WO2016163562A1 - Magnesium hydroxide particles and method for producing same - Google Patents

Magnesium hydroxide particles and method for producing same Download PDF

Info

Publication number
WO2016163562A1
WO2016163562A1 PCT/JP2016/061957 JP2016061957W WO2016163562A1 WO 2016163562 A1 WO2016163562 A1 WO 2016163562A1 JP 2016061957 W JP2016061957 W JP 2016061957W WO 2016163562 A1 WO2016163562 A1 WO 2016163562A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
hydroxide particles
magnesium
particles
weight
Prior art date
Application number
PCT/JP2016/061957
Other languages
French (fr)
Japanese (ja)
Inventor
興東 王
康平 大堀
純子 武藤
浩一 根立
Original Assignee
協和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和化学工業株式会社 filed Critical 協和化学工業株式会社
Publication of WO2016163562A1 publication Critical patent/WO2016163562A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials

Definitions

  • the present invention relates to magnesium hydroxide particles having a fine and uniform particle size, high purity and excellent dispersibility, and a method for producing the same.
  • Magnesium hydroxide is widely used as a flame retardant for polymer materials, highly functional materials, catalysts and the like. Magnesium oxide is used as a fiber acid acceptor, electromagnetic steel material, resin filler, catalyst, catalyst carrier, and the like. In order to exhibit excellent performance in these applications, the magnesium hydroxide particles and the magnesium oxide particles are required to have fine and uniform particle diameters, high purity, and excellent dispersibility.
  • a method for producing fine magnesium hydroxide particles there is disclosed a method of producing magnesium hydroxide particles of 5 to 80 nm by vapor phase oxidation method, and further contacting these magnesium oxide particles with water vapor to produce magnesium hydroxide. (Patent Document 1). This method is expensive to manufacture and difficult to produce in large quantities.
  • Patent Document 2 describes a method of producing magnesium hydroxide particles by reacting an aqueous magnesium chloride solution and an aqueous alkaline solution to produce a magnesium hydroxide slurry, and maintaining the temperature at 101 to 200 ° C. In this manufacturing method, since the time for growing the crystal is short, the aggregate formed immediately after the synthesis grows while maintaining the aggregation.
  • the finally obtained magnesium hydroxide particles contain a large amount of agglomerates, so that it is difficult to obtain those having excellent dispersibility.
  • this manufacturing method when there are many alkali raw materials, since impurities elute from an autoclave and an impurity mixes, it is necessary to limit a reaction rate. JP 2007-137694 A JP 2012-72004 A
  • An object of the present invention is to provide magnesium hydroxide particles having a fine and uniform particle diameter, high purity and excellent dispersibility, and a method for producing the same.
  • Another object of the present invention is to provide magnesium oxide particles having a fine and uniform particle diameter, high purity and excellent dispersibility.
  • aqueous alkaline solution is an aqueous solution of sodium hydroxide. 4).
  • the resulting magnesium hydroxide particles are (A) The average secondary particle size (MV) is 50 to 800 nm, (B) D 50 / MV is 0.70 to 0.99, where D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement, (C) The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C., The manufacturing method of the preceding clause 1. 6).
  • the average secondary particle size (MV) is 50 to 800 nm
  • D 50 / MV is 0.70 to 0.99
  • D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement
  • C The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C., Magnesium hydroxide particles characterized by the above. 7). 7. Magnesium hydroxide particles according to item 6 above, wherein the Cl ion content is 50 to 300 ppm. 8). 7. Magnesium hydroxide particles according to item 6 above, wherein the content of SO 4 ions is 50 to 300 ppm. 9. 7.
  • FIG. 1 shows an X-ray diffraction spectrum (top) and library search results (bottom) of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C. for 20 hours.
  • FIG. 2 is an SEM photograph of magnesium hydroxide particles (Example 3) taken at 50,000 times.
  • FIG. 3 is an SEM photograph of the surface-treated magnesium hydroxide particles (Example 7) taken at 50,000 times.
  • FIG. 4 shows the particle size distribution of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C. for 20 hours.
  • FIG. 5 is a particle size distribution of magnesium hydroxide particles (Example 3).
  • FIG. 6 is a particle size distribution of the surface-treated magnesium hydroxide particles (Example 7).
  • FIG. 7 is an SEM photograph of a cross section of a resin composition in which 130 parts by weight of magnesium hydroxide particles (Example 3) are blended with 100 parts by weight of LLDPE resin at a magnification of 10,000 times.
  • FIG. 8 is an SEM photograph of a cross section of a resin composition obtained by mixing 130 parts by weight of magnesium hydroxide particles (Comparative Example D) with 100 parts by weight of LLDPE resin at a magnification of 10,000 times.
  • FIG. 9 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C.
  • FIG. 10 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Example 3). The desorption temperature of OH was 378.5 ° C.
  • FIG. 11 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Comparative Example A). The desorption temperature of OH was 389.3 ° C.
  • FIG. 12 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Comparative Example D). The desorption temperature of OH was 402.5 ° C.
  • FIG. 13 shows the X-ray diffraction spectrum (upper) and library search result (lower) of the magnesium oxide particles (Example 11).
  • FIG. 14 is a SEM photograph of magnesium oxide particles (Example 11) taken at 35,000 times.
  • FIG. 15 is a particle size distribution of magnesium oxide particles (Example 11).
  • FIG. 16 is a particle size distribution of magnesium oxide particles (Example 9).
  • the method for producing magnesium hydroxide particles of the present invention includes each step of a reaction step (i), a heat treatment step (ii), a separation and purification step (iii), and a drying step (iv).
  • the reaction step (i) is a step of producing a slurry containing magnesium hydroxide particles by reacting an aqueous solution of a soluble magnesium salt with an aqueous alkaline solution.
  • Soluble magnesium salt A soluble magnesium salt can be used as the magnesium raw material.
  • the soluble magnesium salt examples include magnesium chloride, magnesium chloride dihydrate, magnesium chloride hexahydrate, magnesium nitrate, magnesium acetate, magnesium sulfate, and bitter juice.
  • magnesium chloride or magnesium sulfate is preferred.
  • the concentration of the soluble magnesium salt is preferably 0.1 to 5.7 mol / L, more preferably 0.5 to 5.5 mol / L, and still more preferably 1.0 to 5.0 mol / L.
  • a magnesium chloride aqueous solution it is preferably 0.1 to 5.7 mol / L, more preferably 0.5 to 5.5 mol / L, and still more preferably 1.0 to 5.0 mol / L.
  • a magnesium sulfate aqueous solution When a magnesium sulfate aqueous solution is used, it is preferably 0.1 to 4.6 mol / L, more preferably 0.5 to 4.4 mol / L, and still more preferably 1.0 to 4.2 mol / L. .
  • alkali alkali
  • the alkaline aqueous solution include aqueous solutions of sodium hydroxide, potassium hydroxide, ammonia and the like.
  • the aqueous alkaline solution is preferably an aqueous solution of sodium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 1.0 to 18.0 N, more preferably 2.0 to 15.0 N, and still more preferably 3.0 to 12.0 N.
  • reaction rate The reaction rate between the aqueous solution of the soluble magnesium salt and the alkaline aqueous solution is 50 to 400 mol%, preferably 60 to 350 mol%, more preferably 80 to 300 mol%, as magnesium.
  • the heat treatment step is a step of heat treating the obtained slurry at 0 to 100 ° C. for 5 to 500 hours under atmospheric pressure.
  • the heat treatment is performed under atmospheric pressure.
  • the obtained magnesium hydroxide particles have both a primary particle size and a secondary particle size that are increased if the heat treatment time is lengthened, and aggregates are contained if the heat treatment time is shortened. And dispersibility will deteriorate. Therefore, the heat treatment temperature is 0 to 100 ° C., preferably 0 to 95 ° C., more preferably 20 to 90 ° C., and further preferably 35 to 85 ° C. Within this range, the crystal growth of the primary particles of magnesium hydroxide is difficult to promote, and the heat treatment time can be extended.
  • the heat treatment time is 5 to 500 hours, preferably 8 to 400 hours, more preferably 10 to 300 hours.
  • the magnesium hydroxide agglomerates generated in the reaction step are sufficiently separated, and hydrogen bonding and capillary action between the fine particles after drying are suppressed, so that the dispersibility having a uniform particle size is achieved. Excellent magnesium hydroxide particles can be obtained.
  • the separation and purification step is a step of separating and purifying the cake containing magnesium hydroxide particles from the heat-treated slurry.
  • the magnesium hydroxide cake can be separated by filtration. You may filter, washing with water. Purification can be performed by washing with water.
  • the water washing it is preferable to resuspend the magnesium hydroxide cake while stirring the magnesium hydroxide cake and water, and then filter this to obtain the magnesium hydroxide cake again.
  • the water is preferably washed in 1 to 4 portions, and more preferably in 1 to 3 portions.
  • the amount of water is preferably 5 to 100 times that of magnesium hydroxide particles on a weight basis.
  • the conductivity (purity) of water is preferably 100 ⁇ S / cm or less, more preferably 10 ⁇ S / cm or less, and even more preferably 0.5 ⁇ S / cm or less.
  • the temperature of water and the water bath at the time of stirring can be 10 to 80 ° C.
  • the stirring speed can be 100 to 800 rpm
  • the stirring time can be 0.5 to 5 hours.
  • impurities in the magnesium hydroxide can be removed by washing with water, the magnesium hydroxide particles obtained after drying aggregate and deteriorate dispersibility. Therefore, in order to obtain magnesium hydroxide particles with few impurities and excellent dispersibility, it is required to reduce impurities contained in magnesium hydroxide after heat treatment and reduce the amount of water used for washing.
  • the heat treatment temperature is 0 to 100 ° C.
  • the crystal structure has a thermodynamically unstable characteristic as compared with magnesium hydroxide produced at a higher heat treatment temperature.
  • the drying step is a step of drying the magnesium hydroxide cake. Drying can be performed by a known method.
  • the magnesium hydroxide particles of the present invention have a chemical composition represented by Mg (OH) 2 .
  • the magnesium hydroxide particles of the present invention have an average secondary particle size (MV) of 50 to 800 nm, preferably 80 to 600 nm, more preferably 100 to 500 nm after the drying step.
  • the D 50 of the magnesium hydroxide particles of the present invention is preferably 35 to 792 nm, more preferably 57.6 to 594 nm, and even more preferably 75 to 495 nm.
  • the D 50 / MV of the magnesium hydroxide particles of the present invention is 0.70 to 0.99, preferably 0.72 to 0.99, more preferably 0.75 to 0.99.
  • D 50 is a cumulative 50% particle diameter on a volume basis by a laser diffraction scattering particle size distribution measurement.
  • the D 90 / D 10 of the magnesium hydroxide particles of the present invention is preferably 4 or less, more preferably 3.8 or less, and even more preferably 3.5 or less.
  • the magnesium hydroxide particles of the present invention have an OH desorption temperature of 360 to 388 ° C., preferably 365 to 386 ° C., more preferably 370 to 385 ° C.
  • the magnesium hydroxide particles of the present invention are heat-treated at a low temperature of 0 to 100 ° C., the crystal structure is characterized by thermodynamically unstable as compared with magnesium hydroxide heat-treated at a higher temperature. Therefore, the magnesium hydroxide particles of the present invention have a lower OH desorption temperature in thermogravimetric analysis than magnesium hydroxide produced by heat treatment at a temperature higher than 100 ° C. As a result, the flame retardancy is excellent.
  • the BET specific surface area of the magnesium hydroxide particles of the present invention is preferably 8.0 to 280 m 2 / g, more preferably 10.0 to 250 m 2 / g, still more preferably 15.0 to 200 m 2 / g.
  • the content of Cl ions in the magnesium hydroxide particles is preferably 50 to 300 ppm, more preferably 50 to 270 ppm, and still more preferably 50 to 250 ppm.
  • the crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, can easily remove Cl ions by purification, and has a low Cl ion content.
  • the content of SO 4 ions in the magnesium hydroxide particles of the present invention is preferably 50 to 300 ppm, more preferably 50 to 270 ppm, and still more preferably 50 to 250 ppm.
  • the crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, and SO 4 ions can be easily removed by purification, and the content of SO 4 ions is small.
  • the purity of the magnesium hydroxide particles of the present invention is preferably 99.5% or more, more preferably 99.6% or more, and further preferably 99.7% or more.
  • the total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr in the magnesium hydroxide particles of the present invention is preferably 10 to 150 ppm, more preferably 15 to 100 ppm. Yes, more preferably 20 to 80 ppm.
  • the crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, metal impurities can be easily removed by purification, and the content of metal impurities is small.
  • the magnesium oxide particles of the present invention have a chemical composition represented by MgO.
  • the magnesium oxide particles of the present invention can be obtained by firing the magnesium hydroxide particles of the present invention, preferably at 350 to 1200 ° C.
  • the firing temperature is more preferably 400 to 1100 ° C, still more preferably 500 to 1000 ° C.
  • the magnesium oxide particles of the present invention have an average secondary particle size (MV) of preferably 50 to 800 nm, more preferably 80 to 600 nm, and still more preferably 100 to 500 nm.
  • the D 50 of the magnesium oxide particles of the present invention is preferably 35 to 792 nm, more preferably 57.6 to 594 nm, and further preferably 75 to 495 nm.
  • D 50 / MV The D 50 / MV of the magnesium oxide particles of the present invention is preferably 0.70 to 0.99, more preferably 0.72 to 0.99, and even more preferably 0.75 to 0.99.
  • D 50 is a volume-based cumulative 50% particle diameter measured by laser diffraction scattering type particle size distribution measurement.
  • the D 90 / D 10 of the magnesium oxide particles of the present invention is preferably 4 or less, more preferably 3.8 or less, and even more preferably 3.5 or less.
  • the BET specific surface area of the magnesium oxide particles of the present invention is preferably 1.0 to 280 m 2 / g, more preferably 5.0 to 250 m 2 / g, still more preferably 10.0 to 200 m 2 / g.
  • purity The purity of the magnesium oxide particles of the present invention is preferably 99.5% or more, more preferably 99.6% or more, and further preferably 99.7% or more.
  • the total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr in the magnesium oxide particles of the present invention is preferably 10 to 150 ppm, more preferably 15 to 100 ppm, Preferably it is 20 to 80 ppm.
  • the magnesium hydroxide particles and magnesium oxide particles of the present invention are preferably surface-treated depending on the application.
  • a known compound can be used as the surface treatment agent.
  • the surface treatment agent is preferably at least one selected from the group consisting of higher fatty acids, anionic surfactants, higher fatty acid alkaline earth metal salts, coupling agents, phosphoric esters comprising phosphoric acid and higher alcohols, and silicone oils. .
  • higher fatty acids include stearic acid, erucic acid, palmitic acid, lauric acid, and behenic acid.
  • Anionic surfactants include polyethylene glycol ether sulfate, amide bond sulfate, ester bond sulfate, ester bond sulfonate, amide bond sulfonate, ether bond sulfonate, ether bond alkylaryl sulfonic acid. Examples thereof include salts, ester-bonded alkyl aryl sulfonates, and amide-bonded alkyl aryl sulfonates.
  • Examples of the higher fatty acid alkaline earth metal salt include alkaline earth metal salts such as magnesium, beryllium, calcium, and barium.
  • Examples of coupling agents include r- (2-aminoethyl) aminopropyltrimethoxysilane, r- (2-aminoethyl) aminopropylmethyldimethoxysilane, r-methacryloxypropyltrimethoxysilane, N- ⁇ - ( N-vinylbenzylaminoethyl) -r-aminopropyltrimethoxysilane / hydrochloride, r-glycidoxypropyltrimethoxysilane, r-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltriacetoxy Silane, r-chloropropyltrimethoxysilane, hexamethyldisilazane, r-anil
  • Examples of phosphoric acid esters composed of phosphoric acid and higher alcohols include phosphoric acid esters composed of orthophosphoric acid and oleyl alcohol, lauryl alcohol, myristyl alcohol, palmityl alcohol or stearyl alcohol.
  • Examples of the silicone oil include dimethyl silicone oil, methyl hydrogen silicone oil, methyl phenyl silicone oil, and cyclic dimethyl silicone oil.
  • the surface treatment can be performed by a known wet method and dry method. In the wet method, the amount of the surface treatment agent added is preferably 0.5 to 15 parts by weight, more preferably 1.0 to 12 parts by weight, and still more preferably 100 parts by weight of magnesium hydroxide particles and magnesium oxide particles. 2.0 to 10 parts by weight.
  • the surface treatment temperature is preferably 0 to 100 ° C., more preferably 20 to 90 ° C., and further preferably 40 to 80 ° C.
  • the resin composition of the present invention contains 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium hydroxide particles.
  • synthetic resins polymers or copolymers of C2 to C8 olefins ( ⁇ -olefins) such as polyethylene, polypropylene, ethylene / propylene copolymers, polybutene, poly-4-methylpentene-1, etc., these olefins and dienes These copolymers are mentioned.
  • ethylene-acrylate copolymer polystyrene, ABS resin, AAS resin, AS resin, MBS resin, ethylene / vinyl chloride copolymer resin, ethylene vinyl acetate copolymer resin, ethylene-vinyl chloride-vinyl acetate graft polymer resin, vinylidene chloride, polychlorinated Vinyl, chlorinated polyethylene, chlorinated polypropylene, vinyl chloride copolymer, vinyl acetate resin, phenoxy resin, polyacetal, polyamide, polyimide, polycarbonate, polysulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, methacrylic resin, etc.
  • thermoplastic resin can be illustrated.
  • thermosetting resins such as epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, alkyd resins, and urea resins
  • synthetic rubbers such as EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, butadiene rubber, acrylic rubber, silicone rubber, and fluorine rubber can be exemplified.
  • the compounding amount of the magnesium hydroxide particles is 0.01 to 350 parts by weight, preferably 0.1 to 320 parts by weight, more preferably 0.5 to 300 parts by weight with respect to 100 parts by weight of the synthetic resin.
  • the resin composition of the present invention contains 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium oxide particles.
  • the synthetic resin is preferably at least one selected from the group consisting of thermoplastic resins, thermosetting resins and rubbers.
  • thermoplastic resin polyethylene, copolymer of ethylene and ⁇ -olefin, ethylene and vinyl acetate, copolymer of ethylene and ethyl acrylate, copolymer of ethylene and methyl acrylate, polypropylene, propylene and others ⁇ -olefin copolymer, polybutene-1, poly-4-methylpentene-1, polystyrene, copolymer of styrene and acrylonitrile, copolymer of ethylene and propylene diene rubber or butadiene, polyvinyl acetate, polyvinyl Examples include alcohol, polyacrylate, polymethacrylate, polyurethane, polyester, polyether, polyamide, ABS, polycarbonate, and polyphenylene sulfide.
  • thermosetting resin examples include phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, alkyd resin, and the like.
  • EPDM, SBR, NBR copolymerized rubber of ethylene and other ⁇ -olefins such as propylene, octene, butyl rubber, chloroprene rubber, isoprene rubber, chlorosulfonated rubber, silicone rubber, fluorine rubber, chlorinated butyl rubber.
  • examples include brominated butyl rubber, epichlorohydrin rubber, and chlorinated polyethylene rubber.
  • the content of magnesium oxide particles is 0.01 to 350 parts by weight, preferably 0.1 to 320 parts by weight, and more preferably 0.5 to 300 parts by weight with respect to 100 parts by weight of the synthetic resin.
  • Thermogravimetric analysis of the obtained magnesium hydroxide particles and magnesium oxide particles was performed using a thermal analyzer (TG-DTA 2000SA, manufactured by Bruker AXS). The sample weight was 10 mg, the air flow rate was 100 ml / min, and the heating rate was 10 ° C./min. (7) Flame Retardancy Evaluation and Appearance Evaluation of Resin Composition
  • the test specimen is composed of 100 parts by weight of LLDPE resin (linear low density polyethylene, Novatec LLUF-240, Nippon Polyethylene Co., Ltd.) and magnesium hydroxide particles as a flame retardant. 130 parts by weight were mixed and kneaded at 160 ° C.
  • press vulcanization treatment was performed at 153 ° C. for 30 minutes to prepare a sample.
  • the molded article for measuring compression set was subjected to a press vulcanization treatment for 40 minutes.
  • 200% modulus (M200), 400% modulus (M400), 600% modulus (M600) of vulcanized rubber, strength at break (TB), elongation at break (EB) and hardness (Shore A hardness) were measured.
  • vulcanized rubber was aged in an air atmosphere at 100 ° C. for 168 hours based on JIS K6257, and then the change in Shore A hardness was measured.
  • Example 1 At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 6.5 L of 8.4 N aqueous sodium hydroxide solution while stirring, and let it react. The total volume of the solution was adjusted to 16 L with ionic water, and the slurry concentration was adjusted to 100 g / L. Next, the temperature of the water bath was set to 45 ° C., and heat treatment was performed under a stirring condition of 350 rpm.
  • Table 3 shows the distribution of the particles of the slurry after 1, 5, 24, 43, 48, 52, 69, 91, 115, 120, 123 and 140 hours after the start of the heat treatment. Further, the slurry after the heat treatment for 140 hours was filtered while adding 20 times the pure water (deionized water, 0.5 ⁇ S / cm) on a weight basis to the magnesium hydroxide particles to obtain magnesium hydroxide particles. On the other hand, it was washed twice with 25 times pure water on a weight basis and dried at 120 ° C. for 20 hours. As a result of analysis by an X-ray diffraction method, the obtained particles were magnesium hydroxide (Mg (OH) 2 ) particles (FIG. 1).
  • Example 2 At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 9.1 L of 12.0 N sodium hydroxide aqueous solution with stirring, and let it react. The total volume of the solution was adjusted to 16 L with ionic water, and the slurry concentration was adjusted to 100 g / L. Thereafter, the temperature of the water bath was set to 60 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm. Thereafter, in the same manner as in Example 1, filtration, washing with water and drying were performed to obtain magnesium hydroxide particles.
  • Example 3 Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 70 ° C. and the heat treatment time was changed to 15 hours. Comparative Example A 800 ml of the same slurry as the slurry before heat treatment in Example 3 was taken and reacted in a 0.98 L autoclave (manufactured by Nitto Koatsu Co., Ltd.). Thereafter, the temperature was set to 150 ° C., and heat treatment was performed for 1 hour under a stirring condition of 500 rpm. Thereafter, filtration, washing with water and drying were performed in the same manner as in Example 1 to obtain magnesium hydroxide particles.
  • Example 4 Magnesium hydroxide particles were obtained in the same manner as in Example 3 except that the heat treatment temperature was changed to 90 ° C. Comparative Example B Magnesium hydroxide particles were obtained in the same manner as in Comparative Example A except that the heat treatment time was changed to 3 hours.
  • Example 5 At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 3.9 L of 8.4 N sodium hydroxide aqueous solution with stirring, and react to remove. The total volume of the solution was adjusted to 10.6 L with ionic water, and the concentration of the slurry was 90 g / L.
  • Example C The temperature of the water bath was set to 70 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm. Thereafter, filtration, washing with water and drying were performed in the same manner as in Example 1 to obtain magnesium hydroxide particles.
  • Comparative Example C 800 ml of the same slurry as the slurry before heat treatment of Example 5 was taken and reacted in a 0.98 L autoclave (manufactured by Nitto Koatsu Co., Ltd.), set at 150 ° C., and heat treated for 1 hour under stirring conditions of 500 rpm. Thereafter, in the same manner as in Example 1, filtration, washing and drying were performed to obtain magnesium hydroxide particles.
  • Example 6 At normal pressure and 20 ° C., 4.0 L of a 5.5 mol / L magnesium chloride aqueous solution is placed in a 20 L stainless steel container, and 8.25 L of 16.0 N sodium hydroxide aqueous solution is slowly added with stirring to react. The total volume of the solution was adjusted to 12.83 L with ionic water, and the concentration of the slurry was 100 g / L. The temperature of the water bath was set to 70 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm.
  • Example 7 After processing in the same manner as in Example 3, surface treatment was performed with 3.0% by weight of stearic acid based on the solid content to obtain magnesium hydroxide particles.
  • Example 8 Magnesium hydroxide particles were obtained in the same manner as in Example 3 except that the magnesium raw material was changed to 4.2 mol / L MgSO 4 .
  • Example 9 Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 20 ° C. and the heat treatment time was changed to 165 hours.
  • Example 10 Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 99 ° C. and the heat treatment time was changed to 10 hours. (Relationship between heat treatment conditions and particle size distribution) In the method for producing magnesium hydroxide particles of the present invention, as is apparent from the distribution state of the slurry particles after the start of heat treatment (Table 3 (Example 1)), the aggregates produced during the reaction are separated as the heat treatment time becomes longer. It can be confirmed that the particles are fine and uniform. (About particle size distribution) The magnesium hydroxide particles of the present invention have a fine and uniform particle diameter regardless of the presence or absence of surface treatment. As can be seen from the SEM photograph (FIG.
  • the desorption temperatures of OH in the thermogravimetric analysis of the magnesium hydroxide particles of the present invention are 382.4 ° C. (FIG. 9 (Example 1)) and 378.5 ° C. (FIG. 10 (Example 3)). These OH desorption temperatures were 389.3 ° C. (FIG. 11 (Comparative Example A)) and 402.5 ° C. (FIG. 12 (Comparative Example D)). Compared with low characteristics. This is considered to be because the magnesium hydroxide particles of the present invention have a thermodynamically weak crystal structure. Therefore, there is a feature that it can be easily removed by washing with impurities such as Cl incorporated in the magnesium hydroxide particles.
  • Examples 1 to 8 and Comparative Examples A to D the chemical composition of magnesium hydroxide particles (magnesium hydroxide purity, impurities (Cl, SO 4 , Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Table 2 shows the contents of Cd, Co, Pb, and Zr)), presence / absence of surface treatment, evaluation of the combustibility of the resin composition, and evaluation of the dispersion state in the molded product.
  • Examples 11 to 17 and Comparative Examples E to H (magnesium oxide particles) Example 11 100 g of the dried magnesium hydroxide particles obtained in Example 3 was put into a 300 ml alumina crucible, and particles fired at 500 ° C. for 2 hours using an electric furnace were obtained.
  • Example 12 Magnesium oxide particles were obtained in the same manner as in Example 11 except that the firing temperature was changed to 650 ° C.
  • Example 13 Magnesium oxide particles were obtained in the same manner as in Example 11 except that the firing temperature was changed to 700 ° C.
  • Example 14 100 g of the dried magnesium hydroxide particles obtained in Example 4 was put into a 300 ml alumina crucible and baked at 500 ° C. for 2 hours using an electric furnace to obtain magnesium oxide particles.
  • Example 15 Magnesium oxide particles were obtained in the same manner as in Example 14 except that the firing temperature was changed to 650 ° C., and then surface treatment was performed with 3.0 wt% stearic acid.
  • Example 16 Magnesium oxide particles were obtained in the same manner as in Example 14 except that the firing temperature was changed to 700 ° C.
  • Example 17 100 g of the dried magnesium hydroxide particles obtained in Example 8 was put in a 300 ml alumina crucible and baked at 650 ° C. for 2 hours using an electric furnace to obtain magnesium oxide particles.
  • Comparative Example E 100 g of the dried magnesium hydroxide particles obtained in Comparative Example A was put into a 300 ml alumina crucible and baked at 650 ° C.
  • the magnesium oxide particles of the present invention have a fine and uniform particle size.
  • Example 11 As can be seen from the SEM photograph (FIG. 14) and the particle size distribution (FIG. 15) of the magnesium oxide particles of the present invention (Example 11), it can be confirmed that there are no noticeable aggregates and that the particles have a fine and uniform particle size.
  • treatment conditions raw material concentration, raw material usage, reaction rate, heat treatment temperature, heat treatment time, slurry concentration, firing temperature, firing time
  • characteristics of the obtained magnesium oxide particles BET specific surface area, particle size, presence / absence of surface treatment
  • vulcanized physical properties M200, M400, M600, TB, EB, Shore A, compression set, scorch time
  • heat aging resistance evaluation of dispersion state of molded product Is shown in Table 4.
  • Example 18 The magnesium hydroxide particles of Example 4 were surface-treated with 2% by weight of stearic acid, dried at 105 ° C. for 16 hours and further dried at 120 ° C. for 2 hours.
  • EVA Evaflex V421 Mitsui DuPont Polychemical Co., Ltd.
  • Magnesium hydroxide particles 150 parts by weight with respect to 90 parts by weight, modifier ⁇ -olefin copolymer (Tuffmer MH7020) 10 parts by weight, phenolic antioxidant (IRGANOX 1010) 0.5 parts by weight And 0.5 part by weight of a sulfur-based antioxidant (DLTDP) are melt-mixed at 160 to 200 ° C. with a continuous kneading extruder (Cay Engineering Co., Ltd. KCK80 ⁇ 2-35VEX), and the extruded resin composition strand is pelletized. After cutting with a vacuum dryer (LCV-242 manufactured by Tabai Espec Co., Ltd.
  • Example J Preparation of magnesium hydroxide particles having an MV of 4.31 ⁇ m, a D 50 / MV of 0.86, and a BET specific surface area of 30 m 2 / g in advance, except that the magnesium hydroxide particles used are changed to the magnesium hydroxide particles described above.
  • Example 18 Were the same as in Example 18 to obtain pellets and sheets of the resin composition.
  • Example 19 The magnesium hydroxide particles of Example 4 were surface-treated with 2% by weight of stearic acid, dried at 105 ° C. for 16 hours and further dried at 120 ° C. for 2 hours.
  • EVA Evaflex V421 Mitsui DuPont Polychemical Co., Ltd.
  • Magnesium hydroxide particles 150 parts by weight with respect to 90 parts by weight, modifier ⁇ -olefin copolymer (Tuffmer MH7020) 10 parts by weight, phenolic antioxidant (IRGANOX 1010) 0.5 parts by weight And 0.5 part by weight of a sulfur-based antioxidant (DLTDP) were melt-mixed at 160 to 200 ° C. with a continuous kneading extruder, the extruded resin composition strand was cut with a pelletizer, and then 60 ° C. with a vacuum dryer. And dried to prepare pellets.
  • the obtained pellets were blended with 1 part by weight of peroxide (DCP) per 100 parts by weight of the resin component (total of 90 parts by weight of EVA and 10 parts by weight of the modifier ⁇ -olefin copolymer).
  • DCP peroxide
  • the mixture was melt-mixed at 115 ° C. for 10 minutes, taken out in an oval shape, formed into a thickness of 2 mm at 120 ° C. by a hot press, and a crosslinked sheet having a thickness of 1 mm at 180 ° C. was obtained.
  • Comparative Example K Resin composition pellets and a crosslinked sheet were obtained in the same manner as in Example 19 except that the magnesium hydroxide particles used were changed to the magnesium hydroxide particles of Comparative Example A.
  • Example L Preparation of magnesium hydroxide particles having an MV of 4.31 ⁇ m, a D 50 / MV of 0.86, and a BET specific surface area of 30 m 2 / g in advance, except that the magnesium hydroxide particles used are changed to the magnesium hydroxide particles described above. Obtained a resin composition pellet and a crosslinked sheet in the same manner as in Example 19. (Silane-crosslinked resin composition)
  • Example 20 The magnesium hydroxide particles of Example 5 were surface-treated with 0.3% by weight of a silane coupling agent, dried at 105 ° C. for 16 hours, and further dried at 120 ° C. for 2 hours to obtain a silane crosslinkable EVA resin (link).
  • Ron XVF600N (Mitsubishi Chemical Corporation) 135 parts by weight of magnesium hydroxide particles subjected to the above treatment with respect to 87 parts by weight, 10 parts by weight of a modifier ⁇ -olefin copolymer (Tuffmer MH7020), phenolic antioxidant (IRGANOX1010) 0.5 parts by weight and 0.5 parts by weight of a sulfur-based antioxidant (DLTDP) were mixed and melted at 160 to 200 ° C. by a small batch kneader to prepare an oval resin composition.
  • a modifier ⁇ -olefin copolymer (Tuffmer MH7020)
  • phenolic antioxidant IRGANOX101010101010101010101010
  • DLTDP sulfur-based antioxidant
  • the obtained oval resin composition had a resin component of 97 parts by weight (a total of 87 parts by weight of a silane crosslinkable EVA resin and 10 parts by weight of a modifier ⁇ -olefin copolymer) and 3 parts by weight of a crosslinking acceleration catalyst masterbatch.
  • the mixture was melted and mixed at 180 ° C. for 10 minutes with a small batch kneader, and again taken out in an oval shape, formed into a thickness of 2 mm at 160 ° C. and further formed into a thickness of 1 mm at 180 ° C.
  • the molded resin composition was immersed in ion exchange water at 80 ° C. for 24 hours to obtain a crosslinked sheet.
  • Example 21 Magnesium hydroxide particles to be used were changed to the magnesium hydroxide particles of Example 4, and a cross-linked sheet was obtained in the same manner as in Example 20 except that the blending amount was changed to 140 parts.
  • Example 22 A crosslinked sheet was obtained in the same manner as in Example 20 except that the magnesium hydroxide particles used were changed to the magnesium hydroxide particles of Example 4.
  • Comparative Example M Prepare magnesium hydroxide particles having an MV of 0.87 ⁇ m, a D50 / MV of 0.83, and a BET specific surface area of 6 m 2 / g in advance. A crosslinked sheet was obtained in the same manner as in Example 20 except that the amount was changed to 140 parts.
  • Comparative Example N A crosslinked sheet was obtained in the same manner as in Comparative Example M, except that the amount of magnesium hydroxide particles used was changed to 150 parts.
  • Table 5 shows the evaluation of fluidity, colorability and tensile properties of the resin compositions for Examples 18 to 19 and Comparative Examples I to L.
  • Table 6 shows the evaluation of the tensile properties and the flammability of the resin compositions for Examples 20 to 22 and Comparative Examples M to N.
  • the obtained magnesium hydroxide particles have a characteristic that the crystal structure is thermodynamically unstable. Therefore, impurities such as metals such as Cl ions, SO 4 ions, nickel, chromium, lead, zinc, and aluminum can be easily removed from the product in the water washing step.
  • the magnesium hydroxide particles of the present invention have a fine and uniform particle diameter, are highly pure, and are excellent in dispersibility. Since the magnesium hydroxide particles of the present invention are manufactured by heat treatment at a low temperature of 0 to 100 ° C., the crystal structure is thermodynamically unstable and OH is released compared with magnesium hydroxide heat-treated at a higher temperature.
  • the temperature is low. Therefore, it is excellent in flame retardancy.
  • the magnesium hydroxide particles of the present invention have a low content of metals such as Cl ions, SO 4 ions, nickel, chromium, lead, zinc, and aluminum. Further, the magnesium hydroxide particles of the present invention can achieve uniform kneading or uniform coating treatment in applications to organic polymer materials and inorganic materials. In addition, the magnesium oxide particles of the present invention have a fine and uniform particle size, high purity, and excellent dispersibility. The magnesium oxide particles of the present invention have a low content of nickel, chromium, lead, zinc, and aluminum. Moreover, the magnesium oxide particle of this invention can implement
  • the magnesium hydroxide particles of the present invention are useful as a flame retardant for polymer materials and an inorganic filler for separators for non-aqueous secondary batteries.
  • the magnesium oxide particles of the present invention are useful as an acid acceptor for organic polymer materials, a deodorant, an electromagnetic steel material, a resin filler, a catalyst, a catalyst carrier, and the like.
  • the magnesium hydroxide and magnesium oxide particles of the present invention have a small amount of nickel, chromium, lead, zinc, and aluminum, they can be used as additives for electronic materials, pharmaceutical raw materials, and food and beverage products. It can also be used as a synthetic raw material for cosmetics, foods, pharmaceutical pH adjusters, polymer stabilizers, fine particle hydrotalcite, and the like.

Abstract

The purpose of the present invention is to provide magnesium hydroxide particles and magnesium oxide particles, which have fine and uniform particle diameters, while having high purity and excellent dispersibility. The present invention is a method for producing magnesium hydroxide particles, which comprises: a step (i) wherein an aqueous solution of a soluble magnesium salt is reacted with an aqueous alkaline solution, thereby producing a slurry containing magnesium hydroxide particles; a step (ii) wherein the thus-obtained slurry is subjected to a heat treatment at 0-100°C for 5-500 hours at atmospheric pressure; a step (iii) wherein a cake containing the magnesium hydroxide particles is separated from the heat-treated slurry and purified; and a step (iv) wherein the separated and purified cake is dried, thereby obtaining magnesium hydroxide particles.

Description

水酸化マグネシウム粒子およびその製造方法Magnesium hydroxide particles and method for producing the same
 本発明は、微小で均一な粒子径を有し、高純度で、分散性に優れた水酸化マグネシウム粒子およびその製造方法に関する。 The present invention relates to magnesium hydroxide particles having a fine and uniform particle size, high purity and excellent dispersibility, and a method for producing the same.
 水酸化マグネシウムは、高分子材料の難燃剤、高機能性材料、触媒などに広く利用されている。酸化マグネシウムは、繊維の受酸剤、電磁鋼材料、樹脂のフィラー、触媒、触媒の担体などに利用されている。これらの用途において優れた性能を発揮させるためには、水酸化マグネシウム粒子および酸化マグネシウム粒子は、微小かつ均一な粒子径であり、純度が高く、分散性に優れていることが要求される。
 微小な水酸化マグネシウム粒子の製法としては、気相酸化法により5~80nmの酸化マグネシウム粒子を製造し、さらにこれらの酸化マグネシウム粒子を水蒸気に接触させ、水酸化マグネシウムを製造する方法が開示されている(特許文献1)。この方法は製造のコストが高く、多量の工業生産が難しい。また、酸化マグネシウムから水酸化マグネシウムを合成する製造工程において水蒸気に接触させるため、高分散の粒子を得ることが困難である。
 近年では水酸化マグネシウムを製造する方法として、オートクレーブを用いた方法が採用されている。特許文献2には、塩化マグネシウム水溶液とアルカリ水溶液とを反応させ水酸化マグネシウムスラリーを製造し、101~200℃の温度で保持して水酸化マグネシウム粒子を製造する方法が記載されている。この製造方法は、結晶を成長させる時間が短いので合成直後に生じた凝集物は凝集したまま結晶成長する。その結果、最終的に得られる水酸化マグネシウム粒子にも凝集物が多く含まれるため、分散性に優れたものが得難い。また、この製法ではアルカリ原料が多い場合には、オートクレーブから不純物が溶出して不純物が混入するため、反応率を制限する必要がある。
特開2007−137694号公報 特開2012−72004号公報
Magnesium hydroxide is widely used as a flame retardant for polymer materials, highly functional materials, catalysts and the like. Magnesium oxide is used as a fiber acid acceptor, electromagnetic steel material, resin filler, catalyst, catalyst carrier, and the like. In order to exhibit excellent performance in these applications, the magnesium hydroxide particles and the magnesium oxide particles are required to have fine and uniform particle diameters, high purity, and excellent dispersibility.
As a method for producing fine magnesium hydroxide particles, there is disclosed a method of producing magnesium hydroxide particles of 5 to 80 nm by vapor phase oxidation method, and further contacting these magnesium oxide particles with water vapor to produce magnesium hydroxide. (Patent Document 1). This method is expensive to manufacture and difficult to produce in large quantities. Moreover, since it contacts with water vapor | steam in the manufacturing process which synthesizes magnesium hydroxide from magnesium oxide, it is difficult to obtain highly dispersed particles.
In recent years, a method using an autoclave has been adopted as a method for producing magnesium hydroxide. Patent Document 2 describes a method of producing magnesium hydroxide particles by reacting an aqueous magnesium chloride solution and an aqueous alkaline solution to produce a magnesium hydroxide slurry, and maintaining the temperature at 101 to 200 ° C. In this manufacturing method, since the time for growing the crystal is short, the aggregate formed immediately after the synthesis grows while maintaining the aggregation. As a result, the finally obtained magnesium hydroxide particles contain a large amount of agglomerates, so that it is difficult to obtain those having excellent dispersibility. Moreover, in this manufacturing method, when there are many alkali raw materials, since impurities elute from an autoclave and an impurity mixes, it is necessary to limit a reaction rate.
JP 2007-137694 A JP 2012-72004 A
 本発明の目的は、微小で均一な粒子径を有し、高純度で、分散性に優れた水酸化マグネシウム粒子およびその製造方法を提供することにある。また本発明の目的は、微小で均一な粒子径を有し、高純度で、分散性に優れた酸化マグネシウム粒子を提供することにある。
 本発明者らは、可溶性マグネシウム塩の水溶液とアルカリ水溶液とを反応させ、大気圧下で、低温で、長時間熱処理すると、オートクレーブ等を用い、加圧下で、高温で熱処理する場合に比べ、微小で均一な粒子径を有し、高純度で、分散性に優れた水酸化マグネシウム粒子が得られることを見出し、本発明を完成した。
 すなわち本発明は、以下の発明を包含する。
1. (i)可溶性マグネシウム塩の水溶液とアルカリ水溶液とを反応させ、水酸化マグネシウム粒子を含むスラリーを製造し、
(ii)得られたスラリーを、大気圧下、0~100℃で、5~500時間熱処理し、
(iii)熱処理したスラリーから水酸化マグネシウム粒子を含むケーキを分離精製し、および
(iv)分離精製したケーキを乾燥させ水酸化マグネシウム粒子を得る、
各工程を含む水酸化マグネシウム粒子の製造方法。
2. 可溶性マグネシウム塩が、塩化マグネシウム若しくは硫酸マグネシウムである前項1記載の製造方法。
3. アルカリ水溶液が、水酸化ナトリウムの水溶液である前項1記載の製造方法。
4. 0.1~5.7mol/Lの可溶性マグネシウム塩と、1.0~18.0Nのアルカリ水溶液とを反応させる前項1記載の製造方法。
5. 得られる水酸化マグネシウム粒子は、
(a)平均二次粒子径(MV)が50~800nmであり、
(b)D50/MVが0.70~0.99であり、ここでD50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径であり、
(c)空気雰囲気において10℃/分で昇温した場合の熱重量分析におけるOH離脱温度が360~388℃である、
前項1記載の製造方法。
6. (a)平均二次粒子径(MV)が50~800nmであり、
(b)D50/MVが0.70~0.99であり、ここでD50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径であり、
(c)空気雰囲気において10℃/分で昇温した場合の熱重量分析におけるOH離脱温度が360~388℃である、
ことを特徴とする水酸化マグネシウム粒子。
7. Clイオンの含有量が50~300ppmである前項6に記載の水酸化マグネシウム粒子。
8. SOイオンの含有量が50~300ppmである前項6に記載の水酸化マグネシウム粒子。
9. BET比表面積が8.0~280m/gである前項6に記載の水酸化マグネシウム粒子。
10. 純度が99.5重量%以上である前項6に記載の水酸化マグネシウム粒子。
11. Cr、Ni、Ti、Mn、Mo、Fe、Zn、Al、Cd、Co、PbおよびZrの合計の含有量が10~150ppmである前項6記載の水酸化マグネシウム粒子。
12. 前項6に記載の水酸化マグネシウム粒子を350~1200℃で焼成することにより得られる酸化マグネシウム粒子。
13. 100重量部の合成樹脂並びに0.01~350重量部の前項6に記載の水酸化マグネシウム粒子を含む樹脂組成物。
14. 100重量部の合成樹脂並びに0.01~350重量部の前項12に記載の酸化マグネシウム粒子を含む樹脂組成物。
An object of the present invention is to provide magnesium hydroxide particles having a fine and uniform particle diameter, high purity and excellent dispersibility, and a method for producing the same. Another object of the present invention is to provide magnesium oxide particles having a fine and uniform particle diameter, high purity and excellent dispersibility.
When the present inventors react an aqueous solution of a soluble magnesium salt with an alkaline aqueous solution and heat-treat it under atmospheric pressure at a low temperature for a long time, compared with the case of using an autoclave or the like and applying heat at a high temperature under pressure, it is finer. The present inventors have found that magnesium hydroxide particles having a uniform particle size, high purity, and excellent dispersibility can be obtained.
That is, the present invention includes the following inventions.
1. (I) reacting an aqueous solution of a soluble magnesium salt with an aqueous alkali solution to produce a slurry containing magnesium hydroxide particles,
(Ii) The obtained slurry was heat-treated at 0 to 100 ° C. under atmospheric pressure for 5 to 500 hours,
(Iii) separating and purifying the cake containing magnesium hydroxide particles from the heat-treated slurry, and (iv) drying the separated and purified cake to obtain magnesium hydroxide particles.
The manufacturing method of the magnesium hydroxide particle | grains including each process.
2. 2. The method according to item 1 above, wherein the soluble magnesium salt is magnesium chloride or magnesium sulfate.
3. 2. The method according to item 1, wherein the aqueous alkaline solution is an aqueous solution of sodium hydroxide.
4). 2. The production method according to item 1 above, wherein 0.1 to 5.7 mol / L of a soluble magnesium salt is reacted with 1.0 to 18.0 N aqueous alkali solution.
5. The resulting magnesium hydroxide particles are
(A) The average secondary particle size (MV) is 50 to 800 nm,
(B) D 50 / MV is 0.70 to 0.99, where D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement,
(C) The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C.,
The manufacturing method of the preceding clause 1.
6). (A) The average secondary particle size (MV) is 50 to 800 nm,
(B) D 50 / MV is 0.70 to 0.99, where D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement,
(C) The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C.,
Magnesium hydroxide particles characterized by the above.
7). 7. Magnesium hydroxide particles according to item 6 above, wherein the Cl ion content is 50 to 300 ppm.
8). 7. Magnesium hydroxide particles according to item 6 above, wherein the content of SO 4 ions is 50 to 300 ppm.
9. 7. Magnesium hydroxide particles according to item 6, wherein the BET specific surface area is 8.0 to 280 m 2 / g.
10. 7. Magnesium hydroxide particles according to item 6, wherein the purity is 99.5% by weight or more.
11. 7. Magnesium hydroxide particles according to item 6, wherein the total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr is 10 to 150 ppm.
12 Magnesium oxide particles obtained by firing the magnesium hydroxide particles according to item 6 at 350 to 1200 ° C.
13 7. A resin composition comprising 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of magnesium hydroxide particles according to item 6 above.
14 13. A resin composition comprising 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium oxide particles according to item 12 above.
 図1は、熱処理を45℃で140時間行った後、120℃で20時間乾燥させた水酸化マグネシウム粒子(実施例1)のX線回折スペクトル(上)とライブラリ検索結果(下)である。
 図2は、水酸化マグネシウム粒子(実施例3)を5万倍で撮影したSEM写真である。
 図3は、表面処理を行った水酸化マグネシウム粒子(実施例7)を5万倍で撮影したSEM写真である。
 図4は、熱処理を45℃で140時間行った後、120℃で20時間乾燥させた水酸化マグネシウム粒子(実施例1)の粒度分布である。
 図5は、水酸化マグネシウム粒子(実施例3)の粒度分布である。
 図6は、表面処理を行った水酸化マグネシウム粒子(実施例7)の粒度分布である。
 図7は、LLDPE樹脂100重量部に対して水酸化マグネシウム粒子(実施例3)を130重量部配合した樹脂組成物の断面を1万倍で撮影したSEM写真である。
 図8は、LLDPE樹脂100重量部に対して水酸化マグネシウム粒子(比較例D)を130重量部配合した樹脂組成物の断面を1万倍で撮影したSEM写真である。
 図9は、熱処理を45℃で140時間行った後、120℃で20時間乾燥させた水酸化マグネシウム粒子(実施例1)のTG−DTA曲線とOH離脱温度。OHの離脱温度は382.4℃であった。
 図10は、水酸化マグネシウム粒子(実施例3)のTG−DTA曲線とOH離脱温度。OHの離脱温度は378.5℃であった。
 図11は、水酸化マグネシウム粒子(比較例A)のTG−DTA曲線とOH離脱温度。OHの離脱温度は389.3℃であった。
 図12は、水酸化マグネシウム粒子(比較例D)のTG−DTA曲線とOH離脱温度。OHの離脱温度は402.5℃であった。
 図13は、酸化マグネシウム粒子(実施例11)のX線回折スペクトル(上)とライブラリ検索結果(下)である。
 図14は、酸化マグネシウム粒子(実施例11)を3.5万倍で撮影したSEM写真である。
 図15は、酸化マグネシウム粒子(実施例11)の粒度分布である。
 図16は、酸化マグネシウム粒子(実施例9)の粒度分布である。
FIG. 1 shows an X-ray diffraction spectrum (top) and library search results (bottom) of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C. for 20 hours.
FIG. 2 is an SEM photograph of magnesium hydroxide particles (Example 3) taken at 50,000 times.
FIG. 3 is an SEM photograph of the surface-treated magnesium hydroxide particles (Example 7) taken at 50,000 times.
FIG. 4 shows the particle size distribution of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C. for 20 hours.
FIG. 5 is a particle size distribution of magnesium hydroxide particles (Example 3).
FIG. 6 is a particle size distribution of the surface-treated magnesium hydroxide particles (Example 7).
FIG. 7 is an SEM photograph of a cross section of a resin composition in which 130 parts by weight of magnesium hydroxide particles (Example 3) are blended with 100 parts by weight of LLDPE resin at a magnification of 10,000 times.
FIG. 8 is an SEM photograph of a cross section of a resin composition obtained by mixing 130 parts by weight of magnesium hydroxide particles (Comparative Example D) with 100 parts by weight of LLDPE resin at a magnification of 10,000 times.
FIG. 9 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Example 1) that were heat-treated at 45 ° C. for 140 hours and then dried at 120 ° C. for 20 hours. The desorption temperature of OH was 382.4 ° C.
FIG. 10 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Example 3). The desorption temperature of OH was 378.5 ° C.
FIG. 11 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Comparative Example A). The desorption temperature of OH was 389.3 ° C.
FIG. 12 shows a TG-DTA curve and OH desorption temperature of magnesium hydroxide particles (Comparative Example D). The desorption temperature of OH was 402.5 ° C.
FIG. 13 shows the X-ray diffraction spectrum (upper) and library search result (lower) of the magnesium oxide particles (Example 11).
FIG. 14 is a SEM photograph of magnesium oxide particles (Example 11) taken at 35,000 times.
FIG. 15 is a particle size distribution of magnesium oxide particles (Example 11).
FIG. 16 is a particle size distribution of magnesium oxide particles (Example 9).
 以下、本発明の水酸化マグネシウム粒子および酸化マグネシウム粒子について、好ましい実施形態に基づき詳述するが、本発明はこれらの記載に限定されるものではない。
〔水酸化マグネシウム粒子の製造方法〕
 本発明の水酸化マグネシウム粒子の製造方法は、反応工程(i)、熱処理工程(ii)、分離精製工程(iii)および乾燥工程(iv)の各工程を含む。
<反応工程(i)>
 反応工程(i)は、可溶性マグネシウム塩の水溶液とアルカリ水溶液とを、反応させ水酸化マグネシウム粒子を含むスラリーを製造する工程である。
(可溶性マグネシウム塩)
 マグネシウム原料としては可溶性マグネシウム塩を用いることができる。可溶性マグネシウム塩として、塩化マグネシウム、塩化マグネシウム2水和物、塩化マグネシウム6水和物、硝酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、苦汁などが挙げられる。可溶性マグネシウム塩として、塩化マグネシウム若しくは硫酸マグネシウムが好ましい。
 可溶性マグネシウム塩の濃度は、好ましくは0.1~5.7mol/L、より好ましくは0.5~5.5mol/L、さらに好ましくは1.0~5.0mol/Lである。塩化マグネシウム水溶液を用いた場合には、好ましくは0.1~5.7mol/L、より好ましくは0.5~5.5mol/L、さらに好ましくは1.0~5.0mol/Lである。また硫酸マグネシウム水溶液を用いた場合には、好ましくは0.1~4.6mol/L、より好ましくは0.5~4.4mol/L、さらに好ましくは1.0~4.2mol/Lである。
(アルカリ)
 アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、アンモニアなどの水溶液が挙げられる。アルカリ水溶液が水酸化ナトリウムの水溶液であることが好ましい。アルカリ水溶液の濃度は、好ましくは1.0~18.0N、より好ましくは2.0~15.0N、さらに好ましくは3.0~12.0Nである。
(反応率)
 可溶性マグネシウム塩の水溶液とアルカリ水溶液の反応率はマグネシウムとして、50~400mol%であり、好ましくは60~350mol%であり、より好ましくは80~300mol%である。なお、反応率は、Mg2+イオン:OHイオン=1:2の理論計量時に100mol%であることを示す。反応率が50mol%以下の場合においても、分散性に優れる水酸化マグネシウム微粒子は得られるが、生成した水酸化マグネシウムの回収率が低くなる。また反応率が400mol%以上の場合においても、分散性に優れる水酸化マグネシウム微粒子は得られるが、反応物の粘度が高くなるために水洗し難くなるため、さらに製造コストは高くなる。
<熱処理工程(ii)>
 熱処理工程は、得られたスラリーを、大気圧下、0~100℃で、5~500時間熱処理する工程である。
 熱処理は、大気圧下で行う。熱処理温度は、高くなるほどナノサイズの粒子が溶解して一次粒子の成長が促進されるので、得られる水酸化マグネシウムの平均二次粒子径は大きくなる。したがって、熱処理温度を高くしながら微粒子を得たい場合、熱処理時間を短くしなければならない。一方、熱処理時間を短くすると、水酸化マグネシウムの合成反応時に生じた水酸化マグネシウムの一次粒子の凝集物は十分に分離されずに残る。この凝集物は乾燥工程を経ても凝集物として残り、これらの凝集物には水素結合および毛管現象が強くは働くため、乾燥後の粒子をさらに凝集させてしまう。
 すなわち、100℃よりも高い熱処理温度では、得られる水酸化マグネシウム粒子は、熱処理時間を長くすれば一次粒子径および二次粒子径が共に大きくなってしまい、熱処理時間を短くすれば凝集物が含まれて分散性が悪くなってしまう。
 従って熱処理温度は、0~100℃、好ましくは0~95℃、より好ましくは20~90℃、さらに好ましくは35~85℃である。この範囲内であれば、水酸化マグネシウムの一次粒子の結晶成長は促進されにくいので、熱処理時間を長くすることができる。
 熱処理時間は、5~500時間、好ましくは8~400時間、より好ましくは10~300時間である。この範囲内であれば、反応工程で生じた水酸化マグネシウムの凝集物が十分に分離され、乾燥後の微粒子間の水素結合と毛管現象が抑制されるので、均一な粒子径を有する分散性に優れた水酸化マグネシウム粒子を得ることができる。
<分離精製工程(iii)>
 分離精製工程は、熱処理したスラリーから水酸化マグネシウム粒子を含むケーキを分離し、精製する工程である。
 水酸化マグネシウムケーキの分離は濾過により行うことができる。水洗しながら濾過しても良い。精製は、水洗により行うことができる。水洗は、水酸化マグネシウムケーキと水とを撹拌しながら水酸化マグネシウムケーキを再懸濁させた後、これを濾過して再び水酸化マグネシウムケーキを得ることが好ましい。水は、好ましくは1~4回分に分けて、さらに好ましくは1~3回に分けて洗浄する。水の量は、水酸化マグネシウム粒子に対し、重量基準で5~100倍の水を用いることが好ましい。
 水の電導度(純度)は、好ましくは100μS/cm以下、より好ましくは10μS/cm以下、さらに好ましくは0.5μS/cm以下である。
 水および撹拌時の水浴の温度、撹拌速度、撹拌時間については公知の方法で行うことができる。例えば、水および撹拌時の水浴の温度については10~80℃、撹拌速度については100~800rpm、撹拌時間については0.5~5時間とすることが例示できる。
 水洗により水酸化マグネシウム中の不純物を除去することができるが、乾燥後に得られる水酸化マグネシウム粒子が凝集し分散性を悪くする。そのため、不純物が少なく分散性に優れる水酸化マグネシウム粒子を得るためには、熱処理後の水酸化マグネシウムに含まれる不純物を減らし、水洗に用いる水量を減らすことが求められる。
 本発明の製造方法では熱処理温度が0~100℃であるため、より高い熱処理温度で製造した水酸化マグネシウムに比べて、結晶構造が熱力学的に不安定な特徴を有する。そのため、水洗によりClなどの不純物を生成物から除去しやすい特徴がある。したがって、本発明の製造方法により得られる水酸化マグネシウム粒子中のClイオンは、原料として塩化マグネシウム水溶液を用いたときでも水による洗浄により容易に除去し易い。また本発明の製造方法により得られる水酸化マグネシウム粒子中のSOイオンは、原料として硫酸マグネシウム水溶液を用いたときでも水による洗浄により容易に除去し易い。
<乾燥工程(iv)>
 乾燥工程は、水酸化マグネシウムケーキを乾燥させる工程である。乾燥は、公知の方法で行うことができる。
<水酸化マグネシウム粒子>
 本発明の水酸化マグネシウム粒子は、Mg(OH)で表される化学組成を有する。
(平均二次粒子径(MV))
 本発明の水酸化マグネシウム粒子は、乾燥工程後に、平均二次粒子径(MV)が50~800nm、好ましくは80~600nm、より好ましくは100~500nmである。
(D50
 本発明の水酸化マグネシウム粒子のD50は、好ましくは35~792nm、より好ましくは57.6~594nm、さらに好ましくは75~495nmである。
(D50/MV)
 本発明の水酸化マグネシウム粒子のD50/MVは、0.70~0.99、好ましくは0.72~0.99、より好ましくは0.75~0.99である。ここでD50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径である。
(D90/D10
 本発明の水酸化マグネシウム粒子のD90/D10は、好ましくは4以下、より好ましくは3.8以下、さらに好ましくは3.5以下である。
(OH離脱温度)
 本発明の水酸化マグネシウム粒子は、空気雰囲気において10℃/分で昇温した場合の熱重量分析におけるOH離脱温度が、360~388℃、好ましくは365~386℃、より好ましくは370~385℃である。
 本発明の水酸化マグネシウム粒子は、0~100℃の低温で熱処理されるので、より高い温度で熱処理された水酸化マグネシウムに比べて、結晶構造が熱力学的に不安定な特徴を有する。そのため本発明の水酸化マグネシウム粒子は、100℃よりも高い温度で熱処理して製造された水酸化マグネシウムに比べて、熱重量分析におけるOHの離脱温度が低い。その結果、難燃性に優れる。
(BET比表面積)
 本発明の水酸化マグネシウム粒子のBET比表面積は、好ましくは8.0~280m/g、より好ましくは10.0~250m/g、さらに好ましくは15.0~200m/gである。
(Clイオンの含有量)
 水酸化マグネシウム粒子のClイオンの含有量は、好ましくは50~300ppm、より好ましくは50~270ppm、さらに好ましくは50~250ppmである。本発明の水酸化マグネシウム粒子の結晶構造は、熱力学的に不安定であり、精製によりClイオンを除去し易く、Clイオンの含有量は少ない。
(SOイオンの含有量)
 また、本発明の水酸化マグネシウム粒子のSOイオンの含有量は、好ましくは50~300ppm、より好ましくは50~270ppm、さらに好ましくは50~250ppmである。本発明の水酸化マグネシウム粒子の結晶構造は、熱力学的に不安定であり、精製によりSOイオンを除去し易く、SOイオンの含有量は少ない。
(純度)
 本発明の水酸化マグネシウム粒子の純度は、好ましくは99.5%以上、より好ましくは99.6%以上、さらに好ましくは99.7%以上である。
(金属合計含有量)
 本発明の水酸化マグネシウム粒子のCr、Ni、Ti、Mn、Mo、Fe、Zn、Al、Cd、Co、PbおよびZrの合計含有量は、好ましくは10~150ppm、より好ましくは15~100ppmであり、さらに好ましくは20~80ppmである。本発明の水酸化マグネシウム粒子の結晶構造は、熱力学的に不安定であり、精製により金属不純物を除去し易く、金属不純物の含有量は少ない。
<酸化マグネシウム>
 本発明の酸化マグネシウム粒子は、MgOで表される化学組成を有する。本発明の酸化マグネシウム粒子は本発明の水酸化マグネシウム粒子を、好ましくは350~1200℃で焼成することにより得ることができる。焼成温度は、より好ましくは400~1100℃、さらに好ましくは500~1000℃である。
(平均二次粒子径(MV))
 本発明の酸化マグネシウム粒子は、平均二次粒子径(MV)が、好ましくは50~800nm、より好ましくは80~600nm、さらに好ましくは100~500nmである。
(D50
 本発明の酸化マグネシウム粒子のD50は、好ましくは35~792nm、より好ましくは57.6~594nm、さらに好ましくは75~495nmである。
(D50/MV)
 本発明の酸化マグネシウム粒子のD50/MVは、好ましくは0.70~0.99、より好ましくは0.72~0.99、さらに好ましくは0.75~0.99である。ここで、D50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径である。
(D90/D10
 本発明の酸化マグネシウム粒子のD90/D10は、好ましくは4以下、より好ましくは3.8以下、さらに好ましくは3.5以下である。
(BET比表面積)
 本発明の酸化マグネシウム粒子のBET比表面積は、好ましくは1.0~280m/g、より好ましくは5.0~250m/g、さらに好ましくは10.0~200m/gである。
(純度)
 本発明の酸化マグネシウム粒子の純度は、好ましくは99.5%以上、より好ましくは99.6%以上、さらに好ましくは99.7%以上である。
(金属合計含有量)
 本発明の酸化マグネシウム粒子のCr、Ni、Ti、Mn、Mo、Fe、Zn、Al、Cd、Co、PbおよびZrの合計含有量は、好ましくは10~150ppm、より好ましくは15~100ppm、さらに好ましくは20~80ppmである。
<表面処理剤>
 本発明の水酸化マグネシウム粒子および酸化マグネシウム粒子は、用途によって表面処理されることが好ましい。表面処理剤は、公知の化合物を利用することができる。表面処理剤は、高級脂肪酸、アニオン系界面活性剤、高級脂肪酸アルカリ土類金属塩、カップリング剤、燐酸と高級アルコールとからなる燐酸エステル類およびシリコーンオイルからなる群より選択される少なくとも一種が好ましい。
 高級脂肪酸としては、ステアリン酸、エルカ酸、パルミチン酸、ラウリン酸、ベヘン酸などが挙げられる。
 アニオン系界面活性剤としては、ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エステル結合硫酸エステル塩、エステル結合スルホネート、アミド結合スルホン酸塩、エーテル結合スルホン酸塩、エーテル結合アルキルアリールスルホン酸塩、エステル結合アルキルアリールスルホン酸塩、アミド結合アルキルアリールスルホン酸塩などが挙げられる。
 高級脂肪酸アルカリ土類金属塩としては、マグネシウム、ベリリウム、カルシウム、バリウムなどのアルカリ土類金属塩が挙げられる。
 カップリング剤の例としては、r−(2−アミノエチル)アミノプロピルトリメトキシシラン、r−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、r−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−r−アミノプロピルトリメトキシシラン・塩酸塩、r−グリシドキシプロピルトリメトキシシラン、r−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリアセトキシシラン、r−クロロプロピルトリメトキシシラン、ヘキサメチルジシラザン、r−アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、r−クロロプロピルメチルジメトキシシラン、r−メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、r−グリシドキシプロピルメチルエトキシシラン、r−グリシドキシプロピルトリエトキシシラン、r−メタクリロキシプロピルメチルジメトキシシラン、r−メタクリロキシプロピルメチルジエトキシシラン、r−メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)r−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)r−アミノプロピルトリメトキシシラン、N−β(アミノエチル)r−アミノプロピルトリエトキシシラン、r−アミノプロピルトリメトキシシラン、r−アミノプロピルトリエトキシシラン、N−フェニル−r−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等のシランカップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロフォスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトライソプロピルビス(ジオクチルフォスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス−(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロフォスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等のチタネート系カップリング剤、アセトアルコキシアルミニウムジイソプロピレート等のアルミニウム系カップリング剤が挙げられる。
 燐酸と高級アルコールとからなる燐酸エステル類としては、オルト燐酸とオレイルアルコール、ラウリルアルコール、ミリスチルアルコール、パルミチルアルコールまたはステアリルアルコールとからなるリン酸エステルなどが挙げられる。
 シリコーンオイルの例としては、ジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイルなどが挙げられる。
 表面処理は、公知の湿式法および乾式法で行うことができる。湿式法において表面処理剤の添加量は、水酸化マグネシウム粒および酸化マグネシウム粒子100重量部に対して、好ましくは0.5~15重量部、より好ましくは1.0~12重量部、さらに好ましくは2.0~10重量部である。表面処理温度は、好ましくは0~100℃、より好ましくは20~90℃、さらに好ましくは40~80℃である。
<水酸化マグネシウム粒子を含有する樹脂組成物>
 本発明の樹脂組成物は、100重量部の合成樹脂並びに0.01~350重量部の前記水酸化マグネシウム粒子を含む。
 合成樹脂として、ポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、ポリブデン、ポリ・4−メチルペンテン−1等の如きC2~C8オレフィン(α−オレフィン)の重合体もしくは共重合体、これらオレフィンとジエンとの共重合体類が挙げられる。また、エチレン−アクリレート共重合体、ポリスチレン、ABS樹脂、AAS樹脂、AS樹脂、MBS樹脂、エチレン/塩ビ共重合樹脂、エチレン酢ビコポリマー樹脂、エチレン−塩ビ−酢ビグラフト重合樹脂、塩化ビニリデン、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、塩ビプロピレン共重合体、酢酸ビニル樹脂、フェノキシ樹脂、ポリアセタール、ポリアミド、ポリイミド、ポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、メタクリル樹脂等の熱可塑性樹脂が例示できる。
 さらに、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、尿素樹脂等の熱硬化性樹脂が例示できる。またEPDM、ブチルゴム、イソプレンゴム、SBR、NBR、クロロスルホン化ポリエチレン、NIR、ウレタンゴム、ブタジエンゴム、アクリルゴム、シリコーンゴム、フッ素ゴム等の合成ゴムを例示することができる。
 水酸化マグネシウム粒子の配合量は、合成樹脂100重量部に対して、0.01~350重量部、好ましくは0.1~320重量部、より好ましくは0.5~300重量部である。
<酸化マグネシウムを含有する樹脂組成物>
 本発明の樹脂組成物は、100重量部の合成樹脂並びに0.01~350重量部の前記酸化マグネシウム粒子を含む。
 合成樹脂は、熱可塑性樹脂、熱硬化性樹脂およびゴムからなる群より選ばれる少なくとも一種が好ましい。熱可塑性樹脂として、ポリエチレン、エチレンとα−オレフィンとの共重合体、エチレンと酢酸ビニル、エチレンとアクリル酸エチルとの共重合体、エチレンとアクリル酸メチルとの共重合体、ポリプロピレン、プロピレンと他のα—オレフィンの共重合体、ポリブテン−1、ポリ4−メチルペンテン−1、ポリスチレン、スチレンとアクリロニトリルとの共重合体、エチレンとプロピレンジエンゴムまたはブタジエンとの共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ABS、ポリカーボネート、ポリフェニレンサルファイド等が挙げられる。
 熱硬化性樹脂として、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂等が挙げられる。ゴムとして、EPDM、SBR、NBR、エチレンと他のα—オレフィン例えばプロピレン、オクテン等との共重合ゴム、ブチルゴム、クロロプレンゴム、イソプレンゴム、クロロスルホン化ゴム、シリコーンゴム、フッ素ゴム、塩素化ブチルゴム、臭素化ブチルゴム、エピクロルヒドリンゴム、塩素化ポリエチレンゴム等が例示される。
 酸化マグネシウム粒子の含有量は、合成樹脂100重量部に対して、0.01~350重量部、好ましくは0.1~320重量部、さらに好ましくは0.5~300重量部である。
Hereinafter, the magnesium hydroxide particles and the magnesium oxide particles of the present invention will be described in detail based on preferred embodiments, but the present invention is not limited to these descriptions.
[Method for producing magnesium hydroxide particles]
The method for producing magnesium hydroxide particles of the present invention includes each step of a reaction step (i), a heat treatment step (ii), a separation and purification step (iii), and a drying step (iv).
<Reaction step (i)>
The reaction step (i) is a step of producing a slurry containing magnesium hydroxide particles by reacting an aqueous solution of a soluble magnesium salt with an aqueous alkaline solution.
(Soluble magnesium salt)
A soluble magnesium salt can be used as the magnesium raw material. Examples of the soluble magnesium salt include magnesium chloride, magnesium chloride dihydrate, magnesium chloride hexahydrate, magnesium nitrate, magnesium acetate, magnesium sulfate, and bitter juice. As the soluble magnesium salt, magnesium chloride or magnesium sulfate is preferred.
The concentration of the soluble magnesium salt is preferably 0.1 to 5.7 mol / L, more preferably 0.5 to 5.5 mol / L, and still more preferably 1.0 to 5.0 mol / L. When a magnesium chloride aqueous solution is used, it is preferably 0.1 to 5.7 mol / L, more preferably 0.5 to 5.5 mol / L, and still more preferably 1.0 to 5.0 mol / L. When a magnesium sulfate aqueous solution is used, it is preferably 0.1 to 4.6 mol / L, more preferably 0.5 to 4.4 mol / L, and still more preferably 1.0 to 4.2 mol / L. .
(alkali)
Examples of the alkaline aqueous solution include aqueous solutions of sodium hydroxide, potassium hydroxide, ammonia and the like. The aqueous alkaline solution is preferably an aqueous solution of sodium hydroxide. The concentration of the alkaline aqueous solution is preferably 1.0 to 18.0 N, more preferably 2.0 to 15.0 N, and still more preferably 3.0 to 12.0 N.
(Reaction rate)
The reaction rate between the aqueous solution of the soluble magnesium salt and the alkaline aqueous solution is 50 to 400 mol%, preferably 60 to 350 mol%, more preferably 80 to 300 mol%, as magnesium. In addition, a reaction rate shows that it is 100 mol% at the time of the theoretical measurement of Mg2 + ion: OH - ion = 1: 2. Even when the reaction rate is 50 mol% or less, magnesium hydroxide fine particles having excellent dispersibility can be obtained, but the recovery rate of the produced magnesium hydroxide is lowered. Further, even when the reaction rate is 400 mol% or more, magnesium hydroxide fine particles having excellent dispersibility can be obtained. However, since the viscosity of the reaction product becomes high and washing with water becomes difficult, the production cost is further increased.
<Heat treatment step (ii)>
The heat treatment step is a step of heat treating the obtained slurry at 0 to 100 ° C. for 5 to 500 hours under atmospheric pressure.
The heat treatment is performed under atmospheric pressure. The higher the heat treatment temperature is, the higher the average secondary particle size of the magnesium hydroxide obtained, because the nano-sized particles dissolve and the growth of primary particles is promoted. Therefore, when it is desired to obtain fine particles while increasing the heat treatment temperature, the heat treatment time must be shortened. On the other hand, when the heat treatment time is shortened, aggregates of primary particles of magnesium hydroxide generated during the synthesis reaction of magnesium hydroxide remain without being sufficiently separated. These aggregates remain as aggregates even after the drying step, and hydrogen bonds and capillarity work strongly on these aggregates, so that the particles after drying are further aggregated.
That is, at a heat treatment temperature higher than 100 ° C., the obtained magnesium hydroxide particles have both a primary particle size and a secondary particle size that are increased if the heat treatment time is lengthened, and aggregates are contained if the heat treatment time is shortened. And dispersibility will deteriorate.
Therefore, the heat treatment temperature is 0 to 100 ° C., preferably 0 to 95 ° C., more preferably 20 to 90 ° C., and further preferably 35 to 85 ° C. Within this range, the crystal growth of the primary particles of magnesium hydroxide is difficult to promote, and the heat treatment time can be extended.
The heat treatment time is 5 to 500 hours, preferably 8 to 400 hours, more preferably 10 to 300 hours. Within this range, the magnesium hydroxide agglomerates generated in the reaction step are sufficiently separated, and hydrogen bonding and capillary action between the fine particles after drying are suppressed, so that the dispersibility having a uniform particle size is achieved. Excellent magnesium hydroxide particles can be obtained.
<Separation and purification step (iii)>
The separation and purification step is a step of separating and purifying the cake containing magnesium hydroxide particles from the heat-treated slurry.
The magnesium hydroxide cake can be separated by filtration. You may filter, washing with water. Purification can be performed by washing with water. In the water washing, it is preferable to resuspend the magnesium hydroxide cake while stirring the magnesium hydroxide cake and water, and then filter this to obtain the magnesium hydroxide cake again. The water is preferably washed in 1 to 4 portions, and more preferably in 1 to 3 portions. The amount of water is preferably 5 to 100 times that of magnesium hydroxide particles on a weight basis.
The conductivity (purity) of water is preferably 100 μS / cm or less, more preferably 10 μS / cm or less, and even more preferably 0.5 μS / cm or less.
About the temperature of water and the water bath at the time of stirring, stirring speed, and stirring time, it can carry out by a well-known method. For example, the temperature of water and the water bath at the time of stirring can be 10 to 80 ° C., the stirring speed can be 100 to 800 rpm, and the stirring time can be 0.5 to 5 hours.
Although impurities in the magnesium hydroxide can be removed by washing with water, the magnesium hydroxide particles obtained after drying aggregate and deteriorate dispersibility. Therefore, in order to obtain magnesium hydroxide particles with few impurities and excellent dispersibility, it is required to reduce impurities contained in magnesium hydroxide after heat treatment and reduce the amount of water used for washing.
In the production method of the present invention, since the heat treatment temperature is 0 to 100 ° C., the crystal structure has a thermodynamically unstable characteristic as compared with magnesium hydroxide produced at a higher heat treatment temperature. For this reason, it is easy to remove impurities such as Cl from the product by washing with water. Therefore, Cl ions in the magnesium hydroxide particles obtained by the production method of the present invention are easily removed by washing with water even when a magnesium chloride aqueous solution is used as a raw material. Moreover, SO 4 ions in the magnesium hydroxide particles obtained by the production method of the present invention are easily removed by washing with water even when a magnesium sulfate aqueous solution is used as a raw material.
<Drying step (iv)>
The drying step is a step of drying the magnesium hydroxide cake. Drying can be performed by a known method.
<Magnesium hydroxide particles>
The magnesium hydroxide particles of the present invention have a chemical composition represented by Mg (OH) 2 .
(Average secondary particle size (MV))
The magnesium hydroxide particles of the present invention have an average secondary particle size (MV) of 50 to 800 nm, preferably 80 to 600 nm, more preferably 100 to 500 nm after the drying step.
(D 50)
The D 50 of the magnesium hydroxide particles of the present invention is preferably 35 to 792 nm, more preferably 57.6 to 594 nm, and even more preferably 75 to 495 nm.
(D 50 / MV)
The D 50 / MV of the magnesium hydroxide particles of the present invention is 0.70 to 0.99, preferably 0.72 to 0.99, more preferably 0.75 to 0.99. Here D 50 is a cumulative 50% particle diameter on a volume basis by a laser diffraction scattering particle size distribution measurement.
(D 90 / D 10)
The D 90 / D 10 of the magnesium hydroxide particles of the present invention is preferably 4 or less, more preferably 3.8 or less, and even more preferably 3.5 or less.
(OH release temperature)
The magnesium hydroxide particles of the present invention have an OH desorption temperature of 360 to 388 ° C., preferably 365 to 386 ° C., more preferably 370 to 385 ° C. in thermogravimetric analysis when the temperature is raised at 10 ° C./min in an air atmosphere. It is.
Since the magnesium hydroxide particles of the present invention are heat-treated at a low temperature of 0 to 100 ° C., the crystal structure is characterized by thermodynamically unstable as compared with magnesium hydroxide heat-treated at a higher temperature. Therefore, the magnesium hydroxide particles of the present invention have a lower OH desorption temperature in thermogravimetric analysis than magnesium hydroxide produced by heat treatment at a temperature higher than 100 ° C. As a result, the flame retardancy is excellent.
(BET specific surface area)
The BET specific surface area of the magnesium hydroxide particles of the present invention is preferably 8.0 to 280 m 2 / g, more preferably 10.0 to 250 m 2 / g, still more preferably 15.0 to 200 m 2 / g.
(Cl ion content)
The content of Cl ions in the magnesium hydroxide particles is preferably 50 to 300 ppm, more preferably 50 to 270 ppm, and still more preferably 50 to 250 ppm. The crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, can easily remove Cl ions by purification, and has a low Cl ion content.
(SO 4 ion content)
The content of SO 4 ions in the magnesium hydroxide particles of the present invention is preferably 50 to 300 ppm, more preferably 50 to 270 ppm, and still more preferably 50 to 250 ppm. The crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, and SO 4 ions can be easily removed by purification, and the content of SO 4 ions is small.
(purity)
The purity of the magnesium hydroxide particles of the present invention is preferably 99.5% or more, more preferably 99.6% or more, and further preferably 99.7% or more.
(Total metal content)
The total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr in the magnesium hydroxide particles of the present invention is preferably 10 to 150 ppm, more preferably 15 to 100 ppm. Yes, more preferably 20 to 80 ppm. The crystal structure of the magnesium hydroxide particles of the present invention is thermodynamically unstable, metal impurities can be easily removed by purification, and the content of metal impurities is small.
<Magnesium oxide>
The magnesium oxide particles of the present invention have a chemical composition represented by MgO. The magnesium oxide particles of the present invention can be obtained by firing the magnesium hydroxide particles of the present invention, preferably at 350 to 1200 ° C. The firing temperature is more preferably 400 to 1100 ° C, still more preferably 500 to 1000 ° C.
(Average secondary particle size (MV))
The magnesium oxide particles of the present invention have an average secondary particle size (MV) of preferably 50 to 800 nm, more preferably 80 to 600 nm, and still more preferably 100 to 500 nm.
(D 50)
The D 50 of the magnesium oxide particles of the present invention is preferably 35 to 792 nm, more preferably 57.6 to 594 nm, and further preferably 75 to 495 nm.
(D 50 / MV)
The D 50 / MV of the magnesium oxide particles of the present invention is preferably 0.70 to 0.99, more preferably 0.72 to 0.99, and even more preferably 0.75 to 0.99. Here, D 50 is a volume-based cumulative 50% particle diameter measured by laser diffraction scattering type particle size distribution measurement.
(D 90 / D 10)
The D 90 / D 10 of the magnesium oxide particles of the present invention is preferably 4 or less, more preferably 3.8 or less, and even more preferably 3.5 or less.
(BET specific surface area)
The BET specific surface area of the magnesium oxide particles of the present invention is preferably 1.0 to 280 m 2 / g, more preferably 5.0 to 250 m 2 / g, still more preferably 10.0 to 200 m 2 / g.
(purity)
The purity of the magnesium oxide particles of the present invention is preferably 99.5% or more, more preferably 99.6% or more, and further preferably 99.7% or more.
(Total metal content)
The total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr in the magnesium oxide particles of the present invention is preferably 10 to 150 ppm, more preferably 15 to 100 ppm, Preferably it is 20 to 80 ppm.
<Surface treatment agent>
The magnesium hydroxide particles and magnesium oxide particles of the present invention are preferably surface-treated depending on the application. A known compound can be used as the surface treatment agent. The surface treatment agent is preferably at least one selected from the group consisting of higher fatty acids, anionic surfactants, higher fatty acid alkaline earth metal salts, coupling agents, phosphoric esters comprising phosphoric acid and higher alcohols, and silicone oils. .
Examples of higher fatty acids include stearic acid, erucic acid, palmitic acid, lauric acid, and behenic acid.
Anionic surfactants include polyethylene glycol ether sulfate, amide bond sulfate, ester bond sulfate, ester bond sulfonate, amide bond sulfonate, ether bond sulfonate, ether bond alkylaryl sulfonic acid. Examples thereof include salts, ester-bonded alkyl aryl sulfonates, and amide-bonded alkyl aryl sulfonates.
Examples of the higher fatty acid alkaline earth metal salt include alkaline earth metal salts such as magnesium, beryllium, calcium, and barium.
Examples of coupling agents include r- (2-aminoethyl) aminopropyltrimethoxysilane, r- (2-aminoethyl) aminopropylmethyldimethoxysilane, r-methacryloxypropyltrimethoxysilane, N-β- ( N-vinylbenzylaminoethyl) -r-aminopropyltrimethoxysilane / hydrochloride, r-glycidoxypropyltrimethoxysilane, r-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltriacetoxy Silane, r-chloropropyltrimethoxysilane, hexamethyldisilazane, r-anilinopropyltrimethoxysilane, vinyltrimethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, r-c Ropropylmethyldimethoxysilane, r-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, β- (3,4 epoxy cyclohexyl) ) Ethyltrimethoxysilane, r-glycidoxypropylmethylethoxysilane, r-glycidoxypropyltriethoxysilane, r-methacryloxypropylmethyldimethoxysilane, r-methacryloxypropylmethyldiethoxysilane, r-methacryloxypropyl Triethoxysilane, N-β (aminoethyl) r-aminopropylmethyldimethoxysilane, N-β (aminoethyl) r-aminopropyltrimethoxysilane, N β (aminoethyl) r-aminopropyltriethoxysilane, r-aminopropyltrimethoxysilane, r-aminopropyltriethoxysilane, N-phenyl-r-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane Silane coupling agents such as γ-methacryloxypropyltrimethoxysilane, isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, isopropyl tridecylbenzenesulfonyl Titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, isopropyl tridodecy Benzenesulfonyl titanate, tetraisopropylbis (dioctylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis- (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltriocta Titanate coupling agents such as noyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, dicumyl phenyloxyacetate titanate, diisostearoyl ethylene titanate Aluminum cups such as acetoalkoxyaluminum diisopropylate A ring agent is mentioned.
Examples of phosphoric acid esters composed of phosphoric acid and higher alcohols include phosphoric acid esters composed of orthophosphoric acid and oleyl alcohol, lauryl alcohol, myristyl alcohol, palmityl alcohol or stearyl alcohol.
Examples of the silicone oil include dimethyl silicone oil, methyl hydrogen silicone oil, methyl phenyl silicone oil, and cyclic dimethyl silicone oil.
The surface treatment can be performed by a known wet method and dry method. In the wet method, the amount of the surface treatment agent added is preferably 0.5 to 15 parts by weight, more preferably 1.0 to 12 parts by weight, and still more preferably 100 parts by weight of magnesium hydroxide particles and magnesium oxide particles. 2.0 to 10 parts by weight. The surface treatment temperature is preferably 0 to 100 ° C., more preferably 20 to 90 ° C., and further preferably 40 to 80 ° C.
<Resin composition containing magnesium hydroxide particles>
The resin composition of the present invention contains 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium hydroxide particles.
As synthetic resins, polymers or copolymers of C2 to C8 olefins (α-olefins) such as polyethylene, polypropylene, ethylene / propylene copolymers, polybutene, poly-4-methylpentene-1, etc., these olefins and dienes These copolymers are mentioned. Also, ethylene-acrylate copolymer, polystyrene, ABS resin, AAS resin, AS resin, MBS resin, ethylene / vinyl chloride copolymer resin, ethylene vinyl acetate copolymer resin, ethylene-vinyl chloride-vinyl acetate graft polymer resin, vinylidene chloride, polychlorinated Vinyl, chlorinated polyethylene, chlorinated polypropylene, vinyl chloride copolymer, vinyl acetate resin, phenoxy resin, polyacetal, polyamide, polyimide, polycarbonate, polysulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, methacrylic resin, etc. A thermoplastic resin can be illustrated.
Furthermore, thermosetting resins such as epoxy resins, phenol resins, melamine resins, unsaturated polyester resins, alkyd resins, and urea resins can be exemplified. Moreover, synthetic rubbers such as EPDM, butyl rubber, isoprene rubber, SBR, NBR, chlorosulfonated polyethylene, NIR, urethane rubber, butadiene rubber, acrylic rubber, silicone rubber, and fluorine rubber can be exemplified.
The compounding amount of the magnesium hydroxide particles is 0.01 to 350 parts by weight, preferably 0.1 to 320 parts by weight, more preferably 0.5 to 300 parts by weight with respect to 100 parts by weight of the synthetic resin.
<Resin composition containing magnesium oxide>
The resin composition of the present invention contains 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium oxide particles.
The synthetic resin is preferably at least one selected from the group consisting of thermoplastic resins, thermosetting resins and rubbers. As thermoplastic resin, polyethylene, copolymer of ethylene and α-olefin, ethylene and vinyl acetate, copolymer of ethylene and ethyl acrylate, copolymer of ethylene and methyl acrylate, polypropylene, propylene and others Α-olefin copolymer, polybutene-1, poly-4-methylpentene-1, polystyrene, copolymer of styrene and acrylonitrile, copolymer of ethylene and propylene diene rubber or butadiene, polyvinyl acetate, polyvinyl Examples include alcohol, polyacrylate, polymethacrylate, polyurethane, polyester, polyether, polyamide, ABS, polycarbonate, and polyphenylene sulfide.
Examples of the thermosetting resin include phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, alkyd resin, and the like. As rubber, EPDM, SBR, NBR, copolymerized rubber of ethylene and other α-olefins such as propylene, octene, butyl rubber, chloroprene rubber, isoprene rubber, chlorosulfonated rubber, silicone rubber, fluorine rubber, chlorinated butyl rubber, Examples include brominated butyl rubber, epichlorohydrin rubber, and chlorinated polyethylene rubber.
The content of magnesium oxide particles is 0.01 to 350 parts by weight, preferably 0.1 to 320 parts by weight, and more preferably 0.5 to 300 parts by weight with respect to 100 parts by weight of the synthetic resin.
 以下、本発明に関し実施例を用いてさらに詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。実施例において各特性は以下の方法によって測定した。
(1)SEM写真
 Field Emission Scanning Electron Microscope(JSM−7600F、日本電子株式会社製)を使用して、乾燥後の粒子、焼成処理後の粒子および樹脂に練り込んだ後の写真を撮影した。
(2)X線回折法による分析
 X‐RAY DIFFRACTOMETER(RINT2000、Rigaku社製)を使用して、得られた水酸化マグネシウム粒子および酸化マグネシウム粒子の定性分析を行った。
(3)粒度分布および粒子径
 0.2重量%のヘキサメタリン酸ナトリウム水溶液80mlを100mlのガラスビーカーに採り、これに乾燥後の試料粉末を0.8g入れ、3分間の超音波処理を行った。この水溶液について、レーザー回折散乱式粒度分布装置(MT3000、日機装社製)を使用して、平均二次粒子径(MV)、体積基準の累積50%粒子径(D50)、体積基準の累積90%粒子径(D90)および体積基準の累積10%粒子径(D10)を測定した。
(4)BET比表面積
 比表面積の測定装置(NOVA2000、ユアサアイオニクス社製)を使用して、ガス吸着法により比表面積を測定した。
(5)化学組成
 乾燥後の水酸化マグネシウム粒子に含まれるCl、SO、Fe、ZnおよびAlの含有量は、蛍光X線(XRF)分析装置(RIX2000、Rigaku社製)を使用して定量分析を行った。
 乾燥後の水酸化マグネシウム粒子に含まれるCr、Ti、Mn、Mo、Ni、Cd、Co、PbおよびZrの含有量を測定するために、酸に溶解させた試料を作製し、ICP発光分析装置(SPS3500D、HITACHI社製)を使用して定量分析を行った。
(6)熱重量分析
 熱分析装置(TG‐DTA 2000SA、ブルカー・エイエックスエス社製)を使用して、得られた水酸化マグネシウム粒子および酸化マグネシウム粒子の熱重量分析を行った。試料重量は10mgで、空気流量100ml/分、昇温速度は10℃/分の条件で測定を行った。
(7)樹脂組成物の難燃性評価および外観評価
 試験体試料は、LLDPE樹脂(直鎖状低密度ポリエチレン、ノバテックLLUF‐240、日本ポリエチレン株式会社)100重量部および難燃剤として水酸化マグネシウム粒子130重量部を混合し、小型バッチ式混練機(ブラベンダー社製)により160℃、30rpmで5分間混練した。混練物を130mm×70mm×3mmの金型で150℃、100kg/cm、5分間成形した。成形品を130mm×15mmの大きさにカットし、UL94V規格(1/8inch)に準拠して、難燃性の評価を行った。
(8)樹脂成形品における水酸化マグネシウム粒子の分散状態の評価
 前記(7)の方法で製造した成形品の表面について、5×5cmの範囲内にある水酸化マグネシウム粒子の分散状態を目視にて評価した。水酸化マグネシウムの一次粒子が凝集して塊となった部分が観察されなかった場合は「○」、1~4個観察された場合は「△」、5個以上観察された場合は「×」として評価した。
(9)ゴム組成物のスコーチ特性の評価
 クロロプレンゴム(CR)(M−40、電気化学工業製)100重量部に対して、受酸剤として酸化マグネシウムを4重量部、老化防止剤PAを1重量部、架橋剤として2種のZnOを5重量部、補強性充填剤としてカーボンブラックSRF・CB(シーストS、東海カーボン社製)を50重量部および加硫促進剤22を0.5重量部混合し、オープンロールにより40℃で10分間混練した後、153℃で30分間のプレス加硫処理を行い試料とした。圧縮永久歪測定用の成形品については、40分のプレス加硫処理を行った。成形品について、JIS K6251およびJIS K6253に準拠して、加硫ゴムの200%モジュラス(M200)、400%モジュラス(M400)、600%モジュラス(M600)、破断点強度(TB)、破断点伸び(EB)および硬度(ショアA硬度)を測定した。耐熱老化特性については、JIS K6257に基づき、加硫ゴムを100℃の空気雰囲気下で168時間老化させた後、ショアA硬度の変化を測定した。
(10)ゴム成形品における酸化マグネシウム粒子の分散状態の評価
 前記(9)の方法で製造したゴム成形品の表面について、5×5cmの範囲内にある酸化マグネシウム粒子の分散状態を目視にて評価した。酸化マグネシウムの一次粒子が凝集して塊となった部分が観察されなかった場合は「○」、1~4個観察された場合は「△」、5個以上観察された場合は「×」として評価した。
(11)難燃性樹脂組成物のペレットの流動性の評価
本発明の水酸化マグネシウム粒子を配合した難燃性樹脂組成物のペレットの流動性はメルトインデクサ(株式会社タカラ・サーミスタ社製)により190℃21.6kgの条件でMFRを測定した。
(12)難燃性樹脂組成物の着色性の評価
本発明の水酸化マグネシウム粒子を配合した難燃性樹脂組成物の着色性は、厚み1mmに成形したシートを測色色差計(日本電色工業株式会社製)により同一シート内の3点を測定し、その平均値を求めた。
(13)難燃性樹脂組成物の引張特性の評価
本発明の水酸化マグネシウム粒子を配合した難燃性樹脂組成物の引張特性は、厚み1mmのダンベル試験片を作製して万能試験機(インストロン社製)により引張特性を評価した。
実施例1~10および比較例A~D(水酸化マグネシウム)
実施例1
 常圧かつ20℃で、20Lのステンレス容器に4.2mol/Lの塩化マグネシウム水溶液6.5Lを入れて、撹拌しながら8.4Nの水酸化ナトリウム水溶液6.5Lをゆっくり添加し反応させ、脱イオン水で溶液の総体積を16Lに調整し、スラリーの濃度を100g/Lとした。
 次に、水浴の温度を45℃に設定し、350rpmの撹拌条件下で熱処理を行った。熱処理開始後、1、5、24、43、48、52、69、91、115、120、123および140時間後のスラリーの粒子の分布状態を表3に示す。
 また、熱処理を140時間行った後のスラリーは、水酸化マグネシウム粒子に対して重量基準で20倍の純水(脱イオン水、0.5μS/cm)を加えながら濾過し、水酸化マグネシウム粒子に対して重量基準で25倍の純水を用いた水洗を2回行い、120℃で20時間乾燥を行った。得られた粒子はX線回折法による分析の結果、水酸化マグネシウム(Mg(OH))粒子であった(図1)。
実施例2
 常圧かつ20℃で、20Lのステンレス容器に4.2mol/Lの塩化マグネシウム水溶液6.5Lを入れて、撹拌しながら12.0Nの水酸化ナトリウム水溶液9.1Lをゆっくり添加し反応させ、脱イオン水で溶液の総体積を16Lに調整し、スラリーの濃度を100g/Lとした。その後、水浴の温度を60℃に設定し、350rpmの撹拌条件下で15時間の熱処理を行った。その後、実施例1と同様にして、濾過、水洗および乾燥して水酸化マグネシウム粒子を得た。
実施例3
 熱処理温度を70℃、熱処理時間を15時間と変更した以外は実施例1と同様にして水酸化マグネシウム粒子を得た。
比較例A
 実施例3の熱処理前のスラリーと同様のスラリー800mlを採って、0.98Lのオートクレーブ(日東高圧社製)に入れ反応させた。その後、温度を150℃に設定し、500rpmの撹拌条件下で1時間熱処理を行った。その後、実施例1と同様にして、濾過、水洗および乾燥を行い、水酸化マグネシウム粒子を得た。
実施例4
 熱処理温度を90℃に変更した以外は実施例3と同様にして水酸化マグネシウム粒子を得た。
比較例B
 熱処理時間を3時間に変更した以外は比較例Aと同様にして水酸化マグネシウム粒子を得た。
実施例5
 常圧かつ20℃で、20Lのステンレス容器に4.2mol/Lの塩化マグネシウム水溶液6.5Lを入れて、撹拌しながら8.4Nの水酸化ナトリウム水溶液3.9Lをゆっくり添加し反応させ、脱イオン水で溶液の総体積を10.6Lに調整し、スラリーの濃度を90g/Lとした。
 水浴の温度を70℃に設定し、350rpmの撹拌条件下で15時間の熱処理を行った。その後、実施例1と同様にして、濾過、水洗および乾燥を行い、水酸化マグネシウム粒子を得た。
比較例C
 実施例5の熱処理前のスラリーと同様のスラリー800mlを採って、0.98Lのオートクレーブ(日東高圧社製)に入れ反応させ、150℃に設定し、500rpmの撹拌条件下で1時間熱処理した。その後、実施例1と同様にして、濾過、水洗および乾燥させ水酸化マグネシウム粒子を得た。
比較例D
 市販の水酸化マグネシウム粒子(キスマ5A、協和化学工業株式会社製)。
実施例6
 常圧かつ20℃で、20Lのステンレス容器に5.5mol/Lの塩化マグネシウム水溶液4.0Lを入れて、撹拌しながら16.0Nの水酸化ナトリウム水溶液8.25Lをゆっくり添加し反応させ、脱イオン水で溶液の総体積を12.83Lに調整し、スラリーの濃度を100g/Lとした。
 水浴の温度を70℃に設定し、350rpmの撹拌条件下で15時間の熱処理を行った。その後、実施例1と同様にして濾過、水洗および乾燥させ水酸化マグネシウム粒子を得た。
実施例7
 実施例3と同様に処理した後、固形分に対して3.0重量%のステアリン酸で表面処理を行い、水酸化マグネシウム粒子を得た。
実施例8
 マグネシウム原料を4.2mol/LのMgSOと変更した以外は実施例3と同様にして、水酸化マグネシウム粒子を得た。
実施例9
 熱処理温度を20℃、熱処理時間を165時間と変更した以外は実施例1と同様にして水酸化マグネシウム粒子を得た。
実施例10
 熱処理温度を99℃、熱処理時間を10時間と変更した以外は実施例1と同様にして水酸化マグネシウム粒子を得た。
(熱処理条件と粒度分布の関係)
 本発明の水酸化マグネシウム粒子の製造方法において、熱処理開始後のスラリーの粒子の分布状態(表3(実施例1))より明らかなとおり、反応時に生じた凝集物は熱処理時間が長くなるほど分離され、微小で均一な粒子となることが確認できる。
(粒度分布について)
 本発明の水酸化マグネシウム粒子は、表面処理の有無によらず微小で均一な粒子径を有する。表面処理をしていない水酸化マグネシウム粒子のSEM写真(図2(実施例3))と表面処理後のSEM写真(図3(実施例7))からわかるとおり、いずれも目立った凝集物は無く、均一な粒子であることが確認できる。また、表面処理をしていない水酸化マグネシウム粒子の粒度分布(図4(実施例1)、図5(実施例3))と表面処理後の粒子の粒度分布(図6(実施例7))において、いずれも微小で均一な粒子径を有することが確認できる。
(分散性について)
 本発明の水酸化マグネシウム粒子は、微小な粒子であるにも関わらず優れた分散性を有する。本発明の水酸化マグネシウム粒子をLLDPE樹脂に練り込んだ樹脂組成物の断面のSEM写真(図7(実施例3))と、市販の水酸化マグネシウム粒子をLLDPE樹脂に練り込んだ樹脂組成物の断面のSEM写真(図8(比較例D))とを比較して明らかなとおり、本発明の水酸化マグネシウム粒子は樹脂に練り込んだ場合においても凝集することなく、均一に分散していることが確認できる。
(OHの離脱温度)
 本発明の水酸化マグネシウム粒子は、100℃よりも高い温度で熱処理を行った水酸化マグネシウムに比べて、熱重量分析におけるOHの離脱温度が低い。本発明の水酸化マグネシウム粒子の熱重量分析におけるOHの離脱温度は382.4℃(図9(実施例1))および378.5℃(図10(実施例3))である。
 これらのOH離脱温度は熱処理温度が高い方法で製造した水酸化マグネシウムのOHの離脱温度389.3℃(図11(比較例A))および402.5℃(図12(比較例D))に比べて低い特徴を有する。この理由は、本発明の水酸化マグネシウム粒子のほうが熱力学的に弱い結晶構造を有するためであると考えられる。そのため、水酸化マグネシウム粒子中に取り込まれたClなどの不純物水洗により除去しやすい特徴がある。
 実施例1~10および比較例A~Dについて、合成条件(原料濃度、原料使用量、反応率、熱処理条件)および得られた水酸化マグネシウム粒子の特性(MV、D90/D10、D50、D50/MV、BET比表面積)については表1(1)および表1(2)に示す。実施例1~8および比較例A~Dについて、水酸化マグネシウム粒子の化学組成(水酸化マグネシウムの純度、不純物(Cl、SO、Cr、Ni、Ti、Mn、Mo、Fe、Zn、Al、Cd、Co、PbおよびZr)の含有量)、表面処理の有無、樹脂組成物の燃焼性評価および成形品における分散状態の評価については表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
実施例11~17および比較例E~H(酸化マグネシウム粒子)
実施例11
 実施例3で得られた乾燥水酸化マグネシウム粒子100gを300mlのアルミナ製坩堝に投入し、電気炉を用いて500℃で2時間焼成した粒子を得た。得られた粒子はX線回折法による分析の結果、酸化マグネシウム(MgO)であった(図13)。
実施例12
 焼成温度を650℃と変更した以外は実施例11と同様にして、酸化マグネシウム粒子を得た。
実施例13
 焼成温度を700℃と変更した以外は実施例11と同様にして、酸化マグネシウム粒子を得た。
実施例14
 実施例4で得られた乾燥水酸化マグネシウム粒子100gを300mlのアルミナ製坩堝に投入し、電気炉を用いて500℃で2時間焼成し、酸化マグネシウム粒子を得た。
実施例15
 焼成温度を650℃と変更した以外は実施例14と同様にして、酸化マグネシウム粒子を得た後、3.0重量%のステアリン酸で表面処理を行った。
実施例16
 焼成温度を700℃と変更した以外は実施例14と同様にして、酸化マグネシウム粒子を得た。
実施例17
 実施例8で得られた乾燥水酸化マグネシウム粒子100gを300mlのアルミナ製坩堝に投入し、電気炉を用いて650℃で2時間焼成し、酸化マグネシウム粒子を得た。
比較例E
 比較例Aで得られた乾燥水酸化マグネシウム粒子100gを300mlのアルミナ製坩堝に投入し、電気炉を用いて650℃で2時間焼成し、酸化マグネシウム粒子を得た。
比較例F
 用いる乾燥水酸化マグネシウム粒子を比較例Bで得られたものに変更した以外は比較例Eと同様にして、酸化マグネシウム粒子を得た。
比較例G
 用いる乾燥水酸化マグネシウム粒子を比較例Cで得られたものに変更した以外は比較例Eと同様にして、酸化マグネシウム粒子を得た。
比較例H
 用いる乾燥水酸化マグネシウム粒子を比較例Dで得られたものに変更した以外は比較例Eと同様にして、酸化マグネシウム粒子を得た後、3.0重量%のステアリン酸で表面処理を行った。
(酸化マグネシウム)
 本発明の酸化マグネシウム粒子は、微小で均一な粒子径を有する。本発明の酸化マグネシウム粒子(実施例11)のSEM写真(図14)および粒度分布(図15)からわかるとおり、目立った凝集物は無く、微小で均一な粒子径を有することが確認できる。
 実施例11~17および比較例E~Hについて、処理条件(原料濃度、原料使用量、反応率、熱処理温度、熱処理時間、スラリー濃度、焼成温度、焼成時間)、得られた酸化マグネシウム粒子の特性(BET比表面積、粒度、表面処理の有無)、加硫物性(M200、M400、M600、TB、EB、ショアA、圧縮永久歪、スコーチ時間)、耐熱老化性および成形品の分散状態の評価については表4に示す。
Figure JPOXMLDOC01-appb-T000005
実施例18~22および比較例I~M(樹脂組成物)
(非架橋の樹脂組成物)
実施例18
 実施例4の水酸化マグネシウム粒子を2重量%のステアリン酸で表面処理を行い、105℃で16時間乾燥しさらに120℃で2時間乾燥させておき、EVA(エバフレックスV421 三井・デュポンポリケミカル株式会社)90重量部に対して前記処理をした水酸化マグネシウム粒子150重量部、改質剤α−オレフィン共重合体(タフマー MH7020)10重量部、フェノール系酸化防止剤(IRGANOX1010)0.5重量部および硫黄系酸化防止剤(DLTDP)0.5重量部を、連続混練押出機(ケイシーエンジニアリング株式会社 KCK80×2−35VEX)にて160~200℃で溶融混合し、押し出した樹脂組成物ストランドをペレタイザーで切断した後、真空乾燥機(タバイエスペック株式会社製 LCV−242)により60℃で乾燥させてペレットを作製した。
 得られたペレットを小型バッチ式混練機(ブラベンダー社製)により130~160℃で15分間混練し、小判状に取り出したものをホットプレス(神藤金属工業株式会社 ANSF−50HH/C)により160℃で厚み1mmのシートを作製した。
比較例I
 用いる水酸化マグネシウム粒子を比較例Aの水酸化マグネシウム粒子と変更した以外は実施例18と同様にして樹脂組成物のペレットおよびシートを得た。
比較例J
 前もってMVが4.31μm、D50/MVが0.86、BET比表面積が30m/gである水酸化マグネシウム粒子を用意し、用いる水酸化マグネシウム粒子を前記の水酸化マグネシウム粒子と変更した以外は実施例18と同様にして樹脂組成物のペレットおよびシートを得た。
(過酸化物架橋の樹脂組成物)
実施例19
 実施例4の水酸化マグネシウム粒子を2重量%のステアリン酸で表面処理を行い、105℃で16時間乾燥しさらに120℃で2時間乾燥させておき、EVA(エバフレックスV421 三井・デュポンポリケミカル株式会社)90重量部に対して前記処理をした水酸化マグネシウム粒子150重量部、改質剤α−オレフィン共重合体(タフマー MH7020)10重量部、フェノール系酸化防止剤(IRGANOX1010)0.5重量部および硫黄系酸化防止剤(DLTDP)0.5重量部を、連続混練押出機にて160~200℃で溶融混合し、押し出した樹脂組成物ストランドをペレタイザーで切断した後、真空乾燥機により60℃で乾燥させてペレットを作製した。
 得られたペレットは樹脂成分100重量部(EVA90重量部と改質剤α−オレフィン共重合体10重量部の合計)に対して過酸化物(DCP)1重量部を配合し小型バッチ式混練機により115℃で10分間溶融混合し、小判状に取り出したものをホットプレスにより120℃で厚み2mmに成形し、さらに180℃で厚み1mmの架橋させたシートを得た。
比較例K
 用いる水酸化マグネシウム粒子を比較例Aの水酸化マグネシウム粒子と変更した以外は実施例19と同様にして樹脂組成物のペレットおよび架橋させたシートを得た。
比較例L
 前もってMVが4.31μm、D50/MVが0.86、BET比表面積が30m/gである水酸化マグネシウム粒子を用意し、用いる水酸化マグネシウム粒子を前記の水酸化マグネシウム粒子と変更した以外は実施例19と同様にして樹脂組成物のペレットおよび架橋させたシートを得た。
(シラン架橋の樹脂組成物)
実施例20
 実施例5の水酸化マグネシウム粒子を0.3重量%のシランカップリング剤で表面処理を行い、105℃で16時間乾燥しさらに120℃で2時間乾燥させておき、シラン架橋性EVA樹脂(リンクロン XVF600N 三菱化学株式会社)87重量部に対して前記処理をした水酸化マグネシウム粒子135重量部、改質剤α−オレフィン共重合体(タフマー MH7020)10重量部、フェノール系酸化防止剤(IRGANOX1010)0.5重量部および硫黄系酸化防止剤(DLTDP)0.5重量部を、小型バッチ式混練機により160~200℃で混合溶融し、小判状樹脂組成物を作製した。
 得られた小判状樹脂組成物は樹脂成分97重量部(シラン架橋性EVA樹脂87重量部と改質剤α−オレフィン共重合体10重量部の合計)に対して架橋促進触媒マスターバッチ3重量部を配合し小型バッチ式混練機により180℃で10分間溶融混合し、再び小判状に取り出したものをホットプレスにより160℃で厚み2mmに成形し、さらに180℃で厚み1mmに成形した。成形した樹脂組成物を80℃のイオン交換水に24時間浸漬し、架橋させたシートを得た。
実施例21
 用いる水酸化マグネシウム粒子を実施例4の水酸化マグネシウム粒子にし、その配合量を140部と変更した以外は実施例20と同様にして架橋させたシートを得た。
実施例22
 用いる水酸化マグネシウム粒子を実施例4の水酸化マグネシウム粒子と変更した以外は実施例20と同様にして架橋させたシートを得た。
比較例M
 前もってMVが0.87μm、D50/MVが0.83、BET比表面積が6m2/gである水酸化マグネシウム粒子を用意し、用いる水酸化マグネシウム粒子を前記の水酸化マグネシウム粒子にし、その配合量を140部と変更した以外は実施例20と同様にして架橋させたシートを得た。
比較例N
 用いる水酸化マグネシウム粒子の配合量を150部と変更した以外は比較例Mと同様にして架橋させたシートを得た。
 実施例18~19および比較例I~Lについて、樹脂組成物の流動性、着色性および引張特性の評価を表5に示す。
 実施例20~22および比較例M~Nについて、樹脂組成物の引張特性の評価および燃焼性評価を表6に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(樹脂組成物)
 本発明の水酸化マグネシウム粒子はサイズの揃った微小な粒子であるため、これを配合した樹脂組成物の変色(黄変)が極めて少ないことが特徴である(実施例18、19)。一方、従来の微小であるものの不揃いな水酸化マグネシウム粒子を配合した樹脂組成物は本発明の樹脂組成物に比べて変色(黄変)が多い(比較例I、J、K、L)。
 本発明の樹脂組成物は押出加工性と相関性のあるMFR(メルトフローレート)が良好であり(実施例18)、優れた難燃性と引張特性も有している(実施例20、21)。
発明の効果
 本発明の製造方法によれば、微小で均一な粒子径を有し、高純度で、分散性に優れた水酸化マグネシウム粒子を製造することができる。本発明の製造方法は、0~100℃の低い温度で熱処理するため、得られる水酸化マグネシウム粒子は、結晶構造が熱力学的に不安定な特徴を有する。そのため、水洗工程で、Clイオン、SOイオン、ニッケル、クロム、鉛、亜鉛、アルミニウムなどの金属などの不純物を生成物から除去し易い。
 また本発明の水酸化マグネシウム粒子は、微小で均一な粒子径を有し、高純度で、分散性に優れる。本発明の水酸化マグネシウム粒子は、0~100℃の低い温度で熱処理され製造されるので、より高い温度で熱処理した水酸化マグネシウムに比べて、結晶構造が熱力学的に不安定でOHの離脱温度が低い。そのため難燃性に優れている。本発明の水酸化マグネシウム粒子は、Clイオン、SOイオン、ニッケル、クロム、鉛、亜鉛、アルミニウムなどの金属の含有量が少ない。また本発明の水酸化マグネシウム粒子は、有機高分子材料や無機材料への用途において、均一な練り込みまたは均一な塗布処理を実現することができる。
 また本発明の酸化マグネシウム粒子は、微小で均一な粒子径を有し、高純度で、分散性に優れる。本発明の酸化マグネシウム粒子は、ニッケル、クロム、鉛、亜鉛、アルミニウムの含有量が少ない。また本発明の酸化マグネシウム粒子は、有機高分子材料や無機材料への用途において、均一な練り込みまたは均一な塗布処理を実現することができる。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited by these Examples, unless the summary is exceeded. In the examples, each characteristic was measured by the following method.
(1) SEM photograph Using Field Emission Scanning Electron Microscope (JSM-7600F, manufactured by JEOL Ltd.), a photograph after kneading into particles after drying, particles after baking treatment and resin was taken.
(2) Analysis by X-ray diffraction method Qualitative analysis of the obtained magnesium hydroxide particles and magnesium oxide particles was performed using X-RAY DIFFRACTOMETER (RINT2000, manufactured by Rigaku).
(3) Particle size distribution and particle size 80 ml of a 0.2 wt% sodium hexametaphosphate aqueous solution was placed in a 100 ml glass beaker, and 0.8 g of the dried sample powder was added thereto and subjected to ultrasonic treatment for 3 minutes. About this aqueous solution, using a laser diffraction scattering type particle size distribution apparatus (MT3000, manufactured by Nikkiso Co., Ltd.), the average secondary particle size (MV), the volume-based cumulative 50% particle size (D 50 ), and the volume-based cumulative 90 % Particle size (D 90 ) and volume-based cumulative 10% particle size (D 10 ) were measured.
(4) BET specific surface area A specific surface area was measured by a gas adsorption method using a specific surface area measuring device (NOVA2000, manufactured by Yuasa Ionics).
(5) Chemical composition The contents of Cl, SO 4 , Fe, Zn and Al contained in the magnesium hydroxide particles after drying are quantified using a fluorescent X-ray (XRF) analyzer (RIX2000, manufactured by Rigaku). Analysis was carried out.
In order to measure the content of Cr, Ti, Mn, Mo, Ni, Cd, Co, Pb and Zr contained in the dried magnesium hydroxide particles, a sample dissolved in an acid was prepared, and an ICP emission spectrometer Quantitative analysis was performed using SPS3500D (manufactured by HITACHI).
(6) Thermogravimetric analysis Thermogravimetric analysis of the obtained magnesium hydroxide particles and magnesium oxide particles was performed using a thermal analyzer (TG-DTA 2000SA, manufactured by Bruker AXS). The sample weight was 10 mg, the air flow rate was 100 ml / min, and the heating rate was 10 ° C./min.
(7) Flame Retardancy Evaluation and Appearance Evaluation of Resin Composition The test specimen is composed of 100 parts by weight of LLDPE resin (linear low density polyethylene, Novatec LLUF-240, Nippon Polyethylene Co., Ltd.) and magnesium hydroxide particles as a flame retardant. 130 parts by weight were mixed and kneaded at 160 ° C. and 30 rpm for 5 minutes by a small batch kneader (manufactured by Brabender). The kneaded material was molded in a mold of 130 mm × 70 mm × 3 mm at 150 ° C. and 100 kg / cm 2 for 5 minutes. The molded product was cut into a size of 130 mm × 15 mm, and flame retardancy was evaluated according to the UL94V standard (1/8 inch).
(8) Evaluation of Dispersion State of Magnesium Hydroxide Particles in Resin Molded Product Visually observe the dispersion state of magnesium hydroxide particles in the range of 5 × 5 cm with respect to the surface of the molded product produced by the method of (7). evaluated. “○” when the aggregated primary particles of magnesium hydroxide are not observed, “△” when 1 to 4 are observed, “△”, when 5 or more are observed, “×” As evaluated.
(9) Evaluation of scorch characteristics of rubber composition For 100 parts by weight of chloroprene rubber (CR) (M-40, manufactured by Denki Kagaku Kogyo), 4 parts by weight of magnesium oxide as an acid acceptor and 1 of anti-aging agent PA Parts by weight, 5 parts by weight of two types of ZnO as a crosslinking agent, 50 parts by weight of carbon black SRF · CB (Seast S, manufactured by Tokai Carbon Co., Ltd.) and 0.5 parts by weight of a vulcanization accelerator 22 as reinforcing fillers After mixing and kneading for 10 minutes at 40 ° C. with an open roll, press vulcanization treatment was performed at 153 ° C. for 30 minutes to prepare a sample. The molded article for measuring compression set was subjected to a press vulcanization treatment for 40 minutes. About a molded article, according to JIS K6251 and JIS K6253, 200% modulus (M200), 400% modulus (M400), 600% modulus (M600) of vulcanized rubber, strength at break (TB), elongation at break ( EB) and hardness (Shore A hardness) were measured. Regarding the heat aging characteristics, vulcanized rubber was aged in an air atmosphere at 100 ° C. for 168 hours based on JIS K6257, and then the change in Shore A hardness was measured.
(10) Evaluation of dispersion state of magnesium oxide particles in rubber molded product Visually evaluate the dispersion state of magnesium oxide particles in the range of 5 × 5 cm on the surface of the rubber molded product produced by the method of (9). did. “○” if the aggregated primary particles of magnesium oxide were not observed, “◯”, 1 to 4 observed “△”, 5 or more observed as “×” evaluated.
(11) Evaluation of fluidity of pellets of flame retardant resin composition The fluidity of pellets of flame retardant resin composition containing the magnesium hydroxide particles of the present invention is determined by a melt indexer (manufactured by Takara Thermistor Co., Ltd.). MFR was measured under the condition of 190 ° C. and 21.6 kg.
(12) Evaluation of Colorability of Flame Retardant Resin Composition The colorability of the flame retardant resin composition blended with the magnesium hydroxide particles of the present invention is determined using a colorimetric colorimeter (Nippon Denshoku). 3 points in the same sheet were measured by Kogyo Co., Ltd., and the average value was obtained.
(13) Evaluation of tensile property of flame retardant resin composition The tensile property of the flame retardant resin composition containing the magnesium hydroxide particles of the present invention is a universal testing machine (instrument tester) The tensile properties were evaluated by Ron Corporation.
Examples 1 to 10 and Comparative Examples A to D (magnesium hydroxide)
Example 1
At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 6.5 L of 8.4 N aqueous sodium hydroxide solution while stirring, and let it react. The total volume of the solution was adjusted to 16 L with ionic water, and the slurry concentration was adjusted to 100 g / L.
Next, the temperature of the water bath was set to 45 ° C., and heat treatment was performed under a stirring condition of 350 rpm. Table 3 shows the distribution of the particles of the slurry after 1, 5, 24, 43, 48, 52, 69, 91, 115, 120, 123 and 140 hours after the start of the heat treatment.
Further, the slurry after the heat treatment for 140 hours was filtered while adding 20 times the pure water (deionized water, 0.5 μS / cm) on a weight basis to the magnesium hydroxide particles to obtain magnesium hydroxide particles. On the other hand, it was washed twice with 25 times pure water on a weight basis and dried at 120 ° C. for 20 hours. As a result of analysis by an X-ray diffraction method, the obtained particles were magnesium hydroxide (Mg (OH) 2 ) particles (FIG. 1).
Example 2
At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 9.1 L of 12.0 N sodium hydroxide aqueous solution with stirring, and let it react. The total volume of the solution was adjusted to 16 L with ionic water, and the slurry concentration was adjusted to 100 g / L. Thereafter, the temperature of the water bath was set to 60 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm. Thereafter, in the same manner as in Example 1, filtration, washing with water and drying were performed to obtain magnesium hydroxide particles.
Example 3
Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 70 ° C. and the heat treatment time was changed to 15 hours.
Comparative Example A
800 ml of the same slurry as the slurry before heat treatment in Example 3 was taken and reacted in a 0.98 L autoclave (manufactured by Nitto Koatsu Co., Ltd.). Thereafter, the temperature was set to 150 ° C., and heat treatment was performed for 1 hour under a stirring condition of 500 rpm. Thereafter, filtration, washing with water and drying were performed in the same manner as in Example 1 to obtain magnesium hydroxide particles.
Example 4
Magnesium hydroxide particles were obtained in the same manner as in Example 3 except that the heat treatment temperature was changed to 90 ° C.
Comparative Example B
Magnesium hydroxide particles were obtained in the same manner as in Comparative Example A except that the heat treatment time was changed to 3 hours.
Example 5
At normal pressure and 20 ° C., put 6.5 L of 4.2 mol / L magnesium chloride aqueous solution into a 20 L stainless steel container, slowly add 3.9 L of 8.4 N sodium hydroxide aqueous solution with stirring, and react to remove. The total volume of the solution was adjusted to 10.6 L with ionic water, and the concentration of the slurry was 90 g / L.
The temperature of the water bath was set to 70 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm. Thereafter, filtration, washing with water and drying were performed in the same manner as in Example 1 to obtain magnesium hydroxide particles.
Comparative Example C
800 ml of the same slurry as the slurry before heat treatment of Example 5 was taken and reacted in a 0.98 L autoclave (manufactured by Nitto Koatsu Co., Ltd.), set at 150 ° C., and heat treated for 1 hour under stirring conditions of 500 rpm. Thereafter, in the same manner as in Example 1, filtration, washing and drying were performed to obtain magnesium hydroxide particles.
Comparative Example D
Commercially available magnesium hydroxide particles (Kisuma 5A, manufactured by Kyowa Chemical Industry Co., Ltd.).
Example 6
At normal pressure and 20 ° C., 4.0 L of a 5.5 mol / L magnesium chloride aqueous solution is placed in a 20 L stainless steel container, and 8.25 L of 16.0 N sodium hydroxide aqueous solution is slowly added with stirring to react. The total volume of the solution was adjusted to 12.83 L with ionic water, and the concentration of the slurry was 100 g / L.
The temperature of the water bath was set to 70 ° C., and heat treatment was performed for 15 hours under a stirring condition of 350 rpm. Thereafter, filtration, washing with water and drying were carried out in the same manner as in Example 1 to obtain magnesium hydroxide particles.
Example 7
After processing in the same manner as in Example 3, surface treatment was performed with 3.0% by weight of stearic acid based on the solid content to obtain magnesium hydroxide particles.
Example 8
Magnesium hydroxide particles were obtained in the same manner as in Example 3 except that the magnesium raw material was changed to 4.2 mol / L MgSO 4 .
Example 9
Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 20 ° C. and the heat treatment time was changed to 165 hours.
Example 10
Magnesium hydroxide particles were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 99 ° C. and the heat treatment time was changed to 10 hours.
(Relationship between heat treatment conditions and particle size distribution)
In the method for producing magnesium hydroxide particles of the present invention, as is apparent from the distribution state of the slurry particles after the start of heat treatment (Table 3 (Example 1)), the aggregates produced during the reaction are separated as the heat treatment time becomes longer. It can be confirmed that the particles are fine and uniform.
(About particle size distribution)
The magnesium hydroxide particles of the present invention have a fine and uniform particle diameter regardless of the presence or absence of surface treatment. As can be seen from the SEM photograph (FIG. 2 (Example 3)) of the magnesium hydroxide particles not subjected to the surface treatment and the SEM photograph after the surface treatment (FIG. 3 (Example 7)), there is no conspicuous aggregate. It can be confirmed that the particles are uniform. Further, the particle size distribution of the magnesium hydroxide particles not subjected to the surface treatment (FIG. 4 (Example 1), FIG. 5 (Example 3)) and the particle size distribution of the particles after the surface treatment (FIG. 6 (Example 7)). Can be confirmed to have a fine and uniform particle diameter.
(About dispersibility)
The magnesium hydroxide particles of the present invention have excellent dispersibility despite being fine particles. The SEM photograph (FIG. 7 (Example 3)) of the cross section of the resin composition which knead | mixed the magnesium hydroxide particle of this invention in LLDPE resin, and the resin composition which knead | mixed commercially available magnesium hydroxide particle in LLDPE resin As is apparent from comparison with a cross-sectional SEM photograph (FIG. 8 (Comparative Example D)), the magnesium hydroxide particles of the present invention are uniformly dispersed without being aggregated even when kneaded into a resin. Can be confirmed.
(OH release temperature)
The magnesium hydroxide particles of the present invention have a lower OH desorption temperature in thermogravimetric analysis than magnesium hydroxide that has been heat-treated at a temperature higher than 100 ° C. The desorption temperatures of OH in the thermogravimetric analysis of the magnesium hydroxide particles of the present invention are 382.4 ° C. (FIG. 9 (Example 1)) and 378.5 ° C. (FIG. 10 (Example 3)).
These OH desorption temperatures were 389.3 ° C. (FIG. 11 (Comparative Example A)) and 402.5 ° C. (FIG. 12 (Comparative Example D)). Compared with low characteristics. This is considered to be because the magnesium hydroxide particles of the present invention have a thermodynamically weak crystal structure. Therefore, there is a feature that it can be easily removed by washing with impurities such as Cl incorporated in the magnesium hydroxide particles.
For Examples 1 to 10 and Comparative Examples A to D, the synthesis conditions (raw material concentration, raw material usage, reaction rate, heat treatment conditions) and the characteristics of the obtained magnesium hydroxide particles (MV, D 90 / D 10 , D 50) , D 50 / MV, BET specific surface area) are shown in Table 1 (1) and Table 1 (2). For Examples 1 to 8 and Comparative Examples A to D, the chemical composition of magnesium hydroxide particles (magnesium hydroxide purity, impurities (Cl, SO 4 , Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Table 2 shows the contents of Cd, Co, Pb, and Zr)), presence / absence of surface treatment, evaluation of the combustibility of the resin composition, and evaluation of the dispersion state in the molded product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Examples 11 to 17 and Comparative Examples E to H (magnesium oxide particles)
Example 11
100 g of the dried magnesium hydroxide particles obtained in Example 3 was put into a 300 ml alumina crucible, and particles fired at 500 ° C. for 2 hours using an electric furnace were obtained. As a result of analysis by X-ray diffraction, the obtained particles were magnesium oxide (MgO) (FIG. 13).
Example 12
Magnesium oxide particles were obtained in the same manner as in Example 11 except that the firing temperature was changed to 650 ° C.
Example 13
Magnesium oxide particles were obtained in the same manner as in Example 11 except that the firing temperature was changed to 700 ° C.
Example 14
100 g of the dried magnesium hydroxide particles obtained in Example 4 was put into a 300 ml alumina crucible and baked at 500 ° C. for 2 hours using an electric furnace to obtain magnesium oxide particles.
Example 15
Magnesium oxide particles were obtained in the same manner as in Example 14 except that the firing temperature was changed to 650 ° C., and then surface treatment was performed with 3.0 wt% stearic acid.
Example 16
Magnesium oxide particles were obtained in the same manner as in Example 14 except that the firing temperature was changed to 700 ° C.
Example 17
100 g of the dried magnesium hydroxide particles obtained in Example 8 was put in a 300 ml alumina crucible and baked at 650 ° C. for 2 hours using an electric furnace to obtain magnesium oxide particles.
Comparative Example E
100 g of the dried magnesium hydroxide particles obtained in Comparative Example A was put into a 300 ml alumina crucible and baked at 650 ° C. for 2 hours using an electric furnace to obtain magnesium oxide particles.
Comparative Example F
Magnesium oxide particles were obtained in the same manner as in Comparative Example E, except that the dry magnesium hydroxide particles used were changed to those obtained in Comparative Example B.
Comparative Example G
Magnesium oxide particles were obtained in the same manner as in Comparative Example E, except that the dry magnesium hydroxide particles used were changed to those obtained in Comparative Example C.
Comparative Example H
Magnesium oxide particles were obtained in the same manner as in Comparative Example E except that the dry magnesium hydroxide particles used were changed to those obtained in Comparative Example D, and then surface treatment was performed with 3.0 wt% stearic acid. .
(Magnesium oxide)
The magnesium oxide particles of the present invention have a fine and uniform particle size. As can be seen from the SEM photograph (FIG. 14) and the particle size distribution (FIG. 15) of the magnesium oxide particles of the present invention (Example 11), it can be confirmed that there are no noticeable aggregates and that the particles have a fine and uniform particle size.
Regarding Examples 11 to 17 and Comparative Examples E to H, treatment conditions (raw material concentration, raw material usage, reaction rate, heat treatment temperature, heat treatment time, slurry concentration, firing temperature, firing time), and characteristics of the obtained magnesium oxide particles (BET specific surface area, particle size, presence / absence of surface treatment), vulcanized physical properties (M200, M400, M600, TB, EB, Shore A, compression set, scorch time), heat aging resistance and evaluation of dispersion state of molded product Is shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Examples 18 to 22 and Comparative Examples I to M (resin compositions)
(Non-crosslinked resin composition)
Example 18
The magnesium hydroxide particles of Example 4 were surface-treated with 2% by weight of stearic acid, dried at 105 ° C. for 16 hours and further dried at 120 ° C. for 2 hours. EVA (Evaflex V421 Mitsui DuPont Polychemical Co., Ltd.) Company) Magnesium hydroxide particles 150 parts by weight with respect to 90 parts by weight, modifier α-olefin copolymer (Tuffmer MH7020) 10 parts by weight, phenolic antioxidant (IRGANOX 1010) 0.5 parts by weight And 0.5 part by weight of a sulfur-based antioxidant (DLTDP) are melt-mixed at 160 to 200 ° C. with a continuous kneading extruder (Cay Engineering Co., Ltd. KCK80 × 2-35VEX), and the extruded resin composition strand is pelletized. After cutting with a vacuum dryer (LCV-242 manufactured by Tabai Espec Co., Ltd. Dried at 60 ° C. and to produce a pellet.
The obtained pellets were kneaded at 130 to 160 ° C. for 15 minutes with a small batch kneader (manufactured by Brabender Co., Ltd.), and the pellets taken out in an oval shape were 160 with a hot press (ANSF-50HH / C). A sheet having a thickness of 1 mm was prepared at a temperature of 1 ° C.
Comparative Example I
A pellet and a sheet of the resin composition were obtained in the same manner as in Example 18 except that the magnesium hydroxide particles used were changed to the magnesium hydroxide particles of Comparative Example A.
Comparative Example J
Preparation of magnesium hydroxide particles having an MV of 4.31 μm, a D 50 / MV of 0.86, and a BET specific surface area of 30 m 2 / g in advance, except that the magnesium hydroxide particles used are changed to the magnesium hydroxide particles described above. Were the same as in Example 18 to obtain pellets and sheets of the resin composition.
(Peroxide-crosslinked resin composition)
Example 19
The magnesium hydroxide particles of Example 4 were surface-treated with 2% by weight of stearic acid, dried at 105 ° C. for 16 hours and further dried at 120 ° C. for 2 hours. EVA (Evaflex V421 Mitsui DuPont Polychemical Co., Ltd.) Company) Magnesium hydroxide particles 150 parts by weight with respect to 90 parts by weight, modifier α-olefin copolymer (Tuffmer MH7020) 10 parts by weight, phenolic antioxidant (IRGANOX 1010) 0.5 parts by weight And 0.5 part by weight of a sulfur-based antioxidant (DLTDP) were melt-mixed at 160 to 200 ° C. with a continuous kneading extruder, the extruded resin composition strand was cut with a pelletizer, and then 60 ° C. with a vacuum dryer. And dried to prepare pellets.
The obtained pellets were blended with 1 part by weight of peroxide (DCP) per 100 parts by weight of the resin component (total of 90 parts by weight of EVA and 10 parts by weight of the modifier α-olefin copolymer). The mixture was melt-mixed at 115 ° C. for 10 minutes, taken out in an oval shape, formed into a thickness of 2 mm at 120 ° C. by a hot press, and a crosslinked sheet having a thickness of 1 mm at 180 ° C. was obtained.
Comparative Example K
Resin composition pellets and a crosslinked sheet were obtained in the same manner as in Example 19 except that the magnesium hydroxide particles used were changed to the magnesium hydroxide particles of Comparative Example A.
Comparative Example L
Preparation of magnesium hydroxide particles having an MV of 4.31 μm, a D 50 / MV of 0.86, and a BET specific surface area of 30 m 2 / g in advance, except that the magnesium hydroxide particles used are changed to the magnesium hydroxide particles described above. Obtained a resin composition pellet and a crosslinked sheet in the same manner as in Example 19.
(Silane-crosslinked resin composition)
Example 20
The magnesium hydroxide particles of Example 5 were surface-treated with 0.3% by weight of a silane coupling agent, dried at 105 ° C. for 16 hours, and further dried at 120 ° C. for 2 hours to obtain a silane crosslinkable EVA resin (link). Ron XVF600N (Mitsubishi Chemical Corporation) 135 parts by weight of magnesium hydroxide particles subjected to the above treatment with respect to 87 parts by weight, 10 parts by weight of a modifier α-olefin copolymer (Tuffmer MH7020), phenolic antioxidant (IRGANOX1010) 0.5 parts by weight and 0.5 parts by weight of a sulfur-based antioxidant (DLTDP) were mixed and melted at 160 to 200 ° C. by a small batch kneader to prepare an oval resin composition.
The obtained oval resin composition had a resin component of 97 parts by weight (a total of 87 parts by weight of a silane crosslinkable EVA resin and 10 parts by weight of a modifier α-olefin copolymer) and 3 parts by weight of a crosslinking acceleration catalyst masterbatch. The mixture was melted and mixed at 180 ° C. for 10 minutes with a small batch kneader, and again taken out in an oval shape, formed into a thickness of 2 mm at 160 ° C. and further formed into a thickness of 1 mm at 180 ° C. The molded resin composition was immersed in ion exchange water at 80 ° C. for 24 hours to obtain a crosslinked sheet.
Example 21
Magnesium hydroxide particles to be used were changed to the magnesium hydroxide particles of Example 4, and a cross-linked sheet was obtained in the same manner as in Example 20 except that the blending amount was changed to 140 parts.
Example 22
A crosslinked sheet was obtained in the same manner as in Example 20 except that the magnesium hydroxide particles used were changed to the magnesium hydroxide particles of Example 4.
Comparative Example M
Prepare magnesium hydroxide particles having an MV of 0.87 μm, a D50 / MV of 0.83, and a BET specific surface area of 6 m 2 / g in advance. A crosslinked sheet was obtained in the same manner as in Example 20 except that the amount was changed to 140 parts.
Comparative Example N
A crosslinked sheet was obtained in the same manner as in Comparative Example M, except that the amount of magnesium hydroxide particles used was changed to 150 parts.
Table 5 shows the evaluation of fluidity, colorability and tensile properties of the resin compositions for Examples 18 to 19 and Comparative Examples I to L.
Table 6 shows the evaluation of the tensile properties and the flammability of the resin compositions for Examples 20 to 22 and Comparative Examples M to N.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(Resin composition)
Since the magnesium hydroxide particles of the present invention are fine particles of uniform size, the resin composition containing them is characterized by very little discoloration (yellowing) (Examples 18 and 19). On the other hand, conventional resin compositions containing fine but irregular magnesium hydroxide particles have more discoloration (yellowing) than the resin composition of the present invention (Comparative Examples I, J, K, and L).
The resin composition of the present invention has good MFR (melt flow rate) correlated with extrusion processability (Example 18), and also has excellent flame retardancy and tensile properties (Examples 20 and 21). ).
Effects of the Invention According to the production method of the present invention, magnesium hydroxide particles having a fine and uniform particle diameter, high purity, and excellent dispersibility can be produced. Since the production method of the present invention is heat-treated at a low temperature of 0 to 100 ° C., the obtained magnesium hydroxide particles have a characteristic that the crystal structure is thermodynamically unstable. Therefore, impurities such as metals such as Cl ions, SO 4 ions, nickel, chromium, lead, zinc, and aluminum can be easily removed from the product in the water washing step.
In addition, the magnesium hydroxide particles of the present invention have a fine and uniform particle diameter, are highly pure, and are excellent in dispersibility. Since the magnesium hydroxide particles of the present invention are manufactured by heat treatment at a low temperature of 0 to 100 ° C., the crystal structure is thermodynamically unstable and OH is released compared with magnesium hydroxide heat-treated at a higher temperature. The temperature is low. Therefore, it is excellent in flame retardancy. The magnesium hydroxide particles of the present invention have a low content of metals such as Cl ions, SO 4 ions, nickel, chromium, lead, zinc, and aluminum. Further, the magnesium hydroxide particles of the present invention can achieve uniform kneading or uniform coating treatment in applications to organic polymer materials and inorganic materials.
In addition, the magnesium oxide particles of the present invention have a fine and uniform particle size, high purity, and excellent dispersibility. The magnesium oxide particles of the present invention have a low content of nickel, chromium, lead, zinc, and aluminum. Moreover, the magnesium oxide particle of this invention can implement | achieve uniform kneading | mixing or a uniform coating process in the use to an organic polymer material or an inorganic material.
 本発明の水酸化マグネシウム粒子は、高分子材料の難燃剤や、非水系二次電池用のセパレータの無機フィラーとして有用である。本発明の酸化マグネシウム粒子は、有機高分子材料の受酸剤、消臭剤、電磁鋼材料、樹脂のフィラー、触媒および触媒の担体などとして有用である。
 さらに、本発明の水酸化マグネシウムおよび酸化マグネシウム粒子は、ニッケル、クロム、鉛、亜鉛、アルミニウムの混入量が少ないので、電子材料、医薬品原料、飲食料品の添加剤として利用することができる。また化粧品、食品、医薬のpH調製剤、高分子の安定剤、微粒子のハイドロタルサイトなどの合成原料としても利用することできる。
The magnesium hydroxide particles of the present invention are useful as a flame retardant for polymer materials and an inorganic filler for separators for non-aqueous secondary batteries. The magnesium oxide particles of the present invention are useful as an acid acceptor for organic polymer materials, a deodorant, an electromagnetic steel material, a resin filler, a catalyst, a catalyst carrier, and the like.
Furthermore, since the magnesium hydroxide and magnesium oxide particles of the present invention have a small amount of nickel, chromium, lead, zinc, and aluminum, they can be used as additives for electronic materials, pharmaceutical raw materials, and food and beverage products. It can also be used as a synthetic raw material for cosmetics, foods, pharmaceutical pH adjusters, polymer stabilizers, fine particle hydrotalcite, and the like.

Claims (14)

  1.  (i)可溶性マグネシウム塩の水溶液とアルカリ水溶液とを反応させ、水酸化マグネシウム粒子を含むスラリーを製造し、
    (ii)得られたスラリーを、大気圧下、0~100℃で、5~500時間熱処理し、
    (iii)熱処理したスラリーから水酸化マグネシウム粒子を含むケーキを分離精製し、および
    (iv)分離精製したケーキを乾燥させ水酸化マグネシウム粒子を得る、
    各工程を含む水酸化マグネシウム粒子の製造方法。
    (I) reacting an aqueous solution of a soluble magnesium salt with an aqueous alkali solution to produce a slurry containing magnesium hydroxide particles,
    (Ii) The obtained slurry was heat-treated at 0 to 100 ° C. under atmospheric pressure for 5 to 500 hours,
    (Iii) separating and purifying the cake containing magnesium hydroxide particles from the heat-treated slurry, and (iv) drying the separated and purified cake to obtain magnesium hydroxide particles.
    The manufacturing method of the magnesium hydroxide particle | grains including each process.
  2.  可溶性マグネシウム塩が、塩化マグネシウム若しくは硫酸マグネシウムである請求項1記載の製造方法。 The production method according to claim 1, wherein the soluble magnesium salt is magnesium chloride or magnesium sulfate.
  3.  アルカリ水溶液が、水酸化ナトリウムの水溶液である請求項1記載の製造方法。 The production method according to claim 1, wherein the alkaline aqueous solution is an aqueous solution of sodium hydroxide.
  4.  0.1~5.7mol/Lの可溶性マグネシウム塩と、1.0~18.0Nのアルカリ水溶液とを反応させる請求項1記載の製造方法。 The production method according to claim 1, wherein a soluble magnesium salt of 0.1 to 5.7 mol / L is reacted with an alkaline aqueous solution of 1.0 to 18.0 N.
  5.  得られる水酸化マグネシウム粒子は、
    (a)平均二次粒子径(MV)が50~800nmであり、
    (b)D50/MVが0.70~0.99であり、ここでD50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径であり、
    (c)空気雰囲気において10℃/分で昇温した場合の熱重量分析におけるOH離脱温度が360~388℃である、
    請求項1記載の製造方法。
    The resulting magnesium hydroxide particles are
    (A) The average secondary particle size (MV) is 50 to 800 nm,
    (B) D 50 / MV is 0.70 to 0.99, where D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement,
    (C) The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C.,
    The manufacturing method according to claim 1.
  6.  (a)平均二次粒子径(MV)が50~800nmであり、
    (b)D50/MVが0.70~0.99であり、ここでD50は、レーザー回折散乱式粒度分布測定による体積基準の累積50%粒子径であり、
    (c)空気雰囲気において10℃/分で昇温した場合の熱重量分析におけるOH離脱温度が360~388℃である、
    ことを特徴とする水酸化マグネシウム粒子。
    (A) The average secondary particle size (MV) is 50 to 800 nm,
    (B) D 50 / MV is 0.70 to 0.99, where D 50 is a volume-based cumulative 50% particle diameter by laser diffraction scattering particle size distribution measurement,
    (C) The OH desorption temperature in thermogravimetric analysis when heated at 10 ° C./min in an air atmosphere is 360 to 388 ° C.,
    Magnesium hydroxide particles characterized by the above.
  7.  Clイオンの含有量が50~300ppmである請求項6に記載の水酸化マグネシウム粒子。 The magnesium hydroxide particles according to claim 6, wherein the content of Cl ions is 50 to 300 ppm.
  8.  SOイオンの含有量が50~300ppmである請求項6に記載の水酸化マグネシウム粒子。 The magnesium hydroxide particles according to claim 6, wherein the content of SO 4 ions is 50 to 300 ppm.
  9.  BET比表面積が8.0~280m/gである請求項6に記載の水酸化マグネシウム粒子。 The magnesium hydroxide particles according to claim 6, wherein the BET specific surface area is 8.0 to 280 m 2 / g.
  10.  純度が99.5重量%以上である請求項6に記載の水酸化マグネシウム粒子。 Magnesium hydroxide particles according to claim 6, having a purity of 99.5 wt% or more.
  11.  Cr、Ni、Ti、Mn、Mo、Fe、Zn、Al、Cd、Co、PbおよびZrの合計の含有量が10~150ppmである請求項6記載の水酸化マグネシウム粒子。 The magnesium hydroxide particles according to claim 6, wherein the total content of Cr, Ni, Ti, Mn, Mo, Fe, Zn, Al, Cd, Co, Pb and Zr is 10 to 150 ppm.
  12.  請求項6に記載の水酸化マグネシウム粒子を350~1200℃で焼成することにより得られる酸化マグネシウム粒子。 Magnesium oxide particles obtained by firing the magnesium hydroxide particles according to claim 6 at 350 to 1200 ° C.
  13.  100重量部の合成樹脂並びに0.01~350重量部の請求項6に記載の水酸化マグネシウム粒子を含む樹脂組成物。 A resin composition comprising 100 parts by weight of synthetic resin and 0.01 to 350 parts by weight of magnesium hydroxide particles according to claim 6.
  14.  100重量部の合成樹脂並びに0.01~350重量部の請求項12に記載の酸化マグネシウム粒子を含む樹脂組成物。 A resin composition comprising 100 parts by weight of a synthetic resin and 0.01 to 350 parts by weight of the magnesium oxide particles according to claim 12.
PCT/JP2016/061957 2015-04-10 2016-04-07 Magnesium hydroxide particles and method for producing same WO2016163562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015080647 2015-04-10
JP2015-080647 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163562A1 true WO2016163562A1 (en) 2016-10-13

Family

ID=57072368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061957 WO2016163562A1 (en) 2015-04-10 2016-04-07 Magnesium hydroxide particles and method for producing same

Country Status (3)

Country Link
JP (1) JP2016199460A (en)
TW (1) TW201702182A (en)
WO (1) WO2016163562A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158975A (en) * 2017-03-22 2018-10-11 協和化学工業株式会社 Chloroprene-based adhesive composition
WO2018221709A1 (en) * 2017-06-02 2018-12-06 協和化学工業株式会社 Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery
JP2020155294A (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, manufacturing method of the same, and battery
CN115627069A (en) * 2022-10-22 2023-01-20 营口理工学院 Modified nano magnesium hydroxide composite flame-retardant nylon 66 and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002478A (en) * 2018-01-05 2019-07-12 上海实业振泰化工有限公司 The device and method of flake magnesium hydroxide and spherical magnesia is prepared with rear magnesia
JP7454334B2 (en) 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP7454335B2 (en) 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
CN113388725B (en) * 2021-06-18 2022-12-02 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797210A (en) * 1993-09-29 1995-04-11 Sumitomo Chem Co Ltd Production of magnesium hydroxide
CN1332116A (en) * 2001-08-20 2002-01-23 杜以波 Homogeneous fluid process of preparing nanometer magnesium hydroxide
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle
WO2014155764A1 (en) * 2013-03-25 2014-10-02 神島化学工業株式会社 Magnesium oxide particles, resin composition, rubber composition, and molded article
JP2016003174A (en) * 2014-06-18 2016-01-12 神島化学工業株式会社 Highly active magnesium oxide-based additive and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797210A (en) * 1993-09-29 1995-04-11 Sumitomo Chem Co Ltd Production of magnesium hydroxide
CN1332116A (en) * 2001-08-20 2002-01-23 杜以波 Homogeneous fluid process of preparing nanometer magnesium hydroxide
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle
WO2014155764A1 (en) * 2013-03-25 2014-10-02 神島化学工業株式会社 Magnesium oxide particles, resin composition, rubber composition, and molded article
JP2016003174A (en) * 2014-06-18 2016-01-12 神島化学工業株式会社 Highly active magnesium oxide-based additive and use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158975A (en) * 2017-03-22 2018-10-11 協和化学工業株式会社 Chloroprene-based adhesive composition
WO2018221709A1 (en) * 2017-06-02 2018-12-06 協和化学工業株式会社 Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery
JPWO2018221709A1 (en) * 2017-06-02 2020-05-21 協和化学工業株式会社 Magnesium hydroxide used as separator for non-aqueous secondary battery, separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2020155294A (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, manufacturing method of the same, and battery
WO2020189298A1 (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, method for producing electrode, and battery
JP7320172B2 (en) 2019-03-20 2023-08-03 株式会社Aescジャパン ELECTRODE, ELECTRODE MANUFACTURING METHOD, AND BATTERY
CN115627069A (en) * 2022-10-22 2023-01-20 营口理工学院 Modified nano magnesium hydroxide composite flame-retardant nylon 66 and preparation method thereof

Also Published As

Publication number Publication date
TW201702182A (en) 2017-01-16
JP2016199460A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2016163562A1 (en) Magnesium hydroxide particles and method for producing same
JP4157560B2 (en) Use of flame retardants in polyolefins or their copolymers
JP4201280B2 (en) Method for producing flame retardant resin composition
KR101818278B1 (en) High-aspect-ratio magnesium hydroxide
EP2806006B1 (en) Thermal conduction enhancer
KR100202750B1 (en) Composite metal hydroxide, a method for preparing it and its application
US10233305B2 (en) Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JP7012334B2 (en) Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.
JP5865998B2 (en) Composite flame retardant, resin composition and molded product
KR100532735B1 (en) A Surface Treated Magnesium Hydroxide, Method of Preparation Thereof And A Polymeric Composite Material With Improved Flame Resistance
JPWO2010005090A1 (en) Flame retardant resin composition
EP1026702B1 (en) Mg-Al-based hydrotalcite-type particles, chlorine-containing resin composition and process for producing the particles
JPH0688075A (en) Flame retardant and flame-retardant resin composition
JP6593942B2 (en) Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof
JP3384816B2 (en) Composite metal oxide-containing resin composition and method for producing the oxide
JP6598271B2 (en) High aspect ratio plate-like hydrotalcite, process for producing the same, and resin composition thereof
JP6934656B2 (en) Hydrotalcite compounds, resin compositions containing the hydrotalcite compounds, and molded articles thereof.
JP6709782B2 (en) Manufacturing method of transparent synthetic resin moldings using hydrotalcite particles
KR20200105658A (en) Hydrotalcite particles, manufacturing method thereof, and resin stabilizer and resin composition comprising the same
JPH04325412A (en) Multiple metal basic sulfate fiber and its use
KR100495891B1 (en) Heat deterioration resistant flame retardant, resin composition and molded articles
Gite et al. Abdul Ahamad1, Chetan B Patil2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP