JP2018184305A - Hydrotalcite compound, resin composition comprising the hydrotalcite compound blended therein, and molded article thereof - Google Patents

Hydrotalcite compound, resin composition comprising the hydrotalcite compound blended therein, and molded article thereof Download PDF

Info

Publication number
JP2018184305A
JP2018184305A JP2017085131A JP2017085131A JP2018184305A JP 2018184305 A JP2018184305 A JP 2018184305A JP 2017085131 A JP2017085131 A JP 2017085131A JP 2017085131 A JP2017085131 A JP 2017085131A JP 2018184305 A JP2018184305 A JP 2018184305A
Authority
JP
Japan
Prior art keywords
acid
hydrotalcite compound
resin
hydrotalcite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017085131A
Other languages
Japanese (ja)
Other versions
JP7012334B2 (en
Inventor
清也 清水
Seiya Shimizu
清也 清水
卓哉 津田
Takuya Tsuda
卓哉 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd filed Critical Maruo Calcium Co Ltd
Priority to JP2017085131A priority Critical patent/JP7012334B2/en
Publication of JP2018184305A publication Critical patent/JP2018184305A/en
Application granted granted Critical
Publication of JP7012334B2 publication Critical patent/JP7012334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrotalcite compound capable of improving the thermal resistance of a resin, making the life of a resin longer, and making the recycling and reuse of a resin practicable without sacrificing economic efficiency, while maintaining characteristics of a resin such as excellent water resistance, acid resistance, alkali resistance, solvent resistance, flame retardancy, electric insulation, and moldability, as well as its desirable characteristics in the applications of a molded article thereof.SOLUTION: The hydrotalcite compound represented by the following chemical formula (a), is characterized in that the representative peak of the stretching vibration frequency of a hydroxy group measured by a Fourier transformation infrared spectrophotometer (FT-IR) is in a range of not lower than 3405 cmand not higher than 3435 cmand satisfies the particle size characteristics as defined by the following formulae (b) to (d): (a) MgAl(OH)A-mHO, (b) 5≤Sw≤15 (m/g), (c) 0.8≤Dp≤2.0 (μm), (d) D≤10.09 (μm). In the formulae, A represents a n-valent anion, x and m are each in a range of 0.267≤x≤0.290, and in a range of 0≤m<1 respectively, Sw represents a BET specific surface area (m/g), Dprepresents a 50% mean particle diameter (μm), and Drepresents the maximum particle diameter (μm).SELECTED DRAWING: None

Description

本発明は、構成する二つの金属元素の割合が特定範囲内にあり、かつその水酸基(OH)が特定のエネルギー状態を有し、更に特定の粉体物性を有するMg−Al型ハイドロタルサイト類化合物、それを配合してなる樹脂組成物及びその成形体に関する。   The present invention relates to Mg-Al type hydrotalcites in which the ratio of two constituent metal elements is within a specific range, the hydroxyl group (OH) has a specific energy state, and further has specific powder properties. The present invention relates to a compound, a resin composition containing the compound, and a molded product thereof.

ハイドロタルサイト類化合物は、通常、M2+ 1−x3+ (OH)n− x/n・mH2Oの組成式で表わされ、結晶構造が層状構造をしており、2価(M2+)および3価(M3+)の金属の複合水酸化物からなる基本層と、その基本層間にアニオン(An−)と水を有する中間層からなる。
基本層は2価の金属イオンの一部の代わりに3価の金属イオンが配位することで正に帯電しており、基本層の層間にアニオンがインターカレートすることで、トータルの電荷が中和している。
ハイドロタルサイト類化合物は、基本層の表層および層間にアニオンを吸着することが可能であり、その能力によって合成樹脂、合成ゴム、セラミック、塗料、紙、トナー等に配合され、ハロゲン捕捉剤や受酸剤、吸収剤としての効能を有する優れた安定剤として広範な用途に使用されている。
Hydrotalcite compounds usually represented by the composition formula M 2+ 1-x M 3+ x (OH) 2 A n- x / n · mH 2 O, the crystal structure has a layered structure, 2 It consists of a basic layer made of a composite hydroxide of a valence (M 2+ ) and a trivalent (M 3+ ) metal, and an intermediate layer having anions (A n− ) and water between the basic layers.
The base layer is positively charged by the coordination of trivalent metal ions instead of a part of the divalent metal ions, and the anion intercalates between the layers of the base layer, so that the total charge is reduced. Neutralized.
Hydrotalcite compounds can adsorb anions between the surface layer and the interlayer of the basic layer, and are blended in synthetic resins, synthetic rubbers, ceramics, paints, papers, toners, etc. depending on their ability, and are used as halogen scavengers and receivers. It is used in a wide range of applications as an excellent stabilizer having an effect as an acid agent and an absorbent.

ポリ塩化ビニル樹脂などの塩素含有樹脂は、耐水性、耐酸性、耐アルカリ性、耐溶剤性に優れ、難燃性と電気絶縁性を有し、熱を加えると軟化し、冷却すると硬化することから加工し易く、可塑剤の添加によって成形品自体の柔らかさの変更も可能であり、更に安価である等から用途は多岐にわたり、衣類、壁紙、バッグ、クッション材、断熱材、防音材、保護材、ロープ、電線被覆、網戸、包装材料、水道管、建築材料、農業用フィルム、消しゴムなど幅広く使用されている。   Chlorine-containing resins such as polyvinyl chloride resin are excellent in water resistance, acid resistance, alkali resistance and solvent resistance, have flame resistance and electrical insulation, soften when heated, and harden when cooled. It is easy to process and the softness of the molded product itself can be changed by adding a plasticizer. Furthermore, it is inexpensive and has a wide range of applications, including clothing, wallpaper, bags, cushion materials, heat insulating materials, soundproofing materials, and protective materials. , Ropes, wire coverings, screen doors, packaging materials, water pipes, building materials, agricultural films, erasers, etc. are widely used.

しかし、塩素含有樹脂は熱や紫外線等を受けると、分子鎖中の塩化水素が脱離して分子鎖中の炭素の二重結合を生成しやすく、その二重結合や脱離した塩化水素が更に分子鎖から塩化水素の脱離を誘引し、分子鎖中の炭素の二重結合の連続体を生み出し、着色や脆性を大きくして商品価値を低下させる問題を抱えており、成形加工時の加熱や長期間の使用に対する対策が必要である。
その対策として、以前から様々な安定剤を添加して塩素含有樹脂の安定性を改善、向上させることが行われており、鉛系、有機スズ系、金属石鹸系などの各種安定剤が提案、使用されている。
しかしながら、鉛系や有機スズ系安定剤は近年、鉛やスズ自体が人体や環境に有害であることから使用が避けられる方向にあり、環境への負荷が少ない金属石鹸系の亜鉛−カルシウム系や亜鉛−バリウム系安定剤への代替が進んでいる。
ところが、耐熱性の向上を目的に亜鉛金属石鹸系安定剤を多量に塩素含有樹脂に配合すると、亜鉛焼けと呼ばれる樹脂が黒化する現象や、亜鉛系安定剤が外部滑剤としても働くため混練を阻害する等の問題がある。
However, when a chlorine-containing resin is exposed to heat, ultraviolet rays, etc., hydrogen chloride in the molecular chain is likely to be eliminated and a carbon double bond in the molecular chain is likely to be generated. It has the problem of attracting the elimination of hydrogen chloride from the molecular chain, creating a continuum of carbon double bonds in the molecular chain, increasing the coloration and brittleness, and reducing the commercial value. And measures for long-term use are necessary.
As countermeasures, various stabilizers have been added to improve and improve the stability of chlorine-containing resins, and various stabilizers such as lead-based, organotin-based, and metal soap-based have been proposed. It is used.
However, lead-based and organic tin-based stabilizers have been in the direction of being avoided in recent years because lead and tin themselves are harmful to the human body and the environment. Alternatives to zinc-barium stabilizers are in progress.
However, if a large amount of zinc metal soap stabilizer is added to the chlorine-containing resin for the purpose of improving heat resistance, the phenomenon of the resin called zinc burnt blackening or the zinc stabilizer also acts as an external lubricant. There are problems such as obstruction.

一方、塩素含有樹脂の成形品は、用途によって屋外あるいは屋内で太陽光に曝されることがあり、紫外線等による着色や脆性低下といった耐候性劣化を起こす問題があり、それらを抑制する目的で、有機酸金属塩、無機金属塩、亜リン酸エステル類等の酸化防止剤や紫外線吸収剤、光安定剤等を配合している。
しかしながら、その酸化防止剤や紫外線吸収剤、光安定剤が塩素含有樹脂中で金属イオンと反応して着色し、本来の色調が出ずに商品価値を下げるだけでなく、紫外線吸収剤や光安定剤が当初の性能を発揮できず、設計した耐候性が出なくなるなどの問題が生じる。
特に射出成型や押出混練等の加熱加圧条件下では、樹脂自体や樹脂の配合物の活性や脱離、移動、反応が活発になり、金属イオンと紫外線吸収剤や光安定剤との反応等が一層促進される。
On the other hand, the molded product of chlorine-containing resin may be exposed to sunlight outdoors or indoors depending on the use, there is a problem of causing weather resistance deterioration such as coloring by ultraviolet rays or a decrease in brittleness, for the purpose of suppressing them, It contains antioxidants such as organic acid metal salts, inorganic metal salts, and phosphites, ultraviolet absorbers, light stabilizers, and the like.
However, the antioxidants, UV absorbers, and light stabilizers react with metal ions in the chlorine-containing resin and become colored, reducing the product value without producing the original color tone. The agent cannot exhibit its original performance, resulting in problems such as failure of the designed weather resistance.
In particular, under heating and pressurization conditions such as injection molding and extrusion kneading, the activity, desorption, movement, and reaction of the resin itself and the resin compound become active, and the reaction between metal ions and ultraviolet absorbers or light stabilizers, etc. Is further promoted.

この現象は、マグネシウムやアルミニウムを基本とし、僅かであるが他の金属元素も含有するハイドロタルサイト類化合物を安定助剤として塩素含有樹脂に使用した際も発生し、βジケトン等の有機安定化助剤を添加するなどして着色等の問題を解決している(特許文献1,2)。
また、例えばメルカプトのエステル化合物を更に添加することで耐候性を損なうことなく、より一層着色を防止する方法等が提案されている(特許文献3)。
This phenomenon occurs even when a hydrotalcite compound containing a small amount of other metal elements based on magnesium or aluminum is used as a stabilizing aid in a chlorine-containing resin. Problems such as coloring are solved by adding an auxiliary agent (Patent Documents 1 and 2).
Further, for example, a method for further preventing coloring without impairing the weather resistance by further adding a mercapto ester compound has been proposed (Patent Document 3).

近年、環境保護や環境負荷低減の観点から塩素含有樹脂にも長寿命化やリサイクル、リユースが強く求められ、対策としてハイドロタルサイト類化合物などの安定助剤や紫外線吸収剤、光安定剤などの各種安定剤の増加による対応が提案・検討されている。
しかしながら、ハイドロタルサイト類化合物や光安定剤等の各種安定剤の配合量を単純に増やすことは、金属イオンと光安定剤等との反応機会が増えることになり、樹脂の着色や安定剤の能力低下による耐候性劣化が著しくなり好ましくない。
そこで、ハイドロタルサイト類化合物から離脱する各種金属イオンと光安定剤等との反応を抑制する、βジケトン等の配合量を増やすことが提案されたが、ブリードやブルーミングと呼ばれる樹脂からそれらが浮き上がる現象が生じるため、電線の如き長期に渡って使用される用途においては、大量添加は不向きである。
更に、例えば塩化ビニル樹脂にそれらを配合する際、ハンドリングの観点からそれらをエポキシ化植物油などに加えてペースト状または液状にしているが、例えばβジケトンであるジベンゾイルメタンはFDAの認可が得られていないことから医療用途に使用できず、FDAに認可されたβジケトンであるステアロイルベンゾイルメタンは、エポキシ化植物油の粘度を上げて流動性を悪化させ、ハンドリングが困難になる等の問題がある(特許文献4)。
加えて、βジケトンやメルカプトのエステル化合物は、鉛系、金属石鹸系の安定剤はもとより、ハイドロタルサイト類化合物等の安定助剤より高価という問題がある。
In recent years, from the viewpoint of environmental protection and reduction of environmental impact, chlorine-containing resins are also strongly required to have long life, recycling, and reuse. As countermeasures, hydrotalcite compounds and other stabilizing aids, ultraviolet absorbers, light stabilizers, etc. Countermeasures by increasing various stabilizers have been proposed and studied.
However, simply increasing the compounding amount of various stabilizers such as hydrotalcite compounds and light stabilizers increases the chance of reaction between metal ions and light stabilizers, and the like. Deterioration of weather resistance due to a decrease in capability is not preferable.
Therefore, it has been proposed to increase the amount of β-diketone etc., which suppresses the reaction between various metal ions released from hydrotalcite compounds and light stabilizers, but they are lifted from resins called bleed and blooming. Since this phenomenon occurs, large-scale addition is not suitable for long-term applications such as electric wires.
Furthermore, for example, when blending them into a vinyl chloride resin, they are added to an epoxidized vegetable oil or the like from the viewpoint of handling to form a paste or a liquid. For example, dibenzoylmethane, which is a β diketone, is approved by the FDA. Stearoyl benzoylmethane, which is an FDA-approved β-diketone, has problems such as increasing the viscosity of the epoxidized vegetable oil and deteriorating its fluidity, making it difficult to handle ( Patent Document 4).
In addition, ester compounds of β-diketone and mercapto have a problem that they are more expensive than stabilizers such as hydrotalcite compounds as well as lead-based and metal soap-based stabilizers.

ハイドロタルサイト類化合物は、反応時の条件によって、その金属水酸化物からなる基本層中の金属イオンの置き換えが可能であり、例えば上述のハイドロタルサイト類化合物の2価の金属イオンであるマグネシウムを一部ないし全てを他の金属に置き換えることも可能である。
例えば、マグネシウムの全てを亜鉛に置き換えた組成式ZnxAl2(OH)4+2xCO3・mH2O(式中、3.5≦x≦4.5、0≦m≦4)で表わされるハイドロタルサイト類化合物が提案され、該ハイドロタルサイト類化合物のハロゲン吸収・受酸能力が先述のハイドロタルサイト類化合物も含めた従来品より優れていることから、塩素含有樹脂の耐熱性が向上すると報告されている(特許文献5)。
The hydrotalcite compound can replace the metal ion in the basic layer made of the metal hydroxide depending on the reaction conditions. For example, magnesium which is a divalent metal ion of the hydrotalcite compound described above. It is also possible to replace some or all with other metals.
For example, hydrotalcite represented by the composition formula Zn x Al 2 (OH) 4 + 2x CO 3 · mH 2 O (where 3.5 ≦ x ≦ 4.5, 0 ≦ m ≦ 4) in which all of magnesium is replaced with zinc It has been reported that the heat resistance of chlorine-containing resins is improved because the hydrotalcite compounds are superior in halogen absorption and acid-accepting ability to the conventional products including the hydrotalcite compounds described above. (Patent Document 5).

また、マグネシウムの一部を亜鉛に置き換えた組成 (MgyZnz)1-xAlx(OH)2Ax/n・mH2O(式中、0.1≦x≦0.5、y+z=1、0.5≦y≦1、0≦z≦0.5、Aはn価のアニオン、0≦m≦1)を有するハイドロタルサイト類化合物が、塩素含有樹脂の耐熱性を向上させることが提案されている(特許文献6,7)。 Also, a composition in which a part of magnesium is replaced with zinc (Mg y Zn z ) 1-x Al x (OH) 2 A x / n · mH 2 O (where 0.1 ≦ x ≦ 0.5, y + z = 1, 0.5 It has been proposed that hydrotalcite compounds having ≦ y ≦ 1, 0 ≦ z ≦ 0.5, A is an n-valent anion, and 0 ≦ m ≦ 1) improve the heat resistance of chlorine-containing resins (patents) References 6, 7).

しかし、これはあくまでも上記ハイドロタルサイト類化合物を塩素含有樹脂に配合した場合の耐熱性の向上にのみ着目しており、これらのハイドロタルサイト類化合物の原料となる亜鉛の使用については考慮されていない。
また、亜鉛をハイドロタルサイト類化合物内に含有することから、亜鉛が遊離して先に挙げた亜鉛焼けを起こす可能性や、押出成形や射出成形といった加熱加圧条件下での劣化や耐候性劣化の防止という、根本的な問題解決に寄与しない。
However, this only focuses on improving the heat resistance when the above hydrotalcite compounds are blended with chlorine-containing resins, and the use of zinc as a raw material for these hydrotalcite compounds is considered. Absent.
In addition, since zinc is contained in the hydrotalcite compound, zinc may be liberated to cause the above-mentioned zinc burn, deterioration and weather resistance under heat and pressure conditions such as extrusion molding and injection molding. It does not contribute to the fundamental problem of preventing deterioration.

上述のハイドロタルサイト類化合物のマグネシウムの一部、ないし全てを置換する亜鉛は、通常、塩化物ないし硫酸化物、硝酸化物として反応時に添加され、高度な反応条件の設定の下で、ハイドロタルサイト類化合物の基本層である金属水酸化物層に組み込まれる。
亜鉛の塩化物、硫酸化物、硝酸化物は、酸化亜鉛や金属亜鉛を塩酸、硫酸、硝酸と反応して得られるが、酸化亜鉛や金属亜鉛はほとんどが、閃亜鉛鉱(ZnS)や菱亜鉛鉱(ZnCO3)等の亜鉛鉱を精製した後、焙焼して亜鉛焼鉱(ZnO)を得るか、亜鉛焼鉱を乾式法ないし湿式法(電解精錬)で精錬することにより得られている。
もっとも、硫酸亜鉛は電解精錬時に硫酸亜鉛の形態にするため、それを得ることを目的とする場合は、金属亜鉛まで精錬する必要はない。
ただ、閃亜鉛鉱はカドミウムを、菱亜鉛鉱は鉛を含有するため、それらの有害物の除去や環境保護、作業者の防護等を目的した精製工程が高度になる上、酸化亜鉛や金属亜鉛と反応させる塩酸、硫酸、硝酸も必要になり、製造コストが高騰する。
更に、わが国おいて亜鉛自体が、水質汚濁法で排出水中の濃度(排水基準)を2ml/L以下(平成18年11月10日公布)に規定される等、亜鉛の使用や貯蔵について環境保全の点でも厳しくなり、それがコストやハンドリングの更なる負担となっている。
よって、亜鉛等の環境やコスト、ハンドリングに負荷をかける原料を使わずに、アニオンの吸収能力をより向上させることが求められていた。
Zinc, which replaces part or all of magnesium in the hydrotalcite compounds mentioned above, is usually added during the reaction as chloride, sulfate or nitrate, and hydrotalcite is set under advanced reaction conditions. It is incorporated in the metal hydroxide layer, which is the basic layer of a similar compound.
Zinc chlorides, sulfates, and nitrates are obtained by reacting zinc oxide and metallic zinc with hydrochloric acid, sulfuric acid, and nitric acid. Most zinc oxide and metallic zinc are zinc blende (ZnS) and rhombozincite. It is obtained by refining zinc ore such as (ZnCO 3 ) and then roasting to obtain zinc ore (ZnO), or by refining the zinc ore by a dry method or a wet method (electrolytic refining).
However, since zinc sulfate is in the form of zinc sulfate at the time of electrolytic refining, it is not necessary to refine even metallic zinc if the purpose is to obtain it.
However, since sphalerite contains cadmium and chalcopyrite contains lead, the refining process aimed at removing these harmful substances, protecting the environment, protecting workers, etc. is advanced, and zinc oxide and metal zinc are also included. Hydrochloric acid, sulfuric acid, and nitric acid to be reacted with the product are also required, resulting in high production costs.
Furthermore, in Japan, zinc itself is regulated by the Water Pollution Law, and the concentration (drainage standard) in the discharged water is regulated to 2 ml / L or less (promulgated on November 10, 2006). However, this has become a severe burden on costs and handling.
Therefore, it has been demanded to further improve the anion absorption capacity without using materials such as zinc, which are burdensome on the environment, cost, and handling.

本発明者らは、環境や経済性を考慮し、結晶構造内のエネルギー状態に着目して耐熱性を著しく向上させたハイドロタルサイト類化合物や、結晶構造の改良と新たな封止・捕捉剤に着目して、加熱加圧条件下での金属イオンの脱離を抑制するハイドロタルサイト類組成物を提案した(特許文献8,9)。
しかしながら、前者は加熱加圧条件下での金属イオンの抑制が、後者は耐熱性が従来のハイドロタルサイト類化合物や組成物よりも改良されているものの、環境や経済性を考慮し、両物性を備えたハイドロタルサイト類化合物が要望されていた。
In consideration of environment and economy, the present inventors have focused on the energy state in the crystal structure, hydrotalcite compounds with significantly improved heat resistance, and improved crystal structure and new sealing / trapping agents. The hydrotalcite composition which suppressed the detachment | desorption of the metal ion under heating-pressing conditions was proposed paying attention to (patent documents 8, 9).
However, although the former has suppressed metal ions under heat and pressure conditions, the latter has improved heat resistance compared to conventional hydrotalcite compounds and compositions. There has been a demand for a hydrotalcite compound comprising

特開昭57-80444号公報Japanese Unexamined Patent Publication No. 57-80444 特開平06-192520号公報Japanese Unexamined Patent Publication No. 06-192520 特開2013-10834号公報JP 2013-10834 A 特許第5116141号公報Japanese Patent No. 5116141 特公平11-255973号公報Japanese Patent Publication No. 11-255973 WO99/01409号公報WO99 / 01409 Publication WO099/05219号公報WO099 / 05219 Publication 特開2016-108177号公報Japanese Unexamined Patent Publication No. 2016-108177 特開2016-108427号公報JP 2016-108427 JP

本発明は、各種樹脂、特に塩素含有樹脂において、昨今の環境負荷低減を目的に、該樹脂の特性である優れた耐水性、耐酸性、耐アルカリ性、耐溶剤性、難燃性、電気絶縁性、加工性、成形品の用途に応じた特性を維持しつつ、経済性を損なうことなく耐熱性を向上させ、長寿命化、リサイクル、リユースを可能にするハイドロタルサイト類化合物を提供することを目的とする。
具体的には、亜鉛などを使用しないMg−Al型ハイドロタルサイト類化合物について、アニオン吸着性の向上とマグネシウムやアルミニウムなどの金属イオンの脱離の一層の抑制、ならびに粉体や粒子としての粒度特性を向上させることで、例えばポリ塩化ビニル樹脂等の塩素含有樹脂に配合された際に、塩化水素、ないし塩化物イオンをより吸着して分子鎖の二重結合の連続生成を防ぎ、かつハイドロタルサイト類化合物から遊離する金属イオンをより抑制することで、酸化防止剤や紫外線吸収剤、光安定剤等の安定剤と反応して着色することを防ぐことを目的とする。
また、該ハイドロタルサイト類化合物を塩素含有樹脂に配合した場合、βジケトン等の安定化助剤を使用しないか、もしくは使用量を極めて少なくしても、塩素含有樹脂の特性を損なうことなく優れた耐候性を付与し、長寿命化、リサイクル、リユースにも対応可能とすることを目的とする。
The present invention provides various resins, particularly chlorine-containing resins, for the purpose of reducing recent environmental burdens, and has excellent water resistance, acid resistance, alkali resistance, solvent resistance, flame resistance, and electrical insulation properties. To provide hydrotalcite compounds that improve heat resistance without sacrificing economics, extend life, recycle, and reuse, while maintaining processability and properties according to the use of molded products Objective.
Specifically, for Mg-Al-type hydrotalcite compounds that do not use zinc or the like, anion adsorption is improved, metal ions such as magnesium and aluminum are further desorbed, and the particle size as powder or particles By improving the characteristics, for example, when blended in a chlorine-containing resin such as polyvinyl chloride resin, hydrogen chloride or chloride ions are more adsorbed to prevent the continuous formation of double bonds of molecular chains, and It aims at preventing coloring by reacting with stabilizers, such as antioxidant, a ultraviolet absorber, and a light stabilizer, by suppressing metal ions released from talcite compounds.
In addition, when the hydrotalcite compound is blended with a chlorine-containing resin, it does not impair the properties of the chlorine-containing resin even if a stabilizing aid such as β-diketone is not used or the amount used is extremely small. The purpose is to provide long-life, recycle and reuse.

本発明者らは、かかる実情を鑑み、上記目的を達成せんと鋭意検討の結果、構成する二つの金属元素の割合が特定範囲内にあり、かつその水酸基(OH)が特定のエネルギー状態を有し、更に特定の粉体物性を有するMg−Al型ハイドロタルサイト類化合物が、金属イオンの離脱や遊離を抑制しつつアニオンの吸着性に優れることを見出し、本発明を完成した。   In view of such circumstances, the present inventors have intensively studied to achieve the above object, and as a result, the ratio of the two metal elements to be constructed is within a specific range, and the hydroxyl group (OH) has a specific energy state. Furthermore, the present inventors have found that an Mg-Al type hydrotalcite compound having specific powder properties is excellent in anion adsorbability while suppressing the separation and release of metal ions.

本発明は下記の発明を包含する。
(1)本発明のハイドロタルサイト類化合物は、下記式(a)の化学式で表わされ、フーリエ変換赤外分光光度計(FT−IR)から求められる水酸基(OH)の伸縮振動周波数の代表ピークが3405cm−1以上3435cm−1以下の範囲内にあり、下記(b)〜(d)の粒度特性を満足することを特徴とするハイドロタルサイト類化合物。
(a)Mg1-xAl(OH)2x/n・mH2O
(b)5≦Sw≦15 (m2/g)
(c)0.8≦Dp50≦2.0 (μm)
(d)DMax≦10.09 (μm)
ただし、式中Aはn価のアニオンを示し、xおよびmは下記の条件を満足する値を示す。
0.267≦x≦0.290 , 0≦m<1
Sw :窒素吸着法で測定したBET比表面積(m2/g)
Dp50 :レーザー回折散乱式粒度分布計で測定したハイドロタルサイト類化合物の50%平均粒子径(μm)
Max :レーザー回折散乱式粒度分布計で測定したハイドロタルサイト類化合物の最大粒子径(μm)
(2)上記ハイドロタルサイト類化合物が、脂肪酸、脂肪酸金属塩、カップリング剤から選択される少なくとも1種の表面処理剤で表面処理されていることを特徴とするハイドロタルサイト類化合物。
(3)上記ハイドロタルサイト類化合物が、酸解離定数が1.5〜3.5の酸、その塩から選択される少なくとも1種の封鎖・捕捉剤Aと、マグネシウムイオンに対する一次のキレート安定化定数が6以上のキレート剤から選択される封鎖・捕捉剤Bの何れか、または両方で被覆されていることを特徴とするハイドロタルサイト類化合物。
(4)上記封鎖剤・捕捉剤Aが亜硫酸、ホスホン酸、サリチル酸、マレイン酸、それらの塩から選択される少なくとも1種であることを特徴とするハイドロタルサイト類化合物。
(5)上記封鎖剤・捕捉剤Bがヒドロキシエチリジエンジホスホン酸であることを特徴とするハイドロタルサイト類化合物。
(6)上記(1)〜(5)の何れかのハイドロタルサイト類化合物と樹脂とを含有してなることを特徴とする樹脂組成物。
(7)樹脂がポリ塩化ビニル樹脂であることを特徴とする樹脂組成物。
(8)上記(6)記載の樹脂組成物からなる成形体。
(9)上記(7)記載の樹脂組成物からなる成形体。
The present invention includes the following inventions.
(1) The hydrotalcite compound of the present invention is represented by the chemical formula of the following formula (a), and is representative of the stretching vibration frequency of the hydroxyl group (OH) obtained from a Fourier transform infrared spectrophotometer (FT-IR). peak in the range of 3405cm -1 or 3435cm -1 or less, the following (b) ~ hydrotalcite compound characterized by satisfying the particle size characteristics of (d).
(A) Mg 1-x Al x (OH) 2 A x / n · mH 2 O
(B) 5 ≦ Sw ≦ 15 (m 2 / g)
(C) 0.8 ≦ Dp 50 ≦ 2.0 (μm)
(D) D Max ≦ 10.09 (μm)
In the formula, A represents an n-valent anion, and x and m represent values satisfying the following conditions.
0.267 ≦ x ≦ 0.290, 0 ≦ m <1
Sw: BET specific surface area measured by nitrogen adsorption method (m 2 / g)
Dp 50 : 50% average particle diameter (μm) of hydrotalcite compounds measured with a laser diffraction / scattering particle size distribution analyzer
D Max : Maximum particle size (μm) of hydrotalcite compounds measured with a laser diffraction / scattering particle size distribution analyzer
(2) The hydrotalcite compound, wherein the hydrotalcite compound is surface-treated with at least one surface treatment agent selected from fatty acids, fatty acid metal salts, and coupling agents.
(3) The hydrotalcite compound has an acid dissociation constant of 1.5 to 3.5, at least one sequestering / trapping agent A selected from salts thereof, and a primary chelate stabilization constant of 6 or more against magnesium ions. A hydrotalcite compound characterized by being coated with either or both of the sequestering / capturing agent B selected from the chelating agents.
(4) A hydrotalcite compound wherein the sequestering / scavenging agent A is at least one selected from sulfurous acid, phosphonic acid, salicylic acid, maleic acid, and salts thereof.
(5) A hydrotalcite compound wherein the blocking agent / capture agent B is hydroxyethylidene diphosphonic acid.
(6) A resin composition comprising the hydrotalcite compound of any one of (1) to (5) above and a resin.
(7) A resin composition, wherein the resin is a polyvinyl chloride resin.
(8) A molded article comprising the resin composition according to (6) above.
(9) A molded article comprising the resin composition according to (7) above.

本発明によれば、亜鉛などを使用しないMg−Al型ハイドロタルサイト類化合物において、マグネシウムとアルミニウムの比率が特定の範囲内にあり、フーリエ変換赤外分光光度計(FT−IR)から求められる水酸基(OH)の伸縮振動周波数の代表ピークが特定の範囲内あり、さらに特定の粒度を有することで、ハイドロタルサイト類化合物からのマグネシウムやアルミニウム等の金属イオンの脱離を抑制し、それらの金属イオンと酸化防止剤や紫外線吸収剤、光安定剤等の安定剤が反応して着色することを防ぎ、優れたアニオン吸収・吸着能力と優れた粒度特性により、ポリ塩化ビニル樹脂等の塩素含有樹脂に配合された際に塩化水素、ないし塩化物イオンを速やかに吸着して分子鎖の二重結合の連続生成を防ぎ、その機械的特性の低下を防ぐことが可能なハイドロタルサイト類化合物、ならびに該ハイドロタルサイト化合物を配合してなる樹脂組成物とその成形体を提供する。   According to the present invention, in a Mg-Al type hydrotalcite compound that does not use zinc or the like, the ratio of magnesium to aluminum is within a specific range, and is determined from a Fourier transform infrared spectrophotometer (FT-IR). The representative peak of the stretching vibration frequency of the hydroxyl group (OH) is within a specific range, and further having a specific particle size suppresses the elimination of metal ions such as magnesium and aluminum from hydrotalcite compounds, Contains metal ions and antioxidants, UV absorbers, light stabilizers and other stabilizers that react to prevent coloring, and has excellent anion absorption / adsorption ability and excellent particle size characteristics, so it contains chlorine such as polyvinyl chloride resin. When compounded in a resin, hydrogen chloride or chloride ions are quickly adsorbed to prevent the continuous formation of double bonds in the molecular chain and prevent deterioration of its mechanical properties. It hydrotalcite compound capable, as well as a molded article thereof said hydrotalcite compound by blending the resin composition.

本発明のハイドロタルサイト類化合物は、上記(a)の化学式で表わされる。
n価のアニオンAは、2価のCO3 2−,SO4 2−や1価のOH,F,Cl,Br,NO3 ,I等が挙げられる。これらのなかでも、CO3 2−が入手しやすく経済的にも有効であり、環境への負荷の点でも有利である上、ハイドロタルサイト類化合物としても安定である。
The hydrotalcite compound of the present invention is represented by the chemical formula (a).
Examples of the n-valent anion A include divalent CO 3 2− , SO 4 2− , monovalent OH , F , Cl , Br , NO 3 and I . Among these, CO 3 2− is easily available, is economically effective, is advantageous in terms of environmental burden, and is stable as a hydrotalcite compound.

本発明のハイドロタルサイト類化合物を構成するMg−Al型ハイドロタルサイト類化合物は、構成する金属元素がマグネシウムとアルミニウムであり、生成時の条件で両者の配合割合を選択することが可能である。
本発明のハイドロタルサイト類化合物の金属元素、マグネシウムとアルミニウム中のアルミニウムの割合は、モル比率で上記(a)の化学式中のxで表わされ、0.267≦x≦0.290、好ましくは0.274≦x≦0.282の範囲内にあることによって、アニオンの吸収・吸着量が多くなり、マグネシウムの脱離が抑制される。
In the Mg-Al type hydrotalcite compound constituting the hydrotalcite compound of the present invention, the constituent metal elements are magnesium and aluminum, and the mixing ratio of both can be selected depending on the conditions at the time of production. .
The ratio of aluminum in the metal element of the hydrotalcite compound of the present invention, magnesium and aluminum is represented by x in the chemical formula of (a) above as a molar ratio, and is 0.267 ≦ x ≦ 0.290, preferably 0.274 ≦ x. By being in the range of ≦ 0.282, the amount of absorption and adsorption of anions increases, and magnesium desorption is suppressed.

本発明のハイドロタルサイト類化合物のxが0.290を超えると、例えばポリ塩化ビニル樹脂などに配合した場合に十分な耐熱性を発揮せず、本発明の目的は到達されない。このメカニズムは詳細には明らかでないが、本発明のハイドロタルサイト類化合物よりアニオン吸着量が少なくなり、ポリ塩化ビニル樹脂から脱離する塩素ないし塩素イオンに対する捕捉、吸収、受酸性が不足し、ポリ塩化ビニル樹脂中で二重結合が連続生成することが原因と考えられる。従来技術に挙げたハイドロタルサイト類化合物がこれに該当する。   When x of the hydrotalcite compound of the present invention exceeds 0.290, for example, when blended in a polyvinyl chloride resin or the like, sufficient heat resistance is not exhibited, and the object of the present invention is not achieved. Although this mechanism is not clear in detail, the amount of anion adsorption is smaller than that of the hydrotalcite compound of the present invention, and the trapping, absorption, and acid acceptability of chlorine or chloride ions desorbed from the polyvinyl chloride resin are insufficient. The cause is thought to be the continuous formation of double bonds in the vinyl chloride resin. This applies to the hydrotalcite compounds mentioned in the prior art.

本発明のハイドロタルサイト類化合物のxが0.267未満の場合、例えばポリ塩化ビニル樹脂などに配合した場合に、耐熱性は優れたものになるものの、押出混練加工や射出成形加工を想定した加圧加熱条件下で着色が生じ、本発明の目的は到達されない。このメカニズムの詳細は明らかでないが、本発明のハイドロタルサイト類化合物よりマグネシウムやアルミニウム等の金属イオンの樹脂中への脱離や遊離が多く、それらが樹脂中の光安定剤や酸化防止剤等と反応が促進されて着色することが原因と考えられる。   When x of the hydrotalcite compound of the present invention is less than 0.267, for example, when blended with a polyvinyl chloride resin or the like, the heat resistance is excellent, but the pressure assuming an extrusion kneading process or an injection molding process Coloring occurs under heating conditions, and the object of the present invention is not achieved. Although details of this mechanism are not clear, metal ions such as magnesium and aluminum are more released and released from the resin than the hydrotalcite compounds of the present invention, and they are light stabilizers and antioxidants in the resin. It is thought that the reaction is promoted and coloring occurs.

本発明のハイドロタルサイト類化合物は、フーリエ変換赤外分光光度計FT−IRの測定で得られる水酸基(OH)の伸縮振動波数の代表ピークκ(cm−1)が3405≦κ≦3435であることが必要で、好ましくは3415≦κ≦3425である。 In the hydrotalcite compound of the present invention, the representative peak κ (cm −1 ) of the stretching frequency of the hydroxyl group (OH) obtained by measurement with a Fourier transform infrared spectrophotometer FT-IR is 3405 ≦ κ ≦ 3435. And preferably 3415 ≦ κ ≦ 3425.

FT−IRの測定で得られるOHの伸縮振動波数の代表ピークκが3405cm−1より小さいハイドロタルサイト類化合物を例えばポリ塩化ビニル樹脂に配合すると、耐熱性が低く、本発明の効果が得られない。このメカニズムは詳細には明らかでないが、本発明のハイドロタルサイト類化合物によるアニオン吸着量が少なくなり、ポリ塩化ビニル樹脂から脱離する塩素ないし塩素イオンに対する捕捉、吸収、受酸性が不足し、ポリ塩化ビニル樹脂中で二重結合が連続生成することが原因と考えられる。従来技術に挙げたハイドロタルサイト類化合物がこれに該当する。
FT−IRの測定で得られるOHの伸縮振動波数の代表ピークκが3435cm−1を超えるハイドロタルサイト類化合物の場合、ポリ塩化ビニル樹脂に配合すると耐熱性は良好であるが、加圧加熱条件下で着色が生じる。このメカニズムの詳細は明らかでないが、マグネシウムやアルミニウム等の金属イオンがハイドロタルサイト類化合物から樹脂中に離脱しやすくなり、光安定剤や酸化防止剤等との反応が促進されて着色すると考えられる。
When a hydrotalcite compound having a representative peak κ of stretching frequency of OH obtained by measurement of FT-IR of less than 3405 cm −1 is blended with, for example, a polyvinyl chloride resin, the heat resistance is low and the effects of the present invention are obtained. Absent. Although this mechanism is not clear in detail, the amount of anion adsorbed by the hydrotalcite compound of the present invention is reduced, and the trapping, absorption, and acid acceptability of chlorine or chloride ions desorbed from the polyvinyl chloride resin are insufficient. The cause is thought to be the continuous formation of double bonds in the vinyl chloride resin. This applies to the hydrotalcite compounds mentioned in the prior art.
In the case of hydrotalcite compounds having a representative peak κ of stretching frequency of OH obtained by measurement of FT-IR exceeding 3435 cm −1 , heat resistance is good when blended with polyvinyl chloride resin, but pressure heating conditions Coloring occurs below. Details of this mechanism are not clear, but metal ions such as magnesium and aluminum are likely to be released from the hydrotalcite compound into the resin, and the reaction with light stabilizers and antioxidants is promoted to cause coloration. .

FT−IRの測定で得られるOHの伸縮振動波数を示す代表ピークκの大小が、アニオンの吸着速度や量に影響していることは明らかであるが、そのメカニズムは不明である。κは、ハイドロタルサイト類化合物の基本層(金属水酸基層)のOHだけでなく、層間に含有する層間水のOHの伸縮振動波数も計算した代表値と考えられる。そして、層間水のOHの伸縮振動波数は、ハイドロタルサイト類化合物の基本層の水酸基の状態に強く影響されていると考えられる。   It is clear that the magnitude of the representative peak κ indicating the stretching frequency of OH obtained by FT-IR measurement affects the adsorption rate and amount of anions, but the mechanism is unknown. κ is considered to be a representative value obtained by calculating not only the OH of the basic layer (metal hydroxyl layer) of the hydrotalcite compound, but also the OH stretching frequency of interlayer water contained between the layers. And it is thought that the stretching vibration wave number of OH of interlayer water is strongly influenced by the state of the hydroxyl group of the basic layer of the hydrotalcite compound.

厳密な相関関係にあるとは言えないが、本発明のハイドロタルサイト類化合物を構成する金属元素中のマグネシウムとアルミニウムの割合を示すxの値が大きくなるとOHの伸縮振動波数が小さくなり、xの値が小さくなるとOHの伸縮振動波数が大きくなる傾向がある。振動波数は即ちエネルギーでもあることから、本発明のハイドロタルサイト類化合物の金属元素の割合がOHのエネルギーに影響し、それがハロゲンの吸収・吸着に影響していると考えられるが、そのメカニズムの詳細は明らかでない。
なお、本発明におけるFT−IR分析は、(株)日立ハイテクサイエンス製フーリエ変換赤外分光装置Nicolet is50 FT−IRで行った。
Although it cannot be said that there is a strict correlation, when the value of x indicating the ratio of magnesium and aluminum in the metal element constituting the hydrotalcite compound of the present invention increases, the stretching vibration wave number of OH decreases, and x As the value of decreases, the stretching frequency of OH tends to increase. Since the vibration wave number is also energy, the ratio of the metal element of the hydrotalcite compound of the present invention affects the OH energy, which is considered to affect the absorption and adsorption of halogen. Details are not clear.
In addition, the FT-IR analysis in this invention was performed with the Hitachi high-tech sciences Fourier transform infrared spectroscopy apparatus Nicolet is50 FT-IR.

ハイドロタルサイト類化合物の窒素吸着法で測定したBET比表面積Sw(m2/g)は5≦Sw≦15、好ましくは8≦Sw≦12である。Swがこの範囲内にあることによって、製造時や使用時のハンドリングが良好になり、さらに、例えば塩素含有樹脂に配合されて安定剤や受酸剤としてその効能を発揮する際に、樹脂中で良好に分散してハロゲンの吸着反応が起こりやすくなる。 The BET specific surface area Sw (m 2 / g) measured by the nitrogen adsorption method of the hydrotalcite compound is 5 ≦ Sw ≦ 15, preferably 8 ≦ Sw ≦ 12. When Sw is within this range, handling during production and use is improved, and further, for example, when blended in a chlorine-containing resin and exhibiting its effectiveness as a stabilizer or acid acceptor, Disperses well and facilitates the halogen adsorption reaction.

BET比表面積Swが5m2/g未満のものは製造が困難であり、また、その場合、巨大な単一粒子がハイドロタルサイト類化合物中に多く存在することになり、それらを例えばポリ塩化ビニル樹脂などに配合する樹脂中での個数が不足して発生した塩化水素の速やかな吸収・吸着が行われず、分子鎖からの塩化水素の脱離や遊離、二重結合の連続生成の抑制ができず好ましくない。また、樹脂組成物や成形物の破断の原因ないし機械的な弱点となり、成形品の耐衝撃強度や引張強度を低下させる原因となるため好ましくない。
Swが15m2/gを超えると、ハイドロタルサイト類化合物中に微細な粒子が多くなり、粉体として貯蔵中や樹脂への配合時、または塩素含有樹脂組成物を成形する際に凝集を起こしやすくなり、例えばポリ塩化ビニル樹脂等に配合した場合に、樹脂中での個数が不足して発生した塩化水素の速やかな吸収・吸着が行われず、分子鎖からの塩化水素の脱離や二重結合の連続生成の抑制ができず好ましくない上、粒子からの比表面積が増えることによって、粒子からマグネシウムやアルミニウム等の金属イオンの離脱が起こりやすくなり、それらが光安定剤や酸化防止剤と反応して着色する機会が増えるため好ましくない。更に組成物や成形体の破断の原因ないし機械的な弱点となり、強度物性を低下させる原因になるので好ましくない。
なお、本発明における窒素吸着式BET比表面積の測定は、MOUNTECH Co.,Ltd製Macsorb(登録商標)HM model−1201で行った。
Those having a BET specific surface area Sw of less than 5 m 2 / g are difficult to produce, and in that case, a large number of single particles are present in the hydrotalcite compound, and for example, polyvinyl chloride is present. Rapid absorption and adsorption of hydrogen chloride generated due to a shortage in the resin compounded in the resin, etc. is not performed, and it is possible to suppress desorption and release of hydrogen chloride from the molecular chain and continuous generation of double bonds. Not preferable. Moreover, it becomes a cause of a fracture | rupture of a resin composition or a molded object, or a mechanical weak point, and it becomes the cause of reducing the impact strength of a molded article, and a tensile strength, and is unpreferable.
When Sw exceeds 15m 2 / g, fine particles increase in the hydrotalcite compound, causing aggregation during storage as a powder, when blended into a resin, or when molding a chlorine-containing resin composition. For example, when blended with polyvinyl chloride resin, etc., the hydrogen chloride generated due to insufficient number in the resin is not absorbed and adsorbed quickly, and the hydrogen chain is desorbed or doubled from the molecular chain. It is not preferable because the continuous formation of bonds cannot be suppressed, and the specific surface area from the particles increases, so that metal ions such as magnesium and aluminum are likely to be detached from the particles, which react with the light stabilizer and the antioxidant. This increases the chance of coloring, which is not preferable. Further, it is not preferable because it causes breakage of the composition or molded body or mechanical weakness and causes a decrease in strength properties.
In addition, the measurement of the nitrogen adsorption type BET specific surface area in this invention is MOUNTECH Co. , Ltd., Macsorb (registered trademark) HM model-1201.

本発明のハイドロタルサイト類化合物は、レーザー回折散乱式粒度分布計により測定した50%平均粒子径Dp50(μm)は0.8≦Dp50≦2.0、好ましくは0.8≦Dp50≦1.5の範囲にあり、同じくレーザー回折散乱式粒度分布計により測定した最大粒子径DMax(μm)はDMax≦10.09の範囲にあり、二次凝集が殆どないか、あるいは少ないものが好ましい。 The hydrotalcite compound of the present invention has a 50% average particle diameter Dp 50 (μm) measured by a laser diffraction / scattering particle size distribution meter in the range of 0.8 ≦ Dp 50 ≦ 2.0, preferably 0.8 ≦ Dp 50 ≦ 1.5. Similarly, the maximum particle diameter D Max (μm) measured by a laser diffraction / scattering particle size distribution meter is in the range of D Max ≦ 10.09, and there is preferably little or little secondary aggregation.

ハイドロタルサイト類化合物の粒度特性が上記範囲内にあることによって、樹脂に配合されて安定剤としてその効能を発揮する際に、樹脂中に良く分散し、更に配合された樹脂中でハロゲンと接する個数や面積が適切になり、ハロゲンの吸収・吸着が起こりやすくなり、マグネシウムやアルミニウムの離脱を少なくすることができる。   When the particle size characteristics of the hydrotalcite compound are within the above range, when blended in the resin and exhibit its effectiveness as a stabilizer, it is well dispersed in the resin and further contacts with halogen in the blended resin. The number and area are appropriate, halogen absorption / adsorption is likely to occur, and detachment of magnesium and aluminum can be reduced.

上記50%平均粒子径Dp50が0.8μm未満のものは製造が困難であり、また、電子顕微鏡観測等により該50%平均粒子径Dp50が0.8μm未満の粒子を得ることは出来るが、微細になりすぎるために粒子の表面エネルギーが大きくなり、凝集して安定化を図るため、粒度測定でその様な値を示す粒子は得にくい。
また、例えばポリ塩化ビニル樹脂に配合すると、マグネシウムやアルミニウムが粒子から離脱しやすくなり、光安定剤や酸化防止剤などとの反応する機会が増えるだけでなく、樹脂への配合時や樹脂組成物を成形する際にも凝集体を生成しやすくなり、樹脂中での個数が不足して発生した塩化水素の速やかな吸収・吸着が行われず、分子鎖からの塩化水素の脱離や二重結合の連続生成の抑制ができず好ましくない上、その組成物の破断の原因ないし機械的な弱点となり、樹脂成形品の耐衝撃強度や引張強度といった強度物性を低下させる原因となるため好ましくないと考えられる。
平均粒子径Dp50 が2.0μmを超えると、粗大な粒子が塩素含有樹脂中に多く存在することになり、その粒子を配合して樹脂組成物とした場合に、その組成物の外観を損なうばかりでなく破断の原因ないし機械的な弱点となり、成形品の強度物性を低下させる原因となるため好ましくない。
また、塩素含有樹脂中での個数が少なくなるため、発生した塩化水素の速やかな吸収・吸着が行われず、分子鎖からの塩化水素の脱離の抑制ができず好ましくない。特にその粒子が凝集体で構成される場合は、個数減によるハロゲンの吸収・吸着能力の低下と、表面積増加による金属元素の離脱促進の両者が起きるため、更に好ましくない。
The above 50% average particle diameter Dp 50 is less than 0.8 μm, and it is difficult to produce, and particles having a 50% average particle diameter Dp 50 of less than 0.8 μm can be obtained by observation with an electron microscope or the like. Therefore, the surface energy of the particles is increased, and the particles are aggregated and stabilized, so that it is difficult to obtain particles having such values in the particle size measurement.
In addition, for example, when blended with polyvinyl chloride resin, magnesium and aluminum are easily separated from the particles, increasing the opportunity to react with light stabilizers and antioxidants. Agglomerates are easily formed when molding the resin, and the hydrogen chloride generated due to the insufficient number in the resin is not absorbed and adsorbed quickly. It is not preferable because it cannot suppress the continuous formation of the resin, and it is not preferable because it causes breakage of the composition or mechanical weakness and causes a decrease in strength properties such as impact strength and tensile strength of the resin molded product. It is done.
If the average particle diameter Dp 50 exceeds 2.0 μm, a large amount of coarse particles will be present in the chlorine-containing resin, and when the particles are blended into a resin composition, the appearance of the composition will be impaired. However, it is not preferable because it causes breakage or mechanical weakness and decreases strength properties of the molded product.
Further, since the number in the chlorine-containing resin is reduced, the generated hydrogen chloride is not rapidly absorbed and adsorbed, and desorption of hydrogen chloride from the molecular chain cannot be suppressed, which is not preferable. In particular, when the particles are composed of aggregates, both the reduction of the halogen absorption / adsorption ability due to the decrease in the number and the promotion of the separation of the metal element due to the increase in the surface area occur, which is further undesirable.

上記最大粒子径DMaxが10.09μmを超えると、単一粒子や凝集粒子といった形態に関係なく粗大な粒子が塩素含有樹脂中に多く存在することになり、それらを樹脂に配合して組成物にすると、その組成物の破断の原因ないし機械的な弱点となり、成形品の耐衝撃強度や引張強度等の強度物性を低下させる原因となるため好ましくない。
ハイドロタルサイト類化合物の平均粒径Dp50および最大粒径Dmaxは、マイクロトラック・ベル(株)社製マイクロトラックMT3300EX II レーザー回折散乱式粒度分布計で測定した。
When the maximum particle diameter D Max exceeds 10.09 μm, a large number of coarse particles are present in the chlorine-containing resin regardless of the form of single particles or aggregated particles. Then, it becomes the cause of the fracture | rupture of the composition, or a mechanical weak point, and it becomes a cause which reduces strength physical properties, such as impact strength of a molded article, and tensile strength, and is unpreferable.
The average particle size Dp 50 and the maximum particle size D max of the hydrotalcite compound were measured with a Microtrac MT3300EX II laser diffraction / scattering particle size distribution meter manufactured by Microtrac Bell.

本発明のハイドロタルサイト類化合物は、下記の反応条件を考慮することにより製造することができる。
上記の如き、水酸基の伸縮振動周波数、平均粒子径Dp50、最大粒子径DMax 、BET 比表面積Swは、これまでの検討でMg・Al・CO3・OH等の各原料を溶解した溶液を混合してハイドロタルサイト類化合物を反応生成する時の溶液反応のpH、得られたハイドロタルサイト類化合物の反応溶液に水熱反応を行う際の温度、時間、撹拌が影響していることが判明している。
ただ、上記の条件は本発明のハイドロタルサイト類化合物の各物性に影響しており、その個々の影響の大きさや相関関係等は必ずしも明確でない。傾向としては、先ず、溶液反応時のpHを高くすると水酸基の伸縮振動周波数が大きくなる。次に、水熱反応時の温度を高くすると平均粒子径Dp50、最大粒子径DMax が大きくなり、BET 比表面積Swは小さくなる傾向がある。なお、最大粒子径DMax は、温度を低くし過ぎると大きくなるが、これは微粒子の凝集によって発生すると考えられる。
水熱反応時の時間については、長くするほど平均粒子径Dp50、最大粒子径DMax が大きくなり、BET 比表面積Swは小さくなる傾向がある。ただ、最大粒子径DMax は、時間が短いと大きくなるが、これは微粒子の凝集によって生じたと考えられる。
水熱反応時の撹拌について、撹拌数を大きくすると平均粒子径Dp50は小さく、最大粒子径DMax が小さくなる傾向がある。
BET 比表面積Swについては、撹拌数が大きくても小さくても大きくなるため、反応装置や反応条件によって適宜撹拌数を選ぶ必要がある。
The hydrotalcite compound of the present invention can be produced by considering the following reaction conditions.
As described above, the stretching vibration frequency, average particle diameter Dp 50 , maximum particle diameter D Max , and BET specific surface area Sw of the hydroxyl group are determined by using a solution in which raw materials such as Mg, Al, CO 3 and OH have been dissolved. The pH of the solution reaction when the hydrotalcite compound is produced by mixing, and the temperature, time, and stirring during the hydrothermal reaction of the resulting hydrotalcite compound reaction solution may be affected. It turns out.
However, the above conditions affect each physical property of the hydrotalcite compound of the present invention, and the magnitude and correlation of each effect are not necessarily clear. As a tendency, first, when the pH during the solution reaction is increased, the stretching vibration frequency of the hydroxyl group increases. Next, when the temperature during the hydrothermal reaction is increased, the average particle diameter Dp 50 and the maximum particle diameter D Max increase, and the BET specific surface area Sw tends to decrease. The maximum particle diameter D Max increases when the temperature is lowered too much, but this is considered to be caused by aggregation of fine particles.
As the time during the hydrothermal reaction is increased, the average particle diameter Dp 50 and the maximum particle diameter D Max increase, and the BET specific surface area Sw tends to decrease. However, the maximum particle diameter D Max increases as the time is short, but this is considered to be caused by aggregation of fine particles.
Regarding the stirring during the hydrothermal reaction, when the number of stirring is increased, the average particle diameter Dp 50 tends to be small and the maximum particle diameter D Max tends to be small.
Since the BET specific surface area Sw becomes large regardless of whether the number of stirring is large or small, it is necessary to select the number of stirring appropriately depending on the reaction apparatus and reaction conditions.

本発明のハイドロタルサイト類化合物は、樹脂に配合後に成形されて樹脂成形体とした際に、耐久性・強度等の諸物性向上の他、本来のハロゲン吸収性の向上、粒子の安定性、分散性,樹脂との親和性向上や撥水性付与の目的で脂肪酸、脂肪酸金属塩、カップリング剤から選択される少なくとも1種の表面処理剤で表面処理(被覆)を行うのが好ましい。
上記の表面処理剤は、上記の諸物性や、用途、環境への影響、ハンドリング性、コストの観点から適宜選択するのが好ましい。
When the hydrotalcite compound of the present invention is molded into a resin and formed into a resin molded body, in addition to improving various physical properties such as durability and strength, the improvement of the original halogen absorption, the stability of the particles, Surface treatment (coating) is preferably performed with at least one surface treatment agent selected from fatty acids, fatty acid metal salts, and coupling agents for the purpose of improving dispersibility and affinity with the resin and imparting water repellency.
The surface treatment agent is preferably selected as appropriate from the viewpoints of the above various physical properties, applications, influence on the environment, handling properties, and cost.

脂肪酸として、例えば、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘニン酸、リグノセリン酸等の飽和脂肪酸;ソルビン酸、エライジン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、セトレイン酸、エルカ酸、リシノール酸等の不飽和脂肪酸が挙げられる。これらの中でハイドロタルサイト類化合物との反応性や、粒子の安定性、分散性、入手しやすさ、コストの点でステアリン酸とパルミチン酸の混合酸が好ましい。   Examples of fatty acids include saturated fatty acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid; sorbic acid, elaidic acid, palmitoleic acid, oleic acid And unsaturated fatty acids such as linoleic acid, linolenic acid, cetreic acid, erucic acid, and ricinoleic acid. Among these, a mixed acid of stearic acid and palmitic acid is preferable in terms of reactivity with the hydrotalcite compound, particle stability, dispersibility, availability, and cost.

脂肪酸の金属塩としては、例えば、ラウリン酸カリウム、ミリスチン酸カリウム、パルミチン酸カリウム、パルミチン酸ナトリウム、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸カリウム、ステアリン酸コバルト(II)、ステアリン酸錫(IV)、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸鉛(II)等の飽和脂肪酸塩;オレイン酸亜鉛、オレイン酸カリウム、オレイン酸コバルト(II) 、オレイン酸ナトリウム等の不飽和脂肪酸塩が挙げられる。   Examples of metal salts of fatty acids include potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, barium stearate, calcium stearate, zinc stearate, potassium stearate, cobalt (II) stearate, tin stearate (IV), saturated fatty acid salts such as sodium stearate, potassium stearate, lead (II) stearate; unsaturated fatty acid salts such as zinc oleate, potassium oleate, cobalt (II) oleate, sodium oleate It is done.

また、本発明のハイドロタルサイト類化合物の表面処理時または以前に、既述の脂肪酸に、リチウム、ナトリウム、カリウム、ルビジウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、亜鉛、アルミニウム、鉛、コバルト、錫、アシル基を持つ化合物を混合・反応させて、脂肪酸の金属塩を適宜作製しても良い。
以上の脂肪酸の金属塩の中でもハイドロタルサイト類化合物との反応性や、粒子の安定性、分散性、入手しやすさ、コストの点でステアリン酸ないしパルミチン酸を主成分とする混合石鹸の使用が好ましい。
In addition, during or before the surface treatment of the hydrotalcite compound of the present invention, the above-described fatty acids include lithium, sodium, potassium, rubidium, beryllium, magnesium, calcium, strontium, barium, zinc, aluminum, lead, cobalt, A metal salt of a fatty acid may be appropriately prepared by mixing and reacting a compound having tin and an acyl group.
Among the above fatty acid metal salts, use of mixed soaps mainly composed of stearic acid or palmitic acid in terms of reactivity with hydrotalcite compounds, particle stability, dispersibility, availability, and cost Is preferred.

シランカップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニル・トリス(β−メトキシエトキシ)シラン、γ−クロロプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ユレイドプロピルトリエトトキシシラン等が挙げられる。これらの中でハイドロタルサイト類化合物との反応性や安定性、樹脂との親和性向上、コストの点で、ビニルトリメトキシシラン、及びβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシランの使用が好ましい。   Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyl tris (β-methoxyethoxy) silane, γ-chloropropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane. , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane and the like. Among these, vinyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, in terms of reactivity and stability with hydrotalcite compounds, improved affinity with resin, and cost, The use of 3-methacryloxypropyltrimethoxysilane is preferred.

上記の表面処理剤は単独で又は必要に応じ2種以上組み合わせて用いられる。また、表面処理剤の処理量は、本発明で得られるハイドロタルサイト類化合物が使用される樹脂の種類・用途によって適宜選択されるが、例えばポリ塩化ビニル系樹脂の安定剤として使用される場合、通常、ポリ塩化ビニル系樹脂100重量%に対して0.01〜15重量%、好ましくは0.05〜8重量%である。
表面処理剤の処理量が、0.01重量%未満の場合、表面処理剤の効能が認められず、コストアップを招くだけで好ましくない。表面処理量が15重量%を超えると、例えばポリ塩化ビニル樹脂に配合する際、脂肪酸金属塩等は外部滑剤としても働くために作業が不可能になる上、脂肪酸やカップリング剤がブリードやブルーミングと呼ばれる現象を発生しやすくなり、更に成形体を作製した場合に樹脂の強度が著しい低下し、場合によっては成形体としての形状すら保てなくなるため好ましくない。
Said surface treating agent is used individually or in combination of 2 or more types as needed. Further, the amount of the surface treatment agent to be treated is appropriately selected depending on the type and use of the resin in which the hydrotalcite compound obtained in the present invention is used. For example, when used as a stabilizer for a polyvinyl chloride resin. Usually, it is 0.01 to 15% by weight, preferably 0.05 to 8% by weight, based on 100% by weight of the polyvinyl chloride resin.
When the treatment amount of the surface treatment agent is less than 0.01% by weight, the effect of the surface treatment agent is not recognized, and it is not preferable because it only increases the cost. If the surface treatment amount exceeds 15% by weight, for example, when blended with polyvinyl chloride resin, fatty acid metal salts and the like work as external lubricants, making it impossible to work, and fatty acids and coupling agents are bleed and blooming. This is not preferable because a phenomenon referred to as “e.g.” tends to occur, and when a molded body is produced, the strength of the resin is significantly lowered, and even the shape of the molded body cannot be maintained in some cases.

本発明のハイドロタルサイト類化合物は、上述のハイドロタルサイト類化合物又は表面処理ハイドロタルサイト類化合物に酸解離定数が1.5〜3.5の範囲にある酸、その塩から選択される封鎖・補足剤Aと、マグネシウムに対する一次のキレート安定化定数が6以上のキレート剤からなる封鎖・捕捉剤Bの何れか、又は両方を粒子表面に処理(被覆)させることが好ましい。   The hydrotalcite compound of the present invention is a sequestering / supplementary agent A selected from the above hydrotalcite compounds or surface-treated hydrotalcite compounds having an acid dissociation constant in the range of 1.5 to 3.5, and salts thereof. In addition, it is preferable to treat (coat) the particle surface with either or both of the blocking / capturing agent B composed of a chelating agent having a primary chelate stabilization constant of 6 or more with respect to magnesium.

酸解離定数が1.5〜3.5の範囲にある酸として、例えば、無機酸としてはホスホン酸(亜リン酸)、亜硫酸、o−リン酸、ヒ酸、亜塩素酸、亜テルル酸、亜セレン酸、亜硝酸、フッ化水素酸、シアン酸が挙げられる。これらの中で、毒性、安定性、環境負荷軽減への配慮、水への溶解性、入手のしやすさなどの点から、亜硫酸とホスホン酸が好ましい。   Examples of acids having an acid dissociation constant in the range of 1.5 to 3.5 include inorganic acids such as phosphonic acid (phosphorous acid), sulfurous acid, o-phosphoric acid, arsenic acid, chlorous acid, telluric acid, selenious acid, Examples include nitrous acid, hydrofluoric acid, and cyanic acid. Of these, sulfurous acid and phosphonic acid are preferred from the viewpoints of toxicity, stability, consideration for reducing environmental burden, solubility in water, availability, and the like.

酸解離定数が1.5〜3.5の範囲にある有機酸としては、アセチルサリチル酸、イノシン、1,10−フェナントロリン、2,2−ビビリジン、2−クロロプロピオン酸、2−フランカルボン酸、3,4−ジヒドロキシフェニルアラニン、4−ヒドロキシプロリン、4−メチルピラゾール、DL−ロイシン、(d、RR)−酒石酸、L−2,4−ジアミンノ酪酸、L−アラニル−L−アラニン、L−アラニル−L−フェニルアラニン、L−アラニルグリシルグリシルグリシン、(L,β)−アラニルグリシルグリシン、(L,β)−アラニルグリシン、L−ヒスチジルグリシン、L−フェニルアラニルグリシン、L−プロリルグリシン、L−ロイシル−L−チロシン、2−アミノ安息香酸、3−アミノ安息香酸、4−アミノ安息香酸、m−ニトリロアニリン、2−ニトロ安息香酸、3−ニトロ安息香酸、4−ニトロ安息香酸、2−ベンゼンジカルボン酸、3−ベンゼンジカルボン酸、N,N’−ジメチルグリシン、N,N’−ジメチルシステイン、2−クロロアニリン、4−クロロアニリン、2−クロロ安息香酸、2−フルオロ安息香酸、2−ブロモ安息香酸、2−ヨード安息香酸、4−アニリンスルホン酸、γ−L−グルタミル−L−システイニルグリシン、アスパラギン、アスパラギン酸、アデノシン、アラニン、アルギニン、イソニコチン酸、イソロイシン、オキサロ酢酸、オルニチン、グアニン、グアニシン、クエン酸、グリオキシル酸、グリシル−DL−ヒスチジルグリシン、グリシル−L−アラニン、グリシル−L−ヒスチジン、グリシル−L−ロイシン、グリシルグリシル−L−アラニン、グリシルグリシル−L−ヒスチジン、グリシルグリシルグリシル−L−ヒスチジン、グリシルグリシルグリシルグリシン、グリシルグリシルグリシン、グリシルグリシン、グリシン、グルタミン、クロロ酢酸、サルコシルグリシン、サルコシン、シアノ酢酸、システイン、シトルリン、セリン、チオグリコール酸、チロシン、トリエチレンテトラミン、トリプトファン、トレオニン、ニコチンアミド、ニコチン酸、バリン、ヒスチジン、ヒポキサンチン、ピラゾール、ピルビン酸、フェニキシ酢酸、フェニルアラニン、フマル酸、プリン、フルオロ酢酸、プロモ酢酸、プロリン、マレイン酸、マロン酸、マンデル酸、メチオニン、メルカプト酢酸、ヨード酢酸、リシン、リンゴ酸、ロイシンが挙げられる。これらの中で毒性、安定性、環境負荷軽減への配慮、水への溶解性、入手のしやすさなどの点から、2-アミノ安息香酸、2-クロロ安息香酸、2-フルオロ安息香酸、サリチル酸、マレイン酸、マンデル酸、リンゴ酸、2-ニトロ安息香酸、2-ブロモ安息香酸が好ましく、中でもサリチル酸とマレイン酸が好適である。   Examples of organic acids having an acid dissociation constant in the range of 1.5 to 3.5 include acetylsalicylic acid, inosine, 1,10-phenanthroline, 2,2-biviridine, 2-chloropropionic acid, 2-furancarboxylic acid, 3,4-dihydroxy Phenylalanine, 4-hydroxyproline, 4-methylpyrazole, DL-leucine, (d, RR) -tartaric acid, L-2,4-diaminenobutyric acid, L-alanyl-L-alanine, L-alanyl-L-phenylalanine, L -Alanylglycylglycylglycine, (L, β) -alanylglycylglycine, (L, β) -alanylglycine, L-histidylglycine, L-phenylalanylglycine, L-prolylglycine, L -Leucyl-L-tyrosine, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, m-nitriloaniline, 2-nitrobenzoic acid, 3-nitrobenzoic acid, 4 Nitrobenzoic acid, 2-benzenedicarboxylic acid, 3-benzenedicarboxylic acid, N, N′-dimethylglycine, N, N′-dimethylcysteine, 2-chloroaniline, 4-chloroaniline, 2-chlorobenzoic acid, 2- Fluorobenzoic acid, 2-bromobenzoic acid, 2-iodobenzoic acid, 4-anilinesulfonic acid, γ-L-glutamyl-L-cysteinylglycine, asparagine, aspartic acid, adenosine, alanine, arginine, isonicotinic acid, Isoleucine, oxaloacetate, ornithine, guanine, guanine, citric acid, glyoxylic acid, glycyl-DL-histidylglycine, glycyl-L-alanine, glycyl-L-histidine, glycyl-L-leucine, glycylglycyl-L-alanine, Glycylglycyl-L-histidine, glycylglycylglycyl-L-histi Glycylglycylglycylglycine, glycylglycylglycine, glycylglycine, glycine, glutamine, chloroacetic acid, sarkosylglycine, sarcosine, cyanoacetic acid, cysteine, citrulline, serine, thioglycolic acid, tyrosine, triethylenetetramine, Tryptophan, threonine, nicotinamide, nicotinic acid, valine, histidine, hypoxanthine, pyrazole, pyruvic acid, phenoxyacetic acid, phenylalanine, fumaric acid, purine, fluoroacetic acid, promoacetic acid, proline, maleic acid, malonic acid, mandelic acid, methionine , Mercaptoacetic acid, iodoacetic acid, lysine, malic acid and leucine. Among these, 2-aminobenzoic acid, 2-chlorobenzoic acid, 2-fluorobenzoic acid, in terms of toxicity, stability, consideration for reducing environmental impact, solubility in water, availability, etc. Salicylic acid, maleic acid, mandelic acid, malic acid, 2-nitrobenzoic acid and 2-bromobenzoic acid are preferred, and salicylic acid and maleic acid are particularly preferred.

酸解離定数が1.5〜3.5の範囲にある無機酸の塩として、無機酸では亜リン酸カルシウム、亜リン酸水素二ナトリウム、亜リン酸二ナトリウム、亜硫酸水素アンモニウム、亜硫酸水素ナトリウム、亜硫酸バリウム、亜硫酸ビスマス、o−リン酸亜鉛、o−リン酸アルミニウム、o−リン酸アンモニウムコバルト、o−リン酸一アンモニウム,o−リン酸一カリウム、o−リン酸一水素カルシウム、o−リン酸一ナトリウム、o−リン酸インジウム、o−リン酸エストラムスチン二ナトリウム、o−リン酸銀、o−リン酸一クロム(III)、o−リン酸コバルト(II)、o−リン酸サマリウム(III)、o−リン酸三カリウム、o−リン酸三カルシウム、o−リン酸α三カルシウム、o−リン酸β三カルシウム、o−リン酸三ナトリウム、o−リン酸三マグネシウム、o−リン酸三リチウム、o−リン酸水素アンモニウムナトリウム、o−リン酸水素カリウム、o−リン酸水素カルシウム、o−リン酸水素ナトリウム、o−リン酸水素二アンモニウム、o−リン酸水素二カリウム、o−リン酸水素二ナトリウム、o−リン酸水素バリウム、o−リン酸水素マグネシウム、o−リン酸セリウム(II)、o−リン酸鉄(III)、o−リン酸銅(II)、o−リン酸ナトリウム、o−リン酸二水素アンモニウム、o−リン酸二水素カリウム、o−リン酸二水素カルシウム、o−リン酸二水素ナトリウム、o−リン酸二水素マンガン(II)、o−リン酸二水素リチウム、o−リン酸ネオジウム(III)、o−リン酸ビスマス(III)、o−リン酸ヒドロキシアミン、o−リン酸プラセオジム(III)、o−リン酸ペンタクロリド、o−リン酸ホウ素、o−リン酸マグネシウムアンモニウム、o−リン酸マグネシウム、o−リン酸マンガン(II)、o−リン酸マンガン(III)、o−リン酸四カルシウム、o−リン酸ランタン(III)、ヒ酸カリウム、ヒ酸カルシウム、ヒ酸水素二ナトリウム、ヒ酸二水素セシウム、亜塩素酸カリウム、亜塩素酸銅、亜塩素酸ナトリウム、亜塩素酸バリウム、亜テルル酸カドミウム、亜テルル酸カリウム、亜テルル酸ナトリウム、亜セレン酸カリウム、亜セレン酸ナトリウム、亜セレン酸バリウム、亜硝酸カリウム、亜硝酸銀、亜硝酸ジアミンパラジウム(II)、亜硝酸ジアンミン白金アンモニウム、亜硝酸ナトリウム、フッ化亜鉛、フッ化アルミニウム、フッ化アンチモン、フッ化アンモニウム、フッ化イッテルビウム、フッ化エルビウム、フッ化カドニウム、フッ化カリウム、フッ化カリウムチタン、フッ化カルシウム、フッ化コバルト(II)、フッ化コバルト(III)、フッ化サマリウム、フッ化酸化イッテルビウム、フッ化酸化テルビウム、フッ化ジスプロビウム、フッ化水銀(II)、フッ化水素アンモニウム、フッ化水素カリウム、フッ化水素ナトリウム、フッ化スカンジウム、フッ化スズ(II)、フッ化ストロンチウム、フッ化セシウム、フッ化セリウム(III)、フッ化タンタル(V)、フッ化チタンカリウム、フッ化ツリウム、フッ化鉄(III)、フッ化テルビウム(III)、フッ化銅(II)、フッ化ナトリウム、フッ化鉛(II)、フッ化ニッケル(II)、フッ化ネオジム(II)、フッ化バリウム、フッ化ビスマス(III)、フッ化プラセオジム(III)、フッ化ホルミウム、フッ化マグネシウム、フッ化マンガン(III)、フッ化モリブデン(VI)、フッ化ユウロビウム、フッ化ランタン、フッ化リチウム、フッ化ルテチウム、フッ化ルビジウム、シアン酸アンモニウム、シアン酸カリウム、シアン酸銀、シアン酸ナトリウムが挙げられる。これらの中で毒性、安定性、環境負荷軽減への配慮、水への溶解性、入手のしやすさなどの点から、亜硫酸ナトリウムとホスホン酸ナトリウムが好ましい。   As inorganic acid salts with acid dissociation constants in the range of 1.5 to 3.5, inorganic acids include calcium phosphite, disodium hydrogen phosphite, disodium phosphite, ammonium hydrogen sulfite, sodium hydrogen sulfite, barium sulfite, bismuth sulfite, o-zinc phosphate, o-aluminum phosphate, o-ammonium cobalt phosphate, o-monoammonium phosphate, o-monopotassium phosphate, o-calcium monohydrogen phosphate, o-monosodium phosphate, o- Indium phosphate, o-estramustine phosphate disodium, o-silver phosphate, o-chromium monochromate (III), o-cobalt phosphate (II), o-samarium phosphate (III), o- Tripotassium phosphate, o-tricalcium phosphate, o-tricalcium phosphate, β-tricalcium phosphate, trisodium phosphate, triphosphate Nesium, o-trilithium phosphate, o-sodium ammonium hydrogen phosphate, o-potassium hydrogen phosphate, o-calcium hydrogen phosphate, o-sodium hydrogen phosphate, o-diammonium hydrogen phosphate, o-phosphate Dipotassium hydrogen, disodium o-phosphate, o-barium hydrogen phosphate, o-magnesium hydrogen phosphate, o-cerium (II) phosphate, o-iron (III) phosphate, o-copper phosphate ( II), o-sodium phosphate, o-ammonium dihydrogen phosphate, o-potassium dihydrogen phosphate, o-calcium dihydrogen phosphate, o-sodium dihydrogen phosphate, o-manganese dihydrogen phosphate (II ), Lithium dihydrogen phosphate, neodymium (III) phosphate, bismuth (III) phosphate, hydroxyamine phosphate, praseodymium (III) phosphate, o-phosphate pen Chloride, o-boron phosphate, o-magnesium ammonium phosphate, o-magnesium phosphate, o-manganese phosphate (II), o-manganese phosphate (III), o-tetracalcium phosphate, o-phosphate Lanthanum (III), potassium arsenate, calcium arsenate, disodium hydrogen arsenate, cesium dihydrogen arsenate, potassium chlorite, copper chlorite, sodium chlorite, barium chlorite, cadmium tellurite, Potassium tellurite, sodium tellurite, potassium selenite, sodium selenite, barium selenite, potassium nitrite, silver nitrite, diamine palladium palladium (II), diammonium platinum ammonium nitrite, sodium nitrite, fluorine Zinc fluoride, aluminum fluoride, antimony fluoride, ammonium fluoride, ytterbium fluoride, fluoride fluoride Bium, cadmium fluoride, potassium fluoride, potassium fluoride titanium, calcium fluoride, cobalt fluoride (II), cobalt fluoride (III), samarium fluoride, ytterbium fluoride oxide, terbium fluoride oxide, dysprobium fluoride , Mercury fluoride (II), ammonium hydrogen fluoride, potassium hydrogen fluoride, sodium hydrogen fluoride, scandium fluoride, tin fluoride (II), strontium fluoride, cesium fluoride, cerium fluoride (III), fluorine Tantalum (V), Titanium fluoride potassium, Thulium fluoride, Iron fluoride (III), Terbium fluoride (III), Copper fluoride (II), Sodium fluoride, Lead fluoride (II), Nickel fluoride (II), neodymium fluoride (II), barium fluoride, bismuth fluoride (III), praseodymium fluoride (III), holmium fluoride, Magnesium fluoride, manganese fluoride (III), molybdenum fluoride (VI), eurobium fluoride, lanthanum fluoride, lithium fluoride, lutetium fluoride, rubidium fluoride, ammonium cyanate, potassium cyanate, silver cyanate, Examples include sodium cyanate. Of these, sodium sulfite and sodium phosphonate are preferred from the viewpoints of toxicity, stability, consideration for reducing environmental burden, solubility in water, and availability.

酸解離定数が1.5〜3.5の範囲にある有機酸の塩として、例えばサリチル酸亜鉛、サリチル酸アンモニウム、サリチル酸カルシウム、サリチル酸銀、サリチル酸ナトリウム、サリチル酸マグネシウム、サリチル酸リチウム等のサリチル酸塩、モノクロロ酢酸ナトリウムといったモノクロロ酢酸塩、乳酸亜鉛、乳酸アルミニウム、乳酸アンモニウム、乳酸カルシウム、乳酸銀、乳酸ナトリウム、乳酸ニッケル、乳酸バリウム、乳酸マグネシウム、乳酸マグネシウム、乳酸リチウムなどの乳酸塩が挙げられる。これらの中でサリチル酸亜鉛や乳酸マグネシウムが好ましい。   Examples of organic acid salts having an acid dissociation constant in the range of 1.5 to 3.5 include, for example, zinc salicylate, ammonium salicylate, calcium salicylate, silver salicylate, sodium salicylate, magnesium salicylate, monosalicytic acid salt such as sodium salicylate, and monochloroacetic acid sodium salt. And lactates such as zinc lactate, aluminum lactate, ammonium lactate, calcium lactate, silver lactate, sodium lactate, nickel lactate, barium lactate, magnesium lactate, magnesium lactate and lithium lactate. Of these, zinc salicylate and magnesium lactate are preferred.

なお、上記の酸解離定数が1.5〜3.5の範囲にある酸とその塩については単独で又は必要に応じ、2種以上組み合わせて用いられるが、2種以上を組み合わせて使用するのがより好ましく、特に無機酸塩と有機酸の2種類を併用するのが更に好ましい。   In addition, about the acid and its salt in the range of said acid dissociation constant 1.5-3.5, it is used individually or in combination of 2 or more types as needed, but it is more preferable to use in combination of 2 or more types, In particular, it is more preferable to use two kinds of inorganic acid salt and organic acid in combination.

上記の酸解離定数が1.5未満もしくは3.5を超える酸やその塩を例えばポリ塩化ビニル樹脂に配合した場合、着色や耐候性劣化を起こしやすくなるため好ましくない。
これらのメカニズムは明らかでないが、酸解離定数が1.5未満の酸やその塩の場合、それらがハイドロタルサイト類化合物表面と強力に反応して、その結晶構造の一部を損ねてハイドロタルサイト類化合物からの金属イオンの脱離を促し、光安定剤や酸化防止剤等との反応機会を増やすことが原因と推測している。
酸解離定数が3.5を超える酸やその塩の場合、ハイドロタルサイト類化合物の懸濁液に添加しても、十分にハイドロタルサイト類化合物の表面に処理もしくは被覆できずにハイドロタルサイト類化合物製造時に脱離して系外に排出されたり、例えばポリ塩化ビニル樹脂にそれらの酸や塩とハイドロタルサイト類化合物を別個に配合することと変わりなくなるため、それらが本発明のハイドロタルサイト類化合物の表面を封鎖、もしくは脱離する金属イオンと効率的に反応できず、光安定剤や酸化防止剤等との反応を妨げることが出来なくなることが原因と推測している。
When an acid or a salt thereof having an acid dissociation constant of less than 1.5 or more than 3.5 is blended in, for example, a polyvinyl chloride resin, coloring or weather resistance deterioration is liable to occur, which is not preferable.
Although these mechanisms are not clear, in the case of acids and salts thereof having an acid dissociation constant of less than 1.5, they react strongly with the surface of the hydrotalcite compound, and part of its crystal structure is impaired, resulting in hydrotalcite compounds. It is presumed that this is caused by promoting the elimination of metal ions from the compound and increasing opportunities for reaction with light stabilizers, antioxidants and the like.
If the acid dissociation constant exceeds 3.5 or an acid salt, even if it is added to the suspension of the hydrotalcite compound, the surface of the hydrotalcite compound cannot be sufficiently treated or coated, so that the hydrotalcite compound Since it is eliminated during production and discharged out of the system, for example, it is no different from separately adding those acids and salts and hydrotalcite compounds to polyvinyl chloride resin, so that they are hydrotalcite compounds of the present invention It is presumed that the surface cannot be efficiently reacted with the metal ions that are sequestered or desorbed, and the reaction with the light stabilizer or the antioxidant cannot be prevented.

上記の酸解離定数が1.5〜3.5の範囲にある酸とその塩の添加量については、ハイドロタルサイト類化合物に対して各々0.01〜3.0重量%が好ましい。
ハイドロタルサイト類化合物に対するそれらの添加量が0.01重量%未満の場合、無添加の場合と変わりなく本発明の効能が現れない。一方、3.0重量%を超えると、例えばポリ塩化ビニル樹脂への配合時や加工成形時に加熱した際、それら自体が黒化や焼けなどの原因となる場合や活性を付与しすぎてハンドリングを悪化させる場合があり好ましくない。
About the addition amount of the acid which has said acid dissociation constant in the range of 1.5-3.5, and its salt, 0.01-3.0 weight% is preferable with respect to a hydrotalcite compound, respectively.
When the addition amount of the hydrotalcite compound is less than 0.01% by weight, the effect of the present invention does not appear as in the case of no addition. On the other hand, if it exceeds 3.0% by weight, for example, when it is heated during blending with polyvinyl chloride resin or when it is processed and molded, it may cause blackening or burnt itself, or too much activity may be imparted to deteriorate handling. In some cases, it is not preferable.

マグネシウムに対する一次のキレート安定化定数が6以上のキレート剤としては、例えば、2−ヒドロキシベンジルイミノジ酢酸、ホスホノメチルイミノジ酢酸、ホスホノエチルイミノジ酢酸などのイミノジ酢酸誘導体、N’−(オルトヒドロキシシクロヘキシル)エチレンジアミントリ酢酸等のトリ酢酸類、エチレンジアミンテトラ酢酸、エチレンジアミン−N,N’−ジ酢酸−N,N’−ジプロピオン酸、エチレンジアミン−N,N’−ジ酢酸−N,N’−ジ(2−プロピオン酸)、1,2−プロピレンジアミンテトラ酢酸、トリメチレンジアミンテトラ酢酸、1,2−シクロペンタンジアミンテトラ酢酸、trans−シクロヘキサン−1,2−ジアミンテトラ酢酸、オルトフェニレンジアミンテトラ酢酸、ビス(イミノジ酢酸エチル)メチルアミン、トリメチレンテトラアミンヘキサ酢酸等のエチレンジアミンテトラ酢酸類、ヒドロキシエチリジエンジホスホン酸、ニトロトリ(メチレンホスホン酸)等のホスホン酸類が挙げられ、単独で又は2種以上組み合わせて用いられる。これらの中でヒドロキシエチリジエンジホスホン酸が好適である。
マグネシウムに対する一次のキレート安定化定数の上限については特に制限されないが、該安定度定数の値が大きくなるほど、分子の構造が複雑、かつ大きくなるためコストがかさむうえに、例えば塩素含有樹脂に配合した際に系内へ想定していない悪影響を及ぼす可能性があるため、通常、8程度が好ましく、7程度がより好ましい。
Examples of the chelating agent having a primary chelate stabilization constant for magnesium of 6 or more include iminodiacetic acid derivatives such as 2-hydroxybenzyliminodiacetic acid, phosphonomethyliminodiacetic acid, phosphonoethyliminodiacetic acid, N ′-( Orthohydroxycyclohexyl) Triacetic acids such as ethylenediaminetriacetic acid, ethylenediaminetetraacetic acid, ethylenediamine-N, N'-diacetic acid-N, N'-dipropionic acid, ethylenediamine-N, N'-diacetic acid-N, N ' -Di (2-propionic acid), 1,2-propylenediaminetetraacetic acid, trimethylenediaminetetraacetic acid, 1,2-cyclopentanediaminetetraacetic acid, trans-cyclohexane-1,2-diaminetetraacetic acid, orthophenylenediaminetetraacetate Acetic acid, bis (ethyl iminodiacetate) methylamine, trimethylenetetraamine Ethylenediaminetetraacetic acid such as Sa acetate, hydroxyethyl lysine engine phosphonic acid, include phosphonic acids such as nitrilotriacetic (methylene phosphonic acid), used alone or in combination. Of these, hydroxyethylidiene diphosphonic acid is preferred.
The upper limit of the primary chelate stabilization constant for magnesium is not particularly limited, but the larger the stability constant, the more complicated and large the structure of the molecule increases the cost. For example, it is added to a chlorine-containing resin. In some cases, about 8 is preferable, and about 7 is more preferable because there is a possibility of unexpected adverse effects on the system.

マグネシウムに対する一次のキレート安定化定数が6未満のキレート剤を例えばポリ塩化ビニル樹脂に配合した場合、着色や耐候性劣化を起こすため好ましくない。
これらのメカニズムは明らかでないが、マグネシウムに対する一次のキレート安定化定数が6未満の場合、ハイドロタルサイト類化合物として例えばポリ塩化ビニル樹脂に配合すると、キレート能力の低さからハイドロタルサイト類化合物から脱離して遊離する金属イオンと効率よく反応できず、光安定剤や酸化防止剤、紫外線吸収剤等の各種安定剤との反応を妨げることが出来なくなることが原因と推測している。
When a chelating agent having a primary chelate stabilization constant with respect to magnesium of less than 6 is blended in, for example, a polyvinyl chloride resin, coloring and weather resistance deterioration are caused, which is not preferable.
Although these mechanisms are not clear, when the first-order chelate stabilization constant for magnesium is less than 6, adding hydrotalcite compounds to, for example, a polyvinyl chloride resin as a hydrotalcite compound removes it from the hydrotalcite compound because of its low chelating ability. It is presumed that this is because the metal ions that are separated and released cannot react efficiently, and the reaction with various stabilizers such as a light stabilizer, an antioxidant, and an ultraviolet absorber cannot be prevented.

マグネシウムに対する一次のキレート安定化定数が6以上のキレート剤の添加量について、ハイドロタルサイト類化合物に対して各々0.01〜3.0重量%が好ましい。
ハイドロタルサイト類化合物に対するそれらの添加量が0.01重量%未満の場合、無添加の場合と変わりなく本発明の効能が現れない。一方、3.0重量%を超えると、例えばポリ塩化ビニル樹脂への配合時や加工成形時に加熱した際、それら自体が黒化や焼けなどの原因となる場合があり好ましくない。
With respect to the addition amount of the chelating agent having a primary chelate stabilization constant of 6 or more with respect to magnesium, 0.01 to 3.0% by weight with respect to the hydrotalcite compound is preferable.
When the addition amount of the hydrotalcite compound is less than 0.01% by weight, the effect of the present invention does not appear as in the case of no addition. On the other hand, if it exceeds 3.0% by weight, for example, when it is heated at the time of blending into a polyvinyl chloride resin or at the time of processing molding, it may cause blackening or burning, which is not preferable.

本発明のハイドロタルサイト類化合物は、上述の条件を満足するハイドロタルサイト類化合物が得られる方法であればよく、その方法や条件は何等制限されない。基本的には公知の方法で製造することが出来るが天然品でも問題ない(例えば特公昭46-2280号公報や特公昭47-32198号公報)。
また、上述の封鎖・捕捉剤A、Bと表面処理剤の添加・処理順序は、何れを先にしても良く、ハンドリングで決定されるが、表面処理剤を最初にすると好ましい傾向にある。
封鎖・捕捉剤A、Bと表面処理剤の添加・処理順序は、対象とする塩素含有樹脂や用途によっては物性に差がでるが、例えば塩化ビニル樹脂等に用いる場合は、先に表面処理剤で表面処理することが好ましい。
The hydrotalcite compound of the present invention may be a method by which a hydrotalcite compound satisfying the above-described conditions can be obtained, and the method and conditions are not limited at all. Basically, it can be produced by a known method, but natural products are not problematic (for example, Japanese Patent Publication No. 46-2280 and Japanese Patent Publication No. 47-32198).
The order of addition / treatment of the above-described blocking / capturing agents A and B and the surface treatment agent may be determined first by handling, but it is preferable to use the surface treatment agent first.
The addition / treatment order of the blocking / capturing agents A and B and the surface treatment agent may vary in physical properties depending on the target chlorine-containing resin and application, but when used for, for example, vinyl chloride resin, the surface treatment agent first. It is preferable to surface-treat with.

本発明の第二は、本発明のハイドロタルサイト類化合物を配合してなることを特徴とする樹脂組成物に関する。
本発明のハイドロタルサイト類化合物は、通常、樹脂100重量部に対して0.001〜10重量部、好ましくは0.01〜5重量部配合される。
The second of the present invention relates to a resin composition comprising the hydrotalcite compound of the present invention.
The hydrotalcite compound of the present invention is usually blended in an amount of 0.001 to 10 parts by weight, preferably 0.01 to 5 parts by weight per 100 parts by weight of the resin.

本発明のハイドロタルサイト類化合物が使用される樹脂は、通常、成形品として使用されるものであればよいが、通常、熱可塑性樹脂が好ましく用いられる。
例えば、ポリエチレン、ポリプロピレン、エチレン/プロピレン重合体、ポリブテン、ポリ−(4−メチルペンテン−1)等の如きC2〜C8のオレフィン(αオレフィン)の重合体もしくは共重合体のようなポリオレフィン系樹脂や、これらオレフィンとジエンの共重合体類、エチレン−アクリレート共重合体、ポリスチレン、ABS樹脂、AAS樹脂、AS樹脂、MBS樹脂、エチレン−塩化ビニル共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂、エチレン−塩化ビニル−酢酸ビニル共重合体樹脂、ポリ塩化ビニリデン、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、塩化ビニル−プロピレン共重合体、ポリ酢酸ビニル、フェノキシ樹脂、ポリアセタール、ポリアミド、ポリイミド、ポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびメタクリロ系の樹脂等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
The resin in which the hydrotalcite compound of the present invention is used may be any resin as long as it is usually used as a molded product, but usually a thermoplastic resin is preferably used.
For example, polyolefins such as polymers or copolymers of C 2 to C 8 olefins (α-olefins) such as polyethylene, polypropylene, ethylene / propylene polymers, polybutene, poly- (4-methylpentene-1), etc. Resins, copolymers of these olefins and dienes, ethylene-acrylate copolymers, polystyrene, ABS resins, AAS resins, AS resins, MBS resins, ethylene-vinyl chloride copolymer resins, ethylene-vinyl acetate copolymers Resin, ethylene-vinyl chloride-vinyl acetate copolymer resin, polyvinylidene chloride, polyvinyl chloride, chlorinated polyethylene, chlorinated polypropylene, vinyl chloride-propylene copolymer, polyvinyl acetate, phenoxy resin, polyacetal, polyamide, polyimide , Polycarbonate, polysulfone, polyphenylene oxa De, polyphenylene sulfide, polyethylene terephthalate, include polybutylene terephthalate and methacrylonitrile based resin or the like, and these are used singly or in combination of two or more, if necessary.

これらの熱可塑性樹脂のうち、本発明のハイドロタルサイト類化合物による熱劣化防止効果および機械強度保持特性の優れた例としては、ポリオレフィンまたはその共重合体、およびハロゲン含有樹脂であり、具体的には、ポリプロピレンホモポリマー、エチレンプロピレン共重合体の如きポリプロピレン系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、EEA(エチレンエチルアクリレート樹脂)、EVA(エチレンビニルアセテート樹脂)、EMA(エチレンアクリルメチル共重合樹脂)、EAA(エチレンアクリル酸共重合樹脂)、超高分子ポリエチレンの様なポリエチレン系樹脂、およびポリブデン、ポリ(4−メチルペンテン−1)等のC2〜C6のポリオレフィンの重合体もしくは共重合体等が挙げられる。
これらの中で、ポリエチレン、ポリプロピレン、ポリブデン、ポリ(4−メチルペンテン−1)またはこれらの共重合体が特に好ましい。更にポリ乳酸樹脂、ポリブチレンサクシネート、ポリアミド11、ポリヒドロキシ酪酸等の生分解性プラスチックやバイオマスプラスチックも使用可能である。
Among these thermoplastic resins, examples of excellent thermal deterioration prevention effect and mechanical strength retention property by the hydrotalcite compound of the present invention are polyolefins or copolymers thereof, and halogen-containing resins, specifically Is polypropylene resin such as polypropylene homopolymer, ethylene propylene copolymer, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, EEA (ethylene ethyl acrylate resin), EVA (ethylene vinyl acetate) Resin), EMA (ethylene acrylic methyl copolymer resin), EAA (ethylene acrylic acid copolymer resin), polyethylene resins such as ultra-high molecular weight polyethylene, and C 2 such as polybutene and poly (4-methylpentene-1) polymers or copolymers such as polyolefins -C 6 is It is below.
Among these, polyethylene, polypropylene, polybutene, poly (4-methylpentene-1) or a copolymer thereof is particularly preferable. Furthermore, biodegradable plastics such as polylactic acid resin, polybutylene succinate, polyamide 11 and polyhydroxybutyric acid and biomass plastics can also be used.

これらのポリオレフィン樹脂は、チーグラー系の重合触媒に由来するハロゲンをその樹脂中に含有するが、本発明のハイドロタルサイト類化合物がそれらハロゲンの吸収・受酸に極めて優れていることから、そのハロゲンが原因となって生じる熱劣化の抑制効果が優れている。
また、ポリ塩化ビニル樹脂もしくはその共重合体に対しても本発明のハイドロタルサイト類化合物は、同様の理由で熱劣化の抑制効果が優れている。
These polyolefin resins contain halogens derived from Ziegler-based polymerization catalysts in the resins. However, since the hydrotalcite compounds of the present invention are extremely excellent in absorption and acid reception of these halogens, The effect of suppressing the thermal degradation caused by is excellent.
In addition, the hydrotalcite compound of the present invention is excellent in the effect of suppressing thermal deterioration for the same reason with respect to a polyvinyl chloride resin or a copolymer thereof.

更にエポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂および尿素樹脂等の熱硬化性樹脂、および、EPDM、ブチルゴム、イソプレンゴム、SBR、NBR、クロロスルホン化ポリエチレン、NIR、ウレタンゴム、ブタジエンゴム、アクリルゴム、シリコーンゴムおよびフッ素ゴム等の合成ゴムにも適用することができる。   Furthermore, thermosetting resins such as epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin and urea resin, and EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, The present invention can also be applied to synthetic rubbers such as butadiene rubber, acrylic rubber, silicone rubber, and fluorine rubber.

本発明のハイドロタルサイト類化合物の樹脂への配合方法に特別な制約はなく、例えば上述の樹脂に用いられる各種安定剤や充填剤等をこれらの樹脂に配合する公知の方法と同様の手段で、他の樹脂配合剤と共に、もしくは別個に合成樹脂に可能な限り均一になるよう配合すればよい。
具体的には、リボンブレンダー、高速ミキサー、ニーダー、ペレタイザー、押し出し機等の公知の混合装置を利用して配合する方法や、ハイドロタルサイト類化合物を有効成分としてなる熱劣化剤の懸濁液を重合後のスラリーに攪拌しつつ添加して混合し乾燥する方法を挙げることができる。
There are no particular restrictions on the method of blending the hydrotalcite compounds of the present invention into the resin, and for example, by the same means as known methods for blending various stabilizers and fillers used in the above-mentioned resins into these resins. In addition to other resin compounding agents or separately, it may be compounded in the synthetic resin so as to be as uniform as possible.
Specifically, a method of blending using a known mixing device such as a ribbon blender, a high speed mixer, a kneader, a pelletizer, an extruder, or a suspension of a heat deterioration agent containing a hydrotalcite compound as an active ingredient. An example is a method of adding to the slurry after polymerization while stirring, mixing and drying.

本発明のハイドロタルサイト類化合物を含有する樹脂には、本発明の効能を損なわない限り、上記成分以外に他の添加剤を配合することが出来る。
このような添加剤としては、例えば酸化防止剤、帯電防止剤、顔料、発泡剤、可塑剤、充填剤、補強剤、難燃剤、架橋剤、光安定剤、紫外線吸収剤、滑剤、上記以外の無機系あるいは有機系安定剤が挙げられる。
The resin containing the hydrotalcite compound of the present invention may contain other additives in addition to the above components as long as the efficacy of the present invention is not impaired.
Examples of such additives include antioxidants, antistatic agents, pigments, foaming agents, plasticizers, fillers, reinforcing agents, flame retardants, crosslinking agents, light stabilizers, ultraviolet absorbers, lubricants, and the like other than the above. Inorganic or organic stabilizers may be mentioned.

以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれらの例によって何等限定されるものではない。
なお、本発明の実施例および比較例において、FT−IR分析で求められるハイドロタルサイト類化合物の水酸基の伸縮振動波数の代表ピークは、(株)日立ハイテクサイエンス製フーリエ変換赤外分光装置Nicolet is50 FT−IRで測定した。
ハイドロタルサイト類化合物の平均粒径Dp50および最大粒径Dmaxは、マイクロトラック・ベル(株)社製マイクロトラックMT3300EX II レーザー回折散乱式粒度分布計で測定した。
ハイドロタルサイト類化合物のBET比表面積Swは、MOUNTECHCo.,Ltd製Macsorb(登録商標) HM model−1201で測定した。
なお、ハイドロタルサイト類化合物の組成分析はICP−MS法で、CO3はCHN測定法で、(OH)2とH2O量は熱量分析法で測定・算出した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited at all by these examples.
In the examples and comparative examples of the present invention, the representative peak of the stretching vibration wave number of the hydroxyl group of the hydrotalcite compound obtained by FT-IR analysis is a Fourier transform infrared spectrometer Nicolet is50 manufactured by Hitachi High-Tech Science Co., Ltd. Measured by FT-IR.
The average particle size Dp 50 and the maximum particle size D max of the hydrotalcite compound were measured with a Microtrac MT3300EX II laser diffraction / scattering particle size distribution meter manufactured by Microtrac Bell.
The BET specific surface area Sw of the hydrotalcite-type compound is MOUNTECH Co. , Ltd., Macsorb (registered trademark) HM model-1201.
The compositional analysis of hydrotalcite compounds was measured and calculated by ICP-MS method, CO 3 by CHN measurement method, and (OH) 2 and H 2 O amounts by calorimetric analysis method.

実施例1
3.5mol/Lの塩化マグネシウム溶液と1.0mol/L硫酸アルミニウム溶液を混合し、マグネシウムとアルミニウムのモル比が4:1の混合液と5:2の混合液を作製し、各混合液を20℃に調整した。
次に、18.08mol/Lの水酸化ナトリウム溶液と0.51mol/Lの炭酸ナトリウム溶液を水酸基と炭酸基のモル比が6.4:1の混合液を作製し20℃に調整した。
上記マグネシウムとアルミニウムの混合比が4:1及び5:2の塩化マグネシウム−硫酸アルミニウム混合液の各々と、上記水酸化ナトリウム−炭酸ナトリウム混合液をpHが10.0±0.1に維持しつつ混合して反応を行い、2種類のハイドロタルサイト類化合物の反応液(前者を反応液A、後者を反応液Bと呼称する)を作製した。
次いで、反応液Aと反応液Bの順に、1:4の割合でオートクレーブに投入し、105rpmの回転数で攪拌下、160℃で12時間維持して水熱反応を行った後、室温まで放冷してハイドロタルサイト類化合物の懸濁液を得た。
得られたハイドロタルサイト類化合物の懸濁液をプレスフィルターで脱水、水道水で洗浄を行い、洗浄廃水が水道水の電気伝導度より20μS/cm高くなった時点で洗浄を終了した。
洗浄後のプレスケーキ状のハイドロタルサイト類化合物をギアオーブンで135℃・12時間乾燥後、コロフレックス解砕機で解砕して、表面処理ハイドロタルサイト類化合物の乾粉を得た。
ハイドロタルサイト類化合物の懸濁液の一部を採取して分析や測定を行ったところ、化学式がMg0.732Al0.268(OH)2(CO3)0.15・0.53H2Oで、BET比表面積Sw 14.4m2/g、平均粒径Dp50 1.93μm、最大粒子径DMax 10.09μmの粒子であった。
得られたハイドロタルサイト類化合物の反応条件と化学式、諸物性を表1に示す。
Example 1
A 3.5 mol / L magnesium chloride solution and a 1.0 mol / L aluminum sulfate solution are mixed to prepare a mixture of magnesium and aluminum at a molar ratio of 4: 1 and 5: 2, and each mixture is kept at 20 ° C. Adjusted.
Next, a 18.08 mol / L sodium hydroxide solution and a 0.51 mol / L sodium carbonate solution were prepared in a mixed solution having a molar ratio of hydroxyl group to carbonate group of 6.4: 1 and adjusted to 20 ° C.
Each of the above magnesium and aluminum mixing ratios of 4: 1 and 5: 2 is mixed with each of the magnesium chloride-aluminum sulfate mixed liquid and the above sodium hydroxide-sodium carbonate mixed liquid while maintaining the pH at 10.0 ± 0.1 to react. Then, a reaction solution of two types of hydrotalcite compounds (the former is called the reaction solution A and the latter is called the reaction solution B) was prepared.
Next, the reaction solution A and the reaction solution B were put into the autoclave in the ratio of 1: 4 in the order, and the mixture was stirred at 105 rpm and maintained at 160 ° C. for 12 hours, followed by hydrothermal reaction, and then released to room temperature. It was cooled to obtain a hydrotalcite compound suspension.
The obtained suspension of hydrotalcite compound was dehydrated with a press filter and washed with tap water, and the washing was terminated when the washing wastewater became 20 μS / cm higher than the electric conductivity of tap water.
The washed presscake-like hydrotalcite compound was dried in a gear oven at 135 ° C. for 12 hours and then pulverized with a Koroflex pulverizer to obtain a dry powder of a surface-treated hydrotalcite compound.
When a part of the suspension of hydrotalcite compound was collected and analyzed and measured, the chemical formula was Mg 0.732 Al 0.268 (OH) 2 (CO 3 ) 0.15 · 0.53H 2 O, BET specific surface area Sw The particles were 14.4 m 2 / g, average particle diameter Dp 50 1.93 μm, and maximum particle diameter D Max 10.09 μm.
Table 1 shows the reaction conditions, chemical formula and various physical properties of the obtained hydrotalcite compounds.

実施例2〜16,比較例1〜9
溶液反応時の塩化マグネシウム溶液と硫酸アルミニウム溶液との混合割合、それらの混合液と、水酸化ナトリウムと炭酸ナトリウムの混合液との反応時のpH、2種類のハイドロタルサイト反応液Aと反応液Bとの混合割合、水熱反応時の温度、時間、撹拌を表1に示すように変更した他は実施例1と同様に操作し、表1に示す化学式、物性のハイドロタルサイト類化合物の乾粉を得た。
Examples 2-16, Comparative Examples 1-9
Mixing ratio of magnesium chloride solution and aluminum sulfate solution at the time of solution reaction, pH at the time of reaction between the mixed solution and a mixed solution of sodium hydroxide and sodium carbonate, two types of hydrotalcite reaction solution A and reaction solution The mixing ratio with B, the temperature during hydrothermal reaction, the time, and stirring were changed as shown in Table 1, and the same operation as in Example 1 was carried out. A dry powder was obtained.

実施例17
実施例1で得られたハイドロタルサイト類化合物の洗浄後のプレスケーキ状のハイドロタルサイト類化合物を再び水で懸濁液化し、液温を80℃に調整し、該ハイドロタルサイト類化合物の懸濁液中のハイドロタルサイト類化合物に対して2.2重量%に当る、市販のステアリン酸ナトリウム65%−パルミチン酸ナトリウム35%の混合石鹸(工業用)を80℃の水に溶かしたのちに添加し、60分間攪拌してハイドロタルサイト類化合物の表面処理を行った。
その後、ハイドロタルサイト類化合物に対して0.18重量%のサリチル酸(A1:酸解離定数2.81)と0.18重量%の亜硫酸ナトリウム(A2:酸解離定数1.86)、0.2重量%のヒドロキシエチリジエンジホスホン酸(B:キレート安定化定数6.55)を各々水に溶解し、撹拌下、表面処理ハイドロタルサイト類化合物溶液にサリチル酸溶液、亜硫酸ナトリウム溶液、ヒドロキシエチリジエンジホスホン酸溶液の順に30分毎に添加してハイドロタルサイト化合物の懸濁液を得た。
得られた表面処理ハイドロタルサイト類化合物の懸濁液を再びプレスフィルターで脱水してケーキ状とし、次いでギアオーブンで135℃・12時間乾燥後、コロフレックス解砕機で解砕して、表面処理ハイドロタルサイト類化合物の乾粉を得た。
使用したハイドロタルサイト類化合物の表面処理剤や封鎖・捕捉剤種、処理・添加量を表2に示す。
Example 17
After washing the hydrotalcite compound obtained in Example 1, the presscake-like hydrotalcite compound is again suspended in water, the liquid temperature is adjusted to 80 ° C., and the hydrotalcite compound Add after dissolving a commercial soap of 65% sodium stearate-35% sodium palmitate in water at 80 ° C, equivalent to 2.2% by weight of the hydrotalcite compound in the suspension Then, the surface treatment of the hydrotalcite compound was performed by stirring for 60 minutes.
Thereafter, 0.18% by weight of salicylic acid (A1: acid dissociation constant 2.81), 0.18% by weight of sodium sulfite (A2: acid dissociation constant 1.86), 0.2% by weight of hydroxyethylidene diphosphonic acid (based on hydrotalcite compound) B: Dissolve chelate stabilization constant 6.55) in water and add to the surface-treated hydrotalcite compound solution in the order of a salicylic acid solution, a sodium sulfite solution, and a hydroxyethylidiene diphosphonic acid solution every 30 minutes under stirring. A hydrotalcite compound suspension was obtained.
The obtained suspension of surface-treated hydrotalcite compound was dehydrated again with a press filter to form a cake, then dried in a gear oven at 135 ° C for 12 hours, and then crushed with a Koroflex pulverizer. A dry powder of a hydrotalcite compound was obtained.
Table 2 shows the surface treatment agent, blocking / trapping agent type, treatment / addition amount of the hydrotalcite compound used.

実施例18〜36
実施例1,6,16で得られたハイドロタルサイト類化合物の洗浄後のプレスケーキを再び水で懸濁液化し、表面処理剤、封鎖・捕捉剤、処理量を表2に変更する以外は、実施例17と同様に操作し表2に示す表面処理ハイドロタルサイト類化合物を得た。
なお、実施例30,31で封鎖・捕捉剤A1として用いたサリチル酸アンモニウム、サリチル酸ナトリウムの塩の酸解離定数は酸と同じ2.81、実施例33で封鎖・捕捉剤A1として用いたマレイン酸の酸解離定数は1.75である。
実施例24,26で封鎖捕捉剤A2として用いたホスホン酸の酸解離定数は1.50、亜硫酸は亜硫酸ナトリウムと同じ1.86である。
実施例28でキレート剤Bとして用いたニトロトリ(メチレンホスホン酸)5ナトリウムのマグネシウムに対するキレート安定化定数は7.20である。
Examples 18-36
The press cake obtained after washing the hydrotalcite compounds obtained in Examples 1, 6, and 16 was again suspended in water, and the surface treatment agent, the blocking / trapping agent, and the treatment amount were changed to Table 2. The surface-treated hydrotalcite compounds shown in Table 2 were obtained by operating in the same manner as in Example 17.
The acid dissociation constants of ammonium salicylate and sodium salicylate used as the blocking / capturing agent A1 in Examples 30 and 31 were 2.81, the same as the acid, and the acid dissociation of maleic acid used as the blocking / capturing agent A1 in Example 33. The constant is 1.75.
The acid dissociation constant of phosphonic acid used as the sequestering agent A2 in Examples 24 and 26 is 1.50, and sulfite is 1.86, the same as sodium sulfite.
The chelate stabilization constant for magnesium of 5 sodium nitrotri (methylenephosphonate) used as chelating agent B in Example 28 is 7.20.

実施例37〜72,比較例10〜18
実施例1〜36、ならびに比較例1〜9で得られたハイドロタルサイト類化合物を、下記の配合組成で混合後、161℃に設定した混練押出機でペレットを作製した。
(配合組成)
ポリ塩化ビニル樹脂(重合度1300) 100重量部
DOP 50重量部
ステアリン酸亜鉛 0.5重量部
ハイドロタルサイト類化合物 2.5重量部
更に、得られたペレットを160℃のロール、またはヒーター付圧力プレスを使用し、厚さ1mmのシートを作製した。得られたシートについては、下記の方法で耐熱劣化性試験、耐熱プレス試験、耐ヒケ・発泡性を評価し、体積固有抵抗を測定した。結果を表3〜6に示す。
Examples 37-72, Comparative Examples 10-18
After mixing the hydrotalcite compounds obtained in Examples 1 to 36 and Comparative Examples 1 to 9 with the following composition, pellets were produced with a kneading extruder set at 161 ° C.
(Composition composition)
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by weight
DOP 50 parts by weight Zinc stearate 0.5 parts by weight Hydrotalcite compound 2.5 parts by weight Further, the obtained pellets were produced using a 160 ° C. roll or a pressure press with a heater to prepare a sheet having a thickness of 1 mm. About the obtained sheet | seat, the heat resistance deterioration test, the heat-resistant press test, the sink mark, and foaming resistance were evaluated by the following method, and the volume resistivity was measured. The results are shown in Tables 3-6.

<耐熱劣化性試験>
作製したシートを20mm×10mmに切り取り、190℃で ダンパー開度50%にしたギアオーブン(タバイエスペック社製ギアオーブンGPHH−100)に置いて15分毎に取り出し、試験片が黒色化するまでの時間を求めた。
<Heat resistance degradation test>
Cut the prepared sheet into 20mm x 10mm and place it in a gear oven (Gabeh GPHH-100 manufactured by Tabai Espec Co., Ltd.) with a damper opening of 50% at 190 ° C and take it out every 15 minutes until the test piece turns black Seeking time.

<耐熱プレス試験>
作製したシートを20mm×20mmに切り取り、ヒーター付圧力プレスを使用して圧力をかけながら、190℃で5分および30分間、シートを加熱した後に取り出し、シートの色相を測定した。
なお、装置は、日本電色工業(株)製測色色差計 ZE2000を用い、透過光のYI値を評価した。
<Heat-resistant press test>
The produced sheet was cut into 20 mm × 20 mm, and the sheet was taken out after being heated at 190 ° C. for 5 minutes and 30 minutes while applying pressure using a pressure press with a heater, and the hue of the sheet was measured.
The device used was a colorimetric color difference meter ZE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the YI value of transmitted light was evaluated.

<耐ヒケ・発泡性>
作製したシートを20mm×20mmに切り取り、ヒーター付圧力プレスを使用して圧力をかけながら、190℃で5分および30分間、シートを加熱した後に取り出し、気泡や、ヒケと呼ばれる表面のくぼみやシート内の空隙を観察し、以下の5段階で評価した。
5:シートにヒケ・気泡なし
4:シートの端に微細(0.1mm以下)な気泡がみられる
3:シートに2〜5個の1〜2mm程度のヒケと微細な気泡がみられる
2:シートに1〜2mm程度のヒケが6個以上みられる
1:シート全面に著しいヒケ、気泡がみられる
<Sink marks and foam resistance>
Cut out the prepared sheet into 20mm x 20mm, apply pressure using a pressure press with a heater, take out the sheet after heating it at 190 ° C for 5 and 30 minutes, and take it out. Bubbles, dents and sheets on the surface called sink marks The voids inside were observed and evaluated in the following five stages.
5: No sink marks / bubbles in the sheet 4: Fine (0.1 mm or less) bubbles are observed at the edge of the sheet 3: 2 to 5 sink marks and fine bubbles are observed in the sheet 2: Sheet 6 or more sink marks of about 1 to 2 mm are observed in the sheet 1: Remarkable sink marks and bubbles are observed on the entire sheet surface

<体積固有抵抗試験>
JIS K6723に準拠して下記の手順で測定した。即ち、作製したシートから縦横120mm以上のシートを打ち抜き、試験片の厚みを5個所測定してその平均値を厚みとし、試験装置と打ち抜いたシートを30℃に設定した恒温槽に30分以上置き、印加電圧500V、充電時間1分で体積固有抵抗を測定する。なお、装置は、Agilent Technologies 製4339B High Resistance Materを使用した。
<Volume resistivity test>
The measurement was performed according to the following procedure in accordance with JIS K6723. That is, a sheet with a length of 120 mm or more is punched from the prepared sheet, the thickness of the test piece is measured at five locations, the average value is taken as the thickness, and the test apparatus and the punched sheet are placed in a thermostat set at 30 ° C. for 30 minutes or longer. The volume resistivity is measured at an applied voltage of 500 V and a charging time of 1 minute. The apparatus used was Agilent Technologies' 4339B High Resistance Mater.

Figure 2018184305
Figure 2018184305

Figure 2018184305
Figure 2018184305

Figure 2018184305
Figure 2018184305

Figure 2018184305
Figure 2018184305

Figure 2018184305
Figure 2018184305

Figure 2018184305
Figure 2018184305

本発明のハイドロタルサイト類化合物は、マグネシウムとアルミニウムの割合が特定範囲内にあり、かつその水酸基(OH)が特定のエネルギー状態を有し、更に粉体もしくは粒子としての大きさや分散性を規定することで、従来のハイドロタルサイト類化合物や組成物よりアニオンの吸着性に優れ、かつ、それらの欠点であるマグネシウムイオンの脱離や遊離を抑制し、樹脂、例えばポリ塩化ビニル樹脂等の塩素含有樹脂に配合した場合には、脱離・遊離したマグネシウムイオンと他の添加剤との反応によって生じる着色や安定剤としての能力低下を防ぎつつ、紫外線や加熱等によってポリ塩化ビニル樹脂等の分子鎖から離脱する塩化水素ないし塩素イオンを吸収する安定剤として有用である。   In the hydrotalcite compound of the present invention, the ratio of magnesium and aluminum is within a specific range, the hydroxyl group (OH) has a specific energy state, and further defines the size and dispersibility as powder or particles. As a result, it has better anion adsorption than conventional hydrotalcite compounds and compositions, and suppresses the desorption and release of magnesium ions, which are their drawbacks, such as chlorine such as resins such as polyvinyl chloride resin. When blended with a resin, the molecules such as polyvinyl chloride resin by ultraviolet rays or heating, etc. are prevented while preventing the coloration caused by the reaction between the desorbed / free magnesium ions and other additives and the ability of the stabilizer to decrease. It is useful as a stabilizer that absorbs hydrogen chloride or chloride ions leaving the chain.

Claims (9)

下記式(a)の化学式で表わされ、フーリエ変換赤外分光光度計(FT−IR)で求められる水酸基の伸縮振動周波数の代表ピークが3405cm−1以上3435cm−1以下の範囲にあり、下記(b)〜(d)の粒度特性を満足することを特徴とするハイドロタルサイト類化合物。
(a)Mg1-xAl(OH)2x/n・mH2O
(b)5≦Sw≦15 (m2/g)
(c)0.8≦Dp50≦2.0 (μm)
(d)DMax≦10.09 (μm)
ただし、式中Aはn価のアニオンを示し、xおよびmは下記の条件を満足する値を示す。
0.267≦x≦0.290 , 0≦m<1
Sw :窒素吸着法で測定したBET比表面積(m2/g)
Dp50 :レーザー回折散乱式粒度分布計で測定したハイドロタルサイト類化合物の50%平均粒子径(μm)
Max :レーザー回折散乱式粒度分布計で測定したハイドロタルサイト類化合物の最大粒子径(μm)
The representative peak of the stretching vibration frequency of the hydroxyl group represented by the chemical formula of the following formula (a) and determined by a Fourier transform infrared spectrophotometer (FT-IR) is in the range of 3405 cm −1 or more and 3435 cm −1 or less. A hydrotalcite compound characterized by satisfying the particle size characteristics of (b) to (d).
(A) Mg 1-x Al x (OH) 2 A x / n · mH 2 O
(B) 5 ≦ Sw ≦ 15 (m 2 / g)
(C) 0.8 ≦ Dp 50 ≦ 2.0 (μm)
(D) D Max ≦ 10.09 (μm)
In the formula, A represents an n-valent anion, and x and m represent values satisfying the following conditions.
0.267 ≦ x ≦ 0.290, 0 ≦ m <1
Sw: BET specific surface area measured by nitrogen adsorption method (m 2 / g)
Dp 50 : 50% average particle diameter (μm) of hydrotalcite compounds measured with a laser diffraction / scattering particle size distribution analyzer
D Max : Maximum particle size (μm) of hydrotalcite compounds measured with a laser diffraction / scattering particle size distribution analyzer
ハイドロタルサイト類化合物が、脂肪酸、脂肪酸金属塩、カップリング剤から選択される少なくとも1種の表面処理剤で表面処理されていることを特徴とする請求項1記載のハイドロタルサイト類化合物。   The hydrotalcite compound according to claim 1, wherein the hydrotalcite compound is surface-treated with at least one surface treatment agent selected from fatty acids, fatty acid metal salts, and coupling agents. ハイドロタルサイト類化合物が、酸解離定数が1.5〜3.5の酸、その塩から選択される少なくとも1種の封鎖・捕捉剤Aと、マグネシウムイオンに対する一次のキレート安定化定数が6以上のキレート剤から選択される少なくとも1種の封鎖・捕捉剤Bの何れか、または両方で被覆されていることを特徴とする請求項1又は2記載のハイドロタルサイト類化合物。   The hydrotalcite compound is composed of at least one sequestering / capturing agent A selected from acids having an acid dissociation constant of 1.5 to 3.5 and salts thereof, and a chelating agent having a primary chelate stabilization constant for magnesium ions of 6 or more. The hydrotalcite compound according to claim 1 or 2, wherein the hydrotalcite compound is coated with either or both of at least one sequestering / capturing agent B selected. 封鎖・捕捉剤Aが亜硫酸、ホスホン酸、サリチル酸、マレイン酸、それらの塩から選択される少なくとも1種であることを特徴とする請求項3記載のハイドロタルサイト類化合物。   The hydrotalcite compound according to claim 3, wherein the sequestering / capturing agent A is at least one selected from sulfurous acid, phosphonic acid, salicylic acid, maleic acid, and salts thereof. 封鎖・捕捉剤Bがヒドロキシエチリジエンジホスホン酸であることを特徴とする請求項3記載のハイドロタルサイト類化合物。   The hydrotalcite compound according to claim 3, wherein the blocking / capturing agent B is hydroxyethylidene diphosphonic acid. 請求項1〜5の何れか1項記載のハイドロタルサイト類化合物と樹脂とを含有してなることを特徴とする樹脂組成物。   A resin composition comprising the hydrotalcite compound according to any one of claims 1 to 5 and a resin. 樹脂がポリ塩化ビニル樹脂であることを特徴とする請求項6記載の樹脂組成物。   The resin composition according to claim 6, wherein the resin is a polyvinyl chloride resin. 請求項6記載の樹脂組成物からなる成形体。 The molded object which consists of a resin composition of Claim 6. 請求項7記載の樹脂組成物からなる成形体。 The molded object which consists of a resin composition of Claim 7.
JP2017085131A 2017-04-24 2017-04-24 Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof. Active JP7012334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085131A JP7012334B2 (en) 2017-04-24 2017-04-24 Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085131A JP7012334B2 (en) 2017-04-24 2017-04-24 Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.

Publications (2)

Publication Number Publication Date
JP2018184305A true JP2018184305A (en) 2018-11-22
JP7012334B2 JP7012334B2 (en) 2022-01-28

Family

ID=64355324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085131A Active JP7012334B2 (en) 2017-04-24 2017-04-24 Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.

Country Status (1)

Country Link
JP (1) JP7012334B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467109A (en) * 2018-07-17 2019-03-15 兰州大学 A kind of magnalium nano hydrotalcite of morphology controllable and preparation method thereof
CN113881174A (en) * 2021-11-11 2022-01-04 中国科学院兰州化学物理研究所 Binary and ternary hydroxide synergistically modified self-lubricating fabric composite material and preparation method and application thereof
WO2022050173A1 (en) * 2020-09-01 2022-03-10 協和化学工業株式会社 Surface-treated hydrotalcite, suspension of same, and functional molecule delivery system using same
WO2023135927A1 (en) * 2022-01-14 2023-07-20 セトラスホールディングス株式会社 Zinc-containing hydrotalcite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159520A (en) * 1998-09-21 2000-06-13 Kyowa Chem Ind Co Ltd Hydrotalcite compound including low content uranium and production of the same compound
JP2016108177A (en) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 Hydrotalcite compound, resin composition containing the compound and molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159520A (en) * 1998-09-21 2000-06-13 Kyowa Chem Ind Co Ltd Hydrotalcite compound including low content uranium and production of the same compound
JP2016108177A (en) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 Hydrotalcite compound, resin composition containing the compound and molded body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467109A (en) * 2018-07-17 2019-03-15 兰州大学 A kind of magnalium nano hydrotalcite of morphology controllable and preparation method thereof
CN109467109B (en) * 2018-07-17 2021-12-10 兰州大学 Morphology-controllable magnesium-aluminum nano hydrotalcite and preparation method thereof
WO2022050173A1 (en) * 2020-09-01 2022-03-10 協和化学工業株式会社 Surface-treated hydrotalcite, suspension of same, and functional molecule delivery system using same
JP7389913B2 (en) 2020-09-01 2023-11-30 セトラスホールディングス株式会社 Surface-treated hydrotalcite and its suspension, and functional molecule delivery system using the same
CN113881174A (en) * 2021-11-11 2022-01-04 中国科学院兰州化学物理研究所 Binary and ternary hydroxide synergistically modified self-lubricating fabric composite material and preparation method and application thereof
CN113881174B (en) * 2021-11-11 2022-06-03 中国科学院兰州化学物理研究所 Binary and ternary hydroxide synergistically modified self-lubricating fabric composite material and preparation method and application thereof
WO2023135927A1 (en) * 2022-01-14 2023-07-20 セトラスホールディングス株式会社 Zinc-containing hydrotalcite

Also Published As

Publication number Publication date
JP7012334B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP4201276B2 (en) Method for producing magnesium hydroxide particles
EP0780425B2 (en) Heat deterioration resistant flame retardant, resin composition and molded articles
KR101207101B1 (en) hydrotalcite and synthetic resin composition
JP2018184305A (en) Hydrotalcite compound, resin composition comprising the hydrotalcite compound blended therein, and molded article thereof
WO2016163562A1 (en) Magnesium hydroxide particles and method for producing same
WO2011111487A1 (en) Filler for synthetic resin, synthetic resin composition, manufacturing method therefor, and molded object made therefrom
JP4775950B2 (en) Resin composition and molded article containing calcium hydroxide
US10233305B2 (en) Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP6934656B2 (en) Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.
JP2008001756A (en) Acid acceptor having improved electrical insulating property, composition containing the same and its molded article
JPWO2010005090A1 (en) Flame retardant resin composition
EP1026702B1 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin composition and process for producing the particles
JP5404621B2 (en) Magnesium hydroxide composition, process for producing the same, resin composition and molded article thereof
JP6484017B2 (en) Hydrotalcite composition, resin composition containing the composition, and molded article thereof
JP6663640B2 (en) Hydrotalcite compounds, resin composition containing the compound, and molded article
EP0709427B1 (en) Resin composition and molded article
JP2003313441A (en) Stabilized halogen-containing resin composition
JPH07144919A (en) Magnesium hydroxide solid solution, its production and use thereof
KR100495891B1 (en) Heat deterioration resistant flame retardant, resin composition and molded articles
JP2007277427A (en) Stabilized halogen-containing resin composition
JP2002327128A (en) Stabilized halogen-containing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7012334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150