WO2010098497A1 - Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents
Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery Download PDFInfo
- Publication number
- WO2010098497A1 WO2010098497A1 PCT/JP2010/053380 JP2010053380W WO2010098497A1 WO 2010098497 A1 WO2010098497 A1 WO 2010098497A1 JP 2010053380 W JP2010053380 W JP 2010053380W WO 2010098497 A1 WO2010098497 A1 WO 2010098497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- porous
- aqueous secondary
- separator
- battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a porous membrane for a non-aqueous secondary battery, a separator for a non-aqueous secondary battery, an adsorbent for a non-aqueous secondary battery, and a non-aqueous secondary battery.
- Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and notebook computers.
- This non-aqueous secondary battery is required to have higher energy density, higher capacity, and higher output, and this demand is expected to increase in the future. From the viewpoint of meeting such demands, ensuring the safety of the battery becomes a more important technical element.
- a non-aqueous secondary battery has a configuration including a positive electrode, a negative electrode, and a separator disposed between these electrodes.
- the separator has a function of preventing an internal short circuit between the positive electrode and the negative electrode without hindering the permeation of ions.
- a polyolefin microporous membrane is generally used as the separator.
- the separator made of a microporous polyolefin membrane has a shutdown function such that when the battery temperature rises due to overcharge or the like, the polyolefin melts and closes the pores, thereby blocking the current inside the battery. Have. With this function, further heat generation of the battery can be prevented, and the safety of the battery at high temperatures can be improved. However, if the internal temperature of the battery rises even after the holes are closed, there is a risk that the separator will break and an internal short circuit will occur, leading to ignition and the like. Therefore, conventionally, heat-resistant porous membranes have attracted attention in order to improve the safety of non-aqueous secondary batteries.
- a technique for applying a porous film made of a heat resistant resin to a separator (Patent Document 1), a technique for applying a porous film made of a heat resistant resin and a ceramic powder to a separator (Patent Documents 2 and 3), an inorganic filler and a binder
- Patent Document 4 a technique for forming a porous film made of resin on the electrode surface
- Patent Document 5 A technique for dispersing an inorganic filler in a separator made of a polyolefin microporous film is also known (Patent Document 5).
- the inorganic filler typified by ceramic powder is considered to be effective from the viewpoint of more reliably preventing internal short circuit between the positive and negative electrodes because of high heat resistance and compressive strength.
- a battery to which such an inorganic filler is applied may cause a decrease in battery durability such as cycle characteristics and storage characteristics.
- hydrogen fluoride (HF) present in a minute amount in the battery reacts with the inorganic filler, and the surface of the inorganic filler is fluorinated, and at this time, water is generated. It is conceivable that moisture decomposes the SEI (Solid Electrolyte Interface) film formed on the electrolyte solution or electrode surface.
- SEI Solid Electrolyte Interface
- the internal resistance of the battery is increased, or lithium necessary for charging / discharging is deactivated, so that the durability of the battery may be reduced.
- gas is generated, which may also decrease the durability of the battery.
- a decomposition reaction may cause a decrease in battery safety.
- a heat resistant resin such as an aromatic polyamide resin
- the heat resistant resin is generally a substance that easily adsorbs moisture, it can be said that the problem of the decomposition reaction is more likely to occur. .
- Patent Document 6 proposes a technique for improving gas generation in a battery with an inorganic filler.
- a gas absorbent made of inorganic powder is mixed in a separator made of polyolefin, and the gas generated in the battery is trapped by the gas absorbent.
- the inorganic filler which is a gas absorbent is mixed in the polyolefin microporous film having the shutdown function, the shutdown function may be remarkably deteriorated. Therefore, although the gas generation is apparently suppressed, the safety of the battery may be reduced as compared with the case where the conventional polyolefin microporous membrane is applied.
- a lithium ion secondary battery is composed of a positive electrode such as a lithium transition metal composite oxide, a negative electrode such as a carbon material, an organic electrolytic solution in which a Li salt is dissolved, and a separator such as a polyethylene microporous film.
- a lithium ion secondary battery is manufactured after strictly managing so that a water
- the water present in the battery system reacts with a Li salt such as lithium hexafluorophosphate to liberate HF, and the liberated HF reacts as shown in (1) to (3) below. It is known to deteriorate the cycle characteristics of the battery.
- Patent Documents 7 to 9 disclose a technique in which an inorganic substance having a specific surface area of 15 to 300 m 2 / g is included in a separator, and it is shown that the cycle characteristics are improved by this inorganic substance.
- Patent Document 8 discloses a technique in which alumina having a specific surface area of 30 to 300 m 2 / g is contained in a negative electrode or a positive electrode, and shows that good cycle characteristics can be obtained.
- Patent Document 9 discloses a configuration in which activated carbon having a specific surface area of 1000 m 2 / g or more and an inorganic substance are included in the battery system, and it is shown that good cycle characteristics can be obtained by activated carbon or the like.
- the porous inorganic filler having a specific specific surface area has an effect of improving the cycle characteristics of the battery.
- a technique for suppressing the reaction with HF and improving the cycle characteristics by factors other than the specific surface area of the inorganic filler is not known.
- JP 2008-266588 A Japanese Patent No. 3175730 International Publication No. 2008/62727 Pamphlet JP 2008-204788 A Japanese Patent No. 4074116 JP 2008-146963 A Japanese Patent No. 4145762 Japanese Patent No. 3704780 JP 2000-77103 A
- Lithium-ion secondary battery second edition (Nikkan Kogyo Shimbun, Masayuki Yoshio) Material and application, pages 76-77
- the first object of the present invention is to provide a technique that can improve both the safety and durability of the non-aqueous secondary battery.
- a second object is to provide a technique capable of improving cycle characteristics in consideration of reaction with HF and adsorption.
- a porous membrane for a non-aqueous secondary battery comprising a heat resistant resin and an inorganic filler, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 ⁇ m and a specific surface area of 40 to A porous membrane for a non-aqueous secondary battery, characterized by being a porous filler of 3000 m 2 / g. 2.
- a porous film for a non-aqueous secondary battery comprising a heat-resistant resin and an inorganic filler, wherein the inorganic filler is amorphous alumina particles. 4).
- a nonaqueous secondary battery comprising at least a positive electrode and a negative electrode, wherein the porous film for a nonaqueous secondary battery according to any one of the above 1 to 3 is formed on the surface of at least one of the positive electrode and the negative electrode
- a separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate
- a separator for a non-aqueous secondary battery wherein the inorganic filler is a porous filler having an average particle diameter of 0.1 to 5.0 ⁇ m and a specific surface area of 40 to 3000 m 2 / g. 6). 6.
- the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g. 7).
- a separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles. 8).
- a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a separator, wherein the non-aqueous secondary battery separator according to any one of 5 to 7 is used as the separator. battery. 9.
- An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery the adsorbent being activated alumina particles having a specific surface area of 300 to 1000 m 2 / g, for a non-aqueous secondary battery Adsorbent.
- An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery wherein the adsorbent is amorphous alumina particles.
- a porous film for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the inorganic filler includes the non-aqueous secondary battery adsorbent described in 9 or 10 above.
- a porous membrane for a non-aqueous secondary battery the adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery, the adsorbent being activated alumina particles having a specific surface area of 300 to 1000 m 2 / g, for a non-aqueous secondary battery Adsorbent. 10.
- a separator for a non-aqueous secondary battery comprising a porous base material and a porous layer containing an inorganic filler and a binder resin laminated on one or both sides of the porous base material, the inorganic filler as the inorganic filler
- a nonaqueous secondary battery separator comprising the adsorbent for a nonaqueous secondary battery as described in 9 or 10 above.
- a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, characterized in that the non-aqueous secondary battery adsorbent described in 9 or 10 is contained in the battery.
- Non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, characterized in that the non-aqueous secondary battery adsorbent described in 9 or 10 is contained in the battery.
- the first aspect of the present invention it is possible to provide a technology capable of improving both safety and durability of a non-aqueous secondary battery.
- the second aspect of the present invention it is possible to provide a technique capable of improving cycle characteristics in consideration of reaction with HF and adsorption.
- the porous membrane for a non-aqueous secondary battery according to the first aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler has an average particle size The diameter is 0.1 to 5.0 ⁇ m and the specific surface area is 40 to 3000 m. 2 / G porous filler.
- the inorganic filler has an average particle size of 0.1 to 5.0 ⁇ m and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
- the heat-resistant resin is generally a substance that easily adsorbs moisture
- the present invention has a configuration in which the side reaction between the HF and the inorganic filler is likely to occur. By applying the filler, the activity of moisture and HF present in a minute amount in the battery can be significantly reduced, and gas generation due to decomposition of the electrolyte and the like can be suppressed.
- the porous membrane for a battery according to the present invention includes a heat-resistant resin and an inorganic filler, and has a plurality of pores or voids therein, and these pores are connected to each other. Means a quality structure.
- the heat-resistant resin in the present invention includes a resin having a melting point of 200 ° C. or higher. In addition to a resin having a melting point of 200 ° C. or higher, a resin having a thermal decomposition temperature of 200 ° C. or higher with substantially no melting point. Is also included.
- Such a heat-resistant resin examples include wholly aromatic polyamides, polyimides, polyamideimides, polysulfones, polyketones, polyether ketones, polyether sulfones, polyether imides, celluloses, combinations of two or more thereof, and the like. .
- wholly aromatic polyamides are preferable from the viewpoint of durability such as ease of forming a porous structure, binding property with an inorganic filler, strength of the porous film and accompanying oxidation resistance.
- the wholly aromatic polyamide comparing the para type and the meta type, the meta type wholly aromatic polyamide is preferable from the viewpoint of easy molding, and polymetaphenylene isophthalamide is particularly preferable.
- the logarithmic viscosity of the following formula (1) is 0.8 to 2.5 dl / g. Those in the range are preferable, and those in the range of 1.0 to 2.2 dl / g are more preferable. Deviating from this range is not preferable because the moldability may be deteriorated.
- Logarithmic viscosity (unit: dl / g) ln (T / T0) / C (1)
- T Flow time of capillary viscometer at 30 ° C.
- Porous fillers applicable to the present invention include zeolite, activated carbon, activated alumina, porous silica, porous fillers obtained by heat treatment of metal hydroxides such as magnesium hydroxide and aluminum hydroxide, synthesized from organic compounds Porous fillers to be used. Of these, activated alumina is particularly preferable.
- the activated alumina in the present invention has a formula of Al 2 O 3 XH 2 It is a porous filler represented by O (x can take a value of 0 or more and 3 or less).
- the surface of activated alumina is amorphous Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 Gibbsite-like Al (OH) 3 Boehmite Al 2 O 3 ⁇ H 2
- a structure such as O is preferable, and a porous structure formed of these surface structures is particularly preferable from the viewpoint of reducing the activity of moisture and HF.
- porous filler In addition to the porous filler described above, other non-porous inorganic fillers such as metal oxides such as ⁇ -alumina and metal hydroxides such as aluminum hydroxide may be appropriately added as the inorganic filler.
- the porous filler is preferably composed of mesopores of 50 nm or less or micropores of 2 nm or less, and particularly preferably has a structure in which micropores of 2 nm or less are developed from the viewpoint of manifestation of the effects of the present invention. .
- the average particle diameter of the porous filler is preferably in the range of 0.1 to 5.0 ⁇ m.
- the average particle size of the porous filler is smaller than 0.1 ⁇ m, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult.
- the average particle diameter of the porous filler is larger than 5.0 ⁇ m, it may be difficult to form the porous film from the viewpoint of surface roughness when it is thinly formed.
- the specific surface area of the porous filler is 40 to 3000 m. 2 / G is preferable. Specific surface area is 40m 2 If it is less than / g, the activity of moisture and HF cannot be sufficiently reduced, which is not preferable.
- the specific surface area of the porous filler is 40 to 1000 m. 2 / G is more preferable. Specific surface area is 1000m 2 This is because if it is less than / g, it will be more excellent in terms of mechanical strength and gas generation suppression. More preferably, the specific surface area of the porous filler is 40 to 500 m. 2 / G is preferred.
- the specific surface area of the porous filler is 150 to 500 m. 2 / G is preferred.
- Specific surface area is 150m 2 This is because if it is at least / g, it will be more excellent in terms of suppressing gas generation.
- the specific surface area is obtained by analyzing the adsorption isotherm measured by the nitrogen gas adsorption method using the BET equation.
- the porous filler has a specific surface area of 300 to 1000 m. 2 / G activated alumina is preferred.
- Such activated alumina can reduce the activity of HF by adsorbing or reacting with a small amount of HF generated in the battery, and can further improve the cycle characteristics of the non-aqueous secondary battery.
- the 0 / Al element ratio present on the surface of the activated alumina particles is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of HF or the like.
- the true density of the activated alumina is 2.7 to 3.8 g / cm. 3 And more preferably 2.8 to 3.3 g / cm. 3 Range.
- True density is 2.7 g / cm 3 If it is less than that, it becomes close to aluminum hydroxide and the like, and it is difficult to obtain the effect of reducing the activity of HF.
- the true density is 3.8 g / cm. 3 If it is larger, the structure of the filler becomes dense, and the gap through which the electrolytic solution enters becomes small, which may reduce the cycle characteristics of the battery.
- the specific surface area of the activated alumina is 300 m. 2 / G or more is preferable. Specific surface area is 300m 2 If it is less than / g, the activity of HF or the like may not be sufficiently reduced. On the other hand, the specific surface area of activated alumina is 1000 m.
- the porous membrane for a non-aqueous secondary battery of the present invention can be applied to any part as long as it is disposed between both the positive electrode and the negative electrode. That is, for example, the porous membrane for a non-aqueous secondary battery of the present invention can be applied as a separator disposed between electrodes. In this case, it is preferable that the puncture strength has a sufficient mechanical strength of 200 g or more. Further, those having a Gurley value of 10 to 300 seconds / 100 cc are preferred.
- the weight of the porous filler is 10 to 50% by weight with respect to the total weight of the heat resistant resin and the porous filler as the configuration of the porous film for a battery of the present invention. . If the weight of the porous filler exceeds 50% by weight, it may be difficult to obtain sufficient mechanical strength. On the other hand, if the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, or the permeability may be lowered. Moreover, when arrange
- the battery porous membrane of the present invention may be directly formed on the electrode.
- the electrode becomes a support having sufficient strength, mechanical strength is not required as compared with the case where the porous membrane for a battery is applied alone as a separator.
- the weight of the porous filler is preferably 10 to 90% by weight, more preferably 50 to 90% by weight, based on the total weight of the heat resistant resin and the porous filler.
- the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, which is not preferable. Moreover, since it may become difficult to shape
- the battery porous membrane of the present invention when the battery porous membrane of the present invention is directly formed on the electrode, the battery porous membrane can also serve as a separator. Therefore, a separator for preventing a short circuit between the positive and negative electrodes is not disposed. Also good.
- a battery may be produced by applying only a normal separator such as a polyolefin microporous membrane.
- the method for producing the porous membrane for a non-aqueous secondary battery of the present invention is not particularly limited, and for example, it can be produced by a production method including the following steps (i) to (iv).
- the water-soluble organic solvent is not particularly limited as long as it is a good solvent for the heat-resistant resin.
- polar solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylsulfoxide.
- the slurry a solvent that becomes a poor solvent for the heat-resistant resin can be partially mixed and used. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated.
- the poor solvent alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred.
- the amount of slurry applied to the support is 10 to 60 g / m. 2 The degree is preferred.
- the coating method include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
- the reverse roll coater method is preferable from the viewpoint of uniformly applying the coating film.
- a method for solidifying the heat-resistant resin in the slurry a method in which a coagulating liquid is sprayed on the support after coating, or in a bath (coagulating bath) containing the coagulating liquid. Examples include a method of immersing the substrate.
- the coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixed liquid in which an appropriate amount of water is contained in a good solvent used in the slurry is preferable.
- the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid.
- the drying method is not particularly limited, but the drying temperature is suitably 50 to 100 ° C. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage. Moreover, as a 2nd manufacturing method for obtaining the porous film for non-aqueous secondary batteries of this invention, (v) The coated sheet
- a support is used, and as this support, a glass plate, a film made of polyethylene terephthalate (PET), or the like that exhibits sufficient heat resistance against the drying temperature is suitable. Can be used.
- PET polyethylene terephthalate
- the process of peeling the porous film for batteries of this invention from a support body after the drying of said (iv) (v) is included.
- a porous material such as a polyolefin microporous film or a nonwoven fabric to the support.
- the non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including at least a positive electrode and a negative electrode, and the porous film for a non-aqueous secondary battery described above is provided on at least one surface of the positive electrode and the negative electrode.
- the porous film for non-aqueous secondary batteries is used as a separator.
- the non-aqueous secondary battery of the present invention is improved in battery safety by applying a battery porous film excellent in heat resistance, and the generation of gas is suppressed by the porous filler in the battery porous film. It also has excellent durability such as characteristics and storage characteristics.
- the battery porous membrane of the present invention may be applied as a separator or may be formed on the electrode surface. When applied as a separator, only the porous film for a battery may be applied alone, or the porous film for a battery may be laminated with a polyolefin microporous film. When the porous membrane for a battery is formed on the electrode surface, it may be formed on either the positive electrode or the negative electrode, or both.
- a polyolefin microporous membrane or the like may be applied as a separator, or the battery porous membrane of the present invention is formed in advance on the electrode surface, so that no separator is used.
- the positive electrode and the negative electrode may be joined together.
- a polyolefin microporous membrane is applied to the separator, a configuration in which the battery porous membrane of the present invention is at least between the polyolefin microporous membrane and the positive electrode is preferable.
- the oxidation resistance of polyolefin microporous membranes is not necessarily sufficient for application to non-aqueous secondary batteries.
- Polyolefin microporous membranes may oxidize the surface in contact with the positive electrode, which may deteriorate the battery. By disposing the porous membrane for a battery of the invention as described above, this deterioration can be greatly suppressed.
- the type and configuration of the non-aqueous secondary battery of the present invention is not limited to the above configuration, but the battery element in which the positive electrode, the separator, and the negative electrode are sequentially laminated is impregnated with the electrolyte, and this is enclosed in the exterior Any structure can be applied as long as the structure is the same. However, as described above, the separator can be omitted.
- the negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive and a binder is formed on a current collector.
- a current collector for example, copper foil, stainless steel foil, nickel foil or the like is used.
- the negative electrode active material a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, tin, or the like is used.
- the positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is formed on a current collector.
- the current collector for example, copper foil, stainless steel foil, nickel foil or the like is used.
- the positive electrode active material include lithium-containing transition metal oxides such as LiCoO.
- the electrolytic solution has a structure in which a lithium salt is dissolved in a non-aqueous solvent.
- the lithium salt include LiPF. 6 , LiBF 4 LiClO 4 Etc.
- the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, vinylene carbonate, and the like.
- the exterior material include a metal can or an aluminum laminate pack.
- the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.
- the battery porous membrane of the present invention is formed on an electrode, it is more preferable to apply to a cylindrical battery.
- the porous membrane for a non-aqueous secondary battery according to the second aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler is amorphous.
- Alumina particles hereinafter referred to as amorphous alumina as appropriate). According to the present invention as described above, the same effects as those of the first embodiment described above can be obtained.
- amorphous alumina adsorbs a small amount of impurities and by-products such as HF present in the battery, the cycle characteristics of the battery can be further improved.
- this 2nd form is the same as the 1st form mentioned above except the point which changed the inorganic filler into the amorphous alumina, below, description is abbreviate
- the “amorphous alumina” in the second form is the same as the “specific surface area of 300 to 1000 m in the first form described above.
- amorphous alumina particles are those having a formula of Al. 2 O 3 XH 2 It is a filler represented by O (x can take a value of 0 or more and 3 or less), and a clear crystal peak is not confirmed by analysis by X-ray diffraction.
- amorphous alumina does not have a clear crystal peak completely confirmed by X-ray diffraction analysis, but has a slightly clear crystal peak in a broad peak (amorphous and other compositions).
- the “other composition” includes a gibbsite-like or bayerite-like Al (OH). 3 Boehmite or diaspore Al 2 O 3 ⁇ H 2 O, ⁇ -Al 2 O 3 Or ⁇ -Al 2 O 3 ⁇ -Al, which is an intermediate alumina such as 2 O 3 Among these, boehmite or gibbsite is preferable in that the effects of the present invention can be satisfactorily obtained.
- the entire inorganic filler Can be said to be amorphous.
- the 0 / Al element ratio present on the surface of the amorphous alumina is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of hydrogen fluoride (HF) or the like in the battery.
- the amorphous alumina preferably has a porous structure with a large adsorption area for adsorbing various impurities and by-products mixed in the battery system.
- the porous structure referred to here means a structure in which a large number of micropores or microvoids are formed inside or on the surface of the particle.
- the amorphous alumina is preferably configured to include mesopores of 50 nm or less or micropores of 2 nm or less, and in particular, from the viewpoint of manifesting the effects of the present invention, the structure has developed micropores of 2 nm or less. preferable.
- the specific surface area of the amorphous alumina is 50 m. 2 / G or more is preferable. Specific surface area is 50m 2 If it is less than / g, deterioration of cycle characteristics due to moisture, impurities, etc. cannot be sufficiently suppressed.
- the specific surface area of amorphous alumina is 1000m. 2 / G or less is preferable, more preferably 500 m 2 / G or less is preferred.
- the average particle diameter of the amorphous alumina is preferably in the range of 0.1 to 5.0 ⁇ m. If the average particle diameter of the amorphous alumina is smaller than 0.1 ⁇ m, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult. Moreover, when the average particle diameter of amorphous alumina is larger than 5.0 ⁇ m, it may be difficult to form the porous membrane from the viewpoint of surface roughness when it is thinly formed.
- the separator for a non-aqueous secondary battery according to the third aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate.
- a separator for a non-aqueous secondary battery, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 ⁇ m and a specific surface area of 40 to 3000 m. 2 / G porous filler.
- the inorganic filler has an average particle size of 0.1 to 5.0 ⁇ m and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
- this 3rd form is the structure which formed the porous film for batteries in the 1st form mentioned above as a heat resistant porous layer on the porous base material, in the following, the 1st form The description of the same configuration as that of the embodiment is omitted as appropriate.
- the porous substrate is not particularly limited as long as it has a large number of pores or voids inside and has a porous structure in which these pores are connected to each other. Examples thereof include microporous membranes, nonwoven fabrics, paper-like sheets, and other sheets having a three-dimensional network structure. Among these, a microporous membrane is preferable from the viewpoint of handling properties and strength.
- thermoplastic resins such as polyolefins are preferable from the viewpoint of obtaining shutdown characteristics. Therefore, if such a polyolefin porous substrate is applied, both heat resistance and a shutdown function can be achieved.
- the polyolefin resin include polyethylene, polypropylene, polymethylpentene, and the like. Among them, those containing 90% by weight or more of polyethylene are preferable from the viewpoint of obtaining good shutdown characteristics.
- the polyethylene for example, low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene and the like are preferably used, and particularly, high density polyethylene and ultra high molecular weight polyethylene are suitable.
- polyethylene comprising a mixture of high density polyethylene and ultra high molecular weight polyethylene is preferred from the viewpoint of strength and moldability.
- the molecular weight of polyethylene is preferably 100,000 to 10,000,000 in terms of weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more.
- the porous substrate in the present invention may be constituted by mixing other polyolefins such as polypropylene and polymethylpentene in addition to polyethylene, or two or more layers of a polyethylene microporous membrane and a polypropylene microporous membrane. You may comprise as a laminated body of.
- the film thickness of the porous substrate is not necessarily limited, but a range of about 5 to 20 ⁇ m is preferable. If the film thickness is less than 5 ⁇ m, sufficient strength cannot be obtained, handling becomes difficult, and the yield of the battery may be significantly reduced. When the film thickness is larger than 20 ⁇ m, it is not preferable because the movement of ions becomes difficult or the volume occupied by the separator in the battery increases and the energy density of the battery may be lowered.
- the porosity of the porous substrate is preferably 10 to 60%, more preferably 20 to 50%. When the porosity is lower than 10%, it is difficult to maintain an amount of electrolyte sufficient for battery operation, and the charge / discharge characteristics of the battery may be significantly deteriorated.
- the puncture strength of the porous substrate is preferably 200 g or more, more preferably 250 g or more, more preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, and there may be a problem that the manufacturing yield does not increase.
- the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 100 to 500 seconds / 100 cc, more preferably in the range of 100 to 300 seconds / 100 cc.
- the average pore diameter of the porous substrate is preferably 10 to 100 nm. If the average pore diameter is smaller than 10 nm, it may be difficult to impregnate the electrolytic solution, which is not preferable.
- the heat-resistant porous layer in the present invention includes a heat-resistant resin and an inorganic filler, and has a porous structure in which a large number of pores or voids are formed inside and these pores are connected to each other. It has become.
- a heat-resistant porous layer is preferably an embodiment in which the inorganic filler is directly fixed on the porous substrate in a state where the inorganic filler is dispersed and bound in the heat-resistant resin, from the viewpoint of handling properties and the like.
- a porous layer made of only a heat resistant resin is formed on a porous substrate, and a solution containing an inorganic filler is subsequently applied and immersed in the hole or surface of the heat resistant resin layer.
- the aspect which the inorganic filler adhered may be sufficient.
- the heat-resistant porous layer may be configured as an independent porous sheet such as a microporous film, a nonwoven fabric, or a paper-like sheet, and the porous sheet may be adhered to the porous substrate. Good.
- the separator for a non-aqueous secondary battery of the present invention is characterized in that the above-mentioned inorganic filler is contained in the heat-resistant porous layer, but the inorganic filler is not contained in the porous substrate. Is one of the features.
- the function of the inorganic filler can be expected to be expressed even if it is not present in the porous layer. For example, even if the inorganic filler is contained in the porous substrate, the effect of suppressing gas generation can be obtained. . However, such a configuration is not preferable because, when a polyolefin porous substrate is applied, the shutdown function may be significantly impaired.
- an inorganic filler is not contained in a layer that is expected to have a shutdown function but is contained in a porous layer that is expected to have heat resistance.
- the content of the inorganic filler is less than 20% by weight, it may be difficult to sufficiently obtain the characteristics of the inorganic filler, which is not preferable. If the content of the inorganic filler exceeds 90% by weight, it may be difficult to mold, which is not preferable.
- the porosity of the heat resistant porous layer is preferably in the range of 30 to 80%. Furthermore, the porosity of the heat resistant porous layer is preferably higher than the porosity of the porous substrate. Such a configuration has advantages in characteristics such as better ion permeability and good shutdown characteristics.
- the total thickness of the heat resistant porous layer is preferably 2 ⁇ m or more and 12 ⁇ m or less. When the porous porous layer is formed only on one side, it is preferably 2 ⁇ m or more and 12 ⁇ m or less.
- the nonaqueous secondary battery separator of the present invention preferably has a thickness in the range of 7 to 25 ⁇ m, more preferably 10 to 20 ⁇ m. If the film thickness is thinner than 7 ⁇ m, it is not preferable from the viewpoint of mechanical strength. Further, if it exceeds 25 ⁇ m, it is not preferable from the viewpoint of ion permeability, and it is also not preferable from the viewpoint that the volume occupied by the separator in the battery is increased and the energy density is lowered.
- the porosity of the non-aqueous secondary battery separator of the present invention is preferably 20 to 70%, more preferably 30 to 60%. If the porosity is lower than 20%, it may be difficult to hold a sufficient amount of electrolyte for battery operation, which is not preferable.
- the puncture strength of the separator for a non-aqueous secondary battery of the present invention is preferably 200 g or more, more preferably 250 g or more, and further preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, which may cause a problem that the production yield does not increase, which is not preferable.
- the Gurley value (JIS P8117) in the non-aqueous secondary battery separator of the present invention is preferably in the range of 150 to 600 seconds / 100 cc, more preferably in the range of 150 to 400 seconds / 100 cc.
- the Gurley value is lower than 150 seconds / 100 cc, although ion permeability is excellent, shutdown characteristics and mechanical strength may be deteriorated, which is not preferable. Further, when forming the porous layer, there is a possibility that a problem such as clogging may occur at the interface between the porous substrate and the heat-resistant porous layer.
- the Gurley value is larger than 600 seconds / 100 cc, the ion permeability becomes insufficient and the load characteristics of the battery may be deteriorated.
- the value obtained by subtracting the Gurley value of the porous substrate applied to the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably 250 seconds / 100 cc or less, and more preferably 200 seconds / 100 cc or less. .
- a smaller value is preferable in terms of characteristics such as better shutdown characteristics and improved ion permeability.
- the heat-resistant porous layer may be formed on at least one surface of the porous substrate, but it is more preferable to form it on both the front and back surfaces of the porous substrate.
- the method for producing the separator for a non-aqueous secondary battery of the present invention is not particularly limited.
- the separator can be produced by a production method including the following steps (i) to (iv).
- a step of producing a coating slurry containing a heat-resistant resin, an inorganic filler, and a water-soluble organic solvent and (ii) coating the obtained coating slurry on one or both surfaces of a porous substrate.
- a step of coagulating the heat resistant resin in the coated slurry and (iv) a step of washing and drying the sheet after the coagulation step.
- steps (i) to (iv) are the same as in the case of the first embodiment described above.
- the method for producing the porous substrate is not particularly limited.
- a polyolefin microporous film as a porous substrate can be produced as follows.
- the nonaqueous secondary battery according to the third aspect of the present invention is a nonaqueous secondary battery including a positive electrode, a negative electrode, and a separator, and the separator for a nonaqueous secondary battery described above is used as the separator. It is characterized by.
- the separator for a non-aqueous secondary battery according to the fourth aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both sides of the porous substrate.
- the first aspect of the present invention described above is a configuration that solves the problem of compatibility between battery safety and durability in the technical field of separators and the like.
- the structure using “/ g activated alumina” or “amorphous alumina” significantly lowers the activity of HF and is therefore excellent in the effect of improving the cycle characteristics of the battery. Therefore, in the second aspect of the present invention, focusing on this action effect, “active alumina” and “amorphous alumina” are regarded as hydrogen fluoride adsorbents, and this adsorbent is applied to each part of a non-aqueous secondary battery. explain. (2-1) Fifth form
- the non-aqueous secondary battery adsorbent according to the fifth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent has a specific surface area of 300 to 1000 m.
- the specific surface area is 300 to 1000 m as the adsorbent for non-aqueous secondary batteries.
- 2 / G activated alumina this activated alumina adsorbs or reacts with a small amount of HF generated in the battery, thereby reducing the HF activity and improving the cycle characteristics of the non-aqueous secondary battery.
- the present invention has been made by finding that it exhibits excellent cycle characteristics different from other porous inorganic fillers.
- alumina is an amphoteric oxide known as a Lewis acid / Lewis base, it can be considered that HF was polarized and HF was trapped efficiently.
- the specific surface area is 300m 2 It is considered that the surface reaction was smoothly performed and the cycle characteristics were improved by setting the amount to / g or more.
- Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
- the specific surface area is 300 to 1000 m. 2
- the configuration of the “/ g activated alumina particles” is the same as that in the first embodiment described above, and the description thereof is omitted.
- Examples of the embodiment containing the activated alumina include the following (A) to (C).
- a porous membrane for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the activated alumina is contained as the inorganic filler. film.
- B A separator for a non-aqueous secondary battery comprising a porous substrate and a porous layer containing an inorganic filler and a binder resin laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the activated alumina is contained as an inorganic filler.
- a nonaqueous secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, wherein the activated alumina is contained in the battery.
- the activated alumina may be contained in a separator, may be contained in a porous film laminated on a separator or an electrode, or contained in a positive electrode and a negative electrode.
- the volume of the active material is reduced correspondingly, and the battery capacity is impaired. Therefore, an embodiment in which activated alumina is contained in the separator is preferable.
- the surface of the porous substrate made of a thermoplastic resin such as polyethylene is coated with a heat resistant porous layer made of a heat resistant resin such as polyamide,
- a heat resistant porous layer made of a heat resistant resin such as polyamide
- activated alumina is contained in the heat resistant porous layer.
- the active alumina is included in the positive electrode, the positive electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to produce a positive electrode mixture. Disperse in a solvent to make a positive electrode mixture slurry. Next, the positive electrode mixture is applied to the positive electrode current collector by, for example, a doctor blade method.
- the positive electrode containing activated alumina is obtained by drying at high temperature to volatilize the solvent and pressurizing.
- the active alumina is fixed on the positive electrode by coating the active material side of the positive electrode with a coating solution in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the positive electrode mixture. Is also effective.
- the negative electrode contains the activated alumina, the negative electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to prepare a negative electrode mixture. Disperse in a solvent to make a negative electrode mixture slurry.
- the negative electrode containing activated alumina is obtained by drying at high temperature to volatilize and pressurize the solvent.
- the active alumina is fixed on the negative electrode by coating the active material side of the negative electrode with a coating liquid in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the negative electrode mixture. Is also effective.
- the separator contains the activated alumina
- a thermoplastic resin such as polyethylene
- the step of melt-kneading to prepare a thermoplastic resin solution containing the activated alumina, this solution from the die Extruding and cooling to form a gel-like molded product, a primary stretching step and a secondary stretching step, a step of removing the liquid solvent from the gel-shaped molded product, and a step of drying the obtained film A separator can be obtained as a thermoplastic resin microporous film containing activated alumina.
- a coating solution in which a binder resin such as aromatic polyamide and activated alumina are uniformly dispersed is applied on a base film such as a polypropylene film, solidified, washed and dried, and then the coating film is peeled off. Can also be obtained.
- activated alumina may be contained in any one of the layers or in all layers.
- a coating liquid in which a heat-resistant resin such as aromatic polyamide and activated alumina are uniformly dispersed is coated on one or both sides of a porous substrate such as a polyethylene microporous film or nonwoven fabric, a laminated separator containing activated alumina Is obtained.
- a porous substrate such as a nonwoven fabric is immersed in a coating solution in which a binder resin such as PVdF and activated alumina is uniformly dispersed, taken out, and then washed and dried to obtain a composite separator. It can also be obtained.
- a binder resin for binding the activated alumina in the separator and the porous film described above in addition to a heat-resistant resin such as aromatic polyamide, thermoplastics such as polyvinylidene fluoride (PVdF), PVdF copolymer, polyethylene, etc. Examples thereof include resins.
- the non-aqueous secondary battery adsorbent according to the sixth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent is amorphous alumina particles. It is characterized by that.
- amorphous alumina since amorphous alumina is used as the adsorbent for non-aqueous secondary batteries, amorphous alumina adsorbs minute impurities generated in the battery and by-products such as HF. Cycle characteristics can be improved.
- this 6th form is the same as that of the 5th form mentioned above except the point which changed the adsorbent into amorphous alumina, description is abbreviate
- “specific surface area is 300 to 1000 m. 2 / G activated alumina "and" amorphous alumina "have functions and effects that are very similar to each other.
- the activated alumina is obtained from the viewpoint of specific surface area, and the amorphous alumina is obtained from the viewpoint of crystal structure. It is.
- the embodiment containing the amorphous alumina is the same as the embodiment (A) to (C) in the fifth embodiment described above.
- the amorphous alumina is preferably contained in any part between the positive electrode and the negative electrode in order to suppress internal short circuit.
- the BET equation was used for analysis and determination by the nitrogen gas adsorption method.
- the sample weight during measurement was 0.1 to 0.2 g.
- the analysis was performed by a three-point method, and the specific surface area was obtained from the BET plot.
- the XRD diffraction spectrum of the inorganic filler was measured with a powder X-ray diffractometer, and the crystal structure in the bulk structure was analyzed from this spectrum.
- X-ray diffractometer For the X-ray diffractometer, an X-ray generator ultrax 18 manufactured by Rigaku was used, and Cu-K ⁇ rays were used. The measurement conditions were 45 KV-60 mA, sampling interval 0.020 °, measurement range (2 ⁇ ) 5 ° to 90 °, and scan speed 5 ° / min. As the measurement sample, an agate mortar was used to pulverize the inorganic filler manually and packed into a glass sample plate. The glass sample plate has a groove having a length of 18 mm, a width of 20 mm, and a depth of 0.2 mm, and the thickness of the sample is the depth of the glass sample plate.
- Example 1-1 Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 ⁇ m, specific surface area 400 m 2 / G of activated alumina was obtained.
- this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed.
- the 0 / Al element ratio on the surface of the activated alumina was 1.54.
- Conex registered trademark; manufactured by Teijin Techno Products, which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide.
- Example 1-2 Activated alumina with an average particle diameter of 4 ⁇ m and a specific surface area of 700 m 2
- a porous membrane having a film thickness of 10 ⁇ m having sufficient handling properties was obtained in the same manner as in Example 1-1 except that the zeolite was changed to / g zeolite (HSZ-341NHA; manufactured by Tosoh Corporation).
- Example 1-3 By performing wet pulverization (2-mm diameter zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent on activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20), an average particle diameter of 0.6 ⁇ m and a specific surface area of 1600 m 2 / G of activated carbon was obtained. A porous film having a thickness of 10 ⁇ m was obtained in the same manner as in Example 1-1 except that the activated alumina was changed to the activated carbon. In addition, this porous film was a little weak compared with the thing of Example 1-1, and was inferior to handleability.
- DMAc dimethylacetamide
- Example 1-5 The porous membrane for batteries produced in Example 1-1 was coated with a polyethylene aqueous dispersion (Kemipearl W900: manufactured by Mitsui Chemicals) and dried to obtain a porous membrane having a thickness of 13 ⁇ m.
- Example 1-1 Activated alumina with an average particle size of 0.8 ⁇ m and a specific surface area of 8 m 2 A porous film with a handleability of 10 ⁇ m in thickness was obtained in the same manner as in Example 1-1, except that / g aluminum hydroxide (made by Showa Denko; H-43M) was used.
- Comparative Example 1-2 Activated alumina with an average particle diameter of 0.6 ⁇ m and a specific surface area of 6 m 2 A porous film having a film thickness of 10 ⁇ m and a sufficient handling property was obtained in the same manner as in Example 1-1, except that it was changed to / g alumina (manufactured by Showa Denko: AL160SG-3).
- Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide.
- DMAc dimethylacetamide
- TPG tripropylene glycol
- a polyethylene solution was prepared by dissolving in a mixed solvent.
- a slurry in which zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was dispersed in the polyethylene solution was prepared.
- the mixing ratio of polyethylene and zeolite was 50:50 by weight.
- Zeolite has an average particle size of 3 ⁇ m and a specific surface area of 290 m. 2 / G. This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C.
- the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching.
- the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C.
- the transverse stretching was performed at a stretching ratio of 11.0 times
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Thereafter, the film was dried at 50 ° C. and annealed at 120 ° C. to obtain a porous film with sufficient handling property of 10 ⁇ m.
- Example 1-5 Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 205 ° C., average particle size 0.8 ⁇ m, specific surface area 30 m 2 / G of activated alumina was obtained. In addition, when structural analysis was performed on this activated alumina by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. It turned out not to be alumina. A porous membrane having a film thickness of 10 ⁇ m and sufficient handleability was obtained by the same method as in Example 1-1, except that this activated alumina was used in place of the activated alumina of Example 1-1.
- the measurement cell was stored at 85 ° C. for 3 days, and the volume of the measurement cell before and after storage was measured. A value obtained by subtracting the volume of the measurement cell before storage from the volume of the measurement cell after storage was taken as the gas generation amount.
- the volume measurement of the measurement cell was performed at 23 ° C., and was performed using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd .; EW-300SG) according to Archimedes' principle. The results are shown in Table 1.
- non-aqueous secondary batteries were produced as follows. Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- MCMB mesophase carbon microbeads
- 10 parts by weight of polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the obtained slurry was applied onto a copper foil having a thickness of 18 ⁇ m, dried and pressed to obtain a negative electrode having a thickness of 90 ⁇ m.
- the positive electrode and the negative electrode were opposed to each other through a separator.
- This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery.
- the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
- the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 were used, and Examples 1-6 to 1-10 and Comparative Example 1 shown in Table 2 were used.
- Non-aqueous secondary batteries of ⁇ 6 to 1-10 were produced.
- the porous membranes of Examples 1-3 and 1-4 were used by being laminated with a polyethylene microporous membrane (PE microporous membrane).
- the PE microporous film used here was produced by the following method. First, as the polyethylene powder, GUR2126 (weight average molecular weight 4150,000, melting point 141 ° C.) and GURX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used.
- Liquid paraffin manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.
- decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight.
- This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C.
- the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching.
- the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C.
- the transverse stretching was performed at a stretching ratio of 11.0 times
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film
- the capacity retention rate was calculated by multiplying the value obtained by dividing the remaining capacity by the initial capacity by 100. This capacity maintenance rate was used as an index for evaluating the storage test. The results are shown in Table 2. [Battery swelling] Each battery after the above storage test was visually confirmed. If the battery was clearly swollen, it was judged as x, and if the battery was not swollen in appearance, it was judged as ⁇ . In this case, the swelling of the battery is due to the generation of gas in the battery. The results are shown in Table 2.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD. 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- MCMB mesophase carbon microbeads
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- Example 1-11 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD. 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- MCMB mesophase carbon microbeads
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery.
- the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
- the separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
- the battery of Example 1-12 was also evaluated for the above-described oven test cycle characteristics, storage test, and battery blistering. The results are shown in Table 3.
- Example 1-13 Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- MCMB mesophase carbon microbeads
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
- the separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
- the battery of Example 1-13 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3. (2) Examples according to the third and fourth aspects Examples according to the third and fourth aspects of the present invention will be described below.
- the measurement method applied in this example is as follows.
- the cell resistance was measured by increasing the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz.
- the resistance value is 10 in the range of 135 to 150 ° C. in the above measurement. 3 ohm-cm 2
- the SD characteristic was evaluated as “good”, and when it was not, the SD characteristic was evaluated as “poor”.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD. 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- MCMB mesophase carbon microbeads
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the positive electrode and the negative electrode were opposed to each other through the separators prepared in the following examples and comparative examples. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery.
- the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
- the non-aqueous secondary battery was subjected to constant current / constant voltage charging at 0.2 C 4.2 V for 8 hours and constant current discharge at 0.2 C, 2.75 V cutoff. The discharge capacity obtained at the fifth cycle was defined as the initial capacity of this cell.
- Example 2-1 As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent.
- This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching.
- the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C.
- the transverse stretching was performed at a stretching ratio of 11.0 times
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- DMAc dimethylacetamide
- TPG tripropylene glycol
- As a porous filler an average particle diameter of 3 ⁇ m and a specific surface area of 290 m 2 / G of zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was used.
- the polyethylene microporous membrane was passed between Mayer bars carrying the dispersion, and the dispersion was applied to both sides of the polyethylene microporous membrane.
- the clearance between the Mayer bars was 30 ⁇ m, and the number of the Mayer bars was 2 and # 6.
- This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried.
- a heat-resistant porous layer made of Conex was formed to obtain a separator for a non-aqueous secondary battery of the present invention. The characteristics of the obtained non-aqueous secondary battery separator are shown in Tables 4 and 5.
- Example 2-2 As a porous filler, the average particle diameter is 2 ⁇ m and the specific surface area is 400 m. 2 / G of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as Example 2-1 to obtain a non-aqueous secondary battery separator.
- Porous filler has an average particle size of 4 ⁇ m and a specific surface area of 700 m 2 / G of zeolite (HSZ-341NHA; manufactured by Tosoh Corporation) was used in the same manner as in Example 2-1, to obtain a nonaqueous secondary battery separator.
- Example 2-4 Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 ⁇ m and a specific surface area of 1600 m. 2 / G of activated carbon was obtained.
- DMAc dimethylacetamide
- the separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated carbon as a porous filler.
- Example 2-5 Porous filler has an average particle size of 1.4 ⁇ m and a specific surface area of 190 m 2
- a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-1, except that / g of activated alumina (manufactured by Sumitomo Chemical Co., Ltd .; KC-501) was used.
- Example 2-6 Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 ⁇ m, specific surface area 60 m 2 / G of activated alumina was obtained.
- this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed.
- the 0 / Al element ratio on the surface of the activated alumina was 1.54.
- the separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated alumina as a porous filler.
- Example 2-8 A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-7, except that the dispersion was applied to only one surface of a polyethylene microporous membrane to form a porous layer.
- Example 2-1 instead of the porous filler used in Example 2-1, the average particle diameter was 0.6 ⁇ m and the specific surface area was 6 m as an inorganic filler. 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g of ⁇ -alumina (manufactured by Showa Denko: AL160SG-3) was applied.
- Example 2-2 instead of the porous filler used in Example 1, an inorganic filler has an average particle diameter of 0.6 ⁇ m and a specific surface area of 15 m.
- Example 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g boehmite (manufactured by Daimei Chemical Co., Ltd .: C06) was applied.
- this activated alumina was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed.
- the bulk structure was mainly gibbsite, and the amorphous structure was amorphous. It turned out not to be alumina.
- a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 2-1, except that the porous filler was changed to this activated alumina.
- Comparative Example 2-4 As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used.
- GUR2126 and GURX143 are in a ratio of 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin are added so that the polyethylene concentration is 15% by weight.
- this zeolite has an average particle diameter of 3 ⁇ m and a specific surface area of 290 m. 2 / G.
- This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching.
- the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C.
- the transverse stretching was performed at a stretching ratio of 11.0 times
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- Lithium cobalt oxide LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD. 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
- MCMB mesophase carbon microbeads
- acetylene black manufactured by Denki Kagaku Kogyo; trade name Denka Black
- polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd.
- the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
- separators of Example 2-7 and Example 2-8 were used, and batteries of Examples 2-9 to 2-11 shown in Table 6 were produced.
- Evaluation of cycle characteristics is 1C 4.2V 2 hours constant current / constant voltage charge, 1C, charge / discharge with constant current discharge of 2.75V cutoff, 300 cycles when the first cycle capacity is used as a reference The eye capacity retention rate was used as an index of cycle characteristics.
- the temperature at the time of measurement was 30 ° C.
- the results are shown in Table 6. From the results of Table 6, it was found that the configuration in which the heat-resistant porous layer was formed on both sides of the porous substrate was superior in capacity retention rate than the configuration on one side. It was also found that the capacity retention rate was higher when the polyethylene microporous membrane was arranged on the negative electrode side even with a single-sided configuration.
- the specific surface area is 300 to 1000 m. 2
- the structure using activated alumina of / g is examined. The measurement methods applied in the following examples are as follows.
- Example 3-1 (I) Production of PE microporous membrane As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent.
- This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching.
- the longitudinal stretching was 5.5 times
- the stretching temperature was 90 ° C.
- the transverse stretching was 11.0 times the stretching ratio
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed.
- the obtained paste was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 97 ⁇ m.
- Vi Manufacture of negative electrode
- a negative electrode active material 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black and 6 parts by weight of polyfluorinated so that the dry weight of polyvinylidene fluoride is 10 parts by weight.
- a negative electrode paste was prepared using an NMP solution of vinylidene.
- the obtained paste was applied onto a copper foil having a thickness of 18 ⁇ m, dried and pressed to prepare a negative electrode having a thickness of 90 ⁇ m.
- the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching.
- the longitudinal stretching was 5.5 times
- the stretching temperature was 90 ° C.
- the transverse stretching was 11.0 times the stretching ratio
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
- a nonaqueous secondary battery was produced in the same manner as in Example 3-1, except that this separator was used.
- this activated alumina was mainly gibbsite.
- a nonaqueous secondary battery was obtained in the same manner as in Comparative Example 3-1, except that this activated alumina was used as an inorganic filler.
- As an inorganic filler an average particle diameter of 2 ⁇ m and a specific surface area of 400 m 2
- a nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used.
- Comparative Example 3-5 As an inorganic filler, an average particle diameter of 2 ⁇ m and a specific surface area of 300 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-384) was used.
- Activated carbon manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20
- DMAc dimethylacetamide
- Example 4-1 A nonaqueous secondary battery of Example 4-1 was produced in the same manner as Example 3-1 described above.
- Comparative Example 4-1 As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight.
- the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching.
- the longitudinal stretching was 5.5 times
- the stretching temperature was 90 ° C.
- the transverse stretching was 11.0 times the stretching ratio
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
- a nonaqueous secondary battery was produced in the same manner as in Example 3-1 described above except that this separator was used.
- Comparative Example 4-2 As an inorganic filler, average particle diameter 0.6 ⁇ m, specific surface area 15 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous alumina (manufactured by Daimei Chemical Co., Ltd .; C06) was used. When this alumina was subjected to XRD analysis, a clear peak derived from boehmite was observed.
- Comparative Example 4-3 As an inorganic filler, average particle diameter 0.8 ⁇ m, specific surface area 7m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous aluminum hydroxide (manufactured by Showa Denko; H-43M) was used. When this aluminum hydroxide was subjected to XRD analysis, a clear peak derived from gibbsite was observed.
- / g nonporous aluminum hydroxide manufactured by Showa Denko; H-43M
- Example 4-1 using amorphous alumina includes ⁇ -alumina (Comparative Example 4-1), boehmite (Comparative Example 4-2), gibbsite (Comparative Example 4-3) and the like. Compared to the alumina-based filler, the capacity retention rate after 400 cycle characteristic tests is remarkably superior. This is presumably because amorphous alumina lowered the activity of HF in the battery. (5) Example according to the fifth embodiment Examples according to the fifth aspect of the present invention will be described below. The average particle diameter, specific surface area, true density, crystal structure and element ratio, and film thickness measuring method of the inorganic filler are as described above.
- Example 5-1 (I) Production of activated alumina Activated alumina A was produced in the same manner as in Example 3-1. (Ii) Production of positive electrode, negative electrode and non-aqueous electrolyte A positive electrode, a negative electrode, and a nonaqueous electrolyte were also produced in the same manner as in Example 3-1. (Iii) Manufacture of separators As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used.
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching.
- the longitudinal stretching was 5.5 times
- the stretching temperature was 90 ° C.
- the transverse stretching was 11.0 times the stretching ratio
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the PE separator which consists of a polyethylene microporous film.
- Non-aqueous secondary battery The positive electrode and negative electrode obtained as described above were opposed to each other through a separator. This was impregnated with a non-aqueous electrolyte and sealed in an outer package made of an aluminum laminate film to produce a non-aqueous secondary battery of an example of the present invention.
- Example 5-2 Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 260 ° C., average particle size 0.8 ⁇ m, specific surface area 350 m 2 / G, true density 3.0 g / cm 3 Activated alumina B was obtained.
- this activated alumina mainly has an amorphous bulk structure and a very small amount of boehmite phase was mixed.
- a nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this activated alumina B was used as an inorganic filler.
- TPG propylene glycol
- Example 5-4 A coating solution was prepared by mixing 5 parts by weight of polyvinylidene fluoride, 1 part by weight of activated alumina A, and 94 parts by weight of DMAc and stirring sufficiently to obtain a uniform solution.
- Example 5-5 A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-4 except that the PVdF / PP separator obtained in Example 5-4 was used so that the coating layer was in contact with the negative electrode.
- Example 5-6 Lithium manganate (LiMn 2 O 4 89.5 parts by weight of powder (manufactured by JGC Chemical Co., Ltd.), 4.5 parts by weight of acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 6 parts by weight of dry weight of polyvinylidene fluoride (manufactured by CLEA Chemical Industries, Ltd.)
- a positive electrode paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride.
- a nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used.
- Example 5-7 Lithium cobalt oxide (LiCoO 2 , Manufactured by Nippon Chemical Industry Co., Ltd.) 89.5 parts by weight of powder, 4.5 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 3 parts by weight of activated alumina A and polyvinylidene fluoride (manufactured by Claire Chemical Industries, Ltd.) A positive electrode paste was prepared using 6 wt% of an NMP solution of polyvinylidene fluoride so that the dry weight of 6) was 6 parts by weight.
- the obtained paste was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a thickness of 97 ⁇ m.
- polyethylene powder GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used.
- GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight.
- a polyethylene solution was prepared by dissolving in a mixed solvent.
- This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape).
- the base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching.
- the longitudinal stretching was 5.5 times
- the stretching temperature was 90 ° C.
- the transverse stretching was 11.0 times the stretching ratio
- the stretching temperature was 105 ° C.
- heat setting was performed at 125 ° C.
- Example 5-1 A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that the positive electrode and PE separator produced as described above were used.
- Example 5-8 As negative electrode active material, 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black, 3 parts by weight of activated alumina A, and 10 parts by weight of dry weight of polyvinylidene fluoride As described above, a negative electrode agent paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride. The obtained paste was applied onto a copper foil having a thickness of 18 ⁇ m, dried and pressed to produce a negative electrode having a thickness of 91 ⁇ m.
- MCMB mesophase carbon microbeads
- a nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
- Example 5-9 The coating liquid prepared in Example 5-4 was applied to the active material side of the positive electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a positive electrode having a coating layer (positive electrode surface layer) having a thickness of 4 ⁇ m was obtained.
- a nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used and the PE separator in Example 5-7 was used.
- Example 5-10 The coating liquid prepared in Example 5-4 was applied to the active material side of the negative electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a negative electrode having a coating layer (negative electrode surface layer) having a thickness of 4 ⁇ m was obtained.
- a nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
- Comparative Example 5-1 A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that the PE separator in Example 5-7 was used.
- a separator in which polyvinylidene fluoride was combined with a nonwoven fabric was obtained.
- a nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this PVdF / nonwoven fabric separator was used.
- a polypropylene separator (Celguard # 2400) was used instead of the PE separator.
- Example 5-4 As an inorganic filler, average particle size 0.5 ⁇ m, specific surface area 7 m 2 A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that / g of ⁇ -alumina (AL-160SG-3; manufactured by Showa Denko) was used.
- / g of ⁇ -alumina AL-160SG-3; manufactured by Showa Denko
- Aluminum hydroxide made by Showa Denko; H-43M
- Example 5-6 Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 240 ° C., average particle diameter 0.8 ⁇ m, specific surface area 200 m 2 / G, true density 2.6 g / cm 3 Of activated alumina D was obtained.
- Example 5-7 As an inorganic filler, an average particle diameter of 2 ⁇ m and a specific surface area of 400 m 2 / G zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as in Example 5-1, to obtain a non-aqueous secondary battery.
- Example 5-8 Without using activated alumina as an inorganic filler, the average particle size is 2 ⁇ m and the specific surface area is 300 m. 2 A non-aqueous secondary battery was obtained in the same manner as in Example 1 except that / g of silica (manufactured by Tokai Chemical Industry; ML-384) was used.
- Activated carbon manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20
- DMAc dimethylacetamide
- a nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated carbon was used as an inorganic filler.
- a nonaqueous secondary battery was obtained in the same manner as in Comparative Example 5-1, except that the positive electrode produced in Example 5-6 was used.
- the specific surface area is 1600m 2 In Comparative Example 5-9 using activated carbon of / g, the capacity retention rate was as low as 62% compared to Examples 5-1 and 5-2. From this, the specific surface area is 1000m 2 / G or less, more preferably 500 m 2 / G or less is suitable. On the other hand, the true density is 2.7 g / cm. 3 Below and 3.9 g / cm 3 Then, the capacity retention rate is low, and 2.8 to 3.3 g / cm 3 It was found that better results could be obtained within this range.
- the location of the activated alumina was effective even if contained in the electrode or laminated on the electrode surface.
- the specific surface area is 300 to 1000 m. 2
- the location of the activated alumina is not particularly limited.
- HF content is measured by disassembling the non-aqueous secondary battery after measuring the capacity retention rate, and then in a predetermined amount of solution in which ethylene carbonate and ethyl methyl carbonate are mixed at a weight ratio of 3: 7. And left for 1 week to extract HF present in the battery with a solution. Then, titration was performed with an aqueous sodium hydroxide solution using bromothymol blue as an indicator, and the acid concentration in the extracted solution was determined. Finally, the value obtained by converting the obtained acid concentration per weight of the electrolyte used in the non-aqueous secondary battery was defined as the HF content (ppm). The measurement results for each sample are shown in Table 10 below.
- Example 5-1 A non-aqueous secondary battery was produced in the same manner as in Example 5-1.
- Example 6-2 A non-aqueous secondary battery was produced in the same manner as in Example 5-2 described above.
- Example 6-3 A non-aqueous secondary battery was produced in the same manner as Example 5-3 described above.
- Example 6-4 A non-aqueous secondary battery was produced in the same manner as in Example 5-4 described above.
- Example 6-5 A non-aqueous secondary battery was produced in the same manner as in Example 5-5 described above.
- Example 6-6 A non-aqueous secondary battery was produced in the same manner as in Example 5-9 described above.
- Example 6-7 A nonaqueous secondary battery was produced in the same manner as in Example 5-10 described above.
- Example 6-1 A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-1 described above.
- Comparative Example 6-2 A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-2 described above.
- Comparative Example 6-3 A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-3 described above.
- Comparative Example 6-4 Without using alumina A as an inorganic filler, the average particle size is 0.5 ⁇ m and the specific surface area is 7 m. 2 / G nonporous alumina E (manufactured by Showa Denko; AL-160SG-3) was used in the same manner as in Example 6-1 to obtain a nonaqueous secondary battery.
- Example 6-5 Without using alumina A as an inorganic filler, the average particle diameter is 0.6 ⁇ m and the specific surface area is 15 m. 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1, except that / g nonporous alumina F (Daimei Chemical Industries; C06) was used. When this alumina F was subjected to XRD analysis, a clear peak derived from boehmite was observed.
- / g nonporous alumina F Daimei Chemical Industries; C06
- Example 6-1 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1 except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-644) was used.
- Comparative Example 6-9 A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-9 described above.
- Comparative Examples 6-4 to 6-6 having a structure other than amorphous had a capacity retention rate as low as 60% or less, and further, ignition was confirmed in a 140 ° C. oven test. This indicates that amorphous alumina is excellent in both cycle characteristics and safety in internal short circuit. Further, as other inorganic fillers, zeolite, silica, and activated carbon were evaluated in Comparative Examples 6-7 to 6-9, but the capacity retention rate was slightly over 60% as compared with Examples 6-1 to 6-2. Low and ignition was confirmed in the 140 ° C. oven test. This also shows that amorphous alumina is excellent as the inorganic filler to be added.
- MD direction thermal shrinkage (length between AB before heat treatment ⁇ length between AB after heat treatment) / (length between AB before heat treatment) ⁇ 100
- TD direction thermal shrinkage (length between CDs before heat treatment ⁇ length between CDs after heat treatment) / (length between CDs before heat treatment) ⁇ 100 From Table 12, Examples 6-1 to 6-2, which did not ignite in the 140 ° C. oven test, had a heat shrinkage ratio of 15% or less in the MD direction and 2% in the TD direction.
- the thermal shrinkage rate in the MD direction was 20% or more
- the thermal shrinkage rate in the TD direction was 3% or more, which was higher than those in Examples 6-1 to 6-2. From this, when the thermal shrinkage rate is 20% or more in the MD direction and 3% or more in the TD direction, the separator in the non-aqueous secondary battery breaks in the 140 ° C. oven test and causes ignition due to an internal short circuit. I can guess.
- amorphous alumina is contained between the negative electrode and the positive electrode. The knowledge that it was good to be able to be made was able to be acquired.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The first purpose of the present invention is to provide a technique for improving both the safety and durability of a nonaqueous secondary battery. The second purpose of the present invention is to provide a technique for improving the cycle characteristics in view of the reaction with HF or the adsorption.
Specifically disclosed is a porous membrane for a nonaqueous secondary battery, which is configured so as to contain a heat-resistant resin and an inorganic filler. The porous membrane for a nonaqueous secondary battery is characterized in that the inorganic filler is composed of a porous filler having an average particle diameter of 0.1-5.0 μm and a specific surface area of 40-3,000 m2/g, or amorphous alumina particles. Also specifically disclosed is a separator which is obtained by arranging the porous membrane, which serves as a heat-resistant porous layer, on a porous base. Also disclosed is an adsorbent for hydrogen fluoride that has entered into a nonaqueous secondary battery, which is characterized by being composed of active alumina particles having a specific surface area of 300-1,000 m2/g, or amorphous alumina.
Description
本発明は非水系二次電池用多孔膜、非水系二次電池用セパレータ、非水系二次電池用吸着剤および非水系二次電池に関するものである。
The present invention relates to a porous membrane for a non-aqueous secondary battery, a separator for a non-aqueous secondary battery, an adsorbent for a non-aqueous secondary battery, and a non-aqueous secondary battery.
リチウムイオン二次電池に代表される非水系二次電池は、携帯電話やノートパソコンといった携帯用電子機器の主電源として、広範に普及している。この非水系二次電池は、高エネルギー密度化、高容量化および高出力化が要求されており、今後もこの要求はより高まることが予想される。このような要求に応えていくという観点では、電池の安全性の確保がより重要な技術要素となってくる。
一般的に非水系二次電池は、正極、負極およびこれらの電極間に配置されたセパレータを備えた構成になっている。セパレータは、イオンの透過を妨げずに正極と負極間の内部短絡を防止する機能を有する。セパレータとしては一般的にポリオレフィン微多孔膜が用いられている。そして、ポリオレフィン微多孔膜からなるセパレータは、過充電等の原因によって電池の温度が上昇した時に、ポリオレフィンが溶融して空孔を閉塞することで、電池内部の電流を遮断するといった、シャットダウン機能を有する。この機能により、さらなる電池の発熱を防ぎ、高温下での電池の安全性を向上することが可能となる。しかしながら、空孔が閉塞した後も電池の内部温度が上昇した場合は、セパレータが破膜して、内部短絡が起こり、発火等に繋がる危険性がある。
そこで従来、非水系二次電池の安全性を向上させるために、耐熱性のある多孔膜が注目されている。このような耐熱性多孔膜によれば、電池が異常により高温に曝された際に、正負極間の内部短絡を防止することが可能となる。例えば、耐熱性樹脂からなる多孔膜をセパレータに適用する技術(特許文献1)や、耐熱性樹脂とセラミック粉末からなる多孔膜をセパレータに適用する技術(特許文献2,3)、無機フィラーとバインダ樹脂からなる多孔膜を電極表面に形成する技術(特許文献4)などがこれに相当する。また、無機フィラーをポリオレフィン微多孔膜からなるセパレータ中に分散させる技術も知られている(特許文献5)。これらの技術において、セラミック粉末に代表される無機フィラーは、耐熱性と圧縮強度が高いため、正負極間の内部短絡をより確実に防止できるという観点で有効と考えられる。
しかしながら、このような無機フィラーを適用した電池は、サイクル特性や保存特性といった電池の耐久性が低下してしまうおそれがある。その耐久性低下の要因の1つとして、電池内に微量に存在するフッ化水素(HF)が無機フィラーと反応して、無機フィラーの表面がフッ化され、その際に水が生成され、この水分が電解液や電極表面に形成されたSEI(Solid Electrolyte Interface)皮膜を分解することが考えられる。このように電解液やSEI皮膜が分解してしまうと、電池の内部抵抗が上昇したり、充放電に必要なリチウムが失活するため、電池の耐久性が低下してしまうおそれがある。また、このような分解反応が起こるとガスが発生するため、このことによっても電池の耐久性が低下してしまうおそれがある。そして、このような分解反応は、むしろ電池の安全性を低下させる原因になってしまうことも懸念される。特に、無機フィラーと共に芳香族ポリアミド樹脂のような耐熱性樹脂を用いた場合は、一般的に耐熱性樹脂が水分を吸着しやすい物質であるため、上記分解反応の問題はより発生し易いといえる。
一方、特許文献6では、電池内でのガス発生を無機フィラーにより改善する技術が提案されている。この技術は、ポリオレフィンからなるセパレータ中に無機粉末からなるガス吸収剤を混ぜ込み、電池内で発生したガスをガス吸収剤でトラップするというものである。しかしながら、このようなセパレータは、耐熱性が不十分になってしまうことが懸念される。また、シャットダウン機能を担うポリオレフィン微多孔膜中に、ガス吸収剤である無機フィラーを混ぜ込んでいるため、シャットダウン機能が著しく低下してしまうおそれがある。そのため、ガス発生は見かけ上抑制されるものの、従来のポリオレフィン微多孔膜を適用した場合に比べ、電池の安全性が低下してしまうおそれがある。
以上のように、非水系二次電池は高性能化の要求はあるものの、これを達成するための安全性確保と耐久性の両立は技術的に困難であるのが実状である。また、安全性を高めるために無機フィラーと耐熱性樹脂からなる多孔膜を適用することは有効であると考えられるが、安全性と耐久性を両立できる構成は未だ見出されていない。
ところで、以上ではセパレータや多孔膜の技術領域において、電池の安全性と耐久性の両立という課題について説明した。しかし、そもそも電池内に存在するHFや水に起因する電池の耐久性低下を防止するという観点では、非水系二次電池の全技術領域まで拡張して考えても、従来、十分な改善技術が提案されていない。以下、これについて説明する。
一般的に、リチウムイオン二次電池は、リチウム遷移金属複合酸化物等の正極、炭素材料等の負極、Li塩を溶解させた有機電解液、および、ポリエチレン微多孔膜等のセパレータから構成される。そして、このようなリチウムイオン二次電池は、サイクル特性および安全性の観点から、電池系内に水分や不純物が混入しないよう厳しく管理された上で製造される。しかしながら、電池構成部材に吸着する微量の水分や、電池の組み立て時に混入する水分を、電池系内から完全に除去することは実質的に困難である。
ここで、電池系内に存在する水分は、六フッ化リン酸リチウム等のLi塩と反応して、HFを遊離し、遊離されたHFが下記(1)~(3)のように反応し、電池のサイクル特性を悪化させることが知られている。
(1)正極に使用されている遷移金属を溶解する。
(2)正極集電体としてアルミニウムを使用した場合、アルミニウムが腐食する。
(3)負極に黒鉛を用いた場合、負極の界面抵抗が高くなる(非特許文献1参照)。
そこで、従来、サイクル特性を向上させる方法の一つとして、電池系内にゼオライトやシリカゲル、活性アルミナ、活性炭などの多孔質無機フィラーを添加する技術が報告されている(例えば特許文献7~9参照)。
すなわち、特許文献7には、比表面積が15~300m2/gの無機物をセパレータ中に含ませた技術が開示されており、この無機物によりサイクル特性が良好になることが示されている。特許文献8には、比表面積が30~300m2/gのアルミナを負極または正極中に含ませた技術が開示されており、良好なサイクル特性が得られることが示されている。特許文献9には、比表面積が1000m2/g以上の活性炭および無機物を電池系内に含ませた構成が開示されており、活性炭等により良好なサイクル特性が得られることが示されている。
このように、ある特定の比表面積を持つ多孔質無機フィラーは、電池のサイクル特性を向上させる効果があることが報告されている。
しかしながら、上記(1)~(3)にあるようなHFとの反応や吸着を考慮した場合、各吸着剤のそれぞれにおいて良好なサイクル特性が得られる比表面積の範囲が存在すると考えられるが、それについては明らかにされていないのが現状である。また、無機フィラーの比表面積以外の要素によって、HFとの反応を抑制し、サイクル特性を向上させる技術も知られていない。 Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and notebook computers. This non-aqueous secondary battery is required to have higher energy density, higher capacity, and higher output, and this demand is expected to increase in the future. From the viewpoint of meeting such demands, ensuring the safety of the battery becomes a more important technical element.
Generally, a non-aqueous secondary battery has a configuration including a positive electrode, a negative electrode, and a separator disposed between these electrodes. The separator has a function of preventing an internal short circuit between the positive electrode and the negative electrode without hindering the permeation of ions. As the separator, a polyolefin microporous membrane is generally used. The separator made of a microporous polyolefin membrane has a shutdown function such that when the battery temperature rises due to overcharge or the like, the polyolefin melts and closes the pores, thereby blocking the current inside the battery. Have. With this function, further heat generation of the battery can be prevented, and the safety of the battery at high temperatures can be improved. However, if the internal temperature of the battery rises even after the holes are closed, there is a risk that the separator will break and an internal short circuit will occur, leading to ignition and the like.
Therefore, conventionally, heat-resistant porous membranes have attracted attention in order to improve the safety of non-aqueous secondary batteries. According to such a heat-resistant porous film, it is possible to prevent an internal short circuit between the positive and negative electrodes when the battery is exposed to an abnormally high temperature. For example, a technique for applying a porous film made of a heat resistant resin to a separator (Patent Document 1), a technique for applying a porous film made of a heat resistant resin and a ceramic powder to a separator (Patent Documents 2 and 3), an inorganic filler and a binder A technique for forming a porous film made of resin on the electrode surface (Patent Document 4) corresponds to this. A technique for dispersing an inorganic filler in a separator made of a polyolefin microporous film is also known (Patent Document 5). In these techniques, the inorganic filler typified by ceramic powder is considered to be effective from the viewpoint of more reliably preventing internal short circuit between the positive and negative electrodes because of high heat resistance and compressive strength.
However, a battery to which such an inorganic filler is applied may cause a decrease in battery durability such as cycle characteristics and storage characteristics. As one of the causes of the decrease in durability, hydrogen fluoride (HF) present in a minute amount in the battery reacts with the inorganic filler, and the surface of the inorganic filler is fluorinated, and at this time, water is generated. It is conceivable that moisture decomposes the SEI (Solid Electrolyte Interface) film formed on the electrolyte solution or electrode surface. If the electrolytic solution or the SEI film is decomposed in this way, the internal resistance of the battery is increased, or lithium necessary for charging / discharging is deactivated, so that the durability of the battery may be reduced. In addition, when such a decomposition reaction occurs, gas is generated, which may also decrease the durability of the battery. And there is a concern that such a decomposition reaction may cause a decrease in battery safety. In particular, when a heat resistant resin such as an aromatic polyamide resin is used together with an inorganic filler, since the heat resistant resin is generally a substance that easily adsorbs moisture, it can be said that the problem of the decomposition reaction is more likely to occur. .
On the other hand, Patent Document 6 proposes a technique for improving gas generation in a battery with an inorganic filler. In this technique, a gas absorbent made of inorganic powder is mixed in a separator made of polyolefin, and the gas generated in the battery is trapped by the gas absorbent. However, there is a concern that such a separator has insufficient heat resistance. Moreover, since the inorganic filler which is a gas absorbent is mixed in the polyolefin microporous film having the shutdown function, the shutdown function may be remarkably deteriorated. Therefore, although the gas generation is apparently suppressed, the safety of the battery may be reduced as compared with the case where the conventional polyolefin microporous membrane is applied.
As described above, although there is a demand for higher performance in non-aqueous secondary batteries, it is actually difficult to ensure both safety and durability in order to achieve this. In addition, it is considered effective to apply a porous film made of an inorganic filler and a heat-resistant resin in order to enhance safety, but a configuration that can achieve both safety and durability has not yet been found.
By the way, in the technical field of separators and porous membranes, the problem of achieving both battery safety and durability has been described above. However, in the first place, from the viewpoint of preventing the deterioration of the durability of the battery due to HF and water existing in the battery, even if it is considered to be extended to the entire technical area of the non-aqueous secondary battery, there has been sufficient improvement technology in the past. Not proposed. This will be described below.
Generally, a lithium ion secondary battery is composed of a positive electrode such as a lithium transition metal composite oxide, a negative electrode such as a carbon material, an organic electrolytic solution in which a Li salt is dissolved, and a separator such as a polyethylene microporous film. . And such a lithium ion secondary battery is manufactured after strictly managing so that a water | moisture content and an impurity may not mix in a battery system from a viewpoint of cycling characteristics and safety | security. However, it is substantially difficult to completely remove a small amount of moisture adsorbed on the battery constituent member and moisture mixed during battery assembly from the battery system.
Here, the water present in the battery system reacts with a Li salt such as lithium hexafluorophosphate to liberate HF, and the liberated HF reacts as shown in (1) to (3) below. It is known to deteriorate the cycle characteristics of the battery.
(1) Dissolve the transition metal used in the positive electrode.
(2) When aluminum is used as the positive electrode current collector, the aluminum corrodes.
(3) When graphite is used for the negative electrode, the interface resistance of the negative electrode is increased (see Non-Patent Document 1).
Therefore, conventionally, as one method for improving the cycle characteristics, a technique of adding a porous inorganic filler such as zeolite, silica gel, activated alumina, activated carbon or the like to the battery system has been reported (see, for example, Patent Documents 7 to 9). ).
That is, Patent Document 7 discloses a technique in which an inorganic substance having a specific surface area of 15 to 300 m 2 / g is included in a separator, and it is shown that the cycle characteristics are improved by this inorganic substance. Patent Document 8 discloses a technique in which alumina having a specific surface area of 30 to 300 m 2 / g is contained in a negative electrode or a positive electrode, and shows that good cycle characteristics can be obtained. Patent Document 9 discloses a configuration in which activated carbon having a specific surface area of 1000 m 2 / g or more and an inorganic substance are included in the battery system, and it is shown that good cycle characteristics can be obtained by activated carbon or the like.
Thus, it has been reported that the porous inorganic filler having a specific specific surface area has an effect of improving the cycle characteristics of the battery.
However, when considering the reaction and adsorption with HF as described in (1) to (3) above, it is considered that there is a range of specific surface areas where good cycle characteristics can be obtained for each adsorbent. It is the current situation that has not been clarified. In addition, a technique for suppressing the reaction with HF and improving the cycle characteristics by factors other than the specific surface area of the inorganic filler is not known.
一般的に非水系二次電池は、正極、負極およびこれらの電極間に配置されたセパレータを備えた構成になっている。セパレータは、イオンの透過を妨げずに正極と負極間の内部短絡を防止する機能を有する。セパレータとしては一般的にポリオレフィン微多孔膜が用いられている。そして、ポリオレフィン微多孔膜からなるセパレータは、過充電等の原因によって電池の温度が上昇した時に、ポリオレフィンが溶融して空孔を閉塞することで、電池内部の電流を遮断するといった、シャットダウン機能を有する。この機能により、さらなる電池の発熱を防ぎ、高温下での電池の安全性を向上することが可能となる。しかしながら、空孔が閉塞した後も電池の内部温度が上昇した場合は、セパレータが破膜して、内部短絡が起こり、発火等に繋がる危険性がある。
そこで従来、非水系二次電池の安全性を向上させるために、耐熱性のある多孔膜が注目されている。このような耐熱性多孔膜によれば、電池が異常により高温に曝された際に、正負極間の内部短絡を防止することが可能となる。例えば、耐熱性樹脂からなる多孔膜をセパレータに適用する技術(特許文献1)や、耐熱性樹脂とセラミック粉末からなる多孔膜をセパレータに適用する技術(特許文献2,3)、無機フィラーとバインダ樹脂からなる多孔膜を電極表面に形成する技術(特許文献4)などがこれに相当する。また、無機フィラーをポリオレフィン微多孔膜からなるセパレータ中に分散させる技術も知られている(特許文献5)。これらの技術において、セラミック粉末に代表される無機フィラーは、耐熱性と圧縮強度が高いため、正負極間の内部短絡をより確実に防止できるという観点で有効と考えられる。
しかしながら、このような無機フィラーを適用した電池は、サイクル特性や保存特性といった電池の耐久性が低下してしまうおそれがある。その耐久性低下の要因の1つとして、電池内に微量に存在するフッ化水素(HF)が無機フィラーと反応して、無機フィラーの表面がフッ化され、その際に水が生成され、この水分が電解液や電極表面に形成されたSEI(Solid Electrolyte Interface)皮膜を分解することが考えられる。このように電解液やSEI皮膜が分解してしまうと、電池の内部抵抗が上昇したり、充放電に必要なリチウムが失活するため、電池の耐久性が低下してしまうおそれがある。また、このような分解反応が起こるとガスが発生するため、このことによっても電池の耐久性が低下してしまうおそれがある。そして、このような分解反応は、むしろ電池の安全性を低下させる原因になってしまうことも懸念される。特に、無機フィラーと共に芳香族ポリアミド樹脂のような耐熱性樹脂を用いた場合は、一般的に耐熱性樹脂が水分を吸着しやすい物質であるため、上記分解反応の問題はより発生し易いといえる。
一方、特許文献6では、電池内でのガス発生を無機フィラーにより改善する技術が提案されている。この技術は、ポリオレフィンからなるセパレータ中に無機粉末からなるガス吸収剤を混ぜ込み、電池内で発生したガスをガス吸収剤でトラップするというものである。しかしながら、このようなセパレータは、耐熱性が不十分になってしまうことが懸念される。また、シャットダウン機能を担うポリオレフィン微多孔膜中に、ガス吸収剤である無機フィラーを混ぜ込んでいるため、シャットダウン機能が著しく低下してしまうおそれがある。そのため、ガス発生は見かけ上抑制されるものの、従来のポリオレフィン微多孔膜を適用した場合に比べ、電池の安全性が低下してしまうおそれがある。
以上のように、非水系二次電池は高性能化の要求はあるものの、これを達成するための安全性確保と耐久性の両立は技術的に困難であるのが実状である。また、安全性を高めるために無機フィラーと耐熱性樹脂からなる多孔膜を適用することは有効であると考えられるが、安全性と耐久性を両立できる構成は未だ見出されていない。
ところで、以上ではセパレータや多孔膜の技術領域において、電池の安全性と耐久性の両立という課題について説明した。しかし、そもそも電池内に存在するHFや水に起因する電池の耐久性低下を防止するという観点では、非水系二次電池の全技術領域まで拡張して考えても、従来、十分な改善技術が提案されていない。以下、これについて説明する。
一般的に、リチウムイオン二次電池は、リチウム遷移金属複合酸化物等の正極、炭素材料等の負極、Li塩を溶解させた有機電解液、および、ポリエチレン微多孔膜等のセパレータから構成される。そして、このようなリチウムイオン二次電池は、サイクル特性および安全性の観点から、電池系内に水分や不純物が混入しないよう厳しく管理された上で製造される。しかしながら、電池構成部材に吸着する微量の水分や、電池の組み立て時に混入する水分を、電池系内から完全に除去することは実質的に困難である。
ここで、電池系内に存在する水分は、六フッ化リン酸リチウム等のLi塩と反応して、HFを遊離し、遊離されたHFが下記(1)~(3)のように反応し、電池のサイクル特性を悪化させることが知られている。
(1)正極に使用されている遷移金属を溶解する。
(2)正極集電体としてアルミニウムを使用した場合、アルミニウムが腐食する。
(3)負極に黒鉛を用いた場合、負極の界面抵抗が高くなる(非特許文献1参照)。
そこで、従来、サイクル特性を向上させる方法の一つとして、電池系内にゼオライトやシリカゲル、活性アルミナ、活性炭などの多孔質無機フィラーを添加する技術が報告されている(例えば特許文献7~9参照)。
すなわち、特許文献7には、比表面積が15~300m2/gの無機物をセパレータ中に含ませた技術が開示されており、この無機物によりサイクル特性が良好になることが示されている。特許文献8には、比表面積が30~300m2/gのアルミナを負極または正極中に含ませた技術が開示されており、良好なサイクル特性が得られることが示されている。特許文献9には、比表面積が1000m2/g以上の活性炭および無機物を電池系内に含ませた構成が開示されており、活性炭等により良好なサイクル特性が得られることが示されている。
このように、ある特定の比表面積を持つ多孔質無機フィラーは、電池のサイクル特性を向上させる効果があることが報告されている。
しかしながら、上記(1)~(3)にあるようなHFとの反応や吸着を考慮した場合、各吸着剤のそれぞれにおいて良好なサイクル特性が得られる比表面積の範囲が存在すると考えられるが、それについては明らかにされていないのが現状である。また、無機フィラーの比表面積以外の要素によって、HFとの反応を抑制し、サイクル特性を向上させる技術も知られていない。 Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and notebook computers. This non-aqueous secondary battery is required to have higher energy density, higher capacity, and higher output, and this demand is expected to increase in the future. From the viewpoint of meeting such demands, ensuring the safety of the battery becomes a more important technical element.
Generally, a non-aqueous secondary battery has a configuration including a positive electrode, a negative electrode, and a separator disposed between these electrodes. The separator has a function of preventing an internal short circuit between the positive electrode and the negative electrode without hindering the permeation of ions. As the separator, a polyolefin microporous membrane is generally used. The separator made of a microporous polyolefin membrane has a shutdown function such that when the battery temperature rises due to overcharge or the like, the polyolefin melts and closes the pores, thereby blocking the current inside the battery. Have. With this function, further heat generation of the battery can be prevented, and the safety of the battery at high temperatures can be improved. However, if the internal temperature of the battery rises even after the holes are closed, there is a risk that the separator will break and an internal short circuit will occur, leading to ignition and the like.
Therefore, conventionally, heat-resistant porous membranes have attracted attention in order to improve the safety of non-aqueous secondary batteries. According to such a heat-resistant porous film, it is possible to prevent an internal short circuit between the positive and negative electrodes when the battery is exposed to an abnormally high temperature. For example, a technique for applying a porous film made of a heat resistant resin to a separator (Patent Document 1), a technique for applying a porous film made of a heat resistant resin and a ceramic powder to a separator (Patent Documents 2 and 3), an inorganic filler and a binder A technique for forming a porous film made of resin on the electrode surface (Patent Document 4) corresponds to this. A technique for dispersing an inorganic filler in a separator made of a polyolefin microporous film is also known (Patent Document 5). In these techniques, the inorganic filler typified by ceramic powder is considered to be effective from the viewpoint of more reliably preventing internal short circuit between the positive and negative electrodes because of high heat resistance and compressive strength.
However, a battery to which such an inorganic filler is applied may cause a decrease in battery durability such as cycle characteristics and storage characteristics. As one of the causes of the decrease in durability, hydrogen fluoride (HF) present in a minute amount in the battery reacts with the inorganic filler, and the surface of the inorganic filler is fluorinated, and at this time, water is generated. It is conceivable that moisture decomposes the SEI (Solid Electrolyte Interface) film formed on the electrolyte solution or electrode surface. If the electrolytic solution or the SEI film is decomposed in this way, the internal resistance of the battery is increased, or lithium necessary for charging / discharging is deactivated, so that the durability of the battery may be reduced. In addition, when such a decomposition reaction occurs, gas is generated, which may also decrease the durability of the battery. And there is a concern that such a decomposition reaction may cause a decrease in battery safety. In particular, when a heat resistant resin such as an aromatic polyamide resin is used together with an inorganic filler, since the heat resistant resin is generally a substance that easily adsorbs moisture, it can be said that the problem of the decomposition reaction is more likely to occur. .
On the other hand, Patent Document 6 proposes a technique for improving gas generation in a battery with an inorganic filler. In this technique, a gas absorbent made of inorganic powder is mixed in a separator made of polyolefin, and the gas generated in the battery is trapped by the gas absorbent. However, there is a concern that such a separator has insufficient heat resistance. Moreover, since the inorganic filler which is a gas absorbent is mixed in the polyolefin microporous film having the shutdown function, the shutdown function may be remarkably deteriorated. Therefore, although the gas generation is apparently suppressed, the safety of the battery may be reduced as compared with the case where the conventional polyolefin microporous membrane is applied.
As described above, although there is a demand for higher performance in non-aqueous secondary batteries, it is actually difficult to ensure both safety and durability in order to achieve this. In addition, it is considered effective to apply a porous film made of an inorganic filler and a heat-resistant resin in order to enhance safety, but a configuration that can achieve both safety and durability has not yet been found.
By the way, in the technical field of separators and porous membranes, the problem of achieving both battery safety and durability has been described above. However, in the first place, from the viewpoint of preventing the deterioration of the durability of the battery due to HF and water existing in the battery, even if it is considered to be extended to the entire technical area of the non-aqueous secondary battery, there has been sufficient improvement technology in the past. Not proposed. This will be described below.
Generally, a lithium ion secondary battery is composed of a positive electrode such as a lithium transition metal composite oxide, a negative electrode such as a carbon material, an organic electrolytic solution in which a Li salt is dissolved, and a separator such as a polyethylene microporous film. . And such a lithium ion secondary battery is manufactured after strictly managing so that a water | moisture content and an impurity may not mix in a battery system from a viewpoint of cycling characteristics and safety | security. However, it is substantially difficult to completely remove a small amount of moisture adsorbed on the battery constituent member and moisture mixed during battery assembly from the battery system.
Here, the water present in the battery system reacts with a Li salt such as lithium hexafluorophosphate to liberate HF, and the liberated HF reacts as shown in (1) to (3) below. It is known to deteriorate the cycle characteristics of the battery.
(1) Dissolve the transition metal used in the positive electrode.
(2) When aluminum is used as the positive electrode current collector, the aluminum corrodes.
(3) When graphite is used for the negative electrode, the interface resistance of the negative electrode is increased (see Non-Patent Document 1).
Therefore, conventionally, as one method for improving the cycle characteristics, a technique of adding a porous inorganic filler such as zeolite, silica gel, activated alumina, activated carbon or the like to the battery system has been reported (see, for example, Patent Documents 7 to 9). ).
That is, Patent Document 7 discloses a technique in which an inorganic substance having a specific surface area of 15 to 300 m 2 / g is included in a separator, and it is shown that the cycle characteristics are improved by this inorganic substance. Patent Document 8 discloses a technique in which alumina having a specific surface area of 30 to 300 m 2 / g is contained in a negative electrode or a positive electrode, and shows that good cycle characteristics can be obtained. Patent Document 9 discloses a configuration in which activated carbon having a specific surface area of 1000 m 2 / g or more and an inorganic substance are included in the battery system, and it is shown that good cycle characteristics can be obtained by activated carbon or the like.
Thus, it has been reported that the porous inorganic filler having a specific specific surface area has an effect of improving the cycle characteristics of the battery.
However, when considering the reaction and adsorption with HF as described in (1) to (3) above, it is considered that there is a range of specific surface areas where good cycle characteristics can be obtained for each adsorbent. It is the current situation that has not been clarified. In addition, a technique for suppressing the reaction with HF and improving the cycle characteristics by factors other than the specific surface area of the inorganic filler is not known.
そこで、本発明では上述した問題に鑑みて、非水系二次電池の安全性と耐久性の双方を向上できる技術を提供することを第一の目的とする。また、HFとの反応や吸着を考慮した上で、サイクル特性を向上できる技術を提供することを第二の目的とする。
Therefore, in view of the above-described problems, the first object of the present invention is to provide a technique that can improve both the safety and durability of the non-aqueous secondary battery. A second object is to provide a technique capable of improving cycle characteristics in consideration of reaction with HF and adsorption.
本発明者らは前記課題を解決するために検討を重ねた結果、以下の構成により課題を解決できることを見出し本発明に至った。
1. 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用多孔膜。
2. 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする上記1に記載の非水系二次電池用多孔膜。
3. 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用多孔膜。
4. 少なくとも正極及び負極を備えた非水系二次電池であって、前記正極及び前記負極の少なくともいずれか一方の表面に上記1~3のいずれかに記載の非水系二次電池用多孔膜を形成したか、あるいは、当該非水系二次電池用多孔膜をセパレータとして用いたことを特徴とする非水系二次電池。
5. 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用セパレータ。
6. 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする上記5に記載の非水系二次電池用セパレータ。
7. 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用セパレータ。
8. 正極、負極およびセパレータを備えた非水系二次電池であって、前記セパレータとして、上記5~7のいずれかに記載の非水系二次電池用セパレータを用いたことを特徴とする非水系二次電池。
9. 非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、比表面積が300~1000m2/gの活性アルミナ粒子であることを特徴とする非水系二次電池用吸着剤。
10. 非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用吸着剤。
11. 無機フィラーおよびバインダ樹脂を含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーとして上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用多孔膜。
12. 多孔質基材と、この多孔質基材の片面または両面に積層された、無機フィラーおよびバインダ樹脂を含む多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーとして上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用セパレータ。
13. 正極、負極、非水電解質およびセパレータを備えた非水系二次電池であって、当該電池内には上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池。 As a result of repeated studies to solve the above problems, the present inventors have found that the problems can be solved by the following configuration, and have reached the present invention.
1. A porous membrane for a non-aqueous secondary battery comprising a heat resistant resin and an inorganic filler, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to A porous membrane for a non-aqueous secondary battery, characterized by being a porous filler of 3000 m 2 / g.
2. 2. The porous membrane for a non-aqueous secondary battery according to 1 above, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
3. A porous film for a non-aqueous secondary battery comprising a heat-resistant resin and an inorganic filler, wherein the inorganic filler is amorphous alumina particles.
4). A nonaqueous secondary battery comprising at least a positive electrode and a negative electrode, wherein the porous film for a nonaqueous secondary battery according to any one of the above 1 to 3 is formed on the surface of at least one of the positive electrode and the negative electrode Alternatively, a non-aqueous secondary battery using the porous membrane for a non-aqueous secondary battery as a separator.
5). A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the inorganic filler is a porous filler having an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m 2 / g.
6). 6. The separator for a non-aqueous secondary battery according to 5 above, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
7). A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles.
8). A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a separator, wherein the non-aqueous secondary battery separator according to any one of 5 to 7 is used as the separator. battery.
9. An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery, the adsorbent being activated alumina particles having a specific surface area of 300 to 1000 m 2 / g, for a non-aqueous secondary battery Adsorbent.
10. An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery, wherein the adsorbent is amorphous alumina particles.
11. A porous film for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the inorganic filler includes the non-aqueous secondary battery adsorbent described in 9 or 10 above. A porous membrane for a non-aqueous secondary battery.
12 A separator for a non-aqueous secondary battery comprising a porous base material and a porous layer containing an inorganic filler and a binder resin laminated on one or both sides of the porous base material, the inorganic filler as the inorganic filler A nonaqueous secondary battery separator comprising the adsorbent for a nonaqueous secondary battery as described in 9 or 10 above.
13. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, characterized in that the non-aqueous secondary battery adsorbent described in 9 or 10 is contained in the battery. Non-aqueous secondary battery.
1. 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用多孔膜。
2. 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする上記1に記載の非水系二次電池用多孔膜。
3. 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用多孔膜。
4. 少なくとも正極及び負極を備えた非水系二次電池であって、前記正極及び前記負極の少なくともいずれか一方の表面に上記1~3のいずれかに記載の非水系二次電池用多孔膜を形成したか、あるいは、当該非水系二次電池用多孔膜をセパレータとして用いたことを特徴とする非水系二次電池。
5. 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用セパレータ。
6. 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする上記5に記載の非水系二次電池用セパレータ。
7. 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用セパレータ。
8. 正極、負極およびセパレータを備えた非水系二次電池であって、前記セパレータとして、上記5~7のいずれかに記載の非水系二次電池用セパレータを用いたことを特徴とする非水系二次電池。
9. 非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、比表面積が300~1000m2/gの活性アルミナ粒子であることを特徴とする非水系二次電池用吸着剤。
10. 非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用吸着剤。
11. 無機フィラーおよびバインダ樹脂を含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーとして上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用多孔膜。
12. 多孔質基材と、この多孔質基材の片面または両面に積層された、無機フィラーおよびバインダ樹脂を含む多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーとして上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用セパレータ。
13. 正極、負極、非水電解質およびセパレータを備えた非水系二次電池であって、当該電池内には上記9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池。 As a result of repeated studies to solve the above problems, the present inventors have found that the problems can be solved by the following configuration, and have reached the present invention.
1. A porous membrane for a non-aqueous secondary battery comprising a heat resistant resin and an inorganic filler, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to A porous membrane for a non-aqueous secondary battery, characterized by being a porous filler of 3000 m 2 / g.
2. 2. The porous membrane for a non-aqueous secondary battery according to 1 above, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
3. A porous film for a non-aqueous secondary battery comprising a heat-resistant resin and an inorganic filler, wherein the inorganic filler is amorphous alumina particles.
4). A nonaqueous secondary battery comprising at least a positive electrode and a negative electrode, wherein the porous film for a nonaqueous secondary battery according to any one of the above 1 to 3 is formed on the surface of at least one of the positive electrode and the negative electrode Alternatively, a non-aqueous secondary battery using the porous membrane for a non-aqueous secondary battery as a separator.
5). A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the inorganic filler is a porous filler having an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m 2 / g.
6). 6. The separator for a non-aqueous secondary battery according to 5 above, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
7). A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles.
8). A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a separator, wherein the non-aqueous secondary battery separator according to any one of 5 to 7 is used as the separator. battery.
9. An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery, the adsorbent being activated alumina particles having a specific surface area of 300 to 1000 m 2 / g, for a non-aqueous secondary battery Adsorbent.
10. An adsorbent for hydrogen fluoride mixed in a non-aqueous secondary battery, wherein the adsorbent is amorphous alumina particles.
11. A porous film for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the inorganic filler includes the non-aqueous secondary battery adsorbent described in 9 or 10 above. A porous membrane for a non-aqueous secondary battery.
12 A separator for a non-aqueous secondary battery comprising a porous base material and a porous layer containing an inorganic filler and a binder resin laminated on one or both sides of the porous base material, the inorganic filler as the inorganic filler A nonaqueous secondary battery separator comprising the adsorbent for a nonaqueous secondary battery as described in 9 or 10 above.
13. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, characterized in that the non-aqueous secondary battery adsorbent described in 9 or 10 is contained in the battery. Non-aqueous secondary battery.
本発明の第一の側面によれば、非水系二次電池の安全性と耐久性の双方を向上できる技術を提供することができる。また、本発明の第二の側面によれば、HFとの反応や吸着を考慮した上で、サイクル特性を向上できる技術を提供することができる。
According to the first aspect of the present invention, it is possible to provide a technology capable of improving both safety and durability of a non-aqueous secondary battery. In addition, according to the second aspect of the present invention, it is possible to provide a technique capable of improving cycle characteristics in consideration of reaction with HF and adsorption.
(1)第一の本発明
(1−1)第一の形態
[非水系二次電池用多孔膜]
本発明の第一の形態に係る非水系二次電池用多孔膜は、耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする。
本発明のように、耐熱性樹脂および無機フィラーを含むことで、電池が高温に曝されたときも内部短絡を防止するのに十分な耐熱性を確保することが可能となり、電池の安全性を確保できる。また、無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであるため、電池内で耐久性を低下させる副反応を抑制したり、副反応により生成したガスを除去したりすることで、電池のサイクル特性や保存特性等の耐久性を向上させることができる。
特に、耐熱性樹脂は一般的に水分を吸着しやすい物質であるため、本発明は上述したHFと無機フィラーとの副反応が生じ易い構成となっているが、本発明では、上記の多孔質フィラーを適用することで、電池内に微量に存在する水分やHFの活性を著しく低下させ、電解質の分解等によるガス発生を抑制することができる。また、仮にガスが発生したとしても、多孔質フィラーにこのガスをトラップさせることもできる。このため、電池の耐久性を大幅に改善することが可能となる。
ここで、本発明の電池用多孔膜は、耐熱性樹脂と無機フィラーを含んで構成されており、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となったものを意味する。
本発明における耐熱性樹脂には、融点が200℃以上の樹脂が含まれ、融点が200℃以上の樹脂以外にも、実質的に融点が存在せずに熱分解温度が200℃以上の樹脂をも含むものである。このような耐熱性樹脂としては、例えば、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、セルロース、これらの2種以上の組合せ等が挙げられる。中でも、多孔質構造の形成しやすさ、無機フィラーとの結着性、それに伴う多孔膜の強度、耐酸化性など耐久性の観点において、全芳香族ポリアミドが好ましい。また、全芳香族ポリアミドにおいても、パラ型とメタ型を比較すると、メタ型全芳香族ポリアミドの方が成形が容易という観点で好ましく、特にポリメタフェニレンイソフタルアミドが好適である。
メタ型全芳香族ポリアミドを適用する場合、該メタ型全芳香族ポリアミドはN−メチル−2−ピロリドンに溶解したとき、下式(1)の対数粘度で0.8~2.5dl/gの範囲にあるものが好ましく、さらに1.0~2.2dl/gの範囲のものが好ましい。この範囲を逸脱すると成形性が悪化する場合があるため好ましくない。
対数粘度(単位:dl/g)=ln(T/T0)/C … (1)
T:メタ型全芳香族ポリアミド樹脂0.5gをN−メチル−2−ピロリドン100mlに溶解した溶液の30℃における毛細管粘度計の流動時間
T0:N−メチル−2−ピロリドンの30℃における毛細管粘度計の流動時間
C:溶液中のメタ型全芳香族ポリアミド樹脂の濃度(g/dl)
本発明に適用可能な多孔質フィラーとしては、ゼオライト、活性炭、活性アルミナ、多孔質シリカ、水酸化マグネシウムや水酸化アルミニウム等の金属水酸化物を熱処理して得られる多孔質フィラー、有機化合物から合成される多孔質フィラーなどが挙げられる。中でも特に、活性アルミナが好適である。本発明における活性アルミナとは、示性式がAl2O3・xH2O(xは0以上3以下の値を取り得る)で表される多孔質フィラーである。活性アルミナの表面は、アモルファス状のAl2O3、γ—Al2O3、χ−Al2O3、ギブサイト状のAl(OH)3、ベーマイト状のAl2O3・H2Oなどの構造となっていることが好ましく、多孔構造がこれらの表面構造で形成されていることが水分やHFの活性を低下させる観点で特に好ましい。なお、無機フィラーとしては、上述した多孔質フィラーに加えて、α−アルミナ等の金属酸化物や水酸化アルミニウム等の金属水酸化物等、その他の非多孔質無機フィラーを適宜加えてもよい。
該多孔質フィラーは50nm以下のメソ孔または2nm以下のミクロ孔で構成されることが好ましく、特に2nm以下のミクロ孔が発達した構造となっていることが本発明の効果の発現という観点から好ましい。
また、該多孔質フィラーの平均粒子径は0.1~5.0μmの範囲が好適である。多孔質フィラーの平均粒子径が0.1μmより小さくなると、多孔膜の成形が困難となったり、多孔膜のすべり性が悪化しハンドリングが困難となる場合があるため好ましくない。多孔質フィラーの平均粒子径が5.0μmより大きくなると、多孔膜を薄く成形する場合に表面粗さの観点から成形が困難となる場合があるため好ましくない。
本発明において、該多孔質フィラーの比表面積は40~3000m2/gであることが好ましい。比表面積が40m2/g未満であると、水分やHFの活性を十分に低下させることができないので好ましくない。また、3000m2/gより大きくなると、多孔膜の成形が困難となり、多孔質膜の強度を著しく低下してしまう場合がある。そのような場合、ハンドリング上支障が生じる場合があるため好ましくない。
多孔質フィラーの比表面積について本発明の効果の観点からより詳細に検証すると、多孔質フィラーの比表面積は40~1000m2/gがさらに好適である。比表面積が1000m2/g以下であれば、機械強度およびガス発生抑制の点でより優れるようになるためである。さらに好ましくは多孔質フィラーの比表面積は40~500m2/gが好適である。比表面積が500m2/g以下であれば、機械強度およびガス発生抑制の点でより優れるようになるためである。特に好ましくは多孔質フィラーの比表面積は150~500m2/gが好適である。比表面積が150m2/g以上であれば、ガス発生抑制の点でより優れるようになるためである。ここで、比表面積は、窒素ガス吸着法で測定された吸着等温線をBET式で解析することにより求めたものである。
特に、本発明では、多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることが好ましい。このような活性アルミナは、電池内で微量に発生するHFを吸着あるいはHFと反応することで、HFの活性を低下させることができ、非水系二次電池のサイクル特性をより向上させることができる。
前記活性アルミナ粒子の表面に存在する0/Alの元素比は、X線光電子分光装置を用いて測定した場合に、0/Alの元素比が1.0~2.5であることが好ましい。さらに好ましくは、0/Alの元素比が1.2~1.8であることが良い。このような元素比で表面が形成されている時、HF等の活性を低下させる観点で好ましい。
前記活性アルミナの真密度は、2.7~3.8g/cm3であることが好ましく、さらに好ましくは2.8~3.3g/cm3の範囲である。真密度が2.7g/cm3未満だと水酸化アルミニウム等に近くなってしまい、HFの活性低下効果が得られ難くなるおそれがあるため好ましくない。また、真密度が3.8g/cm3より大きいと、フィラーの構造が密となり、電解液が入りこむ隙間が小さくなって電池のサイクル特性が低下してしまうおそれがあるため好ましくない。
前記活性アルミナの比表面積は300m2/g以上であることが好ましい。比表面積が300m2/g未満であるとHF等の活性を十分に低下させることができない場合がある。一方、活性アルミナの比表面積は1000m2/g以下が好ましく、より好ましくは500m2/g以下であることが好適である。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
本発明の非水系二次電池用多孔膜は、正極と負極の両電極間に配置されるのであれば、いずれの部位にも適用することができる。
すなわち、例えば、本発明の非水系二次電池用多孔膜は、電極間に配置するセパレータとして適用することができる。この場合、突刺強度が200g以上の十分な機械強度を有することが好ましい。また、ガーレ値が10~300秒/100ccの透過性を有したものが好ましい。このような物性を得るためには、本発明の電池用多孔膜の構成として、耐熱性樹脂と多孔質フィラーの合計重量に対し、多孔質フィラーの重量が10~50重量%であることが好ましい。多孔質フィラーの重量が50重量%を超えると、十分な機械強度を得ることが困難となる場合がある。また、多孔質フィラーの重量が10重量%より小さいと、電池内での副反応を抑制する効果が低下したり、透過性が低下する場合があるため好ましくない。
また、本発明の電池用多孔膜をセパレータとして電極間に配置する場合、該電池用多孔膜を単独で用いてもよい。また、シャットダウン機能を付加するために、この機能を有するポリオレフィン微多孔膜と積層させたり、該電池用多孔膜にポリオレフィン微粒子からなる分散液を塗工したりしてもよい。
さらに、本発明の電池用多孔膜は電極上に直接形成しても良い。この場合は電極が十分な強度を有する支持体となるので、該電池用多孔膜を単独でセパレータとして適用する場合に比べて機械強度は不要である。そのような観点から、耐熱性樹脂と多孔質フィラーの合計重量に対し、多孔質フィラーの重量が10~90重量%であることが好ましく、さらに50~90重量%であることが好ましい。多孔質フィラーの重量が10重量%より小さいと、電池内での副反応を抑制する効果が低下する場合があるので好ましくない。また、90重量%を超えると、実質上成形が困難となる場合があるため、好ましくない。
このように本発明の電池用多孔膜を電極上に直接形成する場合、この電池用多孔膜がセパレータを兼ねることも可能であるので、正負極間に短絡を防止するためのセパレータを配置させなくともよい。また、本発明の電池用多孔膜に加えて、ポリオレフィン微多孔膜のような通常のセパレータのみを適用して電池を作製してもよい。なお、本発明の電池用多孔膜を電極上へ直接形成する場合は、正極および負極のいずれに適用してもよい。ただし、正極に形成する方が電池の耐久性を向上させるという観点で好ましく、さらに正極と負極の両方に形成する方が好ましい。
[電池用多孔膜の製造方法]
本発明の非水系二次電池用多孔膜の製造方法は特に限定されないが、例えば、以下の(i)~(iv)の工程を含む製造方法により製造可能である。すなわち、(i)耐熱性樹脂、無機フィラーおよび水溶性有機溶剤を含む塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーを支持体に塗工する工程と、(iii)塗工されたスラリー中の耐熱性樹脂を凝固させる工程と、(iv)この凝固工程後のシートを水洗および乾燥する工程と、を実施することからなる製造方法である。
上記工程(i)において、水溶性有機溶剤としては、耐熱性樹脂に対して良溶媒である溶剤であれば特に限定されない。このような水溶性有機溶剤の具体例としては、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶剤が挙げられる。また、スラリー中には、さらに耐熱性樹脂に対して貧溶媒となる溶剤も、一部混合して用いることもできる。このような貧溶媒を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶媒としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。
上記工程(ii)において、支持体へのスラリーの塗工量は10~60g/m2程度が好ましい。塗工方法は、例えばナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。中でも、塗膜を均一に塗布するという観点において、リバースロールコーター法が好適である。
上記工程(iii)において、スラリー中の耐熱性樹脂を凝固させる方法としては、塗工後の支持体に対して凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に当該基材を浸漬する方法などが挙げられる。凝固液は、耐熱性樹脂を凝固できるものであれば特に限定されないが、水、又はスラリーに用いた良溶媒に水を適当量含ませた混合液が好ましい。ここで、水の混合量は凝固液に対して40~80重量%が好適である。
上記工程(iv)において、乾燥方法は特に限定されないが、乾燥温度は50~100℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
また、本発明の非水系二次電池用多孔膜を得るための第二の製造方法として、例えば、上記(i)および(ii)の工程の後に、(v)塗工されたシートを乾燥する工程を実施することも挙げられる。この場合、上記工程(v)の乾燥温度は該水溶性溶剤を除去できる温度であればいずれの温度でも問題ないが、概ね50~200℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
上記のいずれの製造方法においても支持体を用いているが、この支持体としてはガラス板やポリエチレンテレフタレート(PET)製フィルム等、乾燥温度に対して十分な耐熱性を示すものであれば好適に使用できる。また、これらの支持体を適用する場合は、上記(iv)(v)の乾燥後に、支持体から本発明の電池用多孔膜を剥離する工程が含まれる。
本発明では、支持体にポリオレフィン微多孔膜や不織布などの多孔質材料を適用することも可能である。この場合は支持体も含め電池用多孔膜として適用することができるので剥離工程は不要である。また、支持体に電極を適用し、電極上へ本発明の電池用多孔膜を直接形成することも可能である。この場合も剥離工程は当然不要となる。
[非水系二次電池]
本発明の非水系二次電池は、少なくとも正極及び負極を備えた非水系二次電池であって、前記正極及び前記負極の少なくともいずれか一方の表面に上述した非水系二次電池用多孔膜を形成したか、あるいは、当該非水系二次電池用多孔膜をセパレータとして用いたことを特徴とする。
本発明の非水系二次電池は、耐熱性に優れた電池用多孔膜を適用することで電池の安全性が向上し、また電池用多孔膜中の多孔質フィラーによってガス発生が抑制され、サイクル特性や保存特性等の耐久性にも優れるようになる。
上述したように、本発明の電池用多孔膜はセパレータとして適用してもよく、また電極表面に形成してもよい。セパレータとして適用する場合、該電池用多孔膜のみを単独で適用してもよいが、該電池用多孔膜をポリオレフィン微多孔膜と積層させて適用してもよい。該電池用多孔膜を電極表面に形成する場合は、正極および負極のいずれかに形成してもよく、両方に形成してもよい。該電池用多孔膜を電極表面に形成した場合は、ポリオレフィン微多孔膜等をセパレータとして適用してもよいし、電極表面に予め本発明の電池用多孔膜を形成しているのでセパレータを介さないで正極と負極を接合してもよい。
ただ、ポリオレフィン微多孔膜をセパレータに適用する場合は、本発明の電池用多孔膜が少なくともポリオレフィン微多孔膜と正極の間にある構成が好ましい。ポリオレフィン微多孔膜の耐酸化性は非水系二次電池への適用において必ずしも十分なものでなく、ポリオレフィン微多孔膜は正極と接触している面が酸化され電池が劣化することがあるが、本発明の電池用多孔膜を前述のように配置することで、この劣化を大幅に抑制することができる。
本発明の非水系二次電池の種類や構成は、上記構成以外に何ら限定されるものではないが、正極とセパレータと負極が順に積層された電池要素に電解液が含浸され、これが外装に封入された構造となった構成であれば、いずれにも適用可能である。但し、上述したようにセパレータを省略することも可能である。
負極は、負極活物質、導電助剤およびバインダからなる負極合剤が、集電体上に形成された構造となっている。集電体としては、例えば銅箔やステンレス箔、ニッケル箔等が用いられる。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズ等が用いられる。
正極は、正極活物質、導電助剤およびバインダからなる正極合剤が、集電体上に形成された構造となっている。集電体としては、例えば銅箔やステンレス箔、ニッケル箔等が用いられる。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO2、LiNiO2、LiMn0.5Ni0.5O2、LiCo1/3Ni1/3Mn1/3O2、LiMn2O4、LiFePO4が用いられる。
電解液は、リチウム塩を非水系溶媒に溶解した構成である。リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4等が挙げられる。非水系溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。
外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。ただし、電極上へ本発明の電池用多孔膜を形成した場合は、より円筒型電池へ適用することが好ましい。
(1−2)第二の形態
本発明の第二の形態に係る非水系二次電池用多孔膜は、耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、アモルファス状のアルミナ粒子(以下、アモルファスアルミナと適宜称す)であることを特徴とする。
このような本発明によれば、上述した第一の形態の場合と同様の効果を奏することができる。特にアモルファスアルミナが電池内に存在する微量な不純物やHF等の副生成物を吸着するため、電池のサイクル特性をより向上させることができる。
なお、この第二の形態は上述した第一の形態とは無機フィラーをアモルファスアルミナに変えた点以外は同様であるので、以下においては、第一の形態と同様の構成については説明を適宜省略する。また、この第二の形態における「アモルファスアルミナ」は、上述した第一の形態における「比表面積が300~1000m2/gの活性アルミナ」とは酷似した作用効果を奏するものであり、比表面積という観点から発明を捉えたものが第一の形態に相当し、結晶構造という観点から捉えたものが第二の形態に相当する。
本発明において、アモルファス状のアルミナ粒子とは、示性式がAl2O3・xH2O(xは0以上3以下の値を取り得る)で表されるフィラーであって、かつ、X線回折による分析により、明確な結晶ピークが確認されないものである。また、アモルファスアルミナには、X線回折による分析によって明確な結晶ピークが完全に確認されないもの以外にも、ブロードなピークの中に僅かに明確な結晶ピークが確認されるもの(アモルファスと他の組成との混合組成)も含まれる。
前記「他の組成」には、ギブサイト状やバイヤライト状のAl(OH)3、ベーマイト状やダイアスポア状のAl2O3・H2O、γ—Al2O3やχ−Al2O3等の中間アルミナ、およびコランダムであるα−Al2O3が含まれ、これらの中でも本発明の効果が良好に得られる点で、ベーマイトあるいはギブサイトが好ましい。
前記「僅かに明確な結晶ピーク」とは、例えばアモルファスアルミナ中にベーマイト構造が含まれる場合を一例として挙げると、後述の実施例に記載の条件で測定した場合、2θ=14°付近に観察されるメインピークの積分強度が10 cps・deg以上であるピークをいい、この積分強度が2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.30以下の場合は、無機フィラー全体としてアモルファスといえる。また、例えばギブサイト構造の場合は2θ=18°付近、バイヤライト構造の場合は2θ=19°付近、ダイアスポア構造の場合は2θ=20°付近、γ—Al2O3構造の場合は2θ=46°付近、χ−Al2O3構造の場合は2θ=67°付近、α−Al2O3構造の場合は2θ=43°付近に、それぞれ観察されるメインピークの積分強度が2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.30以下の場合も、無機フィラー全体としてアモルファスといえる。
前記アモルファスアルミナの表面に存在する0/Alの元素比は、X線光電子分光装置を用いて測定した場合に、0/Alの元素比が1.0~2.5であることが好ましい。さらに好ましくは、0/Alの元素比が1.2~1.8であることが良い。このような元素比で表面が形成されている場合、電池中のフッ化水素(HF)等の活性を低下させる観点で好ましい。
前記アモルファスアルミナは、電池系内に混入する様々な不純物、副生成物を吸着する上で、吸着面積が大きい多孔質構造を有していることが好ましい。ここで言う多孔質構造とは、粒子の内部あるいは表面に多数の微小孔ないし微小空隙が形成された構造を意味している。
前記アモルファスアルミナは50nm以下のメソ孔または2nm以下のミクロ孔を含んで構成されることが好ましく、特に2nm以下のミクロ孔が発達した構造となっていることが本発明の効果の発現という観点から好ましい。
また、前記アモルファスアルミナの比表面積は50m2/g以上であることが好ましい。比表面積が50m2/g未満であると水分や不純物等によるサイクル特性の悪化を十分に抑制することができない。一方、アモルファスアルミナの比表面積は1000m2/g以下が好ましく、より好ましくは500m2/g以下であることが好適である。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
また、前記アモルファスアルミナの平均粒子径は0.1~5.0μmの範囲が好適である。アモルファスアルミナの平均粒子径が0.1μmより小さくなると、多孔膜の成形が困難となったり、多孔膜のすべり性が悪化しハンドリングが困難となる場合があるため好ましくない。また、アモルファスアルミナの平均粒子径が5.0μmより大きくなると、多孔膜を薄く成形する場合に表面粗さの観点から成形が困難となる場合があるため好ましくない。
なお、アモルファスアルミナには、α−アルミナ等の金属酸化物や、水酸化アルミニウム等の金属水酸化物等、その他の無機フィラーを混ぜて使用しても良い。
(1−3)第三の形態
[非水系二次電池用セパレータ]
本発明の第三の形態に係る非水系二次電池用セパレータは、多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする。
本発明のように、耐熱性樹脂および無機フィラーを含むことで、電池が高温に曝されたときも内部短絡を防止するのに十分な耐熱性を確保することが可能となり、電池の安全性を確保することができる。また、多孔質基材に耐熱性多孔質層を形成する構成であるため、セパレータとして十分な機械的強度を確保し易くなる。そして、無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであるため、電池内で耐久性を低下させる副反応を抑制したり、副反応により生成したガスを除去したりすることで、電池のサイクル特性や保存特性等の耐久性を向上させることができる。
なお、この第三の形態は、上述した第一の形態における電池用多孔膜を耐熱性多孔質層として、これを多孔質基材上に形成した構成であるので、以下においては、第一の形態と同様の構成については説明を適宜省略する。
本発明において、多孔質基材は、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造を有したものであれば特に限定されるものではなく、例えば微多孔膜、不織布、紙状シートその他三次元ネットーワーク構造を有するシート等が挙げられる。このうちハンドリング性や強度の観点から微多孔膜が好ましい。多孔質基材を構成する材料としては、有機材料および無機材料のいずれも使用することができるが、シャットダウン特性が得られる観点からポリオレフィン等の熱可塑性樹脂が好ましい。よって、このようなポリオレフィン多孔質基材を適用すれば、耐熱性とシャットダウン機能を両立させることができる。
前記ポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。中でも良好なシャットダウン特性が得られるという観点で、ポリエチレンを90重量%以上含むものが好適である。ポリエチレンは、例えば低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどが好適に用いられ、特に、高密度ポリエチレン、超高分子量ポリエチレンが好適である。さらに、高密度ポリエチレンと超高分子量ポリエチレンの混合物からなるポリエチレンは、強度と成形性の観点から好ましい。ポリエチレンの分子量は、重量平均分子量で10万~1000万のものが好適であり、特に重量平均分子量100万以上の超高分子量ポリエチレンを少なくとも1重量%以上含むポリエチレン組成物が好ましい。その他、本発明における多孔質基材は、ポリエチレン以外にもポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して構成しても良く、また、ポリエチレン微多孔膜とポリプロピレン微多孔膜の2層以上の積層体として構成しても良い。
本発明において、多孔質基材の膜厚は必ずしも制限されるわけではないが、概ね5~20μmの範囲が好適である。膜厚が5μmより薄いと、十分な強度が得られずハンドリングが困難となったり、電池の歩留まりが著しく低下する場合があるため、好ましくない。膜厚が20μmより大きくなると、イオンの移動が困難となったり、電池内でセパレータが占める容積が増加し、電池のエネルギー密度を低下させる場合があるため、好ましくない。
多孔質基材の空孔率は10~60%が好適であり、さらに好ましくは20~50%が好適である。空孔率が10%より低くなると、電池の作動に十分な量の電解液を保持することが困難となり、電池の充放電特性が著しく低下する場合があるため、好ましくない。空孔率が60%を超えると、シャットダウン特性が不十分となったり、強度が低下する場合があるため、好ましくない。
多孔質基材の突刺強度は200g以上であることが好ましく、さらに好ましくは250g以上、より好ましくは300g以上である。突刺強度が200gより低いと、電池の正負極間の短絡を防止するための強度が十分でなく、製造歩留まりが上がらないという不具合が生じる場合があるため、好ましくない。
多孔質基材のガーレ値(JIS P8117)は100~500秒/100ccの範囲が好適であり、さらに好ましくは100~300秒/100ccの範囲である。ガーレ値が100秒/100ccより低くなると、イオン透過性には優れるものの、シャットダウン特性や機械強度が低下する場合があるため、好ましくない。また、ガーレ値が500秒/100ccより大きくなると、イオン透過性が不十分となり、電池の負荷恃性が悪化する場合があるため、好ましくない。
多孔質基材の平均孔径は10~100nmであることが好ましい。平均孔径が10nmより孔が小さいと、電解液を含浸するのが困難になる場合があるため、好ましくない。平均孔径が100nmより大きくなると、耐熱性多孔質層を形成したとき界面に目詰まりが生じることがあったり、該多孔質層を形成した場合にシャットダウン特性が著しく低下する場合があるため、好ましくない。
本発明における耐熱性多孔質層は、耐熱性樹脂と無機フィラーを含んで構成されており、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となっている。かかる耐熱性多孔質層は、無機フィラーが耐熱性樹脂中に分散・結着した状態で、多孔質基材上に直接固着された態様であることが、ハンドリング性等の観点から好ましい。なお、耐熱性樹脂のみからなる多孔質層を多孔質基材上に形成しておき、後から無機フィラーを含む溶液を塗布・浸漬する等の方法によって、耐熱性樹脂層の孔内あるいは表面に無機フィラーが付着したような態様であってもよい。また、耐熱性多孔質層を微多孔膜や不織布、紙状シート等の独立した多孔性シートとして構成し、この多孔性シートを上記の多孔質基材上に接着したような構成であってもよい。
本発明の非水系二次電池用セパレータは、耐熱性多孔質層中に上述した無機フィラーが含まれていることを特徴とするが、該無機フィラーが多孔質基材中に含まれていないことも特徴の1つである。該無機フィラーの機能は、該多孔質層中に存在しなくとも発現されることは期待でき、例えば無機フィラーが多孔質基材中に含まれていてもガス発生の抑制効果は得ることができる。しかし、このような構成では、ポリオレフィン多孔質基材を適用した場合に、シャットダウン機能を著しく損ねてしまうという不具合が生じ得るため、好ましくない。そのため、シャットダウン機能を期待している層に無機フィラーを含有させず、耐熱性を期待している多孔質層中に含有しておく方が、構成上好ましい。
該多孔質層の構成は、重量比で耐熱性樹脂:無機フィラー=10:90~80:20の範囲が好適であり、さらに10:90~50:50の範囲が好適である。無機フィラーの含有量が20重量%より少なくなると、無機フィラーの特徴を十分に得ることが困難となる場合があるため、好ましくない。無機フィラーの含有量が90重量%を超えると、成形が困難となる場合があるため、好ましくない。一方、無機フィラーが50重量%以上含まれるものは熱収縮の抑制効果などの耐熱特性が向上するため好適である。
耐熱性多孔質層の空孔率は30~80%の範囲が好適である。さらに耐熱性多孔質層の空孔率は多孔質基材の空孔率より高い方が好ましい。このような構成の方がイオン透過性に優れ、良好なシャットダウン特性も得られるなど、特性上のメリットが生じる。
耐熱性多孔質層の厚みは、耐熱性多孔質層が多孔質基材の両面に形成されている場合は該耐熱性多孔質層の厚みの合計が2μm以上12μm以下であることが好ましく、耐熱性多孔質層が片面にのみ形成されている場合は2μm以上12μm以下であることが好ましい。
本発明の非水系二次電池用セパレータは膜厚が7~25μmの範囲が好適であり、さらに好ましくは10~20μmである。膜厚が7μmより薄くなると機械強度的な観点から好ましくない。また、25μmを超えるとイオン透過性の観点から好ましくなく、また電池内でセパレータが占める体積が大きくなりエネルギー密度の低下を招くという観点からも好ましくない。
本発明の非水系二次電池用セパレータの空孔率は20~70%が好適であり、さらに好ましくは30~60%が好適である。空孔率が20%より低くなると、電池の作動に十分な量の電解液を保持することが困難となる場合があるため、好ましくない。空孔率が70%を超えるとシャットダウン特性が不十分となったり、強度や耐熱性が低下する場合があるため、好ましくない。
本発明の非水系二次電池用セパレータの突刺強度は200g以上であることが好ましく、さらに好ましくは250g以上、さらに好ましくは300g以上である。突刺強度が200gより低いと電池の正負極間の短絡を防止するための強度が十分でなく、製造歩留まりが上がらないという不具合が生じる場合があるため、好ましくない。
本発明の非水系二次電池用セパレータにおけるガーレ値(JIS P8117)は150~600秒/100ccの範囲が好適であり、さらに好ましくは150~400秒/100ccの範囲である。ガーレ値が150秒/100ccより低くなると、イオン透過性には優れるものの、シャットダウン特性や機械強度が低下する場合があるため、好ましくない。また、該多孔質層を形成する際に多孔質基材と耐熱性多孔質層との界面において目詰まりを生じるような不具合も発生することがあるため、好ましくない。ガーレ値が600秒/100ccより大きくなると、イオン透過性が不十分となり、電池の負荷特性が悪化するおそれがあるため、好ましくない。
また、本発明の非水系二次電池用セパレータのガーレ値からこれに適用した多孔質基材のガーレ値を引いた値は250秒/100cc以下が好適であり、さらに200秒/100cc以下が好ましい。この値が小さい方が、シャットダウン特性が良好になったり、イオン透過性が向上したりして特性上好ましい。
本発明において耐熱性多孔質層は多孔質基材の少なくとも一方の面に形成すればよいが、多孔質基材の表裏両面に形成する方がさらに好ましい。多孔質基材の表裏両面に耐熱性多孔質層を形成することによってカールすることなくハンドリング性が良好となり、高温時の寸法安定性といった耐熱性も向上し、電池のサイクル特性も著しく向上するなどの効果が得られる。
[非水系二次電池用セパレータの製造方法]
本発明の非水系二次電池用セパレータの製造方法は特に限定されないが、例えば、以下の(i)~(iv)の工程を含む製造方法により製造可能である。すなわち、(i)耐熱性樹脂、無機フィラーおよび水溶性有機溶剤を含む塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーを多孔質基材の片面又は両面に塗工する工程と、(iii)塗工されたスラリー中の耐熱性樹脂を凝固させる工程と、(iv)この凝固工程後のシートを水洗および乾燥する工程と、を実施することからなる製造方法である。なお、これら工程(i)~(iv)は、上述した第一の形態の場合と同様である。
本発明において、多孔質基材の製造法についても特に限定されるものではないが、例えば次のようにして多孔質基材としてのポリオレフィン微多孔膜を製造することができる。すなわち、ポリオレフィンと流動パラフィンのゲル状混合物をダイから押出し、次いで冷却することでベーステープを作製し、このベーステープを延伸し、これを熱固定する。その後、流動パラフィンを塩化メチレン等の抽出溶剤中に浸漬することで抽出し、次いで抽出溶剤を乾燥することで、ポリオレフィン微多孔膜を得ることができる。
[非水系二次電池]
本発明の第三の形態に係る非水系二次電池は、正極、負極およびセパレータを備えた非水系二次電池であって、前記セパレータとして、上述した非水系二次電池用セパレータを用いたことを特徴とする。かかる非水系二次電池は、高温時における安全性や耐久性に優れ、サイクル特性等にも優れている。なお、その他の電池構成は、上述した第一の形態と同様である。
(1−4)第四の形態
本発明の第四の形態に係る非水系二次電池用セパレータは、多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする。
このような本発明によれば、上述した第三の形態の場合と同様の効果を奏することができる。特にアモルファスアルミナが電池内に存在する微量な不純物やHF等の副生成物を吸着するため、電池のサイクル特性をより向上させることができる。
なお、この第四の形態は上述した第三の形態とは無機フィラーをアモルファスアルミナに変えた点以外は同様であるので、第三の形態と同様の構成については説明を省略する。
(2)第二の本発明
以上の第一の本発明は、セパレータ等の技術領域において、電池の安全性と耐久性の両立という課題を解決する構成であるが、その中でも特に「比表面積が300~1000m2/gの活性アルミナ」あるいは「アモルファスアルミナ」を用いた構成は、HFの活性を著しく低下させるため、電池のサイクル特性の向上効果に優れている。よって、第二の本発明ではこの作用効果に着目し、「活性アルミナ」および「アモルファスアルミナ」をフッ化水素の吸着剤として捉え、この吸着剤を非水系二次電池の各部に適用した例を説明する。
(2−1)第五の形態
本発明の第五の形態に係る非水系二次電池用吸着剤は、非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、比表面積が300~1000m2/gの活性アルミナ粒子であることを特徴とする。
本発明では、非水系二次電池用吸着剤として比表面積が300~1000m2/gの活性アルミナを用いているので、この活性アルミナが電池内で微量に発生するHFを吸着あるいはHFと反応することで、HFの活性を低下させ、非水系二次電池のサイクル特性を向上させることができる。従来は、多孔質フィラーの種類を特定せずに比表面積だけを特定した技術が存在していたが、本発明は、特定の比表面積を有した活性アルミナがHFの活性を低下させるという側面から、他の多孔質の無機フィラーとは異なる、優れたサイクル特性を示すことを見出してなされたものである。活性アルミナが優れている理由の詳細は分からない。しかし、その一つの理由として、アルミナはルイス酸・ルイス塩基として知られている両性酸化物であるため、HFを分極させ、HFを効率良くトラップしたことが考えられる。また、比表面積を300m2/g以上にすることで、表面反応がスムーズに行われ、サイクル特性が向上したと考えられる。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
なお、この第五の形態における「比表面積が300~1000m2/gの活性アルミナ粒子」の構成については、上述した第一の形態におけるものと同様であるので、説明を省略する。
[活性アルミナの含有場所]
前記活性アルミナを含む態様としては以下の(A)~(C)が挙げられる。
(A) 無機フィラーおよびバインダ樹脂を含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーとして前記活性アルミナが含まれていることを特徴とする非水系二次電池用多孔膜。
(B) 多孔質基材と、この多孔質基材の片面または両面に積層された、無機フィラーおよびバインダ樹脂を含む多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーとして前記活性アルミナが含まれていることを特徴とする非水系二次電池用セパレータ。
(C) 正極、負極、非水電解質およびセパレータを備えた非水系二次電池であって、当該電池内には前記活性アルミナが含まれていることを特徴とする非水系二次電池。
上記(A)~(C)に示すように、前記活性アルミナは、セパレータに含有させてもよいし、セパレータや電極に積層される多孔膜中に含有させてもよいし、正極および負極に含有させてもよいし、この他、電解液中に含有させても良い。しかし、電極合剤に混ぜ込んだりすると、活物質の体積をその分減らすことになり電池容量を損なうので、活性アルミナはセパレータに含有させる態様が好ましい。さらに、シャットダウン機能と耐熱性の両機能を両立させるためには、ポリエチレン等の熱可塑性樹脂からなる多孔質基材の表面に、ポリアミドなどの耐熱性樹脂からなる耐熱性多孔質層を被覆させ、この耐熱性多孔質層中に活性アルミナを含有させる態様が好ましい。
正極に前記活性アルミナを含有させる場合は、上述した第一の形態における正極活物質、結着剤および導電剤と活性アルミナとを均一に混合して正極合剤を作製し、この正極合剤を溶剤中に分散させて正極合剤スラリーとする。次いで、この正極合剤を、例えばドクターブレード法等により、正極集電体に塗布する。続いて、高温で乾燥させて溶剤を揮発させ、加圧することにより、活性アルミナを含有する正極が得られる。また、正極合剤に活性アルミナを含有させないで、活性アルミナをNMP等の溶媒に分散させたコーティング液を正極の活物質側にコーティングし、乾燥することで、活性アルミナを正極上に固着することも有効である。
負極に前記活性アルミナを含有させる場合は、上述した第一の形態における負極活物質、結着剤および導電剤と活性アルミナとを均一に混合して負極合剤を作製し、この負極合剤を溶剤中に分散させて負極合剤スラリーとする。次いで、この負極合剤を、正極と同様の方法により負極終電体に塗布した後、高温で乾燥させて溶剤を揮発させ、加圧することで、活性アルミナを含有する負極が得られる。また、負極合剤に活性アルミナを含有させないで、活性アルミナをNMP等の溶媒に分散させたコーティング液を負極の活物質側にコーティングし、乾燥することで、活性アルミナを負極上に固着することも有効である。
セパレータに前記活性アルミナを含有させる場合は、例えば、ポリエチレン等の熱可塑性樹脂に活性アルミナを添加した後、溶融混練し、活性アルミナを含んだ熱可塑性樹脂溶液を調製する工程、この溶液をダイより押し出し、冷却してゲル状成型物を形成する工程、一次延伸工程及び二次延伸工程、ゲル状成型物から液体溶剤を除去する工程、および、得られた膜を乾燥する工程を経ることにより、活性アルミナを含有する熱可塑性樹脂微多孔膜として、セパレータを得ることができる。また、例えば、芳香族ポリアミド等のバインダ樹脂と活性アルミナを均一に分散したコーティング液を、ポリプロピレンフィルムなどのベースフィルム上に塗布して、凝固・水洗・乾燥させた後、塗工膜を剥離して得ることもできる。
また、積層型セパレータの場合は、活性アルミナは各層いずれかに含有させても良いし、すべての層に含有させても良い。例えば、芳香族ポリアミド等の耐熱性樹脂と活性アルミナを均一に分散したコーティング液を、ポリエチレン微多孔膜や不織布等の多孔質基材の片面または両面にコーティングすると、活性アルミナを含有する積層型セパレータが得られる。また、例えば、不織布などの多孔質基材を、PVdF等のバインダ樹脂と活性アルミナを均一に分散したコーティング液中に浸漬して、これを取り出した後に水洗・乾燥することで、複合型セパレータとして得ることもできる。
なお、上述したセパレータや多孔膜において、活性アルミナを結着させるバインダ樹脂としては、芳香族ポリアミド等の耐熱性樹脂の他に、ポリフッ化ビニリデン(PVdF)やPVdF共重合体、ポリエチレン等の熱可塑性樹脂等が挙げられる。前記耐熱性樹脂や多孔質基材、非水系二次電池中の電極、電解液、外装材等の構成については、上述した第一の形態のところで詳述しているので、説明を省略する。
(2−2)第六の形態
本発明の第六の形態に係る非水系二次電池用吸着剤は、非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、アモルファス状のアルミナ粒子であることを特徴とする。
本発明では、非水系二次電池用吸着剤としてアモルファスアルミナを用いているので、アモルファスアルミナが電池内に発生する微量な不純物やHF等の副生成物を吸着するため、非水系二次電池のサイクル特性を向上させることができる。
なお、この第六の形態は上述した第五の形態とは吸着剤をアモルファスアルミナに変えた点以外は同様であるので、上述した第五の形態と同様の構成については説明を省略する。また、上述したように「比表面積が300~1000m2/gの活性アルミナ」と「アモルファスアルミナ」は互いに酷似した作用効果を奏するものであり、比表面積という観点から発明を捉えたものが活性アルミナであり、結晶構造という観点から捉えたものがアモルファスアルミナである。前記アモルファスアルミナを含有する態様としては、上述した第五の形態における(A)~(C)の態様と同様である。さらに、前記アモルファスアルミナは、内部短絡を抑制する上では、正極と負極の間におけるいずれかの部位に含有させることが好ましい。 (1) First invention
(1-1) First form
[Porous membrane for non-aqueous secondary battery]
The porous membrane for a non-aqueous secondary battery according to the first aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler has an average particle size The diameter is 0.1 to 5.0 μm and the specific surface area is 40 to 3000 m. 2 / G porous filler.
By including a heat-resistant resin and an inorganic filler as in the present invention, it becomes possible to ensure sufficient heat resistance to prevent an internal short circuit even when the battery is exposed to high temperatures, thereby improving the safety of the battery. It can be secured. The inorganic filler has an average particle size of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
In particular, since the heat-resistant resin is generally a substance that easily adsorbs moisture, the present invention has a configuration in which the side reaction between the HF and the inorganic filler is likely to occur. By applying the filler, the activity of moisture and HF present in a minute amount in the battery can be significantly reduced, and gas generation due to decomposition of the electrolyte and the like can be suppressed. Even if gas is generated, the porous filler can trap this gas. For this reason, it becomes possible to significantly improve the durability of the battery.
Here, the porous membrane for a battery according to the present invention includes a heat-resistant resin and an inorganic filler, and has a plurality of pores or voids therein, and these pores are connected to each other. Means a quality structure.
The heat-resistant resin in the present invention includes a resin having a melting point of 200 ° C. or higher. In addition to a resin having a melting point of 200 ° C. or higher, a resin having a thermal decomposition temperature of 200 ° C. or higher with substantially no melting point. Is also included. Examples of such a heat-resistant resin include wholly aromatic polyamides, polyimides, polyamideimides, polysulfones, polyketones, polyether ketones, polyether sulfones, polyether imides, celluloses, combinations of two or more thereof, and the like. . Among them, wholly aromatic polyamides are preferable from the viewpoint of durability such as ease of forming a porous structure, binding property with an inorganic filler, strength of the porous film and accompanying oxidation resistance. As for the wholly aromatic polyamide, comparing the para type and the meta type, the meta type wholly aromatic polyamide is preferable from the viewpoint of easy molding, and polymetaphenylene isophthalamide is particularly preferable.
When the meta type wholly aromatic polyamide is applied, when the meta type wholly aromatic polyamide is dissolved in N-methyl-2-pyrrolidone, the logarithmic viscosity of the following formula (1) is 0.8 to 2.5 dl / g. Those in the range are preferable, and those in the range of 1.0 to 2.2 dl / g are more preferable. Deviating from this range is not preferable because the moldability may be deteriorated.
Logarithmic viscosity (unit: dl / g) = ln (T / T0) / C (1)
T: Flow time of capillary viscometer at 30 ° C. of a solution of 0.5 g of meta-type wholly aromatic polyamide resin dissolved in 100 ml of N-methyl-2-pyrrolidone
T0: Flow time of capillary viscometer at 30 ° C. of N-methyl-2-pyrrolidone
C: Concentration of meta-type wholly aromatic polyamide resin in solution (g / dl)
Porous fillers applicable to the present invention include zeolite, activated carbon, activated alumina, porous silica, porous fillers obtained by heat treatment of metal hydroxides such as magnesium hydroxide and aluminum hydroxide, synthesized from organic compounds Porous fillers to be used. Of these, activated alumina is particularly preferable. The activated alumina in the present invention has a formula of Al 2 O 3 XH 2 It is a porous filler represented by O (x can take a value of 0 or more and 3 or less). The surface of activated alumina is amorphous Al 2 O 3 , Γ-Al 2 O 3 , Χ-Al 2 O 3 Gibbsite-like Al (OH) 3 Boehmite Al 2 O 3 ・ H 2 A structure such as O is preferable, and a porous structure formed of these surface structures is particularly preferable from the viewpoint of reducing the activity of moisture and HF. In addition to the porous filler described above, other non-porous inorganic fillers such as metal oxides such as α-alumina and metal hydroxides such as aluminum hydroxide may be appropriately added as the inorganic filler.
The porous filler is preferably composed of mesopores of 50 nm or less or micropores of 2 nm or less, and particularly preferably has a structure in which micropores of 2 nm or less are developed from the viewpoint of manifestation of the effects of the present invention. .
The average particle diameter of the porous filler is preferably in the range of 0.1 to 5.0 μm. When the average particle size of the porous filler is smaller than 0.1 μm, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult. When the average particle diameter of the porous filler is larger than 5.0 μm, it may be difficult to form the porous film from the viewpoint of surface roughness when it is thinly formed.
In the present invention, the specific surface area of the porous filler is 40 to 3000 m. 2 / G is preferable. Specific surface area is 40m 2 If it is less than / g, the activity of moisture and HF cannot be sufficiently reduced, which is not preferable. 3000m 2 If it exceeds / g, it becomes difficult to mold the porous membrane, and the strength of the porous membrane may be significantly reduced. In such a case, handling may be hindered, which is not preferable.
When the specific surface area of the porous filler is verified in more detail from the viewpoint of the effect of the present invention, the specific surface area of the porous filler is 40 to 1000 m. 2 / G is more preferable. Specific surface area is 1000m 2 This is because if it is less than / g, it will be more excellent in terms of mechanical strength and gas generation suppression. More preferably, the specific surface area of the porous filler is 40 to 500 m. 2 / G is preferred. Specific surface area of 500m 2 This is because if it is less than / g, it will be more excellent in terms of mechanical strength and gas generation suppression. Particularly preferably, the specific surface area of the porous filler is 150 to 500 m. 2 / G is preferred. Specific surface area is 150m 2 This is because if it is at least / g, it will be more excellent in terms of suppressing gas generation. Here, the specific surface area is obtained by analyzing the adsorption isotherm measured by the nitrogen gas adsorption method using the BET equation.
In particular, in the present invention, the porous filler has a specific surface area of 300 to 1000 m. 2 / G activated alumina is preferred. Such activated alumina can reduce the activity of HF by adsorbing or reacting with a small amount of HF generated in the battery, and can further improve the cycle characteristics of the non-aqueous secondary battery. .
The 0 / Al element ratio present on the surface of the activated alumina particles is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of HF or the like.
The true density of the activated alumina is 2.7 to 3.8 g / cm. 3 And more preferably 2.8 to 3.3 g / cm. 3 Range. True density is 2.7 g / cm 3 If it is less than that, it becomes close to aluminum hydroxide and the like, and it is difficult to obtain the effect of reducing the activity of HF. The true density is 3.8 g / cm. 3 If it is larger, the structure of the filler becomes dense, and the gap through which the electrolytic solution enters becomes small, which may reduce the cycle characteristics of the battery.
The specific surface area of the activated alumina is 300 m. 2 / G or more is preferable. Specific surface area is 300m 2 If it is less than / g, the activity of HF or the like may not be sufficiently reduced. On the other hand, the specific surface area of activated alumina is 1000 m. 2 / G or less is preferable, more preferably 500 m 2 / G or less is preferred. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
The porous membrane for a non-aqueous secondary battery of the present invention can be applied to any part as long as it is disposed between both the positive electrode and the negative electrode.
That is, for example, the porous membrane for a non-aqueous secondary battery of the present invention can be applied as a separator disposed between electrodes. In this case, it is preferable that the puncture strength has a sufficient mechanical strength of 200 g or more. Further, those having a Gurley value of 10 to 300 seconds / 100 cc are preferred. In order to obtain such physical properties, it is preferable that the weight of the porous filler is 10 to 50% by weight with respect to the total weight of the heat resistant resin and the porous filler as the configuration of the porous film for a battery of the present invention. . If the weight of the porous filler exceeds 50% by weight, it may be difficult to obtain sufficient mechanical strength. On the other hand, if the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, or the permeability may be lowered.
Moreover, when arrange | positioning between the electrodes as a separator for battery porous films of this invention, you may use this porous film for batteries independently. Moreover, in order to add a shutdown function, it may be laminated with a polyolefin microporous film having this function, or a dispersion liquid comprising polyolefin fine particles may be applied to the battery porous film.
Further, the battery porous membrane of the present invention may be directly formed on the electrode. In this case, since the electrode becomes a support having sufficient strength, mechanical strength is not required as compared with the case where the porous membrane for a battery is applied alone as a separator. From such a viewpoint, the weight of the porous filler is preferably 10 to 90% by weight, more preferably 50 to 90% by weight, based on the total weight of the heat resistant resin and the porous filler. If the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, which is not preferable. Moreover, since it may become difficult to shape | mold when it exceeds 90 weight%, it is not preferable.
As described above, when the battery porous membrane of the present invention is directly formed on the electrode, the battery porous membrane can also serve as a separator. Therefore, a separator for preventing a short circuit between the positive and negative electrodes is not disposed. Also good. In addition to the porous membrane for a battery of the present invention, a battery may be produced by applying only a normal separator such as a polyolefin microporous membrane. In addition, when forming the porous membrane for batteries of this invention directly on an electrode, you may apply to any of a positive electrode and a negative electrode. However, it is preferable to form the positive electrode from the viewpoint of improving the durability of the battery, and it is more preferable to form the positive electrode and the negative electrode.
[Method for producing porous membrane for battery]
The method for producing the porous membrane for a non-aqueous secondary battery of the present invention is not particularly limited, and for example, it can be produced by a production method including the following steps (i) to (iv). That is, (i) a step of preparing a coating slurry containing a heat resistant resin, an inorganic filler, and a water-soluble organic solvent, (ii) a step of coating the obtained coating slurry on a support, and (iii) And (iv) a step of coagulating the heat-resistant resin in the coated slurry, and (iv) a step of washing and drying the sheet after the coagulation step.
In the step (i), the water-soluble organic solvent is not particularly limited as long as it is a good solvent for the heat-resistant resin. Specific examples of such a water-soluble organic solvent include polar solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylsulfoxide. Further, in the slurry, a solvent that becomes a poor solvent for the heat-resistant resin can be partially mixed and used. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred.
In the step (ii), the amount of slurry applied to the support is 10 to 60 g / m. 2 The degree is preferred. Examples of the coating method include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method. Among them, the reverse roll coater method is preferable from the viewpoint of uniformly applying the coating film.
In the step (iii), as a method for solidifying the heat-resistant resin in the slurry, a method in which a coagulating liquid is sprayed on the support after coating, or in a bath (coagulating bath) containing the coagulating liquid. Examples include a method of immersing the substrate. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixed liquid in which an appropriate amount of water is contained in a good solvent used in the slurry is preferable. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid.
In the step (iv), the drying method is not particularly limited, but the drying temperature is suitably 50 to 100 ° C. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.
Moreover, as a 2nd manufacturing method for obtaining the porous film for non-aqueous secondary batteries of this invention, (v) The coated sheet | seat is dried after the process of said (i) and (ii), for example. It is also possible to carry out the process. In this case, the drying temperature in the above step (v) is not particularly limited as long as the water-soluble solvent can be removed, but approximately 50 to 200 ° C. is appropriate. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.
In any of the above production methods, a support is used, and as this support, a glass plate, a film made of polyethylene terephthalate (PET), or the like that exhibits sufficient heat resistance against the drying temperature is suitable. Can be used. Moreover, when applying these support bodies, the process of peeling the porous film for batteries of this invention from a support body after the drying of said (iv) (v) is included.
In the present invention, it is also possible to apply a porous material such as a polyolefin microporous film or a nonwoven fabric to the support. In this case, since it can be applied as a porous film for a battery including a support, a peeling step is unnecessary. It is also possible to apply the electrode to the support and directly form the battery porous membrane of the present invention on the electrode. Also in this case, the peeling step is naturally unnecessary.
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including at least a positive electrode and a negative electrode, and the porous film for a non-aqueous secondary battery described above is provided on at least one surface of the positive electrode and the negative electrode. The porous film for non-aqueous secondary batteries is used as a separator.
The non-aqueous secondary battery of the present invention is improved in battery safety by applying a battery porous film excellent in heat resistance, and the generation of gas is suppressed by the porous filler in the battery porous film. It also has excellent durability such as characteristics and storage characteristics.
As described above, the battery porous membrane of the present invention may be applied as a separator or may be formed on the electrode surface. When applied as a separator, only the porous film for a battery may be applied alone, or the porous film for a battery may be laminated with a polyolefin microporous film. When the porous membrane for a battery is formed on the electrode surface, it may be formed on either the positive electrode or the negative electrode, or both. When the battery porous membrane is formed on the electrode surface, a polyolefin microporous membrane or the like may be applied as a separator, or the battery porous membrane of the present invention is formed in advance on the electrode surface, so that no separator is used. The positive electrode and the negative electrode may be joined together.
However, when a polyolefin microporous membrane is applied to the separator, a configuration in which the battery porous membrane of the present invention is at least between the polyolefin microporous membrane and the positive electrode is preferable. The oxidation resistance of polyolefin microporous membranes is not necessarily sufficient for application to non-aqueous secondary batteries. Polyolefin microporous membranes may oxidize the surface in contact with the positive electrode, which may deteriorate the battery. By disposing the porous membrane for a battery of the invention as described above, this deterioration can be greatly suppressed.
The type and configuration of the non-aqueous secondary battery of the present invention is not limited to the above configuration, but the battery element in which the positive electrode, the separator, and the negative electrode are sequentially laminated is impregnated with the electrolyte, and this is enclosed in the exterior Any structure can be applied as long as the structure is the same. However, as described above, the separator can be omitted.
The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive and a binder is formed on a current collector. As the current collector, for example, copper foil, stainless steel foil, nickel foil or the like is used. As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, tin, or the like is used.
The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is formed on a current collector. As the current collector, for example, copper foil, stainless steel foil, nickel foil or the like is used. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO. 2 LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O 4 LiFePO 4 Is used.
The electrolytic solution has a structure in which a lithium salt is dissolved in a non-aqueous solvent. Examples of the lithium salt include LiPF. 6 , LiBF 4 LiClO 4 Etc. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, vinylene carbonate, and the like.
Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape. However, when the battery porous membrane of the present invention is formed on an electrode, it is more preferable to apply to a cylindrical battery.
(1-2) Second form
The porous membrane for a non-aqueous secondary battery according to the second aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler is amorphous. Alumina particles (hereinafter referred to as amorphous alumina as appropriate).
According to the present invention as described above, the same effects as those of the first embodiment described above can be obtained. In particular, since amorphous alumina adsorbs a small amount of impurities and by-products such as HF present in the battery, the cycle characteristics of the battery can be further improved.
In addition, since this 2nd form is the same as the 1st form mentioned above except the point which changed the inorganic filler into the amorphous alumina, below, description is abbreviate | omitted suitably about the structure similar to a 1st form. To do. Further, the “amorphous alumina” in the second form is the same as the “specific surface area of 300 to 1000 m in the first form described above. 2 "/ G activated alumina" has an effect that is very similar, and the one that captures the invention from the viewpoint of specific surface area corresponds to the first form, and the one that captures from the viewpoint of crystal structure is the second form. It corresponds to.
In the present invention, amorphous alumina particles are those having a formula of Al. 2 O 3 XH 2 It is a filler represented by O (x can take a value of 0 or more and 3 or less), and a clear crystal peak is not confirmed by analysis by X-ray diffraction. In addition, amorphous alumina does not have a clear crystal peak completely confirmed by X-ray diffraction analysis, but has a slightly clear crystal peak in a broad peak (amorphous and other compositions). And mixed composition).
The “other composition” includes a gibbsite-like or bayerite-like Al (OH). 3 Boehmite or diaspore Al 2 O 3 ・ H 2 O, γ-Al 2 O 3 Or χ-Al 2 O 3 Α-Al, which is an intermediate alumina such as 2 O 3 Among these, boehmite or gibbsite is preferable in that the effects of the present invention can be satisfactorily obtained.
The “slightly clear crystal peak” is, for example, observed in the vicinity of 2θ = 14 ° when measured under the conditions described in the examples described later when the boehmite structure is included in amorphous alumina. If the integral intensity of the main peak is 10 cps · deg or more and this integral intensity is 0.30 or less with respect to the integral intensity of the broad peak existing over 2θ = 10 to 60 deg, the entire inorganic filler Can be said to be amorphous. For example, in the case of a gibbsite structure, 2θ = 18 °, in the case of a bayerite structure, 2θ = 19 °, in the case of a diaspore structure, 2θ = 20 °, γ-Al 2 O 3 In the case of the structure, 2θ = 46 °, χ-Al 2 O 3 In the case of structure, 2θ = 67 °, α-Al 2 O 3 In the case of the structure, even when the integrated intensity of the main peak observed in the vicinity of 2θ = 43 ° is 0.30 or less with respect to the integrated intensity of the broad peak existing over 2θ = 10 to 60 deg, the inorganic filler as a whole It can be said to be amorphous.
The 0 / Al element ratio present on the surface of the amorphous alumina is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of hydrogen fluoride (HF) or the like in the battery.
The amorphous alumina preferably has a porous structure with a large adsorption area for adsorbing various impurities and by-products mixed in the battery system. The porous structure referred to here means a structure in which a large number of micropores or microvoids are formed inside or on the surface of the particle.
The amorphous alumina is preferably configured to include mesopores of 50 nm or less or micropores of 2 nm or less, and in particular, from the viewpoint of manifesting the effects of the present invention, the structure has developed micropores of 2 nm or less. preferable.
The specific surface area of the amorphous alumina is 50 m. 2 / G or more is preferable. Specific surface area is 50m 2 If it is less than / g, deterioration of cycle characteristics due to moisture, impurities, etc. cannot be sufficiently suppressed. On the other hand, the specific surface area of amorphous alumina is 1000m. 2 / G or less is preferable, more preferably 500 m 2 / G or less is preferred. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
The average particle diameter of the amorphous alumina is preferably in the range of 0.1 to 5.0 μm. If the average particle diameter of the amorphous alumina is smaller than 0.1 μm, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult. Moreover, when the average particle diameter of amorphous alumina is larger than 5.0 μm, it may be difficult to form the porous membrane from the viewpoint of surface roughness when it is thinly formed.
Note that amorphous alumina may be used by mixing other inorganic fillers such as metal oxides such as α-alumina, metal hydroxides such as aluminum hydroxide, and the like.
(1-3) Third form
[Separator for non-aqueous secondary battery]
The separator for a non-aqueous secondary battery according to the third aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate. A separator for a non-aqueous secondary battery, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 / G porous filler.
By including a heat-resistant resin and an inorganic filler as in the present invention, it becomes possible to ensure sufficient heat resistance to prevent an internal short circuit even when the battery is exposed to high temperatures, thereby improving the safety of the battery. Can be secured. Moreover, since it is the structure which forms a heat resistant porous layer in a porous base material, it becomes easy to ensure sufficient mechanical strength as a separator. The inorganic filler has an average particle size of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
In addition, since this 3rd form is the structure which formed the porous film for batteries in the 1st form mentioned above as a heat resistant porous layer on the porous base material, in the following, the 1st form The description of the same configuration as that of the embodiment is omitted as appropriate.
In the present invention, the porous substrate is not particularly limited as long as it has a large number of pores or voids inside and has a porous structure in which these pores are connected to each other. Examples thereof include microporous membranes, nonwoven fabrics, paper-like sheets, and other sheets having a three-dimensional network structure. Among these, a microporous membrane is preferable from the viewpoint of handling properties and strength. As the material constituting the porous substrate, both organic materials and inorganic materials can be used, but thermoplastic resins such as polyolefins are preferable from the viewpoint of obtaining shutdown characteristics. Therefore, if such a polyolefin porous substrate is applied, both heat resistance and a shutdown function can be achieved.
Examples of the polyolefin resin include polyethylene, polypropylene, polymethylpentene, and the like. Among them, those containing 90% by weight or more of polyethylene are preferable from the viewpoint of obtaining good shutdown characteristics. As the polyethylene, for example, low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene and the like are preferably used, and particularly, high density polyethylene and ultra high molecular weight polyethylene are suitable. Furthermore, polyethylene comprising a mixture of high density polyethylene and ultra high molecular weight polyethylene is preferred from the viewpoint of strength and moldability. The molecular weight of polyethylene is preferably 100,000 to 10,000,000 in terms of weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. In addition, the porous substrate in the present invention may be constituted by mixing other polyolefins such as polypropylene and polymethylpentene in addition to polyethylene, or two or more layers of a polyethylene microporous membrane and a polypropylene microporous membrane. You may comprise as a laminated body of.
In the present invention, the film thickness of the porous substrate is not necessarily limited, but a range of about 5 to 20 μm is preferable. If the film thickness is less than 5 μm, sufficient strength cannot be obtained, handling becomes difficult, and the yield of the battery may be significantly reduced. When the film thickness is larger than 20 μm, it is not preferable because the movement of ions becomes difficult or the volume occupied by the separator in the battery increases and the energy density of the battery may be lowered.
The porosity of the porous substrate is preferably 10 to 60%, more preferably 20 to 50%. When the porosity is lower than 10%, it is difficult to maintain an amount of electrolyte sufficient for battery operation, and the charge / discharge characteristics of the battery may be significantly deteriorated. If the porosity exceeds 60%, the shutdown characteristics may be insufficient or the strength may be lowered, which is not preferable.
The puncture strength of the porous substrate is preferably 200 g or more, more preferably 250 g or more, more preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, and there may be a problem that the manufacturing yield does not increase.
The Gurley value (JIS P8117) of the porous substrate is preferably in the range of 100 to 500 seconds / 100 cc, more preferably in the range of 100 to 300 seconds / 100 cc. When the Gurley value is lower than 100 seconds / 100 cc, although ion permeability is excellent, shutdown characteristics and mechanical strength may be deteriorated, which is not preferable. On the other hand, if the Gurley value is larger than 500 seconds / 100 cc, the ion permeability becomes insufficient and the load inertia of the battery may be deteriorated, which is not preferable.
The average pore diameter of the porous substrate is preferably 10 to 100 nm. If the average pore diameter is smaller than 10 nm, it may be difficult to impregnate the electrolytic solution, which is not preferable. When the average pore diameter is larger than 100 nm, the interface may be clogged when the heat-resistant porous layer is formed, or the shutdown characteristics may be significantly deteriorated when the porous layer is formed. .
The heat-resistant porous layer in the present invention includes a heat-resistant resin and an inorganic filler, and has a porous structure in which a large number of pores or voids are formed inside and these pores are connected to each other. It has become. Such a heat-resistant porous layer is preferably an embodiment in which the inorganic filler is directly fixed on the porous substrate in a state where the inorganic filler is dispersed and bound in the heat-resistant resin, from the viewpoint of handling properties and the like. It should be noted that a porous layer made of only a heat resistant resin is formed on a porous substrate, and a solution containing an inorganic filler is subsequently applied and immersed in the hole or surface of the heat resistant resin layer. The aspect which the inorganic filler adhered may be sufficient. Further, the heat-resistant porous layer may be configured as an independent porous sheet such as a microporous film, a nonwoven fabric, or a paper-like sheet, and the porous sheet may be adhered to the porous substrate. Good.
The separator for a non-aqueous secondary battery of the present invention is characterized in that the above-mentioned inorganic filler is contained in the heat-resistant porous layer, but the inorganic filler is not contained in the porous substrate. Is one of the features. The function of the inorganic filler can be expected to be expressed even if it is not present in the porous layer. For example, even if the inorganic filler is contained in the porous substrate, the effect of suppressing gas generation can be obtained. . However, such a configuration is not preferable because, when a polyolefin porous substrate is applied, the shutdown function may be significantly impaired. For this reason, it is preferable in terms of construction that an inorganic filler is not contained in a layer that is expected to have a shutdown function but is contained in a porous layer that is expected to have heat resistance.
The composition of the porous layer is preferably in the range of heat-resistant resin: inorganic filler = 10: 90 to 80:20, and more preferably in the range of 10:90 to 50:50 by weight ratio. When the content of the inorganic filler is less than 20% by weight, it may be difficult to sufficiently obtain the characteristics of the inorganic filler, which is not preferable. If the content of the inorganic filler exceeds 90% by weight, it may be difficult to mold, which is not preferable. On the other hand, those containing 50% by weight or more of the inorganic filler are preferable because heat resistance characteristics such as an effect of suppressing thermal shrinkage are improved.
The porosity of the heat resistant porous layer is preferably in the range of 30 to 80%. Furthermore, the porosity of the heat resistant porous layer is preferably higher than the porosity of the porous substrate. Such a configuration has advantages in characteristics such as better ion permeability and good shutdown characteristics.
When the heat resistant porous layer is formed on both surfaces of the porous substrate, the total thickness of the heat resistant porous layer is preferably 2 μm or more and 12 μm or less. When the porous porous layer is formed only on one side, it is preferably 2 μm or more and 12 μm or less.
The nonaqueous secondary battery separator of the present invention preferably has a thickness in the range of 7 to 25 μm, more preferably 10 to 20 μm. If the film thickness is thinner than 7 μm, it is not preferable from the viewpoint of mechanical strength. Further, if it exceeds 25 μm, it is not preferable from the viewpoint of ion permeability, and it is also not preferable from the viewpoint that the volume occupied by the separator in the battery is increased and the energy density is lowered.
The porosity of the non-aqueous secondary battery separator of the present invention is preferably 20 to 70%, more preferably 30 to 60%. If the porosity is lower than 20%, it may be difficult to hold a sufficient amount of electrolyte for battery operation, which is not preferable. If the porosity exceeds 70%, the shutdown characteristics may be insufficient, and the strength and heat resistance may be lowered.
The puncture strength of the separator for a non-aqueous secondary battery of the present invention is preferably 200 g or more, more preferably 250 g or more, and further preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, which may cause a problem that the production yield does not increase, which is not preferable.
The Gurley value (JIS P8117) in the non-aqueous secondary battery separator of the present invention is preferably in the range of 150 to 600 seconds / 100 cc, more preferably in the range of 150 to 400 seconds / 100 cc. When the Gurley value is lower than 150 seconds / 100 cc, although ion permeability is excellent, shutdown characteristics and mechanical strength may be deteriorated, which is not preferable. Further, when forming the porous layer, there is a possibility that a problem such as clogging may occur at the interface between the porous substrate and the heat-resistant porous layer. When the Gurley value is larger than 600 seconds / 100 cc, the ion permeability becomes insufficient and the load characteristics of the battery may be deteriorated.
The value obtained by subtracting the Gurley value of the porous substrate applied to the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably 250 seconds / 100 cc or less, and more preferably 200 seconds / 100 cc or less. . A smaller value is preferable in terms of characteristics such as better shutdown characteristics and improved ion permeability.
In the present invention, the heat-resistant porous layer may be formed on at least one surface of the porous substrate, but it is more preferable to form it on both the front and back surfaces of the porous substrate. By forming a heat-resistant porous layer on both the front and back sides of the porous substrate, the handling properties are improved without curling, the heat resistance such as dimensional stability at high temperatures is improved, and the cycle characteristics of the battery are also significantly improved. The effect is obtained.
[Method for producing separator for non-aqueous secondary battery]
The method for producing the separator for a non-aqueous secondary battery of the present invention is not particularly limited. For example, the separator can be produced by a production method including the following steps (i) to (iv). That is, (i) a step of producing a coating slurry containing a heat-resistant resin, an inorganic filler, and a water-soluble organic solvent, and (ii) coating the obtained coating slurry on one or both surfaces of a porous substrate. And (iii) a step of coagulating the heat resistant resin in the coated slurry, and (iv) a step of washing and drying the sheet after the coagulation step. . These steps (i) to (iv) are the same as in the case of the first embodiment described above.
In the present invention, the method for producing the porous substrate is not particularly limited. For example, a polyolefin microporous film as a porous substrate can be produced as follows. That is, a gel-like mixture of polyolefin and liquid paraffin is extruded from a die and then cooled to produce a base tape, which is stretched and heat-set. Thereafter, liquid paraffin is extracted by immersing it in an extraction solvent such as methylene chloride, and then the extraction solvent is dried to obtain a polyolefin microporous membrane.
[Non-aqueous secondary battery]
The nonaqueous secondary battery according to the third aspect of the present invention is a nonaqueous secondary battery including a positive electrode, a negative electrode, and a separator, and the separator for a nonaqueous secondary battery described above is used as the separator. It is characterized by. Such a non-aqueous secondary battery is excellent in safety and durability at high temperatures, and is excellent in cycle characteristics and the like. Other battery configurations are the same as those in the first embodiment described above.
(1-4) Fourth form
The separator for a non-aqueous secondary battery according to the fourth aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both sides of the porous substrate. A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles.
According to the present invention as described above, the same effects as those of the third embodiment described above can be obtained. In particular, since amorphous alumina adsorbs a small amount of impurities and by-products such as HF present in the battery, the cycle characteristics of the battery can be further improved.
In addition, since this 4th form is the same as the 3rd form mentioned above except the point which changed the inorganic filler into the amorphous alumina, description is abbreviate | omitted about the structure similar to a 3rd form.
(2) Second invention
The first aspect of the present invention described above is a configuration that solves the problem of compatibility between battery safety and durability in the technical field of separators and the like. 2 The structure using “/ g activated alumina” or “amorphous alumina” significantly lowers the activity of HF and is therefore excellent in the effect of improving the cycle characteristics of the battery. Therefore, in the second aspect of the present invention, focusing on this action effect, “active alumina” and “amorphous alumina” are regarded as hydrogen fluoride adsorbents, and this adsorbent is applied to each part of a non-aqueous secondary battery. explain.
(2-1) Fifth form
The non-aqueous secondary battery adsorbent according to the fifth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent has a specific surface area of 300 to 1000 m. 2 / G of activated alumina particles.
In the present invention, the specific surface area is 300 to 1000 m as the adsorbent for non-aqueous secondary batteries. 2 / G activated alumina, this activated alumina adsorbs or reacts with a small amount of HF generated in the battery, thereby reducing the HF activity and improving the cycle characteristics of the non-aqueous secondary battery. Can be made. Conventionally, there has been a technique that specifies only the specific surface area without specifying the type of porous filler, but the present invention is from the aspect that activated alumina having a specific surface area decreases the activity of HF. The present invention has been made by finding that it exhibits excellent cycle characteristics different from other porous inorganic fillers. The details of why activated alumina is superior are not known. However, as one of the reasons, since alumina is an amphoteric oxide known as a Lewis acid / Lewis base, it can be considered that HF was polarized and HF was trapped efficiently. Also, the specific surface area is 300m 2 It is considered that the surface reaction was smoothly performed and the cycle characteristics were improved by setting the amount to / g or more. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
In the fifth embodiment, “the specific surface area is 300 to 1000 m. 2 The configuration of the “/ g activated alumina particles” is the same as that in the first embodiment described above, and the description thereof is omitted.
[Location of activated alumina]
Examples of the embodiment containing the activated alumina include the following (A) to (C).
(A) A porous membrane for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the activated alumina is contained as the inorganic filler. film.
(B) A separator for a non-aqueous secondary battery comprising a porous substrate and a porous layer containing an inorganic filler and a binder resin laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the activated alumina is contained as an inorganic filler.
(C) A nonaqueous secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, wherein the activated alumina is contained in the battery.
As shown in the above (A) to (C), the activated alumina may be contained in a separator, may be contained in a porous film laminated on a separator or an electrode, or contained in a positive electrode and a negative electrode. In addition, you may make it contain in electrolyte solution. However, when mixed with the electrode mixture, the volume of the active material is reduced correspondingly, and the battery capacity is impaired. Therefore, an embodiment in which activated alumina is contained in the separator is preferable. Furthermore, in order to achieve both the shutdown function and the heat resistance function, the surface of the porous substrate made of a thermoplastic resin such as polyethylene is coated with a heat resistant porous layer made of a heat resistant resin such as polyamide, An embodiment in which activated alumina is contained in the heat resistant porous layer is preferred.
When the active alumina is included in the positive electrode, the positive electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to produce a positive electrode mixture. Disperse in a solvent to make a positive electrode mixture slurry. Next, the positive electrode mixture is applied to the positive electrode current collector by, for example, a doctor blade method. Subsequently, the positive electrode containing activated alumina is obtained by drying at high temperature to volatilize the solvent and pressurizing. In addition, the active alumina is fixed on the positive electrode by coating the active material side of the positive electrode with a coating solution in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the positive electrode mixture. Is also effective.
When the negative electrode contains the activated alumina, the negative electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to prepare a negative electrode mixture. Disperse in a solvent to make a negative electrode mixture slurry. Then, after applying this negative electrode mixture to the negative electrode current collector in the same manner as the positive electrode, the negative electrode containing activated alumina is obtained by drying at high temperature to volatilize and pressurize the solvent. In addition, the active alumina is fixed on the negative electrode by coating the active material side of the negative electrode with a coating liquid in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the negative electrode mixture. Is also effective.
When the separator contains the activated alumina, for example, after adding the activated alumina to a thermoplastic resin such as polyethylene, the step of melt-kneading to prepare a thermoplastic resin solution containing the activated alumina, this solution from the die Extruding and cooling to form a gel-like molded product, a primary stretching step and a secondary stretching step, a step of removing the liquid solvent from the gel-shaped molded product, and a step of drying the obtained film, A separator can be obtained as a thermoplastic resin microporous film containing activated alumina. In addition, for example, a coating solution in which a binder resin such as aromatic polyamide and activated alumina are uniformly dispersed is applied on a base film such as a polypropylene film, solidified, washed and dried, and then the coating film is peeled off. Can also be obtained.
In the case of a laminated separator, activated alumina may be contained in any one of the layers or in all layers. For example, when a coating liquid in which a heat-resistant resin such as aromatic polyamide and activated alumina are uniformly dispersed is coated on one or both sides of a porous substrate such as a polyethylene microporous film or nonwoven fabric, a laminated separator containing activated alumina Is obtained. In addition, for example, a porous substrate such as a nonwoven fabric is immersed in a coating solution in which a binder resin such as PVdF and activated alumina is uniformly dispersed, taken out, and then washed and dried to obtain a composite separator. It can also be obtained.
In addition, as the binder resin for binding the activated alumina in the separator and the porous film described above, in addition to a heat-resistant resin such as aromatic polyamide, thermoplastics such as polyvinylidene fluoride (PVdF), PVdF copolymer, polyethylene, etc. Examples thereof include resins. Since the configurations of the heat-resistant resin, the porous substrate, the electrode in the non-aqueous secondary battery, the electrolytic solution, the exterior material, and the like are described in detail in the first embodiment described above, the description thereof is omitted.
(2-2) Sixth form
The non-aqueous secondary battery adsorbent according to the sixth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent is amorphous alumina particles. It is characterized by that.
In the present invention, since amorphous alumina is used as the adsorbent for non-aqueous secondary batteries, amorphous alumina adsorbs minute impurities generated in the battery and by-products such as HF. Cycle characteristics can be improved.
In addition, since this 6th form is the same as that of the 5th form mentioned above except the point which changed the adsorbent into amorphous alumina, description is abbreviate | omitted about the structure similar to the 5th form mentioned above. In addition, as described above, “specific surface area is 300 to 1000 m. 2 / G activated alumina "and" amorphous alumina "have functions and effects that are very similar to each other. The activated alumina is obtained from the viewpoint of specific surface area, and the amorphous alumina is obtained from the viewpoint of crystal structure. It is. The embodiment containing the amorphous alumina is the same as the embodiment (A) to (C) in the fifth embodiment described above. Furthermore, the amorphous alumina is preferably contained in any part between the positive electrode and the negative electrode in order to suppress internal short circuit.
(1−1)第一の形態
[非水系二次電池用多孔膜]
本発明の第一の形態に係る非水系二次電池用多孔膜は、耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする。
本発明のように、耐熱性樹脂および無機フィラーを含むことで、電池が高温に曝されたときも内部短絡を防止するのに十分な耐熱性を確保することが可能となり、電池の安全性を確保できる。また、無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであるため、電池内で耐久性を低下させる副反応を抑制したり、副反応により生成したガスを除去したりすることで、電池のサイクル特性や保存特性等の耐久性を向上させることができる。
特に、耐熱性樹脂は一般的に水分を吸着しやすい物質であるため、本発明は上述したHFと無機フィラーとの副反応が生じ易い構成となっているが、本発明では、上記の多孔質フィラーを適用することで、電池内に微量に存在する水分やHFの活性を著しく低下させ、電解質の分解等によるガス発生を抑制することができる。また、仮にガスが発生したとしても、多孔質フィラーにこのガスをトラップさせることもできる。このため、電池の耐久性を大幅に改善することが可能となる。
ここで、本発明の電池用多孔膜は、耐熱性樹脂と無機フィラーを含んで構成されており、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となったものを意味する。
本発明における耐熱性樹脂には、融点が200℃以上の樹脂が含まれ、融点が200℃以上の樹脂以外にも、実質的に融点が存在せずに熱分解温度が200℃以上の樹脂をも含むものである。このような耐熱性樹脂としては、例えば、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、セルロース、これらの2種以上の組合せ等が挙げられる。中でも、多孔質構造の形成しやすさ、無機フィラーとの結着性、それに伴う多孔膜の強度、耐酸化性など耐久性の観点において、全芳香族ポリアミドが好ましい。また、全芳香族ポリアミドにおいても、パラ型とメタ型を比較すると、メタ型全芳香族ポリアミドの方が成形が容易という観点で好ましく、特にポリメタフェニレンイソフタルアミドが好適である。
メタ型全芳香族ポリアミドを適用する場合、該メタ型全芳香族ポリアミドはN−メチル−2−ピロリドンに溶解したとき、下式(1)の対数粘度で0.8~2.5dl/gの範囲にあるものが好ましく、さらに1.0~2.2dl/gの範囲のものが好ましい。この範囲を逸脱すると成形性が悪化する場合があるため好ましくない。
対数粘度(単位:dl/g)=ln(T/T0)/C … (1)
T:メタ型全芳香族ポリアミド樹脂0.5gをN−メチル−2−ピロリドン100mlに溶解した溶液の30℃における毛細管粘度計の流動時間
T0:N−メチル−2−ピロリドンの30℃における毛細管粘度計の流動時間
C:溶液中のメタ型全芳香族ポリアミド樹脂の濃度(g/dl)
本発明に適用可能な多孔質フィラーとしては、ゼオライト、活性炭、活性アルミナ、多孔質シリカ、水酸化マグネシウムや水酸化アルミニウム等の金属水酸化物を熱処理して得られる多孔質フィラー、有機化合物から合成される多孔質フィラーなどが挙げられる。中でも特に、活性アルミナが好適である。本発明における活性アルミナとは、示性式がAl2O3・xH2O(xは0以上3以下の値を取り得る)で表される多孔質フィラーである。活性アルミナの表面は、アモルファス状のAl2O3、γ—Al2O3、χ−Al2O3、ギブサイト状のAl(OH)3、ベーマイト状のAl2O3・H2Oなどの構造となっていることが好ましく、多孔構造がこれらの表面構造で形成されていることが水分やHFの活性を低下させる観点で特に好ましい。なお、無機フィラーとしては、上述した多孔質フィラーに加えて、α−アルミナ等の金属酸化物や水酸化アルミニウム等の金属水酸化物等、その他の非多孔質無機フィラーを適宜加えてもよい。
該多孔質フィラーは50nm以下のメソ孔または2nm以下のミクロ孔で構成されることが好ましく、特に2nm以下のミクロ孔が発達した構造となっていることが本発明の効果の発現という観点から好ましい。
また、該多孔質フィラーの平均粒子径は0.1~5.0μmの範囲が好適である。多孔質フィラーの平均粒子径が0.1μmより小さくなると、多孔膜の成形が困難となったり、多孔膜のすべり性が悪化しハンドリングが困難となる場合があるため好ましくない。多孔質フィラーの平均粒子径が5.0μmより大きくなると、多孔膜を薄く成形する場合に表面粗さの観点から成形が困難となる場合があるため好ましくない。
本発明において、該多孔質フィラーの比表面積は40~3000m2/gであることが好ましい。比表面積が40m2/g未満であると、水分やHFの活性を十分に低下させることができないので好ましくない。また、3000m2/gより大きくなると、多孔膜の成形が困難となり、多孔質膜の強度を著しく低下してしまう場合がある。そのような場合、ハンドリング上支障が生じる場合があるため好ましくない。
多孔質フィラーの比表面積について本発明の効果の観点からより詳細に検証すると、多孔質フィラーの比表面積は40~1000m2/gがさらに好適である。比表面積が1000m2/g以下であれば、機械強度およびガス発生抑制の点でより優れるようになるためである。さらに好ましくは多孔質フィラーの比表面積は40~500m2/gが好適である。比表面積が500m2/g以下であれば、機械強度およびガス発生抑制の点でより優れるようになるためである。特に好ましくは多孔質フィラーの比表面積は150~500m2/gが好適である。比表面積が150m2/g以上であれば、ガス発生抑制の点でより優れるようになるためである。ここで、比表面積は、窒素ガス吸着法で測定された吸着等温線をBET式で解析することにより求めたものである。
特に、本発明では、多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることが好ましい。このような活性アルミナは、電池内で微量に発生するHFを吸着あるいはHFと反応することで、HFの活性を低下させることができ、非水系二次電池のサイクル特性をより向上させることができる。
前記活性アルミナ粒子の表面に存在する0/Alの元素比は、X線光電子分光装置を用いて測定した場合に、0/Alの元素比が1.0~2.5であることが好ましい。さらに好ましくは、0/Alの元素比が1.2~1.8であることが良い。このような元素比で表面が形成されている時、HF等の活性を低下させる観点で好ましい。
前記活性アルミナの真密度は、2.7~3.8g/cm3であることが好ましく、さらに好ましくは2.8~3.3g/cm3の範囲である。真密度が2.7g/cm3未満だと水酸化アルミニウム等に近くなってしまい、HFの活性低下効果が得られ難くなるおそれがあるため好ましくない。また、真密度が3.8g/cm3より大きいと、フィラーの構造が密となり、電解液が入りこむ隙間が小さくなって電池のサイクル特性が低下してしまうおそれがあるため好ましくない。
前記活性アルミナの比表面積は300m2/g以上であることが好ましい。比表面積が300m2/g未満であるとHF等の活性を十分に低下させることができない場合がある。一方、活性アルミナの比表面積は1000m2/g以下が好ましく、より好ましくは500m2/g以下であることが好適である。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
本発明の非水系二次電池用多孔膜は、正極と負極の両電極間に配置されるのであれば、いずれの部位にも適用することができる。
すなわち、例えば、本発明の非水系二次電池用多孔膜は、電極間に配置するセパレータとして適用することができる。この場合、突刺強度が200g以上の十分な機械強度を有することが好ましい。また、ガーレ値が10~300秒/100ccの透過性を有したものが好ましい。このような物性を得るためには、本発明の電池用多孔膜の構成として、耐熱性樹脂と多孔質フィラーの合計重量に対し、多孔質フィラーの重量が10~50重量%であることが好ましい。多孔質フィラーの重量が50重量%を超えると、十分な機械強度を得ることが困難となる場合がある。また、多孔質フィラーの重量が10重量%より小さいと、電池内での副反応を抑制する効果が低下したり、透過性が低下する場合があるため好ましくない。
また、本発明の電池用多孔膜をセパレータとして電極間に配置する場合、該電池用多孔膜を単独で用いてもよい。また、シャットダウン機能を付加するために、この機能を有するポリオレフィン微多孔膜と積層させたり、該電池用多孔膜にポリオレフィン微粒子からなる分散液を塗工したりしてもよい。
さらに、本発明の電池用多孔膜は電極上に直接形成しても良い。この場合は電極が十分な強度を有する支持体となるので、該電池用多孔膜を単独でセパレータとして適用する場合に比べて機械強度は不要である。そのような観点から、耐熱性樹脂と多孔質フィラーの合計重量に対し、多孔質フィラーの重量が10~90重量%であることが好ましく、さらに50~90重量%であることが好ましい。多孔質フィラーの重量が10重量%より小さいと、電池内での副反応を抑制する効果が低下する場合があるので好ましくない。また、90重量%を超えると、実質上成形が困難となる場合があるため、好ましくない。
このように本発明の電池用多孔膜を電極上に直接形成する場合、この電池用多孔膜がセパレータを兼ねることも可能であるので、正負極間に短絡を防止するためのセパレータを配置させなくともよい。また、本発明の電池用多孔膜に加えて、ポリオレフィン微多孔膜のような通常のセパレータのみを適用して電池を作製してもよい。なお、本発明の電池用多孔膜を電極上へ直接形成する場合は、正極および負極のいずれに適用してもよい。ただし、正極に形成する方が電池の耐久性を向上させるという観点で好ましく、さらに正極と負極の両方に形成する方が好ましい。
[電池用多孔膜の製造方法]
本発明の非水系二次電池用多孔膜の製造方法は特に限定されないが、例えば、以下の(i)~(iv)の工程を含む製造方法により製造可能である。すなわち、(i)耐熱性樹脂、無機フィラーおよび水溶性有機溶剤を含む塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーを支持体に塗工する工程と、(iii)塗工されたスラリー中の耐熱性樹脂を凝固させる工程と、(iv)この凝固工程後のシートを水洗および乾燥する工程と、を実施することからなる製造方法である。
上記工程(i)において、水溶性有機溶剤としては、耐熱性樹脂に対して良溶媒である溶剤であれば特に限定されない。このような水溶性有機溶剤の具体例としては、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶剤が挙げられる。また、スラリー中には、さらに耐熱性樹脂に対して貧溶媒となる溶剤も、一部混合して用いることもできる。このような貧溶媒を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶媒としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。
上記工程(ii)において、支持体へのスラリーの塗工量は10~60g/m2程度が好ましい。塗工方法は、例えばナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。中でも、塗膜を均一に塗布するという観点において、リバースロールコーター法が好適である。
上記工程(iii)において、スラリー中の耐熱性樹脂を凝固させる方法としては、塗工後の支持体に対して凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に当該基材を浸漬する方法などが挙げられる。凝固液は、耐熱性樹脂を凝固できるものであれば特に限定されないが、水、又はスラリーに用いた良溶媒に水を適当量含ませた混合液が好ましい。ここで、水の混合量は凝固液に対して40~80重量%が好適である。
上記工程(iv)において、乾燥方法は特に限定されないが、乾燥温度は50~100℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
また、本発明の非水系二次電池用多孔膜を得るための第二の製造方法として、例えば、上記(i)および(ii)の工程の後に、(v)塗工されたシートを乾燥する工程を実施することも挙げられる。この場合、上記工程(v)の乾燥温度は該水溶性溶剤を除去できる温度であればいずれの温度でも問題ないが、概ね50~200℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
上記のいずれの製造方法においても支持体を用いているが、この支持体としてはガラス板やポリエチレンテレフタレート(PET)製フィルム等、乾燥温度に対して十分な耐熱性を示すものであれば好適に使用できる。また、これらの支持体を適用する場合は、上記(iv)(v)の乾燥後に、支持体から本発明の電池用多孔膜を剥離する工程が含まれる。
本発明では、支持体にポリオレフィン微多孔膜や不織布などの多孔質材料を適用することも可能である。この場合は支持体も含め電池用多孔膜として適用することができるので剥離工程は不要である。また、支持体に電極を適用し、電極上へ本発明の電池用多孔膜を直接形成することも可能である。この場合も剥離工程は当然不要となる。
[非水系二次電池]
本発明の非水系二次電池は、少なくとも正極及び負極を備えた非水系二次電池であって、前記正極及び前記負極の少なくともいずれか一方の表面に上述した非水系二次電池用多孔膜を形成したか、あるいは、当該非水系二次電池用多孔膜をセパレータとして用いたことを特徴とする。
本発明の非水系二次電池は、耐熱性に優れた電池用多孔膜を適用することで電池の安全性が向上し、また電池用多孔膜中の多孔質フィラーによってガス発生が抑制され、サイクル特性や保存特性等の耐久性にも優れるようになる。
上述したように、本発明の電池用多孔膜はセパレータとして適用してもよく、また電極表面に形成してもよい。セパレータとして適用する場合、該電池用多孔膜のみを単独で適用してもよいが、該電池用多孔膜をポリオレフィン微多孔膜と積層させて適用してもよい。該電池用多孔膜を電極表面に形成する場合は、正極および負極のいずれかに形成してもよく、両方に形成してもよい。該電池用多孔膜を電極表面に形成した場合は、ポリオレフィン微多孔膜等をセパレータとして適用してもよいし、電極表面に予め本発明の電池用多孔膜を形成しているのでセパレータを介さないで正極と負極を接合してもよい。
ただ、ポリオレフィン微多孔膜をセパレータに適用する場合は、本発明の電池用多孔膜が少なくともポリオレフィン微多孔膜と正極の間にある構成が好ましい。ポリオレフィン微多孔膜の耐酸化性は非水系二次電池への適用において必ずしも十分なものでなく、ポリオレフィン微多孔膜は正極と接触している面が酸化され電池が劣化することがあるが、本発明の電池用多孔膜を前述のように配置することで、この劣化を大幅に抑制することができる。
本発明の非水系二次電池の種類や構成は、上記構成以外に何ら限定されるものではないが、正極とセパレータと負極が順に積層された電池要素に電解液が含浸され、これが外装に封入された構造となった構成であれば、いずれにも適用可能である。但し、上述したようにセパレータを省略することも可能である。
負極は、負極活物質、導電助剤およびバインダからなる負極合剤が、集電体上に形成された構造となっている。集電体としては、例えば銅箔やステンレス箔、ニッケル箔等が用いられる。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズ等が用いられる。
正極は、正極活物質、導電助剤およびバインダからなる正極合剤が、集電体上に形成された構造となっている。集電体としては、例えば銅箔やステンレス箔、ニッケル箔等が用いられる。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO2、LiNiO2、LiMn0.5Ni0.5O2、LiCo1/3Ni1/3Mn1/3O2、LiMn2O4、LiFePO4が用いられる。
電解液は、リチウム塩を非水系溶媒に溶解した構成である。リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4等が挙げられる。非水系溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。
外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。ただし、電極上へ本発明の電池用多孔膜を形成した場合は、より円筒型電池へ適用することが好ましい。
(1−2)第二の形態
本発明の第二の形態に係る非水系二次電池用多孔膜は、耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーが、アモルファス状のアルミナ粒子(以下、アモルファスアルミナと適宜称す)であることを特徴とする。
このような本発明によれば、上述した第一の形態の場合と同様の効果を奏することができる。特にアモルファスアルミナが電池内に存在する微量な不純物やHF等の副生成物を吸着するため、電池のサイクル特性をより向上させることができる。
なお、この第二の形態は上述した第一の形態とは無機フィラーをアモルファスアルミナに変えた点以外は同様であるので、以下においては、第一の形態と同様の構成については説明を適宜省略する。また、この第二の形態における「アモルファスアルミナ」は、上述した第一の形態における「比表面積が300~1000m2/gの活性アルミナ」とは酷似した作用効果を奏するものであり、比表面積という観点から発明を捉えたものが第一の形態に相当し、結晶構造という観点から捉えたものが第二の形態に相当する。
本発明において、アモルファス状のアルミナ粒子とは、示性式がAl2O3・xH2O(xは0以上3以下の値を取り得る)で表されるフィラーであって、かつ、X線回折による分析により、明確な結晶ピークが確認されないものである。また、アモルファスアルミナには、X線回折による分析によって明確な結晶ピークが完全に確認されないもの以外にも、ブロードなピークの中に僅かに明確な結晶ピークが確認されるもの(アモルファスと他の組成との混合組成)も含まれる。
前記「他の組成」には、ギブサイト状やバイヤライト状のAl(OH)3、ベーマイト状やダイアスポア状のAl2O3・H2O、γ—Al2O3やχ−Al2O3等の中間アルミナ、およびコランダムであるα−Al2O3が含まれ、これらの中でも本発明の効果が良好に得られる点で、ベーマイトあるいはギブサイトが好ましい。
前記「僅かに明確な結晶ピーク」とは、例えばアモルファスアルミナ中にベーマイト構造が含まれる場合を一例として挙げると、後述の実施例に記載の条件で測定した場合、2θ=14°付近に観察されるメインピークの積分強度が10 cps・deg以上であるピークをいい、この積分強度が2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.30以下の場合は、無機フィラー全体としてアモルファスといえる。また、例えばギブサイト構造の場合は2θ=18°付近、バイヤライト構造の場合は2θ=19°付近、ダイアスポア構造の場合は2θ=20°付近、γ—Al2O3構造の場合は2θ=46°付近、χ−Al2O3構造の場合は2θ=67°付近、α−Al2O3構造の場合は2θ=43°付近に、それぞれ観察されるメインピークの積分強度が2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.30以下の場合も、無機フィラー全体としてアモルファスといえる。
前記アモルファスアルミナの表面に存在する0/Alの元素比は、X線光電子分光装置を用いて測定した場合に、0/Alの元素比が1.0~2.5であることが好ましい。さらに好ましくは、0/Alの元素比が1.2~1.8であることが良い。このような元素比で表面が形成されている場合、電池中のフッ化水素(HF)等の活性を低下させる観点で好ましい。
前記アモルファスアルミナは、電池系内に混入する様々な不純物、副生成物を吸着する上で、吸着面積が大きい多孔質構造を有していることが好ましい。ここで言う多孔質構造とは、粒子の内部あるいは表面に多数の微小孔ないし微小空隙が形成された構造を意味している。
前記アモルファスアルミナは50nm以下のメソ孔または2nm以下のミクロ孔を含んで構成されることが好ましく、特に2nm以下のミクロ孔が発達した構造となっていることが本発明の効果の発現という観点から好ましい。
また、前記アモルファスアルミナの比表面積は50m2/g以上であることが好ましい。比表面積が50m2/g未満であると水分や不純物等によるサイクル特性の悪化を十分に抑制することができない。一方、アモルファスアルミナの比表面積は1000m2/g以下が好ましく、より好ましくは500m2/g以下であることが好適である。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
また、前記アモルファスアルミナの平均粒子径は0.1~5.0μmの範囲が好適である。アモルファスアルミナの平均粒子径が0.1μmより小さくなると、多孔膜の成形が困難となったり、多孔膜のすべり性が悪化しハンドリングが困難となる場合があるため好ましくない。また、アモルファスアルミナの平均粒子径が5.0μmより大きくなると、多孔膜を薄く成形する場合に表面粗さの観点から成形が困難となる場合があるため好ましくない。
なお、アモルファスアルミナには、α−アルミナ等の金属酸化物や、水酸化アルミニウム等の金属水酸化物等、その他の無機フィラーを混ぜて使用しても良い。
(1−3)第三の形態
[非水系二次電池用セパレータ]
本発明の第三の形態に係る非水系二次電池用セパレータは、多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする。
本発明のように、耐熱性樹脂および無機フィラーを含むことで、電池が高温に曝されたときも内部短絡を防止するのに十分な耐熱性を確保することが可能となり、電池の安全性を確保することができる。また、多孔質基材に耐熱性多孔質層を形成する構成であるため、セパレータとして十分な機械的強度を確保し易くなる。そして、無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであるため、電池内で耐久性を低下させる副反応を抑制したり、副反応により生成したガスを除去したりすることで、電池のサイクル特性や保存特性等の耐久性を向上させることができる。
なお、この第三の形態は、上述した第一の形態における電池用多孔膜を耐熱性多孔質層として、これを多孔質基材上に形成した構成であるので、以下においては、第一の形態と同様の構成については説明を適宜省略する。
本発明において、多孔質基材は、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造を有したものであれば特に限定されるものではなく、例えば微多孔膜、不織布、紙状シートその他三次元ネットーワーク構造を有するシート等が挙げられる。このうちハンドリング性や強度の観点から微多孔膜が好ましい。多孔質基材を構成する材料としては、有機材料および無機材料のいずれも使用することができるが、シャットダウン特性が得られる観点からポリオレフィン等の熱可塑性樹脂が好ましい。よって、このようなポリオレフィン多孔質基材を適用すれば、耐熱性とシャットダウン機能を両立させることができる。
前記ポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。中でも良好なシャットダウン特性が得られるという観点で、ポリエチレンを90重量%以上含むものが好適である。ポリエチレンは、例えば低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどが好適に用いられ、特に、高密度ポリエチレン、超高分子量ポリエチレンが好適である。さらに、高密度ポリエチレンと超高分子量ポリエチレンの混合物からなるポリエチレンは、強度と成形性の観点から好ましい。ポリエチレンの分子量は、重量平均分子量で10万~1000万のものが好適であり、特に重量平均分子量100万以上の超高分子量ポリエチレンを少なくとも1重量%以上含むポリエチレン組成物が好ましい。その他、本発明における多孔質基材は、ポリエチレン以外にもポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して構成しても良く、また、ポリエチレン微多孔膜とポリプロピレン微多孔膜の2層以上の積層体として構成しても良い。
本発明において、多孔質基材の膜厚は必ずしも制限されるわけではないが、概ね5~20μmの範囲が好適である。膜厚が5μmより薄いと、十分な強度が得られずハンドリングが困難となったり、電池の歩留まりが著しく低下する場合があるため、好ましくない。膜厚が20μmより大きくなると、イオンの移動が困難となったり、電池内でセパレータが占める容積が増加し、電池のエネルギー密度を低下させる場合があるため、好ましくない。
多孔質基材の空孔率は10~60%が好適であり、さらに好ましくは20~50%が好適である。空孔率が10%より低くなると、電池の作動に十分な量の電解液を保持することが困難となり、電池の充放電特性が著しく低下する場合があるため、好ましくない。空孔率が60%を超えると、シャットダウン特性が不十分となったり、強度が低下する場合があるため、好ましくない。
多孔質基材の突刺強度は200g以上であることが好ましく、さらに好ましくは250g以上、より好ましくは300g以上である。突刺強度が200gより低いと、電池の正負極間の短絡を防止するための強度が十分でなく、製造歩留まりが上がらないという不具合が生じる場合があるため、好ましくない。
多孔質基材のガーレ値(JIS P8117)は100~500秒/100ccの範囲が好適であり、さらに好ましくは100~300秒/100ccの範囲である。ガーレ値が100秒/100ccより低くなると、イオン透過性には優れるものの、シャットダウン特性や機械強度が低下する場合があるため、好ましくない。また、ガーレ値が500秒/100ccより大きくなると、イオン透過性が不十分となり、電池の負荷恃性が悪化する場合があるため、好ましくない。
多孔質基材の平均孔径は10~100nmであることが好ましい。平均孔径が10nmより孔が小さいと、電解液を含浸するのが困難になる場合があるため、好ましくない。平均孔径が100nmより大きくなると、耐熱性多孔質層を形成したとき界面に目詰まりが生じることがあったり、該多孔質層を形成した場合にシャットダウン特性が著しく低下する場合があるため、好ましくない。
本発明における耐熱性多孔質層は、耐熱性樹脂と無機フィラーを含んで構成されており、内部に多数の空孔ないし空隙を有し、かつ、これら空孔等が互いに連結された多孔質構造となっている。かかる耐熱性多孔質層は、無機フィラーが耐熱性樹脂中に分散・結着した状態で、多孔質基材上に直接固着された態様であることが、ハンドリング性等の観点から好ましい。なお、耐熱性樹脂のみからなる多孔質層を多孔質基材上に形成しておき、後から無機フィラーを含む溶液を塗布・浸漬する等の方法によって、耐熱性樹脂層の孔内あるいは表面に無機フィラーが付着したような態様であってもよい。また、耐熱性多孔質層を微多孔膜や不織布、紙状シート等の独立した多孔性シートとして構成し、この多孔性シートを上記の多孔質基材上に接着したような構成であってもよい。
本発明の非水系二次電池用セパレータは、耐熱性多孔質層中に上述した無機フィラーが含まれていることを特徴とするが、該無機フィラーが多孔質基材中に含まれていないことも特徴の1つである。該無機フィラーの機能は、該多孔質層中に存在しなくとも発現されることは期待でき、例えば無機フィラーが多孔質基材中に含まれていてもガス発生の抑制効果は得ることができる。しかし、このような構成では、ポリオレフィン多孔質基材を適用した場合に、シャットダウン機能を著しく損ねてしまうという不具合が生じ得るため、好ましくない。そのため、シャットダウン機能を期待している層に無機フィラーを含有させず、耐熱性を期待している多孔質層中に含有しておく方が、構成上好ましい。
該多孔質層の構成は、重量比で耐熱性樹脂:無機フィラー=10:90~80:20の範囲が好適であり、さらに10:90~50:50の範囲が好適である。無機フィラーの含有量が20重量%より少なくなると、無機フィラーの特徴を十分に得ることが困難となる場合があるため、好ましくない。無機フィラーの含有量が90重量%を超えると、成形が困難となる場合があるため、好ましくない。一方、無機フィラーが50重量%以上含まれるものは熱収縮の抑制効果などの耐熱特性が向上するため好適である。
耐熱性多孔質層の空孔率は30~80%の範囲が好適である。さらに耐熱性多孔質層の空孔率は多孔質基材の空孔率より高い方が好ましい。このような構成の方がイオン透過性に優れ、良好なシャットダウン特性も得られるなど、特性上のメリットが生じる。
耐熱性多孔質層の厚みは、耐熱性多孔質層が多孔質基材の両面に形成されている場合は該耐熱性多孔質層の厚みの合計が2μm以上12μm以下であることが好ましく、耐熱性多孔質層が片面にのみ形成されている場合は2μm以上12μm以下であることが好ましい。
本発明の非水系二次電池用セパレータは膜厚が7~25μmの範囲が好適であり、さらに好ましくは10~20μmである。膜厚が7μmより薄くなると機械強度的な観点から好ましくない。また、25μmを超えるとイオン透過性の観点から好ましくなく、また電池内でセパレータが占める体積が大きくなりエネルギー密度の低下を招くという観点からも好ましくない。
本発明の非水系二次電池用セパレータの空孔率は20~70%が好適であり、さらに好ましくは30~60%が好適である。空孔率が20%より低くなると、電池の作動に十分な量の電解液を保持することが困難となる場合があるため、好ましくない。空孔率が70%を超えるとシャットダウン特性が不十分となったり、強度や耐熱性が低下する場合があるため、好ましくない。
本発明の非水系二次電池用セパレータの突刺強度は200g以上であることが好ましく、さらに好ましくは250g以上、さらに好ましくは300g以上である。突刺強度が200gより低いと電池の正負極間の短絡を防止するための強度が十分でなく、製造歩留まりが上がらないという不具合が生じる場合があるため、好ましくない。
本発明の非水系二次電池用セパレータにおけるガーレ値(JIS P8117)は150~600秒/100ccの範囲が好適であり、さらに好ましくは150~400秒/100ccの範囲である。ガーレ値が150秒/100ccより低くなると、イオン透過性には優れるものの、シャットダウン特性や機械強度が低下する場合があるため、好ましくない。また、該多孔質層を形成する際に多孔質基材と耐熱性多孔質層との界面において目詰まりを生じるような不具合も発生することがあるため、好ましくない。ガーレ値が600秒/100ccより大きくなると、イオン透過性が不十分となり、電池の負荷特性が悪化するおそれがあるため、好ましくない。
また、本発明の非水系二次電池用セパレータのガーレ値からこれに適用した多孔質基材のガーレ値を引いた値は250秒/100cc以下が好適であり、さらに200秒/100cc以下が好ましい。この値が小さい方が、シャットダウン特性が良好になったり、イオン透過性が向上したりして特性上好ましい。
本発明において耐熱性多孔質層は多孔質基材の少なくとも一方の面に形成すればよいが、多孔質基材の表裏両面に形成する方がさらに好ましい。多孔質基材の表裏両面に耐熱性多孔質層を形成することによってカールすることなくハンドリング性が良好となり、高温時の寸法安定性といった耐熱性も向上し、電池のサイクル特性も著しく向上するなどの効果が得られる。
[非水系二次電池用セパレータの製造方法]
本発明の非水系二次電池用セパレータの製造方法は特に限定されないが、例えば、以下の(i)~(iv)の工程を含む製造方法により製造可能である。すなわち、(i)耐熱性樹脂、無機フィラーおよび水溶性有機溶剤を含む塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーを多孔質基材の片面又は両面に塗工する工程と、(iii)塗工されたスラリー中の耐熱性樹脂を凝固させる工程と、(iv)この凝固工程後のシートを水洗および乾燥する工程と、を実施することからなる製造方法である。なお、これら工程(i)~(iv)は、上述した第一の形態の場合と同様である。
本発明において、多孔質基材の製造法についても特に限定されるものではないが、例えば次のようにして多孔質基材としてのポリオレフィン微多孔膜を製造することができる。すなわち、ポリオレフィンと流動パラフィンのゲル状混合物をダイから押出し、次いで冷却することでベーステープを作製し、このベーステープを延伸し、これを熱固定する。その後、流動パラフィンを塩化メチレン等の抽出溶剤中に浸漬することで抽出し、次いで抽出溶剤を乾燥することで、ポリオレフィン微多孔膜を得ることができる。
[非水系二次電池]
本発明の第三の形態に係る非水系二次電池は、正極、負極およびセパレータを備えた非水系二次電池であって、前記セパレータとして、上述した非水系二次電池用セパレータを用いたことを特徴とする。かかる非水系二次電池は、高温時における安全性や耐久性に優れ、サイクル特性等にも優れている。なお、その他の電池構成は、上述した第一の形態と同様である。
(1−4)第四の形態
本発明の第四の形態に係る非水系二次電池用セパレータは、多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする。
このような本発明によれば、上述した第三の形態の場合と同様の効果を奏することができる。特にアモルファスアルミナが電池内に存在する微量な不純物やHF等の副生成物を吸着するため、電池のサイクル特性をより向上させることができる。
なお、この第四の形態は上述した第三の形態とは無機フィラーをアモルファスアルミナに変えた点以外は同様であるので、第三の形態と同様の構成については説明を省略する。
(2)第二の本発明
以上の第一の本発明は、セパレータ等の技術領域において、電池の安全性と耐久性の両立という課題を解決する構成であるが、その中でも特に「比表面積が300~1000m2/gの活性アルミナ」あるいは「アモルファスアルミナ」を用いた構成は、HFの活性を著しく低下させるため、電池のサイクル特性の向上効果に優れている。よって、第二の本発明ではこの作用効果に着目し、「活性アルミナ」および「アモルファスアルミナ」をフッ化水素の吸着剤として捉え、この吸着剤を非水系二次電池の各部に適用した例を説明する。
(2−1)第五の形態
本発明の第五の形態に係る非水系二次電池用吸着剤は、非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、比表面積が300~1000m2/gの活性アルミナ粒子であることを特徴とする。
本発明では、非水系二次電池用吸着剤として比表面積が300~1000m2/gの活性アルミナを用いているので、この活性アルミナが電池内で微量に発生するHFを吸着あるいはHFと反応することで、HFの活性を低下させ、非水系二次電池のサイクル特性を向上させることができる。従来は、多孔質フィラーの種類を特定せずに比表面積だけを特定した技術が存在していたが、本発明は、特定の比表面積を有した活性アルミナがHFの活性を低下させるという側面から、他の多孔質の無機フィラーとは異なる、優れたサイクル特性を示すことを見出してなされたものである。活性アルミナが優れている理由の詳細は分からない。しかし、その一つの理由として、アルミナはルイス酸・ルイス塩基として知られている両性酸化物であるため、HFを分極させ、HFを効率良くトラップしたことが考えられる。また、比表面積を300m2/g以上にすることで、表面反応がスムーズに行われ、サイクル特性が向上したと考えられる。比表面積が1000m2/gを超える活性アルミナを得ることは、現状、技術的に困難である。
なお、この第五の形態における「比表面積が300~1000m2/gの活性アルミナ粒子」の構成については、上述した第一の形態におけるものと同様であるので、説明を省略する。
[活性アルミナの含有場所]
前記活性アルミナを含む態様としては以下の(A)~(C)が挙げられる。
(A) 無機フィラーおよびバインダ樹脂を含んで構成された非水系二次電池用多孔膜であって、前記無機フィラーとして前記活性アルミナが含まれていることを特徴とする非水系二次電池用多孔膜。
(B) 多孔質基材と、この多孔質基材の片面または両面に積層された、無機フィラーおよびバインダ樹脂を含む多孔質層と、を備えた非水系二次電池用セパレータであって、前記無機フィラーとして前記活性アルミナが含まれていることを特徴とする非水系二次電池用セパレータ。
(C) 正極、負極、非水電解質およびセパレータを備えた非水系二次電池であって、当該電池内には前記活性アルミナが含まれていることを特徴とする非水系二次電池。
上記(A)~(C)に示すように、前記活性アルミナは、セパレータに含有させてもよいし、セパレータや電極に積層される多孔膜中に含有させてもよいし、正極および負極に含有させてもよいし、この他、電解液中に含有させても良い。しかし、電極合剤に混ぜ込んだりすると、活物質の体積をその分減らすことになり電池容量を損なうので、活性アルミナはセパレータに含有させる態様が好ましい。さらに、シャットダウン機能と耐熱性の両機能を両立させるためには、ポリエチレン等の熱可塑性樹脂からなる多孔質基材の表面に、ポリアミドなどの耐熱性樹脂からなる耐熱性多孔質層を被覆させ、この耐熱性多孔質層中に活性アルミナを含有させる態様が好ましい。
正極に前記活性アルミナを含有させる場合は、上述した第一の形態における正極活物質、結着剤および導電剤と活性アルミナとを均一に混合して正極合剤を作製し、この正極合剤を溶剤中に分散させて正極合剤スラリーとする。次いで、この正極合剤を、例えばドクターブレード法等により、正極集電体に塗布する。続いて、高温で乾燥させて溶剤を揮発させ、加圧することにより、活性アルミナを含有する正極が得られる。また、正極合剤に活性アルミナを含有させないで、活性アルミナをNMP等の溶媒に分散させたコーティング液を正極の活物質側にコーティングし、乾燥することで、活性アルミナを正極上に固着することも有効である。
負極に前記活性アルミナを含有させる場合は、上述した第一の形態における負極活物質、結着剤および導電剤と活性アルミナとを均一に混合して負極合剤を作製し、この負極合剤を溶剤中に分散させて負極合剤スラリーとする。次いで、この負極合剤を、正極と同様の方法により負極終電体に塗布した後、高温で乾燥させて溶剤を揮発させ、加圧することで、活性アルミナを含有する負極が得られる。また、負極合剤に活性アルミナを含有させないで、活性アルミナをNMP等の溶媒に分散させたコーティング液を負極の活物質側にコーティングし、乾燥することで、活性アルミナを負極上に固着することも有効である。
セパレータに前記活性アルミナを含有させる場合は、例えば、ポリエチレン等の熱可塑性樹脂に活性アルミナを添加した後、溶融混練し、活性アルミナを含んだ熱可塑性樹脂溶液を調製する工程、この溶液をダイより押し出し、冷却してゲル状成型物を形成する工程、一次延伸工程及び二次延伸工程、ゲル状成型物から液体溶剤を除去する工程、および、得られた膜を乾燥する工程を経ることにより、活性アルミナを含有する熱可塑性樹脂微多孔膜として、セパレータを得ることができる。また、例えば、芳香族ポリアミド等のバインダ樹脂と活性アルミナを均一に分散したコーティング液を、ポリプロピレンフィルムなどのベースフィルム上に塗布して、凝固・水洗・乾燥させた後、塗工膜を剥離して得ることもできる。
また、積層型セパレータの場合は、活性アルミナは各層いずれかに含有させても良いし、すべての層に含有させても良い。例えば、芳香族ポリアミド等の耐熱性樹脂と活性アルミナを均一に分散したコーティング液を、ポリエチレン微多孔膜や不織布等の多孔質基材の片面または両面にコーティングすると、活性アルミナを含有する積層型セパレータが得られる。また、例えば、不織布などの多孔質基材を、PVdF等のバインダ樹脂と活性アルミナを均一に分散したコーティング液中に浸漬して、これを取り出した後に水洗・乾燥することで、複合型セパレータとして得ることもできる。
なお、上述したセパレータや多孔膜において、活性アルミナを結着させるバインダ樹脂としては、芳香族ポリアミド等の耐熱性樹脂の他に、ポリフッ化ビニリデン(PVdF)やPVdF共重合体、ポリエチレン等の熱可塑性樹脂等が挙げられる。前記耐熱性樹脂や多孔質基材、非水系二次電池中の電極、電解液、外装材等の構成については、上述した第一の形態のところで詳述しているので、説明を省略する。
(2−2)第六の形態
本発明の第六の形態に係る非水系二次電池用吸着剤は、非水系二次電池内に混入するフッ化水素の吸着剤であって、当該吸着剤は、アモルファス状のアルミナ粒子であることを特徴とする。
本発明では、非水系二次電池用吸着剤としてアモルファスアルミナを用いているので、アモルファスアルミナが電池内に発生する微量な不純物やHF等の副生成物を吸着するため、非水系二次電池のサイクル特性を向上させることができる。
なお、この第六の形態は上述した第五の形態とは吸着剤をアモルファスアルミナに変えた点以外は同様であるので、上述した第五の形態と同様の構成については説明を省略する。また、上述したように「比表面積が300~1000m2/gの活性アルミナ」と「アモルファスアルミナ」は互いに酷似した作用効果を奏するものであり、比表面積という観点から発明を捉えたものが活性アルミナであり、結晶構造という観点から捉えたものがアモルファスアルミナである。前記アモルファスアルミナを含有する態様としては、上述した第五の形態における(A)~(C)の態様と同様である。さらに、前記アモルファスアルミナは、内部短絡を抑制する上では、正極と負極の間におけるいずれかの部位に含有させることが好ましい。 (1) First invention
(1-1) First form
[Porous membrane for non-aqueous secondary battery]
The porous membrane for a non-aqueous secondary battery according to the first aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler has an average particle size The diameter is 0.1 to 5.0 μm and the specific surface area is 40 to 3000 m. 2 / G porous filler.
By including a heat-resistant resin and an inorganic filler as in the present invention, it becomes possible to ensure sufficient heat resistance to prevent an internal short circuit even when the battery is exposed to high temperatures, thereby improving the safety of the battery. It can be secured. The inorganic filler has an average particle size of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
In particular, since the heat-resistant resin is generally a substance that easily adsorbs moisture, the present invention has a configuration in which the side reaction between the HF and the inorganic filler is likely to occur. By applying the filler, the activity of moisture and HF present in a minute amount in the battery can be significantly reduced, and gas generation due to decomposition of the electrolyte and the like can be suppressed. Even if gas is generated, the porous filler can trap this gas. For this reason, it becomes possible to significantly improve the durability of the battery.
Here, the porous membrane for a battery according to the present invention includes a heat-resistant resin and an inorganic filler, and has a plurality of pores or voids therein, and these pores are connected to each other. Means a quality structure.
The heat-resistant resin in the present invention includes a resin having a melting point of 200 ° C. or higher. In addition to a resin having a melting point of 200 ° C. or higher, a resin having a thermal decomposition temperature of 200 ° C. or higher with substantially no melting point. Is also included. Examples of such a heat-resistant resin include wholly aromatic polyamides, polyimides, polyamideimides, polysulfones, polyketones, polyether ketones, polyether sulfones, polyether imides, celluloses, combinations of two or more thereof, and the like. . Among them, wholly aromatic polyamides are preferable from the viewpoint of durability such as ease of forming a porous structure, binding property with an inorganic filler, strength of the porous film and accompanying oxidation resistance. As for the wholly aromatic polyamide, comparing the para type and the meta type, the meta type wholly aromatic polyamide is preferable from the viewpoint of easy molding, and polymetaphenylene isophthalamide is particularly preferable.
When the meta type wholly aromatic polyamide is applied, when the meta type wholly aromatic polyamide is dissolved in N-methyl-2-pyrrolidone, the logarithmic viscosity of the following formula (1) is 0.8 to 2.5 dl / g. Those in the range are preferable, and those in the range of 1.0 to 2.2 dl / g are more preferable. Deviating from this range is not preferable because the moldability may be deteriorated.
Logarithmic viscosity (unit: dl / g) = ln (T / T0) / C (1)
T: Flow time of capillary viscometer at 30 ° C. of a solution of 0.5 g of meta-type wholly aromatic polyamide resin dissolved in 100 ml of N-methyl-2-pyrrolidone
T0: Flow time of capillary viscometer at 30 ° C. of N-methyl-2-pyrrolidone
C: Concentration of meta-type wholly aromatic polyamide resin in solution (g / dl)
Porous fillers applicable to the present invention include zeolite, activated carbon, activated alumina, porous silica, porous fillers obtained by heat treatment of metal hydroxides such as magnesium hydroxide and aluminum hydroxide, synthesized from organic compounds Porous fillers to be used. Of these, activated alumina is particularly preferable. The activated alumina in the present invention has a formula of Al 2 O 3 XH 2 It is a porous filler represented by O (x can take a value of 0 or more and 3 or less). The surface of activated alumina is amorphous Al 2 O 3 , Γ-Al 2 O 3 , Χ-Al 2 O 3 Gibbsite-like Al (OH) 3 Boehmite Al 2 O 3 ・ H 2 A structure such as O is preferable, and a porous structure formed of these surface structures is particularly preferable from the viewpoint of reducing the activity of moisture and HF. In addition to the porous filler described above, other non-porous inorganic fillers such as metal oxides such as α-alumina and metal hydroxides such as aluminum hydroxide may be appropriately added as the inorganic filler.
The porous filler is preferably composed of mesopores of 50 nm or less or micropores of 2 nm or less, and particularly preferably has a structure in which micropores of 2 nm or less are developed from the viewpoint of manifestation of the effects of the present invention. .
The average particle diameter of the porous filler is preferably in the range of 0.1 to 5.0 μm. When the average particle size of the porous filler is smaller than 0.1 μm, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult. When the average particle diameter of the porous filler is larger than 5.0 μm, it may be difficult to form the porous film from the viewpoint of surface roughness when it is thinly formed.
In the present invention, the specific surface area of the porous filler is 40 to 3000 m. 2 / G is preferable. Specific surface area is 40m 2 If it is less than / g, the activity of moisture and HF cannot be sufficiently reduced, which is not preferable. 3000m 2 If it exceeds / g, it becomes difficult to mold the porous membrane, and the strength of the porous membrane may be significantly reduced. In such a case, handling may be hindered, which is not preferable.
When the specific surface area of the porous filler is verified in more detail from the viewpoint of the effect of the present invention, the specific surface area of the porous filler is 40 to 1000 m. 2 / G is more preferable. Specific surface area is 1000m 2 This is because if it is less than / g, it will be more excellent in terms of mechanical strength and gas generation suppression. More preferably, the specific surface area of the porous filler is 40 to 500 m. 2 / G is preferred. Specific surface area of 500m 2 This is because if it is less than / g, it will be more excellent in terms of mechanical strength and gas generation suppression. Particularly preferably, the specific surface area of the porous filler is 150 to 500 m. 2 / G is preferred. Specific surface area is 150m 2 This is because if it is at least / g, it will be more excellent in terms of suppressing gas generation. Here, the specific surface area is obtained by analyzing the adsorption isotherm measured by the nitrogen gas adsorption method using the BET equation.
In particular, in the present invention, the porous filler has a specific surface area of 300 to 1000 m. 2 / G activated alumina is preferred. Such activated alumina can reduce the activity of HF by adsorbing or reacting with a small amount of HF generated in the battery, and can further improve the cycle characteristics of the non-aqueous secondary battery. .
The 0 / Al element ratio present on the surface of the activated alumina particles is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of HF or the like.
The true density of the activated alumina is 2.7 to 3.8 g / cm. 3 And more preferably 2.8 to 3.3 g / cm. 3 Range. True density is 2.7 g / cm 3 If it is less than that, it becomes close to aluminum hydroxide and the like, and it is difficult to obtain the effect of reducing the activity of HF. The true density is 3.8 g / cm. 3 If it is larger, the structure of the filler becomes dense, and the gap through which the electrolytic solution enters becomes small, which may reduce the cycle characteristics of the battery.
The specific surface area of the activated alumina is 300 m. 2 / G or more is preferable. Specific surface area is 300m 2 If it is less than / g, the activity of HF or the like may not be sufficiently reduced. On the other hand, the specific surface area of activated alumina is 1000 m. 2 / G or less is preferable, more preferably 500 m 2 / G or less is preferred. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
The porous membrane for a non-aqueous secondary battery of the present invention can be applied to any part as long as it is disposed between both the positive electrode and the negative electrode.
That is, for example, the porous membrane for a non-aqueous secondary battery of the present invention can be applied as a separator disposed between electrodes. In this case, it is preferable that the puncture strength has a sufficient mechanical strength of 200 g or more. Further, those having a Gurley value of 10 to 300 seconds / 100 cc are preferred. In order to obtain such physical properties, it is preferable that the weight of the porous filler is 10 to 50% by weight with respect to the total weight of the heat resistant resin and the porous filler as the configuration of the porous film for a battery of the present invention. . If the weight of the porous filler exceeds 50% by weight, it may be difficult to obtain sufficient mechanical strength. On the other hand, if the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, or the permeability may be lowered.
Moreover, when arrange | positioning between the electrodes as a separator for battery porous films of this invention, you may use this porous film for batteries independently. Moreover, in order to add a shutdown function, it may be laminated with a polyolefin microporous film having this function, or a dispersion liquid comprising polyolefin fine particles may be applied to the battery porous film.
Further, the battery porous membrane of the present invention may be directly formed on the electrode. In this case, since the electrode becomes a support having sufficient strength, mechanical strength is not required as compared with the case where the porous membrane for a battery is applied alone as a separator. From such a viewpoint, the weight of the porous filler is preferably 10 to 90% by weight, more preferably 50 to 90% by weight, based on the total weight of the heat resistant resin and the porous filler. If the weight of the porous filler is less than 10% by weight, the effect of suppressing side reactions in the battery may be reduced, which is not preferable. Moreover, since it may become difficult to shape | mold when it exceeds 90 weight%, it is not preferable.
As described above, when the battery porous membrane of the present invention is directly formed on the electrode, the battery porous membrane can also serve as a separator. Therefore, a separator for preventing a short circuit between the positive and negative electrodes is not disposed. Also good. In addition to the porous membrane for a battery of the present invention, a battery may be produced by applying only a normal separator such as a polyolefin microporous membrane. In addition, when forming the porous membrane for batteries of this invention directly on an electrode, you may apply to any of a positive electrode and a negative electrode. However, it is preferable to form the positive electrode from the viewpoint of improving the durability of the battery, and it is more preferable to form the positive electrode and the negative electrode.
[Method for producing porous membrane for battery]
The method for producing the porous membrane for a non-aqueous secondary battery of the present invention is not particularly limited, and for example, it can be produced by a production method including the following steps (i) to (iv). That is, (i) a step of preparing a coating slurry containing a heat resistant resin, an inorganic filler, and a water-soluble organic solvent, (ii) a step of coating the obtained coating slurry on a support, and (iii) And (iv) a step of coagulating the heat-resistant resin in the coated slurry, and (iv) a step of washing and drying the sheet after the coagulation step.
In the step (i), the water-soluble organic solvent is not particularly limited as long as it is a good solvent for the heat-resistant resin. Specific examples of such a water-soluble organic solvent include polar solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylsulfoxide. Further, in the slurry, a solvent that becomes a poor solvent for the heat-resistant resin can be partially mixed and used. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred.
In the step (ii), the amount of slurry applied to the support is 10 to 60 g / m. 2 The degree is preferred. Examples of the coating method include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method. Among them, the reverse roll coater method is preferable from the viewpoint of uniformly applying the coating film.
In the step (iii), as a method for solidifying the heat-resistant resin in the slurry, a method in which a coagulating liquid is sprayed on the support after coating, or in a bath (coagulating bath) containing the coagulating liquid. Examples include a method of immersing the substrate. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixed liquid in which an appropriate amount of water is contained in a good solvent used in the slurry is preferable. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid.
In the step (iv), the drying method is not particularly limited, but the drying temperature is suitably 50 to 100 ° C. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.
Moreover, as a 2nd manufacturing method for obtaining the porous film for non-aqueous secondary batteries of this invention, (v) The coated sheet | seat is dried after the process of said (i) and (ii), for example. It is also possible to carry out the process. In this case, the drying temperature in the above step (v) is not particularly limited as long as the water-soluble solvent can be removed, but approximately 50 to 200 ° C. is appropriate. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.
In any of the above production methods, a support is used, and as this support, a glass plate, a film made of polyethylene terephthalate (PET), or the like that exhibits sufficient heat resistance against the drying temperature is suitable. Can be used. Moreover, when applying these support bodies, the process of peeling the porous film for batteries of this invention from a support body after the drying of said (iv) (v) is included.
In the present invention, it is also possible to apply a porous material such as a polyolefin microporous film or a nonwoven fabric to the support. In this case, since it can be applied as a porous film for a battery including a support, a peeling step is unnecessary. It is also possible to apply the electrode to the support and directly form the battery porous membrane of the present invention on the electrode. Also in this case, the peeling step is naturally unnecessary.
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including at least a positive electrode and a negative electrode, and the porous film for a non-aqueous secondary battery described above is provided on at least one surface of the positive electrode and the negative electrode. The porous film for non-aqueous secondary batteries is used as a separator.
The non-aqueous secondary battery of the present invention is improved in battery safety by applying a battery porous film excellent in heat resistance, and the generation of gas is suppressed by the porous filler in the battery porous film. It also has excellent durability such as characteristics and storage characteristics.
As described above, the battery porous membrane of the present invention may be applied as a separator or may be formed on the electrode surface. When applied as a separator, only the porous film for a battery may be applied alone, or the porous film for a battery may be laminated with a polyolefin microporous film. When the porous membrane for a battery is formed on the electrode surface, it may be formed on either the positive electrode or the negative electrode, or both. When the battery porous membrane is formed on the electrode surface, a polyolefin microporous membrane or the like may be applied as a separator, or the battery porous membrane of the present invention is formed in advance on the electrode surface, so that no separator is used. The positive electrode and the negative electrode may be joined together.
However, when a polyolefin microporous membrane is applied to the separator, a configuration in which the battery porous membrane of the present invention is at least between the polyolefin microporous membrane and the positive electrode is preferable. The oxidation resistance of polyolefin microporous membranes is not necessarily sufficient for application to non-aqueous secondary batteries. Polyolefin microporous membranes may oxidize the surface in contact with the positive electrode, which may deteriorate the battery. By disposing the porous membrane for a battery of the invention as described above, this deterioration can be greatly suppressed.
The type and configuration of the non-aqueous secondary battery of the present invention is not limited to the above configuration, but the battery element in which the positive electrode, the separator, and the negative electrode are sequentially laminated is impregnated with the electrolyte, and this is enclosed in the exterior Any structure can be applied as long as the structure is the same. However, as described above, the separator can be omitted.
The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive and a binder is formed on a current collector. As the current collector, for example, copper foil, stainless steel foil, nickel foil or the like is used. As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, tin, or the like is used.
The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is formed on a current collector. As the current collector, for example, copper foil, stainless steel foil, nickel foil or the like is used. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO. 2 LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O 4 LiFePO 4 Is used.
The electrolytic solution has a structure in which a lithium salt is dissolved in a non-aqueous solvent. Examples of the lithium salt include LiPF. 6 , LiBF 4 LiClO 4 Etc. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, vinylene carbonate, and the like.
Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape. However, when the battery porous membrane of the present invention is formed on an electrode, it is more preferable to apply to a cylindrical battery.
(1-2) Second form
The porous membrane for a non-aqueous secondary battery according to the second aspect of the present invention is a porous membrane for a non-aqueous secondary battery configured to contain a heat-resistant resin and an inorganic filler, and the inorganic filler is amorphous. Alumina particles (hereinafter referred to as amorphous alumina as appropriate).
According to the present invention as described above, the same effects as those of the first embodiment described above can be obtained. In particular, since amorphous alumina adsorbs a small amount of impurities and by-products such as HF present in the battery, the cycle characteristics of the battery can be further improved.
In addition, since this 2nd form is the same as the 1st form mentioned above except the point which changed the inorganic filler into the amorphous alumina, below, description is abbreviate | omitted suitably about the structure similar to a 1st form. To do. Further, the “amorphous alumina” in the second form is the same as the “specific surface area of 300 to 1000 m in the first form described above. 2 "/ G activated alumina" has an effect that is very similar, and the one that captures the invention from the viewpoint of specific surface area corresponds to the first form, and the one that captures from the viewpoint of crystal structure is the second form. It corresponds to.
In the present invention, amorphous alumina particles are those having a formula of Al. 2 O 3 XH 2 It is a filler represented by O (x can take a value of 0 or more and 3 or less), and a clear crystal peak is not confirmed by analysis by X-ray diffraction. In addition, amorphous alumina does not have a clear crystal peak completely confirmed by X-ray diffraction analysis, but has a slightly clear crystal peak in a broad peak (amorphous and other compositions). And mixed composition).
The “other composition” includes a gibbsite-like or bayerite-like Al (OH). 3 Boehmite or diaspore Al 2 O 3 ・ H 2 O, γ-Al 2 O 3 Or χ-Al 2 O 3 Α-Al, which is an intermediate alumina such as 2 O 3 Among these, boehmite or gibbsite is preferable in that the effects of the present invention can be satisfactorily obtained.
The “slightly clear crystal peak” is, for example, observed in the vicinity of 2θ = 14 ° when measured under the conditions described in the examples described later when the boehmite structure is included in amorphous alumina. If the integral intensity of the main peak is 10 cps · deg or more and this integral intensity is 0.30 or less with respect to the integral intensity of the broad peak existing over 2θ = 10 to 60 deg, the entire inorganic filler Can be said to be amorphous. For example, in the case of a gibbsite structure, 2θ = 18 °, in the case of a bayerite structure, 2θ = 19 °, in the case of a diaspore structure, 2θ = 20 °, γ-Al 2 O 3 In the case of the structure, 2θ = 46 °, χ-Al 2 O 3 In the case of structure, 2θ = 67 °, α-Al 2 O 3 In the case of the structure, even when the integrated intensity of the main peak observed in the vicinity of 2θ = 43 ° is 0.30 or less with respect to the integrated intensity of the broad peak existing over 2θ = 10 to 60 deg, the inorganic filler as a whole It can be said to be amorphous.
The 0 / Al element ratio present on the surface of the amorphous alumina is preferably 1.0 to 2.5 when measured using an X-ray photoelectron spectrometer. More preferably, the 0 / Al element ratio is 1.2 to 1.8. When the surface is formed with such an element ratio, it is preferable from the viewpoint of reducing the activity of hydrogen fluoride (HF) or the like in the battery.
The amorphous alumina preferably has a porous structure with a large adsorption area for adsorbing various impurities and by-products mixed in the battery system. The porous structure referred to here means a structure in which a large number of micropores or microvoids are formed inside or on the surface of the particle.
The amorphous alumina is preferably configured to include mesopores of 50 nm or less or micropores of 2 nm or less, and in particular, from the viewpoint of manifesting the effects of the present invention, the structure has developed micropores of 2 nm or less. preferable.
The specific surface area of the amorphous alumina is 50 m. 2 / G or more is preferable. Specific surface area is 50m 2 If it is less than / g, deterioration of cycle characteristics due to moisture, impurities, etc. cannot be sufficiently suppressed. On the other hand, the specific surface area of amorphous alumina is 1000m. 2 / G or less is preferable, more preferably 500 m 2 / G or less is preferred. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
The average particle diameter of the amorphous alumina is preferably in the range of 0.1 to 5.0 μm. If the average particle diameter of the amorphous alumina is smaller than 0.1 μm, it is not preferable because it may be difficult to mold the porous film, or the sliding property of the porous film may be deteriorated and handling may be difficult. Moreover, when the average particle diameter of amorphous alumina is larger than 5.0 μm, it may be difficult to form the porous membrane from the viewpoint of surface roughness when it is thinly formed.
Note that amorphous alumina may be used by mixing other inorganic fillers such as metal oxides such as α-alumina, metal hydroxides such as aluminum hydroxide, and the like.
(1-3) Third form
[Separator for non-aqueous secondary battery]
The separator for a non-aqueous secondary battery according to the third aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate. A separator for a non-aqueous secondary battery, wherein the inorganic filler has an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 / G porous filler.
By including a heat-resistant resin and an inorganic filler as in the present invention, it becomes possible to ensure sufficient heat resistance to prevent an internal short circuit even when the battery is exposed to high temperatures, thereby improving the safety of the battery. Can be secured. Moreover, since it is the structure which forms a heat resistant porous layer in a porous base material, it becomes easy to ensure sufficient mechanical strength as a separator. The inorganic filler has an average particle size of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m. 2 Because it is a porous filler of / g, durability such as cycle characteristics and storage characteristics of the battery can be suppressed by suppressing side reactions that reduce durability in the battery and removing gas generated by side reactions. Can be improved.
In addition, since this 3rd form is the structure which formed the porous film for batteries in the 1st form mentioned above as a heat resistant porous layer on the porous base material, in the following, the 1st form The description of the same configuration as that of the embodiment is omitted as appropriate.
In the present invention, the porous substrate is not particularly limited as long as it has a large number of pores or voids inside and has a porous structure in which these pores are connected to each other. Examples thereof include microporous membranes, nonwoven fabrics, paper-like sheets, and other sheets having a three-dimensional network structure. Among these, a microporous membrane is preferable from the viewpoint of handling properties and strength. As the material constituting the porous substrate, both organic materials and inorganic materials can be used, but thermoplastic resins such as polyolefins are preferable from the viewpoint of obtaining shutdown characteristics. Therefore, if such a polyolefin porous substrate is applied, both heat resistance and a shutdown function can be achieved.
Examples of the polyolefin resin include polyethylene, polypropylene, polymethylpentene, and the like. Among them, those containing 90% by weight or more of polyethylene are preferable from the viewpoint of obtaining good shutdown characteristics. As the polyethylene, for example, low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene and the like are preferably used, and particularly, high density polyethylene and ultra high molecular weight polyethylene are suitable. Furthermore, polyethylene comprising a mixture of high density polyethylene and ultra high molecular weight polyethylene is preferred from the viewpoint of strength and moldability. The molecular weight of polyethylene is preferably 100,000 to 10,000,000 in terms of weight average molecular weight, and particularly preferably a polyethylene composition containing at least 1% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. In addition, the porous substrate in the present invention may be constituted by mixing other polyolefins such as polypropylene and polymethylpentene in addition to polyethylene, or two or more layers of a polyethylene microporous membrane and a polypropylene microporous membrane. You may comprise as a laminated body of.
In the present invention, the film thickness of the porous substrate is not necessarily limited, but a range of about 5 to 20 μm is preferable. If the film thickness is less than 5 μm, sufficient strength cannot be obtained, handling becomes difficult, and the yield of the battery may be significantly reduced. When the film thickness is larger than 20 μm, it is not preferable because the movement of ions becomes difficult or the volume occupied by the separator in the battery increases and the energy density of the battery may be lowered.
The porosity of the porous substrate is preferably 10 to 60%, more preferably 20 to 50%. When the porosity is lower than 10%, it is difficult to maintain an amount of electrolyte sufficient for battery operation, and the charge / discharge characteristics of the battery may be significantly deteriorated. If the porosity exceeds 60%, the shutdown characteristics may be insufficient or the strength may be lowered, which is not preferable.
The puncture strength of the porous substrate is preferably 200 g or more, more preferably 250 g or more, more preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, and there may be a problem that the manufacturing yield does not increase.
The Gurley value (JIS P8117) of the porous substrate is preferably in the range of 100 to 500 seconds / 100 cc, more preferably in the range of 100 to 300 seconds / 100 cc. When the Gurley value is lower than 100 seconds / 100 cc, although ion permeability is excellent, shutdown characteristics and mechanical strength may be deteriorated, which is not preferable. On the other hand, if the Gurley value is larger than 500 seconds / 100 cc, the ion permeability becomes insufficient and the load inertia of the battery may be deteriorated, which is not preferable.
The average pore diameter of the porous substrate is preferably 10 to 100 nm. If the average pore diameter is smaller than 10 nm, it may be difficult to impregnate the electrolytic solution, which is not preferable. When the average pore diameter is larger than 100 nm, the interface may be clogged when the heat-resistant porous layer is formed, or the shutdown characteristics may be significantly deteriorated when the porous layer is formed. .
The heat-resistant porous layer in the present invention includes a heat-resistant resin and an inorganic filler, and has a porous structure in which a large number of pores or voids are formed inside and these pores are connected to each other. It has become. Such a heat-resistant porous layer is preferably an embodiment in which the inorganic filler is directly fixed on the porous substrate in a state where the inorganic filler is dispersed and bound in the heat-resistant resin, from the viewpoint of handling properties and the like. It should be noted that a porous layer made of only a heat resistant resin is formed on a porous substrate, and a solution containing an inorganic filler is subsequently applied and immersed in the hole or surface of the heat resistant resin layer. The aspect which the inorganic filler adhered may be sufficient. Further, the heat-resistant porous layer may be configured as an independent porous sheet such as a microporous film, a nonwoven fabric, or a paper-like sheet, and the porous sheet may be adhered to the porous substrate. Good.
The separator for a non-aqueous secondary battery of the present invention is characterized in that the above-mentioned inorganic filler is contained in the heat-resistant porous layer, but the inorganic filler is not contained in the porous substrate. Is one of the features. The function of the inorganic filler can be expected to be expressed even if it is not present in the porous layer. For example, even if the inorganic filler is contained in the porous substrate, the effect of suppressing gas generation can be obtained. . However, such a configuration is not preferable because, when a polyolefin porous substrate is applied, the shutdown function may be significantly impaired. For this reason, it is preferable in terms of construction that an inorganic filler is not contained in a layer that is expected to have a shutdown function but is contained in a porous layer that is expected to have heat resistance.
The composition of the porous layer is preferably in the range of heat-resistant resin: inorganic filler = 10: 90 to 80:20, and more preferably in the range of 10:90 to 50:50 by weight ratio. When the content of the inorganic filler is less than 20% by weight, it may be difficult to sufficiently obtain the characteristics of the inorganic filler, which is not preferable. If the content of the inorganic filler exceeds 90% by weight, it may be difficult to mold, which is not preferable. On the other hand, those containing 50% by weight or more of the inorganic filler are preferable because heat resistance characteristics such as an effect of suppressing thermal shrinkage are improved.
The porosity of the heat resistant porous layer is preferably in the range of 30 to 80%. Furthermore, the porosity of the heat resistant porous layer is preferably higher than the porosity of the porous substrate. Such a configuration has advantages in characteristics such as better ion permeability and good shutdown characteristics.
When the heat resistant porous layer is formed on both surfaces of the porous substrate, the total thickness of the heat resistant porous layer is preferably 2 μm or more and 12 μm or less. When the porous porous layer is formed only on one side, it is preferably 2 μm or more and 12 μm or less.
The nonaqueous secondary battery separator of the present invention preferably has a thickness in the range of 7 to 25 μm, more preferably 10 to 20 μm. If the film thickness is thinner than 7 μm, it is not preferable from the viewpoint of mechanical strength. Further, if it exceeds 25 μm, it is not preferable from the viewpoint of ion permeability, and it is also not preferable from the viewpoint that the volume occupied by the separator in the battery is increased and the energy density is lowered.
The porosity of the non-aqueous secondary battery separator of the present invention is preferably 20 to 70%, more preferably 30 to 60%. If the porosity is lower than 20%, it may be difficult to hold a sufficient amount of electrolyte for battery operation, which is not preferable. If the porosity exceeds 70%, the shutdown characteristics may be insufficient, and the strength and heat resistance may be lowered.
The puncture strength of the separator for a non-aqueous secondary battery of the present invention is preferably 200 g or more, more preferably 250 g or more, and further preferably 300 g or more. If the piercing strength is lower than 200 g, the strength for preventing a short circuit between the positive and negative electrodes of the battery is not sufficient, which may cause a problem that the production yield does not increase, which is not preferable.
The Gurley value (JIS P8117) in the non-aqueous secondary battery separator of the present invention is preferably in the range of 150 to 600 seconds / 100 cc, more preferably in the range of 150 to 400 seconds / 100 cc. When the Gurley value is lower than 150 seconds / 100 cc, although ion permeability is excellent, shutdown characteristics and mechanical strength may be deteriorated, which is not preferable. Further, when forming the porous layer, there is a possibility that a problem such as clogging may occur at the interface between the porous substrate and the heat-resistant porous layer. When the Gurley value is larger than 600 seconds / 100 cc, the ion permeability becomes insufficient and the load characteristics of the battery may be deteriorated.
The value obtained by subtracting the Gurley value of the porous substrate applied to the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably 250 seconds / 100 cc or less, and more preferably 200 seconds / 100 cc or less. . A smaller value is preferable in terms of characteristics such as better shutdown characteristics and improved ion permeability.
In the present invention, the heat-resistant porous layer may be formed on at least one surface of the porous substrate, but it is more preferable to form it on both the front and back surfaces of the porous substrate. By forming a heat-resistant porous layer on both the front and back sides of the porous substrate, the handling properties are improved without curling, the heat resistance such as dimensional stability at high temperatures is improved, and the cycle characteristics of the battery are also significantly improved. The effect is obtained.
[Method for producing separator for non-aqueous secondary battery]
The method for producing the separator for a non-aqueous secondary battery of the present invention is not particularly limited. For example, the separator can be produced by a production method including the following steps (i) to (iv). That is, (i) a step of producing a coating slurry containing a heat-resistant resin, an inorganic filler, and a water-soluble organic solvent, and (ii) coating the obtained coating slurry on one or both surfaces of a porous substrate. And (iii) a step of coagulating the heat resistant resin in the coated slurry, and (iv) a step of washing and drying the sheet after the coagulation step. . These steps (i) to (iv) are the same as in the case of the first embodiment described above.
In the present invention, the method for producing the porous substrate is not particularly limited. For example, a polyolefin microporous film as a porous substrate can be produced as follows. That is, a gel-like mixture of polyolefin and liquid paraffin is extruded from a die and then cooled to produce a base tape, which is stretched and heat-set. Thereafter, liquid paraffin is extracted by immersing it in an extraction solvent such as methylene chloride, and then the extraction solvent is dried to obtain a polyolefin microporous membrane.
[Non-aqueous secondary battery]
The nonaqueous secondary battery according to the third aspect of the present invention is a nonaqueous secondary battery including a positive electrode, a negative electrode, and a separator, and the separator for a nonaqueous secondary battery described above is used as the separator. It is characterized by. Such a non-aqueous secondary battery is excellent in safety and durability at high temperatures, and is excellent in cycle characteristics and the like. Other battery configurations are the same as those in the first embodiment described above.
(1-4) Fourth form
The separator for a non-aqueous secondary battery according to the fourth aspect of the present invention is a heat-resistant porous material including a porous substrate and a heat-resistant resin and an inorganic filler laminated on one or both sides of the porous substrate. A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles.
According to the present invention as described above, the same effects as those of the third embodiment described above can be obtained. In particular, since amorphous alumina adsorbs a small amount of impurities and by-products such as HF present in the battery, the cycle characteristics of the battery can be further improved.
In addition, since this 4th form is the same as the 3rd form mentioned above except the point which changed the inorganic filler into the amorphous alumina, description is abbreviate | omitted about the structure similar to a 3rd form.
(2) Second invention
The first aspect of the present invention described above is a configuration that solves the problem of compatibility between battery safety and durability in the technical field of separators and the like. 2 The structure using “/ g activated alumina” or “amorphous alumina” significantly lowers the activity of HF and is therefore excellent in the effect of improving the cycle characteristics of the battery. Therefore, in the second aspect of the present invention, focusing on this action effect, “active alumina” and “amorphous alumina” are regarded as hydrogen fluoride adsorbents, and this adsorbent is applied to each part of a non-aqueous secondary battery. explain.
(2-1) Fifth form
The non-aqueous secondary battery adsorbent according to the fifth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent has a specific surface area of 300 to 1000 m. 2 / G of activated alumina particles.
In the present invention, the specific surface area is 300 to 1000 m as the adsorbent for non-aqueous secondary batteries. 2 / G activated alumina, this activated alumina adsorbs or reacts with a small amount of HF generated in the battery, thereby reducing the HF activity and improving the cycle characteristics of the non-aqueous secondary battery. Can be made. Conventionally, there has been a technique that specifies only the specific surface area without specifying the type of porous filler, but the present invention is from the aspect that activated alumina having a specific surface area decreases the activity of HF. The present invention has been made by finding that it exhibits excellent cycle characteristics different from other porous inorganic fillers. The details of why activated alumina is superior are not known. However, as one of the reasons, since alumina is an amphoteric oxide known as a Lewis acid / Lewis base, it can be considered that HF was polarized and HF was trapped efficiently. Also, the specific surface area is 300m 2 It is considered that the surface reaction was smoothly performed and the cycle characteristics were improved by setting the amount to / g or more. Specific surface area is 1000m 2 It is technically difficult to obtain activated alumina exceeding / g at present.
In the fifth embodiment, “the specific surface area is 300 to 1000 m. 2 The configuration of the “/ g activated alumina particles” is the same as that in the first embodiment described above, and the description thereof is omitted.
[Location of activated alumina]
Examples of the embodiment containing the activated alumina include the following (A) to (C).
(A) A porous membrane for a non-aqueous secondary battery comprising an inorganic filler and a binder resin, wherein the activated alumina is contained as the inorganic filler. film.
(B) A separator for a non-aqueous secondary battery comprising a porous substrate and a porous layer containing an inorganic filler and a binder resin laminated on one or both surfaces of the porous substrate, A separator for a non-aqueous secondary battery, wherein the activated alumina is contained as an inorganic filler.
(C) A nonaqueous secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, wherein the activated alumina is contained in the battery.
As shown in the above (A) to (C), the activated alumina may be contained in a separator, may be contained in a porous film laminated on a separator or an electrode, or contained in a positive electrode and a negative electrode. In addition, you may make it contain in electrolyte solution. However, when mixed with the electrode mixture, the volume of the active material is reduced correspondingly, and the battery capacity is impaired. Therefore, an embodiment in which activated alumina is contained in the separator is preferable. Furthermore, in order to achieve both the shutdown function and the heat resistance function, the surface of the porous substrate made of a thermoplastic resin such as polyethylene is coated with a heat resistant porous layer made of a heat resistant resin such as polyamide, An embodiment in which activated alumina is contained in the heat resistant porous layer is preferred.
When the active alumina is included in the positive electrode, the positive electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to produce a positive electrode mixture. Disperse in a solvent to make a positive electrode mixture slurry. Next, the positive electrode mixture is applied to the positive electrode current collector by, for example, a doctor blade method. Subsequently, the positive electrode containing activated alumina is obtained by drying at high temperature to volatilize the solvent and pressurizing. In addition, the active alumina is fixed on the positive electrode by coating the active material side of the positive electrode with a coating solution in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the positive electrode mixture. Is also effective.
When the negative electrode contains the activated alumina, the negative electrode active material, the binder, and the conductive agent in the first embodiment described above and the active alumina are uniformly mixed to prepare a negative electrode mixture. Disperse in a solvent to make a negative electrode mixture slurry. Then, after applying this negative electrode mixture to the negative electrode current collector in the same manner as the positive electrode, the negative electrode containing activated alumina is obtained by drying at high temperature to volatilize and pressurize the solvent. In addition, the active alumina is fixed on the negative electrode by coating the active material side of the negative electrode with a coating liquid in which the active alumina is dispersed in a solvent such as NMP without containing the active alumina in the negative electrode mixture. Is also effective.
When the separator contains the activated alumina, for example, after adding the activated alumina to a thermoplastic resin such as polyethylene, the step of melt-kneading to prepare a thermoplastic resin solution containing the activated alumina, this solution from the die Extruding and cooling to form a gel-like molded product, a primary stretching step and a secondary stretching step, a step of removing the liquid solvent from the gel-shaped molded product, and a step of drying the obtained film, A separator can be obtained as a thermoplastic resin microporous film containing activated alumina. In addition, for example, a coating solution in which a binder resin such as aromatic polyamide and activated alumina are uniformly dispersed is applied on a base film such as a polypropylene film, solidified, washed and dried, and then the coating film is peeled off. Can also be obtained.
In the case of a laminated separator, activated alumina may be contained in any one of the layers or in all layers. For example, when a coating liquid in which a heat-resistant resin such as aromatic polyamide and activated alumina are uniformly dispersed is coated on one or both sides of a porous substrate such as a polyethylene microporous film or nonwoven fabric, a laminated separator containing activated alumina Is obtained. In addition, for example, a porous substrate such as a nonwoven fabric is immersed in a coating solution in which a binder resin such as PVdF and activated alumina is uniformly dispersed, taken out, and then washed and dried to obtain a composite separator. It can also be obtained.
In addition, as the binder resin for binding the activated alumina in the separator and the porous film described above, in addition to a heat-resistant resin such as aromatic polyamide, thermoplastics such as polyvinylidene fluoride (PVdF), PVdF copolymer, polyethylene, etc. Examples thereof include resins. Since the configurations of the heat-resistant resin, the porous substrate, the electrode in the non-aqueous secondary battery, the electrolytic solution, the exterior material, and the like are described in detail in the first embodiment described above, the description thereof is omitted.
(2-2) Sixth form
The non-aqueous secondary battery adsorbent according to the sixth aspect of the present invention is an adsorbent of hydrogen fluoride mixed in the non-aqueous secondary battery, and the adsorbent is amorphous alumina particles. It is characterized by that.
In the present invention, since amorphous alumina is used as the adsorbent for non-aqueous secondary batteries, amorphous alumina adsorbs minute impurities generated in the battery and by-products such as HF. Cycle characteristics can be improved.
In addition, since this 6th form is the same as that of the 5th form mentioned above except the point which changed the adsorbent into amorphous alumina, description is abbreviate | omitted about the structure similar to the 5th form mentioned above. In addition, as described above, “specific surface area is 300 to 1000 m. 2 / G activated alumina "and" amorphous alumina "have functions and effects that are very similar to each other. The activated alumina is obtained from the viewpoint of specific surface area, and the amorphous alumina is obtained from the viewpoint of crystal structure. It is. The embodiment containing the amorphous alumina is the same as the embodiment (A) to (C) in the fifth embodiment described above. Furthermore, the amorphous alumina is preferably contained in any part between the positive electrode and the negative electrode in order to suppress internal short circuit.
(1)第一、二の形態に係る実施例
以下、本発明の第一、二の形態に係る実施例について説明する。本実施例で適用した測定方法は以下の通りである。
[無機フィラーの平均粒子径]
レーザー回折式粒度分布測定装置(島津製作所社製;SALD−2000J)により測定した。分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X−100」を微量用いた。得られた体積粒度分布における中心粒子径(D50)を平均粒子径とした。
[無機フィラーの比表面積]
JIS K 8830に準じて測定した。NOVA−1200(ユアサアイオニクス社製)を用い、窒素ガス吸着法によりBET式で解析し求めた。測定の際のサンプル重量は0.1~0.2gとした。解析は3点法にて実施し、BETプロットから比表面積を求めた。
[無機フィラーの結晶構造の解析]
無機フィラーの結晶構造は、粉末X線回折装置により無機フィラーのXRD回折スペクトルを測定し、このスペクトルからバルク構造中における結晶構造を解析した。X線回折装置には、Rigaku社製、X線発生装置 ultrax 18を用い、Cu−Kα線を使用した。測定条件は、45KV−60mA、サンプリング間隔0.020°、測定範囲(2θ)5°~90°、スキャンスピード5°/minとした。測定サンプルは、めのう乳鉢を用いて人力で無機フィラーを粉砕し、ガラス試料板に詰めたものを用いた。ガラス試料板には縦18mm、幅20mm、深さ0.2mmの溝があり、試料の厚みはガラス試料板の深さとする。
[無機フィラーの元素比の測定]
無機フィラーの表面に存在する0/Alの元素比は、X線光電子分光装置(VG社製、ESCALAB200)を用いて測定し、得られた01sとAl2pの強度比から算出した。X線源はMgKα線を用いた。
[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。
[実施例1−1]
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナについてXRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。また、この活性アルミナの表面における0/Alの元素比は1.54であった。
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40の重量比で、コーネックスが7重量%となるように溶解し、コーネックス溶液を作製した。
活性アルミナ:コーネックス=30:70(重量比)となるように該コーネックス溶液に該活性アルミナを分散させ、スラリーを調整した。
該スラリーをガラス板に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行った。そして、ガラス板上に形成された多孔膜を剥離し、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[実施例1−2]
活性アルミナを平均粒子径4μm、比表面積700m2/gのゼオライト(HSZ−341NHA;東ソー社製)に変更した以外は実施例1−1と同様な方法で、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[実施例1−3]
活性炭(関西熱化学社製;MSP−20)に対してジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
活性アルミナを上記活性炭に変更した以外は実施例1−1と同様な方法で、膜厚10μmの多孔膜を得た。なお、この多孔膜は、実施例1−1のものに比べやや脆く、ハンドリング性に劣るものであった。
[実施例1−4]
活性アルミナとコーネックスの重量比を活性アルミナ:コーネックス=70:30(重量比)とした以外は実施例1−1と同様の方法で、膜厚10μmの多孔膜を得た。この多孔膜は実施例1−1のものに比べやや脆くハンドリング性に劣るものであった。
[実施例1−5]
実施例1−1で作製した電池用多孔膜に、ポリエチレン水分散液(ケミパールW900:三井化学株式会社製)を塗工し、乾燥することで、膜厚13μmの多孔膜を得た。
[比較例1−1]
活性アルミナを平均粒子径0.8μm、比表面積8m2/gの水酸化アルミニウム(昭和電工製;H−43M)に変更した以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[比較例1−2]
活性アルミナを平均粒子径0.6μm、比表面積6m2/gのアルミナ(昭和電工製:AL160SG−3)に変更した以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[比較例1−3]
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40の重量比で、コーネックスが7重量%となるように溶解し、コーネックス溶液を作製した。
該コーネックス溶液をガラス板に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行った。そして、ガラス板上に形成された多孔膜を剥離し、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[比較例1−4]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が15重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
該ポリエチレン溶液中に、ゼオライト(HSZ−500KOA;東ソー社製)を分散させたスラリーを作製した。ここで、ポリエチレンとゼオライトの混合比は、重量比で50:50とした。ゼオライトは平均粒子径が3μm、比表面積が290m2/gであった。
このスラリーを148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで10μmのハンドリング性十分な多孔膜を得た。
[比較例1−5]
水酸化アルミニウム(昭和電工製;H−43M)を205℃で熱処理し、平均粒子径0.8μm、比表面積30m2/gの活性アルミナを得た。なお、この活性アルミナについてXRDで構造解析を行なったところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。
この活性アルミナを実施例1−1の活性アルミナに変えて用いた以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[破膜テスト]
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜について、次のようにして破膜テストを実施した。まず、サンプルの多孔膜を縦6.5cm、横4.5cmの金枠に固定した。オーブンの温度を175℃として、金枠に固定したサンプルをオーブンに入れ、1時間保持した。このとき膜の破断等がなく、形状を維持できたものを○、そうでないものを×として評価した。結果を表1に示す。
[ガス発生量テスト]
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜について、次のようにして破膜テストを実施した。まず、サンプルとなる各多孔膜を240cm2の大きさに切り出し、これを85℃で16時間真空乾燥した。これを露点−60℃以下の環境でアルミパックに入れ、さらに電解液を注入し、アルミパックを真空シーラーで封止し、測定セルを作製した。ここで電解液は1M LiPF6 エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(重量比)(キシダ化学社製)とした。測定セルを85℃にて3日間保存し、保存前後の測定セルの体積を測定した。保存後の測定セルの体積から保存前の測定セルの体積を引いた値をガス発生量とした。ここで、測定セルの体積測定は23℃で行い、アルキメデスの原理に従い電子比重計(アルファミラージュ株式会社製;EW−300SG)を用いて行った。結果を表1に示す。
[非水系二次電池の作製]
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜を用いて、以下のようにして非水系二次電池を作製した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここで、セパレータとしては実施例1−1~1−5および比較例1−1~1−5の各多孔膜を用い、それぞれ表2に示す実施例1−6~1−10および比較例1−6~1−10の非水系二次電池を作製した。なお、実施例1−3,1−4の多孔膜は、ポリエチレン微多孔膜(PE微多孔膜)と積層させて用いた。ここで用いたPE微多孔膜は次のような方法で作製した。
まず、ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
このポリエチレン溶液を148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで、膜厚9μmのポリエチレン微多孔膜を得た。
[オーブンテスト]
上述のようにして作製した各電池を0.2C、4.2Vの定電圧・定電流充電で8時間充電した。それに1.8kg/cm2の荷重を印加した状態でオーブンに入れ、30℃から昇温速度5℃/minで150℃まで昇温した後、150℃にて1時間保持した。このとき、発煙したものを×と評価し、そうでなかったものを○と評価した。結果を表2に示す。
[サイクル特性]
上述のようにして作製した各電池のサイクル特性を評価した。サイクル特性の評価は1C 4.2V 2時間の定電流・定電圧充電、1C、2.75Vカットオフの定電流放電にて充放電を行い、1サイクル目の容量を基準としたときの300サイクル目の容量維持率をサイクル特性の指標とした。なお、測定時の温度は30℃とした。結果を表2に示す。
[保存テスト]
上述のようにして作製した電池を0.2C、4.2Vの定電圧・定電流充電で8時間充電した。それに1.8kg/cm2の荷重を印加した状態でオーブンに入れ、85℃で3日間保存した。保存後、0.2C、2.75Vカットオフの定電流放電を行い、残存容量を求めた。残存容量を初期容量で割った値に100をかけて容量維持率を計算した。この容量維持率を保存テストの評価の指標とした。結果を表2に示す。
[電池の膨れ]
上記の保存テスト後の各電池を目視で確認して、電池が明らかに膨らんでいたものについては×と判断し、電池の膨みが外観上分からなかったものについては○と判断した。なお、この場合の電池のふくれは、電池内でガスが発生したことによるものである。結果を表2に示す。
[実施例1−11]
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
実施例1−4で作製したスラリーを上記の正極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、正極表面に厚み3μmの本発明の電池用多孔膜を形成した。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−11の電池についても上述したオーブンテスト、サイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
[実施例1−12]
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
実施例1−4で作製したスラリーを上記の負極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、負極表面に厚み3μmの本発明の電池用多孔膜を形成した。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−12の電池についても上述したオーブンテストサイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
[実施例1−13]
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
実施例1−4で作製したスラリーを上記の正極および負極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、正極および負極表面に厚み3μmの本発明の電池用多孔膜を形成した。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−13の電池についても上述したオーブンテスト、サイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
(2)第三、四の形態に係る実施例
以下、本発明の第三、四の形態に係る実施例について説明する。本実施例で適用した測定方法は以下の通りである。なお、無機フィラーの平均粒子径、比表面積、結晶構造および元素比、ならびに膜厚の測定法については、上述した第一、二の形態に係る実施例の場合と同様である。また、セパレータの破膜テストおよびガス発生量試験についても上述した第一、二の形態に係る実施例の場合と同様である。
[空孔率]
サンプルとなる膜について、それぞれの構成材料の重量(Wi:g/m2)を真密度(di:g/cm3)で割り、これらの和(Σ(Wi/di))を求める。これを膜厚(μm)で割り、1から引いた値に100をかけることで空孔率(%)を算出した。
[ガーレ値]
JIS P8117に従い測定した。
[突刺強度]
カトーテック社製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/秒の条件で突刺試験を行い、最大突刺荷重を突刺強度とした。ここでサンプルはΦ11.3mmの穴があいた金枠(試料ホルダー)に挟み固定した。
[シャットダウン特性(SD特性)]
まず、サンプルとなるセパレータを直径19mmに打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾する。そしてセパレータに電解液を含浸させSUS板(Φ15.5mm)に挟んだ。ここで電解液は1M LiBF4プロピレンカーボネート/エチレンカーボネート(1/1重量比)を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定した。
上記測定で135~150℃の範囲で抵抗値が103ohm・cm2以上となった場合はSD特性を○とし、そうでなかった場合はSD特性を×とした。
[電池保存特性]
以下の実施例および比較例で作製したセパレータを用いて、次のとおり非水系二次電池を作製した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、以下の実施例および比較例で作製したセパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
この非水系二次電池について0.2C 4.2V 8時間の定電流・定電圧充電、0.2C、2.75Vカットオフの定電流放電を行った。5サイクル目に得られた放電容量をこのセルの初期容量とした。その後、0.2C 4.2V 8時間の定電流・定電圧充電を行い、85℃にて3日間保存した。そして、0.2C、2.75Vカットオフの定電流放電を行い、85℃、3日間保存における残存容量を求めた。残存容量を初期容量で割り100かけた値を容量維持率とし、この容量維持率を電池の保存特性の指標とした。
[電池の膨れ]
上記の電池の保存特性試験後の各電池を目視で確認して、電池が明らかに膨らんでいたものについては×と判断し、電池の膨みが外観上分からなかったものについては○と判断した。なお、この場合の電池のふくれは、電池内でガスが発生したことによるものである。
[実施例2−1]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
このポリエチレン溶液を148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。
得られたポリエチレン微多孔膜は目付け4.7g/m2、膜厚9μm、空孔率45%、ガーレ値150秒/100cc、突刺強度300gであった。
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40(重量比)にコーネックスが6重量%となるように溶解し、コーネックス溶液を作製した。
多孔質フィラーとして平均粒子径3μm、比表面積290m2/gのゼオライト(HSZ−500KOA;東ソー社製)を用いた。ゼオライト:コーネックス=50:50(重量比)となるように該コーネックス溶液に該ゼオライトを分散させ、分散液を調整した。
マイヤーバーを2本対峙させ、その間に該分散液を適量のせた。ポリエチレン微多孔膜を分散液がのっているマイヤーバー間を通過させてポリエチレン微多孔膜の両面に分散液を塗工した。ここでマイヤーバー間のクリアランスは30μm、マイヤーバーの番手は2本と#6を用いた。これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、ポリエチレン微多孔膜の表裏にゼオライトとコーネックスからなる耐熱性多孔質層を形成し、本発明の非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性は表4,5の通りである。なお、以下の実施例および比較例に係るセパレータの特性についても同様に表4,5に示した。
[実施例2−2]
多孔質フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−3]
多孔質フィラーとして平均粒子径4μm、比表面積700m2/gのゼオライト(HSZ−341NHA;東ソー社製)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−4]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。この活性炭を多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−5]
多孔質フィラーとして平均粒子径1.4μm、比表面積190m2/gの活性アルミナ(住友化学社製;KC−501)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−6]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/gの活性アルミナを得た。なお、この活性アルミナの結晶構造についてXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。
この活性アルミナを多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−7]
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナについてXRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。また、この活性アルミナの表面における0/Alの元素比は1.54であった。
この活性アルミナを多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−8]
ポリエチレン微多孔膜の片面のみに分散液を塗工し多孔質層を形成した点以外は、実施2−7と同様にして、本発明の非水系二次電池用セパレータを得た。
[比較例2−1]
実施例2−1で用いた多孔質フィラーのかわりに、無機フィラーとして平均粒子径0.6μm、比表面積6m2/gのα−アルミナ(昭和電工製:AL160SG−3)を適用した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを作製した。
[比較例2−2]
実施例1で用いた多孔質フィラーのかわりに、無機フィラーとして平均粒子径0.6μm、比表面積15m2/gのベーマイト(大明化学工業社製:C06)を適用した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを作製した。
[比較例2−3]
水酸化アルミニウム(昭和電工製;H−43M)を205℃で熱処理し、平均粒子径0.8μm、比表面積30m2/gの活性アルミナを得た。なお、この活性アルミナの結晶構造についてXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。多孔質フィラーをこの活性アルミナに変更した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを得た。
[比較例2−4]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が15重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
該ポリエチレン溶液中に重量比でポリエチレン:ゼオライト(HSZ−500KOA;東ソー社製)=50:50となるように分散させスラリーを作製した。ここで、このゼオライトは平均粒子径3μm、比表面積290m2/gである。
このスラリーを148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで多孔質フィラーを含むポリエチレン微多孔膜(非水系二次電池用セパレータ)を得た。
[比較例2−5]
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40(重量比)にコーネックスが6重量%となるように溶解し、コーネックス溶液を作製した。
マイヤーバーを2本対峙させ、その間に該コーネックス溶液を適量のせた。比較例2−4で作製した多孔質フィラーを含むポリエチレン微多孔膜をコーネックス溶液がのっているマイヤーバー間を通過させてポリエチレン微多孔膜の両面にコーネックス溶液を塗工した。ここでマイヤーバー間のクリアランスは30μm、マイヤーバーの番手は2本とも#6を用いた。これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、多孔質フィラーを含むポリエチレン微多孔膜の表裏にコーネックスからなる多孔質層を形成し、非水系二次電池用セパレータを得た。
[サイクル特性評価]
次に、耐熱性多孔質層を多孔質基材の片面あるいは両面に形成したセパレータについて、以下の通り非水系二次電池を作製し、サイクル特性に違いがあるかどうか検討した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここでセパレータは実施例2−7と実施例2−8のものを用い、表6に示す実施例2−9~2−11の電池を作製した。
サイクル特性の評価は1C 4.2V 2時間の定電流・定電圧充電、1C、2.75Vカットオフの定電流放電にて充放電を行い、1サイクル目の容量を基準としたときの300サイクル目の容量維持率をサイクル特性の指標とした。なお、測定時の温度は30℃とした。結果を表6に示す。
表6の結果より、耐熱性多孔質層を多孔質基材の両面に形成した構成の方が、片面の構成よりも容量維持率に優れていることが分かった。また、片面の構成でもポリエチレン微多孔膜を負極側に配置した方が容量維持率が高くなることが分かった。
(3)第三の形態における特殊な活性アルミナの効果について
以下、本発明の第三の形態のうち、比表面積が300~1000m2/gの活性アルミナを用いた構成について検討する。
以下の実施例で適用した測定方法は次の通りである。なお、無機フィラーの平均粒子径、比表面積、結晶構造および元素比の測定法については、上述した第一、二の形態に係る実施例の場合と同様である。
[アルミナの真密度の測定]
以下の実施例および比較例で使用したアルミナについて、真密度をマイクロウルトラピクノメータ(ユアサアイオニクス製 MUPY−21T)により求めた。また、測定にはヘリウムガスを利用した。
[実施例3−1]
(i) PE微多孔膜の製造
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させて、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理して、PE微多孔膜を得た。
(ii) ポリメタフェニレンイソフタルアミドの製造
温度計、撹拌装置及び原料投入口を備えた反応容器に、水分率が100ppm以下のNMP753gを入れ、このNMP中にメタフェニレンジアミン85.2gとアニリン0.5gを溶解し、0℃に冷却した。この冷却したジアミン溶液にイソフタル酸クロライド160.5gを撹拌しながら徐々に添加し反応させた。この反応で溶液の温度は70℃に上昇した。粘度変化が止まった後、水酸化カルシウム粉末を58.4g添加し、さらに40分間撹拌して反応を終了させて重合溶液を取り出し、水中で再沈殿させポリメタフェニレンイソフタルアミドを184.0g得た。
(iii) 活性アルミナの製造
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナの真密度は3.1g/cm2であった。また、XRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。
(iv) 積層セパレータの製造
上記のようにして得られたポリメタフェニレンイソフタルアミドと活性アルミナとが、重量比で40:60となるように調製し、これらをポリメタフェニレンイソフタルアミド濃度が5.5重量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に混合し、塗工用スラリーを得た。
マイヤーバーに上記塗工用スラリーを適量のせ、一対のマイヤーバー間に上記のようにして得たPEフィルムを通すことでPEフィルムの両面に塗工用スラリーを塗工した。これを、重量比で水:DMAc:TPG = 50:25:25で40℃となっている凝固液中に浸漬した。その後、得られたフィルムを水洗・乾燥した。これにより、耐熱性多孔質層が塗工された積層セパレータを得た。
(v) 正極の製造
コバルト酸リチウム(LiCoO2、日本化学工業社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
(vi) 負極の製造
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラック3重量部及びポリフッ化ビニリデンの乾燥重量が10重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ90μmの負極を作製した。
(vii) 非水電解質の調製
エチレンカーボネートとエチルメチルカーボネートを3:7の重量比で混合した溶液に、LiPF6が1mol/Lとなるように溶解したものを用いた。
(viii) 非水系二次電池の製造
上記のようにして得られた正極及び負極を積層セパレータを介して対向させた。これに非水電解質を含浸させ、アルミラミネートフィルムからなる外装に封入して、非水系二次電池を作製した。
[比較例3−1]
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらにフィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:アルミナ:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、PE微多孔膜からなるセパレータを得た。
このセパレータを用いた以外は、実施例3−1と同様にして非水系二次電池を作製した。
[比較例3−2]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/gの活性アルミナを得た。この活性アルミナの真密度は2.5g/cm2であった。また、XRDではアモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、この活性アルミナのバルク構造は主にギブサイトであった。
この活性アルミナを無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−3]
水酸化アルミニウム(昭和電工製;H−43M)を240℃で熱処理し、平均粒子径0.8μm、比表面積200m2/gの活性アルミナを得た。この活性アルミナの真密度は2.6g/cm2であった。また、この活性アルミナについてXRD解析を行ったところ、ギブサイトに由来するピークが観察され、2θ=18.27°のピークの積分強度が371cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.35であった。よって、この活性アルミナのバルク構造は主としてギブサイトであった。
この活性アルミナを無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−4]
無機フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−5]
無機フィラーとして平均粒子径2μm、比表面積300m2/gのシリカ(東海化学工業所製;ML−384)を用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−6]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
この活性炭を無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[容量維持率の測定]
上記のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する500サイクル時点での放電容量の割合とした。測定結果を表7に示す。
表7から分かるように、比表面積が300~1000m2/gの活性アルミナを用いた実施例3−1は、比表面積が上記範囲外である活性アルミナ(比較例3−2,3−3)や、α−アルミナ(比較例3−1)、その他の多孔質フィラー(比較例3−3~3−6)に比べて500回のサイクル特性試験後の容量維持率が格段に優れている。これは比表面積が300~1000m2/gの活性アルミナが電池内のHFの活性を低下させたためと考えられる。なお、実施例では複合セパレータにおける耐熱性多孔質層中にフィラーが適用されており、比較例ではPEセパレータ中にフィラーが適用されたという相違点はあるものの、両者はセパレータ中にフィラーを適用したという点で一致しており、上記の相違点が容量維持率に与える影響はさほど大きくない。
(4)第四の形態におけるアモルファスアルミナの効果について
以下、本発明の第四の形態のうち、アモルファスアルミナを用いた構成について検討する。各種測定方法については上述した通りである。
[実施例4−1]
上述した実施例3−1と同様にして、実施例4−1の非水系二次電池を作製した。
[比較例4−1]
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらにフィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:アルミナ:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、PE微多孔膜からなるセパレータを得た。
このセパレータを用いた以外は、上述した実施例3−1と同様にして非水系二次電池を作製した。
[比較例4−2]
無機フィラーとして平均粒子径0.6μm、比表面積15m2/gの非多孔質のアルミナ(大明化学工業製; C06)を用いた以外は、比較例4−1と同様にして、非水系二次電池を得た。なお、このアルミナについてXRD解析を行ったところ、ベーマイトに由来する明確なピークが観察された。
[比較例4−3]
無機フィラーとして平均粒子径0.8μm、比表面積7m2/gの非多孔質の水酸化アルミニウム(昭和電工製; H−43M)を用いた以外は、比較例4−1と同様にして、非水系二次電池を得た。なお、この水酸化アルミニウムについてXRD解析を行ったところ、ギブサイトに由来する明確なピークが観察された。
[容量維持率の測定]
上記のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する400サイクル時点での放電容量の割合とした。測定結果を表8に示す。
表8から分かるように、アモルファスアルミナを用いた実施例4−1は、α−アルミナ(比較例4−1)やベーマイト(比較例4−2)、ギブサイト(比較例4−3)等の他のアルミナ系フィラーに比べて400回のサイクル特性試験後の容量維持率が格段に優れている。これはアモルファスアルミナが電池内のHFの活性を低下させたためと考えられる。
(5)第五の形態に係る実施例
以下、本発明の第五の形態に係る実施例について説明する。なお、無機フィラーの平均粒子径、比表面積、真密度、結晶構造および元素比、ならびに膜厚の測定法については、上述した通りである。
[実施例5−1]
(i) 活性アルミナの製造
上述した実施例3−1と同様にして活性アルミナAを製造した。
(ii) 正極、負極、非水電解質の製造
正極、負極、非水電解質についても上述した実施例3−1と同様にして製造した。
(iii) セパレータの製造
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらに無機フィラーとして上記の活性アルミナAを分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:無機フィラー:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、ポリエチレン微多孔膜からなるPEセパレータを得た。
(iv) 非水系二次電池
上記のようにして得られた正極及び負極をセパレータを介して対向させた。これに非水電解質を含浸させ、アルミラミネートフィルムからなる外装に封入して、本発明の実施例の非水系二次電池を作製した。
[実施例5−2]
水酸化アルミニウム(昭和電工製;H−43M)を260℃で熱処理し、平均粒子径0.8μm、比表面積350m2/g、真密度3.0g/cm3の活性アルミナBを得た。この活性アルミナBについてXRDで構造解析したところ、ブロードなチャートの中にベーマイトに由来するピークが僅かに観察され、2θ=14.40°のピークの積分強度が83cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.05であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していた。
この活性アルミナBを無機フィラーとして用いた点以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−3]
フッ化ビニリデン:ヘキサフルオロプロピレン:クロロトリフルオロエチレン=97:1:2のモル比で共重合したポリマー(重量平均分子量400000)と、上記の活性アルミナAと、ジメチルアセトアミド(DMAc)と、そしてトリプロピレングリコール(TPG)の重量比がポリマー:活性アルミナ:DMAc:TPG=12:4:49:35となるよう十分に攪拌し、ドープを得た。そして、PET短繊維とポリオレフィンの短繊維からなる不織布に上記ドープを十分含浸させ、これを凝固浴中で凝固後、水洗・乾燥を行った。これにより、ポリフッ化ビニリデンと不織布の複合セパレータ(PVdF/不織布セパレータ)を得た。なお、凝固浴の組成は重量比で水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13とした。そして、PEセパレータの代わりにPVdF/不織布セパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−4]
ポリフッ化ビニリデンを5重量部、活性アルミナAを1重量部、DMAcを94重量部の組成比率で混合し、均一溶液になるように十分に攪拌し、コーティング液を作製した。そして、ポリプロピレンセパレータ(セルガード♯2400)の片面に、上記のコーティング液をバーコーターにより塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層を持つポリプロピレンセパレータ(PVdF/PPセパレータ)を得た。そして、PEセパレータの代わりにコーティング層を正極と接するようにPVdF/PPセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−5]
実施例5−4で得たPVdF/PPセパレータをコーティング層が負極と接するように用いた以外は、実施例5−4と同様にして、本発明の非水系二次電池を得た。
[実施例5−6]
マンガン酸リチウム(LiMn2O4、日揮化学社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ70μmの正極を得た。
この正極を用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−7]
コバルト酸リチウム(LiCoO2、日本化学工業社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部と、活性アルミナA3重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させて、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、ポリエチレン微多孔膜からなるPEセパレータを得た。
上記のようにして作製した正極およびPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−8]
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラックが3重量部と活性アルミナAが3重量部とポリフッ化ビニリデンの乾燥重量が10重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ91μmの負極を作製した。
この負極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−9]
実施例5−4で調製したコーティング液を、実施例5−1で製造した正極の活物質側にバーコーターを用いて塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層(正極表面層)を持つ正極を得た。
この正極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−10]
実施例5−4で調製したコーティング液を、実施例5−1で製造した負極の活物質側にバーコーターを用いて塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層(負極表面層)を持つ負極を得た。
この負極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[比較例5−1]
実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−2]
フッ化ビニリデン:ヘキサフルオロプロピレン:クロロトリフルオロエチレン=97:1:2のモル比で共重合したポリマー(重量平均分子量400000)と、ジメチルアセトアミド(DMAc)と、トリプロピレングリコール(TPG)との重量比がポリマー:DMAc:TPG=12:48:40となるよう十分に攪拌し、ドープを得た。そして、PET短繊維とポリオレフィンの短繊維からなる不織布に上記のドープを十分含浸させ、これを凝固浴中で凝固した後、水洗・乾燥を行った。これにより、ポリフッ化ビニリデンが不織布に複合化されたセパレータ(PVdF/不織布セパレータ)を得た。なお、凝固浴の組成は重量比で水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13とした。
このPVdF/不織布セパレータを用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−3]
PEセパレータの代わりに、ポリプロピレンセパレータ(セルガード♯2400)を用いた以外は、比較例1と同様にして、非水系二次電池用を得た。
[比較例5−4]
無機フィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−5]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/g、真密度2.5g/cm3の活性アルミナCを得た。この活性アルミナCの結晶構造をXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、活性アルミナCのバルク構造は主にギブサイトであることが分かった。
この活性アルミナCを無機フィラーとして用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−6]
水酸化アルミニウム(昭和電工製;H−43M)を240℃で熱処理し、平均粒子径0.8μm、比表面積200m2/g、真密度2.6g/cm3の活性アルミナDを得た。この活性アルミナDの結晶構造をXRDで解析したところ、ギブサイトに由来するピークが観察され、2θ=18.27°のピークの積分強度が371cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.35であった。よって、活性アルミナDはバルク構造にギブサイトを含むことが分かった。
この活性アルミナDを無機フィラーとして用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−7]
無機フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−8]
無機フィラーとして活性アルミナを使用せずに、平均粒子径2μm、比表面積300m2/gのシリカ(東海化学工業所製;ML−384)を用いた以外は、実施例1と同様にして、非水系二次電池を得た。
[比較例5−9]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
この活性炭を無機フィラーとして用いた以外は実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−10]
実施例5−6で製造した正極を用いた以外は、比較例5−1と同様にして、非水系二次電池を得た。
[容量維持率の測定]
以上のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する500サイクル時点での放電容量の割合とした。測定結果を表9に示す。
[性能評価]
実施例5−1~5−3及び比較例5−1~5−3の結果から分かるように、活性アルミナをセパレータに含有する実施例はすべて70パーセント以上の優れた容量維持率を示した。しかし、活性アルミナを含有しない比較例5−1~5−3は容量維持率が50%程度と低いものであった。さらに、実施例5−3~5−5はセパレータに活性アルミナを含有する層を積層させた構成であるが、すべてにおいて容量維持率が70%と優れていた。また、実施例5−4と5−5の比較からも、正極および負極の少なくともいずれか一方に活性アルミナを含有した層が存在すれば、有効であることが確認された。
実施例5−1~5−2及び比較例5−4~5−6の結果から分かるように、活性アルミナの比表面積が増加するにつれて容量維持率が優れていく傾向が観察された。そして、比較例5−6の比表面積200m2/gでは効果が不十分であり、実施例5−2の比表面積が350m2/gの活性アルミナであれば効果が十分に確認できたことから、活性アルミナの比表面積は300m2/g以上であることが好ましいと言える。また、比較例5−7および5−8では、活性アルミナの代わりに比表面積が300m2/g以上のゼオライトとシリカを用いたが、容量維持率が62%以下と活性アルミナ程は優れた効果を示さなかった。また、比表面積が1600m2/gである活性炭を用いた比較例5−9は実施例5−1~5−2と比較して容量維持率が62%と低い値となった。このことより、比表面積は1000m2/g以下であることが好ましく、より好ましくは500m2/g以下であることが好適であると言える。一方、真密度では2.7g/cm3以下及び3.9g/cm3だと容量維持率が低く、2.8~3.3g/cm3の範囲であればより良好な結果が得られることが分かった。以上のことを踏まえると、活性アルミナ特有の表面状態がHFの活性を低下させたために、容量維持率が向上したと推測できる。
正極活物質をマンガン酸リチウムにした実施例5−6と比較例5−10でも、活性アルミナを含有させたセパレータを用いることで、容量維持率が70%以上と優れた結果が得られた。また、比較例5−10はマンガン酸リチウムを使用したため、コバルト酸リチウムよりHFによる正極からの金属の溶解が起こったため、容量維持率が42%と低くなったと考えられる。
活性アルミナを電極に含有させた系と、電極表面に活性アルミナの層を積層させた系である実施例5−7~5−10を比較すると、すべての実施例において容量維持率70%以上と優れている。これにより、活性アルミナの存在場所は、電極中に含有または電極表面に積層されても効果的であることが確認された。
以上の性能評価結果をまとめると、容量維持率が優れた非水系二次電池を得るためには、比表面積が300~1000m2/gの活性アルミナを非水系二次電池に含有させること、また活性アルミナの存在場所は特に限定しなくてもよいことが知見として得られた。
[HFの除去性能]
上述した実施例5−1,5−2及び比較例5−1の非水系二次電池について、上述した容量維持率の測定を行った後、電池を分解して非水電解質を抽出した。そして、この電解質中におけるHFの含有量を測定した。
具体的に、HF含有量の測定は、容量維持率を測定した後の非水系二次電池を分解した後、エチレンカーボネートとエチルメチルカーボネートを3:7の重量比で混合した所定量の溶液中に1週間放置することにより、電池内に存在するHFを溶液で抽出した。そして、ブロモチモールブルーを指示薬として、水酸化ナトリウム水溶液で滴定を行い、抽出した溶液中の酸濃度を求めた。最後に、求めた酸濃度を非水系二次電池に用いた電解液重量当たりに換算した値を、HF含有量(ppm)とした。各サンプルについての測定結果を以下の表10に示す。なお、電池を構成する前の電解質中のHF含有量は30ppmであった。
表10の結果からも分かるように、実施例5−1,5−2の活性アルミナを使用した電池においては、比較例5−1と比較してHFの残存量が少ないことが分かる。これは、本発明における活性アルミナによって、HFが好適に捕捉されていることによるものと考えられる。
(6)第六の形態に係る実施例
以下、本発明の第六の形態に係る実施例について説明する。なお、無機フィラーの平均粒子径、比表面積、真密度、結晶構造および元素比、ならびに膜厚の測定法については、上述した通りである。
[実施例6−1]
上述した実施例5−1と同様にして非水系二次電池を作製した。
[実施例6−2]
上述した実施例5−2と同様にして非水系二次電池を作製した。
[実施例6−3]
上述した実施例5−3と同様にして非水系二次電池を作製した。
[実施例6−4]
上述した実施例5−4と同様にして非水系二次電池を作製した。
[実施例6−5]
上述した実施例5−5と同様にして非水系二次電池を作製した。
[実施例6−6]
上述した実施例5−9と同様にして非水系二次電池を作製した。
[実施例6−7]
上述した実施例5−10と同様にして非水系二次電池を作製した。
[比較例6−1]
上述した比較例5−1と同様にして非水系二次電池を作製した。
[比較例6−2]
上述した比較例5−2と同様にして非水系二次電池を作製した。
[比較例6−3]
上述した比較例5−3と同様にして非水系二次電池を作製した。
[比較例6−4]
無機フィラーとしてアルミナAを使用せずに、平均粒子径0.5μm、比表面積7m2/gの非多孔質のアルミナE(昭和電工製; AL−160SG−3)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、このアルミナEについてXRD解析を行ったところ、α−アルミナに由来する明確なピークが観察された。
[比較例6−5]
無機フィラーとしてアルミナAを使用せずに、平均粒子径0.6μm、比表面積15m2/gの非多孔質のアルミナF(大明化学工業製; C06)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、このアルミナFについてXRD解析を行ったところ、ベーマイトに由来する明確なピークが観察された。
[比較例6−6]
フィラーとしてアルミナAを使用せずに、平均粒子径0.8μm、比表面積7m2/gの非多孔質の水酸化アルミニウム(昭和電工製; H−43M)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、この水酸化アルミニウムについてXRD解析を行ったところ、ギブサイトに由来する明確なピークが観察された。
[比較例6−7]
上述した比較例5−7と同様にして非水系二次電池を作製した。
[比較例6−8]
無機フィラーとしてアルミナAを使用せずに、平均粒子径2μm、比表面積600m2/gのシリカ(東海化学工業所製;ML−644)を用いた点以外は、実施例6−1と同様にして、非水系二次電池を得た。
[比較例6−9]
上述した比較例5−9と同様にして非水系二次電池を作製した。
[容量維持率の測定]
以上のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する400サイクル時点での放電容量の割合とした。測定結果を表11に示す。
[140℃のオーブン試験]
以上のようにして作製した実施例および比較例の非水系二次電池について、0.2Cで4.2Vまで8時間充電を行った後、140℃の防暴乾燥機の中に24時間保管した。その結果、発火が確認された場合は×と評価し、発火が確認されなかった場合は○と評価した。結果を表11に示す。
[性能評価]
表11において、実施例6−1~6−2及び比較例6−1~6−6の結果より、アモルファス状のアルミナをセパレータに含有する構成であれば、70%以上の優れた容量維持率を示すことが分かる。フィラーを含有しない比較例6−1~6−3は容量維持率が60%以下と低いものであった。さらに、140℃オーブン試験より、実施例6−1~6−2では発火が確認されなかったが、比較例6−1では発火が確認されたので、実施例6−1~6−2は内部短絡における安全性にも優れていることが分かった。
また、アルミナの構造の比較では、アモルファス以外の構造を有する比較例6−4~6−6は容量維持率が60%以下と低く、さらに140℃オーブン試験において、発火が確認された。このことから、アモルファス状のアルミナはサイクル特性と内部短絡における安全性の両方に優れることが分かった。
また、他の無機フィラーとしてゼオライト、シリカ、活性炭を比較例6−7~6−9において評価したが、実施例6−1~6−2と比較して容量維持率が60%強とわずかに低く、140℃オーブン試験においては発火が確認された。このことからも、添加する無機フィラーはアモルファス状のアルミナが優れていることが分かる。
アルミナの存在場所として、実施例6−1~6−8を比較すると、すべてにおいて容量維持率が70%以上と優れ、オーブン試験においても発火しなかったことより、アモルファスアルミナの存在場所は、正極と負極の間のいずれかの部位に存在すれば、サイクル特性と内部短絡による安全性に優れることが分かった。
[熱収縮率の測定]
140℃オーブン試験における発火の有無の原因を調査するために、実施例6−1~6−2、および比較例6−1,6−4~6−9のセパレータについて、熱収縮率を測定した。
具体的には、まずサンプルとなるセパレータを18cm(MD方向)×6cm(TD)方向に切り出した。TD方向を2等分する線上に上部から2cm、17cmの箇所(点A、点B)に印を付けた。また、MD方向を2等分する線上に左から1cm、5cmの箇所に印を付けた。これにクリップをつけ105℃に調整したオーブンの中につるし、無張力下で30分間熱処理した。2点AB間、CD間長さを熱処理前後で測定し、以下の2式から熱収縮率を求めた。各サンプルについての測定結果を表12にまとめて示す。
MD方向熱収縮率=(熱処理前のAB間長さ−熱処理後のAB間長さ)/(熱処理前のAB間長さ)×100
TD方向熱収縮率=(熱処理前のCD間長さ−熱処理後のCD間長さ)/(熱処理前のCD間長さ)×100
表12より、140℃オーブン試験にて発火しなかった実施例6−1~6−2は、熱収縮率がMD方向において15%以下、TD方向については2%と低かった。これに対して、フィラーを含有していない比較例6−1、アモルファス以外のアルミナあるいは水酸化アルミニウムである比較例6−4~6−6、そしてアルミナ以外のフィラーである比較例6−7~6−9は、MD方向の熱収縮率が20%以上、TD方向の熱収縮率は3%以上と実施例6−1~6−2と比較して高かった。このことから、熱収縮率がMD方向で20%以上、TD方向が3%以上であると、140℃オーブン試験において非水系二次電池内のセパレータが破膜し、内部短絡による発火を引き起こすと推測できる。
以上の性能評価結果をまとめると、容量維持率が優れ、かつ140℃オーブン試験において発火しない安全性に優れた非水系二次電池を得るためには、アモルファス状のアルミナを負極と正極間に含有させることが良いという知見を得ることができた。 (1) Examples according to the first and second embodiments
Examples according to the first and second aspects of the present invention will be described below. The measurement method applied in this example is as follows.
[Average particle size of inorganic filler]
It measured with the laser diffraction type particle size distribution measuring apparatus (Shimadzu Corporation make; SALD-2000J). Water was used as a dispersion medium, and a small amount of nonionic surfactant “Triton X-100” was used as a dispersant. The center particle diameter (D50) in the obtained volume particle size distribution was defined as the average particle diameter.
[Specific surface area of inorganic filler]
Measurement was performed according to JIS K 8830. Using NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), the BET equation was used for analysis and determination by the nitrogen gas adsorption method. The sample weight during measurement was 0.1 to 0.2 g. The analysis was performed by a three-point method, and the specific surface area was obtained from the BET plot.
[Analysis of crystal structure of inorganic filler]
As for the crystal structure of the inorganic filler, the XRD diffraction spectrum of the inorganic filler was measured with a powder X-ray diffractometer, and the crystal structure in the bulk structure was analyzed from this spectrum. For the X-ray diffractometer, an X-ray generator ultrax 18 manufactured by Rigaku was used, and Cu-Kα rays were used. The measurement conditions were 45 KV-60 mA, sampling interval 0.020 °, measurement range (2θ) 5 ° to 90 °, and scan speed 5 ° / min. As the measurement sample, an agate mortar was used to pulverize the inorganic filler manually and packed into a glass sample plate. The glass sample plate has a groove having a length of 18 mm, a width of 20 mm, and a depth of 0.2 mm, and the thickness of the sample is the depth of the glass sample plate.
[Measurement of element ratio of inorganic filler]
The element ratio of 0 / Al existing on the surface of the inorganic filler was measured using an X-ray photoelectron spectrometer (manufactured by VG, ESCALAB 200), and calculated from the obtained 01s and Al2p intensity ratio. MgKα ray was used as the X-ray source.
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal was a cylindrical one having a bottom surface of 0.5 cm in diameter.
[Example 1-1]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. When XRD analysis was performed on this activated alumina, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The integrated intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed. The 0 / Al element ratio on the surface of the activated alumina was 1.54.
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. A Conex solution was prepared by dissolving so that Conex was 7% by weight in a weight ratio of dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40.
The activated alumina was dispersed in the Conex solution so that the activated alumina: Conex = 30: 70 (weight ratio) to prepare a slurry.
The slurry was applied to a glass plate, and this was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. It was. And the porous film formed on the glass plate was peeled, and the 10-micrometer-thick porous film with sufficient handling property was obtained.
[Example 1-2]
Activated alumina with an average particle diameter of 4 μm and a specific surface area of 700 m 2 A porous membrane having a film thickness of 10 μm having sufficient handling properties was obtained in the same manner as in Example 1-1 except that the zeolite was changed to / g zeolite (HSZ-341NHA; manufactured by Tosoh Corporation).
[Example 1-3]
By performing wet pulverization (2-mm diameter zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent on activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20), an average particle diameter of 0.6 μm and a specific surface area of 1600 m 2 / G of activated carbon was obtained.
A porous film having a thickness of 10 μm was obtained in the same manner as in Example 1-1 except that the activated alumina was changed to the activated carbon. In addition, this porous film was a little weak compared with the thing of Example 1-1, and was inferior to handleability.
[Example 1-4]
A porous film having a film thickness of 10 μm was obtained in the same manner as in Example 1-1 except that the weight ratio of activated alumina to conex was changed to activated alumina: conex = 70: 30 (weight ratio). This porous film was slightly brittle and inferior in handleability as compared with that of Example 1-1.
[Example 1-5]
The porous membrane for batteries produced in Example 1-1 was coated with a polyethylene aqueous dispersion (Kemipearl W900: manufactured by Mitsui Chemicals) and dried to obtain a porous membrane having a thickness of 13 μm.
[Comparative Example 1-1]
Activated alumina with an average particle size of 0.8 μm and a specific surface area of 8 m 2 A porous film with a handleability of 10 μm in thickness was obtained in the same manner as in Example 1-1, except that / g aluminum hydroxide (made by Showa Denko; H-43M) was used.
[Comparative Example 1-2]
Activated alumina with an average particle diameter of 0.6 μm and a specific surface area of 6 m 2 A porous film having a film thickness of 10 μm and a sufficient handling property was obtained in the same manner as in Example 1-1, except that it was changed to / g alumina (manufactured by Showa Denko: AL160SG-3).
[Comparative Example 1-3]
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. A Conex solution was prepared by dissolving so that Conex was 7% by weight in a weight ratio of dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40.
The Conex solution was applied to a glass plate, and this was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. Went. And the porous film formed on the glass plate was peeled, and the 10-micrometer-thick porous film with sufficient handling property was obtained.
[Comparative Example 1-4]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are in a ratio of 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin are added so that the polyethylene concentration is 15% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
A slurry in which zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was dispersed in the polyethylene solution was prepared. Here, the mixing ratio of polyethylene and zeolite was 50:50 by weight. Zeolite has an average particle size of 3 μm and a specific surface area of 290 m. 2 / G.
This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Thereafter, the film was dried at 50 ° C. and annealed at 120 ° C. to obtain a porous film with sufficient handling property of 10 μm.
[Comparative Example 1-5]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 205 ° C., average particle size 0.8 μm, specific surface area 30 m 2 / G of activated alumina was obtained. In addition, when structural analysis was performed on this activated alumina by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. It turned out not to be alumina.
A porous membrane having a film thickness of 10 μm and sufficient handleability was obtained by the same method as in Example 1-1, except that this activated alumina was used in place of the activated alumina of Example 1-1.
[Bearing test]
For each of the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, a membrane breakage test was performed as follows. First, the porous film of the sample was fixed to a metal frame having a length of 6.5 cm and a width of 4.5 cm. The temperature of the oven was set to 175 ° C., and the sample fixed to the metal frame was put in the oven and held for 1 hour. At this time, a film that was not broken and the shape could be maintained was evaluated as ◯, and a film that was not evaluated as X. The results are shown in Table 1.
[Gas generation test]
For each of the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, a membrane breakage test was performed as follows. First, each porous membrane to be a sample is 240 cm 2 And was vacuum-dried at 85 ° C. for 16 hours. This was put in an aluminum pack in an environment with a dew point of −60 ° C. or less, an electrolyte was further injected, the aluminum pack was sealed with a vacuum sealer, and a measurement cell was produced. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (weight ratio) (manufactured by Kishida Chemical Co., Ltd.). The measurement cell was stored at 85 ° C. for 3 days, and the volume of the measurement cell before and after storage was measured. A value obtained by subtracting the volume of the measurement cell before storage from the volume of the measurement cell after storage was taken as the gas generation amount. Here, the volume measurement of the measurement cell was performed at 23 ° C., and was performed using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd .; EW-300SG) according to Archimedes' principle. The results are shown in Table 1.
[Production of non-aqueous secondary battery]
Using the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, non-aqueous secondary batteries were produced as follows.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
Here, as the separator, the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 were used, and Examples 1-6 to 1-10 and Comparative Example 1 shown in Table 2 were used. Non-aqueous secondary batteries of −6 to 1-10 were produced. The porous membranes of Examples 1-3 and 1-4 were used by being laminated with a polyethylene microporous membrane (PE microporous membrane). The PE microporous film used here was produced by the following method.
First, as the polyethylene powder, GUR2126 (weight average molecular weight 4150,000, melting point 141 ° C.) and GURX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film | membrane with a film thickness of 9 micrometers.
[Oven test]
Each battery produced as described above was charged with constant voltage / constant current charging of 0.2 C and 4.2 V for 8 hours. And 1.8kg / cm 2 The sample was put in an oven with the above load applied, heated from 30 ° C. to 150 ° C. at a heating rate of 5 ° C./min, and then held at 150 ° C. for 1 hour. At this time, the smoked product was evaluated as x, and the smoked product was evaluated as o. The results are shown in Table 2.
[Cycle characteristics]
The cycle characteristics of each battery produced as described above were evaluated. Evaluation of cycle characteristics is 1C 4.2V 2 hours constant current / constant voltage charge, 1C, charge / discharge with constant current discharge of 2.75V cutoff, 300 cycles when the first cycle capacity is used as a reference The eye capacity retention rate was used as an index of cycle characteristics. The temperature at the time of measurement was 30 ° C. The results are shown in Table 2.
[Save test]
The battery produced as described above was charged for 8 hours at a constant voltage / constant current charge of 0.2 C, 4.2 V. And 1.8kg / cm 2 The sample was put in an oven with a load of and stored at 85 ° C. for 3 days. After storage, a constant current discharge of 0.2 C and 2.75 V cut-off was performed to determine the remaining capacity. The capacity retention rate was calculated by multiplying the value obtained by dividing the remaining capacity by the initial capacity by 100. This capacity maintenance rate was used as an index for evaluating the storage test. The results are shown in Table 2.
[Battery swelling]
Each battery after the above storage test was visually confirmed. If the battery was clearly swollen, it was judged as x, and if the battery was not swollen in appearance, it was judged as ◯. In this case, the swelling of the battery is due to the generation of gas in the battery. The results are shown in Table 2.
[Example 1-11]
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
The slurry prepared in Example 1-4 was applied to the surface of the positive electrode, and this was mixed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. Immersion was followed by washing with water and drying to form a porous membrane for a battery of the present invention having a thickness of 3 μm on the surface of the positive electrode.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-11 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3.
[Example 1-12]
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The slurry prepared in Example 1-4 was applied to the surface of the negative electrode, and this was put into a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. Immersion was followed by washing with water and drying to form a porous membrane for a battery of the present invention having a thickness of 3 μm on the negative electrode surface.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-12 was also evaluated for the above-described oven test cycle characteristics, storage test, and battery blistering. The results are shown in Table 3.
[Example 1-13]
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The slurry prepared in Example 1-4 was applied to the surfaces of the positive electrode and the negative electrode, and this was coagulated liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. It was immersed in, then washed with water and dried to form a porous film for a battery of the present invention having a thickness of 3 μm on the positive electrode and negative electrode surfaces.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-13 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3.
(2) Examples according to the third and fourth aspects
Examples according to the third and fourth aspects of the present invention will be described below. The measurement method applied in this example is as follows. In addition, about the average particle diameter of an inorganic filler, a specific surface area, a crystal structure and element ratio, and the measuring method of a film thickness, it is the same as that of the Example which concerns on the 1st, 2nd form mentioned above. The separator film breakage test and gas generation amount test are also the same as in the first and second embodiments.
[Porosity]
About the film | membrane used as a sample, the weight (Wi: g / m) of each constituent material 2 ) True density (di: g / cm 3 ) To obtain the sum (Σ (Wi / di)). The porosity (%) was calculated by dividing this by the film thickness (μm) and multiplying the value subtracted from 1 by 100.
[Gurley value]
It measured according to JIS P8117.
[Puncture strength]
Using a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd., a piercing test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / second, and the maximum piercing load was defined as the piercing strength. Here, the sample was sandwiched and fixed in a metal frame (sample holder) having a hole of Φ11.3 mm.
[Shutdown characteristics (SD characteristics)]
First, a separator as a sample is punched out to a diameter of 19 mm, dipped in a 3 wt% methanol solution of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P), and air-dried. Then, the separator was impregnated with the electrolytic solution and sandwiched between SUS plates (Φ15.5 mm). Here, the electrolyte is 1M LiBF 4 Propylene carbonate / ethylene carbonate (1/1 weight ratio) was used. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple and put it in the oven. The cell resistance was measured by increasing the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz.
The resistance value is 10 in the range of 135 to 150 ° C. in the above measurement. 3 ohm-cm 2 In the case of the above, the SD characteristic was evaluated as “good”, and when it was not, the SD characteristic was evaluated as “poor”.
[Battery storage characteristics]
Using the separators produced in the following examples and comparative examples, non-aqueous secondary batteries were produced as follows.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through the separators prepared in the following examples and comparative examples. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
The non-aqueous secondary battery was subjected to constant current / constant voltage charging at 0.2 C 4.2 V for 8 hours and constant current discharge at 0.2 C, 2.75 V cutoff. The discharge capacity obtained at the fifth cycle was defined as the initial capacity of this cell. Then, constant current / constant voltage charging of 0.2C 4.2V for 8 hours was performed, and stored at 85 ° C. for 3 days. And the constant current discharge of 0.2C and 2.75V cut-off was performed, and the residual capacity in storage at 85 ° C. for 3 days was determined. A value obtained by dividing the remaining capacity by the initial capacity and multiplying by 100 was defined as a capacity retention rate, and this capacity retention rate was used as an index of storage characteristics of the battery.
[Battery swelling]
Each battery after the storage characteristics test of the above battery was visually confirmed, and it was judged that the battery was clearly swollen as x, and the battery that was not clearly swollen was judged as ○. . In this case, the swelling of the battery is due to the generation of gas in the battery.
[Example 2-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC.
The obtained polyethylene microporous membrane has a basis weight of 4.7 g / m. 2 The film thickness was 9 μm, the porosity was 45%, the Gurley value was 150 seconds / 100 cc, and the puncture strength was 300 g.
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. Conex solution was prepared by dissolving in 6% by weight of Conex in dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40 (weight ratio).
As a porous filler, an average particle diameter of 3 μm and a specific surface area of 290 m 2 / G of zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was used. The zeolite was dispersed in the Conex solution so that the ratio of zeolite: Conex = 50: 50 (weight ratio) was obtained to prepare a dispersion.
Two Meyer bars were placed opposite to each other, and an appropriate amount of the dispersion was put between them. The polyethylene microporous membrane was passed between Mayer bars carrying the dispersion, and the dispersion was applied to both sides of the polyethylene microporous membrane. Here, the clearance between the Mayer bars was 30 μm, and the number of the Mayer bars was 2 and # 6. This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. A heat-resistant porous layer made of Conex was formed to obtain a separator for a non-aqueous secondary battery of the present invention. The characteristics of the obtained non-aqueous secondary battery separator are shown in Tables 4 and 5. The characteristics of the separators according to the following examples and comparative examples are also shown in Tables 4 and 5.
[Example 2-2]
As a porous filler, the average particle diameter is 2 μm and the specific surface area is 400 m. 2 / G of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as Example 2-1 to obtain a non-aqueous secondary battery separator.
[Example 2-3]
Porous filler has an average particle size of 4 μm and a specific surface area of 700 m 2 / G of zeolite (HSZ-341NHA; manufactured by Tosoh Corporation) was used in the same manner as in Example 2-1, to obtain a nonaqueous secondary battery separator.
[Example 2-4]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained. The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated carbon as a porous filler.
[Example 2-5]
Porous filler has an average particle size of 1.4 μm and a specific surface area of 190 m 2 A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-1, except that / g of activated alumina (manufactured by Sumitomo Chemical Co., Ltd .; KC-501) was used.
[Example 2-6]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G of activated alumina was obtained. In addition, when the crystal structure of this activated alumina was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. Therefore, the bulk structure was mainly gibbsite, and the amorphous structure was amorphous. It turned out not to be alumina.
The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated alumina as a porous filler.
[Example 2-7]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. When XRD analysis was performed on this activated alumina, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The integrated intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed. The 0 / Al element ratio on the surface of the activated alumina was 1.54.
The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated alumina as a porous filler.
[Example 2-8]
A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-7, except that the dispersion was applied to only one surface of a polyethylene microporous membrane to form a porous layer.
[Comparative Example 2-1]
Instead of the porous filler used in Example 2-1, the average particle diameter was 0.6 μm and the specific surface area was 6 m as an inorganic filler. 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g of α-alumina (manufactured by Showa Denko: AL160SG-3) was applied.
[Comparative Example 2-2]
Instead of the porous filler used in Example 1, an inorganic filler has an average particle diameter of 0.6 μm and a specific surface area of 15 m. 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g boehmite (manufactured by Daimei Chemical Co., Ltd .: C06) was applied.
[Comparative Example 2-3]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 205 ° C., average particle size 0.8 μm, specific surface area 30 m 2 / G of activated alumina was obtained. In addition, when the crystal structure of this activated alumina was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. Therefore, the bulk structure was mainly gibbsite, and the amorphous structure was amorphous. It turned out not to be alumina. A separator for a non-aqueous secondary battery was obtained in the same manner as in Example 2-1, except that the porous filler was changed to this activated alumina.
[Comparative Example 2-4]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are in a ratio of 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin are added so that the polyethylene concentration is 15% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
A slurry was prepared by dispersing the polyethylene solution in a weight ratio such that polyethylene: zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) = 50: 50. Here, this zeolite has an average particle diameter of 3 μm and a specific surface area of 290 m. 2 / G.
This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film (non-aqueous secondary battery separator) containing a porous filler.
[Comparative Example 2-5]
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. Conex solution was prepared by dissolving in 6% by weight of Conex in dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40 (weight ratio).
Two Mayer bars were placed against each other, and an appropriate amount of the Conex solution was placed between them. The polyethylene microporous membrane containing the porous filler prepared in Comparative Example 2-4 was passed between Mayer bars on which the Conex solution was placed, and the Conex solution was applied to both sides of the polyethylene microporous membrane. Here, the clearance between the Mayer bars was 30 μm, and the number of the Mayer bars was # 6. This is immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water, dried, and a polyethylene microporous film containing a porous filler A porous layer made of Conex was formed on the front and back surfaces of the non-aqueous secondary battery separator.
[Cycle characteristics evaluation]
Next, a non-aqueous secondary battery was manufactured as follows for a separator in which a heat-resistant porous layer was formed on one or both sides of a porous substrate, and it was examined whether there was a difference in cycle characteristics.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
Here, separators of Example 2-7 and Example 2-8 were used, and batteries of Examples 2-9 to 2-11 shown in Table 6 were produced.
Evaluation of cycle characteristics is 1C 4.2V 2 hours constant current / constant voltage charge, 1C, charge / discharge with constant current discharge of 2.75V cutoff, 300 cycles when the first cycle capacity is used as a reference The eye capacity retention rate was used as an index of cycle characteristics. The temperature at the time of measurement was 30 ° C. The results are shown in Table 6.
From the results of Table 6, it was found that the configuration in which the heat-resistant porous layer was formed on both sides of the porous substrate was superior in capacity retention rate than the configuration on one side. It was also found that the capacity retention rate was higher when the polyethylene microporous membrane was arranged on the negative electrode side even with a single-sided configuration.
(3) Effect of special activated alumina in the third form
Hereinafter, in the third embodiment of the present invention, the specific surface area is 300 to 1000 m. 2 The structure using activated alumina of / g is examined.
The measurement methods applied in the following examples are as follows. In addition, about the measuring method of the average particle diameter of an inorganic filler, a specific surface area, a crystal structure, and element ratio, it is the same as that of the case which concerns on the 1st and 2nd form mentioned above.
[Measurement of true density of alumina]
The true density of the alumina used in the following Examples and Comparative Examples was determined with a micro ultra pycnometer (MUSPY-21T manufactured by Yuasa Ionics). Helium gas was used for the measurement.
[Example 3-1]
(I) Production of PE microporous membrane
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained PE microporous film.
(Ii) Production of polymetaphenylene isophthalamide
In a reaction vessel equipped with a thermometer, a stirrer, and a raw material inlet, 753 g of NMP having a moisture content of 100 ppm or less was put, 85.2 g of metaphenylenediamine and 0.5 g of aniline were dissolved in this NMP, and cooled to 0 ° C. . To this cooled diamine solution, 160.5 g of isophthalic acid chloride was gradually added with stirring to react. This reaction increased the temperature of the solution to 70 ° C. After the change in viscosity stopped, 58.4 g of calcium hydroxide powder was added and stirred for another 40 minutes to complete the reaction, and the polymerization solution was taken out and reprecipitated in water to obtain 184.0 g of polymetaphenylene isophthalamide. .
(Iii) Production of activated alumina
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 3.1 g / cm. 2 Met. In addition, when XRD analysis was performed, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed.
(Iv) Manufacture of laminated separator
The polymetaphenylene isophthalamide obtained as described above and activated alumina were prepared so that the weight ratio was 40:60, and the polymetaphenylene isophthalamide concentration was 5.5% by weight. Dimethylacetamide (DMAc) and tripropylene glycol (TPG) were mixed in a mixed solvent having a weight ratio of 50:50 to obtain a coating slurry.
The coating slurry was applied to both sides of the PE film by placing an appropriate amount of the coating slurry on a Meyer bar and passing the PE film obtained as described above between a pair of Meyer bars. This was immersed in a coagulation liquid having a weight ratio of water: DMAc: TPG = 50: 25: 25 and 40 ° C. Thereafter, the obtained film was washed with water and dried. Thereby, the laminated separator with which the heat resistant porous layer was coated was obtained.
(V) Manufacture of positive electrode
Lithium cobalt oxide (LiCoO 2 89.5 parts by weight of powder, manufactured by Nippon Chemical Industry Co., Ltd., 4.5 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), and 6 wt. A positive electrode paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride so as to be part. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
(Vi) Manufacture of negative electrode
As a negative electrode active material, 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black and 6 parts by weight of polyfluorinated so that the dry weight of polyvinylidene fluoride is 10 parts by weight. A negative electrode paste was prepared using an NMP solution of vinylidene. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode having a thickness of 90 μm.
(Vii) Preparation of non-aqueous electrolyte
LiPF was added to a solution in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7. 6 Was dissolved so as to be 1 mol / L.
(Viii) Manufacture of non-aqueous secondary batteries
The positive electrode and negative electrode obtained as described above were opposed to each other through a laminated separator. This was impregnated with a non-aqueous electrolyte and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery.
[Comparative Example 3-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. Dissolved in a mixed solvent and further used as a filler with an average particle size of 0.5 μm and a specific surface area of 7 m 2 / G of α-alumina (AL-160SG-3; manufactured by Showa Denko) was dispersed to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: alumina: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
A nonaqueous secondary battery was produced in the same manner as in Example 3-1, except that this separator was used.
[Comparative Example 3-2]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 2.5 g / cm. 2 Met. Further, in XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from gibbsite was clearly observed. Therefore, the bulk structure of this activated alumina was mainly gibbsite.
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 3-1, except that this activated alumina was used as an inorganic filler.
[Comparative Example 3-3]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 240 ° C., average particle diameter 0.8 μm, specific surface area 200 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 2.6 g / cm. 2 Met. Further, when XRD analysis was performed on this activated alumina, a peak derived from gibbsite was observed, the integrated intensity of the peak at 2θ = 18.27 ° was 371 cps · deg, and the integrated intensity of this main peak was 2θ = 10. It was 0.35 with respect to the integrated intensity | strength of the broad peak which exists over ~ 60deg. Therefore, the bulk structure of this activated alumina was mainly gibbsite.
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 3-1, except that this activated alumina was used as an inorganic filler.
[Comparative Example 3-4]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 400 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used.
[Comparative Example 3-5]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 300 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-384) was used.
[Comparative Example 3-6]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained.
A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that this activated carbon was used as an inorganic filler.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity maintenance rate is the discharge at the time of 500 cycles with respect to the initial discharging capacity. The capacity ratio. Table 7 shows the measurement results.
As can be seen from Table 7, the specific surface area is 300 to 1000 m. 2 Example 3-1 using activated alumina / g of activated alumina having a specific surface area outside the above range (Comparative Examples 3-2 and 3-3), α-alumina (Comparative Example 3-1), and others Compared with the porous filler (Comparative Examples 3-3 to 3-6), the capacity retention rate after 500 cycles of the cycle characteristic test is remarkably excellent. This has a specific surface area of 300-1000m 2 This is considered to be because / g of activated alumina lowered the activity of HF in the battery. In addition, although the filler was applied in the heat-resistant porous layer in a composite separator in an Example and there was a difference that the filler was applied in the PE separator in the comparative example, both applied the filler in the separator. Therefore, the influence of the above difference on the capacity maintenance rate is not so great.
(4) Effect of amorphous alumina in the fourth form
Hereinafter, the configuration using amorphous alumina in the fourth embodiment of the present invention will be examined. Various measurement methods are as described above.
[Example 4-1]
A nonaqueous secondary battery of Example 4-1 was produced in the same manner as Example 3-1 described above.
[Comparative Example 4-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. Dissolved in a mixed solvent and further used as a filler with an average particle size of 0.5 μm and a specific surface area of 7 m 2 / G of α-alumina (AL-160SG-3; manufactured by Showa Denko) was dispersed to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: alumina: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
A nonaqueous secondary battery was produced in the same manner as in Example 3-1 described above except that this separator was used.
[Comparative Example 4-2]
As an inorganic filler, average particle diameter 0.6 μm, specific surface area 15 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous alumina (manufactured by Daimei Chemical Co., Ltd .; C06) was used. When this alumina was subjected to XRD analysis, a clear peak derived from boehmite was observed.
[Comparative Example 4-3]
As an inorganic filler, average particle diameter 0.8μm, specific surface area 7m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous aluminum hydroxide (manufactured by Showa Denko; H-43M) was used. When this aluminum hydroxide was subjected to XRD analysis, a clear peak derived from gibbsite was observed.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity retention rate is discharging at 400 cycles with respect to the initial discharging capacity. The capacity ratio. Table 8 shows the measurement results.
As can be seen from Table 8, Example 4-1 using amorphous alumina includes α-alumina (Comparative Example 4-1), boehmite (Comparative Example 4-2), gibbsite (Comparative Example 4-3) and the like. Compared to the alumina-based filler, the capacity retention rate after 400 cycle characteristic tests is remarkably superior. This is presumably because amorphous alumina lowered the activity of HF in the battery.
(5) Example according to the fifth embodiment
Examples according to the fifth aspect of the present invention will be described below. The average particle diameter, specific surface area, true density, crystal structure and element ratio, and film thickness measuring method of the inorganic filler are as described above.
[Example 5-1]
(I) Production of activated alumina
Activated alumina A was produced in the same manner as in Example 3-1.
(Ii) Production of positive electrode, negative electrode and non-aqueous electrolyte
A positive electrode, a negative electrode, and a nonaqueous electrolyte were also produced in the same manner as in Example 3-1.
(Iii) Manufacture of separators
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. It was dissolved in a mixed solvent, and the activated alumina A was dispersed as an inorganic filler to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: inorganic filler: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the PE separator which consists of a polyethylene microporous film.
(Iv) Non-aqueous secondary battery
The positive electrode and negative electrode obtained as described above were opposed to each other through a separator. This was impregnated with a non-aqueous electrolyte and sealed in an outer package made of an aluminum laminate film to produce a non-aqueous secondary battery of an example of the present invention.
[Example 5-2]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 260 ° C., average particle size 0.8 μm, specific surface area 350 m 2 / G, true density 3.0 g / cm 3 Activated alumina B was obtained. As a result of XRD structural analysis of this activated alumina B, a peak derived from boehmite was slightly observed in the broad chart, and the integrated intensity of the peak at 2θ = 14.40 ° was 83 cps · deg. The integrated intensity was 0.05 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina mainly has an amorphous bulk structure and a very small amount of boehmite phase was mixed.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this activated alumina B was used as an inorganic filler.
[Example 5-3]
Polymer (weight average molecular weight 400000) copolymerized in a molar ratio of vinylidene fluoride: hexafluoropropylene: chlorotrifluoroethylene = 97: 1: 2, the above-mentioned activated alumina A, dimethylacetamide (DMAc), and tri The dope was obtained by sufficiently stirring so that the weight ratio of propylene glycol (TPG) was polymer: active alumina: DMAc: TPG = 12: 4: 49: 35. Then, a nonwoven fabric composed of PET short fibers and polyolefin short fibers was sufficiently impregnated with the dope, solidified in a coagulation bath, washed and dried. This obtained the composite separator (PVdF / nonwoven fabric separator) of polyvinylidene fluoride and the nonwoven fabric. The composition of the coagulation bath was water: dimethylacetamide: tripropylene glycol = 57: 30: 13 by weight ratio. And the non-aqueous secondary battery of this invention was obtained like Example 5-1, except having used PVdF / nonwoven fabric separator instead of PE separator.
[Example 5-4]
A coating solution was prepared by mixing 5 parts by weight of polyvinylidene fluoride, 1 part by weight of activated alumina A, and 94 parts by weight of DMAc and stirring sufficiently to obtain a uniform solution. And after apply | coating said coating liquid to the single side | surface of a polypropylene separator (Celgard # 2400) with the bar coater, this was dried at 60 degreeC. As a result, a polypropylene separator (PVdF / PP separator) having a coating layer having a thickness of 4 μm was obtained. And the nonaqueous secondary battery of this invention was obtained like Example 5-1, except having used the PVdF / PP separator so that the coating layer might contact | connect a positive electrode instead of PE separator.
[Example 5-5]
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-4 except that the PVdF / PP separator obtained in Example 5-4 was used so that the coating layer was in contact with the negative electrode.
[Example 5-6]
Lithium manganate (LiMn 2 O 4 89.5 parts by weight of powder (manufactured by JGC Chemical Co., Ltd.), 4.5 parts by weight of acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 6 parts by weight of dry weight of polyvinylidene fluoride (manufactured by CLEA Chemical Industries, Ltd.) Thus, a positive electrode paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 70 μm.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used.
[Example 5-7]
Lithium cobalt oxide (LiCoO 2 , Manufactured by Nippon Chemical Industry Co., Ltd.) 89.5 parts by weight of powder, 4.5 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 3 parts by weight of activated alumina A and polyvinylidene fluoride (manufactured by Claire Chemical Industries, Ltd.) A positive electrode paste was prepared using 6 wt% of an NMP solution of polyvinylidene fluoride so that the dry weight of 6) was 6 parts by weight. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the PE separator which consists of a polyethylene microporous film.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that the positive electrode and PE separator produced as described above were used.
[Example 5-8]
As negative electrode active material, 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black, 3 parts by weight of activated alumina A, and 10 parts by weight of dry weight of polyvinylidene fluoride As described above, a negative electrode agent paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to produce a negative electrode having a thickness of 91 μm.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
[Example 5-9]
The coating liquid prepared in Example 5-4 was applied to the active material side of the positive electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a positive electrode having a coating layer (positive electrode surface layer) having a thickness of 4 μm was obtained.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used and the PE separator in Example 5-7 was used.
[Example 5-10]
The coating liquid prepared in Example 5-4 was applied to the active material side of the negative electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a negative electrode having a coating layer (negative electrode surface layer) having a thickness of 4 μm was obtained.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
[Comparative Example 5-1]
A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that the PE separator in Example 5-7 was used.
[Comparative Example 5-2]
Weight of polymer (weight average molecular weight 400000) copolymerized at a molar ratio of vinylidene fluoride: hexafluoropropylene: chlorotrifluoroethylene = 97: 1: 2, dimethylacetamide (DMAc), and tripropylene glycol (TPG) The dope was obtained by sufficiently stirring so that the ratio was polymer: DMAc: TPG = 12: 48: 40. Then, a nonwoven fabric composed of PET short fibers and polyolefin short fibers was sufficiently impregnated with the above dope, solidified in a coagulation bath, washed with water and dried. Thereby, a separator (PVdF / nonwoven fabric separator) in which polyvinylidene fluoride was combined with a nonwoven fabric was obtained. The composition of the coagulation bath was water: dimethylacetamide: tripropylene glycol = 57: 30: 13 by weight ratio.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this PVdF / nonwoven fabric separator was used.
[Comparative Example 5-3]
A non-aqueous secondary battery was obtained in the same manner as in Comparative Example 1 except that a polypropylene separator (Celguard # 2400) was used instead of the PE separator.
[Comparative Example 5-4]
As an inorganic filler, average particle size 0.5 μm, specific surface area 7 m 2 A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that / g of α-alumina (AL-160SG-3; manufactured by Showa Denko) was used.
[Comparative Example 5-5]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G, true density 2.5 g / cm 3 Of activated alumina C was obtained. When the crystal structure of this activated alumina C was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from gibbsite was clearly observed. I found out.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated alumina C was used as an inorganic filler.
[Comparative Example 5-6]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 240 ° C., average particle diameter 0.8 μm, specific surface area 200 m 2 / G, true density 2.6 g / cm 3 Of activated alumina D was obtained. When the crystal structure of this activated alumina D was analyzed by XRD, a peak derived from gibbsite was observed, the integrated intensity of the peak at 2θ = 18.27 ° was 371 cps · deg, and the integrated intensity of this main peak was 2θ = The integrated intensity of the broad peak existing from 10 to 60 deg was 0.35. Therefore, it turned out that activated alumina D contains gibbsite in the bulk structure.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated alumina D was used as an inorganic filler.
[Comparative Example 5-7]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 400 m 2 / G zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as in Example 5-1, to obtain a non-aqueous secondary battery.
[Comparative Example 5-8]
Without using activated alumina as an inorganic filler, the average particle size is 2 μm and the specific surface area is 300 m. 2 A non-aqueous secondary battery was obtained in the same manner as in Example 1 except that / g of silica (manufactured by Tokai Chemical Industry; ML-384) was used.
[Comparative Example 5-9]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated carbon was used as an inorganic filler.
[Comparative Example 5-10]
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 5-1, except that the positive electrode produced in Example 5-6 was used.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity maintenance rate is the discharge at the time of 500 cycles with respect to the initial discharging capacity. The capacity ratio. Table 9 shows the measurement results.
[Performance evaluation]
As can be seen from the results of Examples 5-1 to 5-3 and Comparative Examples 5-1 to 5-3, all of the examples containing activated alumina in the separator showed an excellent capacity retention of 70% or more. However, Comparative Examples 5-1 to 5-3 not containing activated alumina had a capacity retention rate as low as about 50%. Further, Examples 5-3 to 5-5 have a configuration in which a layer containing activated alumina is laminated on the separator, but the capacity retention rate is excellent at 70% in all cases. Also, comparison between Examples 5-4 and 5-5 confirmed that it was effective if a layer containing activated alumina was present in at least one of the positive electrode and the negative electrode.
As can be seen from the results of Examples 5-1 to 5-2 and Comparative Examples 5-4 to 5-6, there was observed a tendency that the capacity retention rate was excellent as the specific surface area of the activated alumina was increased. And the specific surface area 200m of Comparative Example 5-6 2 / G, the effect is insufficient, and the specific surface area of Example 5-2 is 350 m. 2 Since the effect was sufficiently confirmed with activated alumina / g, the specific surface area of activated alumina was 300 m. 2 / G or more is preferred. In Comparative Examples 5-7 and 5-8, the specific surface area was 300 m instead of activated alumina. 2 / G or more of zeolite and silica were used, but the capacity retention rate was 62% or less, and the activated alumina did not show the excellent effect. The specific surface area is 1600m 2 In Comparative Example 5-9 using activated carbon of / g, the capacity retention rate was as low as 62% compared to Examples 5-1 and 5-2. From this, the specific surface area is 1000m 2 / G or less, more preferably 500 m 2 / G or less is suitable. On the other hand, the true density is 2.7 g / cm. 3 Below and 3.9 g / cm 3 Then, the capacity retention rate is low, and 2.8 to 3.3 g / cm 3 It was found that better results could be obtained within this range. Based on the above, it can be estimated that the capacity maintenance rate has improved because the surface condition peculiar to activated alumina has reduced the activity of HF.
Even in Examples 5-6 and Comparative Example 5-10 in which the positive electrode active material was lithium manganate, excellent results were obtained with a capacity retention rate of 70% or more by using a separator containing activated alumina. In Comparative Example 5-10, since lithium manganate was used, the metal from the positive electrode was dissolved by HF rather than lithium cobaltate, so the capacity retention rate was considered to be as low as 42%.
When comparing the system containing activated alumina in the electrode and Examples 5-7 to 5-10 in which the active alumina layer was laminated on the electrode surface, the capacity retention rate was 70% or more in all Examples. Are better. As a result, it was confirmed that the location of the activated alumina was effective even if contained in the electrode or laminated on the electrode surface.
Summarizing the above performance evaluation results, in order to obtain a non-aqueous secondary battery with an excellent capacity retention rate, the specific surface area is 300 to 1000 m. 2 As a result, it was found that / g of activated alumina is contained in a non-aqueous secondary battery, and the location of the activated alumina is not particularly limited.
[HF removal performance]
About the non-aqueous secondary battery of Examples 5-1 and 5-2 and Comparative Example 5-1, the capacity retention rate was measured, and then the battery was disassembled to extract a non-aqueous electrolyte. And content of HF in this electrolyte was measured.
Specifically, the HF content is measured by disassembling the non-aqueous secondary battery after measuring the capacity retention rate, and then in a predetermined amount of solution in which ethylene carbonate and ethyl methyl carbonate are mixed at a weight ratio of 3: 7. And left for 1 week to extract HF present in the battery with a solution. Then, titration was performed with an aqueous sodium hydroxide solution using bromothymol blue as an indicator, and the acid concentration in the extracted solution was determined. Finally, the value obtained by converting the obtained acid concentration per weight of the electrolyte used in the non-aqueous secondary battery was defined as the HF content (ppm). The measurement results for each sample are shown in Table 10 below. The HF content in the electrolyte before constituting the battery was 30 ppm.
As can be seen from the results in Table 10, it can be seen that in the battery using the activated alumina of Examples 5-1 and 5-2, the residual amount of HF is small as compared with Comparative Example 5-1. This is considered to be because HF is suitably captured by the activated alumina in the present invention.
(6) Example according to the sixth aspect
Examples according to the sixth aspect of the present invention will be described below. The average particle diameter, specific surface area, true density, crystal structure and element ratio, and film thickness measuring method of the inorganic filler are as described above.
[Example 6-1]
A non-aqueous secondary battery was produced in the same manner as in Example 5-1.
[Example 6-2]
A non-aqueous secondary battery was produced in the same manner as in Example 5-2 described above.
[Example 6-3]
A non-aqueous secondary battery was produced in the same manner as Example 5-3 described above.
[Example 6-4]
A non-aqueous secondary battery was produced in the same manner as in Example 5-4 described above.
[Example 6-5]
A non-aqueous secondary battery was produced in the same manner as in Example 5-5 described above.
[Example 6-6]
A non-aqueous secondary battery was produced in the same manner as in Example 5-9 described above.
[Example 6-7]
A nonaqueous secondary battery was produced in the same manner as in Example 5-10 described above.
[Comparative Example 6-1]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-1 described above.
[Comparative Example 6-2]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-2 described above.
[Comparative Example 6-3]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-3 described above.
[Comparative Example 6-4]
Without using alumina A as an inorganic filler, the average particle size is 0.5 μm and the specific surface area is 7 m. 2 / G nonporous alumina E (manufactured by Showa Denko; AL-160SG-3) was used in the same manner as in Example 6-1 to obtain a nonaqueous secondary battery. When this alumina E was subjected to XRD analysis, a clear peak derived from α-alumina was observed.
[Comparative Example 6-5]
Without using alumina A as an inorganic filler, the average particle diameter is 0.6 μm and the specific surface area is 15 m. 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1, except that / g nonporous alumina F (Daimei Chemical Industries; C06) was used. When this alumina F was subjected to XRD analysis, a clear peak derived from boehmite was observed.
[Comparative Example 6-6]
Without using alumina A as a filler, average particle diameter 0.8μm, specific surface area 7m 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1 except that / g nonporous aluminum hydroxide (Showa Denko; H-43M) was used. When this aluminum hydroxide was subjected to XRD analysis, a clear peak derived from gibbsite was observed.
[Comparative Example 6-7]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-7 described above.
[Comparative Example 6-8]
Without using alumina A as an inorganic filler, the average particle diameter is 2 μm and the specific surface area is 600 m. 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1 except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-644) was used.
[Comparative Example 6-9]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-9 described above.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity retention rate is discharging at 400 cycles with respect to the initial discharging capacity. The capacity ratio. Table 11 shows the measurement results.
[140 ° C oven test]
The non-aqueous secondary batteries of Examples and Comparative Examples produced as described above were charged at 0.2 C to 4.2 V for 8 hours, and then stored in an anti-drying dryer at 140 ° C. for 24 hours. As a result, when ignition was confirmed, it evaluated as x, and when ignition was not confirmed, it evaluated as (circle). The results are shown in Table 11.
[Performance evaluation]
In Table 11, from the results of Examples 6-1 to 6-2 and Comparative Examples 6-1 to 6-6, an excellent capacity maintenance ratio of 70% or more is obtained if the structure contains amorphous alumina in the separator. It can be seen that Comparative Examples 6-1 to 6-3 containing no filler had a capacity retention rate as low as 60% or less. Furthermore, according to the 140 ° C. oven test, ignition was not confirmed in Examples 6-1 to 6-2, but ignition was confirmed in Comparative Example 6-1, so Examples 6-1 to 6-2 were internal. It was found that the safety in short circuit is also excellent.
In comparison of the structures of alumina, Comparative Examples 6-4 to 6-6 having a structure other than amorphous had a capacity retention rate as low as 60% or less, and further, ignition was confirmed in a 140 ° C. oven test. This indicates that amorphous alumina is excellent in both cycle characteristics and safety in internal short circuit.
Further, as other inorganic fillers, zeolite, silica, and activated carbon were evaluated in Comparative Examples 6-7 to 6-9, but the capacity retention rate was slightly over 60% as compared with Examples 6-1 to 6-2. Low and ignition was confirmed in the 140 ° C. oven test. This also shows that amorphous alumina is excellent as the inorganic filler to be added.
When Examples 6-1 to 6-8 were compared as the location of alumina, the capacity retention rate was excellent at 70% or more in all cases, and the presence of amorphous alumina was positive because it did not ignite in the oven test. It was found that if it exists in any part between the negative electrode and the negative electrode, the cycle characteristics and safety due to internal short circuit are excellent.
[Measurement of heat shrinkage]
In order to investigate the cause of the presence or absence of ignition in the 140 ° C. oven test, the thermal contraction rate was measured for the separators of Examples 6-1 to 6-2 and Comparative Examples 6-1 and 6-4 to 6-9. .
Specifically, first, a separator as a sample was cut in a direction of 18 cm (MD direction) × 6 cm (TD). On the line that bisects the TD direction, points (point A, point B) of 2 cm and 17 cm from the top were marked. In addition, marks were placed at 1 cm and 5 cm from the left on the line that bisects the MD direction. This was clipped and hung in an oven adjusted to 105 ° C. and heat-treated for 30 minutes under no tension. The length between two points AB and the length between CDs were measured before and after the heat treatment, and the thermal shrinkage rate was obtained from the following two formulas. The measurement results for each sample are summarized in Table 12.
MD direction thermal shrinkage = (length between AB before heat treatment−length between AB after heat treatment) / (length between AB before heat treatment) × 100
TD direction thermal shrinkage = (length between CDs before heat treatment−length between CDs after heat treatment) / (length between CDs before heat treatment) × 100
From Table 12, Examples 6-1 to 6-2, which did not ignite in the 140 ° C. oven test, had a heat shrinkage ratio of 15% or less in the MD direction and 2% in the TD direction. On the other hand, Comparative Example 6-1 containing no filler, Comparative Examples 6-4 to 6-6 which are alumina or aluminum hydroxide other than amorphous, and Comparative Examples 6-7 to 6 which are fillers other than alumina In 6-9, the thermal shrinkage rate in the MD direction was 20% or more, and the thermal shrinkage rate in the TD direction was 3% or more, which was higher than those in Examples 6-1 to 6-2. From this, when the thermal shrinkage rate is 20% or more in the MD direction and 3% or more in the TD direction, the separator in the non-aqueous secondary battery breaks in the 140 ° C. oven test and causes ignition due to an internal short circuit. I can guess.
To summarize the above performance evaluation results, in order to obtain a non-aqueous secondary battery with excellent capacity maintenance rate and excellent safety that does not ignite in a 140 ° C. oven test, amorphous alumina is contained between the negative electrode and the positive electrode. The knowledge that it was good to be able to be made was able to be acquired.
以下、本発明の第一、二の形態に係る実施例について説明する。本実施例で適用した測定方法は以下の通りである。
[無機フィラーの平均粒子径]
レーザー回折式粒度分布測定装置(島津製作所社製;SALD−2000J)により測定した。分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X−100」を微量用いた。得られた体積粒度分布における中心粒子径(D50)を平均粒子径とした。
[無機フィラーの比表面積]
JIS K 8830に準じて測定した。NOVA−1200(ユアサアイオニクス社製)を用い、窒素ガス吸着法によりBET式で解析し求めた。測定の際のサンプル重量は0.1~0.2gとした。解析は3点法にて実施し、BETプロットから比表面積を求めた。
[無機フィラーの結晶構造の解析]
無機フィラーの結晶構造は、粉末X線回折装置により無機フィラーのXRD回折スペクトルを測定し、このスペクトルからバルク構造中における結晶構造を解析した。X線回折装置には、Rigaku社製、X線発生装置 ultrax 18を用い、Cu−Kα線を使用した。測定条件は、45KV−60mA、サンプリング間隔0.020°、測定範囲(2θ)5°~90°、スキャンスピード5°/minとした。測定サンプルは、めのう乳鉢を用いて人力で無機フィラーを粉砕し、ガラス試料板に詰めたものを用いた。ガラス試料板には縦18mm、幅20mm、深さ0.2mmの溝があり、試料の厚みはガラス試料板の深さとする。
[無機フィラーの元素比の測定]
無機フィラーの表面に存在する0/Alの元素比は、X線光電子分光装置(VG社製、ESCALAB200)を用いて測定し、得られた01sとAl2pの強度比から算出した。X線源はMgKα線を用いた。
[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。
[実施例1−1]
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナについてXRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。また、この活性アルミナの表面における0/Alの元素比は1.54であった。
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40の重量比で、コーネックスが7重量%となるように溶解し、コーネックス溶液を作製した。
活性アルミナ:コーネックス=30:70(重量比)となるように該コーネックス溶液に該活性アルミナを分散させ、スラリーを調整した。
該スラリーをガラス板に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行った。そして、ガラス板上に形成された多孔膜を剥離し、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[実施例1−2]
活性アルミナを平均粒子径4μm、比表面積700m2/gのゼオライト(HSZ−341NHA;東ソー社製)に変更した以外は実施例1−1と同様な方法で、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[実施例1−3]
活性炭(関西熱化学社製;MSP−20)に対してジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
活性アルミナを上記活性炭に変更した以外は実施例1−1と同様な方法で、膜厚10μmの多孔膜を得た。なお、この多孔膜は、実施例1−1のものに比べやや脆く、ハンドリング性に劣るものであった。
[実施例1−4]
活性アルミナとコーネックスの重量比を活性アルミナ:コーネックス=70:30(重量比)とした以外は実施例1−1と同様の方法で、膜厚10μmの多孔膜を得た。この多孔膜は実施例1−1のものに比べやや脆くハンドリング性に劣るものであった。
[実施例1−5]
実施例1−1で作製した電池用多孔膜に、ポリエチレン水分散液(ケミパールW900:三井化学株式会社製)を塗工し、乾燥することで、膜厚13μmの多孔膜を得た。
[比較例1−1]
活性アルミナを平均粒子径0.8μm、比表面積8m2/gの水酸化アルミニウム(昭和電工製;H−43M)に変更した以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[比較例1−2]
活性アルミナを平均粒子径0.6μm、比表面積6m2/gのアルミナ(昭和電工製:AL160SG−3)に変更した以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[比較例1−3]
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40の重量比で、コーネックスが7重量%となるように溶解し、コーネックス溶液を作製した。
該コーネックス溶液をガラス板に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行った。そして、ガラス板上に形成された多孔膜を剥離し、ハンドリング性が十分な膜厚10μmの多孔膜を得た。
[比較例1−4]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が15重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
該ポリエチレン溶液中に、ゼオライト(HSZ−500KOA;東ソー社製)を分散させたスラリーを作製した。ここで、ポリエチレンとゼオライトの混合比は、重量比で50:50とした。ゼオライトは平均粒子径が3μm、比表面積が290m2/gであった。
このスラリーを148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで10μmのハンドリング性十分な多孔膜を得た。
[比較例1−5]
水酸化アルミニウム(昭和電工製;H−43M)を205℃で熱処理し、平均粒子径0.8μm、比表面積30m2/gの活性アルミナを得た。なお、この活性アルミナについてXRDで構造解析を行なったところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。
この活性アルミナを実施例1−1の活性アルミナに変えて用いた以外は実施例1−1と同様の方法で、膜厚10μmのハンドリング性が十分な多孔膜を得た。
[破膜テスト]
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜について、次のようにして破膜テストを実施した。まず、サンプルの多孔膜を縦6.5cm、横4.5cmの金枠に固定した。オーブンの温度を175℃として、金枠に固定したサンプルをオーブンに入れ、1時間保持した。このとき膜の破断等がなく、形状を維持できたものを○、そうでないものを×として評価した。結果を表1に示す。
[ガス発生量テスト]
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜について、次のようにして破膜テストを実施した。まず、サンプルとなる各多孔膜を240cm2の大きさに切り出し、これを85℃で16時間真空乾燥した。これを露点−60℃以下の環境でアルミパックに入れ、さらに電解液を注入し、アルミパックを真空シーラーで封止し、測定セルを作製した。ここで電解液は1M LiPF6 エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(重量比)(キシダ化学社製)とした。測定セルを85℃にて3日間保存し、保存前後の測定セルの体積を測定した。保存後の測定セルの体積から保存前の測定セルの体積を引いた値をガス発生量とした。ここで、測定セルの体積測定は23℃で行い、アルキメデスの原理に従い電子比重計(アルファミラージュ株式会社製;EW−300SG)を用いて行った。結果を表1に示す。
上記のようにして作製した実施例1−1~1−5および比較例1−1~1−5の各多孔膜を用いて、以下のようにして非水系二次電池を作製した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここで、セパレータとしては実施例1−1~1−5および比較例1−1~1−5の各多孔膜を用い、それぞれ表2に示す実施例1−6~1−10および比較例1−6~1−10の非水系二次電池を作製した。なお、実施例1−3,1−4の多孔膜は、ポリエチレン微多孔膜(PE微多孔膜)と積層させて用いた。ここで用いたPE微多孔膜は次のような方法で作製した。
まず、ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
このポリエチレン溶液を148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで、膜厚9μmのポリエチレン微多孔膜を得た。
[オーブンテスト]
上述のようにして作製した各電池を0.2C、4.2Vの定電圧・定電流充電で8時間充電した。それに1.8kg/cm2の荷重を印加した状態でオーブンに入れ、30℃から昇温速度5℃/minで150℃まで昇温した後、150℃にて1時間保持した。このとき、発煙したものを×と評価し、そうでなかったものを○と評価した。結果を表2に示す。
[サイクル特性]
上述のようにして作製した各電池のサイクル特性を評価した。サイクル特性の評価は1C 4.2V 2時間の定電流・定電圧充電、1C、2.75Vカットオフの定電流放電にて充放電を行い、1サイクル目の容量を基準としたときの300サイクル目の容量維持率をサイクル特性の指標とした。なお、測定時の温度は30℃とした。結果を表2に示す。
[保存テスト]
上述のようにして作製した電池を0.2C、4.2Vの定電圧・定電流充電で8時間充電した。それに1.8kg/cm2の荷重を印加した状態でオーブンに入れ、85℃で3日間保存した。保存後、0.2C、2.75Vカットオフの定電流放電を行い、残存容量を求めた。残存容量を初期容量で割った値に100をかけて容量維持率を計算した。この容量維持率を保存テストの評価の指標とした。結果を表2に示す。
[電池の膨れ]
上記の保存テスト後の各電池を目視で確認して、電池が明らかに膨らんでいたものについては×と判断し、電池の膨みが外観上分からなかったものについては○と判断した。なお、この場合の電池のふくれは、電池内でガスが発生したことによるものである。結果を表2に示す。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
実施例1−4で作製したスラリーを上記の正極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、正極表面に厚み3μmの本発明の電池用多孔膜を形成した。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−11の電池についても上述したオーブンテスト、サイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
[実施例1−12]
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
実施例1−4で作製したスラリーを上記の負極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、負極表面に厚み3μmの本発明の電池用多孔膜を形成した。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−12の電池についても上述したオーブンテストサイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
[実施例1−13]
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
実施例1−4で作製したスラリーを上記の正極および負極表面に塗工し、これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、正極および負極表面に厚み3μmの本発明の電池用多孔膜を形成した。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。また、セパレータは前述の実施例1−8,1−9におけるPE微多孔膜を用いた。
この実施例1−13の電池についても上述したオーブンテスト、サイクル特性、保存テスト、および電池のふくれについて評価した。結果を表3に示す。
以下、本発明の第三、四の形態に係る実施例について説明する。本実施例で適用した測定方法は以下の通りである。なお、無機フィラーの平均粒子径、比表面積、結晶構造および元素比、ならびに膜厚の測定法については、上述した第一、二の形態に係る実施例の場合と同様である。また、セパレータの破膜テストおよびガス発生量試験についても上述した第一、二の形態に係る実施例の場合と同様である。
[空孔率]
サンプルとなる膜について、それぞれの構成材料の重量(Wi:g/m2)を真密度(di:g/cm3)で割り、これらの和(Σ(Wi/di))を求める。これを膜厚(μm)で割り、1から引いた値に100をかけることで空孔率(%)を算出した。
[ガーレ値]
JIS P8117に従い測定した。
[突刺強度]
カトーテック社製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/秒の条件で突刺試験を行い、最大突刺荷重を突刺強度とした。ここでサンプルはΦ11.3mmの穴があいた金枠(試料ホルダー)に挟み固定した。
[シャットダウン特性(SD特性)]
まず、サンプルとなるセパレータを直径19mmに打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾する。そしてセパレータに電解液を含浸させSUS板(Φ15.5mm)に挟んだ。ここで電解液は1M LiBF4プロピレンカーボネート/エチレンカーボネート(1/1重量比)を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定した。
上記測定で135~150℃の範囲で抵抗値が103ohm・cm2以上となった場合はSD特性を○とし、そうでなかった場合はSD特性を×とした。
[電池保存特性]
以下の実施例および比較例で作製したセパレータを用いて、次のとおり非水系二次電池を作製した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、以下の実施例および比較例で作製したセパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
この非水系二次電池について0.2C 4.2V 8時間の定電流・定電圧充電、0.2C、2.75Vカットオフの定電流放電を行った。5サイクル目に得られた放電容量をこのセルの初期容量とした。その後、0.2C 4.2V 8時間の定電流・定電圧充電を行い、85℃にて3日間保存した。そして、0.2C、2.75Vカットオフの定電流放電を行い、85℃、3日間保存における残存容量を求めた。残存容量を初期容量で割り100かけた値を容量維持率とし、この容量維持率を電池の保存特性の指標とした。
[電池の膨れ]
上記の電池の保存特性試験後の各電池を目視で確認して、電池が明らかに膨らんでいたものについては×と判断し、電池の膨みが外観上分からなかったものについては○と判断した。なお、この場合の電池のふくれは、電池内でガスが発生したことによるものである。
[実施例2−1]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
このポリエチレン溶液を148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。
得られたポリエチレン微多孔膜は目付け4.7g/m2、膜厚9μm、空孔率45%、ガーレ値150秒/100cc、突刺強度300gであった。
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40(重量比)にコーネックスが6重量%となるように溶解し、コーネックス溶液を作製した。
多孔質フィラーとして平均粒子径3μm、比表面積290m2/gのゼオライト(HSZ−500KOA;東ソー社製)を用いた。ゼオライト:コーネックス=50:50(重量比)となるように該コーネックス溶液に該ゼオライトを分散させ、分散液を調整した。
マイヤーバーを2本対峙させ、その間に該分散液を適量のせた。ポリエチレン微多孔膜を分散液がのっているマイヤーバー間を通過させてポリエチレン微多孔膜の両面に分散液を塗工した。ここでマイヤーバー間のクリアランスは30μm、マイヤーバーの番手は2本と#6を用いた。これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、ポリエチレン微多孔膜の表裏にゼオライトとコーネックスからなる耐熱性多孔質層を形成し、本発明の非水系二次電池用セパレータを得た。得られた非水系二次電池用セパレータの特性は表4,5の通りである。なお、以下の実施例および比較例に係るセパレータの特性についても同様に表4,5に示した。
[実施例2−2]
多孔質フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−3]
多孔質フィラーとして平均粒子径4μm、比表面積700m2/gのゼオライト(HSZ−341NHA;東ソー社製)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−4]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。この活性炭を多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−5]
多孔質フィラーとして平均粒子径1.4μm、比表面積190m2/gの活性アルミナ(住友化学社製;KC−501)を用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−6]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/gの活性アルミナを得た。なお、この活性アルミナの結晶構造についてXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。
この活性アルミナを多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−7]
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナについてXRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。また、この活性アルミナの表面における0/Alの元素比は1.54であった。
この活性アルミナを多孔質フィラーとして用いた点以外は、実施例2−1と同様にして、本発明の非水系二次電池用セパレータを得た。
[実施例2−8]
ポリエチレン微多孔膜の片面のみに分散液を塗工し多孔質層を形成した点以外は、実施2−7と同様にして、本発明の非水系二次電池用セパレータを得た。
[比較例2−1]
実施例2−1で用いた多孔質フィラーのかわりに、無機フィラーとして平均粒子径0.6μm、比表面積6m2/gのα−アルミナ(昭和電工製:AL160SG−3)を適用した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを作製した。
[比較例2−2]
実施例1で用いた多孔質フィラーのかわりに、無機フィラーとして平均粒子径0.6μm、比表面積15m2/gのベーマイト(大明化学工業社製:C06)を適用した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを作製した。
[比較例2−3]
水酸化アルミニウム(昭和電工製;H−43M)を205℃で熱処理し、平均粒子径0.8μm、比表面積30m2/gの活性アルミナを得た。なお、この活性アルミナの結晶構造についてXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、バルク構造は主にギブサイトであり、アモルファスアルミナではないことが分かった。多孔質フィラーをこの活性アルミナに変更した点以外は、実施例2−1と同様にして、非水系二次電池用セパレータを得た。
[比較例2−4]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143とを1:9(重量比)となるようにして、ポリエチレン濃度が15重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
該ポリエチレン溶液中に重量比でポリエチレン:ゼオライト(HSZ−500KOA;東ソー社製)=50:50となるように分散させスラリーを作製した。ここで、このゼオライトは平均粒子径3μm、比表面積290m2/gである。
このスラリーを148℃でダイから押出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行い二軸延伸した。ここで縦延伸は延伸倍率5.5倍、延伸温度90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することで多孔質フィラーを含むポリエチレン微多孔膜(非水系二次電池用セパレータ)を得た。
[比較例2−5]
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。ジメチルアセトアミド(DMAc):トリプロピレングリコール(TPG)=60:40(重量比)にコーネックスが6重量%となるように溶解し、コーネックス溶液を作製した。
マイヤーバーを2本対峙させ、その間に該コーネックス溶液を適量のせた。比較例2−4で作製した多孔質フィラーを含むポリエチレン微多孔膜をコーネックス溶液がのっているマイヤーバー間を通過させてポリエチレン微多孔膜の両面にコーネックス溶液を塗工した。ここでマイヤーバー間のクリアランスは30μm、マイヤーバーの番手は2本とも#6を用いた。これを重量比で水:DMAc:TPG=70:18:12(重量比)で30℃となっている凝固液中に浸漬し、次いで水洗、乾燥を行い、多孔質フィラーを含むポリエチレン微多孔膜の表裏にコーネックスからなる多孔質層を形成し、非水系二次電池用セパレータを得た。
次に、耐熱性多孔質層を多孔質基材の片面あるいは両面に形成したセパレータについて、以下の通り非水系二次電池を作製し、サイクル特性に違いがあるかどうか検討した。
コバルト酸リチウム(LiCoO2;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF6エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここでセパレータは実施例2−7と実施例2−8のものを用い、表6に示す実施例2−9~2−11の電池を作製した。
サイクル特性の評価は1C 4.2V 2時間の定電流・定電圧充電、1C、2.75Vカットオフの定電流放電にて充放電を行い、1サイクル目の容量を基準としたときの300サイクル目の容量維持率をサイクル特性の指標とした。なお、測定時の温度は30℃とした。結果を表6に示す。
(3)第三の形態における特殊な活性アルミナの効果について
以下、本発明の第三の形態のうち、比表面積が300~1000m2/gの活性アルミナを用いた構成について検討する。
以下の実施例で適用した測定方法は次の通りである。なお、無機フィラーの平均粒子径、比表面積、結晶構造および元素比の測定法については、上述した第一、二の形態に係る実施例の場合と同様である。
[アルミナの真密度の測定]
以下の実施例および比較例で使用したアルミナについて、真密度をマイクロウルトラピクノメータ(ユアサアイオニクス製 MUPY−21T)により求めた。また、測定にはヘリウムガスを利用した。
[実施例3−1]
(i) PE微多孔膜の製造
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させて、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理して、PE微多孔膜を得た。
(ii) ポリメタフェニレンイソフタルアミドの製造
温度計、撹拌装置及び原料投入口を備えた反応容器に、水分率が100ppm以下のNMP753gを入れ、このNMP中にメタフェニレンジアミン85.2gとアニリン0.5gを溶解し、0℃に冷却した。この冷却したジアミン溶液にイソフタル酸クロライド160.5gを撹拌しながら徐々に添加し反応させた。この反応で溶液の温度は70℃に上昇した。粘度変化が止まった後、水酸化カルシウム粉末を58.4g添加し、さらに40分間撹拌して反応を終了させて重合溶液を取り出し、水中で再沈殿させポリメタフェニレンイソフタルアミドを184.0g得た。
(iii) 活性アルミナの製造
水酸化アルミニウム(昭和電工製;H−43M)を280℃で熱処理し、平均粒子径0.8μm、比表面積400m2/gの活性アルミナを得た。この活性アルミナの真密度は3.1g/cm2であった。また、XRD解析を行ったところ、ブロードなチャートの中にベーマイトに由来するピークが極僅かに観察され、2θ=14.39°のピークの積分強度が98cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.07であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していたことから、アモルファスアルミナとも言える。
(iv) 積層セパレータの製造
上記のようにして得られたポリメタフェニレンイソフタルアミドと活性アルミナとが、重量比で40:60となるように調製し、これらをポリメタフェニレンイソフタルアミド濃度が5.5重量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に混合し、塗工用スラリーを得た。
マイヤーバーに上記塗工用スラリーを適量のせ、一対のマイヤーバー間に上記のようにして得たPEフィルムを通すことでPEフィルムの両面に塗工用スラリーを塗工した。これを、重量比で水:DMAc:TPG = 50:25:25で40℃となっている凝固液中に浸漬した。その後、得られたフィルムを水洗・乾燥した。これにより、耐熱性多孔質層が塗工された積層セパレータを得た。
(v) 正極の製造
コバルト酸リチウム(LiCoO2、日本化学工業社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
(vi) 負極の製造
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラック3重量部及びポリフッ化ビニリデンの乾燥重量が10重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ90μmの負極を作製した。
(vii) 非水電解質の調製
エチレンカーボネートとエチルメチルカーボネートを3:7の重量比で混合した溶液に、LiPF6が1mol/Lとなるように溶解したものを用いた。
(viii) 非水系二次電池の製造
上記のようにして得られた正極及び負極を積層セパレータを介して対向させた。これに非水電解質を含浸させ、アルミラミネートフィルムからなる外装に封入して、非水系二次電池を作製した。
[比較例3−1]
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらにフィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:アルミナ:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、PE微多孔膜からなるセパレータを得た。
このセパレータを用いた以外は、実施例3−1と同様にして非水系二次電池を作製した。
[比較例3−2]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/gの活性アルミナを得た。この活性アルミナの真密度は2.5g/cm2であった。また、XRDではアモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、この活性アルミナのバルク構造は主にギブサイトであった。
この活性アルミナを無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−3]
水酸化アルミニウム(昭和電工製;H−43M)を240℃で熱処理し、平均粒子径0.8μm、比表面積200m2/gの活性アルミナを得た。この活性アルミナの真密度は2.6g/cm2であった。また、この活性アルミナについてXRD解析を行ったところ、ギブサイトに由来するピークが観察され、2θ=18.27°のピークの積分強度が371cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.35であった。よって、この活性アルミナのバルク構造は主としてギブサイトであった。
この活性アルミナを無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−4]
無機フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−5]
無機フィラーとして平均粒子径2μm、比表面積300m2/gのシリカ(東海化学工業所製;ML−384)を用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[比較例3−6]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
この活性炭を無機フィラーとして用いた以外は、比較例3−1と同様にして、非水系二次電池を得た。
[容量維持率の測定]
上記のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する500サイクル時点での放電容量の割合とした。測定結果を表7に示す。
(4)第四の形態におけるアモルファスアルミナの効果について
以下、本発明の第四の形態のうち、アモルファスアルミナを用いた構成について検討する。各種測定方法については上述した通りである。
[実施例4−1]
上述した実施例3−1と同様にして、実施例4−1の非水系二次電池を作製した。
[比較例4−1]
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらにフィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:アルミナ:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、PE微多孔膜からなるセパレータを得た。
このセパレータを用いた以外は、上述した実施例3−1と同様にして非水系二次電池を作製した。
[比較例4−2]
無機フィラーとして平均粒子径0.6μm、比表面積15m2/gの非多孔質のアルミナ(大明化学工業製; C06)を用いた以外は、比較例4−1と同様にして、非水系二次電池を得た。なお、このアルミナについてXRD解析を行ったところ、ベーマイトに由来する明確なピークが観察された。
[比較例4−3]
無機フィラーとして平均粒子径0.8μm、比表面積7m2/gの非多孔質の水酸化アルミニウム(昭和電工製; H−43M)を用いた以外は、比較例4−1と同様にして、非水系二次電池を得た。なお、この水酸化アルミニウムについてXRD解析を行ったところ、ギブサイトに由来する明確なピークが観察された。
[容量維持率の測定]
上記のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する400サイクル時点での放電容量の割合とした。測定結果を表8に示す。
(5)第五の形態に係る実施例
以下、本発明の第五の形態に係る実施例について説明する。なお、無機フィラーの平均粒子径、比表面積、真密度、結晶構造および元素比、ならびに膜厚の測定法については、上述した通りである。
[実施例5−1]
(i) 活性アルミナの製造
上述した実施例3−1と同様にして活性アルミナAを製造した。
(ii) 正極、負極、非水電解質の製造
正極、負極、非水電解質についても上述した実施例3−1と同様にして製造した。
(iii) セパレータの製造
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、さらに無機フィラーとして上記の活性アルミナAを分散させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:無機フィラー:流動パラフィン:デカリン=30:10:55:30(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、ポリエチレン微多孔膜からなるPEセパレータを得た。
(iv) 非水系二次電池
上記のようにして得られた正極及び負極をセパレータを介して対向させた。これに非水電解質を含浸させ、アルミラミネートフィルムからなる外装に封入して、本発明の実施例の非水系二次電池を作製した。
[実施例5−2]
水酸化アルミニウム(昭和電工製;H−43M)を260℃で熱処理し、平均粒子径0.8μm、比表面積350m2/g、真密度3.0g/cm3の活性アルミナBを得た。この活性アルミナBについてXRDで構造解析したところ、ブロードなチャートの中にベーマイトに由来するピークが僅かに観察され、2θ=14.40°のピークの積分強度が83cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.05であった。よって、この活性アルミナは、主にアモルファス状のバルク構造で、極僅かにベーマイト相が混在していた。
この活性アルミナBを無機フィラーとして用いた点以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−3]
フッ化ビニリデン:ヘキサフルオロプロピレン:クロロトリフルオロエチレン=97:1:2のモル比で共重合したポリマー(重量平均分子量400000)と、上記の活性アルミナAと、ジメチルアセトアミド(DMAc)と、そしてトリプロピレングリコール(TPG)の重量比がポリマー:活性アルミナ:DMAc:TPG=12:4:49:35となるよう十分に攪拌し、ドープを得た。そして、PET短繊維とポリオレフィンの短繊維からなる不織布に上記ドープを十分含浸させ、これを凝固浴中で凝固後、水洗・乾燥を行った。これにより、ポリフッ化ビニリデンと不織布の複合セパレータ(PVdF/不織布セパレータ)を得た。なお、凝固浴の組成は重量比で水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13とした。そして、PEセパレータの代わりにPVdF/不織布セパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−4]
ポリフッ化ビニリデンを5重量部、活性アルミナAを1重量部、DMAcを94重量部の組成比率で混合し、均一溶液になるように十分に攪拌し、コーティング液を作製した。そして、ポリプロピレンセパレータ(セルガード♯2400)の片面に、上記のコーティング液をバーコーターにより塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層を持つポリプロピレンセパレータ(PVdF/PPセパレータ)を得た。そして、PEセパレータの代わりにコーティング層を正極と接するようにPVdF/PPセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−5]
実施例5−4で得たPVdF/PPセパレータをコーティング層が負極と接するように用いた以外は、実施例5−4と同様にして、本発明の非水系二次電池を得た。
[実施例5−6]
マンガン酸リチウム(LiMn2O4、日揮化学社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ70μmの正極を得た。
この正極を用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−7]
コバルト酸リチウム(LiCoO2、日本化学工業社製)粉末89.5重量部と、アセチレンブラック(デンカブラック、電気化学工業社製)4.5重量部と、活性アルミナA3重量部及びポリフッ化ビニリデン(クレア化学工業株式会社製)の乾燥重量が6重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させて、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、ポリエチレン微多孔膜からなるPEセパレータを得た。
上記のようにして作製した正極およびPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−8]
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラックが3重量部と活性アルミナAが3重量部とポリフッ化ビニリデンの乾燥重量が10重量部となるように、6重量%のポリフッ化ビニリデンのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ91μmの負極を作製した。
この負極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−9]
実施例5−4で調製したコーティング液を、実施例5−1で製造した正極の活物質側にバーコーターを用いて塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層(正極表面層)を持つ正極を得た。
この正極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[実施例5−10]
実施例5−4で調製したコーティング液を、実施例5−1で製造した負極の活物質側にバーコーターを用いて塗布した後、これを60℃で乾燥した。これにより、厚み4μmのコーティング層(負極表面層)を持つ負極を得た。
この負極を用い、かつ、実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、本発明の非水系二次電池を得た。
[比較例5−1]
実施例5−7におけるPEセパレータを用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−2]
フッ化ビニリデン:ヘキサフルオロプロピレン:クロロトリフルオロエチレン=97:1:2のモル比で共重合したポリマー(重量平均分子量400000)と、ジメチルアセトアミド(DMAc)と、トリプロピレングリコール(TPG)との重量比がポリマー:DMAc:TPG=12:48:40となるよう十分に攪拌し、ドープを得た。そして、PET短繊維とポリオレフィンの短繊維からなる不織布に上記のドープを十分含浸させ、これを凝固浴中で凝固した後、水洗・乾燥を行った。これにより、ポリフッ化ビニリデンが不織布に複合化されたセパレータ(PVdF/不織布セパレータ)を得た。なお、凝固浴の組成は重量比で水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13とした。
このPVdF/不織布セパレータを用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−3]
PEセパレータの代わりに、ポリプロピレンセパレータ(セルガード♯2400)を用いた以外は、比較例1と同様にして、非水系二次電池用を得た。
[比較例5−4]
無機フィラーとして平均粒子径0.5μm、比表面積7m2/gのα−アルミナ(AL−160SG−3;昭和電工製)を用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−5]
水酸化アルミニウム(昭和電工製;H−43M)を220℃で熱処理し、平均粒子径0.8μm、比表面積60m2/g、真密度2.5g/cm3の活性アルミナCを得た。この活性アルミナCの結晶構造をXRDで解析したところ、アモルファス構造に由来するブロードなピークは確認されず、ギブサイトに由来するピークが明確に観察されたため、活性アルミナCのバルク構造は主にギブサイトであることが分かった。
この活性アルミナCを無機フィラーとして用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−6]
水酸化アルミニウム(昭和電工製;H−43M)を240℃で熱処理し、平均粒子径0.8μm、比表面積200m2/g、真密度2.6g/cm3の活性アルミナDを得た。この活性アルミナDの結晶構造をXRDで解析したところ、ギブサイトに由来するピークが観察され、2θ=18.27°のピークの積分強度が371cps・degであり、このメインピークの積分強度は2θ=10~60degにかけて存在するブロードなピークの積分強度に対して0.35であった。よって、活性アルミナDはバルク構造にギブサイトを含むことが分かった。
この活性アルミナDを無機フィラーとして用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−7]
無機フィラーとして平均粒子径2μm、比表面積400m2/gのゼオライト(HSZ−980HOA;東ソー社製)を用いた以外は、実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−8]
無機フィラーとして活性アルミナを使用せずに、平均粒子径2μm、比表面積300m2/gのシリカ(東海化学工業所製;ML−384)を用いた以外は、実施例1と同様にして、非水系二次電池を得た。
[比較例5−9]
活性炭(関西熱化学社製;MSP−20)を、ジメチルアセトアミド(DMAc)を分散溶剤とした湿式粉砕(2mm径のジルコニアビーズミル)を行うことで、平均粒子径0.6μm、比表面積1600m2/gの活性炭を得た。
この活性炭を無機フィラーとして用いた以外は実施例5−1と同様にして、非水系二次電池を得た。
[比較例5−10]
実施例5−6で製造した正極を用いた以外は、比較例5−1と同様にして、非水系二次電池を得た。
[容量維持率の測定]
以上のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する500サイクル時点での放電容量の割合とした。測定結果を表9に示す。
実施例5−1~5−3及び比較例5−1~5−3の結果から分かるように、活性アルミナをセパレータに含有する実施例はすべて70パーセント以上の優れた容量維持率を示した。しかし、活性アルミナを含有しない比較例5−1~5−3は容量維持率が50%程度と低いものであった。さらに、実施例5−3~5−5はセパレータに活性アルミナを含有する層を積層させた構成であるが、すべてにおいて容量維持率が70%と優れていた。また、実施例5−4と5−5の比較からも、正極および負極の少なくともいずれか一方に活性アルミナを含有した層が存在すれば、有効であることが確認された。
実施例5−1~5−2及び比較例5−4~5−6の結果から分かるように、活性アルミナの比表面積が増加するにつれて容量維持率が優れていく傾向が観察された。そして、比較例5−6の比表面積200m2/gでは効果が不十分であり、実施例5−2の比表面積が350m2/gの活性アルミナであれば効果が十分に確認できたことから、活性アルミナの比表面積は300m2/g以上であることが好ましいと言える。また、比較例5−7および5−8では、活性アルミナの代わりに比表面積が300m2/g以上のゼオライトとシリカを用いたが、容量維持率が62%以下と活性アルミナ程は優れた効果を示さなかった。また、比表面積が1600m2/gである活性炭を用いた比較例5−9は実施例5−1~5−2と比較して容量維持率が62%と低い値となった。このことより、比表面積は1000m2/g以下であることが好ましく、より好ましくは500m2/g以下であることが好適であると言える。一方、真密度では2.7g/cm3以下及び3.9g/cm3だと容量維持率が低く、2.8~3.3g/cm3の範囲であればより良好な結果が得られることが分かった。以上のことを踏まえると、活性アルミナ特有の表面状態がHFの活性を低下させたために、容量維持率が向上したと推測できる。
正極活物質をマンガン酸リチウムにした実施例5−6と比較例5−10でも、活性アルミナを含有させたセパレータを用いることで、容量維持率が70%以上と優れた結果が得られた。また、比較例5−10はマンガン酸リチウムを使用したため、コバルト酸リチウムよりHFによる正極からの金属の溶解が起こったため、容量維持率が42%と低くなったと考えられる。
活性アルミナを電極に含有させた系と、電極表面に活性アルミナの層を積層させた系である実施例5−7~5−10を比較すると、すべての実施例において容量維持率70%以上と優れている。これにより、活性アルミナの存在場所は、電極中に含有または電極表面に積層されても効果的であることが確認された。
以上の性能評価結果をまとめると、容量維持率が優れた非水系二次電池を得るためには、比表面積が300~1000m2/gの活性アルミナを非水系二次電池に含有させること、また活性アルミナの存在場所は特に限定しなくてもよいことが知見として得られた。
[HFの除去性能]
上述した実施例5−1,5−2及び比較例5−1の非水系二次電池について、上述した容量維持率の測定を行った後、電池を分解して非水電解質を抽出した。そして、この電解質中におけるHFの含有量を測定した。
具体的に、HF含有量の測定は、容量維持率を測定した後の非水系二次電池を分解した後、エチレンカーボネートとエチルメチルカーボネートを3:7の重量比で混合した所定量の溶液中に1週間放置することにより、電池内に存在するHFを溶液で抽出した。そして、ブロモチモールブルーを指示薬として、水酸化ナトリウム水溶液で滴定を行い、抽出した溶液中の酸濃度を求めた。最後に、求めた酸濃度を非水系二次電池に用いた電解液重量当たりに換算した値を、HF含有量(ppm)とした。各サンプルについての測定結果を以下の表10に示す。なお、電池を構成する前の電解質中のHF含有量は30ppmであった。
(6)第六の形態に係る実施例
以下、本発明の第六の形態に係る実施例について説明する。なお、無機フィラーの平均粒子径、比表面積、真密度、結晶構造および元素比、ならびに膜厚の測定法については、上述した通りである。
[実施例6−1]
上述した実施例5−1と同様にして非水系二次電池を作製した。
[実施例6−2]
上述した実施例5−2と同様にして非水系二次電池を作製した。
[実施例6−3]
上述した実施例5−3と同様にして非水系二次電池を作製した。
[実施例6−4]
上述した実施例5−4と同様にして非水系二次電池を作製した。
[実施例6−5]
上述した実施例5−5と同様にして非水系二次電池を作製した。
[実施例6−6]
上述した実施例5−9と同様にして非水系二次電池を作製した。
[実施例6−7]
上述した実施例5−10と同様にして非水系二次電池を作製した。
[比較例6−1]
上述した比較例5−1と同様にして非水系二次電池を作製した。
[比較例6−2]
上述した比較例5−2と同様にして非水系二次電池を作製した。
[比較例6−3]
上述した比較例5−3と同様にして非水系二次電池を作製した。
[比較例6−4]
無機フィラーとしてアルミナAを使用せずに、平均粒子径0.5μm、比表面積7m2/gの非多孔質のアルミナE(昭和電工製; AL−160SG−3)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、このアルミナEについてXRD解析を行ったところ、α−アルミナに由来する明確なピークが観察された。
[比較例6−5]
無機フィラーとしてアルミナAを使用せずに、平均粒子径0.6μm、比表面積15m2/gの非多孔質のアルミナF(大明化学工業製; C06)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、このアルミナFについてXRD解析を行ったところ、ベーマイトに由来する明確なピークが観察された。
[比較例6−6]
フィラーとしてアルミナAを使用せずに、平均粒子径0.8μm、比表面積7m2/gの非多孔質の水酸化アルミニウム(昭和電工製; H−43M)を用いた以外は、実施例6−1と同様にして、非水系二次電池を得た。なお、この水酸化アルミニウムについてXRD解析を行ったところ、ギブサイトに由来する明確なピークが観察された。
[比較例6−7]
上述した比較例5−7と同様にして非水系二次電池を作製した。
[比較例6−8]
無機フィラーとしてアルミナAを使用せずに、平均粒子径2μm、比表面積600m2/gのシリカ(東海化学工業所製;ML−644)を用いた点以外は、実施例6−1と同様にして、非水系二次電池を得た。
[比較例6−9]
上述した比較例5−9と同様にして非水系二次電池を作製した。
[容量維持率の測定]
以上のようにして作製した実施例および比較例の非水系二次電池について、60℃の恒温槽中において、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電特性を測定した。充放電条件について、充電は0.2Cで4.2Vまで8時間充電を行い、放電については0.2Cで2.75Vまで放電を行い、容量維持率は初期放電容量に対する400サイクル時点での放電容量の割合とした。測定結果を表11に示す。
[140℃のオーブン試験]
以上のようにして作製した実施例および比較例の非水系二次電池について、0.2Cで4.2Vまで8時間充電を行った後、140℃の防暴乾燥機の中に24時間保管した。その結果、発火が確認された場合は×と評価し、発火が確認されなかった場合は○と評価した。結果を表11に示す。
表11において、実施例6−1~6−2及び比較例6−1~6−6の結果より、アモルファス状のアルミナをセパレータに含有する構成であれば、70%以上の優れた容量維持率を示すことが分かる。フィラーを含有しない比較例6−1~6−3は容量維持率が60%以下と低いものであった。さらに、140℃オーブン試験より、実施例6−1~6−2では発火が確認されなかったが、比較例6−1では発火が確認されたので、実施例6−1~6−2は内部短絡における安全性にも優れていることが分かった。
また、アルミナの構造の比較では、アモルファス以外の構造を有する比較例6−4~6−6は容量維持率が60%以下と低く、さらに140℃オーブン試験において、発火が確認された。このことから、アモルファス状のアルミナはサイクル特性と内部短絡における安全性の両方に優れることが分かった。
また、他の無機フィラーとしてゼオライト、シリカ、活性炭を比較例6−7~6−9において評価したが、実施例6−1~6−2と比較して容量維持率が60%強とわずかに低く、140℃オーブン試験においては発火が確認された。このことからも、添加する無機フィラーはアモルファス状のアルミナが優れていることが分かる。
アルミナの存在場所として、実施例6−1~6−8を比較すると、すべてにおいて容量維持率が70%以上と優れ、オーブン試験においても発火しなかったことより、アモルファスアルミナの存在場所は、正極と負極の間のいずれかの部位に存在すれば、サイクル特性と内部短絡による安全性に優れることが分かった。
[熱収縮率の測定]
140℃オーブン試験における発火の有無の原因を調査するために、実施例6−1~6−2、および比較例6−1,6−4~6−9のセパレータについて、熱収縮率を測定した。
具体的には、まずサンプルとなるセパレータを18cm(MD方向)×6cm(TD)方向に切り出した。TD方向を2等分する線上に上部から2cm、17cmの箇所(点A、点B)に印を付けた。また、MD方向を2等分する線上に左から1cm、5cmの箇所に印を付けた。これにクリップをつけ105℃に調整したオーブンの中につるし、無張力下で30分間熱処理した。2点AB間、CD間長さを熱処理前後で測定し、以下の2式から熱収縮率を求めた。各サンプルについての測定結果を表12にまとめて示す。
MD方向熱収縮率=(熱処理前のAB間長さ−熱処理後のAB間長さ)/(熱処理前のAB間長さ)×100
TD方向熱収縮率=(熱処理前のCD間長さ−熱処理後のCD間長さ)/(熱処理前のCD間長さ)×100
以上の性能評価結果をまとめると、容量維持率が優れ、かつ140℃オーブン試験において発火しない安全性に優れた非水系二次電池を得るためには、アモルファス状のアルミナを負極と正極間に含有させることが良いという知見を得ることができた。 (1) Examples according to the first and second embodiments
Examples according to the first and second aspects of the present invention will be described below. The measurement method applied in this example is as follows.
[Average particle size of inorganic filler]
It measured with the laser diffraction type particle size distribution measuring apparatus (Shimadzu Corporation make; SALD-2000J). Water was used as a dispersion medium, and a small amount of nonionic surfactant “Triton X-100” was used as a dispersant. The center particle diameter (D50) in the obtained volume particle size distribution was defined as the average particle diameter.
[Specific surface area of inorganic filler]
Measurement was performed according to JIS K 8830. Using NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), the BET equation was used for analysis and determination by the nitrogen gas adsorption method. The sample weight during measurement was 0.1 to 0.2 g. The analysis was performed by a three-point method, and the specific surface area was obtained from the BET plot.
[Analysis of crystal structure of inorganic filler]
As for the crystal structure of the inorganic filler, the XRD diffraction spectrum of the inorganic filler was measured with a powder X-ray diffractometer, and the crystal structure in the bulk structure was analyzed from this spectrum. For the X-ray diffractometer, an X-ray generator ultrax 18 manufactured by Rigaku was used, and Cu-Kα rays were used. The measurement conditions were 45 KV-60 mA, sampling interval 0.020 °, measurement range (2θ) 5 ° to 90 °, and scan speed 5 ° / min. As the measurement sample, an agate mortar was used to pulverize the inorganic filler manually and packed into a glass sample plate. The glass sample plate has a groove having a length of 18 mm, a width of 20 mm, and a depth of 0.2 mm, and the thickness of the sample is the depth of the glass sample plate.
[Measurement of element ratio of inorganic filler]
The element ratio of 0 / Al existing on the surface of the inorganic filler was measured using an X-ray photoelectron spectrometer (manufactured by VG, ESCALAB 200), and calculated from the obtained 01s and Al2p intensity ratio. MgKα ray was used as the X-ray source.
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal was a cylindrical one having a bottom surface of 0.5 cm in diameter.
[Example 1-1]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. When XRD analysis was performed on this activated alumina, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The integrated intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed. The 0 / Al element ratio on the surface of the activated alumina was 1.54.
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. A Conex solution was prepared by dissolving so that Conex was 7% by weight in a weight ratio of dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40.
The activated alumina was dispersed in the Conex solution so that the activated alumina: Conex = 30: 70 (weight ratio) to prepare a slurry.
The slurry was applied to a glass plate, and this was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. It was. And the porous film formed on the glass plate was peeled, and the 10-micrometer-thick porous film with sufficient handling property was obtained.
[Example 1-2]
Activated alumina with an average particle diameter of 4 μm and a specific surface area of 700 m 2 A porous membrane having a film thickness of 10 μm having sufficient handling properties was obtained in the same manner as in Example 1-1 except that the zeolite was changed to / g zeolite (HSZ-341NHA; manufactured by Tosoh Corporation).
[Example 1-3]
By performing wet pulverization (2-mm diameter zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent on activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20), an average particle diameter of 0.6 μm and a specific surface area of 1600 m 2 / G of activated carbon was obtained.
A porous film having a thickness of 10 μm was obtained in the same manner as in Example 1-1 except that the activated alumina was changed to the activated carbon. In addition, this porous film was a little weak compared with the thing of Example 1-1, and was inferior to handleability.
[Example 1-4]
A porous film having a film thickness of 10 μm was obtained in the same manner as in Example 1-1 except that the weight ratio of activated alumina to conex was changed to activated alumina: conex = 70: 30 (weight ratio). This porous film was slightly brittle and inferior in handleability as compared with that of Example 1-1.
[Example 1-5]
The porous membrane for batteries produced in Example 1-1 was coated with a polyethylene aqueous dispersion (Kemipearl W900: manufactured by Mitsui Chemicals) and dried to obtain a porous membrane having a thickness of 13 μm.
[Comparative Example 1-1]
Activated alumina with an average particle size of 0.8 μm and a specific surface area of 8 m 2 A porous film with a handleability of 10 μm in thickness was obtained in the same manner as in Example 1-1, except that / g aluminum hydroxide (made by Showa Denko; H-43M) was used.
[Comparative Example 1-2]
Activated alumina with an average particle diameter of 0.6 μm and a specific surface area of 6 m 2 A porous film having a film thickness of 10 μm and a sufficient handling property was obtained in the same manner as in Example 1-1, except that it was changed to / g alumina (manufactured by Showa Denko: AL160SG-3).
[Comparative Example 1-3]
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. A Conex solution was prepared by dissolving so that Conex was 7% by weight in a weight ratio of dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40.
The Conex solution was applied to a glass plate, and this was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. Went. And the porous film formed on the glass plate was peeled, and the 10-micrometer-thick porous film with sufficient handling property was obtained.
[Comparative Example 1-4]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are in a ratio of 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin are added so that the polyethylene concentration is 15% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
A slurry in which zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was dispersed in the polyethylene solution was prepared. Here, the mixing ratio of polyethylene and zeolite was 50:50 by weight. Zeolite has an average particle size of 3 μm and a specific surface area of 290 m. 2 / G.
This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Thereafter, the film was dried at 50 ° C. and annealed at 120 ° C. to obtain a porous film with sufficient handling property of 10 μm.
[Comparative Example 1-5]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 205 ° C., average particle size 0.8 μm, specific surface area 30 m 2 / G of activated alumina was obtained. In addition, when structural analysis was performed on this activated alumina by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. It turned out not to be alumina.
A porous membrane having a film thickness of 10 μm and sufficient handleability was obtained by the same method as in Example 1-1, except that this activated alumina was used in place of the activated alumina of Example 1-1.
[Bearing test]
For each of the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, a membrane breakage test was performed as follows. First, the porous film of the sample was fixed to a metal frame having a length of 6.5 cm and a width of 4.5 cm. The temperature of the oven was set to 175 ° C., and the sample fixed to the metal frame was put in the oven and held for 1 hour. At this time, a film that was not broken and the shape could be maintained was evaluated as ◯, and a film that was not evaluated as X. The results are shown in Table 1.
[Gas generation test]
For each of the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, a membrane breakage test was performed as follows. First, each porous membrane to be a sample is 240 cm 2 And was vacuum-dried at 85 ° C. for 16 hours. This was put in an aluminum pack in an environment with a dew point of −60 ° C. or less, an electrolyte was further injected, the aluminum pack was sealed with a vacuum sealer, and a measurement cell was produced. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (weight ratio) (manufactured by Kishida Chemical Co., Ltd.). The measurement cell was stored at 85 ° C. for 3 days, and the volume of the measurement cell before and after storage was measured. A value obtained by subtracting the volume of the measurement cell before storage from the volume of the measurement cell after storage was taken as the gas generation amount. Here, the volume measurement of the measurement cell was performed at 23 ° C., and was performed using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd .; EW-300SG) according to Archimedes' principle. The results are shown in Table 1.
Using the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 produced as described above, non-aqueous secondary batteries were produced as follows.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
Here, as the separator, the porous membranes of Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 were used, and Examples 1-6 to 1-10 and Comparative Example 1 shown in Table 2 were used. Non-aqueous secondary batteries of −6 to 1-10 were produced. The porous membranes of Examples 1-3 and 1-4 were used by being laminated with a polyethylene microporous membrane (PE microporous membrane). The PE microporous film used here was produced by the following method.
First, as the polyethylene powder, GUR2126 (weight average molecular weight 4150,000, melting point 141 ° C.) and GURX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film | membrane with a film thickness of 9 micrometers.
[Oven test]
Each battery produced as described above was charged with constant voltage / constant current charging of 0.2 C and 4.2 V for 8 hours. And 1.8kg / cm 2 The sample was put in an oven with the above load applied, heated from 30 ° C. to 150 ° C. at a heating rate of 5 ° C./min, and then held at 150 ° C. for 1 hour. At this time, the smoked product was evaluated as x, and the smoked product was evaluated as o. The results are shown in Table 2.
[Cycle characteristics]
The cycle characteristics of each battery produced as described above were evaluated. Evaluation of cycle characteristics is 1C 4.2V 2 hours constant current / constant voltage charge, 1C, charge / discharge with constant current discharge of 2.75V cutoff, 300 cycles when the first cycle capacity is used as a reference The eye capacity retention rate was used as an index of cycle characteristics. The temperature at the time of measurement was 30 ° C. The results are shown in Table 2.
[Save test]
The battery produced as described above was charged for 8 hours at a constant voltage / constant current charge of 0.2 C, 4.2 V. And 1.8kg / cm 2 The sample was put in an oven with a load of and stored at 85 ° C. for 3 days. After storage, a constant current discharge of 0.2 C and 2.75 V cut-off was performed to determine the remaining capacity. The capacity retention rate was calculated by multiplying the value obtained by dividing the remaining capacity by the initial capacity by 100. This capacity maintenance rate was used as an index for evaluating the storage test. The results are shown in Table 2.
[Battery swelling]
Each battery after the above storage test was visually confirmed. If the battery was clearly swollen, it was judged as x, and if the battery was not swollen in appearance, it was judged as ◯. In this case, the swelling of the battery is due to the generation of gas in the battery. The results are shown in Table 2.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
The slurry prepared in Example 1-4 was applied to the surface of the positive electrode, and this was mixed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. Immersion was followed by washing with water and drying to form a porous membrane for a battery of the present invention having a thickness of 3 μm on the surface of the positive electrode.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-11 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3.
[Example 1-12]
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The slurry prepared in Example 1-4 was applied to the surface of the negative electrode, and this was put into a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. Immersion was followed by washing with water and drying to form a porous membrane for a battery of the present invention having a thickness of 3 μm on the negative electrode surface.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-12 was also evaluated for the above-described oven test cycle characteristics, storage test, and battery blistering. The results are shown in Table 3.
[Example 1-13]
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The slurry prepared in Example 1-4 was applied to the surfaces of the positive electrode and the negative electrode, and this was coagulated liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C. It was immersed in, then washed with water and dried to form a porous film for a battery of the present invention having a thickness of 3 μm on the positive electrode and negative electrode surfaces.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used. The separator used was the PE microporous membrane in Examples 1-8 and 1-9 described above.
The battery of Example 1-13 was also evaluated for the oven test, cycle characteristics, storage test, and battery blistering described above. The results are shown in Table 3.
Examples according to the third and fourth aspects of the present invention will be described below. The measurement method applied in this example is as follows. In addition, about the average particle diameter of an inorganic filler, a specific surface area, a crystal structure and element ratio, and the measuring method of a film thickness, it is the same as that of the Example which concerns on the 1st, 2nd form mentioned above. The separator film breakage test and gas generation amount test are also the same as in the first and second embodiments.
[Porosity]
About the film | membrane used as a sample, the weight (Wi: g / m) of each constituent material 2 ) True density (di: g / cm 3 ) To obtain the sum (Σ (Wi / di)). The porosity (%) was calculated by dividing this by the film thickness (μm) and multiplying the value subtracted from 1 by 100.
[Gurley value]
It measured according to JIS P8117.
[Puncture strength]
Using a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd., a piercing test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / second, and the maximum piercing load was defined as the piercing strength. Here, the sample was sandwiched and fixed in a metal frame (sample holder) having a hole of Φ11.3 mm.
[Shutdown characteristics (SD characteristics)]
First, a separator as a sample is punched out to a diameter of 19 mm, dipped in a 3 wt% methanol solution of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P), and air-dried. Then, the separator was impregnated with the electrolytic solution and sandwiched between SUS plates (Φ15.5 mm). Here, the electrolyte is 1M LiBF 4 Propylene carbonate / ethylene carbonate (1/1 weight ratio) was used. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple and put it in the oven. The cell resistance was measured by increasing the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz.
The resistance value is 10 in the range of 135 to 150 ° C. in the above measurement. 3 ohm-cm 2 In the case of the above, the SD characteristic was evaluated as “good”, and when it was not, the SD characteristic was evaluated as “poor”.
[Battery storage characteristics]
Using the separators produced in the following examples and comparative examples, non-aqueous secondary batteries were produced as follows.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through the separators prepared in the following examples and comparative examples. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
The non-aqueous secondary battery was subjected to constant current / constant voltage charging at 0.2 C 4.2 V for 8 hours and constant current discharge at 0.2 C, 2.75 V cutoff. The discharge capacity obtained at the fifth cycle was defined as the initial capacity of this cell. Then, constant current / constant voltage charging of 0.2C 4.2V for 8 hours was performed, and stored at 85 ° C. for 3 days. And the constant current discharge of 0.2C and 2.75V cut-off was performed, and the residual capacity in storage at 85 ° C. for 3 days was determined. A value obtained by dividing the remaining capacity by the initial capacity and multiplying by 100 was defined as a capacity retention rate, and this capacity retention rate was used as an index of storage characteristics of the battery.
[Battery swelling]
Each battery after the storage characteristics test of the above battery was visually confirmed, and it was judged that the battery was clearly swollen as x, and the battery that was not clearly swollen was judged as ○. . In this case, the swelling of the battery is due to the generation of gas in the battery.
[Example 2-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC.
The obtained polyethylene microporous membrane has a basis weight of 4.7 g / m. 2 The film thickness was 9 μm, the porosity was 45%, the Gurley value was 150 seconds / 100 cc, and the puncture strength was 300 g.
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. Conex solution was prepared by dissolving in 6% by weight of Conex in dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40 (weight ratio).
As a porous filler, an average particle diameter of 3 μm and a specific surface area of 290 m 2 / G of zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) was used. The zeolite was dispersed in the Conex solution so that the ratio of zeolite: Conex = 50: 50 (weight ratio) was obtained to prepare a dispersion.
Two Meyer bars were placed opposite to each other, and an appropriate amount of the dispersion was put between them. The polyethylene microporous membrane was passed between Mayer bars carrying the dispersion, and the dispersion was applied to both sides of the polyethylene microporous membrane. Here, the clearance between the Mayer bars was 30 μm, and the number of the Mayer bars was 2 and # 6. This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water and dried. A heat-resistant porous layer made of Conex was formed to obtain a separator for a non-aqueous secondary battery of the present invention. The characteristics of the obtained non-aqueous secondary battery separator are shown in Tables 4 and 5. The characteristics of the separators according to the following examples and comparative examples are also shown in Tables 4 and 5.
[Example 2-2]
As a porous filler, the average particle diameter is 2 μm and the specific surface area is 400 m. 2 / G of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as Example 2-1 to obtain a non-aqueous secondary battery separator.
[Example 2-3]
Porous filler has an average particle size of 4 μm and a specific surface area of 700 m 2 / G of zeolite (HSZ-341NHA; manufactured by Tosoh Corporation) was used in the same manner as in Example 2-1, to obtain a nonaqueous secondary battery separator.
[Example 2-4]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained. The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated carbon as a porous filler.
[Example 2-5]
Porous filler has an average particle size of 1.4 μm and a specific surface area of 190 m 2 A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-1, except that / g of activated alumina (manufactured by Sumitomo Chemical Co., Ltd .; KC-501) was used.
[Example 2-6]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G of activated alumina was obtained. In addition, when the crystal structure of this activated alumina was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. Therefore, the bulk structure was mainly gibbsite, and the amorphous structure was amorphous. It turned out not to be alumina.
The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated alumina as a porous filler.
[Example 2-7]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. When XRD analysis was performed on this activated alumina, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The integrated intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed. The 0 / Al element ratio on the surface of the activated alumina was 1.54.
The separator for non-aqueous secondary batteries of this invention was obtained like Example 2-1, except the point which used this activated alumina as a porous filler.
[Example 2-8]
A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 2-7, except that the dispersion was applied to only one surface of a polyethylene microporous membrane to form a porous layer.
[Comparative Example 2-1]
Instead of the porous filler used in Example 2-1, the average particle diameter was 0.6 μm and the specific surface area was 6 m as an inorganic filler. 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g of α-alumina (manufactured by Showa Denko: AL160SG-3) was applied.
[Comparative Example 2-2]
Instead of the porous filler used in Example 1, an inorganic filler has an average particle diameter of 0.6 μm and a specific surface area of 15 m. 2 A non-aqueous secondary battery separator was produced in the same manner as in Example 2-1, except that / g boehmite (manufactured by Daimei Chemical Co., Ltd .: C06) was applied.
[Comparative Example 2-3]
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 205 ° C., average particle size 0.8 μm, specific surface area 30 m 2 / G of activated alumina was obtained. In addition, when the crystal structure of this activated alumina was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from the gibbsite was clearly observed. Therefore, the bulk structure was mainly gibbsite, and the amorphous structure was amorphous. It turned out not to be alumina. A separator for a non-aqueous secondary battery was obtained in the same manner as in Example 2-1, except that the porous filler was changed to this activated alumina.
[Comparative Example 2-4]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are in a ratio of 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin are added so that the polyethylene concentration is 15% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
A slurry was prepared by dispersing the polyethylene solution in a weight ratio such that polyethylene: zeolite (HSZ-500KOA; manufactured by Tosoh Corporation) = 50: 50. Here, this zeolite has an average particle diameter of 3 μm and a specific surface area of 290 m. 2 / G.
This slurry was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was biaxially stretched by successively performing longitudinal stretching and transverse stretching. Here, the longitudinal stretching was performed at a stretching ratio of 5.5 times and a stretching temperature of 90 ° C., the transverse stretching was performed at a stretching ratio of 11.0 times, and the stretching temperature was 105 ° C. After stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film (non-aqueous secondary battery separator) containing a porous filler.
[Comparative Example 2-5]
Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as the meta-type wholly aromatic polyamide. Conex solution was prepared by dissolving in 6% by weight of Conex in dimethylacetamide (DMAc): tripropylene glycol (TPG) = 60: 40 (weight ratio).
Two Mayer bars were placed against each other, and an appropriate amount of the Conex solution was placed between them. The polyethylene microporous membrane containing the porous filler prepared in Comparative Example 2-4 was passed between Mayer bars on which the Conex solution was placed, and the Conex solution was applied to both sides of the polyethylene microporous membrane. Here, the clearance between the Mayer bars was 30 μm, and the number of the Mayer bars was # 6. This is immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 70: 18: 12 (weight ratio) of 30 ° C., then washed with water, dried, and a polyethylene microporous film containing a porous filler A porous layer made of Conex was formed on the front and back surfaces of the non-aqueous secondary battery separator.
Next, a non-aqueous secondary battery was manufactured as follows for a separator in which a heat-resistant porous layer was formed on one or both sides of a porous substrate, and it was examined whether there was a difference in cycle characteristics.
Lithium cobalt oxide (LiCoO 2 NIPPON CHEMICAL INDUSTRIES CO., LTD.) 89.5 parts by weight of powder, acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black) 4.5 parts by weight, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight. These were kneaded using an N-methyl-2pyrrolidone solvent to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, the electrolyte is 1M LiPF 6 Ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used.
Here, separators of Example 2-7 and Example 2-8 were used, and batteries of Examples 2-9 to 2-11 shown in Table 6 were produced.
Evaluation of cycle characteristics is 1C 4.2V 2 hours constant current / constant voltage charge, 1C, charge / discharge with constant current discharge of 2.75V cutoff, 300 cycles when the first cycle capacity is used as a reference The eye capacity retention rate was used as an index of cycle characteristics. The temperature at the time of measurement was 30 ° C. The results are shown in Table 6.
(3) Effect of special activated alumina in the third form
Hereinafter, in the third embodiment of the present invention, the specific surface area is 300 to 1000 m. 2 The structure using activated alumina of / g is examined.
The measurement methods applied in the following examples are as follows. In addition, about the measuring method of the average particle diameter of an inorganic filler, a specific surface area, a crystal structure, and element ratio, it is the same as that of the case which concerns on the 1st and 2nd form mentioned above.
[Measurement of true density of alumina]
The true density of the alumina used in the following Examples and Comparative Examples was determined with a micro ultra pycnometer (MUSPY-21T manufactured by Yuasa Ionics). Helium gas was used for the measurement.
[Example 3-1]
(I) Production of PE microporous membrane
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained PE microporous film.
(Ii) Production of polymetaphenylene isophthalamide
In a reaction vessel equipped with a thermometer, a stirrer, and a raw material inlet, 753 g of NMP having a moisture content of 100 ppm or less was put, 85.2 g of metaphenylenediamine and 0.5 g of aniline were dissolved in this NMP, and cooled to 0 ° C. . To this cooled diamine solution, 160.5 g of isophthalic acid chloride was gradually added with stirring to react. This reaction increased the temperature of the solution to 70 ° C. After the change in viscosity stopped, 58.4 g of calcium hydroxide powder was added and stirred for another 40 minutes to complete the reaction, and the polymerization solution was taken out and reprecipitated in water to obtain 184.0 g of polymetaphenylene isophthalamide. .
(Iii) Production of activated alumina
Aluminum hydroxide (manufactured by Showa Denko; H-43M) was heat-treated at 280 ° C., average particle diameter 0.8 μm, specific surface area 400 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 3.1 g / cm. 2 Met. In addition, when XRD analysis was performed, a peak derived from boehmite was observed in a broad chart, and the integrated intensity of the peak at 2θ = 14.39 ° was 98 cps · deg. The intensity was 0.07 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina can be said to be amorphous alumina because it mainly has an amorphous bulk structure and a very small amount of boehmite phase is mixed.
(Iv) Manufacture of laminated separator
The polymetaphenylene isophthalamide obtained as described above and activated alumina were prepared so that the weight ratio was 40:60, and the polymetaphenylene isophthalamide concentration was 5.5% by weight. Dimethylacetamide (DMAc) and tripropylene glycol (TPG) were mixed in a mixed solvent having a weight ratio of 50:50 to obtain a coating slurry.
The coating slurry was applied to both sides of the PE film by placing an appropriate amount of the coating slurry on a Meyer bar and passing the PE film obtained as described above between a pair of Meyer bars. This was immersed in a coagulation liquid having a weight ratio of water: DMAc: TPG = 50: 25: 25 and 40 ° C. Thereafter, the obtained film was washed with water and dried. Thereby, the laminated separator with which the heat resistant porous layer was coated was obtained.
(V) Manufacture of positive electrode
Lithium cobalt oxide (LiCoO 2 89.5 parts by weight of powder, manufactured by Nippon Chemical Industry Co., Ltd., 4.5 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), and 6 wt. A positive electrode paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride so as to be part. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
(Vi) Manufacture of negative electrode
As a negative electrode active material, 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black and 6 parts by weight of polyfluorinated so that the dry weight of polyvinylidene fluoride is 10 parts by weight. A negative electrode paste was prepared using an NMP solution of vinylidene. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode having a thickness of 90 μm.
(Vii) Preparation of non-aqueous electrolyte
LiPF was added to a solution in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7. 6 Was dissolved so as to be 1 mol / L.
(Viii) Manufacture of non-aqueous secondary batteries
The positive electrode and negative electrode obtained as described above were opposed to each other through a laminated separator. This was impregnated with a non-aqueous electrolyte and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery.
[Comparative Example 3-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. Dissolved in a mixed solvent and further used as a filler with an average particle size of 0.5 μm and a specific surface area of 7 m 2 / G of α-alumina (AL-160SG-3; manufactured by Showa Denko) was dispersed to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: alumina: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
A nonaqueous secondary battery was produced in the same manner as in Example 3-1, except that this separator was used.
[Comparative Example 3-2]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 2.5 g / cm. 2 Met. Further, in XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from gibbsite was clearly observed. Therefore, the bulk structure of this activated alumina was mainly gibbsite.
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 3-1, except that this activated alumina was used as an inorganic filler.
[Comparative Example 3-3]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 240 ° C., average particle diameter 0.8 μm, specific surface area 200 m 2 / G of activated alumina was obtained. The true density of this activated alumina is 2.6 g / cm. 2 Met. Further, when XRD analysis was performed on this activated alumina, a peak derived from gibbsite was observed, the integrated intensity of the peak at 2θ = 18.27 ° was 371 cps · deg, and the integrated intensity of this main peak was 2θ = 10. It was 0.35 with respect to the integrated intensity | strength of the broad peak which exists over ~ 60deg. Therefore, the bulk structure of this activated alumina was mainly gibbsite.
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 3-1, except that this activated alumina was used as an inorganic filler.
[Comparative Example 3-4]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 400 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used.
[Comparative Example 3-5]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 300 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-384) was used.
[Comparative Example 3-6]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained.
A nonaqueous secondary battery was obtained in the same manner as Comparative Example 3-1, except that this activated carbon was used as an inorganic filler.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity maintenance rate is the discharge at the time of 500 cycles with respect to the initial discharging capacity. The capacity ratio. Table 7 shows the measurement results.
(4) Effect of amorphous alumina in the fourth form
Hereinafter, the configuration using amorphous alumina in the fourth embodiment of the present invention will be examined. Various measurement methods are as described above.
[Example 4-1]
A nonaqueous secondary battery of Example 4-1 was produced in the same manner as Example 3-1 described above.
[Comparative Example 4-1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. Dissolved in a mixed solvent and further used as a filler with an average particle size of 0.5 μm and a specific surface area of 7 m 2 / G of α-alumina (AL-160SG-3; manufactured by Showa Denko) was dispersed to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: alumina: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the separator which consists of PE microporous films.
A nonaqueous secondary battery was produced in the same manner as in Example 3-1 described above except that this separator was used.
[Comparative Example 4-2]
As an inorganic filler, average particle diameter 0.6 μm, specific surface area 15 m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous alumina (manufactured by Daimei Chemical Co., Ltd .; C06) was used. When this alumina was subjected to XRD analysis, a clear peak derived from boehmite was observed.
[Comparative Example 4-3]
As an inorganic filler, average particle diameter 0.8μm, specific surface area 7m 2 A nonaqueous secondary battery was obtained in the same manner as Comparative Example 4-1, except that / g nonporous aluminum hydroxide (manufactured by Showa Denko; H-43M) was used. When this aluminum hydroxide was subjected to XRD analysis, a clear peak derived from gibbsite was observed.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity retention rate is discharging at 400 cycles with respect to the initial discharging capacity. The capacity ratio. Table 8 shows the measurement results.
(5) Example according to the fifth embodiment
Examples according to the fifth aspect of the present invention will be described below. The average particle diameter, specific surface area, true density, crystal structure and element ratio, and film thickness measuring method of the inorganic filler are as described above.
[Example 5-1]
(I) Production of activated alumina
Activated alumina A was produced in the same manner as in Example 3-1.
(Ii) Production of positive electrode, negative electrode and non-aqueous electrolyte
A positive electrode, a negative electrode, and a nonaqueous electrolyte were also produced in the same manner as in Example 3-1.
(Iii) Manufacture of separators
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. It was dissolved in a mixed solvent, and the activated alumina A was dispersed as an inorganic filler to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: inorganic filler: liquid paraffin: decalin = 30: 10: 55: 30 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the PE separator which consists of a polyethylene microporous film.
(Iv) Non-aqueous secondary battery
The positive electrode and negative electrode obtained as described above were opposed to each other through a separator. This was impregnated with a non-aqueous electrolyte and sealed in an outer package made of an aluminum laminate film to produce a non-aqueous secondary battery of an example of the present invention.
[Example 5-2]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 260 ° C., average particle size 0.8 μm, specific surface area 350 m 2 / G, true density 3.0 g / cm 3 Activated alumina B was obtained. As a result of XRD structural analysis of this activated alumina B, a peak derived from boehmite was slightly observed in the broad chart, and the integrated intensity of the peak at 2θ = 14.40 ° was 83 cps · deg. The integrated intensity was 0.05 with respect to the integrated intensity of the broad peak existing from 2θ = 10 to 60 deg. Therefore, this activated alumina mainly has an amorphous bulk structure and a very small amount of boehmite phase was mixed.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this activated alumina B was used as an inorganic filler.
[Example 5-3]
Polymer (weight average molecular weight 400000) copolymerized in a molar ratio of vinylidene fluoride: hexafluoropropylene: chlorotrifluoroethylene = 97: 1: 2, the above-mentioned activated alumina A, dimethylacetamide (DMAc), and tri The dope was obtained by sufficiently stirring so that the weight ratio of propylene glycol (TPG) was polymer: active alumina: DMAc: TPG = 12: 4: 49: 35. Then, a nonwoven fabric composed of PET short fibers and polyolefin short fibers was sufficiently impregnated with the dope, solidified in a coagulation bath, washed and dried. This obtained the composite separator (PVdF / nonwoven fabric separator) of polyvinylidene fluoride and the nonwoven fabric. The composition of the coagulation bath was water: dimethylacetamide: tripropylene glycol = 57: 30: 13 by weight ratio. And the non-aqueous secondary battery of this invention was obtained like Example 5-1, except having used PVdF / nonwoven fabric separator instead of PE separator.
[Example 5-4]
A coating solution was prepared by mixing 5 parts by weight of polyvinylidene fluoride, 1 part by weight of activated alumina A, and 94 parts by weight of DMAc and stirring sufficiently to obtain a uniform solution. And after apply | coating said coating liquid to the single side | surface of a polypropylene separator (Celgard # 2400) with the bar coater, this was dried at 60 degreeC. As a result, a polypropylene separator (PVdF / PP separator) having a coating layer having a thickness of 4 μm was obtained. And the nonaqueous secondary battery of this invention was obtained like Example 5-1, except having used the PVdF / PP separator so that the coating layer might contact | connect a positive electrode instead of PE separator.
[Example 5-5]
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-4 except that the PVdF / PP separator obtained in Example 5-4 was used so that the coating layer was in contact with the negative electrode.
[Example 5-6]
Lithium manganate (LiMn 2 O 4 89.5 parts by weight of powder (manufactured by JGC Chemical Co., Ltd.), 4.5 parts by weight of acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 6 parts by weight of dry weight of polyvinylidene fluoride (manufactured by CLEA Chemical Industries, Ltd.) Thus, a positive electrode paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 70 μm.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used.
[Example 5-7]
Lithium cobalt oxide (LiCoO 2 , Manufactured by Nippon Chemical Industry Co., Ltd.) 89.5 parts by weight of powder, 4.5 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.), 3 parts by weight of activated alumina A and polyvinylidene fluoride (manufactured by Claire Chemical Industries, Ltd.) A positive electrode paste was prepared using 6 wt% of an NMP solution of polyvinylidene fluoride so that the dry weight of 6) was 6 parts by weight. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. GUR2126 and GURX143 are made to have a ratio of 1: 9 (weight ratio) and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the PE separator which consists of a polyethylene microporous film.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that the positive electrode and PE separator produced as described above were used.
[Example 5-8]
As negative electrode active material, 87 parts by weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black, 3 parts by weight of activated alumina A, and 10 parts by weight of dry weight of polyvinylidene fluoride As described above, a negative electrode agent paste was prepared using an NMP solution of 6% by weight of polyvinylidene fluoride. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to produce a negative electrode having a thickness of 91 μm.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
[Example 5-9]
The coating liquid prepared in Example 5-4 was applied to the active material side of the positive electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a positive electrode having a coating layer (positive electrode surface layer) having a thickness of 4 μm was obtained.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this positive electrode was used and the PE separator in Example 5-7 was used.
[Example 5-10]
The coating liquid prepared in Example 5-4 was applied to the active material side of the negative electrode manufactured in Example 5-1 using a bar coater, and then dried at 60 ° C. As a result, a negative electrode having a coating layer (negative electrode surface layer) having a thickness of 4 μm was obtained.
A nonaqueous secondary battery of the present invention was obtained in the same manner as in Example 5-1, except that this negative electrode was used and the PE separator in Example 5-7 was used.
[Comparative Example 5-1]
A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that the PE separator in Example 5-7 was used.
[Comparative Example 5-2]
Weight of polymer (weight average molecular weight 400000) copolymerized at a molar ratio of vinylidene fluoride: hexafluoropropylene: chlorotrifluoroethylene = 97: 1: 2, dimethylacetamide (DMAc), and tripropylene glycol (TPG) The dope was obtained by sufficiently stirring so that the ratio was polymer: DMAc: TPG = 12: 48: 40. Then, a nonwoven fabric composed of PET short fibers and polyolefin short fibers was sufficiently impregnated with the above dope, solidified in a coagulation bath, washed with water and dried. Thereby, a separator (PVdF / nonwoven fabric separator) in which polyvinylidene fluoride was combined with a nonwoven fabric was obtained. The composition of the coagulation bath was water: dimethylacetamide: tripropylene glycol = 57: 30: 13 by weight ratio.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this PVdF / nonwoven fabric separator was used.
[Comparative Example 5-3]
A non-aqueous secondary battery was obtained in the same manner as in Comparative Example 1 except that a polypropylene separator (Celguard # 2400) was used instead of the PE separator.
[Comparative Example 5-4]
As an inorganic filler, average particle size 0.5 μm, specific surface area 7 m 2 A non-aqueous secondary battery was obtained in the same manner as in Example 5-1, except that / g of α-alumina (AL-160SG-3; manufactured by Showa Denko) was used.
[Comparative Example 5-5]
Aluminum hydroxide (made by Showa Denko; H-43M) was heat-treated at 220 ° C., average particle size 0.8 μm, specific surface area 60 m 2 / G, true density 2.5 g / cm 3 Of activated alumina C was obtained. When the crystal structure of this activated alumina C was analyzed by XRD, a broad peak derived from the amorphous structure was not confirmed, and a peak derived from gibbsite was clearly observed. I found out.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated alumina C was used as an inorganic filler.
[Comparative Example 5-6]
Aluminum hydroxide (Showa Denko; H-43M) was heat-treated at 240 ° C., average particle diameter 0.8 μm, specific surface area 200 m 2 / G, true density 2.6 g / cm 3 Of activated alumina D was obtained. When the crystal structure of this activated alumina D was analyzed by XRD, a peak derived from gibbsite was observed, the integrated intensity of the peak at 2θ = 18.27 ° was 371 cps · deg, and the integrated intensity of this main peak was 2θ = The integrated intensity of the broad peak existing from 10 to 60 deg was 0.35. Therefore, it turned out that activated alumina D contains gibbsite in the bulk structure.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated alumina D was used as an inorganic filler.
[Comparative Example 5-7]
As an inorganic filler, an average particle diameter of 2 μm and a specific surface area of 400 m 2 / G zeolite (HSZ-980HOA; manufactured by Tosoh Corporation) was used in the same manner as in Example 5-1, to obtain a non-aqueous secondary battery.
[Comparative Example 5-8]
Without using activated alumina as an inorganic filler, the average particle size is 2 μm and the specific surface area is 300 m. 2 A non-aqueous secondary battery was obtained in the same manner as in Example 1 except that / g of silica (manufactured by Tokai Chemical Industry; ML-384) was used.
[Comparative Example 5-9]
Activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd .; MSP-20) is wet pulverized (2 mm zirconia bead mill) using dimethylacetamide (DMAc) as a dispersion solvent to obtain an average particle diameter of 0.6 μm and a specific surface area of 1600 m. 2 / G of activated carbon was obtained.
A nonaqueous secondary battery was obtained in the same manner as in Example 5-1, except that this activated carbon was used as an inorganic filler.
[Comparative Example 5-10]
A nonaqueous secondary battery was obtained in the same manner as in Comparative Example 5-1, except that the positive electrode produced in Example 5-6 was used.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity maintenance rate is the discharge at the time of 500 cycles with respect to the initial discharging capacity. The capacity ratio. Table 9 shows the measurement results.
As can be seen from the results of Examples 5-1 to 5-3 and Comparative Examples 5-1 to 5-3, all of the examples containing activated alumina in the separator showed an excellent capacity retention of 70% or more. However, Comparative Examples 5-1 to 5-3 not containing activated alumina had a capacity retention rate as low as about 50%. Further, Examples 5-3 to 5-5 have a configuration in which a layer containing activated alumina is laminated on the separator, but the capacity retention rate is excellent at 70% in all cases. Also, comparison between Examples 5-4 and 5-5 confirmed that it was effective if a layer containing activated alumina was present in at least one of the positive electrode and the negative electrode.
As can be seen from the results of Examples 5-1 to 5-2 and Comparative Examples 5-4 to 5-6, there was observed a tendency that the capacity retention rate was excellent as the specific surface area of the activated alumina was increased. And the specific surface area 200m of Comparative Example 5-6 2 / G, the effect is insufficient, and the specific surface area of Example 5-2 is 350 m. 2 Since the effect was sufficiently confirmed with activated alumina / g, the specific surface area of activated alumina was 300 m. 2 / G or more is preferred. In Comparative Examples 5-7 and 5-8, the specific surface area was 300 m instead of activated alumina. 2 / G or more of zeolite and silica were used, but the capacity retention rate was 62% or less, and the activated alumina did not show the excellent effect. The specific surface area is 1600m 2 In Comparative Example 5-9 using activated carbon of / g, the capacity retention rate was as low as 62% compared to Examples 5-1 and 5-2. From this, the specific surface area is 1000m 2 / G or less, more preferably 500 m 2 / G or less is suitable. On the other hand, the true density is 2.7 g / cm. 3 Below and 3.9 g / cm 3 Then, the capacity retention rate is low, and 2.8 to 3.3 g / cm 3 It was found that better results could be obtained within this range. Based on the above, it can be estimated that the capacity maintenance rate has improved because the surface condition peculiar to activated alumina has reduced the activity of HF.
Even in Examples 5-6 and Comparative Example 5-10 in which the positive electrode active material was lithium manganate, excellent results were obtained with a capacity retention rate of 70% or more by using a separator containing activated alumina. In Comparative Example 5-10, since lithium manganate was used, the metal from the positive electrode was dissolved by HF rather than lithium cobaltate, so the capacity retention rate was considered to be as low as 42%.
When comparing the system containing activated alumina in the electrode and Examples 5-7 to 5-10 in which the active alumina layer was laminated on the electrode surface, the capacity retention rate was 70% or more in all Examples. Are better. As a result, it was confirmed that the location of the activated alumina was effective even if contained in the electrode or laminated on the electrode surface.
Summarizing the above performance evaluation results, in order to obtain a non-aqueous secondary battery with an excellent capacity retention rate, the specific surface area is 300 to 1000 m. 2 As a result, it was found that / g of activated alumina is contained in a non-aqueous secondary battery, and the location of the activated alumina is not particularly limited.
[HF removal performance]
About the non-aqueous secondary battery of Examples 5-1 and 5-2 and Comparative Example 5-1, the capacity retention rate was measured, and then the battery was disassembled to extract a non-aqueous electrolyte. And content of HF in this electrolyte was measured.
Specifically, the HF content is measured by disassembling the non-aqueous secondary battery after measuring the capacity retention rate, and then in a predetermined amount of solution in which ethylene carbonate and ethyl methyl carbonate are mixed at a weight ratio of 3: 7. And left for 1 week to extract HF present in the battery with a solution. Then, titration was performed with an aqueous sodium hydroxide solution using bromothymol blue as an indicator, and the acid concentration in the extracted solution was determined. Finally, the value obtained by converting the obtained acid concentration per weight of the electrolyte used in the non-aqueous secondary battery was defined as the HF content (ppm). The measurement results for each sample are shown in Table 10 below. The HF content in the electrolyte before constituting the battery was 30 ppm.
(6) Example according to the sixth aspect
Examples according to the sixth aspect of the present invention will be described below. The average particle diameter, specific surface area, true density, crystal structure and element ratio, and film thickness measuring method of the inorganic filler are as described above.
[Example 6-1]
A non-aqueous secondary battery was produced in the same manner as in Example 5-1.
[Example 6-2]
A non-aqueous secondary battery was produced in the same manner as in Example 5-2 described above.
[Example 6-3]
A non-aqueous secondary battery was produced in the same manner as Example 5-3 described above.
[Example 6-4]
A non-aqueous secondary battery was produced in the same manner as in Example 5-4 described above.
[Example 6-5]
A non-aqueous secondary battery was produced in the same manner as in Example 5-5 described above.
[Example 6-6]
A non-aqueous secondary battery was produced in the same manner as in Example 5-9 described above.
[Example 6-7]
A nonaqueous secondary battery was produced in the same manner as in Example 5-10 described above.
[Comparative Example 6-1]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-1 described above.
[Comparative Example 6-2]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-2 described above.
[Comparative Example 6-3]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-3 described above.
[Comparative Example 6-4]
Without using alumina A as an inorganic filler, the average particle size is 0.5 μm and the specific surface area is 7 m. 2 / G nonporous alumina E (manufactured by Showa Denko; AL-160SG-3) was used in the same manner as in Example 6-1 to obtain a nonaqueous secondary battery. When this alumina E was subjected to XRD analysis, a clear peak derived from α-alumina was observed.
[Comparative Example 6-5]
Without using alumina A as an inorganic filler, the average particle diameter is 0.6 μm and the specific surface area is 15 m. 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1, except that / g nonporous alumina F (Daimei Chemical Industries; C06) was used. When this alumina F was subjected to XRD analysis, a clear peak derived from boehmite was observed.
[Comparative Example 6-6]
Without using alumina A as a filler, average particle diameter 0.8μm, specific surface area 7m 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1 except that / g nonporous aluminum hydroxide (Showa Denko; H-43M) was used. When this aluminum hydroxide was subjected to XRD analysis, a clear peak derived from gibbsite was observed.
[Comparative Example 6-7]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-7 described above.
[Comparative Example 6-8]
Without using alumina A as an inorganic filler, the average particle diameter is 2 μm and the specific surface area is 600 m. 2 A nonaqueous secondary battery was obtained in the same manner as in Example 6-1 except that / g of silica (manufactured by Tokai Chemical Industry Co., Ltd .; ML-644) was used.
[Comparative Example 6-9]
A non-aqueous secondary battery was produced in the same manner as Comparative Example 5-9 described above.
[Measurement of capacity maintenance ratio]
About the non-aqueous secondary battery of the Example produced as mentioned above and a comparative example, in a 60 degreeC thermostat, a charge / discharge measuring apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charge / discharge characteristics were measured. did. Regarding charging / discharging conditions, charging is performed at 0.2 C to 4.2 V for 8 hours, discharging is performed at 0.2 C at 2.75 V, and the capacity retention rate is discharging at 400 cycles with respect to the initial discharging capacity. The capacity ratio. Table 11 shows the measurement results.
[140 ° C oven test]
The non-aqueous secondary batteries of Examples and Comparative Examples produced as described above were charged at 0.2 C to 4.2 V for 8 hours, and then stored in an anti-drying dryer at 140 ° C. for 24 hours. As a result, when ignition was confirmed, it evaluated as x, and when ignition was not confirmed, it evaluated as (circle). The results are shown in Table 11.
In Table 11, from the results of Examples 6-1 to 6-2 and Comparative Examples 6-1 to 6-6, an excellent capacity maintenance ratio of 70% or more is obtained if the structure contains amorphous alumina in the separator. It can be seen that Comparative Examples 6-1 to 6-3 containing no filler had a capacity retention rate as low as 60% or less. Furthermore, according to the 140 ° C. oven test, ignition was not confirmed in Examples 6-1 to 6-2, but ignition was confirmed in Comparative Example 6-1, so Examples 6-1 to 6-2 were internal. It was found that the safety in short circuit is also excellent.
In comparison of the structures of alumina, Comparative Examples 6-4 to 6-6 having a structure other than amorphous had a capacity retention rate as low as 60% or less, and further, ignition was confirmed in a 140 ° C. oven test. This indicates that amorphous alumina is excellent in both cycle characteristics and safety in internal short circuit.
Further, as other inorganic fillers, zeolite, silica, and activated carbon were evaluated in Comparative Examples 6-7 to 6-9, but the capacity retention rate was slightly over 60% as compared with Examples 6-1 to 6-2. Low and ignition was confirmed in the 140 ° C. oven test. This also shows that amorphous alumina is excellent as the inorganic filler to be added.
When Examples 6-1 to 6-8 were compared as the location of alumina, the capacity retention rate was excellent at 70% or more in all cases, and the presence of amorphous alumina was positive because it did not ignite in the oven test. It was found that if it exists in any part between the negative electrode and the negative electrode, the cycle characteristics and safety due to internal short circuit are excellent.
[Measurement of heat shrinkage]
In order to investigate the cause of the presence or absence of ignition in the 140 ° C. oven test, the thermal contraction rate was measured for the separators of Examples 6-1 to 6-2 and Comparative Examples 6-1 and 6-4 to 6-9. .
Specifically, first, a separator as a sample was cut in a direction of 18 cm (MD direction) × 6 cm (TD). On the line that bisects the TD direction, points (point A, point B) of 2 cm and 17 cm from the top were marked. In addition, marks were placed at 1 cm and 5 cm from the left on the line that bisects the MD direction. This was clipped and hung in an oven adjusted to 105 ° C. and heat-treated for 30 minutes under no tension. The length between two points AB and the length between CDs were measured before and after the heat treatment, and the thermal shrinkage rate was obtained from the following two formulas. The measurement results for each sample are summarized in Table 12.
MD direction thermal shrinkage = (length between AB before heat treatment−length between AB after heat treatment) / (length between AB before heat treatment) × 100
TD direction thermal shrinkage = (length between CDs before heat treatment−length between CDs after heat treatment) / (length between CDs before heat treatment) × 100
To summarize the above performance evaluation results, in order to obtain a non-aqueous secondary battery with excellent capacity maintenance rate and excellent safety that does not ignite in a 140 ° C. oven test, amorphous alumina is contained between the negative electrode and the positive electrode. The knowledge that it was good to be able to be made was able to be acquired.
Claims (13)
- 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、
前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用多孔膜。 A porous membrane for a non-aqueous secondary battery comprising a heat resistant resin and an inorganic filler,
A porous membrane for a non-aqueous secondary battery, wherein the inorganic filler is a porous filler having an average particle size of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m 2 / g. - 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする請求項1に記載の非水系二次電池用多孔膜。 2. The porous membrane for a non-aqueous secondary battery according to claim 1, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
- 耐熱性樹脂および無機フィラーを含んで構成された非水系二次電池用多孔膜であって、
前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用多孔膜。 A porous membrane for a non-aqueous secondary battery comprising a heat resistant resin and an inorganic filler,
A porous membrane for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles. - 少なくとも正極及び負極を備えた非水系二次電池であって、
前記正極及び前記負極の少なくともいずれか一方の表面に請求項1~3のいずれかに記載の非水系二次電池用多孔膜を形成したか、あるいは、当該非水系二次電池用多孔膜をセパレータとして用いたことを特徴とする非水系二次電池。 A non-aqueous secondary battery comprising at least a positive electrode and a negative electrode,
4. The nonaqueous secondary battery porous membrane according to claim 1 is formed on at least one surface of the positive electrode and the negative electrode, or the nonaqueous secondary battery porous membrane is a separator. A non-aqueous secondary battery characterized by being used as: - 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、
前記無機フィラーが、平均粒子径が0.1~5.0μmであり、かつ、比表面積が40~3000m2/gの多孔質フィラーであることを特徴とする非水系二次電池用セパレータ。 A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate,
A separator for a non-aqueous secondary battery, wherein the inorganic filler is a porous filler having an average particle diameter of 0.1 to 5.0 μm and a specific surface area of 40 to 3000 m 2 / g. - 前記多孔質フィラーが、比表面積が300~1000m2/gの活性アルミナであることを特徴とする請求項5に記載の非水系二次電池用セパレータ。 6. The separator for a non-aqueous secondary battery according to claim 5, wherein the porous filler is activated alumina having a specific surface area of 300 to 1000 m 2 / g.
- 多孔質基材と、この多孔質基材の片面または両面に積層された、耐熱性樹脂および無機フィラーを含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、
前記無機フィラーが、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用セパレータ。 A separator for a non-aqueous secondary battery comprising a porous substrate and a heat-resistant porous layer containing a heat-resistant resin and an inorganic filler laminated on one or both surfaces of the porous substrate,
A separator for a non-aqueous secondary battery, wherein the inorganic filler is amorphous alumina particles. - 正極、負極およびセパレータを備えた非水系二次電池であって、
前記セパレータとして、請求項5~7のいずれかに記載の非水系二次電池用セパレータを用いたことを特徴とする非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode, a negative electrode and a separator,
A nonaqueous secondary battery using the separator for a nonaqueous secondary battery according to any one of claims 5 to 7 as the separator. - 非水系二次電池内に混入するフッ化水素の吸着剤であって、
当該吸着剤は、比表面積が300~1000m2/gの活性アルミナ粒子であることを特徴とする非水系二次電池用吸着剤。 An adsorbent of hydrogen fluoride mixed in a non-aqueous secondary battery,
The adsorbent is an activated alumina particle having a specific surface area of 300 to 1000 m 2 / g, an adsorbent for a non-aqueous secondary battery. - 非水系二次電池内に混入するフッ化水素の吸着剤であって、
当該吸着剤は、アモルファス状のアルミナ粒子であることを特徴とする非水系二次電池用吸着剤。 An adsorbent of hydrogen fluoride mixed in a non-aqueous secondary battery,
The said adsorbent is an amorphous alumina particle, The adsorbent for non-aqueous secondary batteries characterized by the above-mentioned. - 無機フィラーおよびバインダ樹脂を含んで構成された非水系二次電池用多孔膜であって、
前記無機フィラーとして請求項9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用多孔膜。 A porous membrane for a non-aqueous secondary battery comprising an inorganic filler and a binder resin,
A porous membrane for a non-aqueous secondary battery comprising the non-aqueous secondary battery adsorbent according to claim 9 or 10 as the inorganic filler. - 多孔質基材と、この多孔質基材の片面または両面に積層された、無機フィラーおよびバインダ樹脂を含む多孔質層と、を備えた非水系二次電池用セパレータであって、
前記無機フィラーとして請求項9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池用セパレータ。 A separator for a nonaqueous secondary battery comprising a porous substrate and a porous layer containing an inorganic filler and a binder resin laminated on one or both surfaces of the porous substrate,
A non-aqueous secondary battery separator comprising the non-aqueous secondary battery adsorbent according to claim 9 or 10 as the inorganic filler. - 正極、負極、非水電解質およびセパレータを備えた非水系二次電池であって、
当該電池内には請求項9または10に記載の非水系二次電池用吸着剤が含まれていることを特徴とする非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator,
A non-aqueous secondary battery comprising the non-aqueous secondary battery adsorbent according to claim 9 or 10 in the battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010527268A JP4685974B2 (en) | 2009-02-24 | 2010-02-24 | Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040584 | 2009-02-24 | ||
JP2009-040584 | 2009-02-24 | ||
JP2009-053464 | 2009-03-06 | ||
JP2009053464 | 2009-03-06 | ||
JP2009059454 | 2009-03-12 | ||
JP2009-059454 | 2009-03-12 | ||
JP2009-079099 | 2009-03-27 | ||
JP2009079099 | 2009-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098497A1 true WO2010098497A1 (en) | 2010-09-02 |
Family
ID=42665691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053380 WO2010098497A1 (en) | 2009-02-24 | 2010-02-24 | Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, adsorbent for nonaqueous secondary battery, and nonaqueous secondary battery |
Country Status (3)
Country | Link |
---|---|
JP (3) | JP4685974B2 (en) |
TW (1) | TW201101560A (en) |
WO (1) | WO2010098497A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4988973B1 (en) * | 2011-04-08 | 2012-08-01 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
JP4988972B1 (en) * | 2011-04-08 | 2012-08-01 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
WO2012137377A1 (en) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
WO2012137374A1 (en) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
WO2012165624A1 (en) * | 2011-06-03 | 2012-12-06 | 富士シリシア化学株式会社 | Separator, electrochemical element, and method for manufacturing separator |
JP2013080655A (en) * | 2011-10-05 | 2013-05-02 | Toyota Motor Corp | Secondary battery |
JP2013080654A (en) * | 2011-10-05 | 2013-05-02 | Toyota Motor Corp | Secondary battery |
US20130115484A1 (en) * | 2011-11-03 | 2013-05-09 | Johnson Controls Technology Llc | Lithium ion secondary battery with improved safety characteristics |
JP2013109866A (en) * | 2011-11-17 | 2013-06-06 | Toyota Motor Corp | Lithium secondary battery |
JP2015502003A (en) * | 2011-11-10 | 2015-01-19 | ダウ グローバル テクノロジーズ エルエルシー | Polymer porous substrate containing porous particles |
WO2015008673A1 (en) * | 2013-07-18 | 2015-01-22 | 三菱製紙株式会社 | Battery separator |
TWI500208B (en) * | 2010-11-01 | 2015-09-11 | Teijin Ltd | Connected porous sheet and method for producing the same, separator for non-aqueous secondary battery, and non-aqueous secondary battery and method for producing the same |
JPWO2013154090A1 (en) * | 2012-04-13 | 2015-12-17 | 東レバッテリーセパレータフィルム株式会社 | Laminated porous membrane, battery separator and battery |
JP2015232930A (en) * | 2014-06-09 | 2015-12-24 | 株式会社村田製作所 | Nonaqueous electrolyte secondary battery |
WO2016157899A1 (en) * | 2015-03-30 | 2016-10-06 | 日本ゼオン株式会社 | Composition for secondary battery porous membranes, porous membrane for secondary batteries, and secondary battery |
JP2019521479A (en) * | 2016-06-07 | 2019-07-25 | シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッドShanghai Energy New Materials Technology Co.,Ltd. | Polymer electrolyte membrane and method for producing the same |
CN110603679A (en) * | 2017-03-13 | 2019-12-20 | 通用汽车环球科技运作有限责任公司 | Method for stabilizing Lithium Titanate Oxide (LTO) by electrolyte pretreatment |
CN111755649A (en) * | 2019-03-28 | 2020-10-09 | 河北金力新能源科技股份有限公司 | PEI coating slurry, diaphragm and preparation method and application thereof |
CN112531287A (en) * | 2020-12-25 | 2021-03-19 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | Zinc-silver secondary battery diaphragm, preparation method thereof and zinc-silver secondary battery |
CN113328145A (en) * | 2021-06-01 | 2021-08-31 | 湖南豪曼新能源科技有限公司 | Preparation method of lithium ion battery slurry, lithium ion battery and preparation method thereof |
CN117458084A (en) * | 2023-12-19 | 2024-01-26 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5650955B2 (en) * | 2010-08-26 | 2015-01-07 | 旭化成せんい株式会社 | Composite membrane |
JP5736186B2 (en) * | 2011-02-14 | 2015-06-17 | 株式会社ダイセル | Porous membrane containing inorganic particles and method for producing the same |
JP5988134B2 (en) | 2011-05-11 | 2016-09-07 | 株式会社Gsユアサ | Electricity storage element |
JP6004310B2 (en) * | 2012-01-31 | 2016-10-05 | 国立大学法人山形大学 | Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery |
JP6345915B2 (en) * | 2012-09-07 | 2018-06-20 | 旭化成株式会社 | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery |
WO2014050707A1 (en) * | 2012-09-28 | 2014-04-03 | 日本ゼオン株式会社 | Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries |
JP6102442B2 (en) * | 2013-04-04 | 2017-03-29 | 日産自動車株式会社 | Lithium ion secondary battery |
JP6094542B2 (en) | 2014-07-29 | 2017-03-15 | 住友化学株式会社 | Porous membrane |
JP6264658B2 (en) * | 2014-08-06 | 2018-01-24 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP6599982B2 (en) * | 2014-10-24 | 2019-10-30 | エルジー・ケム・リミテッド | Secondary battery separator including organic-inorganic composite porous layer and method for producing the same |
JP2016103439A (en) * | 2014-11-28 | 2016-06-02 | 協立化学産業株式会社 | Slurry composition, method for manufacturing the same, and coated body formed by use thereof |
WO2018047841A1 (en) | 2016-09-07 | 2018-03-15 | 協和化学工業株式会社 | Microparticulate composite metal hydroxide, calcined product thereof, method for production thereof, and resin composition thereof |
HUE061583T2 (en) | 2016-11-14 | 2023-07-28 | Sumitomo Chemical Co | Alumina and slurry containing same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery |
WO2018101474A1 (en) | 2016-12-02 | 2018-06-07 | 旭化成株式会社 | Inorganic particles for nonaqueous electrolyte battery |
JP6959015B2 (en) * | 2017-02-17 | 2021-11-02 | 積水化学工業株式会社 | Non-aqueous electrolyte secondary battery |
KR102375203B1 (en) * | 2017-04-05 | 2022-03-16 | 에스케이이노베이션 주식회사 | Microporous Polyimide Film and Process for Producing the Same |
KR102293887B1 (en) * | 2017-07-25 | 2021-08-25 | 주식회사 엘지에너지솔루션 | Battery Separator Having Material for Reducing Hydrofluoric Acid |
CN107958977B (en) * | 2017-11-06 | 2020-06-12 | 上海恩捷新材料科技股份有限公司 | Battery diaphragm, lithium ion battery and preparation method thereof |
JP6955438B2 (en) * | 2017-12-26 | 2021-10-27 | 株式会社日本触媒 | Separator for electrochemical elements |
JP7189687B2 (en) * | 2018-06-15 | 2022-12-14 | 住友化学株式会社 | Porous layer for non-aqueous electrolyte secondary battery |
CN117099254A (en) * | 2021-08-27 | 2023-11-21 | 株式会社Lg新能源 | Separator for electrochemical device, and electrode assembly and electrochemical device including the same |
CN114843708B (en) * | 2022-07-04 | 2022-10-11 | 中材锂膜(宁乡)有限公司 | Porous diaphragm, preparation method thereof and electrochemical device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6065478A (en) * | 1983-09-21 | 1985-04-15 | Hitachi Ltd | Polymer secondary battery |
JPH07211349A (en) * | 1994-01-24 | 1995-08-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JPH10241657A (en) * | 1997-02-28 | 1998-09-11 | Asahi Chem Ind Co Ltd | Battery |
JPH11307131A (en) * | 1998-04-22 | 1999-11-05 | Mitsubishi Cable Ind Ltd | Sheet-type lithium ion secondary battery |
JP2000058119A (en) * | 1998-08-04 | 2000-02-25 | Mitsubishi Chemicals Corp | Manufacture of nonaqueous electrolyte for secondary battery |
JP2008146963A (en) * | 2006-12-08 | 2008-06-26 | Sony Corp | Separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack |
WO2008149895A1 (en) * | 2007-06-06 | 2008-12-11 | Teijin Limited | Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery |
JP2009231281A (en) * | 2008-02-28 | 2009-10-08 | Teijin Ltd | Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2658806B1 (en) * | 1990-02-23 | 1992-05-22 | Rhone Poulenc Chimie | ACTIVATED ALUMINUM AGGLOMERATES AND PROCESS FOR OBTAINING SAME. |
JP3704780B2 (en) * | 1996-02-09 | 2005-10-12 | 宇部興産株式会社 | Non-aqueous secondary battery |
JP2000077103A (en) * | 1998-08-31 | 2000-03-14 | Hitachi Ltd | Lithium secondary battery and apparatus |
JP4199859B2 (en) * | 1998-10-14 | 2008-12-24 | 水澤化学工業株式会社 | Production method of transparent activated alumina |
JP2003040999A (en) * | 2001-07-27 | 2003-02-13 | Sumitomo Chem Co Ltd | Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery |
JP4145762B2 (en) * | 2003-09-26 | 2008-09-03 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
CN102097609A (en) * | 2006-11-20 | 2011-06-15 | 帝人株式会社 | Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery |
-
2010
- 2010-02-24 WO PCT/JP2010/053380 patent/WO2010098497A1/en active Application Filing
- 2010-02-24 TW TW099105326A patent/TW201101560A/en unknown
- 2010-02-24 JP JP2010527268A patent/JP4685974B2/en not_active Expired - Fee Related
- 2010-08-05 JP JP2010176201A patent/JP4625142B2/en not_active Expired - Fee Related
- 2010-12-10 JP JP2010275930A patent/JP5226763B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6065478A (en) * | 1983-09-21 | 1985-04-15 | Hitachi Ltd | Polymer secondary battery |
JPH07211349A (en) * | 1994-01-24 | 1995-08-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JPH10241657A (en) * | 1997-02-28 | 1998-09-11 | Asahi Chem Ind Co Ltd | Battery |
JPH11307131A (en) * | 1998-04-22 | 1999-11-05 | Mitsubishi Cable Ind Ltd | Sheet-type lithium ion secondary battery |
JP2000058119A (en) * | 1998-08-04 | 2000-02-25 | Mitsubishi Chemicals Corp | Manufacture of nonaqueous electrolyte for secondary battery |
JP2008146963A (en) * | 2006-12-08 | 2008-06-26 | Sony Corp | Separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack |
WO2008149895A1 (en) * | 2007-06-06 | 2008-12-11 | Teijin Limited | Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery |
JP2009231281A (en) * | 2008-02-28 | 2009-10-08 | Teijin Ltd | Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI500208B (en) * | 2010-11-01 | 2015-09-11 | Teijin Ltd | Connected porous sheet and method for producing the same, separator for non-aqueous secondary battery, and non-aqueous secondary battery and method for producing the same |
KR101297768B1 (en) | 2011-04-08 | 2013-08-20 | 데이진 가부시키가이샤 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
JP4988972B1 (en) * | 2011-04-08 | 2012-08-01 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
WO2012137377A1 (en) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
WO2012137374A1 (en) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
US9269938B2 (en) | 2011-04-08 | 2016-02-23 | Teijin Limited | Separator for nonaqueous secondary battery, and nonaqueous secondary battery |
JP4988973B1 (en) * | 2011-04-08 | 2012-08-01 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
US9281508B2 (en) | 2011-04-08 | 2016-03-08 | Teijin Limited | Separator for nonaqueous secondary battery, and nonaqueous secondary battery |
US10193117B2 (en) | 2011-04-08 | 2019-01-29 | Teijin Limited | Separator for nonaqueous secondary battery, and nonaqueous secondary battery |
CN103155220A (en) * | 2011-04-08 | 2013-06-12 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
KR101297771B1 (en) | 2011-04-08 | 2013-08-20 | 데이진 가부시키가이샤 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
JPWO2012165624A1 (en) * | 2011-06-03 | 2015-02-23 | 富士シリシア化学株式会社 | Separator and electrochemical element |
JP2013168373A (en) * | 2011-06-03 | 2013-08-29 | Fuji Silysia Chemical Ltd | Separator, electrochemical element, and method for producing separator |
JP2018056573A (en) * | 2011-06-03 | 2018-04-05 | 富士シリシア化学株式会社 | Method for manufacturing separator |
JP2016054302A (en) * | 2011-06-03 | 2016-04-14 | 富士シリシア化学株式会社 | Method for manufacturing separator |
WO2012165624A1 (en) * | 2011-06-03 | 2012-12-06 | 富士シリシア化学株式会社 | Separator, electrochemical element, and method for manufacturing separator |
JP2013080654A (en) * | 2011-10-05 | 2013-05-02 | Toyota Motor Corp | Secondary battery |
JP2013080655A (en) * | 2011-10-05 | 2013-05-02 | Toyota Motor Corp | Secondary battery |
US20130115484A1 (en) * | 2011-11-03 | 2013-05-09 | Johnson Controls Technology Llc | Lithium ion secondary battery with improved safety characteristics |
JP2015502003A (en) * | 2011-11-10 | 2015-01-19 | ダウ グローバル テクノロジーズ エルエルシー | Polymer porous substrate containing porous particles |
JP2013109866A (en) * | 2011-11-17 | 2013-06-06 | Toyota Motor Corp | Lithium secondary battery |
JPWO2013154090A1 (en) * | 2012-04-13 | 2015-12-17 | 東レバッテリーセパレータフィルム株式会社 | Laminated porous membrane, battery separator and battery |
JP2015181092A (en) * | 2013-07-18 | 2015-10-15 | 三菱製紙株式会社 | battery separator |
WO2015008673A1 (en) * | 2013-07-18 | 2015-01-22 | 三菱製紙株式会社 | Battery separator |
JP2015232930A (en) * | 2014-06-09 | 2015-12-24 | 株式会社村田製作所 | Nonaqueous electrolyte secondary battery |
US10381624B2 (en) | 2015-03-30 | 2019-08-13 | Zeon Corporation | Composition for secondary battery porous membrane, porous membrane for secondary battery and secondary battery |
JPWO2016157899A1 (en) * | 2015-03-30 | 2018-01-25 | 日本ゼオン株式会社 | Secondary battery porous membrane composition, secondary battery porous membrane and secondary battery |
WO2016157899A1 (en) * | 2015-03-30 | 2016-10-06 | 日本ゼオン株式会社 | Composition for secondary battery porous membranes, porous membrane for secondary batteries, and secondary battery |
JP2019521479A (en) * | 2016-06-07 | 2019-07-25 | シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッドShanghai Energy New Materials Technology Co.,Ltd. | Polymer electrolyte membrane and method for producing the same |
CN110603679A (en) * | 2017-03-13 | 2019-12-20 | 通用汽车环球科技运作有限责任公司 | Method for stabilizing Lithium Titanate Oxide (LTO) by electrolyte pretreatment |
CN111755649A (en) * | 2019-03-28 | 2020-10-09 | 河北金力新能源科技股份有限公司 | PEI coating slurry, diaphragm and preparation method and application thereof |
CN111755649B (en) * | 2019-03-28 | 2022-10-28 | 河北金力新能源科技股份有限公司 | PEI coating slurry, diaphragm, and preparation method and application thereof |
CN112531287A (en) * | 2020-12-25 | 2021-03-19 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | Zinc-silver secondary battery diaphragm, preparation method thereof and zinc-silver secondary battery |
CN112531287B (en) * | 2020-12-25 | 2021-08-17 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | Zinc-silver secondary battery diaphragm, preparation method thereof and zinc-silver secondary battery |
CN113328145A (en) * | 2021-06-01 | 2021-08-31 | 湖南豪曼新能源科技有限公司 | Preparation method of lithium ion battery slurry, lithium ion battery and preparation method thereof |
CN117458084A (en) * | 2023-12-19 | 2024-01-26 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
CN117458084B (en) * | 2023-12-19 | 2024-03-19 | 宁德新能源科技有限公司 | Secondary battery and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP4625142B2 (en) | 2011-02-02 |
JP2011077052A (en) | 2011-04-14 |
JP4685974B2 (en) | 2011-05-18 |
JPWO2010098497A1 (en) | 2012-09-06 |
TW201101560A (en) | 2011-01-01 |
JP2010278018A (en) | 2010-12-09 |
JP5226763B2 (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4685974B2 (en) | Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery | |
JP4575521B2 (en) | Non-aqueous secondary battery separator | |
JP4364940B2 (en) | Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery | |
TWI415321B (en) | Non-aqueous battery separator, manufacturing method thereof and non-water storage battery | |
JP5356878B2 (en) | Non-aqueous secondary battery separator | |
JP2011108444A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2010212046A (en) | Nonaqueous secondary battery and adsorbent for nonaqueous secondary battery | |
WO2020235508A1 (en) | Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery | |
JP2011192528A (en) | Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2011198553A (en) | Polyolefin fine porous membrane, separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
EP3920318B1 (en) | Separator for non-aqueous secondary battery, and non-aqueous secondary battery | |
JP2011028947A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2012048987A (en) | Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery | |
JP2011204587A (en) | Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery | |
JP2011192529A (en) | Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2011216318A (en) | Separator for nonaqueous secondary battery | |
JP2011113921A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP7545216B2 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2011108515A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery employing the same | |
JP2012049018A (en) | Separator for nonaqueous electrolyte battery | |
JP2010092717A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP5368030B2 (en) | Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery | |
JP2011134563A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP5966522B2 (en) | Porous film and lithium ion secondary battery using the same | |
JP2011210437A (en) | Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2010527268 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10746367 Country of ref document: EP Kind code of ref document: A1 |