not absorb, peeling at the resin interface and particle destruction may occur, and the strength of the resin molded body may not satisfy desired physical properties. Furthermore, the particles are easily exposed on the surface of the molded article, and take in moisture and carbon dioxide in the atmosphere, and the magnesium hydroxide changes into magnesium carbonate. There are cases where problems such as separation occur and the durability of the molded article decreases. In addition, in the case of small particles of less than 0.5 μm, it is difficult to carry iron and / or manganese uniformly on the surface of all the particles with the current technology, so it is blended in resin compositions and molded products. In this case, it tends to be inferior in terms of imparting flame retardancy.
On the other hand, when the average particle diameter Dp 50 exceeds 2.0 μm, large particles are present in the resin molded product, so that the appearance of the molded body is impaired as in the case where the average particle diameter Dp 50 is less than 0.5 μm. In some cases, problems such as deterioration of strength properties such as impact resistance and tensile strength and deterioration of durability may occur.
  最大粒子径DMax が6.5μmを超えると、単一粒子や凝集粒子に関係なく粗大な粒子が樹脂中に多く存在することになり、それらを樹脂に配合して組成物にすると、上記した平均粒子径Dp50が2.0μmを超える場合と同様、成形体の外観を損ね、耐衝撃性や引張強度等の強度物性を低下させ、耐久性を低下させる等の問題が生じる傾向がある。
 なお、50%平均粒子径Dp50、最大粒子径DMax の測定は、Leeds&Northrup社製マイクロトラックFRAレーザー回折散乱式粒度分布計を用い、溶媒をメタノールにして測定した。
When the maximum particle diameter D Max exceeds 6.5 μm, a large number of coarse particles are present in the resin regardless of single particles or agglomerated particles. As in the case where the average particle diameter Dp 50 exceeds 2.0 μm, there is a tendency that the appearance of the molded body is impaired, the strength physical properties such as impact resistance and tensile strength are lowered, and the durability is lowered.
The 50% average particle diameter Dp 50 and the maximum particle diameter D Max were measured using a Microtrac FRA laser diffraction / scattering particle size distribution meter manufactured by Lees & Northrup, with the solvent as methanol.
  BET比表面積Swが1m/g未満の場合、巨大な単一粒子が水酸化マグネシウム組成物中に多く存在することになり、上記した平均粒子径Dp50が2.0μmを超える場合と同様、成形体の外観を損ね、耐衝撃性や引張強度等の強度物性を低下させ、耐久性を低下させる等の問題が生じる傾向がある。
  一方、Swが10m/gを超えると、水酸化マグネシウム組成物中に微細な粒子が多くなり、粉体として貯蔵時や樹脂への配合時、樹脂組成物を成形する際に凝集体を生成しやすく、上記した平均粒子径Dp50が2.0μmを超える場合と同様、成形体の外観を損ね、耐衝撃性や引張強度等の強度物性を低下させ、耐久性を低下させる等の問題が生じる傾向がある。
 なお、窒素吸着式BET比表面積は、ユアサアイオニクス(株)製NOVA2000で測定した。
When the BET specific surface area Sw is less than 1 m 2 / g, a large number of single particles are present in the magnesium hydroxide composition, and as in the case where the average particle diameter Dp 50 exceeds 2.0 μm, There is a tendency for the appearance of the molded article to be impaired, causing problems such as a reduction in strength properties such as impact resistance and tensile strength, and a reduction in durability.
On the other hand, when the Sw exceeds 10 m 2 / g, fine particles increase in the magnesium hydroxide composition, and aggregates are formed when the resin composition is molded during storage or compounding into a resin. As in the case where the average particle diameter Dp 50 exceeds 2.0 μm, the appearance of the molded body is impaired, the strength physical properties such as impact resistance and tensile strength are lowered, and the durability is lowered. Tend to occur.
The nitrogen adsorption BET specific surface area was measured with NOVA2000 manufactured by Yuasa Ionics Co., Ltd.
 本発明の水酸化マグネシウム組成物は、樹脂組成物に配合する際に、その耐久性、強度等の諸物性向上、及び、粒子の安定性、分散性、樹脂との親和性向上や撥水性付与の目的で.表面処理剤で表面処理(被覆)することが好ましい。このような表面処理剤としては、脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸、これらの金属塩、アミン塩等の塩、これらのエステル、界面活性剤、カップリング剤、及び燐酸エステル等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
 上記の表面処理剤について、上記の諸物性や、用途、環境への影響、ハンドリング性、コストの観点から適宜選択すればよいが、例えばエコ電線の被覆用樹脂として使われているEEAないしEVA樹脂用途には、色相の点から脂肪酸やその金属塩、シランカップリング剤による表面処理が好ましく、更に、色相及び昨今の難燃性及び強度物性の厳しい要求に対しては、シランカップリング剤がより好ましい。
The magnesium hydroxide composition of the present invention, when blended in a resin composition, improves various physical properties such as durability and strength, and improves particle stability, dispersibility, affinity with resin and imparts water repellency. For the purpose. It is preferable to perform surface treatment (coating) with a surface treatment agent. Examples of such surface treatment agents include fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, resin acids, salts of these metal salts, amine salts, esters thereof, surfactants, coupling agents, and phosphoric acid. An ester etc. are mentioned, These are used individually or in combination of 2 or more types as needed.
The above-mentioned surface treatment agent may be appropriately selected from the viewpoints of the above various physical properties, applications, environmental influences, handling properties, and cost. For example, EEA or EVA resin used as a resin for coating eco wires For applications, surface treatment with fatty acids, metal salts thereof, and silane coupling agents is preferable from the viewpoint of hue, and silane coupling agents are more suitable for demands of hue and recent flame retardancy and strength properties. preferable.
 本発明に使用する脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸としては、例えば、酢酸、酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘニン酸、リグノセリン酸等の飽和脂肪酸;ソルビン酸、エライジン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、セトレイン酸、エルカ酸、リシノール酸等の不飽和脂肪酸;シクロペンタン環やシクロヘキサン環を持つナフテン酸等の脂環族カルボン酸;安息香酸、フタル酸等に代表されるベンゼンカルボン酸類;ナフトエ酸やナフタル酸等のナフタレンのカルボン酸等の芳香族カルボン酸;アビエチン酸、ピマル酸、パラストリン酸、ネオアビエチン酸等の樹脂酸が挙げられ、中でも水酸化マグネシウムとの反応性や、粒子の安定性、分散性、コストの点でステアリン酸とパルミチン酸の混合酸が好ましい。 Examples of fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, and resin acids used in the present invention include acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, Saturated fatty acids such as arachidic acid, behenic acid, lignoceric acid; unsaturated fatty acids such as sorbic acid, elaidic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, cetoleic acid, erucic acid, ricinoleic acid; cyclopentane ring and cyclohexane Ring-containing alicyclic carboxylic acids such as naphthenic acid; benzene carboxylic acids such as benzoic acid and phthalic acid; aromatic carboxylic acids such as naphthoic acid and naphthalene carboxylic acid such as naphthalic acid; abietic acid and pimaric acid Resin acids such as parastrinic acid and neoabietic acid. And reactivity with Neshiumu, particle stability, dispersibility, mixed acid stearic acid and palmitic acid are preferable in terms of cost.
 脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸の金属塩、アミン塩としては、例えば、ラウリン酸カリウム、ミリスチン酸カリウム、パルミチン酸カリウム、パルミチン酸ナトリウム、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸カリウム、ステアリン酸コバルト(II)、ステアリン酸錫(IV)、ステアリン酸ナトリウム、ステアリン酸鉛(II)等の飽和脂肪酸塩;オレイン酸亜鉛、オレイン酸カリウム、オレイン酸コバルト(II)、オレイン酸ナトリウム、カリウムジエタノールアミン塩等の不飽和脂肪酸塩;ナフテン酸鉛、シクロヘキシル酪酸鉛等の脂環族カルボン酸塩;安息香酸ナトリウムやサリチル酸ナトリウム等の芳香族カルボン酸塩;アビエチン酸ナトリウム、アビエチン酸カリウム、ピマル酸ナトリウム、ピマル酸カリウム、パラストリン酸ナトリウム、パラストリン酸カリウム、ネオアビエチン酸ナトリウム、ネオアビエチン酸カリウム等の樹脂酸塩が挙げられる。 Examples of fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, metal salt of resin acid, and amine salt include potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, barium stearate, calcium stearate, stearin. Saturated fatty acid salts such as zinc oxide, potassium stearate, cobalt (II) stearate, tin (IV) stearate, sodium stearate, lead (II) stearate; zinc oleate, potassium oleate, cobalt oleate (II) ), Unsaturated fatty acid salts such as sodium oleate and potassium diethanolamine salt; alicyclic carboxylates such as lead naphthenate and lead cyclohexylbutyrate; aromatic carboxylates such as sodium benzoate and sodium salicylate; sodium abietate, Abbie Potassium phosphate, sodium pimaric acid, potassium pimaric acid, sodium palustric acid, potassium palustric acid, sodium neoabietic acid, resin acid salts such as potassium neoabietic acid.
 また、本発明の水酸化マグネシウム粒子の表面処理時又は表面処理に先立って、予め既述の脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸に、リチウム、ナトリウム、カリウム、ルビジウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、亜鉛、アルミニウム、鉛、コバルト、錫、アシル基を持つ化合物を混合、反応させて脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸の金属塩、アミン塩を適宜作成しても良い。 Further, prior to the surface treatment or surface treatment of the magnesium hydroxide particles of the present invention, the previously described fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, resin acid, lithium, sodium, potassium, rubidium, beryllium , Magnesium, Calcium, Strontium, Barium, Zinc, Aluminum, Lead, Cobalt, Tin, Compounds with acyl group are mixed and reacted to make fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, metal salt of resin acid, amine You may make a salt suitably.
 以上の脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸の金属塩の中でも水酸化マグネシウムとの反応性や、粒子の安定性、分散性、コストの点でステアリン酸ないしパルミチン酸を主成分とする混合石鹸の使用が好ましい。 Among the above fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, and resin acid metal salts, stearic acid or palmitic acid is mainly used in terms of reactivity with magnesium hydroxide, particle stability, dispersibility, and cost. The use of mixed soap as a component is preferred.
 脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸のエステルとしては、例えば、カプロン酸エチル、カプロン酸ビニル、アジピン酸ジイソプロピル、カプリル酸エチル、カプリン酸アリル、カプリン酸エチル、カプリン酸ビニル、セバシン酸ジエチル、セバシン酸ジイソプロピル、イソオクタン酸セチル、ジメチルオクタン酸オクチルドデシル、ラウリン酸メチル、ラウリン酸ブチル、ラウリン酸ラウリル、ミリスチン酸メチル、ミリスチン酸イソプロピル、ミリスチン酸セチル、ミリスチン酸ミリスチル、ミリスチン酸イソセチル、ミリスチン酸オクチルドデシル、ミリスチン酸イソトリデシル、パルミチン酸メチル、パルミチン酸イソプロピル、パルミチン酸オクチル、パルミチン酸セチル、パルミチン酸イソステアリル、ステアリン酸メチル、ステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸ステアリル、ステアリン酸コレステリル、イソステアリン酸イソセチル、ベヘニン酸メチル、ベヘニル等の飽和脂肪酸エステル;オレイン酸メチル、リノール酸エチル、イソプロピル、オリーブオレイン酸エチル、エルカ酸メチル等の不飽和脂肪酸エステル;その他、長鎖脂肪酸高級アルコールエステル、ネオペンチルポリオール(長鎖、中鎖を含む)脂肪酸系エステル及び部分エステル化合物、ジペンタエリスリトール長鎖脂肪酸エステル、コンプレックス中鎖脂肪酸エステル、12-ステアロイルステアリン酸イソセチル、12-ステアロイルステアリン酸イソステアリル、12-ステアロイルステアリン酸ステアリル、牛脂脂肪酸オクチルエステル、多価アルコール脂肪酸エステル/アルキルグリセリルエーテルの脂肪酸エステル等の耐熱性特殊脂肪酸エステル;安息香酸エステル系に代表される芳香族エステルが挙げられ、中でも水酸化マグネシウムとの反応性や、粒子の安定性、分散性、コストの点で多価アルコール脂肪酸エステルの多価アルコールステアリン酸又はパルミチン酸、ステアリン酸ステアリルの使用が好ましい。 Examples of esters of fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids and resin acids include, for example, ethyl caproate, vinyl caproate, diisopropyl adipate, ethyl caprylate, allyl caprate, ethyl caprate, vinyl caprate, Diethyl sebacate, diisopropyl sebacate, cetyl isooctanoate, octyldodecyl dimethyloctanoate, methyl laurate, butyl laurate, lauryl laurate, methyl myristate, isopropyl myristate, cetyl myristate, myristyl myristate, isocetyl myristate, Octyldodecyl myristate, isotridecyl myristate, methyl palmitate, isopropyl palmitate, octyl palmitate, cetyl palmitate, isostearyl palmitate, stearyl Saturated fatty acid esters such as methyl phosphate, butyl stearate, octyl stearate, stearyl stearate, cholesteryl stearate, isocetyl isostearate, methyl behenate, behenyl; methyl oleate, ethyl linoleate, isopropyl, ethyl olive oleate, Unsaturated fatty acid esters such as methyl erucate; other long chain fatty acid higher alcohol esters, neopentyl polyol (including long and medium chain) fatty acid esters and partial ester compounds, dipentaerythritol long chain fatty acid esters, complex medium chain Fatty acid ester, isocetyl 12-stearoyl stearate, isostearyl 12-stearoyl stearate, stearyl 12-stearoyl stearate, beef tallow fatty acid octyl ester Heat-resistant special fatty acid esters such as Cole fatty acid esters / alkyl glyceryl ether fatty acid esters; aromatic esters represented by benzoic acid esters, among others, reactivity with magnesium hydroxide, particle stability, and dispersibility From the viewpoint of cost, the use of polyhydric alcohol stearic acid or palmitic acid or stearyl stearate of polyhydric alcohol fatty acid ester is preferable.
 界面活性剤としては、ビニル基を有する単量体の重合物及びそのアルカリ金属塩、アンモニウム、及びアミンによる部分もしくは完全中和物よりなるグループで、例えば単量体としてα,β-モノエチレン性不飽和モノカルボン酸、α,β-モノエチレン性不飽和ジカルボン酸、メタクリル酸アルキルエステル、アルコキシ基を有する( メタ) アクリルエーテル、シクロキシル基を有する( メタ) アクリレート、α,β-モノエチレン性不飽和ヒドロキシエステル、ポリアルキレングリコールモノ( メタ) アクリレート、ビニルエステル、ビニル芳香族、不飽和ニトリル、不飽和ジカルボン酸エステル、ビニルエーテル、共役ジエン、鎖状オレフィン、環状オレフィン、スルホ基含有単量体等が挙げられる。また、別のタイプの界面活性剤として、アルキルエーテル硫酸、アルキルエーテルリン酸、アルキルアリールエーテル硫酸、アルキルアリールエーテルリン酸、アルキル硫酸エステル、アルキルリン酸エステル、アルキルアリール硫酸、アルキルアリールリン酸、アルキルアミド硫酸エステル、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、スルホ琥珀酸、スルホ琥珀酸エステル、α-オレフィンスルホン酸、N-アシルスルホン酸、N-アシルアミノ酸、アルキルエーテルカルボン酸、アシル化ペプチド、脂肪族アミン、脂肪族4級アミン、芳香族4級アンモニウム、ベタイン、アミノカルボン酸、イミダゾリン誘導体、アルキルエーテル、アルキルアリルエーテル、アルキルえ捨てる、アルキルアミン、ソルビタン誘導体、多環フェニルエーテル、脂肪族エステル、フルオロアルキルカーボン酸、パーフルオロアルキルカーボン酸、パーフルオロアルキルスルホン酸、アセチレンアルコール、アセチレングリコール等が挙げられる。これらの中でも、水酸化マグネシウム粒子自体の分散性と安定性、樹脂との親和性向上、コストの点で、アルキルエーテル硫酸、アルキルアリールエーテル硫酸、アルキル硫酸エステル等の硫酸塩、硫酸エーテル、硫酸エステルの使用が好ましい。 As the surfactant, a group consisting of a polymer of a monomer having a vinyl group and its alkali metal salt, ammonium, and a partially or completely neutralized product with an amine, for example, α, β-monoethylenic monomer. Unsaturated monocarboxylic acid, α, β-monoethylenically unsaturated dicarboxylic acid, methacrylic acid alkyl ester, (meth) acrylic ether having alkoxy group, (meth) acrylate having cyclohexyl group, α, β-monoethylenically unsaturated Saturated hydroxy ester, polyalkylene glycol mono (meta) acrylate, vinyl ester, vinyl aromatic, unsaturated nitrile, unsaturated dicarboxylic acid ester, vinyl ether, conjugated diene, chain olefin, cyclic olefin, sulfo group-containing monomer, etc. Can be mentioned. In addition, as another type of surfactant, alkyl ether sulfuric acid, alkyl ether phosphoric acid, alkyl aryl ether sulfuric acid, alkyl aryl ether phosphoric acid, alkyl sulfuric acid ester, alkyl phosphoric acid ester, alkyl aryl sulfuric acid, alkyl aryl phosphoric acid, alkyl Amidosulfuric acid ester, alkylsulfonic acid, alkylbenzenesulfonic acid, alkylnaphthalenesulfonic acid, sulfosuccinic acid, sulfosuccinic acid ester, α-olefin sulfonic acid, N-acylsulfonic acid, N-acylamino acid, alkyl ether carboxylic acid, acylation Peptide, aliphatic amine, aliphatic quaternary amine, aromatic quaternary ammonium, betaine, aminocarboxylic acid, imidazoline derivative, alkyl ether, alkyl allyl ether, alkyl discarded, alkyl amine Emissions, sorbitan derivatives, polycyclic phenyl ether, aliphatic ester, fluoroalkyl carbon acids, perfluoroalkyl carbon acid, perfluoroalkylsulfonic acid, acetylene alcohol, acetylene glycol, and the like. Among these, sulfates such as alkyl ether sulfuric acid, alkyl aryl ether sulfuric acid, alkyl sulfuric acid ester, sulfuric acid ether, sulfuric acid ester, in terms of dispersibility and stability of magnesium hydroxide particles themselves, improved affinity with resin, and cost. Is preferred.
  シランカップリング剤の例としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニル、トリス(β-メトキシエトキシ)シラン、γ-クロロプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-ユレイドプロピルトリエトトキシシラン等が挙げられ、水酸化マグネシウム粒子自体の分散性と安定性、樹脂との親和性向上、コストの点で、ビニルトリメトキシシラン、及びβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランの使用が好ましい。 Examples of silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyl, tris (β-methoxyethoxy) silane, γ-chloropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, and the like. In terms of dispersibility and stability of magnesium hydroxide particles themselves, improved affinity with resin, and cost, vinyltrimethoxy Silane and β- (3,4- Carboxymethyl-cyclohexyl) ethyltrimethoxysilane, 3-methacryloxy use of trimethoxysilane is preferred.
 リン酸エステルとしては、例えばトリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、2-エチルヘキシルホスフェート、ブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、クレジルジ-2,6-キシレニルホスフェート、レゾルシノールジフェニルホスフェート、各種芳香族縮合リン酸エステル、2-クロロエチル-クロロプロピルホスフェート、ジクロロプロピルホスフェート、トリブロモネオペンチルホスフェート、含ハロゲン縮合リン酸、ビス-2-エチルヘキシルホスフェート、ジイソデシルホスフェート、2-メタクリロイルオキシルエチルアシッドホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、2-ブチルヘキシルアシッドホスフェート、イソデシルアシッドホスフェート、モノイソデシルホスフェート、トリフェニルホスファイト、ジブチルハイドロジェンホスファイト、ジブチルハイドロジェンホスファイト、ジフェニルホスホロクロリデート、フェニルホスホロジクリデート、ポリオキシエチレンラウリルエーテルリン酸、アルキル基が12~26のポリオキシアルキルエーテルリン酸、同ポリオキシエチレンアルキルフェニルエーテルリン酸、同ポリオキシエチレンジアルキルフェニルエーテルリン酸等が挙げられ、水酸化マグネシウム粒子自体の分散性と安定性、樹脂との親和性向上、コストの点で、トリエチルホスフェートないしトリブチルホスフェートの使用が好ましい。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, 2-ethylhexyl phosphate, butoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, Cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol diphenyl phosphate, various aromatic condensed phosphates, 2-chloroethyl-chloropropyl phosphate, dichloropropyl phosphate, tribromoneopentyl Phosphate, halogen-containing condensed phosphoric acid, bis-2-ethylhexylphos Phosphate, diisodecyl phosphate, 2-methacryloyloxyl ethyl acid phosphate, diphenyl-2-methacryloyloxyethyl phosphate, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, monobutyl phosphate, 2-butylhexyl acid phosphate, isodecyl Acid phosphate, monoisodecyl phosphate, triphenyl phosphite, dibutyl hydrogen phosphite, dibutyl hydrogen phosphite, diphenyl phosphorochloridate, phenyl phosphorodichloridate, polyoxyethylene lauryl ether phosphate, 12 to 12 alkyl groups 26 polyoxyalkyl ether phosphates, polyoxyethylene alkyl phosphates Nyl ether phosphoric acid, polyoxyethylene dialkyl phenyl ether phosphoric acid, etc. Use of triethyl phosphate or tributyl phosphate in terms of dispersibility and stability of magnesium hydroxide particles themselves, improved affinity with resin, and cost Is preferred.
 上記の表面処理剤の処理量は、本発明で得られる樹脂組成物に使用される樹脂の種類、用途等によって適宜選択されるが、例えば合成樹脂に配合される場合、粒子100重量部に対して通常0.01~10重量部、好ましくは0.05~8重量部である。
 表面処理剤の処理量が0.01重量部未満の場合、樹脂組成物や成形品の製造時のハンドリングの改良効果が認められず、また、樹脂中で未表面処理部分の水酸化マグネシウム粒子に水分が吸着し、それに溶解した大気中の炭酸ガスと反応して炭酸マグネシウムとなる白化を招くなど、無処理の水酸化マグネシウム粒子となんら変わりなく、表面処理剤の効能が認められない。一方、表面処理量が10重量部を超えると、例えば樹脂に配合して成形体を作成した場合、樹脂の強度が著しく低下し、場合によっては成形体としての形状すら保てなくなる為好ましくない。
The amount of the surface treatment agent to be treated is appropriately selected depending on the type and use of the resin used in the resin composition obtained in the present invention. For example, when blended in a synthetic resin, the amount is 100 parts by weight of the particles. The amount is usually 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight.
When the treatment amount of the surface treatment agent is less than 0.01 parts by weight, the effect of improving the handling during the production of the resin composition or the molded product is not recognized, and the magnesium hydroxide particles in the unsurface-treated part in the resin The effect of the surface treatment agent is not recognized, as in the case of untreated magnesium hydroxide particles, such as whitening that moisture adsorbs and reacts with the carbon dioxide gas dissolved in the atmosphere to cause whitening. On the other hand, when the surface treatment amount exceeds 10 parts by weight, for example, when a molded body is prepared by blending with a resin, the strength of the resin is remarkably lowered, and in some cases, even the shape of the molded body cannot be maintained.
 なお、本発明の水酸化マグネシウム組成物は、その使用目的によって作用や効果を適宜選択することができる。例えば、色相よりも難燃性を重視する場合、難燃性を大きく向上させることを目的に、鉄及び/又はマンガンと硫黄の含有量が多い水酸化マグネシウム組成物を選択したり、難燃性よりも色相を重視する目的で、鉄及び/又はマンガンと硫黄の含有量が少ない水酸化マグネシウム組成物を選択することが可能である。また、両者の中間の、色相と難燃性がともに向上した水酸化マグネシウム組成物を選択することも可能である。 The action and effect of the magnesium hydroxide composition of the present invention can be appropriately selected depending on the purpose of use. For example, when the flame retardancy is more important than the hue, a magnesium hydroxide composition having a high content of iron and / or manganese and sulfur is selected for the purpose of greatly improving the flame retardancy, or flame retardancy For the purpose of placing more emphasis on hue, it is possible to select a magnesium hydroxide composition having a low content of iron and / or manganese and sulfur. It is also possible to select a magnesium hydroxide composition having an improved hue and flame retardancy, which is intermediate between the two.
 本発明の水酸化マグネシウム組成物を製造するための好ましい方法としては、例えば、塩化マグネシウム溶液と、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム等の水酸化物溶液を一定の割合で混合した後に、オートクレーブで120℃以上、2時間以上の条件で水熱反応を行い、適宜、脱水、水洗を行なう方法や、海水に消石灰を投入して水酸化マグネシウム粒子を得、それを焼成して酸化マグネシウムとした後に水と反応させて水酸化マグネシウム粒子を得る方法が挙げられる。これらの何れの方法を用いても良いが、粒度や分散性、不純物含有量、色相、コストの観点から前者の方法が好ましい。なお、温度や時間の上限は特に制限されないが、エネルギーコストや生産性の観点からは300℃程度、8時間程度が好ましく、更に、温度は低い程、時間は短い程好ましい。 As a preferable method for producing the magnesium hydroxide composition of the present invention, for example, after mixing a magnesium chloride solution and a hydroxide solution such as sodium hydroxide, calcium hydroxide, ammonium hydroxide in a certain ratio, Then, hydrothermal reaction is performed in an autoclave at 120 ° C. or more for 2 hours or more, and a method of dehydration and washing as appropriate, or slaked lime is added to seawater to obtain magnesium hydroxide particles, which are calcined to produce magnesium oxide And then reacting with water to obtain magnesium hydroxide particles. Any of these methods may be used, but the former method is preferable from the viewpoints of particle size, dispersibility, impurity content, hue, and cost. In addition, although the upper limit of temperature and time is not particularly limited, from the viewpoint of energy cost and productivity, about 300 ° C. and about 8 hours are preferable, and further, the lower the temperature and the shorter the time.
 鉄及び/又はマンガンは、水酸化マグネシウム粒子の表面に存在する確率を上げる目的で、水酸化マグネシウム粒子の生成後に添加する事が好ましい。硫黄成分については、原料である塩化マグネシウムに存在してもよく、鉄及び/又はマンガンと同様、水酸化マグネシウム粒子の生成後に添加しても良い。 Iron and / or manganese is preferably added after the production of magnesium hydroxide particles for the purpose of increasing the probability of existing on the surface of the magnesium hydroxide particles. About a sulfur component, you may exist in the magnesium chloride which is a raw material, and may add after the production | generation of magnesium hydroxide particle | grains similarly to iron and / or manganese.
 塩化マグネシウムについて、海水からの製塩時に副生する苦汁が簡便かつ安価に入手できるが、それを脱硫し、更に塩化カリウム等の微量不純物を除去する必要がある。しかしながら本発明の水酸化マグネシウム組成物は、苦汁中に含まれる硫酸イオンを使用することが可能であることから、その除去に要するコスト、手間を低減できる為有利である。 As for magnesium chloride, bitter juice produced as a by-product during salt production from seawater can be obtained easily and inexpensively, but it is necessary to desulfurize it and further remove trace impurities such as potassium chloride. However, since the magnesium hydroxide composition of the present invention can use sulfate ions contained in bitter juice, it is advantageous because the cost and labor required for its removal can be reduced.
 しかし、得られる水酸化マグネシウム組成物やそれを配合してなる樹脂組成物、及びその成形品の色相への影響や耐熱劣化性の点から、硫黄成分も水酸化マグネシウム粒子の生成後に添加することが好ましい。いずれの方法を選択するかは、それらに要するコスト、ハンドリングや得られる粒子の物性を勘案して選択すればよい。
 硫黄成分を水酸化マグネシウム粒子生成後に添加する場合は、鉄及び/又はマンガンの添加と同時に行なうことが好ましく、特に塩化鉄溶液と硫黄成分を含有する溶液を予め混合し、水酸化マグネシウム粒子ないし表面処理した水酸化マグネシウム粒子に添加して、その表面に担持させることがより好ましい。
However, from the viewpoint of the influence on the hue of the obtained magnesium hydroxide composition and the resin composition obtained by blending it, and its molded product, and heat resistance deterioration, a sulfur component should also be added after the production of magnesium hydroxide particles. Is preferred. Which method should be selected may be selected in consideration of the cost required for them, handling, and physical properties of the particles obtained.
When the sulfur component is added after the production of magnesium hydroxide particles, it is preferably carried out simultaneously with the addition of iron and / or manganese. In particular, the iron chloride solution and the solution containing the sulfur component are mixed in advance, and the magnesium hydroxide particles or the surface is added. More preferably, it is added to the treated magnesium hydroxide particles and supported on the surface thereof.
 水酸化マグネシウム粒子又は表面処理水酸化マグネシウム粒子に添加する、塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンの含有量が、水酸化マグネシウム粒子に対して10~1000ppmの範囲にあることが好ましく、100~1000ppmの範囲にあることがより好ましく、200~500ppmの範囲にあることが更に好ましい。上記鉄及び/又はマンガンの含有量が10ppm未満では難燃性が十分でなく、一方、1000ppmを超えると水酸化マグネシウム組成物自体、それを配合した樹脂組成物や成形体の色相が悪化する傾向がある。 The content of iron and / or manganese in the iron chloride solution and / or manganese chloride solution added to the magnesium hydroxide particles or the surface-treated magnesium hydroxide particles is in the range of 10 to 1000 ppm with respect to the magnesium hydroxide particles. Preferably, it is in the range of 100 to 1000 ppm, more preferably in the range of 200 to 500 ppm. When the iron and / or manganese content is less than 10 ppm, the flame retardancy is not sufficient. On the other hand, when the content exceeds 1000 ppm, the hue of the magnesium hydroxide composition itself, the resin composition containing the same and the molded product tends to deteriorate. There is.
 塩化鉄溶液及び/又は塩化マンガン溶液と同時、又は予め添加する硫黄化合物については、塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンのモル数Mmに対する硫黄化合物中の硫黄のモル数Smの比Sm/Mmが、1.9~3.3の範囲にあることが好ましく、さらには2.1~2.8の範囲にあることが好ましい。上記モル比Sm/Mmが1.9未満では水酸化マグネシウム組成物自体、それを配合した樹脂組成物や成形体の色相や熱劣化性が悪化し、一方、3.3を超えると前記した色相が悪化する傾向がある。 For sulfur compounds added simultaneously or in advance with the iron chloride solution and / or manganese chloride solution, the number of moles of sulfur in the sulfur compound relative to the number of moles of iron and / or manganese in the iron chloride solution and / or manganese chloride solution Mm The Sm ratio Sm / Mm is preferably in the range of 1.9 to 3.3, and more preferably in the range of 2.1 to 2.8. When the molar ratio Sm / Mm is less than 1.9, the hue and heat deterioration of the magnesium hydroxide composition itself, the resin composition and molded product containing the magnesium hydroxide composition are deteriorated. Tend to get worse.
 硫黄化合物は、チオ硫酸系、又はデクロリンの何れか1種以上から選択される還元剤であることがより好適である。
 チオ硫酸系の還元剤としては、ハイドロサルファイト(次亜硫酸ナトリウム)、ロンガリットC(ナトリウムホルムアルデヒドスルホキシレート)、ロンガリットZ(亜鉛ホルムアルデヒドスルホキシレート)、ハイポ(チオ硫酸ナトリウム)、亜硫曹(亜硫酸ナトリウム)、一硫化硫黄、硫酸ヒドロキシルアミン等が挙げられるが、環境とコスト、ハンドリングの点でハイポとハイドロサルファイトが好ましく、特にハイドロサルファイトは少量で効果を発揮する為、コストの点で好ましく用いられる。
More preferably, the sulfur compound is a reducing agent selected from one or more of thiosulfuric acid and dechlorin.
Examples of thiosulfate-based reducing agents include hydrosulfite (sodium hyposulfite), Rongalite C (sodium formaldehyde sulfoxylate), Rongalite Z (zinc formaldehyde sulfoxylate), hypo (sodium thiosulfate), sulfite (sulfurous acid) Sodium), sulfur monosulfide, hydroxylamine sulfate, etc., but hypo and hydrosulfite are preferable in terms of environment, cost, and handling, and hydrosulfite is particularly preferable in terms of cost because hydrosulfite is effective in a small amount. Used.
 なお、本発明の水酸化マグネシウム組成物の製造方法において、塩化鉄溶液及び/又は塩化マンガン溶液と硫黄化合物を予め混合した溶液は、水酸化マグネシウム粒子又は表面処理水酸化マグネシウム粒子の何れに添加してもよく、また、表面処理時に表面処理剤とともに添加することも可能である。
 更に、水酸化マグネシウム粒子又は表面処理水酸化マグネシウム粒子が乾粉又は懸濁液の状態にある時に添加しても、粒子の色相と樹脂に配合された場合の色相、並びに難燃性向上に効果を示す。
 しかし、水酸化マグネシウム粒子を湿式で表面処理を行なった後に、塩化鉄溶液及び/又は塩化マンガン溶液に硫黄化合物を予め混合した溶液を添加し乾燥すると、ハンドリングの点で有利であり、樹脂に配合された場合に、難燃性や色相の点で良好である。
 これらのメカニズムについては明らかでないが、湿式で表面処理を行った後に鉄及び/又はマンガンを添加することにより、水酸化マグネシウム粒子又は表面処理水酸化マグネシウム粒子へのそれらの担持の均一性が一層向上したことによるものと推測される。
In the method for producing a magnesium hydroxide composition of the present invention, an iron chloride solution and / or a solution prepared by previously mixing a manganese chloride solution and a sulfur compound is added to either magnesium hydroxide particles or surface-treated magnesium hydroxide particles. In addition, it may be added together with the surface treatment agent during the surface treatment.
Furthermore, even when magnesium hydroxide particles or surface-treated magnesium hydroxide particles are in a dry powder or suspension state, they are effective in improving the hue of the particles and the hue when blended with the resin, and flame retardancy. Show.
However, it is advantageous in terms of handling when magnesium hydroxide particles are subjected to wet surface treatment and then a solution in which a sulfur compound is mixed in advance in an iron chloride solution and / or a manganese chloride solution is dried. When used, it is good in terms of flame retardancy and hue.
Although it is not clear about these mechanisms, the uniformity of their loading on magnesium hydroxide particles or surface-treated magnesium hydroxide particles is further improved by adding iron and / or manganese after surface treatment in a wet manner. It is estimated that
 水酸化マグネシウム組成物が含有する鉄とマンガンの合計量Mを水酸化マグネシウム粒子に対し10~1000ppmに調整するには、塩化鉄(II)ないし塩化鉄(III)または塩化マンガンの鉄またはマンガンを、上記範囲となるように水に溶解して調整すればよい。 In order to adjust the total amount M of iron and manganese contained in the magnesium hydroxide composition to 10 to 1000 ppm based on the magnesium hydroxide particles, iron (II) chloride, iron (III) chloride or manganese chloride iron or manganese is added. It may be adjusted by dissolving in water so as to be in the above range.
 また、水酸化マグネシウム組成物が含有する硫黄の量Sを水酸化マグネシウム粒子に対し10~1800ppmに調整するには、苦汁中の硫酸イオンを利用する場合は、苦汁中の硫酸イオン量を求めた後に必要量以外の硫酸イオンを塩化カルシウムや塩化バリウムを加えて硫酸カルシウムや硫酸バリウムとして析出させて除去すればよい。また、硫黄化合物を使用する場合は、塩化鉄または塩化マンガンを溶解した水に、使用する硫黄化合物の硫黄分を上述の範囲で溶解して調整すればよい。 Further, in order to adjust the amount S of sulfur contained in the magnesium hydroxide composition to 10 to 1800 ppm with respect to the magnesium hydroxide particles, when using sulfate ions in bitter juice, the amount of sulfate ions in bitter juice was determined. Later, sulfate ions other than the required amount may be removed by adding calcium chloride or barium chloride to precipitate calcium sulfate or barium sulfate. Moreover, when using a sulfur compound, what is necessary is just to melt | dissolve and adjust the sulfur content of the sulfur compound to be used in the water which melt | dissolved iron chloride or manganese chloride in the above-mentioned range.
 水酸化マグネシウム組成物の平均粒子径Dp50を0.5~2.0μmの範囲に調整するには、混合する塩化マグネシウム溶液中のマグネシウムと水酸化物溶液中の水酸基のモル比を1:2~2:3、両液の液温を20℃±10℃、攪拌しつつ塩化マグネシウム溶液に1~15分以内で水酸化物溶液を滴下し、更にオートクレーブで4時間以内に120℃以上に昇温させ、その温度で1時間以上保持することが好ましい。それらの条件は、相互に影響することが判明しており、例えば、マグネシウムと水酸基のモル比が1:2または2:3に近づくとDp50は大きくなり、2.0μmに近くなる傾向がある。両液の液温は10℃または30℃に近づくとDp50は大きくなり2.0μmに近くなる傾向がある。攪拌は液量によって適宜選択すべきであるが、攪拌力が強すぎても弱すぎてもDp50が大きくなり、2.0μmに近くなる傾向がある。オートクレーブでの昇温について、120℃以上に到達するまでの時間が短いとDp50は小さくなり0.5μmに近くなる傾向があり、4時間に近いとDp50は大きくなり、2.0μmに近くなる傾向がある。オートクレーブでの120℃以上での保持時間は、短いとDp50が大きくなる傾向があり、1時間未満であるとDp50は2.0μmを超え、保持時間が長くなると粒径も小さくなる傾向があるが、8時間以上保持してもDp50に大きな変動は見られない。 In order to adjust the average particle diameter Dp 50 of the magnesium hydroxide composition to a range of 0.5 to 2.0 μm, the molar ratio of magnesium in the magnesium chloride solution to be mixed to the hydroxyl group in the hydroxide solution is 1: 2. ~ 2: 3, the temperature of both liquids is 20 ° C ± 10 ° C, and the hydroxide solution is added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring, and then the temperature rises to 120 ° C or higher within 4 hours by autoclave. It is preferable to warm and hold at that temperature for 1 hour or longer. These conditions have been found to affect each other. For example, when the molar ratio of magnesium to hydroxyl group approaches 1: 2 or 2: 3, Dp 50 tends to increase and tends to approach 2.0 μm. . When the liquid temperature of both liquids approaches 10 ° C. or 30 ° C., Dp 50 increases and tends to approach 2.0 μm. Stirring should be appropriately selected depending on the amount of liquid, but if the stirring force is too strong or too weak, Dp 50 tends to increase and approach 2.0 μm. Regarding the temperature rise in the autoclave, when the time to reach 120 ° C. or higher is short, Dp 50 tends to decrease and approaches 0.5 μm, and when close to 4 hours, Dp 50 increases and is close to 2.0 μm. Tend to be. When the retention time at 120 ° C. or higher in the autoclave is short, Dp 50 tends to increase, and when it is less than 1 hour, Dp 50 exceeds 2.0 μm, and when the retention time increases, the particle size tends to decrease. Although there is no significant change in Dp 50 even after holding for 8 hours or more.
 水酸化マグネシウム組成物の最大粒子径DMax を6.5μm以下に調整するには、上記平均粒子径Dp50の場合と同様、混合する塩化マグネシウム溶液中のマグネシウムと水酸化物溶液中の水酸基のモル比を1:2~2:3とし、両液の液温を20℃±10℃とし、攪拌しつつ塩化マグネシウム溶液に1~15分以内で水酸化物溶液を滴下し、更にオートクレーブで4時間以内に120℃以上に昇温させ、その温度で1時間以上保持することが好ましい。それらの条件は、相互に影響することが判明しており、例えば、マグネシウムと水酸基のモル比が1:2または2:3に近づくとDMax は大きくなリ6.5μmに近くなる傾向がある。両液の液温は10℃または30℃に近づくとDMax は大きくなり6.5μmに近くなる傾向がある。攪拌は液量によって適宜、選択すべきであるが、攪拌力が強すぎても弱すぎてもDMax は大きくなり6.5μmに近くなる傾向がある。オートクレーブでの昇温について、120℃以上に到達するまでの時間が短いとDMax は小さくなり、4時間に近づくとDMax は大きくなり6.5μmに近くなる傾向がある。オートクレーブでの120℃以上での保持時間は、短いとDMax が大きくなる傾向があり、1時間未満であるとDMax は6.5μmを超えるが、保持時間を長くするとDMax が小さくなる傾向がある。 In order to adjust the maximum particle diameter D Max of the magnesium hydroxide composition to 6.5 μm or less, the magnesium in the magnesium chloride solution to be mixed and the hydroxyl groups in the hydroxide solution are mixed as in the case of the average particle diameter Dp 50 . The molar ratio was 1: 2 to 2: 3, the temperature of both solutions was 20 ° C. ± 10 ° C., and the hydroxide solution was added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring. It is preferable that the temperature is raised to 120 ° C. or higher within the time and maintained at that temperature for 1 hour or longer. These conditions have been found to affect each other. For example, when the molar ratio of magnesium to hydroxyl group approaches 1: 2 or 2: 3, D Max tends to be close to a large value of 6.5 μm. . When the liquid temperature of both liquids approaches 10 ° C. or 30 ° C., D Max increases and tends to be close to 6.5 μm. Stirring should be appropriately selected depending on the amount of the liquid, but D Max tends to increase and approach 6.5 μm even if the stirring force is too strong or too weak. For heating in an autoclave, D Max decreases the short time to reach the above 120 ° C., the D Max approaches the 4 hours tend to become closer to the larger becomes 6.5 [mu] m. When the holding time at 120 ° C. or higher in the autoclave is short, D Max tends to increase. When it is less than 1 hour, D Max exceeds 6.5 μm, but when the holding time is increased, D Max tends to decrease. There is.
 水酸化マグネシウム粒子のBET比表面積Swを1.0~10m/gに調整するには、上記平均粒子径Dp50、最大粒子径DMax と同様、混合する塩化マグネシウム溶液中のマグネシウムと水酸化物溶液中の水酸基のモル比を1:2~2:3、両液の液温を20℃±10℃、攪拌しつつ塩化マグネシウム溶液に1~15分以内で水酸化物溶液を滴下し、更にオートクレーブで4時間以内に120℃以上に昇温させ、その温度で1時間以上保持することが好ましい。それらの条件は、相互に影響することが判明しており、例えば、マグネシウムと水酸基のモル比が1:2に近づくとSwは大きくなり10m/gに近くなり、2:3に近づくとS wは小さくなり1m/gに近づく傾向がある。両液の液温は10℃に近づくとSwは大きくなり10m/gに近くなり、30℃に近づくほどSwは小さくなり1m/gに近づく傾向がある。攪拌は液量によって適宜、選択すべきであるが、攪拌力が強すぎても弱すぎてもSwは大きくなり10 m/gに近づく傾向がある。オートクレーブでの昇温について、120℃以上に到達するまでの時間が短いとSwは小さくなり、4時間に近づくとSwは10 m/gに近づく傾向がある。オートクレーブでの120℃以上での保持時間は、短いとSwが大きくなる傾向があり、1時間未満であるとSwは10 m/gを超える。保持時間を長くするとSwが小さくなる傾向があるが、8時間以上長くしてもSwに大きな変化は見られない。 In order to adjust the BET specific surface area Sw of the magnesium hydroxide particles to 1.0 to 10 m 2 / g, similarly to the average particle diameter Dp 50 and the maximum particle diameter D Max , magnesium and hydroxide in the mixed magnesium chloride solution are mixed. The hydroxide solution was added dropwise to the magnesium chloride solution within 1 to 15 minutes while stirring, with the molar ratio of hydroxyl groups in the product solution being 1: 2 to 2: 3, the liquid temperature of both solutions being 20 ° C. ± 10 ° C., Furthermore, it is preferable that the temperature is raised to 120 ° C. or higher within 4 hours in an autoclave and maintained at that temperature for 1 hour or longer. It has been found that these conditions influence each other. For example, when the molar ratio of magnesium and hydroxyl group approaches 1: 2, Sw increases and approaches 10 m 2 / g, and when approaching 2: 3, S increases. w tends to decrease and approach 1 m 2 / g. When the liquid temperature of both liquids approaches 10 ° C., Sw increases and approaches 10 m 2 / g, and as it approaches 30 ° C., Sw decreases and tends to approach 1 m 2 / g. Stirring should be appropriately selected depending on the amount of liquid, but if the stirring force is too strong or too weak, the Sw will increase and tend to approach 10 m 2 / g. Regarding the temperature rise in the autoclave, if the time to reach 120 ° C. or higher is short, Sw becomes small, and if it approaches 4 hours, Sw tends to approach 10 m 2 / g. If the holding time at 120 ° C. or higher in the autoclave is short, Sw tends to increase, and if it is less than 1 hour, Sw exceeds 10 m 2 / g. If the holding time is lengthened, Sw tends to be small, but even if it is lengthened for 8 hours or more, there is no significant change in Sw.
 表面処理又は未処理の、塩化鉄及び/又は塩化マンガンと硫黄化合物を添加した水酸化マグネシウム組成物の懸濁液は、必要により、例えば、水洗、脱水、造粒、乾燥、粉砕、分級等の手段を適宜選択することにより、水酸化マグネシウム組成物としての最終製品形態とされる。 A surface-treated or untreated suspension of magnesium hydroxide composition to which iron chloride and / or manganese chloride and a sulfur compound are added may be washed, dehydrated, granulated, dried, pulverized, classified, etc., if necessary. By appropriately selecting the means, a final product form as a magnesium hydroxide composition is obtained.
 上記の如くして得られる本発明の水酸化マグネシウム組成物は各種樹脂に配合され樹脂組成物とされる。本発明の水酸化マグネシウム組成物は、樹脂との合計重量に対して、好ましくは15~80wt%、より好ましくは20~70wt%の割合で配合される。
 本発明の樹脂組成物に使用される樹脂は、通常、成形品として使用されるものであればよく、例えば熱可塑性樹脂、熱硬化性樹脂あるいは合成ゴム等が挙げられる。
The magnesium hydroxide composition of the present invention obtained as described above is blended with various resins to form a resin composition. The magnesium hydroxide composition of the present invention is blended in a proportion of preferably 15 to 80 wt%, more preferably 20 to 70 wt%, based on the total weight with the resin.
The resin used in the resin composition of the present invention may be any resin as long as it is usually used as a molded product, and examples thereof include thermoplastic resins, thermosetting resins, and synthetic rubbers.
 熱可塑性樹脂としては、ポリエチレン、ポリプリピレン、エチレン/プロピレン共重合体、ポリブテン、ポリ-4-メチルペンテン-1等の如きC2~C8のオレフィン(αオレフィン)の重合体もしくは共重合体のようなポリオレフィン系樹脂や、オレフィンとジエンの共重合体、エチレン-アクリレート共重合体、ポリスチレン、ABS樹脂、AAS樹脂、AS樹脂、MBS樹脂、エチレン-塩化ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル-酢酸ビニル共重合体、ポリ塩化ビニリデン、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、塩化ビニル-プロピレン共重合体、ポリ酢酸ビニル、フェノキシ樹脂、ポリアセタール、ポリアミド、ポリイミド、ポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びメタクリロ系の樹脂等が挙げられる。
 これらの熱可塑性樹脂のうち、本発明の樹脂組成物に好ましい例としてポリオレフィン系樹脂又はその共重合体が挙げられ、なかでもEEA樹脂やEVA樹脂といった各種汎用電線、ケーブルに用いられている樹脂に用いられた場合に、色相、難燃性に加えて機械的強度が付与され好適である。
Thermoplastic resins include polyolefins such as polymers or copolymers of C2 to C8 olefins (α-olefins) such as polyethylene, polypropylene, ethylene / propylene copolymers, polybutene, poly-4-methylpentene-1, etc. Resin, olefin and diene copolymer, ethylene-acrylate copolymer, polystyrene, ABS resin, AAS resin, AS resin, MBS resin, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, ethylene -Vinyl chloride-vinyl acetate copolymer, polyvinylidene chloride, polyvinyl chloride, chlorinated polyethylene, chlorinated polypropylene, vinyl chloride-propylene copolymer, polyvinyl acetate, phenoxy resin, polyacetal, polyamide, polyimide, polycarbonate, polysulfone , Poly E two alkylene oxide, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, and methacrylonitrile based resins.
Among these thermoplastic resins, preferred examples of the resin composition of the present invention include polyolefin resins or copolymers thereof. Among them, resins used for various general-purpose electric wires and cables such as EEA resins and EVA resins. When used, it is suitable because it provides mechanical strength in addition to hue and flame retardancy.
 熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂及び尿素樹脂等が挙げられる。また、合成ゴムとしては、EPDM、ブチルゴム、イソプレンゴム、SBR、NBR、クロロスルホン化ポリエチレン、NIR、ウレタンゴム、ブタジエンゴム、アクリルゴム、シリコーンゴム及びフッ素ゴム等が挙げられる。 Examples of the thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, an unsaturated polyester resin, an alkyd resin, and a urea resin. Examples of the synthetic rubber include EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, butadiene rubber, acrylic rubber, silicone rubber, and fluorine rubber.
 本発明の樹脂組成物は優れた難燃性を有するが、更に難燃助剤を配合すると本発明の水酸化マグネシウム組成物粒子の配合割合を少なくすることが出来、また難燃効果を更に向上させることが出来る。
 難燃助剤としては、赤燐、炭素粉末あるいはこれらの混合物が好ましい。赤燐としては、難燃剤用の通常の赤燐の他に、例えば熱硬化性樹脂、ポリオレフィン、カルボン酸重合体、酸化チタンあるいはチタンアルミ縮合物等で表面被覆した赤燐が使用できる。炭素粉末としては、カーボンブラック、活性炭あるいは黒鉛が挙げられ、カーボンブラックはオイルファーネス法、チャンネル法、サーマル法又はアセチレン法の何れの方法で調整されたものであってもよい。
 難燃助剤を配合する場合、樹脂組成物全体に対して、好ましくは0.5~20wt%、より好ましくは1~15wt%の範囲で添加される。
Although the resin composition of the present invention has excellent flame retardancy, the blending ratio of the magnesium hydroxide composition particles of the present invention can be reduced by further adding a flame retardant aid, and the flame retardant effect is further improved. It can be made.
As the flame retardant aid, red phosphorus, carbon powder or a mixture thereof is preferable. As red phosphorus, for example, red phosphorus whose surface is coated with a thermosetting resin, polyolefin, carboxylic acid polymer, titanium oxide, titanium aluminum condensate, or the like can be used in addition to normal red phosphorus for a flame retardant. Examples of the carbon powder include carbon black, activated carbon, and graphite. The carbon black may be prepared by any method of an oil furnace method, a channel method, a thermal method, or an acetylene method.
When the flame retardant aid is blended, it is preferably added in the range of 0.5 to 20 wt%, more preferably 1 to 15 wt% with respect to the entire resin composition.
 本発明の樹脂組成物には、本発明の効能を損なわない限り、上記成分以外に他の添加剤を配合することが出来る。このような添加剤としては、例えば酸化防止剤、帯電防止剤、顔料、発泡剤、可塑剤、充填剤、補強剤、架橋剤、光安定剤、紫外線吸収剤、滑剤等が挙げられる。また目的によっては、更なる難燃性向上を目的として、臭素系や燐系、窒素系や水酸化マグネシウム粒子以外の無機金属系等の難燃剤と併用することも可能である。 In the resin composition of the present invention, other additives can be blended in addition to the above components as long as the efficacy of the present invention is not impaired. Examples of such additives include antioxidants, antistatic agents, pigments, foaming agents, plasticizers, fillers, reinforcing agents, crosslinking agents, light stabilizers, ultraviolet absorbers, and lubricants. Depending on the purpose, for the purpose of further improving the flame retardancy, it can be used in combination with a flame retardant such as bromine, phosphorus, nitrogen or inorganic metal other than magnesium hydroxide particles.
 本発明の樹脂組成物は各種の成形方法により成形品とされる。
 本発明の成形体は、上記した如く得られる樹脂組成物を、例えば押出し成形、射出成形、カレンダー成形といった公知の方法により得ることが出来る。
 本発明の成形体によれば、本発明の水酸化マグネシウム組成物が配合されているため、難燃性及びその継続性に優れ、更に成形品の外観にも優れている。この様な成形体の用途としては、先述の電線やケーブルといった電線被覆用、家電製品のハウジング用、建築材料用の壁紙、発泡性断熱材、マットレス、電気、電子部品用のコネクター接続部品、半導体の封止材、プリプレグ、多層回路基板、あるいは回路基板用積層板等が挙げられる。
The resin composition of the present invention is formed into a molded product by various molding methods.
The molded article of the present invention can be obtained from the resin composition obtained as described above by a known method such as extrusion molding, injection molding or calendar molding.
According to the molded article of the present invention, since the magnesium hydroxide composition of the present invention is blended, the flame retardancy and its continuity are excellent, and the appearance of the molded article is also excellent. Applications of such molded products include wire coverings such as the above-mentioned electric wires and cables, housings for home appliances, wallpaper for building materials, foam insulation, mattresses, connector connection parts for electrical and electronic components, semiconductors Sealing material, prepreg, multilayer circuit board, laminated board for circuit board, and the like.
 以下、本発明を実施例及び比較例に基づいて詳細に説明する。ただし、本発明はこれらの例によって何ら限定されるものではない。
 なお、本発明の実施例及び比較例において、水酸化マグネシウム組成物の平均粒径及び最大粒径は、Leeds&Northrup社製マイクロトラックFRAレーザー回折散乱式粒度分布計で測定し、BET比表面積は、ユアサアイオニクス(株)製NOVA2000で測定、鉄とマンガンの含有量は、島津製作所(株)製原子吸光分光光度計AA6700Fで測定、硫黄は、LECO社製炭素、硫黄分析装置CS-444で測定、白色度は、KETT社製粉体白色度計C-100-3で測定、DOP濡色は、日本電色工業(株)製測色色差計ZE2000で測定した。
Hereinafter, the present invention will be described in detail based on examples and comparative examples. However, the present invention is not limited to these examples.
In the examples and comparative examples of the present invention, the average particle size and the maximum particle size of the magnesium hydroxide composition were measured with a Microtrac FRA laser diffraction scattering particle size distribution meter manufactured by Lees & Northrup, and the BET specific surface area was Measured with NOVA2000 manufactured by Ionics Co., Ltd. The iron and manganese contents were measured with an atomic absorption spectrophotometer AA6700F manufactured by Shimadzu Corporation. Sulfur was measured with carbon and sulfur analyzer CS-444 manufactured by LECO. The whiteness was measured with a powder whiteness meter C-100-3 manufactured by KETT, and the DOP wet color was measured with a colorimetric color difference meter ZE2000 manufactured by Nippon Denshoku Industries Co., Ltd.
 最初に、本発明の実施例及び比較例で水酸化マグネシウム粒子の原料として用いる塩化マグネシウム溶液について、以下に記載の方法で調整した。
 <塩化マグネシウム溶液1の調整>
 塩田で塩を採取した後のかん水を砂濾過と活性炭による吸着で異物とフミン質を除去して粗精製を行い、次に粗精製後のかん水が含有する硫酸イオンと等モルの塩化カルシウムをかん水に加えて、かん水中の硫酸イオンを硫酸カルシウムとして沈殿させ、濾過を行って硫酸カルシウムを除去し、塩化マグネシウムを主成分とする精製苦汁溶液を作成した。
 得られた精製苦汁溶液はボーメ比重1.33の塩化マグネシウム溶液で、塩化マグネシウムに対して2360ppmの硫黄を含有していた。
First, the magnesium chloride solution used as a raw material for the magnesium hydroxide particles in Examples and Comparative Examples of the present invention was prepared by the method described below.
<Preparation of magnesium chloride solution 1>
The salt water collected from the salt fields is roughly purified by removing foreign substances and humic substances by sand filtration and adsorption with activated carbon, and then the sulfate ion and equimolar calcium chloride contained in the brine after rough purification are brined. In addition to the above, sulfate ions in brine were precipitated as calcium sulfate and filtered to remove calcium sulfate, thereby producing a purified bitter solution containing magnesium chloride as a main component.
The obtained purified bitter solution was a magnesium chloride solution with a Baume specific gravity of 1.33 and contained 2360 ppm of sulfur with respect to magnesium chloride.
 <塩化マグネシウム溶液2の調整>
 塩田で塩を採取した後のかん水を砂濾過と活性炭による吸着で異物とフミン質を除去して粗精製を行い、次に粗精製後のかん水が含有する硫酸イオンと等モルの塩化バリウムをかん水に加えて、かん水中の硫酸イオンを硫酸バリウムとして沈殿させ、濾過を行って硫酸カルシウムを除去し、塩化マグネシウムを主成分とする精製苦汁溶液を作成した。
 得られた精製苦汁溶液はボーメ比重1.33の塩化マグネシウム溶液で、塩化マグネシウムに対して0.8ppmの硫黄を含有していた。
<Preparation of magnesium chloride solution 2>
The salt water collected from the salt fields is roughly purified by removing foreign substances and humic substances by sand filtration and adsorption with activated carbon, and then the sulfate ion and equimolar barium chloride contained in the brine after rough purification are brined. In addition to this, sulfate ions in the brine were precipitated as barium sulfate, filtered to remove calcium sulfate, and a purified bitter solution containing magnesium chloride as a main component was prepared.
The obtained purified bitter solution was a magnesium chloride solution with a Baume specific gravity of 1.33 and contained 0.8 ppm of sulfur with respect to magnesium chloride.
<水酸化物溶液の調整>
 石灰石を灯油焼成して生石灰とし、それを消化して得られる工業用石灰乳を篩等でコンタミネーションを除去し、その濃度を12wt%に調整した。得られた石灰乳は水酸化カルシウムからなる溶液で、工業用向けであることから価格が安価であるにも関わらず、灯油で焼成するため、無煙炭やコークスで焼成したものに比べて遥かに不純物が少ない。
<Preparation of hydroxide solution>
Limestone was calcined with kerosene to obtain quicklime, and industrial lime milk obtained by digesting it was removed with a sieve or the like to adjust its concentration to 12 wt%. The resulting lime milk is a solution made of calcium hydroxide, and is cheaper because it is for industrial use, but it is burned with kerosene, so it is far more impure than those burned with anthracite or coke. Less is.
実施例1
 塩化マグネシウム溶液1に残存する硫黄のモル数の90%に相当する塩化バリウムを、苦汁溶液に添加して硫酸バリウム析出させた後に濾過を行い、更に濃縮又は希釈を行いボーメ比重1.3の塩化マグネシウム溶液を調整した。
 得られた溶液を10Lのオートクレーブに5L仕込んで液温を20℃に調整し、液温を20℃に調整した濃度12wt%の石灰乳5Lを攪拌条件下で5分かけて投入し、塩化マグネシウムと水酸化カルシウムを反応させて水酸化マグネシウム粒子を生成し、更に石灰乳投入終了後から攪拌したままオートクレーブを加熱し、2時間半でオートクレーブ中の液温を160℃まで上昇させた後に4時間維持した。
 その後、自然放熱による冷却を行い、得られた水酸化マグネシウム粒子の反応懸濁液を遠心脱水機で脱水し、水道水で洗浄を行い、洗浄廃水の電気伝導度が水道水の電気伝導度より20μS/cmだけ高い水準まで下落した時点で洗浄を終了した。
 該水酸化マグネシウム粒子懸濁液中の水酸化マグネシウム粒子に対して0.5wt%に当るビニルトリメトキシシランを1wt%酢酸溶液に混合して溶解し、そのビニルトリエトキシラン-酢酸混合溶液を水酸化マグネシウム粒子懸濁液に添加して表面処理を行なった。
 更に、該水酸化マグネシウム粒子の懸濁液中の水酸化マグネシウム粒子に対して鉄分が210ppmに当る塩化鉄(III)を水酸化マグネシウム粒子懸濁液に添加し、十分に攪拌後、該懸濁液をスプレードライヤーで乾燥し水酸化マグネシウム組成物を得た。
 得られた水酸化マグネシウム組成物の作成条件及び諸物性を表1に示す。
Example 1
Barium chloride corresponding to 90% of the number of moles of sulfur remaining in the magnesium chloride solution 1 was added to the bitter solution to precipitate barium sulfate, followed by filtration and further concentration or dilution to obtain a chloride with a Baume specific gravity of 1.3. A magnesium solution was prepared.
5 L of the obtained solution was charged into a 10 L autoclave to adjust the liquid temperature to 20 ° C., and 5 L of lime milk having a concentration of 12 wt% adjusted to the liquid temperature of 20 ° C. was added over 5 minutes under stirring conditions. And calcium hydroxide are reacted to form magnesium hydroxide particles, and after the addition of lime milk, the autoclave is heated with stirring, and the liquid temperature in the autoclave is increased to 160 ° C. over 2 hours and 4 hours. Maintained.
After that, cooling by natural heat dissipation is performed, and the resulting reaction suspension of magnesium hydroxide particles is dehydrated with a centrifugal dehydrator, washed with tap water, and the electrical conductivity of the waste water is higher than the electrical conductivity of tap water. Washing was terminated when it dropped to a level as high as 20 μS / cm.
Vinyl trimethoxysilane equivalent to 0.5 wt% with respect to the magnesium hydroxide particles in the magnesium hydroxide particle suspension is mixed and dissolved in a 1 wt% acetic acid solution, and the vinyl triethoxylane-acetic acid mixed solution is dissolved in water. Surface treatment was performed by adding to the magnesium oxide particle suspension.
Further, iron (III) chloride whose iron content is 210 ppm with respect to the magnesium hydroxide particles in the magnesium hydroxide particle suspension is added to the magnesium hydroxide particle suspension, and after sufficient stirring, the suspension The liquid was dried with a spray dryer to obtain a magnesium hydroxide composition.
Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
実施例2~7
 表1に記載する条件に変更する以外は、実施例1と同様の方法で水酸化マグネシウム組成物を作成した。得られた水酸化マグネシウム組成物の作成条件及び諸物性を表1に示す。
 尚、実施例2では、鉄量が450ppmに相当する塩化鉄(III)とマンガン量が45ppmに相当する塩化マンガンを添加した。
Examples 2-7
A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the conditions described in Table 1 were changed. Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
In Example 2, iron (III) chloride corresponding to an iron content of 450 ppm and manganese chloride corresponding to a manganese content of 45 ppm were added.
実施例8
 オートクレーブ中の塩化マグネシウム溶液に投入する石灰乳の投入時間を12分に変更する以外は、実施例1と同様の方法で水酸化マグネシウム組成物を作成した。得られた水酸化マグネシウム組成物の作成条件及び諸物性を表1に示す。
Example 8
A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the charging time of lime milk charged into the magnesium chloride solution in the autoclave was changed to 12 minutes. Table 1 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例9
 塩化マグネシウム溶液2を希釈してボーメ比重1.3の塩化マグネシウム溶液を調整し、得られた溶液を10Lのオートクレーブに5L仕込んで液温を20℃に調整し、液温を20℃に調整した濃度12wt%の石灰乳5L を攪拌条件下で5分かけて投入し、塩化マグネシウムと水酸化カルシウムを反応させて水酸化マグネシウムを生成し、更に石灰乳投入終了後から攪拌したままオートクレーブを加熱し、2時間半でオートクレーブ中の液温を160℃まで上昇させた後に4時間維持した。
 その後、自然放熱による冷却を行い、得られた水酸化マグネシウム粒子の反応懸濁液を遠心脱水機で脱水し、脱水後に水道水で洗浄を行い、洗浄排水の電気伝導度が水道水の電気伝導度より20μS/cm高い水準まで下落した時点で終了した。
 該水酸化マグネシウム粒子懸濁液中の水酸化マグネシウム粒子に対して0.5wt%に当るビニルトリメトキシシランを1wt%酢酸溶液に混合して溶解し、そのビニルトリエトキシラン-酢酸混合溶液を水酸化マグネシウム懸濁液に添加して表面処理を行なった。
 更に、表面処理された水酸化マグネシウム粒子懸濁液中の水酸化マグネシウム粒子に対して鉄分が210ppmに当る塩化鉄(III)と、塩化鉄(III)に対して2.2倍のモル数に当る硫黄を含有するハイドロサルファイトを100gの水に溶解させた後、水酸化マグネシウム粒子懸濁液に添加し、十分に攪拌後、該懸濁液をスプレードライヤーで乾燥し、水酸化マグネシウム組成物を得た。
 得られた水酸化マグネシウム組成物の作成条件及び諸物性を表2に示す。
Example 9
The magnesium chloride solution 2 was diluted to prepare a magnesium chloride solution having a Baume specific gravity of 1.3, and 5 L of the obtained solution was charged into a 10 L autoclave to adjust the liquid temperature to 20 ° C., and the liquid temperature was adjusted to 20 ° C. Add 5 liters of lime milk with a concentration of 12 wt% over 5 minutes under stirring conditions, react magnesium chloride with calcium hydroxide to produce magnesium hydroxide, and heat the autoclave while stirring after the lime milk is charged. The liquid temperature in the autoclave was raised to 160 ° C. in 2.5 hours and then maintained for 4 hours.
Then, cooling by natural heat dissipation is performed, and the resulting magnesium hydroxide particle reaction suspension is dehydrated with a centrifugal dehydrator. After dehydration, it is washed with tap water. The test was terminated when the pressure dropped to a level 20 μS / cm higher than the degree.
Vinyl trimethoxysilane equivalent to 0.5 wt% with respect to the magnesium hydroxide particles in the magnesium hydroxide particle suspension is mixed and dissolved in a 1 wt% acetic acid solution, and the vinyl triethoxylane-acetic acid mixed solution is dissolved in water. Surface treatment was performed by adding to the magnesium oxide suspension.
Further, iron (III) chloride whose iron content is 210 ppm with respect to the magnesium hydroxide particles in the surface-treated magnesium hydroxide particle suspension is 2.2 times the number of moles of iron (III) chloride. The hydrosulfite containing sulfur is dissolved in 100 g of water, added to the magnesium hydroxide particle suspension, and after sufficient stirring, the suspension is dried with a spray drier to obtain a magnesium hydroxide composition. Got.
Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
実施例10~15
 表2に記載する条件に変更する以外は、実施例9と同様の方法で水酸化マグネシウム組成物を作成した。得られた水酸化マグネシウム組成物の作成条件及び諸物性を表2に示す。
Examples 10-15
A magnesium hydroxide composition was prepared in the same manner as in Example 9 except that the conditions described in Table 2 were changed. Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
実施例16
 オートクレープ中の水酸化マグネシウム溶液に投入する石灰乳の投入時間を12分に変更する以外は、実施例1と同様の方法で水酸化マグネシウム組成物を作成した。
 得られた水酸化マグネシウム組成物の作成条件及び諸物性を表2に示す。
Example 16
A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the charging time of the lime milk charged into the magnesium hydroxide solution in the autoclave was changed to 12 minutes.
Table 2 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
比較例1~7
 表3に記載する条件に変更する以外は、実施例1と同様の方法で水酸化マグネシウム組成物を作成した。得られた水酸化マグネシウム組成物の作成条件及び諸物性を表3に示す。
Comparative Examples 1-7
A magnesium hydroxide composition was prepared in the same manner as in Example 1 except that the conditions described in Table 3 were changed. Table 3 shows the preparation conditions and various physical properties of the obtained magnesium hydroxide composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例17~32、比較例8~14
 実施例1~16及び比較例1~7で得られた水酸化マグネシウム組成物125部を、三井、デュポンポリケミカル(株)製エチレン-エチルアクリレート樹脂(商品名エバフレックス-EEA)100重量部に、滑剤としてステアリン酸カルシウム2部、安定剤として旭電化工業(株)製アデカスタブAO-60を0.2重量部配合し、(株)東洋精機製作所製ラボブラストミル4C150-01と二軸セグメント押出機2D25Wで混練して樹脂組成物を得た。
 得られた樹脂組成物を150℃でプレス成形を行い、3mm厚のシートを作成した。
Examples 17 to 32, Comparative Examples 8 to 14
125 parts of the magnesium hydroxide compositions obtained in Examples 1 to 16 and Comparative Examples 1 to 7 were added to 100 parts by weight of ethylene-ethyl acrylate resin (trade name EVAFLEX-EEA) manufactured by Mitsui, DuPont Polychemical Co., Ltd. 2 parts calcium stearate as a lubricant, 0.2 part by weight of Adeka Stub AO-60 manufactured by Asahi Denka Kogyo Co., Ltd. as a stabilizer, and a laboratory blast mill 4C150-01 manufactured by Toyo Seiki Seisakusho Co., Ltd. The resin composition was obtained by kneading with 2D25W.
The obtained resin composition was press-molded at 150 ° C. to prepare a 3 mm thick sheet.
<樹脂成形体の色相評価>
 得られたシートを縦横40mmの平板に成形し、白色度Wを測定し、ハンターLab表色系のL値並びにb値で表した。
<樹脂成形体の難燃性評価>
 酸素指数法による燃焼試験用の成形体として、縦150mm×横6.5mmのテストピースを作成し、JISK7201に準拠して酸素指数を測定した。また、成形体の酸素指数測定中に、チャーの生成度合いを目視により観察した。更に、難燃性の持続性について、ASTM E1354に準拠し、コーンカロリーメーターを用いて熱発生速度を求め、着火から最高発熱量(kw/m)に達するまでの時間T1と、最高発熱量を示した後に発熱量が最高発熱量の30%に低下するまでの時間T2の比(T2/T1)を求めた。
<樹脂成形体の耐熱劣化性評価>
 成形体の耐熱劣化性について、150℃ダンパー開度50%にしたギアオーブン(タバイエスペック社製ギアオーブンGPHH-100)内に、作成したシートを縦50mm幅25mmに切り取って回転リングに吊るし、試験片表面に粒子の析出により白化するまでの時間と重量の10%が減量するまでの時間を求めた。
<樹脂成形体の強度評価>
 作成したシートについて、JISK6251のゴム引張特性に準拠して引張試験を行い、その降伏点、最大引張強度、並びに破断時伸びを求めた。なお、該試験に使用したダンベルは、JISK6251に従いダンベル状1号形とした。
<Hue evaluation of molded resin>
The obtained sheet was molded into a flat plate of 40 mm in length and width, the whiteness W was measured, and represented by L value and b value of Hunter Lab color system.
<Flame retardance evaluation of resin moldings>
A test piece having a length of 150 mm and a width of 6.5 mm was prepared as a molded body for a combustion test by the oxygen index method, and the oxygen index was measured in accordance with JISK7201. Further, during the measurement of the oxygen index of the compact, the degree of char formation was visually observed. Furthermore, regarding the flame retardancy, in accordance with ASTM E1354, the heat generation rate is obtained using a corn calorimeter, the time T1 from the ignition until reaching the maximum calorific value (kw / m 2 ), and the maximum calorific value The ratio (T2 / T1) of time T2 until the calorific value decreased to 30% of the maximum calorific value after showing
<Evaluation of heat resistance of resin moldings>
The heat-resistant deterioration of the molded body was tested by cutting the prepared sheet into a 50 mm length and 25 mm width and hanging it on a rotating ring in a gear oven with a 50 ° C. damper opening at 50 ° C. The time until whitening due to precipitation of particles on one surface and the time until 10% of the weight was reduced were determined.
<Strength evaluation of resin molding>
About the created sheet | seat, the tension test was done based on the rubber | gum tensile characteristic of JISK6251, and the yield point, the maximum tensile strength, and elongation at break were calculated | required. The dumbbell used in the test was dumbbell-shaped No. 1 according to JISK6251.
 実施例17~32及び比較例8~14の樹脂成形体の評価結果を各々表4~6に示す。 Tables 4 to 6 show the evaluation results of the resin moldings of Examples 17 to 32 and Comparative Examples 8 to 14, respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表1~6から明らかなように、実施例に代表される本発明の水酸化マグネシウム組成物は、色相、難燃性及びその持続性、耐熱劣化性及び強度をバランス良く備えた樹脂組成物及び成形体を提供することができる。 As is apparent from Tables 1 to 6, the magnesium hydroxide composition of the present invention represented by the examples is a resin composition having a good balance of hue, flame retardancy and durability, heat deterioration resistance, and strength. And a molded object can be provided.
 一方、比較例に代表されるように、本発明の要件を満足しない水酸化マグネシウム組成物は、色相、難燃性及びその持続性、強度をバランス良く備えた樹脂組成物及び成形体を提供することができない。
 具体的には、比較例1の水酸化マグネシウム組成物は鉄とマンガンの含有量が少ないため、該組成物を用いた比較例8の樹脂組成物は、チャーの生成が認められず、また持続性にも劣っている。
On the other hand, as represented by a comparative example, a magnesium hydroxide composition that does not satisfy the requirements of the present invention provides a resin composition and a molded body having a good balance of hue, flame retardancy and its sustainability, and strength. I can't.
Specifically, since the magnesium hydroxide composition of Comparative Example 1 has a low content of iron and manganese, the resin composition of Comparative Example 8 using the composition shows no char formation and persistence. It is inferior in nature.
 また、比較例2の水酸化マグネシウム組成物は鉄とマンガンの含有量が多いため、該組成物を用いた比較例9の樹脂組成物は、色相のL値、b値に劣り、また耐熱劣化性(10%減量までの時間)においてもやや劣っている。 In addition, since the magnesium hydroxide composition of Comparative Example 2 has a high content of iron and manganese, the resin composition of Comparative Example 9 using the composition is inferior in the L value and b value of the hue, and also deteriorated in heat resistance. Slightly inferior in sex (time to 10% weight loss).
 また、比較例3の水酸化マグネシウム組成物は硫黄の含有量が少ないため、該組成物を用いた比較例10の樹脂組成物は、耐熱劣化性(10%減量までの時間)に劣っている。  Further, since the magnesium hydroxide composition of Comparative Example 3 has a low sulfur content, the resin composition of Comparative Example 10 using the composition is inferior in heat resistance deterioration (time to 10% weight loss). . *
 また、比較例4の水酸化マグネシウム組成物は硫黄の含有量が多いため、該組成物を用いた比較例11の樹脂組成物は、耐熱劣化性(10%減量までの時間)に劣り、また、色相のb値においてもやや劣っている。 Further, since the magnesium hydroxide composition of Comparative Example 4 has a high sulfur content, the resin composition of Comparative Example 11 using the composition is inferior in heat resistance deterioration (time to 10% weight loss). The b value of the hue is slightly inferior.
 また、比較例5の水酸化マグネシウム組成物は比率S/Mが小さいため、該組成物を用いた比較例12の樹脂組成物は、色相のb値及び耐熱劣化性(10%減量までの時間)に劣っている。 In addition, since the magnesium hydroxide composition of Comparative Example 5 has a small ratio S / M, the resin composition of Comparative Example 12 using the composition has a hue b value and heat deterioration resistance (time to 10% weight loss). ).
 また、比較例6の水酸化マグネシウム組成物は比率S/Mが大きいため、該組成物を用いた比較例13の樹脂組成物は、色相のL値において劣っている。 In addition, since the magnesium hydroxide composition of Comparative Example 6 has a large ratio S / M, the resin composition of Comparative Example 13 using the composition is inferior in the L value of the hue.
 また、比較例7の水酸化マグネシウム組成物は鉄とマンガンの含有量が少ないため、該組成物を用いた比較例14の樹脂組成物は、チャーの生成が認められず、また持続性にも劣っている。 In addition, since the magnesium hydroxide composition of Comparative Example 7 has a low content of iron and manganese, the resin composition of Comparative Example 14 using the composition does not show the formation of char and is also durable. Inferior.
 本発明の水酸化マグネシウム組成物は、鉄及び/又はマンガンの金属元素と硫黄とを含有することにより、比較的少量の配合で、従って、物性の低下を引き起こすことなく、難燃性とその持続性に優れるとともに、優れた耐熱劣化性及び色相を樹脂に付与することのできるので、特に電線やケーブル、電子部品等の厳しい条件で使用される成形品用の樹脂組成物の分野で頗る有用である。 The magnesium hydroxide composition of the present invention contains a metal element of iron and / or manganese and sulfur, so that the flame retardancy and its persistence can be achieved with a relatively small amount of blending, and without causing deterioration of physical properties. In addition to excellent heat resistance, it can impart excellent heat resistance and hue to the resin, so it is useful especially in the field of resin compositions for molded products used under severe conditions such as electric wires, cables and electronic parts. is there.

Claims (11)

  1.  鉄及び/又はマンガンと硫黄とを含む水酸化マグネシウム粒子からなり、原子吸光分光光度計で測定した鉄及び/又はマンガンの含有量Mが水酸化マグネシウム粒子に対し10~1000ppmの範囲であり、赤外線吸収法で測定した硫黄の含有量Sが水酸化マグネシウム粒子に対し10~1800ppmの範囲であり、鉄及び/又はマンガンの含有量Mに対する硫黄の含有量Sの比S/Mが1.0~1.8の範囲であることを特徴とする水酸化マグネシウム組成物。 It consists of magnesium hydroxide particles containing iron and / or manganese and sulfur, and the content M of iron and / or manganese as measured with an atomic absorption spectrophotometer is in the range of 10 to 1000 ppm with respect to the magnesium hydroxide particles. The sulfur content S measured by the absorption method is in the range of 10 to 1800 ppm with respect to the magnesium hydroxide particles, and the ratio S / M of the sulfur content S to the iron and / or manganese content M is 1.0 to A magnesium hydroxide composition having a range of 1.8.
  2.  白色度Wが98以上、L値が78以上、b値が3.5以下であることを特徴とする請求項1に記載の水酸化マグネシウム組成物。 The magnesium hydroxide composition according to claim 1, wherein the whiteness W is 98 or more, the L value is 78 or more, and the b value is 3.5 or less.
  3.  脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸、これらの金属塩、これらのアミン塩、これらのエステル、界面活性剤、カップリング剤、燐酸エステルから選択された少なくとも1種の表面処理剤で表面処理されていることを特徴とする請求項1又は2に記載の水酸化マグネシウム組成物。 At least one surface treatment selected from fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, resin acids, their metal salts, their amine salts, their esters, surfactants, coupling agents, and phosphate esters The magnesium hydroxide composition according to claim 1 or 2, which is surface-treated with an agent.
  4.  レーザー回折散乱式粒度分布計で測定した50%平均粒子径Dp50が0.5~2.0μm、レーザー回折散乱式粒度分布計で測定した最大粒子径DMax が6.5μm以下、窒素吸着法で測定したBET比表面積Swが1~10m/gであることを特徴とする請求項1~3のいずれか1項に記載の水酸化マグネシウム組成物。 50% average particle size Dp 50 measured with a laser diffraction / scattering particle size distribution meter is 0.5 to 2.0 μm, maximum particle size D Max measured with a laser diffraction / scattering particle size distribution meter is 6.5 μm or less, nitrogen adsorption method The magnesium hydroxide composition according to any one of claims 1 to 3, wherein the BET specific surface area Sw measured in (1) is 1 to 10 m 2 / g.
  5.  硫酸イオンを含む塩化マグネシウム溶液と水酸化物溶液を反応させて得られる水酸化マグネシウム粒子、又はそれを表面処理して得られる表面処理水酸化マグネシウム粒子に、塩化鉄溶液及び/又は塩化マンガン溶液を添加することを特徴とする水酸化マグネシウム組成物の製造方法。 An iron chloride solution and / or a manganese chloride solution is added to magnesium hydroxide particles obtained by reacting a magnesium chloride solution containing sulfate ions with a hydroxide solution, or surface-treated magnesium hydroxide particles obtained by surface-treating the magnesium hydroxide particles. The manufacturing method of the magnesium hydroxide composition characterized by adding.
  6.  塩化マグネシウム溶液と水酸化物溶液を反応させて得られる水酸化マグネシウム粒子、又はそれを表面処理した表面処理水酸化マグネシウム粒子に、塩化鉄溶液及び/又は塩化マンガン溶液と硫黄化合物を混合した溶液を添加することを特徴とする水酸化マグネシウム組成物の製造方法。 Magnesium hydroxide particles obtained by reacting a magnesium chloride solution and a hydroxide solution, or surface-treated magnesium hydroxide particles obtained by surface-treating it, a solution obtained by mixing an iron chloride solution and / or a manganese chloride solution and a sulfur compound. The manufacturing method of the magnesium hydroxide composition characterized by adding.
  7.  塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンの量が、水酸化マグネシウム粒子又はそれを表面処理してなる表面処理水酸化マグネシウム粒子に対して、10~1000ppmであることを特徴とする請求項5又は6に記載の水酸化マグネシウム組成物の製造方法。 The amount of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 10 to 1000 ppm with respect to the magnesium hydroxide particles or the surface-treated magnesium hydroxide particles obtained by surface-treating the particles. The manufacturing method of the magnesium hydroxide composition of Claim 5 or 6.
  8.  塩化鉄溶液及び/又は塩化マンガン溶液中の鉄及び/又はマンガンのモル数Mmに対する硫黄化合物中の硫黄のモル数Smの比Sm/Mmが、1.9~3.3であることを特徴とする請求項6に記載の水酸化マグネシウム組成物の製造方法。 The ratio Sm / Mm of the mole number Sm of sulfur in the sulfur compound to the mole number Mm of iron and / or manganese in the iron chloride solution and / or manganese chloride solution is 1.9 to 3.3, The manufacturing method of the magnesium hydroxide composition of Claim 6.
  9.  硫黄化合物が、チオ硫酸化合物、デクロリンから選択される少なくとも1種の還元剤であることを特徴とする請求項6又は8に記載の水酸化マグネシウム組成物の製造方法。 The method for producing a magnesium hydroxide composition according to claim 6 or 8, wherein the sulfur compound is at least one reducing agent selected from a thiosulfuric acid compound and dechlorin.
  10.  請求項1~4のいずれか1項に記載の水酸化マグネシウム組成物を樹脂に配合してなることを特徴とする樹脂組成物。 A resin composition comprising the resin and the magnesium hydroxide composition according to any one of claims 1 to 4.
  11.  請求項10記載の樹脂組成物を成形してなることを特徴とする成形品。 A molded product obtained by molding the resin composition according to claim 10.
PCT/JP2009/002615 2008-06-18 2009-06-10 Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof WO2009153936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010517697A JP5404621B2 (en) 2008-06-18 2009-06-10 Magnesium hydroxide composition, process for producing the same, resin composition and molded article thereof
CN200980132795.9A CN102123947B (en) 2008-06-18 2009-06-10 Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008158692 2008-06-18
JP2008-158692 2008-06-18

Publications (1)

Publication Number Publication Date
WO2009153936A1 true WO2009153936A1 (en) 2009-12-23

Family

ID=41433860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002615 WO2009153936A1 (en) 2008-06-18 2009-06-10 Magnesium hydrate composition and manufacturing method thereof, and resin composition and molded article thereof

Country Status (4)

Country Link
JP (1) JP5404621B2 (en)
CN (1) CN102123947B (en)
MY (1) MY148520A (en)
WO (1) WO2009153936A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076933A (en) * 2010-09-30 2012-04-19 Maruo Calcium Co Ltd Hydrotalcite composition, method for manufacturing the same, stabilizer containing the composition, resin composition, and molded body of the same
WO2012128340A1 (en) * 2011-03-24 2012-09-27 住友化学株式会社 Polysulfone composition and molding
CN103265826A (en) * 2013-06-13 2013-08-28 苏州新区华士达工程塑胶有限公司 Inorganic flame retardant surface modification method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101900307B1 (en) * 2016-12-06 2018-09-20 (주)포스코켐텍 Method for manufacturing magnesium hydroxide and magnesium hydroxide obtained therefrom
CN111624719A (en) * 2020-06-28 2020-09-04 四川天邑康和通信股份有限公司 Flame-retardant tight-sleeved round leading-in optical cable and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222007B2 (en) * 1983-04-12 1990-05-17 Ube Chem Ind
JPH03505863A (en) * 1989-05-05 1991-12-19 ファイトシェル・マグネジット ヴェルケ―アクチエン―ゲゼルシャフト Finely powdered magnesium hydroxide and its preparation method
JPH11181305A (en) * 1997-10-01 1999-07-06 Kyowa Chem Ind Co Ltd Flame-retardant resin composition
JP2002255544A (en) * 2001-02-23 2002-09-11 Ube Material Industries Ltd Highly pure, highly oriented magnesium hydroxide powder and method for producing the same
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638738B2 (en) * 1995-12-19 2005-04-13 協和化学工業株式会社 Heat-resistant deterioration resin composition and molded article comprising polyolefin or copolymer thereof
CN101041447A (en) * 2007-04-26 2007-09-26 青海中信国安科技发展有限公司 Method for producing flame retardant grade magnesium hydroxide by using magnesium oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222007B2 (en) * 1983-04-12 1990-05-17 Ube Chem Ind
JPH03505863A (en) * 1989-05-05 1991-12-19 ファイトシェル・マグネジット ヴェルケ―アクチエン―ゲゼルシャフト Finely powdered magnesium hydroxide and its preparation method
JPH11181305A (en) * 1997-10-01 1999-07-06 Kyowa Chem Ind Co Ltd Flame-retardant resin composition
JP2002255544A (en) * 2001-02-23 2002-09-11 Ube Material Industries Ltd Highly pure, highly oriented magnesium hydroxide powder and method for producing the same
JP2007254250A (en) * 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd Highly pure magnesium hydroxide powder and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076933A (en) * 2010-09-30 2012-04-19 Maruo Calcium Co Ltd Hydrotalcite composition, method for manufacturing the same, stabilizer containing the composition, resin composition, and molded body of the same
WO2012128340A1 (en) * 2011-03-24 2012-09-27 住友化学株式会社 Polysulfone composition and molding
JP2012201744A (en) * 2011-03-24 2012-10-22 Sumitomo Chemical Co Ltd Polysulfone composition and molded body
CN103265826A (en) * 2013-06-13 2013-08-28 苏州新区华士达工程塑胶有限公司 Inorganic flame retardant surface modification method

Also Published As

Publication number Publication date
CN102123947A (en) 2011-07-13
MY148520A (en) 2013-04-30
JPWO2009153936A1 (en) 2011-11-24
CN102123947B (en) 2014-02-26
JP5404621B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CA2193050C (en) Heat deterioration resistant flame retardant, resin composition and molded articles
EP0906933B1 (en) Flame retardant resin composition
JP4201276B2 (en) Method for producing magnesium hydroxide particles
JP5404621B2 (en) Magnesium hydroxide composition, process for producing the same, resin composition and molded article thereof
EP0952189B2 (en) Flame retardant with resistance to thermal deterioration, resin composition, and molded article
WO2016163562A1 (en) Magnesium hydroxide particles and method for producing same
EP1690832B1 (en) Resin composition containing calcium hydroxide and article formed therefrom
JP2018184305A (en) Hydrotalcite compound, resin composition comprising the hydrotalcite compound blended therein, and molded article thereof
JP4953421B2 (en) Method for producing composite magnesium hydroxide particles
JPH0688075A (en) Flame retardant and flame-retardant resin composition
JP6934656B2 (en) Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.
JPH05112669A (en) Flame retardant, its production and flame-retardant resin composition incorporated with the same
JP3272110B2 (en) Flame retardant resin composition
KR100495891B1 (en) Heat deterioration resistant flame retardant, resin composition and molded articles
CA2161502A1 (en) Resin composition and molded article
JP2001210151A (en) Heat degradation resistant flame-retardant insulated wire and cable
JP2003138263A (en) Flame retardant auxiliary, and flame retardant resin composition blended therewith
JPH07133370A (en) Flame-retardant resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132795.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517697

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4541/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766384

Country of ref document: EP

Kind code of ref document: A1