JP6593942B2 - Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof - Google Patents
Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof Download PDFInfo
- Publication number
- JP6593942B2 JP6593942B2 JP2018538429A JP2018538429A JP6593942B2 JP 6593942 B2 JP6593942 B2 JP 6593942B2 JP 2018538429 A JP2018538429 A JP 2018538429A JP 2018538429 A JP2018538429 A JP 2018538429A JP 6593942 B2 JP6593942 B2 JP 6593942B2
- Authority
- JP
- Japan
- Prior art keywords
- composite metal
- metal hydroxide
- aqueous solution
- sample
- primary particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 112
- 229910000000 metal hydroxide Inorganic materials 0.000 title claims description 73
- 150000004692 metal hydroxides Chemical class 0.000 title claims description 73
- 239000011342 resin composition Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000010419 fine particle Substances 0.000 title description 9
- 238000000034 method Methods 0.000 claims description 60
- 239000011164 primary particle Substances 0.000 claims description 58
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002002 slurry Substances 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 32
- 230000032683 aging Effects 0.000 claims description 28
- 239000007864 aqueous solution Substances 0.000 claims description 28
- 229910044991 metal oxide Inorganic materials 0.000 claims description 25
- 150000004706 metal oxides Chemical class 0.000 claims description 25
- 239000011163 secondary particle Substances 0.000 claims description 25
- 238000010298 pulverizing process Methods 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 19
- 238000010304 firing Methods 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- -1 phosphate ester Chemical class 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 16
- 239000011777 magnesium Substances 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000003093 cationic surfactant Substances 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000007822 coupling agent Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000002296 dynamic light scattering Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 7
- 159000000003 magnesium salts Chemical class 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000003945 anionic surfactant Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 230000005070 ripening Effects 0.000 claims 2
- 239000002253 acid Substances 0.000 description 37
- 238000012360 testing method Methods 0.000 description 32
- 239000000843 powder Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 26
- 238000004381 surface treatment Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000008367 deionised water Substances 0.000 description 16
- 229910021641 deionized water Inorganic materials 0.000 description 16
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 15
- 239000000347 magnesium hydroxide Substances 0.000 description 15
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 15
- 239000004115 Sodium Silicate Substances 0.000 description 14
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 14
- 229910052911 sodium silicate Inorganic materials 0.000 description 14
- 239000012756 surface treatment agent Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 239000003063 flame retardant Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 10
- 239000011256 inorganic filler Substances 0.000 description 10
- 229910003475 inorganic filler Inorganic materials 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 9
- 239000011572 manganese Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000021355 Stearic acid Nutrition 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000008117 stearic acid Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- UAKOZKUVZRMOFN-JDVCJPALSA-M dimethyl-bis[(z)-octadec-9-enyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+](C)(C)CCCCCCCC\C=C/CCCCCCCC UAKOZKUVZRMOFN-JDVCJPALSA-M 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000011231 conductive filler Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 238000001238 wet grinding Methods 0.000 description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004826 Synthetic adhesive Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000006255 coating slurry Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000004083 gastrointestinal agent Substances 0.000 description 2
- 229940127227 gastrointestinal drug Drugs 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 239000006224 matting agent Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229920005557 bromobutyl Polymers 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229920005556 chlorobutyl Polymers 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000012066 reaction slurry Substances 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2262—Oxides; Hydroxides of metals of manganese
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2293—Oxides; Hydroxides of metals of nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、1次粒子の平均横幅が小さく、1次粒子が分散し、かつ耐酸性の高い複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物に関する。 The present invention relates to a composite metal hydroxide having a small average lateral width of primary particles, in which primary particles are dispersed and having high acid resistance, a fired product thereof, a production method thereof, and a resin composition thereof.
近年、水酸化マグネシウムをリチウムイオン電池のセパレータに使用する技術が普及している。非水電解質電池、特に非水電解質二次電池では、正極の分解に伴う発熱が最も危険と考えられており、この分解は300℃近傍で起こる。このため、吸熱反応の発生温度が300℃〜400℃の範囲である水酸化マグネシウムをセパレータに配合すれば、電池の発熱を防ぐ上で有効である。特許文献1では、無機フィラーとして、難燃性の向上効果、ハンドリング性、除電効果、電池の耐久性改善効果等の観点から、金属水酸化物を用いた態様が好ましく、中でも水酸化アルミニウム又は水酸化マグネシウムが好ましいこと、無機フィラーの平均粒子径は、高温時の耐短絡性や成形性等の観点から、0.1〜2μmの範囲が好ましいことが開示されている。 In recent years, a technique of using magnesium hydroxide for a separator of a lithium ion battery has become widespread. In a non-aqueous electrolyte battery, particularly a non-aqueous electrolyte secondary battery, heat generation accompanying the decomposition of the positive electrode is considered to be the most dangerous, and this decomposition occurs in the vicinity of 300 ° C. For this reason, if magnesium hydroxide having an endothermic reaction generation temperature in the range of 300 ° C. to 400 ° C. is blended in the separator, it is effective in preventing heat generation of the battery. In Patent Document 1, as an inorganic filler, an aspect using a metal hydroxide is preferable from the viewpoints of flame retardant improvement effect, handling property, static elimination effect, battery durability improvement effect, and the like, among which aluminum hydroxide or water It is disclosed that magnesium oxide is preferable and that the average particle diameter of the inorganic filler is preferably in the range of 0.1 to 2 μm from the viewpoint of short circuit resistance at high temperature, moldability, and the like.
特許文献1ではさらに、リチウムイオン電池のセパレータの製造方法として、ポリオレフィン多孔質基材の少なくとも片面に耐熱性多孔質層を形成する方法が開示されている。より具体的には、無機フィラーを有機溶剤に分散させて、塗工用スラリーを作成し、ポリオレフィン多孔質基材に塗布する。塗工用スラリー中で無機フィラーが分散しないと均一な塗布膜が得られないため、無機フィラーには高い分散性が求められる。無機フィラーの分散性が好ましくないときに、無機フィラーをシランカップリング剤などで表面処理し、分散性を改善する手法を開示されている。 Patent Document 1 further discloses a method for forming a heat-resistant porous layer on at least one surface of a polyolefin porous substrate as a method for producing a separator of a lithium ion battery. More specifically, an inorganic filler is dispersed in an organic solvent to prepare a coating slurry, which is applied to a polyolefin porous substrate. Since a uniform coating film cannot be obtained unless the inorganic filler is dispersed in the coating slurry, the inorganic filler is required to have high dispersibility. When the dispersibility of the inorganic filler is not preferred, a technique is disclosed in which the inorganic filler is surface-treated with a silane coupling agent or the like to improve the dispersibility.
リチウムイオン電池の小型化に伴い、セパレータの薄膜化が必要となり、配合する無機フィラーも微粒子化が求められている。特許文献2では、水酸化マグネシウムを極薄の電池用セパレータ用途として用いる場合、平均粒径が大きくなると、セパレータの厚みにも反映されてしまうので、平均粒径は、0.8μm以下であることが好ましく、0.7μm以下であることがより好ましいこと、平均粒径が0.1μm以下のマグネシウム化合物も合成も可能であるが、このサイズでは、強い粒子間相互作用が発現し、多孔性セラミック層を形成する際の塗工プロセスに影響が出るため、好ましいとはいえないことが開示されている。 With the miniaturization of lithium ion batteries, it is necessary to reduce the thickness of the separator, and the inorganic filler to be blended is also required to be fine. In Patent Document 2, when magnesium hydroxide is used as an ultra-thin battery separator, the average particle size is 0.8 μm or less because the average particle size is reflected in the thickness of the separator. It is preferable that the average particle size is 0.7 μm or less, and a magnesium compound having an average particle size of 0.1 μm or less can be synthesized. It is disclosed that it is not preferable because it affects the coating process in forming the layer.
1次粒子の平均横幅が1μm以下の微粒子水酸化マグネシウムを合成する試みは種々行われてきた。例えば、特許文献3ではマイクロリアクターを用いて1次粒子の平均横幅が20〜50nm、2次粒子の平均横幅が1〜100nmの水酸化マグネシウムが合成されている。 Various attempts have been made to synthesize fine particle magnesium hydroxide having an average primary particle width of 1 μm or less. For example, in Patent Document 3, magnesium hydroxide having an average primary particle width of 20 to 50 nm and an average secondary particle width of 1 to 100 nm is synthesized using a microreactor.
また特許文献4では、同じくマイクロリアクターを用いてマグネシウム塩と水酸化物塩とを反応させることで、平均2次粒子径が25.4nmである水酸化マグネシウムが合成されている。 In Patent Document 4, magnesium hydroxide having an average secondary particle diameter of 25.4 nm is synthesized by reacting a magnesium salt and a hydroxide salt using a microreactor.
水酸化マグネシウムをリチウムイオン電池のセパレータに使用する際に問題となるのが、その耐酸性である。特許文献5では、電池内に微量に存在するフッ化水素(HF)が無機フィラーと反応して、無機フィラーの表面がフッ化され、その際に水が生成され、この水分が電解液や電極表面に形成されたSEI(Solid Electrolyte Interface)皮膜を分解すること、電解液やSEI皮膜が分解してしまうと、電池の内部抵抗が上昇し、充放電に必要なリチウムが失活するため、電池の耐久性が低下してしまうおそれがあることが開示されている。 It is acid resistance that becomes a problem when magnesium hydroxide is used in a separator of a lithium ion battery. In Patent Document 5, hydrogen fluoride (HF) present in a minute amount in a battery reacts with an inorganic filler, and the surface of the inorganic filler is fluorinated, and water is generated at that time, and this water is used as an electrolyte or an electrode. If the SEI (Solid Electrolyte Interface) film formed on the surface is decomposed, or if the electrolytic solution or SEI film is decomposed, the internal resistance of the battery will increase, and the lithium necessary for charge / discharge will be deactivated. It has been disclosed that there is a possibility that the durability of the resin may deteriorate.
特許文献6では、本発明と同様に、Mn、Fe、Co、Ni、Cu及びZnから選ばれた少なくとも1種の遷移金属の水酸化物を水酸化マグネシウムと複合させることにより、より具体的には両者の固溶体を形成させることにより、粒子の耐酸性を向上させることが開示されている。しかし、開示されている複合金属水酸化物の2次粒子径は0.2〜4μmであり、より薄膜のセパレータに使用するには、粒子径を0.2μm未満にする必要があった。しかし、これまで微粒子、高分散性、高純度でかつ耐酸性に優れた水酸化マグネシウムは提供されてこなかった。 In Patent Document 6, as in the present invention, more specifically, by combining a hydroxide of at least one transition metal selected from Mn, Fe, Co, Ni, Cu and Zn with magnesium hydroxide, more specifically, Discloses that the acid resistance of the particles is improved by forming a solid solution of both. However, the secondary particle diameter of the disclosed composite metal hydroxide is 0.2 to 4 μm, and it was necessary to make the particle diameter less than 0.2 μm in order to use it for a thin film separator. However, magnesium hydroxide having fine particles, high dispersibility, high purity and excellent acid resistance has not been provided so far.
本発明の課題は、水酸化マグネシウムの1次粒子の平均横幅を小さくしたときに生じる従来技術の問題である、耐酸性の弱さと1次粒子の凝集の克服である。このような課題を解決すると、より具体的には、(1)耐酸性の改善により、水酸化マグネシウムをリチウムイオン電池のセパレータ用途に使用した際に発生する、フッ化水素との反応を抑制し、電池の耐久性を保つこと、(2)分散性の改善により、薄膜化したときに凹凸のない耐熱性多孔質層を形成すること、が可能となる。 An object of the present invention is to overcome weakness in acid resistance and aggregation of primary particles, which are problems of the prior art that occur when the average width of primary particles of magnesium hydroxide is reduced. Solving these problems, more specifically, (1) By improving acid resistance, the reaction with hydrogen fluoride, which occurs when magnesium hydroxide is used for separators of lithium ion batteries, is suppressed. It is possible to maintain the durability of the battery, and (2) to improve the dispersibility to form a heat-resistant porous layer having no irregularities when it is thinned.
本発明は、上記課題を克服した、以下の(A)及び(B)を満たす下記式(1)で表される複合金属水酸化物を提供する。
(Mg)1−X(M2+)X(OH)2 (1)
(ただし、式中M2+はCr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の2価金属、Xの範囲は0<X<0.5である。)
(A)SEM法による1次粒子の平均横幅が10nm以上200nm未満;
(B)下記式で表わされる単分散度が50%以上;
単分散度(%)=(SEM法よる1次粒子の平均横幅/動的光散乱法による2次粒子の平均横幅)×100The present invention provides a composite metal hydroxide represented by the following formula (1) satisfying the following (A) and (B), which has overcome the above problems.
(Mg) 1-X (M 2+ ) X (OH) 2 (1)
(Wherein, M 2+ is at least one divalent metal selected from Cr, Mn, Fe, Co, Ni, Cu and Zn, and the range of X is 0 <X <0.5.)
(A) The average lateral width of primary particles by SEM method is 10 nm or more and less than 200 nm;
(B) The monodispersity represented by the following formula is 50% or more;
Monodispersity (%) = (Average width of primary particles by SEM method / Average width of secondary particles by dynamic light scattering method) × 100
本発明の複合金属水酸化物の製造方法は、以下の(1)〜(4)の工程を含む。
(1)水溶性マグネシウム塩水溶液と、Cr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の水溶性金属塩水溶液を混合し、水溶性複合金属塩水溶液を得る原料調整工程。
(2)(1)で得られた水溶性複合金属塩水溶液と、アルカリ金属水酸化物水溶液を反応させ、生成物を含むスラリーを得る反応工程。
(3)(2)で得られた生成物を含むスラリーを、0〜100℃で1〜24時間攪拌保持する熟成工程。
(4)(3)で得られた熟成後の生成物を含むスラリーを、湿式粉砕する湿式粉砕工程。The method for producing a composite metal hydroxide of the present invention includes the following steps (1) to (4).
(1) Raw material preparation for obtaining a water-soluble composite metal salt aqueous solution by mixing a water-soluble magnesium salt aqueous solution and at least one water-soluble metal salt aqueous solution selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn Process.
(2) A reaction step in which a water-soluble composite metal salt aqueous solution obtained in (1) is reacted with an alkali metal hydroxide aqueous solution to obtain a slurry containing a product.
(3) A maturing step of stirring and holding the slurry containing the product obtained in (2) at 0 to 100 ° C. for 1 to 24 hours.
(4) A wet pulverization step of wet pulverizing the slurry containing the product after aging obtained in (3).
湿式粉砕の後にアニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル系処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸ナトリウムからなる群より選ばれる1種以上で表面処理をすることで、更に耐酸性を高めることができ、かつ乾燥時の1次粒子の凝集を防止することができる。 From the group consisting of anionic surfactant, cationic surfactant, phosphate ester treatment agent, silane coupling agent, titanate coupling agent, aluminum coupling agent, silicone treatment agent, sodium silicate after wet grinding By performing the surface treatment with one or more selected ones, the acid resistance can be further increased, and aggregation of the primary particles during drying can be prevented.
本発明の複合金属水酸化物は、水酸化マグネシウムの1次粒子の平均横幅を小さくしたときに生じる従来技術の問題である、耐酸性の弱さと1次粒子の凝集の克服をすることができる。
このため、リチウムイオン電池のセパレータに配合することで、セパレータの膜厚を抑えつつ、フッ化水素との反応を抑制し、電池の安全性を高めることができる。また本発明の複合金属水酸化物は、難燃剤としても好適に用いることができる。微粒子高分散ゆえに樹脂への配合量を減らすことができ、かつ樹脂の耐酸性を向上させることができる。The composite metal hydroxide of the present invention can overcome weakness in acid resistance and aggregation of primary particles, which are problems of the prior art that occur when the average width of primary particles of magnesium hydroxide is reduced. .
For this reason, by mix | blending with the separator of a lithium ion battery, reaction with hydrogen fluoride can be suppressed and the safety | security of a battery can be improved, suppressing the film thickness of a separator. Further, the composite metal hydroxide of the present invention can be suitably used as a flame retardant. Since the fine particles are highly dispersed, the amount of the resin can be reduced, and the acid resistance of the resin can be improved.
本発明の複合金属水酸化物は、抗菌剤、口腔内殺菌剤、熱伝導フィラー、ファインセラミックス原料、吸着剤等の各種用途にも好適に用いることができる。また本発明の複合金属水酸化物を焼成することで、微粒子、高分散かつ耐酸性の高い、複合金属酸化物を作製することができる。該酸化物は、微粒子、高分散のため、医薬用胃腸薬、合成ゴムや接着剤の受酸剤、FRP製造用の増粘剤、電磁鋼板製造用の添加剤、熱伝導フィラー、マグネシア砥石材料、ファインセラミックス原料、ブレーキ材料、吸着剤等の各種用途に好適に用いることができる。 The composite metal hydroxide of the present invention can be suitably used for various applications such as an antibacterial agent, an oral bactericide, a heat conductive filler, a fine ceramic raw material, and an adsorbent. Further, by firing the composite metal hydroxide of the present invention, a composite metal oxide having fine particles, high dispersion and high acid resistance can be produced. The oxides are fine particles and highly dispersed, so they are used for pharmaceutical gastrointestinal drugs, acid acceptors for synthetic rubbers and adhesives, thickeners for FRP production, additives for producing electrical steel sheets, heat conductive fillers, magnesia grinding stone materials It can be suitably used for various applications such as fine ceramic raw materials, brake materials and adsorbents.
以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
<複合金属水酸化物>
本発明の複合金属水酸化物の、金属の種類、Xの範囲、1次粒子の平均横幅、単分散度は以下の通りである。<Composite metal hydroxide>
The metal type, the range of X, the average width of primary particles, and the monodispersity of the composite metal hydroxide of the present invention are as follows.
(金属の種類)
式(1)で表される複合金属水酸化物において、M2+はCr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の2価金属である。耐酸性に優れ、入手が容易であることから、好ましいM2+はNi及び/又はZnである。難燃剤用途としては、M2+金属元素の脱水素触媒効果により、プラスチック表面の炭化層形成を促進し、難燃性を向上させることができる。(Metal type)
In the composite metal hydroxide represented by the formula (1), M 2+ is at least one divalent metal selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn. Preferred M 2+ is Ni and / or Zn because of excellent acid resistance and easy availability. As a flame retardant use, the formation of a carbonized layer on the plastic surface can be promoted and the flame retardancy can be improved by the dehydrogenation catalytic effect of the M 2+ metal element.
(Xの範囲)
式(1)で表される複合金属水酸化物において、Xの範囲は0<X<0.5であり、好ましい範囲は0.005≦X≦0.4、さらに好ましい範囲は0.01≦X≦0.2である。Xの値が0.5以上の場合、発泡による成形不良が起こるため好ましくない。これは、水酸化マグネシウムに比べM2+金属水酸化物の脱水温度が低いためである。(Range of X)
In the composite metal hydroxide represented by the formula (1), the range of X is 0 <X <0.5, the preferable range is 0.005 ≦ X ≦ 0.4, and the more preferable range is 0.01 ≦ X ≦ 0.2. When the value of X is 0.5 or more, molding defects due to foaming occur, which is not preferable. This is because the dehydration temperature of M 2+ metal hydroxide is lower than that of magnesium hydroxide.
(1次粒子の平均横幅)
式(1)で表される複合金属水酸化物において、(A)SEM法による1次粒子の平均横幅は10nm以上200nm未満であり、好ましくは10nm以上100nm未満であり、さらに好ましくは10nm以上50nm未満である。1次粒子の平均横幅は、SEM(走査型電子顕微鏡)によりSEM写真中の任意の100個の結晶の横幅の測定値の算術平均から求める。図1は、SEM法を用いた場合の、1次粒子の横幅の測り方の模式図である。図1で示す矢印のように、1次粒子の横幅は、1次粒子が六角板状の板面としたときの粒子の直径を測る。1次粒子の横幅は、原理上、動的光散乱法で測定することができない。したがって、SEM法により目視で確認することで正確な値を算出することができる。(Average width of primary particles)
In the composite metal hydroxide represented by the formula (1), (A) the average lateral width of the primary particles by the SEM method is 10 nm or more and less than 200 nm, preferably 10 nm or more and less than 100 nm, more preferably 10 nm or more and 50 nm. Is less than. The average lateral width of the primary particles is determined from the arithmetic average of the measured values of the lateral width of any 100 crystals in the SEM photograph by SEM (scanning electron microscope). FIG. 1 is a schematic view of how to measure the width of primary particles when the SEM method is used. As shown by the arrows in FIG. 1, the lateral width of the primary particles is measured by measuring the diameter of the particles when the primary particles have a hexagonal plate shape. The lateral width of primary particles cannot be measured by the dynamic light scattering method in principle. Therefore, an accurate value can be calculated by visually confirming with the SEM method.
(単分散度)
式(1)で表される複合金属水酸化物において、(B)下記式で表わされる単分散度が50%以上であり、好ましくは80%以上である。単分散度は以下の式で求める。
単分散度(%)=(SEM法よる1次粒子の平均横幅/動的光散乱法による2次粒子の平均横幅)×100
単分散度を高めることで、リチウムイオン電池のセパレータに用いた際、凹凸のない耐熱性多孔質層を形成することできる。2次粒子の平均横幅は、動的光散乱法により測定する。2次粒子は、複数の1次粒子が凝集して形成される。図2は、動的光散乱法を用いた場合の、2次粒子の横幅の測り方の模式図である。2次粒子の最長径が横幅となる。すなわち、図2の矢印と点線で示すように2次粒子が球体に包まれると考えた時の球体の直径を測る。なお、SEM法では、2次粒子の横幅を正確に測定することが困難である。(Monodispersity)
In the composite metal hydroxide represented by the formula (1), the monodispersity represented by the following formula (B) is 50% or more, preferably 80% or more. The monodispersity is obtained by the following formula.
Monodispersity (%) = (Average width of primary particles by SEM method / Average width of secondary particles by dynamic light scattering method) × 100
By increasing the monodispersity, a heat-resistant porous layer having no irregularities can be formed when used for a separator of a lithium ion battery. The average lateral width of the secondary particles is measured by a dynamic light scattering method. Secondary particles are formed by aggregation of a plurality of primary particles. FIG. 2 is a schematic diagram of how to measure the width of secondary particles when the dynamic light scattering method is used. The longest diameter of the secondary particles is the width. That is, as shown by the arrows and dotted lines in FIG. 2, the diameter of the sphere when the secondary particles are considered to be wrapped by the sphere is measured. In the SEM method, it is difficult to accurately measure the lateral width of the secondary particles.
(表面処理)
式(1)で表される複合金属水酸化物において、耐酸性、分散性を改善するため、粒子表面に表面処理をすることが望ましい。表面処理剤としては、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル系処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸ナトリウム等を例示することができるが、この限りではない。耐酸性向上の観点で好ましい表面処理剤として、ケイ酸ナトリウム及びカチオン系界面活性剤の併用が挙げられる。水酸化マグネシウムの結晶表面はプラス電荷を帯びているため、まずケイ酸ナトリウムで表面処理し、その後でカチオン系界面活性剤で表面処理することで、高い耐酸性を付与することができる。表面処理剤の合計量は、式(1)で表される複合金属水酸化物の重量に対して、0.01〜20重量%、好ましくは0.5〜10重量%である。(surface treatment)
In the composite metal hydroxide represented by the formula (1), in order to improve acid resistance and dispersibility, it is desirable to perform a surface treatment on the particle surface. Examples of surface treatment agents include anionic surfactants, cationic surfactants, phosphate ester treatment agents, silane coupling agents, titanate coupling agents, aluminum coupling agents, silicone treatment agents, sodium silicate, etc. However, this is not a limitation. A preferable surface treatment agent from the viewpoint of improving acid resistance includes the combined use of sodium silicate and a cationic surfactant. Since the crystal surface of magnesium hydroxide has a positive charge, high acid resistance can be imparted by first treating the surface with sodium silicate and then treating the surface with a cationic surfactant. The total amount of the surface treatment agent is 0.01 to 20% by weight, preferably 0.5 to 10% by weight, based on the weight of the composite metal hydroxide represented by the formula (1).
<複合金属酸化物>
本発明の複合金属酸化物は以下に示す式(2)で表され、金属の種類、Xの範囲、1次粒子の平均横幅、単分散度は次の通りである。
(Mg)1−X(M2+)XO (2)<Composite metal oxide>
The composite metal oxide of the present invention is represented by the following formula (2), and the metal type, the range of X, the average lateral width of the primary particles, and the monodispersity are as follows.
(Mg) 1-X (M 2+ ) X O (2)
(金属の種類)
式(2)で表される複合金属酸化物において、M2+はCr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の2価金属である。耐酸性に優れ、入手が容易であることから、好ましいM2+はNi及び/又はZnである。(Metal type)
In the composite metal oxide represented by the formula (2), M 2+ is at least one divalent metal selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn. Preferred M 2+ is Ni and / or Zn because of excellent acid resistance and easy availability.
(Xの範囲)
式(1)で表される複合金属酸化物において、Xの範囲は0<X<0.5であり、好ましい範囲は0.005≦X≦0.4、さらに好ましい範囲は0.01≦X≦0.2である。(Range of X)
In the composite metal oxide represented by the formula (1), the range of X is 0 <X <0.5, the preferable range is 0.005 ≦ X ≦ 0.4, and the more preferable range is 0.01 ≦ X. ≦ 0.2.
(1次粒子の平均横幅)
式(2)で表される複合金属酸化物において、(A)SEM法による1次粒子の平均横幅は10nm以上200nm未満であり、好ましくは10nm以上100nm未満であり、さらに好ましくは10nm以上50nm未満である。1次粒子の平均横幅は、SEM法によりSEM写真中の任意の100個の結晶の横幅の測定値の算術平均から求める。(Average width of primary particles)
In the composite metal oxide represented by the formula (2), (A) the average lateral width of primary particles by SEM method is 10 nm or more and less than 200 nm, preferably 10 nm or more and less than 100 nm, more preferably 10 nm or more and less than 50 nm. It is. The average lateral width of the primary particles is obtained from the arithmetic average of the measured lateral widths of any 100 crystals in the SEM photograph by the SEM method.
(単分散度)
式(2)で表される複合金属酸化物において、(B)下記式で表わされる単分散度が50%以上であり、好ましくは80%以上である。2次粒子の平均横幅は、動的光散乱法により測定する。SEM法では、2次粒子の横幅を正確に測定することが困難なためである。
単分散度(%)=(SEM法よる1次粒子の平均横幅/動的光散乱法による2次粒子の平均横幅)×100(Monodispersity)
In the composite metal oxide represented by the formula (2), the monodispersity represented by the following formula (B) is 50% or more, preferably 80% or more. The average lateral width of the secondary particles is measured by a dynamic light scattering method. This is because it is difficult for the SEM method to accurately measure the lateral width of the secondary particles.
Monodispersity (%) = (Average width of primary particles by SEM method / Average width of secondary particles by dynamic light scattering method) × 100
(表面処理)
式(2)で表される複合金属酸化物において、耐酸性、分散性を改善するため、粒子表面に表面処理をすることが望ましい。表面処理剤としては、アニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル系処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸ナトリウム等を例示することができるが、この限りではない。表面処理剤の合計量は、式(2)で表される複合金属酸化物の重量に対して、0.01〜20重量%、好ましくは0.5〜10重量%である。
(surface treatment)
In the composite metal oxide represented by the formula (2), in order to improve acid resistance and dispersibility, it is desirable to perform surface treatment on the particle surface. Examples of surface treatment agents include anionic surfactants, cationic surfactants, phosphate ester treatment agents, silane coupling agents, titanate coupling agents, aluminum coupling agents, silicone treatment agents, sodium silicate, etc. However, this is not a limitation. The total amount of the surface treatment agent is 0.01 to 20% by weight, preferably 0.5 to 10% by weight, based on the weight of the composite metal oxide represented by the formula (2) .
<樹脂組成物>
本発明の樹脂組成物は、樹脂100重量部に対し、0.1〜250重量部の本発明の複合金属水酸化物を含有する。複合金属水酸化物の配合量は、好ましくは1〜200重量部である。<Resin composition>
The resin composition of the present invention contains 0.1 to 250 parts by weight of the composite metal hydroxide of the present invention with respect to 100 parts by weight of the resin. The compounding amount of the composite metal hydroxide is preferably 1 to 200 parts by weight.
樹脂と本発明の複合金属水酸化物との混合、混練方法には特別の制約はなく、両者を均一に混合できる方法であればよい。例えば、1軸又は2軸押出機、ロール、バンバリーミキサー等により混合、混練される。成形方法にも特別の制約はなく、樹脂及びゴムの種類、所望成形品の種類等に応じて、公知の成形手段を任意に採用できる。例えば射出成形、押出成形、ブロー成形、プレス成形、回転成形カレンダー成形、シートフォーミング成形、トランスファー成形、積層成形、真空成形等である。 There is no particular restriction on the mixing and kneading method of the resin and the composite metal hydroxide of the present invention, and any method can be used as long as both can be mixed uniformly. For example, they are mixed and kneaded by a single or twin screw extruder, a roll, a Banbury mixer or the like. There is no special restriction | limiting also in a shaping | molding method, According to the kind of resin and rubber, the kind of desired molded article, etc., a well-known shaping | molding means can be employ | adopted arbitrarily. For example, injection molding, extrusion molding, blow molding, press molding, rotational molding calendar molding, sheet forming molding, transfer molding, laminate molding, vacuum molding, and the like.
本発明で用いる樹脂とは、樹脂及び/又はゴムを意味し、例えば、ポリエチレン、エチレンと他のα−オレフィンとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンとアクリル酸エーテルとの共重合体、エチレンとアクリル酸メチルとの共重合体、ポリプロピレン、プロピレンと他のα−オレフィンとの共重合体、ポリブテン−1、ポリ4−メチルペンテン−1、ポリスチレン、スチレンとアクリロニトリルとの共重合体、エチレンとプロピレンジエンゴムとの共重合体、エチレンとブタジエンとの共重合体、ポリ酢酸ビニル、ポリ乳酸、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ABS、ポリカーボネート、ポリフェニレンサルファイド等の熱可塑性樹脂が挙げられる。また、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂等の熱硬化性樹脂が挙げられる。また、EPDM、SBR、NBR、ブチルゴム、クロロプレンゴム、イソプレンゴム、クロロスルホン化ポリエチレンゴム、シリコンゴム、フッ素ゴム、塩素化ブチルゴム、臭素化ブチルゴム、エピクロルヒドリンゴム、塩素化ポリエチレン等が挙げられる。 The resin used in the present invention means a resin and / or rubber, for example, polyethylene, a copolymer of ethylene and another α-olefin, a copolymer of ethylene and vinyl acetate, ethylene and an acrylic acid ether, Copolymer of ethylene and methyl acrylate, polypropylene, copolymer of propylene and other α-olefin, polybutene-1, poly-4-methylpentene-1, polystyrene, styrene and acrylonitrile Copolymer, Copolymer of ethylene and propylene diene rubber, Copolymer of ethylene and butadiene, Polyvinyl acetate, Polylactic acid, Polyvinyl alcohol, Polyacrylate, Polymethacrylate, Polyurethane, Polyester, Polyether, Polyamide, ABS , Polycarbonate, polyphenylene sulfide, etc. A plastic resin is mentioned. Moreover, thermosetting resins, such as a phenol resin, a melamine resin, an epoxy resin, an unsaturated polyester resin, an alkyd resin, are mentioned. Further, EPDM, SBR, NBR, butyl rubber, chloroprene rubber, isoprene rubber, chlorosulfonated polyethylene rubber, silicon rubber, fluorine rubber, chlorinated butyl rubber, brominated butyl rubber, epichlorohydrin rubber, chlorinated polyethylene and the like can be mentioned.
本発明の樹脂組成物は、複合金属水酸化物以外に、他の添加剤、例えば酸化防止剤、タルク等の補強剤、紫外線吸収剤、滑剤、微粒シリカ等の艶消し剤、カーボンブラック等の顔料、臭素系難燃剤やリン酸エステル系難燃剤等の難燃剤を適宜選択して配合することができる。また、スズ酸亜鉛、スズ酸アルカリ金属塩、炭素粉末等の難燃助剤、炭酸カルシウム等の充填剤を適宜選択して配合することができる。これら添加剤の好ましい配合量は、樹脂100重量部に対し、0.01〜5重量部の酸化防止剤、0.1〜50重量部の補強剤、0.01〜5重量部の紫外線吸収剤、0.1〜5重量部の滑剤、0.01〜5重量部の艶消し剤、0.01〜5重量部の顔料、0.1〜50重量部の難燃剤、0.01〜10重量部の難燃助剤、1〜50重量部の充填剤である。 In addition to the composite metal hydroxide, the resin composition of the present invention includes other additives such as antioxidants, reinforcing agents such as talc, ultraviolet absorbers, lubricants, matting agents such as fine silica, carbon black and the like. Flame retardants such as pigments, bromine-based flame retardants and phosphate ester-based flame retardants can be appropriately selected and blended. In addition, flame retardant aids such as zinc stannate, alkali metal stannate, carbon powder, and fillers such as calcium carbonate can be appropriately selected and blended. The preferred blending amount of these additives is 0.01 to 5 parts by weight of antioxidant, 0.1 to 50 parts by weight of reinforcing agent, and 0.01 to 5 parts by weight of UV absorber with respect to 100 parts by weight of the resin. 0.1-5 parts by weight lubricant, 0.01-5 parts by weight matting agent, 0.01-5 parts by weight pigment, 0.1-50 parts by weight flame retardant, 0.01-10 parts by weight Part of flame retardant aid, 1 to 50 parts by weight of filler.
<複合金属水酸化物の製造方法>
本発明の複合金属水酸化物の製造方法は、以下の(1)〜(4)の工程を含む。
(1)水溶性マグネシウム塩水溶液と、Cr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の水溶性金属塩水溶液を混合し、水溶性複合金属塩水溶液を得る原料調整工程。
(2)(1)で得られた水溶性複合金属塩水溶液と、アルカリ金属水酸化物水溶液を反応させ、生成物を含むスラリーを得る反応工程。
(3)(2)で得られた生成物を含むスラリーを、0〜100℃で1〜24時間攪拌保持する熟成工程。
(4)(3)で得られた熟成後の生成物を含むスラリーを、湿式粉砕する湿式粉砕工程。<Method for producing composite metal hydroxide>
The method for producing a composite metal hydroxide of the present invention includes the following steps (1) to (4).
(1) Raw material preparation for obtaining a water-soluble composite metal salt aqueous solution by mixing a water-soluble magnesium salt aqueous solution and at least one water-soluble metal salt aqueous solution selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn Process.
(2) A reaction step in which a water-soluble composite metal salt aqueous solution obtained in (1) is reacted with an alkali metal hydroxide aqueous solution to obtain a slurry containing a product.
(3) A maturing step of stirring and holding the slurry containing the product obtained in (2) at 0 to 100 ° C. for 1 to 24 hours.
(4) A wet pulverization step of wet pulverizing the slurry containing the product after aging obtained in (3).
(原料調整工程)
水溶性マグネシウム塩水溶液と、Cr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の水溶性金属塩水溶液を混合し、水溶性複合金属塩水溶液を作製する。水溶性マグネシウム塩として、塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム等が挙げられるが、この限りではない。1次粒子の凝集を防ぐため、塩化マグネシウム、硝酸マグネシウム、酢酸マグネシウムを用いるのが好ましい。Cr、Mn、Fe、Co、Ni、Cu、Znからなる群より選ばれる少なくとも1種の水溶性複合金属塩水溶液は、塩化物塩、硝酸塩、酢酸塩、硫酸塩等が挙げられるが、この限りではない。耐酸性を高め、1次粒子の凝集を防ぐという観点から、塩酸塩、硝酸塩、酢酸塩が好ましい。複合金属塩水溶液の濃度は、(Mg+M2+)として0.1〜5.0mol/L、好ましくは0.4〜4.0mol/Lである。MgとM2+の比率は、0<M2+/Mg<1であり、好ましくは0.005≦M2+/Mg≦0.667、更に好ましくは0.010≦M2+/Mg≦0.250である。(Raw material adjustment process)
A water-soluble magnesium salt aqueous solution and at least one water-soluble metal salt aqueous solution selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn are mixed to prepare a water-soluble composite metal salt aqueous solution. Examples of the water-soluble magnesium salt include, but are not limited to, magnesium chloride, magnesium nitrate, magnesium acetate, magnesium sulfate and the like. In order to prevent aggregation of primary particles, it is preferable to use magnesium chloride, magnesium nitrate, or magnesium acetate. Examples of the aqueous solution of at least one water-soluble composite metal salt selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, and Zn include chloride salts, nitrates, acetates, sulfates, etc. is not. From the viewpoint of increasing acid resistance and preventing agglomeration of primary particles, hydrochloride, nitrate, and acetate are preferred. The density | concentration of composite metal salt aqueous solution is 0.1-5.0 mol / L as (Mg + M < 2+ >), Preferably it is 0.4-4.0 mol / L. The ratio of Mg to M 2+ is 0 <M 2+ / Mg <1, preferably 0.005 ≦ M 2+ /Mg≦0.667, more preferably 0.010 ≦ M 2+ /Mg≦0.250. is there.
(反応工程)
水溶性複合金属塩水溶液と、アルカリ金属水酸化物水溶液を反応させることで、複合金属水酸化物を含んだスラリーを作製することができる。アルカリ金属水酸化物として、水酸化ナトリウム、水酸化カリウム等が挙げられるが、この限りではない。反応方法としては、例えばバッチ反応、連続反応が挙げられるが、この限りではない。生産性と反応の均一性を考慮した場合、好ましくは連続反応が好適に用いられる。反応時のpHは、9.0〜12.0に調整し、好ましくは9.5〜11.5、さらに好ましくは10.0〜11.0である。反応pHが9.0より低い場合は、スラリーの熟成時に1次粒子が成長してしまうため、好ましくない。反応pHが12.0より高い場合は、原料由来の不純物が沈殿しやすくなることや、経済上の理由から好ましくない。アルカリ金属水酸化物の濃度は0.1〜20.0mol/Lであり、好ましくは0.4〜15.0mol/Lである。反応時の濃度は、複合金属水酸化物換算で0.1〜5.0mol/Lであり、好ましくは0.4〜4.0mol/Lである。反応時の濃度が0.1mol/Lより低い場合は生産性が低く、5.0mol/Lより高い場合は1次粒子が凝集するため好ましくない。反応温度は、0〜100℃であり、好ましくは10〜60℃、さらに好ましくは20〜40℃である。反応温度が100℃より高い場合は、1次粒子が200nm以上に成長してしまうため好ましくない。反応温度が0℃未満の場合は、スラリーが凍ってしまうため好ましくない。
(Reaction process)
A slurry containing a composite metal hydroxide can be produced by reacting an aqueous solution of a composite metal salt with an aqueous alkali metal hydroxide solution. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide, but are not limited thereto. Examples of the reaction method include batch reaction and continuous reaction, but are not limited thereto. In consideration of productivity and reaction uniformity, a continuous reaction is preferably used. The pH during the reaction is adjusted to 9.0 to 12.0, preferably 9.5 to 11.5, and more preferably 10.0 to 11.0. When the reaction pH is lower than 9.0, the primary particles grow when the slurry is aged, which is not preferable. When the reaction pH is higher than 12.0, it is not preferable because impurities derived from the raw material are likely to precipitate and for economic reasons. The density | concentration of an alkali metal hydroxide is 0.1-20.0 mol / L, Preferably it is 0.4-15.0 mol / L. The density | concentration at the time of reaction is 0.1-5.0 mol / L in conversion of a composite metal hydroxide, Preferably it is 0.4-4.0 mol / L. When the concentration during the reaction is lower than 0.1 mol / L, the productivity is low, and when it is higher than 5.0 mol / L, the primary particles are aggregated, which is not preferable. Reaction temperature is 0-100 degreeC, Preferably it is 10-60 degreeC, More preferably, it is 20-40 degreeC. When the reaction temperature is higher than 100 ° C., the primary particles grow to 200 nm or more, which is not preferable. When the reaction temperature is less than 0 ° C., the slurry freezes, which is not preferable.
(熟成工程)
上記の反応後スラリーを、1〜24時間、0〜100℃で、攪拌保持する。この工程を経ることにより、反応直後は強固である1次粒子の凝集を緩めることができる。熟成時間が1時間未満では、1次粒子の凝集を緩めるための時間として十分ではない。24時間より長く熟成しても、凝集状態に変化がないため意味をなさない。好ましい熟成時間は2〜18時間であり、さらに好ましくは4〜15時間である。熟成温度が100℃より高ければ、1次粒子が200nm以上に成長してしまうため好ましくない。熟成温度が0℃未満では、スラリーが凍ってしまうため好ましくない。さらに好ましい熟成温度は10〜60℃であり、最も好ましくは20〜40℃である。熟成時の濃度は複合金属水酸化物換算で0.1〜5.0mol/Lであり、好ましくは0.4〜4.0mol/Lである。熟成時の濃度が0.1mol/Lより低い場合は生産性が低く、5.0mol/Lより高い場合は1次粒子が凝集するため好ましくない。(Aging process)
The post-reaction slurry is stirred and held at 0-100 ° C. for 1-24 hours. By passing through this step, it is possible to relax the aggregation of primary particles that are strong immediately after the reaction. If the aging time is less than 1 hour, it is not sufficient as a time for loosening the aggregation of the primary particles. Aging for longer than 24 hours does not make sense because there is no change in the aggregated state. The preferred aging time is 2 to 18 hours, more preferably 4 to 15 hours. If the aging temperature is higher than 100 ° C., the primary particles grow to 200 nm or more, which is not preferable. An aging temperature of less than 0 ° C. is not preferable because the slurry freezes. A more preferable aging temperature is 10 to 60 ° C, and most preferably 20 to 40 ° C. The concentration at the time of aging is 0.1 to 5.0 mol / L, preferably 0.4 to 4.0 mol / L, in terms of composite metal hydroxide. When the aging concentration is lower than 0.1 mol / L, the productivity is low, and when it is higher than 5.0 mol / L, the primary particles are aggregated, which is not preferable.
(湿式粉砕工程)
熟成処理後のスラリーを脱水し、固形分に対して20倍の重量の脱イオン水にて水洗浄した後、脱イオン水にてケーキの再乳化を行う。再乳化後のスラリーを湿式粉砕する。湿式粉砕は、例えばビーズミルや高圧式ホモジナイザー等が好適に用いられる。湿式粉砕時の温度は0〜100℃であり、さらに好ましくは10〜60℃であり、最も好ましくは20〜40℃である。湿式粉砕時の温度が100℃以上では、1次粒子が200nm以上に成長してしまうため好ましくない。湿式粉砕時の温度が0℃未満では、スラリーが凍ってしまうため好ましくない。湿式粉砕時の濃度は複合金属水酸化物換算で0.1〜5.0mol/Lであり、好ましくは0.4〜4.0mol/Lである。湿式粉砕時の濃度が0.1mol/Lより低い場合は生産性が低く、5.0mol/Lより高い場合は1次粒子の凝集を解くことができないため好ましくない。ビーズミルの場合、好ましいビーズ直径は0.001mm〜0.1mm、さらに好ましくは0.01mm〜0.05mmである。高圧式ホモジナイザーの場合、好ましい圧力は100bar〜1000bar、さらに好ましくは400bar〜700barである。(Wet grinding process)
The slurry after the aging treatment is dehydrated, washed with deionized water having a weight 20 times the solid content, and then re-emulsified with deionized water. The slurry after re-emulsification is wet pulverized. For wet pulverization, for example, a bead mill or a high-pressure homogenizer is preferably used. The temperature during wet pulverization is 0 to 100 ° C, more preferably 10 to 60 ° C, and most preferably 20 to 40 ° C. If the temperature during wet pulverization is 100 ° C. or higher, the primary particles grow to 200 nm or more, which is not preferable. If the temperature during wet pulverization is less than 0 ° C., the slurry will freeze, which is not preferable. The density | concentration at the time of wet grinding is 0.1-5.0 mol / L in conversion of a composite metal hydroxide, Preferably it is 0.4-4.0 mol / L. When the concentration at the time of wet pulverization is lower than 0.1 mol / L, productivity is low, and when it is higher than 5.0 mol / L, aggregation of primary particles cannot be solved, which is not preferable. In the case of a bead mill, a preferable bead diameter is 0.001 mm to 0.1 mm, more preferably 0.01 mm to 0.05 mm. In the case of a high-pressure homogenizer, the preferred pressure is from 100 bar to 1000 bar, more preferably from 400 bar to 700 bar.
(表面処理工程)
湿式粉砕後、複合金属水酸化物に対して表面処理を行うことで、樹脂に添加、混練、分散する場合の、樹脂中での分散性を改善できる。表面処理は、湿式法又は乾式法を用いることができる。処理の均一性を考慮した場合、湿式法が好適に用いられる。湿式粉砕後のスラリーを脱水し、固形分に対して20倍の重量の脱イオン水にて水洗浄した後、脱イオン水に懸濁させる。懸濁後のスラリーを温調し、撹拌下に溶解させた表面処理剤を添加する。表面処理時の温度は表面処理剤が溶解する温度に適宜調整する。(Surface treatment process)
By performing surface treatment on the composite metal hydroxide after wet pulverization, the dispersibility in the resin when added, kneaded, and dispersed in the resin can be improved. For the surface treatment, a wet method or a dry method can be used. In consideration of processing uniformity, a wet method is preferably used. The slurry after the wet pulverization is dehydrated, washed with deionized water having a weight 20 times the solid content, and then suspended in deionized water. The temperature of the slurry after suspension is controlled, and a surface treatment agent dissolved under stirring is added. The temperature during the surface treatment is appropriately adjusted to a temperature at which the surface treatment agent is dissolved.
表面処理剤としては、例えばアニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル系処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸ナトリウム等から選ばれる少なくとも1種を用いることができる。耐酸性向上の観点から、好ましい表面処理剤はケイ酸ナトリウムとカチオン系界面活性剤の併用である。表面処理剤の合計量は、複合金属水酸化物の重量に対して、好ましくは0.01〜20重量%、より好ましくは0.5〜10重量%である。 Examples of the surface treatment agent include an anionic surfactant, a cationic surfactant, a phosphate ester treatment agent, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a silicone treatment agent, and sodium silicate. At least one selected from can be used. From the viewpoint of improving acid resistance, a preferred surface treatment agent is a combination of sodium silicate and a cationic surfactant. The total amount of the surface treatment agent is preferably 0.01 to 20% by weight, more preferably 0.5 to 10% by weight, based on the weight of the composite metal hydroxide.
(乾燥工程)
表面処理後のスラリーを脱水し、固形分に対して20倍の重量の脱イオン水にて水洗浄した後、乾燥させ、本発明の複合金属水酸化物を得る。乾燥方法は、熱風乾燥、真空乾燥等を用いることができるが、特に制限されるものではない。(Drying process)
The slurry after the surface treatment is dehydrated, washed with deionized water having a weight 20 times the solid content, and then dried to obtain the composite metal hydroxide of the present invention. The drying method can be hot air drying, vacuum drying, or the like, but is not particularly limited.
<複合金属酸化物の製造方法>
本発明の複合金属酸化物は、本発明の複合金属水酸化物を焼成することにより得られる。焼成後、乾式又は湿式法で表面処理を行うことにより、1次粒子の凝集を防ぎ、単分散度の高い複合金属酸化物を得ることができる。<Method for producing composite metal oxide>
The composite metal oxide of the present invention can be obtained by firing the composite metal hydroxide of the present invention. After firing, a surface treatment is performed by a dry method or a wet method, whereby aggregation of primary particles can be prevented and a composite metal oxide having a high monodispersity can be obtained.
(焼成工程)
本発明の複合金属水酸化物を、400〜1000℃、1〜10時間焼成することで、本発明の複合金属酸化物を得ることができる。より好ましい焼成温度は450〜900℃、さらに好ましくは500〜800℃である。焼成温度が400℃以下では酸化マグネシウムが生成せず、1000℃以上では焼結により1次粒子が粗大化してしまうため好ましくない。より好ましい焼成時間は1〜8時間、さらに好ましくは1〜6時間である。焼成時間が1時間未満では酸化マグネシウムが生成するのに十分ではなく、10時間以上では焼結により1次粒子が粗大化してしまうため好ましくない。(Baking process)
The composite metal oxide of the present invention can be obtained by firing the composite metal hydroxide of the present invention at 400 to 1000 ° C. for 1 to 10 hours. A more preferable firing temperature is 450 to 900 ° C, more preferably 500 to 800 ° C. When the firing temperature is 400 ° C. or lower, magnesium oxide is not generated, and when the firing temperature is 1000 ° C. or higher, the primary particles are coarsened by sintering. A more preferable firing time is 1 to 8 hours, and further preferably 1 to 6 hours. If the firing time is less than 1 hour, it is not sufficient to produce magnesium oxide, and if it is 10 hours or more, the primary particles are coarsened by sintering, which is not preferable.
(表面処理工程)
焼成後、複合金属酸化物に対して表面処理を行うことで、樹脂に添加、混練、分散する場合の、樹脂中での分散性を改善できる。表面処理は、湿式法又は乾式法を用いることができる。処理の均一性を考慮した場合、湿式法が好適に用いられる。焼成後の粉末をアルコール溶媒に分散させ、撹拌下に溶解させた表面処理剤を添加する。表面処理時の温度は表面処理剤が溶解する温度に適宜調整する。(Surface treatment process)
By performing surface treatment on the composite metal oxide after firing, the dispersibility in the resin when added, kneaded, and dispersed in the resin can be improved. For the surface treatment, a wet method or a dry method can be used. In consideration of processing uniformity, a wet method is preferably used. The surface treatment agent in which the powder after firing is dispersed in an alcohol solvent and dissolved under stirring is added. The temperature during the surface treatment is appropriately adjusted to a temperature at which the surface treatment agent is dissolved.
表面処理剤としては、例えばアニオン系界面活性剤、カチオン系界面活性剤、リン酸エステル系処理剤、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン系処理剤、ケイ酸ナトリウム等から選ばれる少なくとも1種を用いることができる。表面処理剤の添加量は、複合金属水酸化物の重量に対して、好ましくは0.01〜20重量%、より好ましくは0.5〜10重量%である。 Examples of the surface treatment agent include an anionic surfactant, a cationic surfactant, a phosphate ester treatment agent, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a silicone treatment agent, and sodium silicate. At least one selected from can be used. The addition amount of the surface treatment agent is preferably 0.01 to 20% by weight, more preferably 0.5 to 10% by weight, based on the weight of the composite metal hydroxide.
以下実施例により本発明を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例において、各物性は以下の方法で測定した。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited only to these examples. In the examples, each physical property was measured by the following method.
(a)1次粒子の平均横幅
試料をエタノールに加え、超音波処理を5分間行った後、走査型電子顕微鏡(SEM)(日本電子製、JSM−7600F)を用い、任意の100個の結晶の1次粒子の横幅を測定し、その算術平均をもって1次粒子の平均横幅とした。なお、1次粒子の横幅は、図1で示す矢印のように、1次粒子が六角板状の板面としたときの粒子の直径を測定する。(A) Average width of primary particles After adding a sample to ethanol and performing ultrasonic treatment for 5 minutes, an arbitrary 100 crystals using a scanning electron microscope (SEM) (manufactured by JEOL, JSM-7600F) The horizontal width of the primary particles was measured, and the arithmetic average was taken as the average primary particle width. The horizontal width of the primary particles is measured by measuring the diameter of the particles when the primary particles are hexagonal plate-like plate surfaces as indicated by arrows in FIG.
(b)2次粒子の平均横幅
試料をエタノールに加え、超音波処理を5分間行った後、動的散乱法粒度測定機(大塚電子製、ELSZ−2000S)を用いて粒度分布を測定し、その個数平均径をもって、2次粒子の平均横幅とした。すなわち、2次粒子が球体に包まれると考えた時の球体の直径を2次粒子の横幅として測定し、その個数平均を2次粒子の平均横幅とした。(B) Average width of secondary particles After adding the sample to ethanol and sonicating for 5 minutes, the particle size distribution was measured using a dynamic scattering particle size analyzer (ELSZ-2000S, manufactured by Otsuka Electronics), The number average diameter was defined as the average width of the secondary particles. That is, the diameter of the sphere when the secondary particles were considered to be encapsulated in the sphere was measured as the lateral width of the secondary particles, and the number average was taken as the average lateral width of the secondary particles.
(c)単分散度
以下の式に基づいて、(a)及び(b)の値から算出した。単分散度(%)=(1次粒子の平均横幅/2次粒子の平均横幅)×100(C) Monodispersion degree It calculated from the value of (a) and (b) based on the following formula | equation. Monodispersity (%) = (Average width of primary particles / Average width of secondary particles) × 100
(d)化学組成の定量
サンプルを硝酸に加熱・溶解させた後、Mg、Mn、Ni、Znをキレート滴定にて定量した。(D) Determination of chemical composition After heating and dissolving the sample in nitric acid, Mg, Mn, Ni and Zn were quantified by chelate titration.
(e)表面処理量の定量
(ケイ酸)サンプルを硫酸及び硝酸を用いて加熱・溶解させた後、重量法により、
サンプルの重量に対するケイ酸(SiO2として)の被覆量を算出した。
(ステアリン酸)エーテル抽出法により、サンプルの重量に対するステアリン酸の被覆量を算出した。
(カチオン系界面活性剤)ケルダール法によりサンプルの窒素分を抽出した後、分光光度計を用い、吸光度から窒素含量を測定した。サンプル中の窒素含量から、サンプルの重量に対するカチオン系界面活性剤の被覆量を算出した。(E) Quantification of surface treatment amount (silicic acid) After heating and dissolving a sample using sulfuric acid and nitric acid,
The coating amount of silicic acid (as SiO 2 ) relative to the weight of the sample was calculated.
(Stearic acid) The coating amount of stearic acid relative to the weight of the sample was calculated by the ether extraction method.
(Cationic surfactant) After extracting the nitrogen content of the sample by the Kjeldahl method, the nitrogen content was measured from the absorbance using a spectrophotometer. From the nitrogen content in the sample, the coating amount of the cationic surfactant relative to the weight of the sample was calculated.
(f)粉末の耐酸性試験法
32℃に保温しておいたビーカーに32℃のエタノール2mLと回転子を入れ、該ビーカーを恒温槽(32℃)に浸し、撹拌を開始する。1分後に試料0.1gを投入する。試料投入より1分後に32℃の水40mLを投入し、pHメーター電極とビュレットのセットをビーカー内に浸す。水投入より1分後に、自動滴定装置(東亜ディーケーケー社製)を使用し、試験スラリーのpHが常に4.0、温度32℃になるよう、0.1N塩酸を注加する。0.1N塩酸5.15mLを注加した時点で滴定を終了する。耐酸性は、0.1N塩酸5.15mLの注加開始から終了までの時間で評価した。時間が長いほど耐酸性に優れる。(F) Acid resistance test method for powder 2 mL of ethanol at 32 ° C. and a rotor are placed in a beaker kept at 32 ° C., and the beaker is immersed in a thermostatic bath (32 ° C.) to start stirring. After 1 minute, 0.1 g of the sample is charged. One minute after the sample is added, 40 mL of water at 32 ° C. is added, and the set of pH meter electrode and burette is immersed in the beaker. One minute after the addition of water, an automatic titrator (manufactured by Toa DKK Corporation) is used, and 0.1N hydrochloric acid is added so that the pH of the test slurry is always 4.0 and the temperature is 32 ° C. The titration is completed when 5.15 mL of 0.1N hydrochloric acid is added. Acid resistance was evaluated by the time from the start to the end of 5.15 mL of 0.1N hydrochloric acid. The longer the time, the better the acid resistance.
(g)樹脂組成物の難燃性試験法(UL94垂直試験(1/8インチ))
ポリエチレン100重量部に対して、各サンプルを110重量部添加して樹脂組成物を作成した。ポリエチレンと各サンプルを、プラストミル(BRABENDER社製)を用いて150℃で溶融混練し、得られた樹脂組成物をプレス成形(神藤金属社製、シンドー式SF型油圧プレス)することでテストピースを作成した。UL94垂直試験法(1/8インチ)に従い、樹脂組成物の難燃性を測定した。難燃性が高い順に、V−0、V−1、V−2の規格が付与される。難燃規格を満たさないものは、規格外とされる。(G) Flame retardancy test method for resin composition (UL94 vertical test (1/8 inch))
110 parts by weight of each sample was added to 100 parts by weight of polyethylene to prepare a resin composition. Polyethylene and each sample are melt-kneaded at 150 ° C. using a plast mill (BRABENDER), and the resulting resin composition is press-molded (Shindo Metal SF hydraulic press). Created. The flame retardancy of the resin composition was measured according to the UL94 vertical test method (1/8 inch). V-0, V-1, and V-2 standards are assigned in order of increasing flame retardancy. Those that do not meet the flame retardant standards are considered non-standard.
(h)樹脂組成物の耐酸性試験法(炭酸ガス吹き込み試験)
(g)で作成したテストピースを500mLの脱イオン水に含浸させ、温度を20℃に保持して炭酸ガスを500mL/分の速度で吹き込こみ、24時間保持した。耐酸性は、保持後の溶液中のMg濃度で評価した。溶液中のMg濃度が低いほど耐酸性に優れる。(H) Acid resistance test method of resin composition (carbon dioxide gas blowing test)
The test piece prepared in (g) was impregnated with 500 mL of deionized water, the temperature was maintained at 20 ° C., and carbon dioxide gas was blown in at a rate of 500 mL / min, and maintained for 24 hours. The acid resistance was evaluated by the Mg concentration in the solution after holding. The lower the Mg concentration in the solution, the better the acid resistance.
(原料調整工程)
試薬1級の塩化マグネシウムと試薬1級の塩化ニッケルを脱イオン水に溶解させ、Mg=0.9mol/L、Ni=0.1mol/Lの複合金属塩水溶液を調製した。一方、試薬1級の水酸化ナトリウムを脱イオン水に溶解させ、Na=2mol/Lのアルカリ金属水酸化物水溶液を調製した。(Raw material adjustment process)
Reagent grade magnesium chloride and reagent grade nickel chloride were dissolved in deionized water to prepare a composite metal salt aqueous solution with Mg = 0.9 mol / L and Ni = 0.1 mol / L. On the other hand, reagent grade sodium hydroxide was dissolved in deionized water to prepare an aqueous alkali metal hydroxide solution with Na = 2 mol / L.
(反応工程)
それぞれの溶液を、計量ポンプを用いて20mL/minで連続的に反応槽に供給し、共沈反応をさせた。反応槽はステンレス製、容量500mLでオーバーフローする構造となっており、この反応槽にあらかじめ300mLの脱イオン水を入れ、30℃に温度調整し、攪拌機を用い500rpmで撹拌をしておく。同じく30℃に温度調整した原料を反応槽に供給し、反応pHが10.3となるように流量を調整した。(Reaction process)
Each solution was continuously supplied to the reaction vessel at 20 mL / min using a metering pump to cause a coprecipitation reaction. The reaction tank is made of stainless steel and overflows with a capacity of 500 mL, and 300 mL of deionized water is previously added to this reaction tank, the temperature is adjusted to 30 ° C., and the mixture is stirred at 500 rpm using a stirrer. Similarly, the raw material whose temperature was adjusted to 30 ° C. was supplied to the reaction vessel, and the flow rate was adjusted so that the reaction pH was 10.3.
(熟成工程)
得られたスラリーを30℃に温調し、300rpmで攪拌しながら10時間熟成させた。反応生成物を濾過、脱イオン水洗した後、ケーキを脱イオン水に分散させ、スラリーを得た。(Aging process)
The obtained slurry was temperature-controlled at 30 ° C. and aged for 10 hours while stirring at 300 rpm. The reaction product was filtered and washed with deionized water, and then the cake was dispersed in deionized water to obtain a slurry.
(湿式粉砕工程)
スラリーを、ビーズミル(広島メタル&マシナリー社製、ウルトラアペックスミル)を用い、湿式粉砕した。濃度0.5mol/Lのスラリー400mLを200mL/minで循環させ、直径0.03mmビーズ、回転数400Hzで20分間粉砕を行った。粉砕後のスラリーを吸引濾過、脱イオン水洗浄した。ケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、本発明の複合金属水酸化物サンプル1を得た。サンプル1の実験条件を表1に、化学組成、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、耐酸性試験結果を表2に示す。図3に、サンプル1の100000倍のSEM写真を示す。
(Wet grinding process)
The slurry was wet pulverized using a bead mill (Hiroshima Metal & Machinery, Ultra Apex Mill). 400 mL of a slurry with a concentration of 0.5 mol / L was circulated at 200 mL / min, and pulverized for 20 minutes at a diameter of 0.03 mm beads and a rotation speed of 400 Hz. The ground slurry was filtered with suction and washed with deionized water . The cake was put into a hot air dryer, dried at 110 ° C. for 12 hours, and then pulverized to obtain a composite metal hydroxide sample 1 of the present invention. The experimental conditions of Sample 1 are shown in Table 1, and the chemical composition, average lateral width of primary particles, average lateral width of secondary particles, monodispersity, and acid resistance test results are shown in Table 2. FIG. 3 shows an SEM photograph of Sample 1 at a magnification of 100,000.
実施例1の原料調整工程において、試薬1級の塩化ニッケルに代えて試薬1級の塩化亜鉛を使用したこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル2を得た。 In the raw material preparation step of Example 1, a sample was prepared in the same manner except that reagent grade zinc chloride was used instead of reagent grade nickel chloride to obtain the composite metal hydroxide sample 2 of the present invention. It was.
実施例1の原料調整工程において、試薬1級の塩化ニッケルに代えて試薬1級の塩化マンガン(2)を使用したこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル3を得た。 The composite metal hydroxide sample of the present invention was prepared in the same manner as in the raw material preparation step of Example 1, except that reagent grade manganese chloride (2) was used instead of reagent grade nickel chloride. 3 was obtained.
実施例1の原料調整工程において、複合金属塩水溶液の濃度をMg=0.7mol/L、Ni=0.3mol/Lとしたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル4を得た。 In the raw material preparation step of Example 1, a sample was prepared in the same manner except that the concentration of the composite metal salt aqueous solution was Mg = 0.7 mol / L, Ni = 0.3 mol / L, and the composite metal water of the present invention was used. An oxide sample 4 was obtained.
実施例1の反応工程において、反応時のpHを9.3としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル5を得た。 In the reaction step of Example 1, a sample was prepared in the same manner except that the pH during the reaction was set to 9.3 to obtain a composite metal hydroxide sample 5 of the present invention.
実施例1の反応工程において、反応時のpHを11.6としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル6を得た。 In the reaction step of Example 1, a sample was prepared in the same manner except that the pH during the reaction was set to 11.6 to obtain a composite metal hydroxide sample 6 of the present invention.
実施例1の熟成工程において、熟成温度を60℃としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル7を得た。 In the aging step of Example 1, a sample was prepared in the same manner except that the aging temperature was set to 60 ° C. to obtain a composite metal hydroxide sample 7 of the present invention.
実施例1の熟成工程において、熟成温度を10℃としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル8を得た。 In the aging step of Example 1, a sample was prepared in the same manner except that the aging temperature was set to 10 ° C. to obtain a composite metal hydroxide sample 8 of the present invention.
実施例1の熟成工程において、熟成時間を3時間としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル9を得た。 In the aging step of Example 1, a sample was prepared in the same manner except that the aging time was 3 hours, and a composite metal hydroxide sample 9 of the present invention was obtained.
実施例1の熟成工程において、熟成時間を20時間としたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル10を得た。 In the aging step of Example 1, a sample was prepared in the same manner except that the aging time was set to 20 hours to obtain a composite metal hydroxide sample 10 of the present invention.
実施例1において、ビーズミルに代え、高圧式ホモジナイザー(SMT社製、LAB1000)を用いて湿式粉砕を行ったこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル11を得た。濃度0.5mol/Lのスラリー400mLを200mL/minで循環させ、500barで20分間湿式粉砕を行った。 In Example 1, instead of the bead mill, a sample was prepared in the same manner except that wet pulverization was performed using a high-pressure homogenizer (manufactured by SMT, LAB1000) to obtain the composite metal hydroxide sample 11 of the present invention. It was. 400 mL of slurry having a concentration of 0.5 mol / L was circulated at 200 mL / min, and wet pulverization was performed at 500 bar for 20 minutes.
(表面処理工程)
複合金属水酸化物に対して、4重量%の試薬1級の3号ケイ酸ナトリウム溶液を用い、脱イオン水で50mLにメスアップし、すなわち、脱イオン水を50mLになるまで加え(以下、同様。)、ケイ酸ナトリウム含有処理液とした。複合金属水酸化物に対して1重量%の試薬1級の塩化ジオレイルジメチルアンモニウム溶液を用い、脱イオン水で50mLにメスアップし、塩化ジオレイルジメチルアンモニウム処理液とした。(Surface treatment process)
Using 4% by weight of reagent grade 1 sodium silicate solution of 4% by weight relative to the composite metal hydroxide, make up to 50 mL with deionized water, that is, add deionized water to 50 mL (hereinafter, Similarly, a sodium silicate-containing treatment solution was obtained. A 1% by weight reagent grade 1 dioleyldimethylammonium chloride solution with respect to the composite metal hydroxide was diluted to 50 mL with deionized water to obtain a dioleyldimethylammonium chloride treatment solution.
実施例1において、湿式粉砕後のスラリーに、80℃に昇温したケイ酸ナトリウム含有処理液を加え、80℃で20分間撹拌保持した。続けて80℃に昇温した塩化ジオレイルジメチルアンモニウム処理液を加え、80℃で20分間攪拌保持した。表面処理後のスラリーを30℃まで冷却した後、吸引濾過、脱イオン水洗浄を行った。その後、ケーキを熱風乾燥器に入れ、110℃で12時間乾燥させた後、粉砕し、本発明の複合金属水酸化物サンプル12を得た。
In Example 1, the sodium silicate-containing treatment liquid heated to 80 ° C. was added to the slurry after wet pulverization, and the mixture was stirred and held at 80 ° C. for 20 minutes. Subsequently, a dioleyldimethylammonium chloride treatment solution heated to 80 ° C. was added, and the mixture was stirred and held at 80 ° C. for 20 minutes. After cooling the surface-treated slurry to 30 ° C., suction filtration and deionized water washing were performed. Thereafter, the cake was put into a hot air dryer, dried at 110 ° C. for 12 hours, and then pulverized to obtain a composite metal hydroxide sample 12 of the present invention.
実施例12の表面処理工程において、3号ケイ酸ナトリウムを単独で用いたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル13を得た。 A sample was prepared in the same manner except that No. 3 sodium silicate was used alone in the surface treatment step of Example 12 to obtain a composite metal hydroxide sample 13 of the present invention.
実施例12の表面処理工程において、塩化ジオレイルジメチルアンモニウムを単独で用いたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル14を得た。 In the surface treatment process of Example 12, a sample was prepared in the same manner except that dioleyldimethylammonium chloride was used alone to obtain a composite metal hydroxide sample 14 of the present invention.
実施例12の表面処理工程において、ケイ酸ナトリウムに代え、複合金属水酸化物に対して1重量%のステアリン酸ナトリウムを用いたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル15を得た。 In the surface treatment step of Example 12, a sample was prepared in the same manner except that 1% by weight of sodium stearate was used instead of sodium silicate, and the composite metal water of the present invention was used. An oxide sample 15 was obtained.
実施例12の表面処理工程において、複合金属水酸化物に対して、1重量%のステアリン酸ナトリウムを単独で用いたこと以外は同様にしてサンプルを作製し、本発明の複合金属水酸化物サンプル16を得た。 In the surface treatment step of Example 12, a sample was prepared in the same manner except that 1% by weight of sodium stearate was used alone with respect to the composite metal hydroxide, and the composite metal hydroxide sample of the present invention was used. 16 was obtained.
(比較例1)
実施例1の原料調整工程において、試薬1級の塩化マグネシウムを単独で使用したこと以外は同様にしてサンプルを作製し、サンプル17を得た。(Comparative Example 1)
In the raw material preparation step of Example 1, a sample was prepared in the same manner except that reagent grade magnesium chloride was used alone, and Sample 17 was obtained.
(比較例2)
実施例1の反応工程において、反応時のpHを8.5としたこと以外は同様にしてサンプルを作製し、サンプル18を得た。(Comparative Example 2)
A sample was prepared in the same manner as in Example 1 except that the pH during the reaction was set to 8.5.
(比較例3)
実施例1の熟成工程において、熟成時間を30分としたこと以外は同様にしてサンプルを作製し、サンプル19を得た。(Comparative Example 3)
In the aging step of Example 1, a sample was prepared in the same manner except that the aging time was 30 minutes, and Sample 19 was obtained.
(比較例4)
実施例1の熟成工程において、熟成温度を120℃としたこと以外は同様にしてサンプルを作製し、サンプル20を得た。(Comparative Example 4)
In the aging step of Example 1, a sample was prepared in the same manner except that the aging temperature was 120 ° C., and Sample 20 was obtained.
(比較例5)
実施例1において、熟成工程を省いたこと以外は同様にしてサンプルを作製し、サンプル21を得た。(Comparative Example 5)
A sample was prepared in the same manner as in Example 1 except that the aging step was omitted, and a sample 21 was obtained.
(比較例6)
実施例1において、湿式粉砕工程を除いたこと以外は同様にしてサンプルを作製し、サンプル22を得た。(Comparative Example 6)
A sample was prepared in the same manner as in Example 1 except that the wet pulverization step was omitted, and a sample 22 was obtained.
表1と表2より、本願の複合金属水酸化物は1次粒子の平均横幅が200nm以下であり、かつ単分散度が50%以上であることが分かる。実施例1の複合金属水酸化物は、比較例1の水酸化マグネシウムに比べ、高い単分散度を維持しながら、粉末耐酸性が大幅に改善されている。表面処理を施した実施例12から16のサンプルは、表面処理がないサンプルに比べ高い単分散度と、粉末耐酸性を示している。特に、ケイ酸ナトリウムと塩化ジオレイルジメチルアンモニウムを使用した実施例12は、顕著な単分散度と耐酸性の向上を示している。 From Tables 1 and 2, it can be seen that the composite metal hydroxide of the present application has an average primary particle width of 200 nm or less and a monodispersity of 50% or more. Compared with the magnesium hydroxide of Comparative Example 1, the composite metal hydroxide of Example 1 has a significantly improved powder acid resistance while maintaining a high degree of monodispersity. The samples of Examples 12 to 16 subjected to surface treatment show higher monodispersity and powder acid resistance than the samples without surface treatment. In particular, Example 12 using sodium silicate and dioleyldimethylammonium chloride shows a significant improvement in monodispersity and acid resistance.
ポリエチレン100重量部に対して、実施例1で作製した粉末サンプル1を110重量部添加して樹脂組成物を製造した。ポリエチレン(日本ポリエチレン社製、ノバテックLL UF−240)と粉末サンプルを、プラストミル(BRABENDER社製)を用いて150℃で溶融混練し、得られた樹脂組成物をプレス成形(神藤金属社製、シンドー式SF型油圧プレス)することによりテストピースを作成した。難燃性試験結果及び耐酸性試験結果を表3に示す。 110 parts by weight of the powder sample 1 prepared in Example 1 was added to 100 parts by weight of polyethylene to produce a resin composition. Polyethylene (manufactured by Nippon Polyethylene, Novatec LL UF-240) and a powder sample are melt-kneaded at 150 ° C. using a plast mill (manufactured by BRABENDER), and the resulting resin composition is press-molded (Shindo Metal Co., Ltd. A test piece was prepared by performing a formula SF type hydraulic press. Table 3 shows the results of the flame retardancy test and the acid resistance test.
実施例2で作製した粉末サンプル2を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 2 prepared in Example 2.
実施例3で作製した粉末サンプル3を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 3 prepared in Example 3, a test piece was prepared in the same manner as in Example 17.
実施例4で作製した粉末サンプル4を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 4 prepared in Example 4, a test piece was prepared in the same manner as in Example 17.
実施例5で作製した粉末サンプル5を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 5 prepared in Example 5.
実施例6で作製した粉末サンプル6を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 6 produced in Example 6, a test piece was produced in the same manner as in Example 17.
実施例7で作製した粉末サンプル7を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 7 prepared in Example 7.
実施例8で作製した粉末サンプル8を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 8 prepared in Example 8.
実施例9で作製した粉末サンプル9を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 9 prepared in Example 9.
実施例10で作製した粉末サンプル10を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 10 produced in Example 10, a test piece was produced in the same manner as in Example 17.
実施例11で作製した粉末サンプル11を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 11 produced in Example 11, a test piece was produced in the same manner as in Example 17.
実施例12で作製した粉末サンプル12を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 12 produced in Example 12, a test piece was produced in the same manner as in Example 17.
実施例13で作製した粉末サンプル13を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 13 produced in Example 13, a test piece was produced in the same manner as in Example 17.
実施例14で作製した粉末サンプル14を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 14 produced in Example 14, a test piece was produced in the same manner as in Example 17.
実施例15で作製した粉末サンプル15を用い、実施例17と同様の方法でテストピースを作成した。 Using the powder sample 15 produced in Example 15, a test piece was produced in the same manner as in Example 17.
実施例16で作製した粉末サンプル16を用い、実施例17と同様の方法でテストピースを作成した。 A test piece was prepared in the same manner as in Example 17 using the powder sample 16 prepared in Example 16.
(比較例7)
比較例1で作製した粉末サンプル17を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 7)
Using the powder sample 17 produced in Comparative Example 1, a test piece was produced in the same manner as in Example 17.
(比較例8)
比較例2で作製した粉末サンプル18を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 8)
Using the powder sample 18 produced in Comparative Example 2, a test piece was produced in the same manner as in Example 17.
(比較例9)
比較例3で作製した粉末サンプル19を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 9)
A test piece was prepared in the same manner as in Example 17 using the powder sample 19 prepared in Comparative Example 3.
(比較例10)
比較例4で作製した粉末サンプル20を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 10)
Using the powder sample 20 produced in Comparative Example 4, a test piece was produced in the same manner as in Example 17.
(比較例11)
比較例5で作製した粉末サンプル21を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 11)
A test piece was prepared in the same manner as in Example 17 using the powder sample 21 prepared in Comparative Example 5.
(比較例12)
比較例6で作製した粉末サンプル22を用い、実施例17と同様の方法でテストピースを作成した。(Comparative Example 12)
A test piece was prepared in the same manner as in Example 17 using the powder sample 22 prepared in Comparative Example 6.
表3より、本発明の複合金属水酸化物を配合した樹脂組成物は、UL94垂直試験(1/8インチ)において、V−0又はV−1規格を満たし、かつ炭酸ガス吹き込み試験において、Mgの溶出が少ないことが分かる。 From Table 3, the resin composition containing the composite metal hydroxide of the present invention satisfies the V-0 or V-1 standard in the UL94 vertical test (1/8 inch), and in the carbon dioxide blowing test, Mg resin It can be seen that there is little elution of.
(焼成工程)
実施例1で作製した粉末サンプル1を、シリコニット電気炉で大気雰囲気下、500℃で1時間焼成した。冷却後、乳鉢を用いて粉砕し、本発明の複合金属酸化物サンプル23を得た。サンプル23の実験条件を表4に、化学組成、1次粒子の平均横幅、2次粒子の平均横幅、単分散度、耐酸性試験結果を表5に示す。図4に、サンプル23の100000倍のSEM写真を示す。(Baking process)
The powder sample 1 produced in Example 1 was fired at 500 ° C. for 1 hour in a siliconite electric furnace in an air atmosphere. After cooling, the mixture was pulverized using a mortar to obtain a composite metal oxide sample 23 of the present invention. The experimental conditions of Sample 23 are shown in Table 4, and the chemical composition, average primary particle width, secondary particle average width, monodispersity, and acid resistance test results are shown in Table 5. FIG. 4 shows an SEM photograph of sample 23 at a magnification of 100,000.
実施例33において、焼成温度を800℃にしたこと以外は同様にして、本発明の複合金属酸化物サンプル24を得た。 A composite metal oxide sample 24 of the present invention was obtained in the same manner as in Example 33 except that the firing temperature was 800 ° C.
実施例33において、焼成時間を8時間にしたこと以外は同様にして、本発明の複合金属酸化物サンプル25を得た。 A composite metal oxide sample 25 of the present invention was obtained in the same manner as in Example 33 except that the firing time was 8 hours.
(表面処理工程)
複合金属酸化物に対して1重量%の試薬1級のステアリン酸を用い、エタノール50mLに溶解させ、ステアリン酸含有処理液とした。(Surface treatment process)
1% by weight of reagent primary stearic acid with respect to the composite metal oxide was dissolved in 50 mL of ethanol to obtain a stearic acid-containing treatment solution.
実施例33において、焼成後の複合金属酸化物を攪拌下のエタノール溶媒に分散させ、60℃に温調した。同じく60℃に昇温したステアリン酸含有処理液を加え、60℃で20分間撹拌保持した。表面処理後のスラリーを30℃まで冷却した後、吸引濾過を行った。ケーキを自然乾燥させた後、粉砕し、本発明の複合金属酸化物サンプル26を得た。 In Example 33, the fired composite metal oxide was dispersed in an ethanol solvent under stirring, and the temperature was adjusted to 60 ° C. Similarly, a stearic acid-containing treatment liquid heated to 60 ° C was added, and the mixture was stirred and held at 60 ° C for 20 minutes. After the surface-treated slurry was cooled to 30 ° C., suction filtration was performed. The cake was naturally dried and then pulverized to obtain a composite metal oxide sample 26 of the present invention.
(比較例13)
実施例33において、焼成温度を1200℃にしたこと以外は同様にして、サンプル27を得た。(Comparative Example 13)
A sample 27 was obtained in the same manner as in Example 33 except that the firing temperature was 1200 ° C.
(比較例14)
実施例33において、焼成時間を12時間にしたこと以外は同様にして、サンプル28を得た。(Comparative Example 14)
A sample 28 was obtained in the same manner as in Example 33 except that the firing time was 12 hours.
(比較例15)
実施例33において、実施例1で作製した粉末サンプル1に代え、比較例1で作製したサンプル17を、シリコニット電気炉で大気雰囲気下、500℃で1時間焼成した以外は同様にして、サンプル29を得た。(Comparative Example 15)
In Example 33, in place of the powder sample 1 produced in Example 1, Sample 29 produced in Comparative Example 1 was prepared in the same manner except that it was baked at 500 ° C. for 1 hour in an air atmosphere in a siliconite electric furnace. Got.
表4と表5より、本願の複合金属酸化物は、1次粒子の大きさが200nm未満で、単分散度が50%以上で、かつ耐酸性が高いことが分かる。特に、ステアリン酸で表面処理をしたサンプル26(実施例36)は、高い耐酸性を示している。サンプル27(比較例13)及びサンプル28(比較例14)は、焼結により1次粒子が大きく成長しており、サンプル29(比較例15)は、粉末の耐酸性が悪いことが分かる。 From Table 4 and Table 5, it can be seen that the composite metal oxide of the present application has a primary particle size of less than 200 nm, a monodispersity of 50% or more, and high acid resistance. In particular, sample 26 (Example 36) surface-treated with stearic acid exhibits high acid resistance. It can be seen that Sample 27 (Comparative Example 13) and Sample 28 (Comparative Example 14) have large primary particles grown by sintering, and Sample 29 (Comparative Example 15) has poor acid resistance of the powder.
本発明の複合金属水酸化物は、リチウムイオン電池のセパレータに配合することで、セパレータの膜厚を抑えつつ、フッ化水素との反応を抑制し、電池の安全性を高めることができる。また本発明の複合金属水酸化物は、難燃剤としても好適に用いることができる。微粒子高分散ゆえに樹脂への配合量を減らすことができ、かつ樹脂の耐酸性を向上させることができる。 By compounding the composite metal hydroxide of the present invention into a separator of a lithium ion battery, the reaction with hydrogen fluoride can be suppressed while suppressing the film thickness of the separator, and the safety of the battery can be improved. Further, the composite metal hydroxide of the present invention can be suitably used as a flame retardant. Since the fine particles are highly dispersed, the amount of the resin can be reduced, and the acid resistance of the resin can be improved.
本発明の複合金属水酸化物は、抗菌剤、口腔内殺菌剤、熱伝導フィラー、ファインセラミックス原料、吸着剤等の各種用途にも好適に用いることができる。また本発明の複合金属水酸化物を焼成することで、微粒子、高分散かつ耐酸性の高い、複合金属酸化物を作製することができる。該酸化物は、微粒子、高分散のため、医薬用胃腸薬、合成ゴムや接着剤の受酸剤、FRP製造用の増粘剤、電磁鋼板製造用の添加剤、熱伝導フィラー、マグネシア砥石材料、ファインセラミックス原料、ブレーキ材料、吸着剤等の各種用途に好適に用いることができる。 The composite metal hydroxide of the present invention can be suitably used for various applications such as an antibacterial agent, an oral bactericide, a heat conductive filler, a fine ceramic raw material, and an adsorbent. Further, by firing the composite metal hydroxide of the present invention, a composite metal oxide having fine particles, high dispersion and high acid resistance can be produced. The oxides are fine particles and highly dispersed, so they are used for pharmaceutical gastrointestinal drugs, acid acceptors for synthetic rubbers and adhesives, thickeners for FRP production, additives for producing electrical steel sheets, heat conductive fillers, magnesia grinding stone materials It can be suitably used for various applications such as fine ceramic raw materials, brake materials and adsorbents.
Claims (13)
(Mg)1−X(M2+)X(OH)2 (1)
(ただし、式中M2+はCr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の2価金属、Xの範囲は0<X<0.5である。)
(A)SEM法による1次粒子の平均横幅が10nm以上200nm未満;
(B)下記式で表わされる単分散度が50%以上;
単分散度(%)=(SEM法による1次粒子の平均横幅/動的光散乱法による2次粒子の平均横幅)×100 A composite metal hydroxide represented by the following formula (1) that satisfies the following (A) and (B).
(Mg) 1-X (M2 +) X (OH) 2 (1)
(Wherein, M2 + is at least one divalent metal selected from Cr, Mn, Fe, Co, Ni, Cu and Zn, and the range of X is 0 <X <0.5.)
(A) The average lateral width of primary particles by SEM method is 10 nm or more and less than 200 nm;
(B) The monodispersity represented by the following formula is 50% or more;
Monodispersity (%) = (Average width of primary particles by SEM method / Average width of secondary particles by dynamic light scattering method) × 100
(Mg)1−X(M2+)XO (2)
(ただし、式中M2+はCr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の2価金属、Xの範囲は0<X<0.5である。)
(A)SEM法による1次粒子の平均横幅が10nm以上200nm未満;
(B)下記式で表わされる単分散度が50%以上;
単分散度(%)=(SEM法よる1次粒子の平均横幅/動的光散乱法による2次粒子の平均横幅)×100 A composite metal oxide represented by the following formula (2) that satisfies the following (A) and (B).
(Mg) 1-X (M2 +) XO (2)
(Wherein, M2 + is at least one divalent metal selected from Cr, Mn, Fe, Co, Ni, Cu and Zn, and the range of X is 0 <X <0.5.)
(A) The average lateral width of primary particles by SEM method is 10 nm or more and less than 200 nm;
(B) The monodispersity represented by the following formula is 50% or more;
Monodispersity (%) = (Average width of primary particles by SEM method / Average width of secondary particles by dynamic light scattering method) × 100
(1)水溶性マグネシウム塩水溶液と、Cr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の水溶性金属塩水溶液を混合し、水溶性複合金属塩水溶液を得る原料調整工程、
(2)(1)で得られた水溶性複合金属塩水溶液と、アルカリ金属水酸化物水溶液を、pH9.0〜pH12.0の範囲に調整して反応させ、生成物を含むスラリーを得る反応工程、
(3)(2)で得られた生成物を含むスラリーを、0〜100℃で1〜24時間攪拌保持する熟成工程、
(4)(3)で得られた熟成後の生成物を含むスラリーを、湿式粉砕する湿式粉砕工程、
を含む、請求項1記載の複合金属水酸化物の製造方法。 The following steps:
(1) Raw material preparation for obtaining a water-soluble composite metal salt aqueous solution by mixing a water-soluble magnesium salt aqueous solution and at least one water-soluble metal salt aqueous solution selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn Process,
(2) Reaction in which the water-soluble composite metal salt aqueous solution obtained in (1) and the alkali metal hydroxide aqueous solution are reacted in a pH 9.0 to pH 12.0 range to obtain a slurry containing the product. Process,
(3) A ripening step of stirring and holding the slurry containing the product obtained in (2) at 0 to 100 ° C. for 1 to 24 hours,
(4) A wet pulverization step for wet pulverizing the slurry containing the product after aging obtained in (3),
The manufacturing method of the composite metal hydroxide of Claim 1 containing this.
(1)水溶性マグネシウム塩水溶液と、Cr、Mn、Fe、Co、Ni、Cu、Znから選ばれる少なくとも1種以上の水溶性金属塩水溶液を混合し、水溶性複合金属塩水溶液を得る原料調整工程、
(2)(1)で得られた水溶性複合金属塩水溶液と、アルカリ金属水酸化物水溶液を、pH9.0〜pH12.0の範囲に調整して反応させ、生成物を含むスラリーを得る反応工程、
(3)(2)で得られた生成物を含むスラリーを、0〜100℃で1〜24時間攪拌保持する熟成工程、
(4)(3)で得られた熟成後の生成物を含むスラリーを、湿式粉砕する湿式粉砕工程、
(5)(4)で得られた湿式粉砕後のスラリーを脱水し、得られたケーキを乾燥し、複合金属水酸化物を得る乾燥工程、
(6)(5)で得られた複合金属水酸化物を、400〜1000℃、1〜10時間焼成する焼成工程、
を含む、請求項10記載の複合金属酸化物の製造方法。 The following steps:
(1) Raw material preparation for obtaining a water-soluble composite metal salt aqueous solution by mixing a water-soluble magnesium salt aqueous solution and at least one water-soluble metal salt aqueous solution selected from Cr, Mn, Fe, Co, Ni, Cu, and Zn Process,
(2) Reaction in which the water-soluble composite metal salt aqueous solution obtained in (1) and the alkali metal hydroxide aqueous solution are reacted in a pH 9.0 to pH 12.0 range to obtain a slurry containing the product. Process,
(3) A ripening step of stirring and holding the slurry containing the product obtained in (2) at 0 to 100 ° C. for 1 to 24 hours,
(4) A wet pulverization step for wet pulverizing the slurry containing the product after aging obtained in (3),
(5) A drying step of dehydrating the slurry after wet pulverization obtained in (4) and drying the resulting cake to obtain a composite metal hydroxide,
(6) A firing step of firing the composite metal hydroxide obtained in (5) at 400 to 1000 ° C. for 1 to 10 hours,
The manufacturing method of the composite metal oxide of Claim 10 containing this.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016174792 | 2016-09-07 | ||
JP2016174792 | 2016-09-07 | ||
PCT/JP2017/032035 WO2018047841A1 (en) | 2016-09-07 | 2017-09-06 | Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018047841A1 JPWO2018047841A1 (en) | 2019-06-27 |
JP6593942B2 true JP6593942B2 (en) | 2019-10-23 |
Family
ID=61562135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018538429A Active JP6593942B2 (en) | 2016-09-07 | 2017-09-06 | Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6593942B2 (en) |
KR (2) | KR102262069B1 (en) |
CN (1) | CN109906202B (en) |
WO (1) | WO2018047841A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047841A1 (en) * | 2016-09-07 | 2018-03-15 | 協和化学工業株式会社 | Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof |
WO2021172944A1 (en) | 2020-02-26 | 2021-09-02 | 사회복지법인 삼성생명공익재단 | Cancer diagnosis method using raman signal of urine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085990B2 (en) | 1991-02-06 | 1996-01-24 | 株式会社海水化学研究所 | Flame retardant, and flame retardant resin and / or rubber composition |
JP2885358B2 (en) * | 1993-11-18 | 1999-04-19 | タテホ化学工業株式会社 | Magnesium hydroxide solid solution, its production and use |
JP2966755B2 (en) * | 1995-03-17 | 1999-10-25 | タテホ化学工業株式会社 | High aspect ratio metal hydroxide or metal oxide solid solution and method for producing them |
US5891945A (en) * | 1995-06-02 | 1999-04-06 | Tateho Chemical Industries, Co., Ltd. | Magnesium hydroxide solid solutions, their production method and use |
JPH09100121A (en) * | 1995-08-03 | 1997-04-15 | Tateho Chem Ind Co Ltd | Production of double metal hydroxide, double metal hydroxide obtained by the same production method and flame-retardant polymer composition using the same hydroxide |
IN189465B (en) * | 1995-08-03 | 2003-03-01 | Tateho Kagaku Kogyo Kk | |
MXNL06000070A (en) * | 2006-10-03 | 2008-10-24 | Ind Penoles Sa De Cv | Process for the manufacture of nanometric, monodisperse and stable magnesium hydroxide and product obtained therefrom. |
WO2010098497A1 (en) | 2009-02-24 | 2010-09-02 | 帝人株式会社 | Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery |
JP5409461B2 (en) | 2010-03-19 | 2014-02-05 | 富士フイルム株式会社 | Method for producing metal hydroxide fine particles |
JP5172047B2 (en) | 2010-12-17 | 2013-03-27 | 帝人株式会社 | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery |
KR20130090312A (en) * | 2012-02-03 | 2013-08-13 | 주식회사 엘지화학 | Precursor particles of lithium composite transition metal oxide for lithium secondary battery and cathode active material comprising the same |
KR20140128997A (en) | 2012-02-13 | 2014-11-06 | 교와 가가꾸고교 가부시키가이샤 | Magnesium hydroxide microparticles |
JP2016094490A (en) * | 2013-02-19 | 2016-05-26 | 神島化学工業株式会社 | Flame retardant, flame retardant composition and molded body |
JP2016062689A (en) | 2014-09-16 | 2016-04-25 | 三菱製紙株式会社 | Battery separator |
WO2018047841A1 (en) * | 2016-09-07 | 2018-03-15 | 協和化学工業株式会社 | Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof |
-
2017
- 2017-09-06 WO PCT/JP2017/032035 patent/WO2018047841A1/en active Application Filing
- 2017-09-06 KR KR1020207005788A patent/KR102262069B1/en active IP Right Grant
- 2017-09-06 JP JP2018538429A patent/JP6593942B2/en active Active
- 2017-09-06 KR KR1020197009352A patent/KR102085040B1/en active Application Filing
- 2017-09-06 CN CN201780067191.5A patent/CN109906202B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20190039835A (en) | 2019-04-15 |
KR20200023553A (en) | 2020-03-04 |
WO2018047841A1 (en) | 2018-03-15 |
KR102085040B1 (en) | 2020-03-05 |
JPWO2018047841A1 (en) | 2019-06-27 |
CN109906202B (en) | 2022-01-18 |
KR102262069B1 (en) | 2021-06-08 |
CN109906202A (en) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5839602B2 (en) | High aspect ratio magnesium hydroxide | |
JP5732040B2 (en) | Agent and method for suppressing foaming failure of filler for synthetic resin | |
TWI593787B (en) | Flame retardant, flame retardant composition and compact | |
CN101379120A (en) | Micropore forming agent for porous resin film and composition for porous resin film containing the agent | |
WO2016163562A1 (en) | Magnesium hydroxide particles and method for producing same | |
JP5128882B2 (en) | Magnesium hydroxide fine particles and method for producing the same | |
JP5370682B2 (en) | Zn-Mg-Al hydrotalcite-type particle powder and resin composition containing the Zn-Mg-Al hydrotalcite-type particle powder | |
CN110612271B (en) | Fine particle hydrotalcite, process for producing the same, resin composition thereof and suspension thereof | |
US10233305B2 (en) | Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same | |
JP6593942B2 (en) | Fine particle composite metal hydroxide, fired product thereof, production method thereof and resin composition thereof | |
JP4663690B2 (en) | Magnesium hydroxide particles for flame retardant, method for producing the same, and surface treatment method | |
JP6598271B2 (en) | High aspect ratio plate-like hydrotalcite, process for producing the same, and resin composition thereof | |
WO2016174987A1 (en) | Method for producing transparent synthetic resin molded article using hydrotalcite particles | |
JP2002053722A (en) | Chlorine-containing resin composition | |
US20240308861A1 (en) | Hexagonal Boron Nitride Aggregated Particles, Hexagonal Boron Nitride Powder, Resin Composition, and Resin Sheet | |
RU2574514C1 (en) | Flame retardant, fireproof composition and moulded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190313 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190506 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190506 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6593942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |