WO2014050707A1 - Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries - Google Patents

Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries Download PDF

Info

Publication number
WO2014050707A1
WO2014050707A1 PCT/JP2013/075362 JP2013075362W WO2014050707A1 WO 2014050707 A1 WO2014050707 A1 WO 2014050707A1 JP 2013075362 W JP2013075362 W JP 2013075362W WO 2014050707 A1 WO2014050707 A1 WO 2014050707A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
water
group
membrane separator
porous
Prior art date
Application number
PCT/JP2013/075362
Other languages
French (fr)
Japanese (ja)
Inventor
裕次郎 豊田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201380031776.3A priority Critical patent/CN104364938B/en
Priority to JP2014538445A priority patent/JP6119759B2/en
Priority to KR1020147035289A priority patent/KR102090111B1/en
Publication of WO2014050707A1 publication Critical patent/WO2014050707A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a porous membrane separator for a lithium ion secondary battery and a method for producing a laminate for a lithium ion secondary battery.
  • lithium ion secondary batteries exhibit a high energy density, and are often used especially for small electronics. In addition to small-sized applications, development for automobiles is also expected.
  • a lithium ion secondary battery generally includes a positive electrode and a negative electrode, a separator, and a non-aqueous electrolyte.
  • a separator made of a stretched resin such as a stretched polyethylene resin is also heated.
  • a separator made of stretched resin tends to shrink even at a temperature of 150 ° C. or less, and easily causes a short circuit of the battery.
  • a separator having a porous film containing non-conductive particles such as an inorganic filler (hereinafter sometimes referred to as a “porous film separator” as appropriate) has been proposed (patent). Reference 1).
  • the porous film is unlikely to shrink due to heat, so in a battery using the porous film separator, the risk of short circuit is greatly reduced, and a significant improvement in safety is expected.
  • the porous film has pores, the electrolytic solution can penetrate into the porous film, and the battery reaction is not inhibited by the porous film.
  • Patent Document 2 it has been proposed to provide an adhesive layer on the porous film.
  • an adhesive layer is provided on the porous film, the adhesion between the porous film and the electrode can be improved. For this reason, since the porous membrane can be stably fixed to the electrode, for example, shrinkage due to heat of the porous membrane can be further suppressed, and safety can be further improved.
  • the porous film can be produced, for example, by applying a slurry composition containing non-conductive particles and a solvent, and if necessary, an optional component on a separator substrate, and drying the solvent.
  • the adhesive layer can be prepared, for example, by applying a slurry composition containing a polymer and a solvent, and if necessary, an optional component on the porous film and drying the solvent.
  • an organic solvent has been generally used as a solvent for a slurry composition for producing a porous film and an adhesive layer.
  • an organic solvent there are problems that it is necessary to recycle the organic solvent or to ensure safety by using the organic solvent. Therefore, in recent years, a production method using an aqueous slurry composition containing water as a solvent has been studied.
  • the porous film may be dissolved by the slurry composition for the adhesive layer.
  • the porous film formed by applying and drying an aqueous slurry composition contains a water-soluble component. Therefore, when an aqueous slurry composition is applied on the porous film in order to form an adhesive layer, water-soluble components of the porous film are dissolved in the solvent contained in the applied slurry composition, and as a result, the porous film is formed. It was sometimes melted.
  • the separator has a sheet-like shape. Moreover, these sheet-like separators are usually transported or stored in a state of being wound up in a roll shape. However, when blocking occurs in the separator, the separators that are overlapped with each other in a roll shape are fixed to each other, and handling properties may be impaired.
  • a porous membrane separator having better adhesion to electrodes tends to cause blocking. Therefore, in a porous membrane separator provided with an adhesive layer, blocking is particularly likely to occur. Therefore, development of a method for producing a porous membrane separator excellent in both adhesiveness and blocking resistance has also been desired.
  • the present invention was devised in view of the above problems, and is a method for producing a porous membrane separator for a lithium ion secondary battery provided with a porous membrane and an adhesive layer, using an aqueous slurry composition containing water.
  • the purpose is to provide.
  • an object of this invention is to provide the manufacturing method of the laminated body for lithium ion secondary batteries provided with the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention.
  • the present inventor has obtained a porous film containing non-conductive particles, a water-soluble polymer compound, water, and at least one low-molecular compound selected from the group consisting of ammonia and an amine compound. Applying the slurry composition for at least one side of the separator substrate and drying to obtain a porous film; and the slurry composition for an adhesive layer containing a particulate polymer having a glass transition temperature in a predetermined range and water.
  • the manufacturing method including the steps of applying onto the film and drying to obtain the adhesive layer, while suppressing the porous film from being dissolved by the slurry composition for the adhesive layer, was excellent in both adhesion and blocking resistance
  • the inventors have found that a porous membrane separator can be produced, and completed the present invention. That is, the present invention is as follows.
  • a slurry composition for a porous membrane containing at least one kind of low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compound, water, and ammonia and an amine compound is used as at least one surface of a separator substrate.
  • a lithium ion secondary comprising a step of applying a slurry composition for an adhesive layer containing a particulate polymer having a glass transition temperature of 10 ° C. or higher and 110 ° C. or lower and water on the porous film and drying to obtain an adhesive layer.
  • a method for producing a porous membrane separator for a battery is containing at least one kind of low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compound, water, and ammonia and an amine compound.
  • the water-soluble polymer compound is at least one selected from the group consisting of carboxymethylcellulose and a maleimide-maleic acid copolymer containing a structural unit represented by the following formula (I): ]-[5]
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, (It is at least one selected from the group consisting of a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.)
  • a porous membrane separator for a lithium ion secondary battery having a porous membrane and an adhesive layer can be produced.
  • a porous film and an adhesive layer can be produced using a slurry composition containing water, and the porous film is hardly dissolved in the slurry composition for the adhesive layer.
  • a porous membrane separator excellent in both adhesion to electrodes and blocking resistance can be obtained.
  • the manufacturing method of the laminated body for lithium ion secondary batteries of this invention the laminated body for lithium ion secondary batteries provided with the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention is obtained. .
  • (meth) acrylic acid means acrylic acid and methacrylic acid.
  • (meth) acrylate means an acrylate and a methacrylate.
  • (meth) acrylonitrile means acrylonitrile and methacrylonitrile.
  • a certain substance is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • the method for producing a porous membrane separator of the present invention comprises a step of applying a slurry composition for a porous membrane to at least one surface of a separator substrate and drying to obtain a porous membrane; and a slurry composition for an adhesive layer on the porous membrane.
  • the process includes applying and drying to obtain an adhesive layer.
  • the thing containing water is used as said slurry composition for porous films, and the slurry composition for contact bonding layers.
  • the slurry composition for porous film is applied to at least one surface of the separator substrate and dried to obtain the porous film.
  • a porous film formed using a conventional slurry composition containing water as a solvent is generally easily soluble in water.
  • the porous film formed using the slurry composition for porous films according to the present invention is hardly soluble in water. Therefore, even if the slurry composition for adhesive layers containing water is applied on the porous film, the porous film is hardly dissolved.
  • separator base material any member that can prevent short-circuiting of electrodes without interfering with charge / discharge of the battery in the lithium ion secondary battery can be used.
  • separator substrate for example, a porous substrate having fine pores can be used.
  • a porous substrate made of an organic material that is, an organic separator
  • the separator base material include microporous membranes and nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, and the like.
  • the thickness of the separator substrate is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and usually 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less. Within this range, the resistance due to the separator substrate in the battery is reduced, and the workability during battery production is excellent.
  • the slurry composition for porous film comprises at least one low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compound, water, and ammonia and an amine compound (hereinafter referred to as “low-molecular compound X” as appropriate). May be called.) Moreover, it is preferable that the slurry composition for porous films contains a binder.
  • Non-conductive particles As the non-conductive particles, inorganic particles or organic particles may be used.
  • Inorganic particles are excellent in dispersion stability in a solvent, hardly settled in the slurry composition for porous membranes, and can usually maintain a uniform slurry state for a long time. In addition, when inorganic particles are used, the heat resistance of the porous film can usually be increased.
  • the material for the non-conductive particles an electrochemically stable material is preferable.
  • inorganic materials for non-conductive particles include aluminum oxide (alumina), aluminum oxide hydrate (boehmite (AlOOH), gibbsite (Al (OH) 3 ), silicon oxide, Oxide particles such as magnesium oxide (magnesia), magnesium hydroxide, calcium oxide, titanium oxide (titania), BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; silicon, diamond Covalent crystal particles such as barium sulfate, calcium fluoride, barium fluoride, etc. Insoluble ion crystal particles such as talc, montmorillonite clay fine particles, etc.
  • oxide particles are preferable, and in particular, water absorption is low.
  • Titanium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide and magnesium hydroxide are more preferred from the viewpoint of excellent heat resistance (for example, resistance to high temperature of 180 ° C. or higher), and aluminum oxide, aluminum oxide hydrate, oxidation Magnesium and magnesium hydroxide are more preferred, and aluminum oxide is particularly preferred.
  • Polymer particles are usually used as the organic particles.
  • the organic particles can control the affinity for water by adjusting the type and amount of the functional group on the surface of the organic particles, and thus can control the amount of water contained in the porous film.
  • Organic particles are excellent in that they usually have less metal ion elution.
  • the organic material for the non-conductive particles include various polymers such as polystyrene, polyethylene, polyimide, melamine resin, and phenol resin.
  • the polymer forming the particles may be a mixture, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer, a crosslinked product, or the like.
  • the organic particles may be formed by a mixture of two or more kinds of polymers.
  • the glass transition temperature may not be present, but when the organic material forming the organic particles has a glass transition temperature, the glass transition temperature is usually 150 ° C. or higher, preferably Is 200 ° C or higher, more preferably 250 ° C or higher, and usually 400 ° C or lower.
  • Non-conductive particles may be subjected to, for example, element substitution, surface treatment, solid solution, and the like as necessary. Further, the non-conductive particles may include one kind of the above materials alone in one particle, or may contain two or more kinds in combination at an arbitrary ratio. . Further, the non-conductive particles may be used in combination of two or more kinds of particles formed of different materials.
  • Examples of the shape of the nonconductive particles include a spherical shape, an elliptical spherical shape, a polygonal shape, a tetrapod (registered trademark) shape, a plate shape, and a scale shape.
  • a tetrapod (registered trademark) shape, a plate shape, and a scale shape are preferable.
  • the volume average particle diameter D50 of the nonconductive particles is usually 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and usually 5 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the volume average particle diameter D50 represents the particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% in the particle diameter distribution measured by the laser diffraction method.
  • the BET specific surface area of the non-conductive particles is, for example, preferably 0.9 m 2 / g or more, more preferably 1.5 m 2 / g or more. Further, from the viewpoint of suppressing aggregation of non-conductive particles and optimizing the fluidity of the slurry composition for a porous membrane, the BET specific surface area is preferably not too large, for example, 150 m 2 / g or less. .
  • the water-soluble polymer compound has a function of binding nonconductive particles to each other in the porous film. Therefore, the strength of the porous membrane can be increased by including the water-soluble polymer compound. It is also possible to prevent the nonconductive particles from falling off the porous film.
  • the water-soluble polymer compound has a function of binding non-conductive particles and the separator base material in the porous membrane separator. Therefore, the binding property between the porous membrane and the separator base material can be enhanced by including the water-soluble polymer compound in the porous membrane.
  • the water-soluble polymer compound can usually function as a viscosity modifier in the slurry composition for a porous membrane. Therefore, the application
  • the water-soluble polymer compound preferably has an acidic group. Since an acidic group has the effect
  • the acidic group usually has an effect of enhancing the binding property of the water-soluble polymer compound to the non-conductive particles and the binding property of the porous membrane to the separator substrate in the porous membrane separator.
  • Examples of the acidic group possessed by the water-soluble polymer compound include a carboxyl group, a sulfo group, a phosphate group, and a hydroxyl group, and among them, a carboxyl group is preferable.
  • an acidic group may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • water-soluble polymer compounds include maleimide-maleic acid copolymers containing a structural unit (a) represented by the following formula (I).
  • a structural unit (a) represented by the following formula (I) By using this maleimide-maleic acid copolymer, a porous membrane separator having excellent heat shrinkage resistance can be realized, so that the safety of the lithium ion secondary battery can be improved.
  • a porous membrane separator having excellent heat shrinkage resistance can be realized, so that the safety of the lithium ion secondary battery can be improved.
  • a porous membrane separator having excellent heat shrinkage resistance
  • decomposition of the electrolytic solution due to residual moisture can be suppressed. Therefore, since the expansion of the lithium ion secondary battery due to the decomposition of the electrolytic solution can be suppressed, the cycle characteristics of the lithium ion secondary battery can be improved.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, It represents at least one selected from the group consisting of a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.
  • the structural unit (a) represented by the formula (I) represents a maleimide unit of a maleimide-maleic acid copolymer.
  • the structural unit (a) represented by the formula (I) can be derived from, for example, maleimides represented by the following formula (I-1).
  • R 2 is a phenyl substituted by a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, or an alkyl group having 1 to 6 carbon atoms. And at least one selected from the group consisting of a group, a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.
  • maleimides represented by the formula (I-1) include maleimide; N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-butylmaleimide, N-pentylmaleimide, N-hexylmaleimide; N-phenylmaleimide; N- (2-methylphenyl) maleimide, N- (3-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2-ethylphenyl) maleimide, N- (3- Ethylphenyl) maleimide, N- (2-N-propylphenyl) maleimide, N- (2-i-propylphenyl) maleimide, N- (2-N-butylphenyl) maleimide, N- (2,6-dimethylphenyl) ) Maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (2,6-diethylphenyl)
  • the structural unit (a) represented by the formula (I) can also be obtained, for example, by imidizing the structural unit (b) represented by the formula (II) described later.
  • the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) contains a maleic acid unit in addition to the maleimide unit. Therefore, the maleimide-maleic acid copolymer including the structural unit (a) represented by the formula (I) includes the structural unit (b) represented by the following formula (II).
  • X represents a maleic acid unit.
  • the maleic acid unit represents a structural unit having a structure formed by polymerizing maleic acid.
  • the maleic acid unit represented by X may be partially neutralized with ions other than hydrogen ions, may be partially anhydrous, or may be partially esterified.
  • the structural unit (b) represented by the formula (II) can be derived from, for example, maleic acids represented by the following formula (II-1) or maleic anhydride represented by the formula (II-2).
  • R 3 and R 4 are at least one selected from the group consisting of a hydrogen atom, an alkyl group, an alkali metal ion, an alkaline earth metal ion, an ammonium ion, an alkyl ammonium ion, and an alkanol ammonium ion.
  • the alkylammonium ion refers to a cation obtained by adding one hydrogen atom to the nitrogen atom of alkylamine.
  • the alkanol ammonium ion refers to a cation obtained by adding one hydrogen atom to the nitrogen atom of alkanolamine.
  • R 3 and R 4 may be the same or different.
  • formula (II-1) represents a maleate ester.
  • R 3 or R 4 is an alkali metal ion, an alkaline earth metal ion, an ammonium ion, an alkyl ammonium ion, or an alkanol ammonium ion
  • the formula (II-1) represents a maleate.
  • maleic acids represented by the formula (II-1) include maleic acid esters and maleic acid salts.
  • maleic acid esters include monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, monopropyl maleate, dipropyl maleate and the like.
  • maleates include alkali metal salts of maleic acid such as monolithium maleate, dilithium maleate, monosodium maleate, disodium maleate, monopotassium maleate, dipotassium maleate; calcium maleate, maleic acid Alkaline earth metal salts of maleic acid such as magnesium; ammonium salts of maleic acid such as monoammonium maleate and diammonium maleate; monomethylammonium maleate, bismonomethylammonium maleate, monodimethylammonium maleate, bisdimethylmaleate Alkylamine salts of maleic acid such as ammonium; 2-hydroxyethylammonium maleate, bis-2-hydroxyethylammonium maleate, di (2-hydroxymaleate) And the like; chill) ammonium, alkanol amine salts of maleic acid, such as Bisuji maleate (2-hydroxyethyl) ammonium. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios
  • the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) is a structural unit represented by the structural unit (a) and the formula (II) represented by the formula (I).
  • the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) has the structural unit (c) represented by the formula (III), thereby reducing the water content in the porous membrane. Therefore, the cycle characteristics of the lithium ion secondary battery can be improved.
  • Y represents a hydrocarbon group having 2 to 12 carbon atoms.
  • the valence of this hydrocarbon group is usually divalent.
  • the structural unit (c) represented by the formula (III) includes, for example, ethylene, 1-butene, isobutene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, isobutylene, diisobutylene, It can be derived from hydrocarbon compounds such as 1-nonene, 1-decene, 1-dodecene and other olefinic hydrocarbons; styrene, ⁇ -methylstyrene and other aromatic hydrocarbons. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the structural unit (a) represented by the formula (I) when the amount of all the structural units is 100 mol%, the structural unit (a) represented by the formula (I) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less.
  • the content ratio of the structural unit (a) in the maleimide-maleic acid copolymer to be equal to or higher than the lower limit of the above range, the heat shrinkage resistance of the porous film can be effectively enhanced.
  • the binding property between the non-conductive particles and the water-soluble polymer compound can be improved. Furthermore, by making the amount not more than the upper limit of the above range, the swelling property of the water-soluble polymer compound with respect to the electrolytic solution in the lithium ion secondary battery can be reduced, so that the cycle characteristics of the lithium ion secondary battery are improved. be able to.
  • the structural unit (b) represented by the formula (II) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less.
  • the structural unit (c) represented by the formula (III) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less.
  • Examples of the method for producing a maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) include the following production method A and production method B.
  • Production Method A A method of polymerizing maleimides represented by the formula (I-1) and maleic acids represented by the formula (II-1) or maleic anhydride represented by the formula (II-2).
  • Production method B a structural unit formed by polymerizing maleic acid represented by formula (II-1) or maleic anhydride represented by (II-2) and then polymerizing the maleic acid or maleic anhydride.
  • a method in which a part is maleamically oxidized with a compound having the group R 2 in formula (I-1), and a part thereof is cyclized and dehydrated (imidized).
  • a known polymerization method may be employed as the polymerization method in production method A.
  • a solution polymerization method is preferable because polymerization in a homogeneous system is preferable.
  • the solvent used in the solution polymerization method include methanol, isopropyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, ethyl lactate, tetrahydrofuran, dioxane, butyl cellosolve, dimethylformamide, dimethyl sulfoxide.
  • the amount of the solvent used is usually 600 parts by weight or less, preferably 400 parts by weight or less with respect to 100 parts by weight of the maleimide-maleic acid copolymer to be produced. Thereby, a maleimide-maleic acid copolymer having a high molecular weight can be obtained.
  • the lower limit is not particularly limited as long as a solution can be formed.
  • polymerization is usually carried out by charging a polymerization raw material into a reaction vessel.
  • the polymerization it is desirable to exclude dissolved oxygen from the reaction system in advance, for example, by vacuum degassing or nitrogen replacement.
  • the polymerization temperature is preferably ⁇ 50 ° C. or higher, more preferably 50 ° C. or higher, preferably 200 ° C. or lower, more preferably 150 ° C. or lower in terms of efficiently proceeding the reaction.
  • the polymerization time is preferably 1 hour or longer, preferably 100 hours or shorter, more preferably 50 hours or shorter.
  • examples of the compound having the group R 2 in the formula (I-1) include ammonia; and primary amines having the group R 2 such as aminophenol and normal butylamine. These compounds may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • production method B as a production method using a polymer containing units obtained by polymerizing maleic anhydride, for example, a copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride is used. Examples thereof include Production Method B-1 and Production Method B-2.
  • Production method B-1 A copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride and an aminophenol are usually reacted in an organic solvent such as dimethylformaldehyde at a reaction temperature of usually 40 ° C. or higher and 150 ° C. or lower. The reaction is allowed for 20 hours. Thereby, a part of the maleic anhydride unit is changed to an N- (hydroxyphenyl) malemic acid unit.
  • the maleic anhydride unit represents a structural unit having a structure formed by polymerizing maleic anhydride.
  • the N- (hydroxyphenyl) maleamic acid unit represents a structural unit having a structure formed by polymerizing N- (hydroxyphenyl) malemic acid units.
  • an azeotropic solvent is mixed in order to further remove the water generated by the cyclization dehydration, and the cyclization dehydration reaction is usually carried out at a reaction temperature of 80 ° C. or more and 200 ° C. or less for usually 1 hour to 20 hours.
  • An acid copolymer is obtained.
  • Production method B-2 A copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride, and aminophenol are usually 80 ° C. or higher and 200 ° C. in an organic solvent such as dimethylformaldehyde in the presence of an azeotropic solvent. The reaction is usually carried out at the following reaction temperature for 1 to 20 hours. Thereby, a part of the maleic anhydride unit is subjected to cyclization dehydration through the N- (hydroxyphenyl) malemic acid unit to obtain a maleimide-maleic acid copolymer.
  • copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride described in the above production method B-1 and production method B-2 include a copolymer of isobutylene and maleic anhydride (hereinafter, referred to as “copolymer of maleic anhydride”). As appropriate, it may be referred to as “isobutylene-maleic anhydride copolymer”).
  • water may be removed without using an azeotropic solvent during the cyclization dehydration reaction.
  • water can be removed at a temperature of 100 ° C. or higher and 200 ° C. or lower.
  • the dehydration reaction can be effectively performed by the circulation of nitrogen gas.
  • Examples of the azeotropic solvent used for removing water generated in the cyclization dehydration reaction include benzene, toluene, xylene and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • 1 mol of water is generated from 1 mol of N- (hydroxyphenyl) malemic acid unit generated by the reaction of maleic anhydride unit and aminophenol in the isobutylene-maleic anhydride copolymer.
  • the amount of the azeotropic solvent used may be an amount sufficient to azeotropically remove the generated water.
  • reaction of the first stage reaction The temperature is usually 40 ° C. or higher, preferably 50 ° C. or higher, and is usually 150 ° C. or lower, preferably 100 ° C. or lower.
  • the reaction temperature of the second stage reaction is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower.
  • the reaction in the first stage is to produce a copolymer of N- (hydroxyphenyl) malemic acid by reaction of a copolymer of a hydrocarbon group having 2 to 12 carbon atoms with maleic anhydride and aminophenol.
  • Means a reaction to The second-stage reaction means a reaction in which a copolymer of N- (hydroxyphenyl) malemic acid is cyclized and dehydrated.
  • the reaction of a hydrocarbon group having 2 to 12 carbon atoms, a maleic anhydride copolymer and aminophenol is carried out in one step in the presence of an azeotropic solvent for dehydration.
  • the reaction temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower.
  • the reaction time of the copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride and aminophenol is the reaction temperature, the amount of aminophenol used, and the purpose. It depends on the reaction rate.
  • examples of the reaction rate include a modification rate of maleic anhydride units to N- (hydroxyphenyl) maleimide units in the isobutylene-maleic anhydride copolymer.
  • both the first stage reaction and the second stage reaction can be performed for 1 hour to 20 hours.
  • the reaction time in production method B-2 can be 1 to 20 hours.
  • the content of the structural unit (a) represented by the formula (I) in the target maleimide-maleic acid copolymer is controlled by, for example, using the amount of aminophenol used, the reaction temperature, and the reaction time. It can be easily done by adjusting.
  • the maleimide-maleic acid copolymer is easily recovered from the reaction solution by, for example, precipitating the maleimide-maleic acid copolymer using an inert solvent such as water and ethers. sell.
  • the maleimide-maleic acid copolymer obtained as described above can be made soluble in water by, for example, hydrolysis or neutralization of maleic acid units in the maleimide-maleic acid copolymer.
  • Specific examples include (1) a method in which maleic anhydride units in a maleimide-maleic acid copolymer are hydrolyzed at a high temperature (80 ° C. or more and 100 ° C. or less); (2) a malein in the maleimide-maleic acid copolymer; The method of neutralizing an acid unit with a neutralizing agent is mentioned.
  • the temperature at which the neutralizing agent is mixed is not particularly limited, and may be, for example, room temperature.
  • Examples of the neutralizing agent include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide, magnesium hydroxide, and barium hydroxide; Hydroxides such as hydroxides of metals belonging to Group IIIA in the long periodic table such as aluminum hydroxide; Alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkaline earth metal carbonates such as magnesium carbonate And carbonates of organic amines.
  • Examples of the organic amine include alkyl amines such as ethylamine, diethylamine, and propylamine; alcohol amines such as monomethanolamine, monoethanolamine, and monopropanolamine; ammonia such as ammonia.
  • a neutralizing agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • water-soluble polymer compounds include: carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and other cellulose derivatives; poly (meth) acrylic acid polymers Etc.
  • water-soluble polymer compound include salts such as ammonium salts and alkali metal salts. Among these, a salt of carboxymethyl cellulose is preferable, and an ammonium salt of carboxymethyl cellulose is particularly preferable.
  • a commercially available ammonium salt of carboxymethyl cellulose can be used.
  • ammonia used for neutralization may remain in the commercially available ammonium salt of carboxymethyl cellulose. In this case, the remaining ammonia is treated as the low molecular compound X.
  • the degree of etherification of the cellulose derivative is preferably 0.5 or more, preferably 2 or less, more preferably 1.5 or less.
  • the degree of etherification is a value representing how many hydroxyl groups contained per 3 glucose units of cellulose are etherified on average.
  • the slurry composition has high stability, and it is possible to make it difficult for sedimentation and aggregation of solids to occur.
  • liquidity of a coating material improve by using a cellulose derivative.
  • a maleimide-maleic acid copolymer containing carboxymethylcellulose and the structural unit (a) represented by the formula (I) is preferable.
  • a water-soluble high molecular compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the weight average molecular weight of the water-soluble polymer compound is preferably 1000 or more, more preferably 1500 or more, particularly preferably 2000 or more, preferably 500,000 or less, more preferably 250,000 or less, and particularly preferably 150,000 or less.
  • the weight average molecular weight of the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) is preferably 50,000 or more and 100,000 or less.
  • the water-soluble polymer compound can be softened by setting it to the upper limit value or less of the above range, for example, the binding property of the porous film to the separator substrate can be improved.
  • the weight average molecular weight of the water-soluble polymer compound is a value in terms of polystyrene by GPC (gel permeation chromatography) and by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a developing solution.
  • GPC gel permeation chromatography
  • GPC gel permeation chromatography
  • DMF N, N-dimethylformamide
  • the amount of the water-soluble polymer compound is usually 0.1% by weight or more and usually 30% by weight or less as the amount in the porous membrane.
  • the amount is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the amount is preferably 3% by weight or more, and preferably 10% by weight or less.
  • the amount of the water-soluble polymer compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the non-conductive particles.
  • It is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less.
  • the amount of the water-soluble polymer compound is preferably equal to or higher than the lower limit of the above range, it is possible to improve the strength and binding property of the porous film and the applicability of the slurry composition for porous film.
  • strength and porosity of a porous membrane can be made high by setting it as an upper limit or less, both the short circuit resistance by a porous membrane separator and the battery characteristic of a lithium ion secondary battery can be made favorable.
  • the slurry composition for a porous film has at least one low molecular compound X selected from the group consisting of ammonia and an amine compound. Since the low molecular compound X is usually vaporized when the film of the slurry composition for porous film is dried, it hardly remains in the porous film. However, it is considered that the removal of the low molecular weight compound X during the above-described drying causes some action, improves the water resistance of the porous film, and makes the porous film difficult to dissolve in water.
  • Examples of the low molecular weight compound X include ammonia; secondary amines such as dimethylamine, diethylamine, and dibutylamine; tertiary amines such as trimethylamine, triethylamine, tributylamine, and malariaabicyclononene. Of these, ammonia is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the molecular weight of the low molecular compound X is preferably 17 or more, preferably less than 1000, more preferably 200 or less, and particularly preferably 150 or less.
  • the low molecular compound X can be stably vaporized and removed from the porous film when the film of the slurry composition for porous film is dried. .
  • the boiling point of the low molecular compound X is usually 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. or lower. When the boiling point is so low, the low molecular weight compound X can be stably vaporized and removed from the porous membrane when the membrane of the slurry composition for porous membrane is dried.
  • the lower limit is not limited, but is usually ⁇ 33 ° C. or higher.
  • the amount of the low molecular compound X is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, particularly preferably 100 parts by weight of the water-soluble polymer compound. It is 0.1 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, and particularly preferably 30 parts by weight or less.
  • the amount of the low molecular compound X is not less than the lower limit of the above range, the water-soluble polymer compound can be neutralized and dissolved.
  • the low molecular compound X can be vaporized stably.
  • the amount of water in the slurry composition for porous membranes is such that the viscosity of the slurry composition for porous membranes is in a range suitable for coating depending on the types of non-conductive particles, water-soluble polymer compound and low-molecular compound X. It is preferable to adjust.
  • the solid content concentration of the non-conductive particles, the water-soluble polymer compound and the low-molecular compound X, and the binder and optional components used as necessary is preferably 20% by weight or more. More preferably, water is used in an amount of 30% by weight or more, preferably 60% by weight or less, more preferably 50% by weight or less.
  • the slurry composition for porous films contains a binder.
  • the binder By including the binder, the binding property of the porous membrane is improved, and the strength against mechanical force applied to the porous membrane separator during handling such as winding and transportation can be improved.
  • binder various polymer components can be used. Examples include styrene / butadiene copolymer (SBR), acrylonitrile / butadiene copolymer (NBR), hydrogenated SBR, hydrogenated NBR, styrene-isoprene-styrene block copolymer (SIS), acrylic polymer, and the like. .
  • SBR styrene / butadiene copolymer
  • NBR acrylonitrile / butadiene copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • acrylic polymer and the like.
  • an acrylic polymer is preferable as the binder, and a copolymer of a (meth) acrylic acid ester monomer and a (meth) acrylonitrile monomer is particularly preferable.
  • Examples of (meth) acrylic acid ester monomers include compounds represented by CH 2 ⁇ CR 5 —COOR 6 .
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group or a cycloalkyl group.
  • Examples of (meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, acrylic N-amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, acrylic Acrylates such as stearyl acid and benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-a
  • acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the porous film can be improved.
  • these monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the (meth) acrylonitrile monomer and the (meth) acrylonitrile monomer unit may be used alone or in combination of two or more at any ratio.
  • the polymerization ratio of the (meth) acrylic acid ester monomer to the (meth) acrylonitrile monomer is preferably 1/99 or more. Preferably it is 5/95 or more, preferably 30/70 or less, more preferably 25/75 or less.
  • the copolymer of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer may include a (meth) acrylic acid ester monomer and a (meth) acrylonitrile monomer, if necessary.
  • copolymerization components other than those may be further copolymerized. Examples of the structural unit corresponding to these copolymer components include a structural unit having a structure formed by polymerizing a vinyl monomer having an acidic group, a crosslinkable monomer unit, and the like.
  • Examples of the vinyl monomer having an acidic group include a monomer having a —COOH group (carboxyl group; also referred to as “carboxylic acid group”), a monomer having an —OH group (hydroxyl group), and —SO 3.
  • a monomer having an H group (sulfo group; also referred to as “sulfonic acid group”), a monomer having a —PO 3 H 2 group, a —PO (OH) (OR) group (R represents a hydrocarbon group) )
  • R represents a hydrocarbon group)
  • generates a carboxylic acid group by a hydrolysis can be used similarly.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acids, dicarboxylic acids, dicarboxylic acid anhydrides, and derivatives thereof.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, 2-ethylacrylic acid, and isocrotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and methylmaleic acid.
  • Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid Alkanol esters of ethylenically unsaturated carboxylic acids such as -2-hydroxypropyl and methacrylic acid-2-hydroxyethyl; general formula CH 2 ⁇ CR 7 —COO— (C n H 2n O) m —H (m is 2 An integer of 1 to 9, n is an integer of 2 to 4, R 7 represents hydrogen or a methyl group) and esters of (meth) acrylic acid and 2-hydroxyethyl-2 ′-( Dicarboxylic acids such as (meth) acryloyloxyphthalate and 2-hydroxyethyl-2 '-(meth) acryloyloxysuccinate Mono (meth) acrylic esters of droxy esters; vinyl ethers such as
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide-2. -Methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid and the like.
  • Examples of a monomer having a —PO 3 H 2 group and / or —PO (OH) (OR) group include, for example, 2- (meth) acryloyloxyethyl phosphate, phosphorus Examples include methyl-2- (meth) acryloyloxyethyl acid, and ethyl (meth) acryloyloxyethyl phosphate.
  • Examples of the monomer having a lower polyoxyalkylene group include poly (alkylene oxide) such as poly (ethylene oxide).
  • the vinyl monomer having an acidic group is a single monomer having a carboxylic acid group because of excellent adhesion to an organic separator and efficient capture of transition metal ions eluted from a positive electrode active material.
  • monocarboxylic acids having 5 or less carbon atoms having carboxylic acid groups such as acrylic acid and methacrylic acid
  • dicarboxylic acids having 5 or less carbon atoms having two carboxylic acid groups such as maleic acid and itaconic acid. Is preferred.
  • acrylic acid, methacrylic acid, and itaconic acid are preferable from the viewpoint that the prepared slurry composition has high storage stability.
  • the content ratio of the structural unit having a structure formed by polymerizing a vinyl monomer having an acidic group is The content is preferably 1.0% by weight or more, more preferably 1.5% by weight or more, preferably 3.0% by weight or less, more preferably 2.5% by weight or less.
  • the crosslinkable monomer unit is a structural unit obtained by polymerizing a crosslinkable monomer.
  • the crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or energy ray irradiation.
  • a monomer having thermal crosslinkability can be usually mentioned. More specifically, a monofunctional crosslinkable monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a polyfunctional monomer having two or more olefinic double bonds per molecule.
  • a functional crosslinkable monomer is mentioned.
  • thermally crosslinkable groups examples include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl este
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • crosslinkable monomers having two or more olefinic double bonds per molecule examples include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth).
  • crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable.
  • crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content ratio of the crosslinkable monomer unit in the copolymer of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer is preferably 0.1% by weight or more, preferably 10%. % By weight or less, more preferably 5% by weight or less.
  • the binder may be used alone or in combination of two or more at any ratio.
  • the weight average molecular weight of the polymer forming the binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight of the polymer forming the binder is in the above range, the strength of the porous membrane separator and the dispersibility of the nonconductive particles are easily improved.
  • the glass transition temperature of the binder is preferably ⁇ 60 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 50 ° C. or higher, usually 20 ° C. or lower, preferably 15 ° C. or lower, more preferably 5 ° C. or lower. is there.
  • the glass transition temperature of a binder more than the lower limit of the said range, the intensity
  • flexibility of a porous membrane separator can be made high by setting it as an upper limit or less.
  • the binder can be bound to the non-conductive particles by points rather than surfaces. For this reason, the space
  • the binder is usually water-insoluble polymer particles.
  • the volume average particle diameter D50 of the particulate binder is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
  • the volume average particle diameter D50 of the particulate binder is in the above range, the strength and flexibility of the obtained porous membrane separator can be improved.
  • the amount of the binder in the slurry composition for a porous membrane is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, particularly preferably 0.5 parts by weight with respect to 100 parts by weight of the non-conductive particles.
  • the amount is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less.
  • the method for producing the binder is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method may be used.
  • the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as a material for the slurry composition for porous membranes.
  • the dispersant those used in usual synthesis can be used.
  • the amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by weight with respect to 100 parts by weight of the total amount of monomers. By using a dispersing agent, sedimentation and aggregation of solid content in the slurry can be suppressed.
  • the slurry composition for porous films may contain arbitrary components other than what was mentioned above as needed. As such components, those that do not affect the battery reaction can be used. Examples of these components include isothiazoline compounds, chelate compounds, pyrithione compounds, dispersants, leveling agents, antioxidants, thickeners, antifoaming agents, and surfactants. Moreover, the electrolyte solution additive which has functions, such as electrolytic solution decomposition suppression, is also mentioned. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the slurry composition for a porous membrane is usually fluid.
  • the nonconductive particles are dispersed in water, and the water-soluble polymer compound and the low-molecular compound X are dissolved in water.
  • a part of the water-soluble polymer compound is usually free in water, but another part is adsorbed on the surface of the non-conductive particle, thereby causing non-conductive particles. Is covered with a stable layer of a water-soluble polymer compound, and the dispersibility of non-conductive particles in water is improved.
  • the slurry composition for porous films has good coating properties when applied to the separator substrate.
  • the binder may be dissolved in water or dispersed.
  • the binder is usually dispersed in water.
  • the slurry composition for a porous membrane is obtained by mixing non-conductive particles, a water-soluble polymer compound, water, a low-molecular compound X, and a binder and optional components as necessary. Mixing may be performed by supplying the above components all at once to a mixer. Moreover, you may divide and mix in multiple steps in arbitrary orders. Further, when the water-soluble polymer compound has an acidic group, the water-soluble polymer compound may form a salt with the low-molecular compound X in some cases.
  • a ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, or the like may be used.
  • the slurry composition for porous membranes is applied onto the separator substrate. Thereby, the film
  • coating method of the slurry composition for porous films include a doctor blade method, a dipping method, a die coating method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the application amount of the slurry composition for a porous film is usually within a range where a porous film having a desired thickness can be obtained.
  • membrane of the slurry composition for porous films is dried.
  • water is removed from the membrane of the slurry composition for porous membrane, and a porous membrane is obtained.
  • most of the low molecular weight compound X is vaporized and removed from the membrane of the porous membrane slurry composition. Thereby, the water resistance of the porous film is remarkably improved, and the porous film is hardly dissolved in water.
  • drying method examples include drying with warm air, hot air, low-humidity air, and the like, vacuum drying, drying with irradiation of energy rays such as infrared rays, far infrared rays, and electron beams.
  • the temperature during drying is preferably 40 ° C. or higher, more preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower, particularly preferably 70 ° C. or lower. .
  • the drying temperature is preferably 40 ° C. or higher, more preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower, particularly preferably 70 ° C. or lower.
  • the drying time is preferably 5 seconds or more, more preferably 10 seconds or more, particularly preferably 15 seconds or more, preferably 3 minutes or less, more preferably 2 minutes or less, and particularly preferably 1 minute or less.
  • any operation other than those described above may be performed.
  • the porous film may be subjected to pressure treatment by a pressing method such as a mold press and a roll press.
  • a pressing method such as a mold press and a roll press.
  • the pressure treatment By performing the pressure treatment, the binding property between the separator substrate and the porous film can be improved.
  • the pressure treatment is excessively performed, the porosity of the porous film may be impaired. Therefore, it is preferable to appropriately control the pressure and the pressure time.
  • Porous membrane By passing through the process mentioned above, a porous film is formed on a separator base material.
  • This porous film contains non-conductive particles and a water-soluble polymer compound, and, if necessary, a binder and optional components.
  • the amounts of the non-conductive particles, the water-soluble polymer compound and the binder are usually the same as the amounts contained in the porous membrane slurry composition.
  • the porous film Since the voids between the non-conductive particles form pores in the porous film, the porous film has a porous structure. For this reason, since the porous film has liquid permeability, the movement of ions is not hindered by the porous film. Therefore, in the lithium ion secondary battery, the porous film does not inhibit the battery reaction. In addition, since the non-conductive particles do not have conductivity, the porous film can exhibit insulation. Furthermore, since the rigidity of the porous film can be increased by including non-conductive particles, the rigidity of the porous film separator can be increased, and a short circuit can be stably prevented.
  • This porous film is excellent in water resistance and hardly dissolves in water. That is, the water-soluble polymer compound contained in the porous film is difficult to elute into water. Therefore, the porous film has a high binding property with respect to the separator substrate. Moreover, since water is removed by drying, the porous film has a low water content. Therefore, since generation of gas due to water can be suppressed, a decrease in discharge capacity due to charge / discharge can be suppressed. For this reason, it is possible to improve the cycle characteristics of a lithium ion secondary battery.
  • the concentration of the low molecular compound X remaining in the porous membrane is small.
  • the concentration of the low molecular compound X in the porous membrane is usually 1000 ppm or less, preferably 500 ppm or less, more preferably 200 ppm or less per weight of the porous membrane.
  • the lower limit is ideally 0 ppm, but is usually 1 ppm or more.
  • the thickness of the porous membrane is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • Step of obtaining an adhesive layer In the step of obtaining the adhesive layer, the adhesive layer slurry composition is applied onto the porous film and dried to obtain the adhesive layer. At this time, since the porous film has high water resistance, the porous film is hardly dissolved even when the slurry composition for adhesive layer containing water is applied.
  • the slurry composition for an adhesive layer contains a particulate polymer and water. Moreover, the slurry composition for adhesive layers may contain the binder.
  • the particulate polymer usually has a glass transition temperature of 10 ° C. or higher, preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and usually 110 ° C. or lower, preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
  • a particulate polymer is used.
  • the glass transition temperature of the particulate polymer is equal to or higher than the lower limit of the above range, the softening of the particulate polymer can be suppressed during storage, transportation and handling of the porous membrane separator, and blocking can be prevented.
  • the heat resistance of a contact bonding layer improves by using a particulate polymer with a high glass transition temperature.
  • the particulate polymer can be easily softened by heat when the porous membrane separator is bonded to the electrode.
  • the adhesive layer can be heat-sealed at a low temperature without damaging the elements constituting the battery such as the separator substrate. Therefore, the porous membrane separator and the electrode can be easily bonded by hot pressing.
  • the particulate polymer various polymers having a glass transition temperature in the above range can be used.
  • a polymer containing a structural unit having a structure formed by polymerizing an acrylate monomer hereinafter sometimes referred to as “acrylate ester monomer unit” as appropriate. Is preferred.
  • acrylate monomer examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl.
  • acrylic acid alkyl esters such as acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, and stearyl acrylate. These may use only 1 type and may use it combining 2 or more types by arbitrary ratios.
  • the ratio of the acrylate monomer in the total amount of the monomer of the particulate polymer is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, and usually 95% by weight or less. Preferably it is 90 weight% or less, More preferably, it is 85 weight% or less.
  • the ratio of the acrylate monomer is set to be equal to or higher than the lower limit of the above range, the binding property between the adhesive layer and the porous film can be enhanced.
  • the ionic conductivity of a porous membrane separator can be made high by suppressing the swelling property with respect to the electrolyte solution of an adhesive layer by setting it as an upper limit or less.
  • the ratio of the acrylate monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the acrylate monomer unit in the particulate polymer.
  • the particulate polymer may be referred to as a structural unit having a structure formed by polymerizing an ethylenically unsaturated carboxylic acid monomer (hereinafter, referred to as “ethylenically unsaturated carboxylic acid monomer unit” as appropriate). ) Is preferred.
  • the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof.
  • the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like.
  • Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the acid anhydride of the ethylenically unsaturated dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. This is because the dispersibility of the particulate polymer in water can be further improved. These may use only 1 type and may use it combining 2 or more types by arbitrary ratios.
  • the ratio of the ethylenically unsaturated carboxylic acid monomer in the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. In general, it is 95% by weight or less, preferably 90% by weight or less, more preferably 85% by weight or less.
  • the ratio of the ethylenically unsaturated carboxylic acid monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the ethylenically unsaturated carboxylic acid monomer unit in the particulate polymer.
  • a polymer containing a structural unit having a structure formed by polymerizing an aromatic vinyl monomer (hereinafter sometimes referred to as “aromatic vinyl monomer unit” as appropriate).
  • aromatic vinyl monomer unit examples include styrene, ⁇ -methylstyrene, vinyltoluene, and divinylbenzene. Of these, styrene is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the ratio of the aromatic vinyl monomer to the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, usually 95%. % By weight or less, preferably 90% by weight or less, more preferably 85% by weight or less.
  • the ratio of the aromatic vinyl monomer equal to or higher than the lower limit of the above range, the blocking resistance of the porous membrane separator can be enhanced.
  • the adhesive strength of a porous membrane separator and an electrode can be raised by setting it as below an upper limit.
  • the ratio of the aromatic vinyl monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the aromatic vinyl monomer unit in the particulate polymer.
  • the particulate polymer includes a structural unit having a structure formed by polymerizing a (meth) acrylonitrile monomer (hereinafter sometimes referred to as “(meth) acrylonitrile monomer unit” as appropriate). Polymers are preferred. Examples of the (meth) acrylonitrile monomer include acrylonitrile and methacrylonitrile. As the (meth) acrylonitrile monomer, only acrylonitrile may be used, methacrylonitrile alone may be used, or both acrylonitrile and methacrylonitrile may be used in combination at any ratio.
  • the ratio of the (meth) acrylonitrile monomer in the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. It is 95 weight% or less, Preferably it is 90 weight% or less, More preferably, it is 85 weight% or less.
  • the ratio of the (meth) acrylonitrile monomer to the lower limit value or more of the above range, the adhesive strength between the porous membrane separator and the electrode can be increased.
  • the binding property of a contact bonding layer and a porous film can be improved by setting it as an upper limit or less.
  • the ratio of the (meth) acrylonitrile monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the (meth) acrylonitrile monomer unit in the particulate polymer.
  • the crosslinkable monomer represents a monomer capable of forming a crosslinked structure during or after polymerization by heating.
  • the crosslinkable monomer include a monomer having thermal crosslinkability. More specifically, for example, a monofunctional monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a polyfunctional monomer having two or more olefinic double bonds per molecule; A functional monomer is mentioned.
  • thermally crosslinkable groups examples include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl este
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • crosslinkable monomers having two or more olefinic double bonds per molecule examples include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth).
  • crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable as the crosslinkable monomer.
  • crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the crosslinkable monomer in the total amount of the monomer of the particulate polymer is usually 0.01% by weight or more, preferably 0.05% by weight or more, usually 5% by weight or less, preferably 3% by weight. Hereinafter, it is more preferably 2% by weight or less.
  • the volume average particle diameter D50 of the particulate polymer is preferably 10 nm or more, more preferably 50 nm or more, particularly preferably 100 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, and particularly preferably 500 nm or less. Since the volume average particle diameter D50 of the particulate polymer is not less than the lower limit of the above range, it is possible to suppress an increase in the particle filling rate in the porous film, and thus the ionic conductivity in the porous film is reduced. Can be suppressed, and excellent cycle characteristics can be realized. Moreover, since it becomes easy to control the dispersion state of a slurry because it is below an upper limit, manufacture of the porous film of uniform predetermined thickness becomes easy.
  • the slurry composition for adhesive layers may contain a binder. By including the binder, the binding property of the adhesive layer to the porous film can be enhanced.
  • the binder for example, the same binder as described in the section of the slurry composition for porous film can be used.
  • the particulate polymer whose glass transition temperature falls within the temperature range described in the section of the particulate polymer is handled not as a binder but as a particulate polymer.
  • the amount of the binder in the slurry composition for the adhesive layer is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and particularly preferably 1 part by weight or more with respect to 100 parts by weight of the particulate polymer. Yes, preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less.
  • the amount of water in the slurry composition for the adhesive layer should be adjusted so that the viscosity of the slurry composition for the adhesive layer is in a range suitable for coating depending on the type of the particulate polymer and the binder used as necessary. Is preferred. Specifically, the solid content of the particulate polymer and the binder and optional components used as necessary is preferably 10% by weight or more, more preferably 20% by weight or more, and preferably Is used in an amount of 60% by weight or less, more preferably 50% by weight or less.
  • the slurry composition for adhesive layers may contain arbitrary components other than what was mentioned above as needed. As such components, those that do not affect the battery reaction can be used. Examples of these components include water-soluble polymers for adjusting viscosity and preventing sedimentation, and wetting agents for improving wettability to organic separators. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the slurry composition for an adhesive layer is usually fluid.
  • the particulate polymer is dispersed in water.
  • the binder may be dispersed in water or dissolved.
  • the binder is usually dispersed in water.
  • the method for producing the slurry composition for the adhesive layer is not particularly limited. Usually, it is obtained by mixing the above-mentioned particulate polymer and water, and a binder and optional components used as necessary. There is no particular limitation on the mixing order. There is no particular limitation on the mixing method.
  • the slurry composition for adhesive layers is apply
  • membrane of the slurry composition for contact bonding layers is formed on a porous film.
  • the coating method include a doctor blade method, a dipping method, a die coating method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the application amount of the slurry composition for the adhesive layer is usually in a range where an adhesive layer having a desired thickness can be obtained.
  • drying method examples include drying with warm air, hot air, low-humidity air, and the like, vacuum drying, drying with irradiation of energy rays such as infrared rays, far infrared rays, and electron beams.
  • the temperature during drying is preferably 40 ° C or higher, more preferably 45 ° C or higher, particularly preferably 50 ° C or higher, preferably 80 ° C or lower, more preferably 75 ° C or lower, particularly preferably 70 ° C or lower. .
  • the drying temperature is preferably 40 ° C or higher, more preferably 45 ° C or higher, particularly preferably 50 ° C or higher, preferably 80 ° C or lower, more preferably 75 ° C or lower, particularly preferably 70 ° C or lower.
  • the drying time is preferably 5 seconds or more, more preferably 10 seconds or more, particularly preferably 15 seconds or more, preferably 3 minutes or less, more preferably 2 minutes or less, and particularly preferably 1 minute or less.
  • any operation other than those described above may be performed.
  • a drying process may be performed in vacuum drying or a dry room, or a heat treatment may be performed.
  • Adhesive layer By passing through the process mentioned above, an adhesion layer is formed on a porous membrane and a porous membrane separator is obtained.
  • This adhesive layer contains a particulate polymer and, if necessary, a binder and optional components.
  • the amount of the particulate polymer and the binder is usually the same as the amount contained in the adhesive layer slurry composition.
  • the adhesive layer Since the voids between the particulate polymers form pores in the adhesive layer, the adhesive layer has a porous structure. For this reason, since the adhesive layer has liquid permeability, the movement of ions is not hindered by the adhesive layer. Therefore, in the lithium ion secondary battery, the battery reaction is not inhibited by the adhesive layer. In addition, since the particulate polymer does not have conductivity, the adhesive layer can exhibit insulation.
  • the particulate polymer can be softened by heating. Therefore, the adhesive layer can be favorably adhered to other members such as an electrode by performing pressure adhesion while heating. Therefore, the porous membrane separator provided with the adhesive layer can be adhered to the electrode with high adhesive strength. Moreover, since the particulate polymer has a high glass transition temperature, the adhesive layer has high heat resistance. Therefore, even when the temperature of the lithium ion secondary battery becomes high due to charging / discharging, the porous membrane separator is difficult to peel off from the electrode. Therefore, short circuit can be prevented more stably, and safety can be improved.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, preferably 8.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, particularly preferably 3 0.0 ⁇ m or less.
  • steps other than those described above may be performed as long as a desired porous membrane separator is obtained.
  • a drying process may be performed in vacuum drying or a dry room, or a heat treatment may be performed.
  • the porous membrane separator produced by the method for producing a porous membrane separator of the present invention comprises a separator substrate, a porous membrane, and an adhesive layer in this order. Since the electrolytic solution can permeate into these separator base material, porous membrane and adhesive layer, the porous membrane separator does not adversely affect the battery characteristics. Moreover, since the porous film is difficult to dissolve into the slurry composition for the adhesive layer, the strength and binding property of the porous film are good. Therefore, since the adhesive strength of the porous membrane separator to the electrode can be increased, the safety of the lithium ion secondary battery can be improved. Furthermore, the particulate polymer contained in the adhesive layer is difficult to soften in the normal use environment of the porous membrane separator. Therefore, the porous membrane separator has excellent blocking resistance.
  • the porous membrane separator may include components other than the separator substrate, the porous membrane, and the adhesive layer.
  • the porous film and the adhesive layer may be provided on only one side of the separator substrate or on both sides.
  • the manufacturing method of the laminated body for lithium ion secondary batteries of this invention includes pressure-bonding an electrode and the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention.
  • the electrode usually includes a current collector and an electrode active material layer provided on the current collector.
  • the current collector a material having electrical conductivity and electrochemical durability can be used.
  • metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable from the viewpoint of heat resistance.
  • aluminum is particularly preferable for the positive electrode
  • copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but for example, a sheet shape having a thickness of 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like can be used.
  • an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity with the electrode active material layer.
  • the electrode active material layer includes an electrode active material.
  • the electrode active material for the positive electrode may be referred to as “positive electrode active material”
  • the electrode active material for the negative electrode may be referred to as “negative electrode active material”.
  • the electrode active material a material capable of reversibly inserting and releasing lithium ions by applying a potential in an electrolytic solution can be used.
  • the electrode active material an inorganic compound or an organic compound may be used.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • Examples of the transition metal include Fe, Co, Ni, and Mn.
  • inorganic compounds used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. Can be mentioned.
  • examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
  • These positive electrode active materials may be used alone or in combination of two or more at any ratio.
  • the particle size of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery.
  • the volume average particle diameter D50 of the positive electrode active material is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the volume average particle diameter D50 of the positive electrode active material is within this range, a battery having a large charge / discharge capacity can be obtained, and handling in producing the slurry composition for an active material layer and the electrode is easy.
  • the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitride; silicon and the like may be used.
  • an electrode active material having a conductive material attached to the surface by a mechanical modification method may be used. These negative electrode active materials may be used alone or in combination of two or more at any ratio.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, the volume average particle diameter D50 of the negative electrode active material is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less. .
  • the electrode active material layer preferably contains a binder in addition to the electrode active material.
  • a binder By including the binder, the binding property of the electrode active material layer in the electrode is improved, and the strength against the mechanical force is increased in the process of winding the electrode.
  • the electrode active material layer in the electrode is difficult to be detached, the risk of a short circuit due to the desorbed material is reduced.
  • binder for the electrode active material layer various polymer components can be used.
  • polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like may be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polyacrylic acid derivatives polyacrylonitrile derivatives
  • polyacrylonitrile derivatives and the like
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the binder in the electrode active material layer is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the electrode active material.
  • the amount is preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the electrode active material layer may contain any component other than the electrode active material and the binder as long as the effects of the present invention are not significantly impaired. Examples thereof include a conductive material and a reinforcing material.
  • arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube; carbon powder such as graphite; fiber and foil of various metals; .
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube
  • carbon powder such as graphite
  • fiber and foil of various metals .
  • the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used.
  • the amount of the conductive material and the reinforcing material used is usually 0 part by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the electrode active material. is there.
  • the thickness of the electrode active material layer for both the positive electrode and the negative electrode is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • the method for producing the electrode active material layer is not particularly limited.
  • the electrode active material layer can be produced, for example, by applying a slurry containing an electrode active material and a solvent, and, if necessary, a binder and optional components on a current collector and drying it.
  • a solvent either water or an organic solvent can be used.
  • a laminate for a lithium secondary battery is obtained by pressure-bonding the electrode and the porous membrane separator.
  • the electrode and the porous membrane separator are usually stacked and bonded so that the electrode active material layer of the electrode and the adhesive layer of the porous membrane separator face each other.
  • the magnitude of the pressure applied during bonding is usually 0.01 MPa or more, preferably 0.05 MPa or more, more preferably 0.1 MPa or more, and usually 2 MPa or less, preferably 1.5 MPa or less, more preferably 1 MPa or less. It is.
  • the magnitude of the pressure equal to or greater than the lower limit of the above range, the electrode plate and the adhesive layer can be sufficiently bonded.
  • the film breakage of a porous membrane separator can be prevented at the time of adhesion
  • the porous membrane separator is usually heated at the time of bonding.
  • the specific temperature at this time is usually not lower than the glass transition temperature of the particulate polymer contained in the adhesive layer of the porous membrane separator, preferably 40 ° C. or higher, more preferably 50 ° C. or higher, particularly preferably 60 ° C.
  • the temperature is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for applying pressure and heat as described above is preferably 0.5 seconds or more, more preferably 1 second or more, particularly preferably 2 seconds or more, preferably 30 seconds or less, more preferably 20 seconds or less, particularly Preferably it is 10 seconds or less.
  • a laminate for a lithium ion secondary battery including an electrode and a porous membrane separator is obtained.
  • the electrode may be adhered to only one surface of the porous membrane separator, or the electrode may be adhered to both surfaces.
  • a porous membrane separator provided with a porous membrane and an adhesive layer on both sides of the separator substrate, a laminate for a lithium ion secondary battery comprising a positive electrode, a porous membrane separator, and a negative electrode in this order can be produced.
  • the electrode and the separator may be embedded, embedded in a laminate film, injected with an electrolytic solution, sealed, and then pressed together with the cell to adhere to the electrode and the separator.
  • Lithium ion secondary battery A lithium ion secondary battery can be manufactured by using the porous membrane separator or the laminate for a lithium ion secondary battery obtained by the manufacturing method described above.
  • This lithium ion secondary battery includes a positive electrode, a porous membrane separator, and a negative electrode in this order, and further includes an electrolytic solution.
  • This lithium ion secondary battery has high adhesiveness between the porous membrane separator and the electrode, and usually has high safety because the porous membrane separator has high heat resistance.
  • porous membrane separator As a porous membrane separator, what was manufactured by the manufacturing method mentioned above is used. Moreover, as an electrode, what was demonstrated in the term of the manufacturing method of the laminated body for lithium ion secondary batteries can be used, for example.
  • the electrolytic solution for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. By keeping the amount of the supporting electrolyte within this range, the ionic conductivity can be increased, and the charging characteristics and discharging characteristics of the lithium ion secondary battery can be improved.
  • a solvent capable of dissolving the supporting electrolyte can be used.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • MEC methyl ethyl carbonate
  • Esters such as butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane
  • an additive may be included in the electrolytic solution as necessary.
  • carbonate compounds such as vinylene carbonate (VC) are preferable.
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
  • an electrode, a porous membrane separator, and a laminated body for a lithium ion secondary battery are appropriately combined as necessary, and are rolled, folded, or the like according to the battery shape.
  • Examples of the method include putting the battery in a battery container, injecting an electrolyte into the battery container, and sealing.
  • an overcurrent prevention element such as a fuse or a PTC element, a lead plate, an expanded metal, or the like may be inserted to prevent overcharging / discharging or an increase in pressure inside the battery.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the prepared aqueous solution is applied onto a copper foil having a thickness of 20 ⁇ m so that the thickness after drying is 2 ⁇ m and dried at 120 ° C. for 10 minutes to form a film of a water-soluble polymer compound.
  • a copper foil having a film of a water-soluble polymer compound on the surface is obtained.
  • This copper foil is cut into 1 ⁇ 1 cm 2 and used as a test piece. The weight M1 of this test piece is measured.
  • a copper foil in which a film of a water-soluble polymer compound is not formed is cut out with the same size as the above test piece, and its weight M0 is measured.
  • test piece is immersed in 25 ° C. ion exchange water for 1 hour. Thereafter, the test piece is taken out from the ion exchange water and dried at 120 ° C. for 10 minutes. After drying, the weight M2 of the test piece is measured.
  • the re-dissolution rate ⁇ M is calculated by the following equation. It shows that it is excellent in form maintenance property, so that re-dissolution rate (DELTA) M is small.
  • ⁇ M (M1-M2) / (M1-M0) ⁇ 100 (%)
  • D Re-dissolution rate ⁇ M is 15 % Or more
  • Heat shrinkage A porous membrane separator is cut into a square having a width of 5 cm and a length of 5 cm to obtain a test piece. After putting a test piece into a 150 degreeC thermostat and leaving to stand for 1 hour, a square area change is calculated
  • C Thermal contraction rate is 5% or more and less than 10%.
  • D Thermal contraction rate is 10% or more.
  • a porous membrane separator is cut into a width of 5 cm and a length of 5 cm, and superimposed on a negative electrode having an electrode active material layer (width of 4 cm and length of 4 cm), and pressed under conditions of 90 ° C., 0.5 MPa, and 10 seconds.
  • a laminate comprising a porous membrane separator and a negative electrode having an electrode active material layer is prepared. The prepared laminate is cut into a width of 10 mm to obtain a sample. This sample is immersed for 3 days at a temperature of 60 ° C. in the same electrolyte used for the production of the battery.
  • a sample is taken out from electrolyte solution and a porous membrane separator is peeled from a negative electrode in the moist state.
  • the adhesiveness at this time is evaluated according to the following criteria. The larger the resistance when the porous membrane separator is peeled from the negative electrode active material, the higher the retention property of the adhesive strength of the adhesive layer in the electrolytic solution.
  • the laminated body provided with the positive electrode which has a porous membrane separator and an electrode active material layer similarly to the laminated body provided with the said porous membrane separator and a negative electrode is prepared.
  • This laminate is also evaluated for adhesiveness in the same manner as a laminate comprising a porous membrane separator and a negative electrode.
  • C It has already peeled off when taken out from the electrolyte.
  • the porous membrane separator is cut into squares each having a width of 5 cm ⁇ a length of 5 cm and a width of 4 cm ⁇ a length of 4 cm to prepare a test piece. These two test pieces are overlapped. 24 samples, which were superposed but not pressurized (samples that were not pressed), and samples that were superposed at a temperature of 40 ° C. and a pressure of 10 g / cm 2 (pressed samples) were each 24 Leave for hours. After standing for 24 hours, the sample was visually observed to confirm the adhesion state (blocking state) of the laminated porous membrane separator and evaluated according to the following criteria.
  • blocking refers to a phenomenon in which the laminated porous membrane separators adhere to each other.
  • the temperature of 150 ° C is held for 30 minutes. Thereafter, the sample is heated to 200 ° C. at a rate of 10 ° C./min, and the generated volatile components are collected in a trap tube. After collection, the temperature of the purge vessel is returned to room temperature.
  • the trap tube collecting the volatile components is heated from 130 ° C. to 280 ° C. at a rate of 50 ° C./min, and the volatile components are quantified using gas chromatography under the following conditions. Since the component that volatilizes when heated to a temperature of 150 ° C. or more and 200 ° C. or less is considered to be the low molecular compound X, the residual concentration of the low molecular compound X can be measured by quantifying the volatile component. .
  • Example 1 (1.1. Production of meta (acrylic) polymer) In a reactor equipped with a stirrer, 0.06 part of sodium dodecyl sulfate, 0.23 part of ammonium persulfate and 100 parts of ion-exchanged water were added and mixed to obtain a mixture A1. The mixture A1 was heated to 80 ° C.
  • the obtained aqueous dispersion containing the binder was cooled to 25 ° C., and ammonia water was added thereto to adjust the pH to 7. Thereafter, steam was introduced to remove unreacted monomers. Immediately after that, while further adjusting the solid content concentration with ion-exchanged water, it is filtered through a 200 mesh (mesh size of about 77 ⁇ m) stainless steel wire mesh, and the binder is dispersed in water with an average particle size of 370 nm and a solid content concentration of 40%. A liquid was obtained.
  • carboxymethyl cellulose ammonium salt (“DN10L” manufactured by Daicel Finechem) was used as a viscosity modifier. This carboxymethylcellulose ammonium salt was prepared in a state of an aqueous solution containing carboxymethylcellulose ammonium salt and ammonia.
  • the viscosity of a 1% aqueous solution of this viscosity modifier was 10 mPa ⁇ s or more and 50 mPa ⁇ s or less.
  • the aqueous solution of carboxymethyl cellulose ammonium salt as a viscosity modifier is 1.5 parts in total of carboxymethyl cellulose ammonium salt and ammonia, and the solid content concentration of ion-exchanged water is 40% by weight.
  • 4 parts of an aqueous dispersion containing the (meth) acrylic polymer obtained in the step (1.1) as a binder was mixed with a solid content.
  • 0.2 part of a polyethylene glycol type surfactant (“SN wet 366” manufactured by San Nopco) was mixed to produce a slurry composition for a porous membrane.
  • the carboxymethylcellulose ammonium salt used as a viscosity modifier is a neutralized salt of carboxymethylcellulose and ammonia.
  • the slurry composition for a porous membrane produced using this carboxymethyl cellulose ammonium salt contains 1.4 parts of carboxymethyl cellulose ammonium salt which is a water-soluble polymer compound with respect to 100 parts of non-conductive particles, and has a high water solubility. 5 parts of ammonia which is a low molecular compound X is contained with respect to 100 parts of carboxymethylcellulose ammonium salt which is a molecular compound. Using this carboxymethylcellulose ammonium salt, the re-dissolution rate of the water-soluble polymer compound film in water was measured in the manner described above.
  • the reaction was stopped by cooling to obtain an aqueous dispersion containing a particulate polymer.
  • the obtained particulate polymer had a volume average particle diameter D50 of 0.15 ⁇ m and a glass transition temperature of 76 ° C.
  • a separator substrate (thickness 16 ⁇ m) made of a polyethylene porous substrate was prepared.
  • the said slurry composition for porous films was apply
  • the adhesive layer slurry composition was applied on each porous film and dried at 50 ° C. for 1 minute to form an adhesive layer having a thickness of 0.5 ⁇ m per layer.
  • a porous membrane separator provided with an adhesive layer, a porous membrane, a separator substrate, a porous membrane, and an adhesive layer in this order was obtained.
  • heat shrinkability the adhesiveness of the contact bonding layer in electrolyte solution, and blocking resistance were evaluated.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 4 Manufacture of polymer particles
  • 0.06 part of sodium dodecyl sulfate, 0.23 part of ammonium persulfate, and 100 parts of ion-exchanged water were added and mixed to obtain a mixture A4.
  • This mixture A4 was heated to 80 ° C.
  • the dispersion of the monomer mixture B4 was continuously added and polymerized in the mixture A4 over 4 hours. During the continuous addition of the dispersion of the monomer mixture B4, the reaction was carried out while maintaining the temperature of the reaction system at 80 ° C. After completion of the continuous addition, the reaction was further continued at 90 ° C. for 3 hours. Thereby, an aqueous dispersion of seed polymer particles C4 having an average particle diameter of 370 nm was obtained.
  • the polymer particles were used as non-conductive particles instead of alumina particles. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 5 (5.1. Production of maleimide-maleic acid copolymer)
  • Isoban-04 isobutylene-maleic anhydride copolymer manufactured by Kuraray Co., Ltd.
  • Ammonia gas was blown into the reactor and the reaction was continued for about 1 hour while cooling with a water bath until the exotherm stopped.
  • ammonia gas was injected while heating in an oil bath, and the temperature was raised to 200 ° C. while distilling off the generated water to perform imidization reaction. After completion of the reaction, the reaction product was taken out and dried by heating to obtain a maleimide-maleic acid copolymer.
  • the composition of the obtained maleimide-maleic acid copolymer was 50 mol% of isobutylene units, 18 mol% of maleic anhydride units, 12 mol% of maleic acid units, and 20 mol% of maleimide units. Also, 100 parts of the obtained maleimide-maleic acid copolymer and 540 parts of 25% strength aqueous ammonia were placed in a reactor equipped with a stirrer, and stirred at 90 ° C. for 5 hours, so that the solid concentration was An aqueous solution of 20% maleimide-maleic acid copolymer was obtained. The weight average molecular weight of the maleimide-maleic acid copolymer was 60000.
  • step (1.2) polymer particles produced in Example 4 were used as non-conductive particles instead of alumina particles.
  • step (1.2) 100 parts of the maleimide-maleic acid copolymer obtained in the step (5.1) was used instead of the aqueous solution of carboxymethyl cellulose ammonium salt. At this time, the maleimide-maleic acid copolymer was added in the form of an aqueous solution.
  • the obtained slurry for porous membrane contains 15 parts of ammonia with respect to 100 parts of maleimide-maleic acid copolymer which is a water-soluble polymer compound. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 6 In the step (1.3), the amount of butyl acrylate was changed to 52.2 parts, the amount of styrene was changed to 45 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 15 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 7 In the step (1.3), the amount of butyl acrylate was changed to 27.2 parts, the amount of styrene was changed to 70 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 35 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 8 In the step (1.3), the amount of butyl acrylate was changed to 7.2 parts, the amount of styrene was changed to 90 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 93 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 9 In the said process (1.2), the quantity of the aqueous solution of carboxymethylcellulose ammonium salt was changed into 7 parts by the total amount of carboxymethylcellulose ammonium salt and ammonia.
  • This aqueous solution of carboxymethyl cellulose ammonium salt contains 6.6 parts of carboxymethyl cellulose ammonium salt and 0.4 part of ammonia.
  • the amount of ammonia with respect to 100 parts of carboxymethylcellulose ammonium salt which is a water-soluble polymer compound was 5 parts.
  • a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 10 An aqueous solution containing carboxymethylcellulose and 2-aminoethanol was prepared. In this aqueous solution, the amount of 2-aminoethanol with respect to 100 parts of carboxymethylcellulose was 18 parts. In this aqueous solution, carboxymethylcellulose and 2-aminoethanol react to form a neutralized salt of carboxymethylcellulose and 2-aminoethanol, which is a water-soluble polymer compound, and partially unreacted 2-aminoethanol is converted to Remains. The aqueous solution thus prepared was used in place of the aqueous solution of carboxymethyl cellulose ammonium salt in the step (1.2).
  • the amount of the aqueous solution at this time was an amount containing 1.5 parts of carboxymethyl cellulose, neutralized salt of 2-aminoethanol and 0.1 part of 2-aminoethanol. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 11 In the step (1.2), by adding an aqueous ammonia solution to the slurry composition for a porous membrane, the amount of ammonia that is the low molecular compound X is 10 parts with respect to 100 parts of the carboxymethyl cellulose ammonium salt that is the water-soluble polymer compound. I made it. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • Example 12 In the step (1.2), by adding an aqueous ammonia solution to the slurry composition for porous membrane, the amount of ammonia as the low molecular compound X with respect to 100 parts of the carboxymethyl cellulose ammonium salt as the water soluble polymer compound is 20 parts. I made it. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
  • step (1.3) 87.8 parts of ethyl acrylate was used instead of butyl acrylate, the amount of methacrylic acid was changed to 2 parts, 10 parts of acrylonitrile was used instead of styrene, and ethylene dimethacrylate The amount was changed to 0.2 part, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 5 ° C. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.

Abstract

A method for producing a porous membrane separator for lithium ion secondary batteries, which comprises: a step wherein a slurry composition for porous membranes, which contains non-conductive particles, a water-soluble polymer compound, water and at least one low-molecular-weight compound that is selected from the group consisting of ammonia and amine compounds, is applied onto at least one surface of a separator base and dried thereon, thereby obtaining a porous membrane; and a step wherein a slurry composition for adhesive layers, which contains a particulate polymer having a glass transition temperature of from 10°C to 110°C (inclusive) and water, is applied onto the porous membrane and dried thereon, thereby obtaining an adhesive layer.

Description

リチウムイオン二次電池用の多孔膜セパレータの製造方法、及び、リチウムイオン二次電池用積層体の製造方法Method for producing porous membrane separator for lithium ion secondary battery, and method for producing laminate for lithium ion secondary battery
 本発明は、リチウムイオン二次電池用の多孔膜セパレータの製造方法、及び、リチウムイオン二次電池用積層体の製造方法に関する。 The present invention relates to a method for producing a porous membrane separator for a lithium ion secondary battery and a method for producing a laminate for a lithium ion secondary battery.
 実用化されている電池の中でも、リチウムイオン二次電池は高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車向けへの展開も期待されている。このようなリチウムイオン二次電池は、一般に、正極及び負極、並びに、セパレータ及び非水電解液を備える。 Among the batteries in practical use, lithium ion secondary batteries exhibit a high energy density, and are often used especially for small electronics. In addition to small-sized applications, development for automobiles is also expected. Such a lithium ion secondary battery generally includes a positive electrode and a negative electrode, a separator, and a non-aqueous electrolyte.
 電池の作動時には、一般に発熱を伴う。この結果、延伸ポリエチレン樹脂等の延伸樹脂からなるセパレータも加熱される。延伸樹脂からなるセパレータは、概して150℃以下の温度でも収縮しやすく、電池の短絡を生じやすい。そこで、このような課題を解決するため、無機フィラー等の非導電性粒子を含む多孔膜を備えたセパレータ(以下、適宜「多孔膜セパレータ」と呼ぶことがある。)が提案されている(特許文献1)。通常、多孔膜は熱による収縮が起こり難いので、多孔膜セパレータを用いた電池においては短絡の危険性ははるかに減少し、大幅な安全性向上が見込まれる。また、多孔膜は孔を有しているので、多孔膜中に電解液が浸透でき、多孔膜によって電池反応が阻害されることもない。 When the battery is activated, it generally generates heat. As a result, the separator made of a stretched resin such as a stretched polyethylene resin is also heated. In general, a separator made of stretched resin tends to shrink even at a temperature of 150 ° C. or less, and easily causes a short circuit of the battery. In order to solve such problems, a separator having a porous film containing non-conductive particles such as an inorganic filler (hereinafter sometimes referred to as a “porous film separator” as appropriate) has been proposed (patent). Reference 1). Usually, the porous film is unlikely to shrink due to heat, so in a battery using the porous film separator, the risk of short circuit is greatly reduced, and a significant improvement in safety is expected. Moreover, since the porous film has pores, the electrolytic solution can penetrate into the porous film, and the battery reaction is not inhibited by the porous film.
 また、多孔膜上には、接着層を設けることが提案されている(特許文献2)。多孔膜上に接着層を設けると、多孔膜と電極との接着性を高めることが可能である。このため、多孔膜を電極に安定して固定できるので、例えば多孔膜の熱による収縮を更に抑制し、安全性を更に向上させることができる。 Also, it has been proposed to provide an adhesive layer on the porous film (Patent Document 2). When an adhesive layer is provided on the porous film, the adhesion between the porous film and the electrode can be improved. For this reason, since the porous membrane can be stably fixed to the electrode, for example, shrinkage due to heat of the porous membrane can be further suppressed, and safety can be further improved.
 また、特許文献3,4のような技術も知られている。 Also, techniques such as Patent Documents 3 and 4 are known.
国際公開第2009/096528号International Publication No. 2009/096528 特許第4806735号公報Japanese Patent No. 4806735 特許第4657019号公報Japanese Patent No. 4657019 特開2010-9940号公報JP 2010-9940 A
 多孔膜は、例えば、非導電性粒子及び溶媒、並びに必要に応じて任意の成分を含んだスラリー組成物をセパレータ基材上に塗布し、溶媒を乾燥させて作製しうる。
 また、接着層は、例えば、重合体及び溶媒、並びに必要に応じて任意の成分を含んだスラリー組成物を多孔膜上に塗布し、溶媒を乾燥させて作製しうる。
The porous film can be produced, for example, by applying a slurry composition containing non-conductive particles and a solvent, and if necessary, an optional component on a separator substrate, and drying the solvent.
The adhesive layer can be prepared, for example, by applying a slurry composition containing a polymer and a solvent, and if necessary, an optional component on the porous film and drying the solvent.
 従来、多孔膜及び接着層を製造するためのスラリー組成物の溶媒としては、有機溶媒を用いることが一般的であった。ところが、有機溶媒を用いた製造方法においては、有機溶媒のリサイクルに費用を要したり、有機溶媒を使用することにより安全性確保を要したりするという課題がある。そこで、近年では、溶媒として水を含む水性のスラリー組成物を用いた製造方法を検討されている。 Conventionally, an organic solvent has been generally used as a solvent for a slurry composition for producing a porous film and an adhesive layer. However, in the production method using an organic solvent, there are problems that it is necessary to recycle the organic solvent or to ensure safety by using the organic solvent. Therefore, in recent years, a production method using an aqueous slurry composition containing water as a solvent has been studied.
 しかし、多孔膜及び接着層の両方を水性のスラリー組成物で製造した場合には、接着層用のスラリー組成物によって多孔膜が溶かされることがあった。具体的には、水性のスラリー組成物を塗布及び乾燥して形成した多孔膜は、水溶性の成分を含む。そのため、接着層を形成するために、当該多孔膜上に水性のスラリー組成物を塗布すると、塗布したスラリー組成物に含まれる溶媒に多孔膜の水溶性の成分が溶け出し、結果として多孔膜が溶かされることがあった。多孔膜が溶けると多孔膜と接着層との接着性が低下するので、多孔膜セパレータの電極に対する接着性も低下する傾向がある。そのため、多孔膜及び接着層を水性のスラリー組成物を用いて製造可能であり、且つ、多孔膜が接着層用のスラリー組成物に溶かされ難い製造方法の開発が望まれていた。 However, when both the porous film and the adhesive layer are produced with an aqueous slurry composition, the porous film may be dissolved by the slurry composition for the adhesive layer. Specifically, the porous film formed by applying and drying an aqueous slurry composition contains a water-soluble component. Therefore, when an aqueous slurry composition is applied on the porous film in order to form an adhesive layer, water-soluble components of the porous film are dissolved in the solvent contained in the applied slurry composition, and as a result, the porous film is formed. It was sometimes melted. When the porous film is melted, the adhesion between the porous film and the adhesive layer is lowered, so that the adhesion of the porous film separator to the electrode also tends to be lowered. Therefore, it has been desired to develop a production method in which the porous film and the adhesive layer can be produced using an aqueous slurry composition, and the porous film is not easily dissolved in the slurry composition for the adhesive layer.
 また、一般に、セパレータはシート状の形状を有する。また、これらのシート状のセパレータは、通常、ロール状に巻き取られた状態で運搬されたり保管されたりする。ところが、セパレータがブロッキングを生じると、ロール状となった場合に重なったセパレータ同士が固着し、ハンドリング性を損なうことがある。ここで、一般に、電極に対する接着性に優れる多孔膜セパレータほど、ブロッキングが生じやすい傾向ある。そのため、接着層を備える多孔膜セパレータでは、特にブロッキングを生じやすい。そこで、接着性と耐ブロッキング性の両方に優れる多孔膜セパレータの製造方法の開発も望まれていた。 In general, the separator has a sheet-like shape. Moreover, these sheet-like separators are usually transported or stored in a state of being wound up in a roll shape. However, when blocking occurs in the separator, the separators that are overlapped with each other in a roll shape are fixed to each other, and handling properties may be impaired. Here, generally, a porous membrane separator having better adhesion to electrodes tends to cause blocking. Therefore, in a porous membrane separator provided with an adhesive layer, blocking is particularly likely to occur. Therefore, development of a method for producing a porous membrane separator excellent in both adhesiveness and blocking resistance has also been desired.
 本発明は前記の課題に鑑みて創案されたもので、多孔膜及び接着層を備えたリチウムイオン二次電池用の多孔膜セパレータの製造方法であって、水を含む水性のスラリー組成物を用いて多孔膜及び接着層を製造可能であり、多孔膜が接着層用のスラリー組成物に溶かされ難く、且つ、電極に対する接着性及び耐ブロッキング性の両方に優れる多孔膜セパレータが得られる製造方法を提供することを目的とする。
 また、本発明は、本発明の多孔膜セパレータの製造方法で製造された多孔膜セパレータを備えるリチウムイオン二次電池用積層体の製造方法を提供することを目的とする。
The present invention was devised in view of the above problems, and is a method for producing a porous membrane separator for a lithium ion secondary battery provided with a porous membrane and an adhesive layer, using an aqueous slurry composition containing water. A production method for producing a porous membrane separator capable of producing a porous membrane and an adhesive layer, wherein the porous membrane is not easily dissolved in the slurry composition for the adhesive layer, and excellent in both adhesion to an electrode and blocking resistance. The purpose is to provide.
Moreover, an object of this invention is to provide the manufacturing method of the laminated body for lithium ion secondary batteries provided with the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention.
 本発明者は前記課題を解決するべく鋭意検討した結果、非導電性粒子、水溶性高分子化合物、水、並びにアンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物を含む多孔膜用スラリー組成物をセパレータ基材の少なくとも片面に塗布し、乾燥して多孔膜を得る工程と、ガラス転移温度が所定範囲にある粒子状重合体及び水を含む接着層用スラリー組成物を前記多孔膜上に塗布し、乾燥して接着層を得る工程とを含む製造方法により、多孔膜が接着層用スラリー組成物で溶かされることを抑制しながら、接着性及び耐ブロッキング性の両方に優れた多孔膜セパレータを製造しうることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
As a result of intensive studies to solve the above problems, the present inventor has obtained a porous film containing non-conductive particles, a water-soluble polymer compound, water, and at least one low-molecular compound selected from the group consisting of ammonia and an amine compound. Applying the slurry composition for at least one side of the separator substrate and drying to obtain a porous film; and the slurry composition for an adhesive layer containing a particulate polymer having a glass transition temperature in a predetermined range and water. The manufacturing method including the steps of applying onto the film and drying to obtain the adhesive layer, while suppressing the porous film from being dissolved by the slurry composition for the adhesive layer, was excellent in both adhesion and blocking resistance The inventors have found that a porous membrane separator can be produced, and completed the present invention.
That is, the present invention is as follows.
 〔1〕 非導電性粒子、水溶性高分子化合物、水、並びに、アンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物を含む多孔膜用スラリー組成物をセパレータ基材の少なくとも片面に塗布し、乾燥して多孔膜を得る工程、及び、
 ガラス転移温度が10℃以上110℃以下である粒子状重合体及び水を含む接着層用スラリー組成物を前記多孔膜上に塗布し、乾燥して接着層を得る工程を含む、リチウムイオン二次電池用の多孔膜セパレータの製造方法。
 〔2〕 前記水溶性高分子化合物が、酸性基を有する、〔1〕記載の多孔膜セパレータの製造方法。
 〔3〕 前記酸性基が、カルボキシル基である、〔2〕記載の多孔膜セパレータの製造方法。
 〔4〕 前記多孔膜における前記低分子化合物の濃度が、多孔膜の単位重量あたり1000ppm以下である、〔1〕~〔3〕のいずれか一項に記載の多孔膜セパレータの製造方法。
 〔5〕 前記低分子化合物が、アンモニアである、〔1〕~〔4〕のいずれか一項に記載の多孔膜セパレータの製造方法。
 〔6〕 前記水溶性高分子化合物が、カルボキシメチルセルロース、及び、下記式(I)で表される構造単位を含むマレイミド-マレイン酸共重合体からなる群より選ばれる少なくとも1種である、〔1〕~〔5〕のいずれか一項に記載のセパレータの製造方法。
Figure JPOXMLDOC01-appb-C000002
(式(I)において、Rは水素原子、炭素数1~6のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、炭素数1~6のアルキル基で置換されたフェニル基、炭素数1~6のアルキルオキシ基で置換されたフェニル基、ハロゲン原子で置換されたフェニル基及びヒドロキシフェニル基からなる群から選ばれる少なくとも一種である。)
 〔7〕 電極と、〔1〕~〔6〕のいずれか一項に記載の製造方法で製造された多孔膜セパレータとを加圧接着することを含む、リチウムイオン二次電池用積層体の製造方法。
[1] A slurry composition for a porous membrane containing at least one kind of low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compound, water, and ammonia and an amine compound is used as at least one surface of a separator substrate. Applying to and drying to obtain a porous film, and
A lithium ion secondary comprising a step of applying a slurry composition for an adhesive layer containing a particulate polymer having a glass transition temperature of 10 ° C. or higher and 110 ° C. or lower and water on the porous film and drying to obtain an adhesive layer. A method for producing a porous membrane separator for a battery.
[2] The method for producing a porous membrane separator according to [1], wherein the water-soluble polymer compound has an acidic group.
[3] The method for producing a porous membrane separator according to [2], wherein the acidic group is a carboxyl group.
[4] The method for producing a porous membrane separator according to any one of [1] to [3], wherein the concentration of the low molecular compound in the porous membrane is 1000 ppm or less per unit weight of the porous membrane.
[5] The method for producing a porous membrane separator according to any one of [1] to [4], wherein the low molecular compound is ammonia.
[6] The water-soluble polymer compound is at least one selected from the group consisting of carboxymethylcellulose and a maleimide-maleic acid copolymer containing a structural unit represented by the following formula (I): ]-[5] The manufacturing method of the separator as described in any one of [5].
Figure JPOXMLDOC01-appb-C000002
(In the formula (I), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, (It is at least one selected from the group consisting of a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.)
[7] Manufacture of a laminate for a lithium ion secondary battery, comprising pressure bonding the electrode and the porous membrane separator manufactured by the manufacturing method according to any one of [1] to [6] Method.
 本発明の多孔膜セパレータの製造方法によれば、多孔膜及び接着層を備えたリチウムイオン二次電池用の多孔膜セパレータを製造できる。また、水を含むスラリー組成物を用いて多孔膜及び接着層を製造可能であり、多孔膜が接着層用のスラリー組成物に溶かされ難い。さらに、本発明の製造方法によれば、電極に対する接着性及び耐ブロッキング性の両方に優れる多孔膜セパレータが得られる。
 また、本発明のリチウムイオン二次電池用積層体の製造方法によれば、本発明の多孔膜セパレータの製造方法で製造された多孔膜セパレータを備えたリチウムイオン二次電池用積層体が得られる。
According to the method for producing a porous membrane separator of the present invention, a porous membrane separator for a lithium ion secondary battery having a porous membrane and an adhesive layer can be produced. Moreover, a porous film and an adhesive layer can be produced using a slurry composition containing water, and the porous film is hardly dissolved in the slurry composition for the adhesive layer. Furthermore, according to the production method of the present invention, a porous membrane separator excellent in both adhesion to electrodes and blocking resistance can be obtained.
Moreover, according to the manufacturing method of the laminated body for lithium ion secondary batteries of this invention, the laminated body for lithium ion secondary batteries provided with the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention is obtained. .
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and may be arbitrarily modified and implemented without departing from the scope of the claims of the present invention and its equivalent scope.
 以下の説明において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸のことを意味する。また、(メタ)アクリレートとは、アクリレート及びメタクリレートのことを意味する。さらに、(メタ)アクリロニトリルとは、アクリロニトリル及びメタクリロニトリルのことを意味する。 In the following description, (meth) acrylic acid means acrylic acid and methacrylic acid. Moreover, (meth) acrylate means an acrylate and a methacrylate. Furthermore, (meth) acrylonitrile means acrylonitrile and methacrylonitrile.
 さらに、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。一方、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。 Furthermore, that a certain substance is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. On the other hand, that a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
[1.多孔膜セパレータの製造方法]
 本発明の多孔膜セパレータの製造方法は、多孔膜用スラリー組成物をセパレータ基材の少なくとも片面に塗布し、乾燥して多孔膜を得る工程と、接着層用スラリー組成物を前記多孔膜上に塗布し、乾燥して接着層を得る工程を含む。本発明の多孔膜セパレータの製造方法では、前記の多孔膜用スラリー組成物及び接着層用スラリー組成物として、水を含むものを用いる。
[1. Method for producing porous membrane separator]
The method for producing a porous membrane separator of the present invention comprises a step of applying a slurry composition for a porous membrane to at least one surface of a separator substrate and drying to obtain a porous membrane; and a slurry composition for an adhesive layer on the porous membrane. The process includes applying and drying to obtain an adhesive layer. In the manufacturing method of the porous membrane separator of this invention, the thing containing water is used as said slurry composition for porous films, and the slurry composition for contact bonding layers.
 [1.1.多孔膜を得る工程]
 多孔膜を得る工程では、多孔膜用スラリー組成物をセパレータ基材の少なくとも片面に塗布し、乾燥して多孔膜を得る。水を溶媒として含む従来のスラリー組成物を用いて形成された多孔膜は、一般に、水に容易に溶けやすいものであった。しかし、本発明に係る多孔膜用スラリー組成物を用いて形成した多孔膜は、水に溶け難い。したがって、この多孔膜上に、水を含む接着層用スラリー組成物を塗布しても、多孔膜は溶け難くなっている。
[1.1. Step of obtaining a porous film]
In the step of obtaining the porous film, the slurry composition for porous film is applied to at least one surface of the separator substrate and dried to obtain the porous film. A porous film formed using a conventional slurry composition containing water as a solvent is generally easily soluble in water. However, the porous film formed using the slurry composition for porous films according to the present invention is hardly soluble in water. Therefore, even if the slurry composition for adhesive layers containing water is applied on the porous film, the porous film is hardly dissolved.
 [1.1.1.セパレータ基材]
 セパレータ基材は、リチウムイオン二次電池において電池の充放電を妨げることなく電極の短絡を防止しうる任意の部材を使用しうる。セパレータ基材としては、例えば、微細な孔を有する多孔性基材を用いうる。通常は、有機材料からなる多孔性基材(すなわち、有機セパレータ)を、セパレータ基材として用いる。セパレータ基材の具体例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。
[1.1.1. Separator substrate]
As the separator base material, any member that can prevent short-circuiting of electrodes without interfering with charge / discharge of the battery in the lithium ion secondary battery can be used. As the separator substrate, for example, a porous substrate having fine pores can be used. Usually, a porous substrate made of an organic material (that is, an organic separator) is used as the separator substrate. Specific examples of the separator base material include microporous membranes and nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, and the like.
 セパレータ基材の厚みは、通常0.5μm以上、好ましくは1μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは10μm以下である。この範囲であると電池内でのセパレータ基材による抵抗が小さくなり、また、電池製造時の作業性に優れる。 The thickness of the separator substrate is usually 0.5 μm or more, preferably 1 μm or more, and usually 40 μm or less, preferably 30 μm or less, more preferably 10 μm or less. Within this range, the resistance due to the separator substrate in the battery is reduced, and the workability during battery production is excellent.
 [1.1.2.多孔膜用スラリー組成物]
 多孔膜用スラリー組成物は、非導電性粒子、水溶性高分子化合物、水、並びに、アンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物(以下、適宜「低分子化合物X」と呼ぶことがある。)を含む。また、多孔膜用スラリー組成物は、バインダーを含むことが好ましい。
[1.1.2. Slurry composition for porous film]
The slurry composition for a porous membrane comprises at least one low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compound, water, and ammonia and an amine compound (hereinafter referred to as “low-molecular compound X” as appropriate). May be called.) Moreover, it is preferable that the slurry composition for porous films contains a binder.
 [1.1.2.1.非導電性粒子]
 非導電性粒子としては、無機粒子を用いてもよく、有機粒子を用いてもよい。
[1.1.2.1. Non-conductive particles]
As the non-conductive particles, inorganic particles or organic particles may be used.
 無機粒子は溶媒中での分散安定性に優れ、多孔膜用スラリー組成物において沈降し難く、通常は、均一なスラリー状態を長時間維持することができる。また、無機粒子を用いると、通常は多孔膜の耐熱性を高くできる。非導電性粒子の材料としては、電気化学的に安定な材料が好ましい。このような観点から、非導電性粒子の無機材料として好ましい例を挙げると、酸化アルミニウム(アルミナ)、酸化アルミニウムの水和物(ベーマイト(AlOOH)、ギブサイト(Al(OH))、酸化ケイ素、酸化マグネシウム(マグネシア)、水酸化マグネシウム、酸化カルシウム、酸化チタン(チタニア)、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化硼素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。これらの中でも、電解液中での安定性と電位安定性の観点から酸化物粒子が好ましく、中でも吸水性が低く耐熱性(例えば180℃以上の高温に対する耐性)に優れる観点から酸化チタン、酸化アルミニウム、酸化アルミニウムの水和物、酸化マグネシウム及び水酸化マグネシウムがより好ましく、酸化アルミニウム、酸化アルミニウムの水和物、酸化マグネシウム及び水酸化マグネシウムがより好ましく、酸化アルミニウムが特に好ましい。 Inorganic particles are excellent in dispersion stability in a solvent, hardly settled in the slurry composition for porous membranes, and can usually maintain a uniform slurry state for a long time. In addition, when inorganic particles are used, the heat resistance of the porous film can usually be increased. As the material for the non-conductive particles, an electrochemically stable material is preferable. From this point of view, preferable examples of inorganic materials for non-conductive particles include aluminum oxide (alumina), aluminum oxide hydrate (boehmite (AlOOH), gibbsite (Al (OH) 3 ), silicon oxide, Oxide particles such as magnesium oxide (magnesia), magnesium hydroxide, calcium oxide, titanium oxide (titania), BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; silicon, diamond Covalent crystal particles such as barium sulfate, calcium fluoride, barium fluoride, etc. Insoluble ion crystal particles such as talc, montmorillonite clay fine particles, etc. Among these, stability in electrolyte From the viewpoint of potential stability, oxide particles are preferable, and in particular, water absorption is low. Titanium oxide, aluminum oxide, aluminum oxide hydrate, magnesium oxide and magnesium hydroxide are more preferred from the viewpoint of excellent heat resistance (for example, resistance to high temperature of 180 ° C. or higher), and aluminum oxide, aluminum oxide hydrate, oxidation Magnesium and magnesium hydroxide are more preferred, and aluminum oxide is particularly preferred.
 有機粒子としては、通常は重合体の粒子を用いる。有機粒子は、当該有機粒子の表面の官能基の種類及び量を調整することにより、水に対する親和性を制御でき、ひいては多孔膜に含まれる水分量を制御できる。また有機粒子は、通常は金属イオンの溶出が少ない点で、優れる。非導電性粒子の有機材料として好ましい例を挙げると、ポリスチレン、ポリエチレン、ポリイミド、メラミン樹脂、フェノール樹脂等の各種重合体などが挙げられる。粒子を形成する上記重合体は、混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体、架橋体等であっても使用しうる。有機粒子は、2種以上の重合体の混合物により形成されていてもよい。 Polymer particles are usually used as the organic particles. The organic particles can control the affinity for water by adjusting the type and amount of the functional group on the surface of the organic particles, and thus can control the amount of water contained in the porous film. Organic particles are excellent in that they usually have less metal ion elution. Preferable examples of the organic material for the non-conductive particles include various polymers such as polystyrene, polyethylene, polyimide, melamine resin, and phenol resin. The polymer forming the particles may be a mixture, a modified product, a derivative, a random copolymer, an alternating copolymer, a graft copolymer, a block copolymer, a crosslinked product, or the like. The organic particles may be formed by a mixture of two or more kinds of polymers.
 非導電性粒子として有機粒子を用いる場合、ガラス転移温度を持たなくてもよいが、当該有機粒子を形成する有機材料がガラス転移温度を有する場合、そのガラス転移温度は、通常150℃以上、好ましくは200℃以上、より好ましくは250℃以上であり、また、通常400℃以下である。 When organic particles are used as non-conductive particles, the glass transition temperature may not be present, but when the organic material forming the organic particles has a glass transition temperature, the glass transition temperature is usually 150 ° C. or higher, preferably Is 200 ° C or higher, more preferably 250 ° C or higher, and usually 400 ° C or lower.
 非導電性粒子は、必要に応じて、例えば元素置換、表面処理、固溶体化等が施されていてもよい。また、非導電性粒子は、1つの粒子の中に、前記の材料のうち1種類を単独で含むものであってもよく、2種類以上を任意の比率で組み合わせて含むものであってもよい。さらに、非導電性粒子は、異なる材料で形成された2種類以上の粒子を組み合わせて用いてもよい。 Non-conductive particles may be subjected to, for example, element substitution, surface treatment, solid solution, and the like as necessary. Further, the non-conductive particles may include one kind of the above materials alone in one particle, or may contain two or more kinds in combination at an arbitrary ratio. . Further, the non-conductive particles may be used in combination of two or more kinds of particles formed of different materials.
 非導電性粒子の形状は、例えば、球状、楕円球状、多角形状、テトラポッド(登録商標)状、板状、鱗片状などが挙げられる。中でも、多孔膜の空隙率を高くして多孔膜セパレータによるイオン伝導度の低下を抑制する観点では、テトラポッド(登録商標)状、板状、鱗片状が好ましい。 Examples of the shape of the nonconductive particles include a spherical shape, an elliptical spherical shape, a polygonal shape, a tetrapod (registered trademark) shape, a plate shape, and a scale shape. Among these, from the viewpoint of increasing the porosity of the porous membrane and suppressing the decrease in ionic conductivity due to the porous membrane separator, a tetrapod (registered trademark) shape, a plate shape, and a scale shape are preferable.
 非導電性粒子の体積平均粒子径D50は、通常0.1μm以上、好ましくは0.2μm以上であり、通常5μm以下、好ましくは2μm以下、より好ましくは1μm以下である。このような体積平均粒子径D50の非導電性粒子を用いることにより、多孔膜の厚みが薄くても、均一な多孔膜を得ることができるので、電池の容量を高くすることができる。ここで体積平均粒子径D50は、レーザー回折法で測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を表す。 The volume average particle diameter D50 of the nonconductive particles is usually 0.1 μm or more, preferably 0.2 μm or more, and usually 5 μm or less, preferably 2 μm or less, more preferably 1 μm or less. By using such non-conductive particles having a volume average particle diameter D50, a uniform porous film can be obtained even if the thickness of the porous film is thin, so that the capacity of the battery can be increased. Here, the volume average particle diameter D50 represents the particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% in the particle diameter distribution measured by the laser diffraction method.
 非導電性粒子のBET比表面積は、例えば0.9m/g以上、さらには1.5m/g以上であることが好ましい。また、非導電性粒子の凝集を抑制し、多孔膜用スラリー組成物の流動性を好適化する観点から、BET比表面積は大き過ぎないことが好ましく、例えば150m/g以下であることが好ましい。 The BET specific surface area of the non-conductive particles is, for example, preferably 0.9 m 2 / g or more, more preferably 1.5 m 2 / g or more. Further, from the viewpoint of suppressing aggregation of non-conductive particles and optimizing the fluidity of the slurry composition for a porous membrane, the BET specific surface area is preferably not too large, for example, 150 m 2 / g or less. .
 [1.1.2.2.水溶性高分子化合物]
 水溶性高分子化合物は多孔膜において非導電性粒子同士を結着させる機能を有する。したがって、水溶性高分子化合物を含むことにより、多孔膜の強度を高めることができる。また、多孔膜から非導電性粒子が脱落することを防止することもできる。
 また、水溶性高分子化合物は、多孔膜セパレータにおいて非導電性粒子とセパレータ基材とを結着させる機能を有する。したがって、多孔膜が水溶性高分子化合物を含むことにより、多孔膜とセパレータ基材との結着性を高めることができる。
 さらに、水溶性高分子化合物は、通常、多孔膜用スラリー組成物において粘度調整剤として機能しうる。したがって、多孔膜用スラリー組成物が水溶性高分子化合物を含むことにより、多孔膜用スラリー組成物の塗布性を改善することができる。
[1.1.2.2. Water-soluble polymer compound]
The water-soluble polymer compound has a function of binding nonconductive particles to each other in the porous film. Therefore, the strength of the porous membrane can be increased by including the water-soluble polymer compound. It is also possible to prevent the nonconductive particles from falling off the porous film.
The water-soluble polymer compound has a function of binding non-conductive particles and the separator base material in the porous membrane separator. Therefore, the binding property between the porous membrane and the separator base material can be enhanced by including the water-soluble polymer compound in the porous membrane.
Furthermore, the water-soluble polymer compound can usually function as a viscosity modifier in the slurry composition for a porous membrane. Therefore, the application | coating property of the slurry composition for porous films can be improved because the slurry composition for porous films contains a water-soluble polymer compound.
 水溶性高分子化合物は、酸性基を有することが好ましい。酸性基は水溶性高分子化合物の親水性を高める作用を有するので、酸性基を有する水溶性高分子化合物は水溶性を高めることができる。また、酸性基は、通常、多孔膜セパレータにおいて水溶性高分子化合物の非導電性粒子に対する結着性、並びに、多孔膜のセパレータ基材に対する結着性を高める効果も奏しうる。 The water-soluble polymer compound preferably has an acidic group. Since an acidic group has the effect | action which improves the hydrophilic property of a water-soluble polymer compound, the water-soluble polymer compound which has an acidic group can improve water solubility. In addition, the acidic group usually has an effect of enhancing the binding property of the water-soluble polymer compound to the non-conductive particles and the binding property of the porous membrane to the separator substrate in the porous membrane separator.
 水溶性高分子化合物が有する酸性基としては、例えば、カルボキシル基、スルホ基、リン酸基、水酸基などが挙げられ、中でもカルボキシル基が好ましい。ここで、酸性基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the acidic group possessed by the water-soluble polymer compound include a carboxyl group, a sulfo group, a phosphate group, and a hydroxyl group, and among them, a carboxyl group is preferable. Here, an acidic group may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性高分子化合物の例を挙げると、下記式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体が挙げられる。このマレイミド-マレイン酸共重合体を用いることで、耐熱収縮性に優れる多孔膜セパレータを実現できるので、リチウムイオン二次電池の安全性を向上させることができる。また、水分量の少ない多孔膜を形成することができるので、残留水分に起因する電解液の分解を抑制できる。したがって、電解液の分解によるリチウムイオン二次電池の膨張を抑制できるので、リチウムイオン二次電池のサイクル特性を改善することができる。 Examples of water-soluble polymer compounds include maleimide-maleic acid copolymers containing a structural unit (a) represented by the following formula (I). By using this maleimide-maleic acid copolymer, a porous membrane separator having excellent heat shrinkage resistance can be realized, so that the safety of the lithium ion secondary battery can be improved. In addition, since a porous film with a small amount of moisture can be formed, decomposition of the electrolytic solution due to residual moisture can be suppressed. Therefore, since the expansion of the lithium ion secondary battery due to the decomposition of the electrolytic solution can be suppressed, the cycle characteristics of the lithium ion secondary battery can be improved.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)において、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、炭素数1~6のアルキル基で置換されたフェニル基、炭素数1~6のアルキルオキシ基で置換されたフェニル基、ハロゲン原子で置換されたフェニル基及びヒドロキシフェニル基からなる群より選ばれる少なくとも一種を表す。 In the formula (I), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, It represents at least one selected from the group consisting of a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.
 式(I)で表される構造単位(a)は、マレイミド-マレイン酸共重合体のマレイミド単位を表す。式(I)で表される構造単位(a)は、例えば、下記式(I-1)で表されるマレイミド類から誘導されうる。 The structural unit (a) represented by the formula (I) represents a maleimide unit of a maleimide-maleic acid copolymer. The structural unit (a) represented by the formula (I) can be derived from, for example, maleimides represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(I-1)において、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、炭素数1~6のアルキル基で置換されたフェニル基、炭素数1~6のアルキルオキシ基で置換されたフェニル基、ハロゲン原子で置換されたフェニル基及びヒドロキシフェニル基からなる群から選ばれる少なくとも一種を表す。 In the formula (I-1), R 2 is a phenyl substituted by a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, or an alkyl group having 1 to 6 carbon atoms. And at least one selected from the group consisting of a group, a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.
 式(I-1)で表されるマレイミド類の具体例としては、マレイミド;N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド;N-フェニルマレイミド;N-(2-メチルフェニル)マレイミド、N-(3-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2-エチルフェニル)マレイミド、N-(3-エチルフェニル)マレイミド、N-(2-N-プロピルフェニル)マレイミド、N-(2-i-プロピルフェニル)マレイミド、N-(2-N-ブチルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-(2,4,6-トリメチルフェニル)マレイミド、N-(2,6-ジエチルフェニル)マレイミド、N-(2,4,6-トリエチルフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-(2,6-ジメトキシフェニル)マレイミド、N-(2-ブロモフェニル)マレイミド、N-(2-クロロフェニル)マレイミド、N-(2,6-ジブロモフェニル)マレイミド;N-(4-ヒドロキシフェニル)マレイミドなどが挙げられる。これらの中でも、非導電性粒子への反応性の観点から、マレイミドが好ましい。また、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Specific examples of maleimides represented by the formula (I-1) include maleimide; N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-butylmaleimide, N-pentylmaleimide, N-hexylmaleimide; N-phenylmaleimide; N- (2-methylphenyl) maleimide, N- (3-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2-ethylphenyl) maleimide, N- (3- Ethylphenyl) maleimide, N- (2-N-propylphenyl) maleimide, N- (2-i-propylphenyl) maleimide, N- (2-N-butylphenyl) maleimide, N- (2,6-dimethylphenyl) ) Maleimide, N- (2,4,6-trimethylphenyl) maleimide, N- (2,6-diethylphenyl) Nyl) maleimide, N- (2,4,6-triethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N- (2,6-dimethoxyphenyl) maleimide, N- (2-bromophenyl) maleimide, Examples thereof include N- (2-chlorophenyl) maleimide, N- (2,6-dibromophenyl) maleimide; N- (4-hydroxyphenyl) maleimide and the like. Among these, maleimide is preferable from the viewpoint of reactivity to non-conductive particles. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 また、式(I)で表される構造単位(a)は、例えば、後述する式(II)で表される構造単位(b)をイミド化することによっても得られる。 The structural unit (a) represented by the formula (I) can also be obtained, for example, by imidizing the structural unit (b) represented by the formula (II) described later.
 式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体は、前記のマレイミド単位に加えて、マレイン酸単位を含む。したがって、式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体は、下記式(II)で表される構造単位(b)を含む。 The maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) contains a maleic acid unit in addition to the maleimide unit. Therefore, the maleimide-maleic acid copolymer including the structural unit (a) represented by the formula (I) includes the structural unit (b) represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(II)において、Xは、マレイン酸単位を表す。ここでマレイン酸単位とは、マレイン酸を重合して形成される構造を有する構造単位を表す。また、Xで表されるマレイン酸単位は、部分的に水素イオン以外のイオンで中和されていてもよく、部分的に無水化していてもよく、部分的にエステル化されていてもよい。 In the formula (II), X represents a maleic acid unit. Here, the maleic acid unit represents a structural unit having a structure formed by polymerizing maleic acid. Moreover, the maleic acid unit represented by X may be partially neutralized with ions other than hydrogen ions, may be partially anhydrous, or may be partially esterified.
 式(II)で表される構造単位(b)は、例えば、下記式(II-1)で表されるマレイン酸類又は式(II-2)で表される無水マレイン酸から誘導されうる。 The structural unit (b) represented by the formula (II) can be derived from, for example, maleic acids represented by the following formula (II-1) or maleic anhydride represented by the formula (II-2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(II-1)において、R及びRは、水素原子、アルキル基、アルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオン、アルキルアンモニウムイオン及びアルカノールアンモニウムイオンからなる群より選ばれる少なくとも1種を表す。ここで、アルキルアンモニウムイオンとは、アルキルアミンの窒素原子に水素原子が1つ付加した陽イオンのことをいう。また、アルカノールアンモニウムイオンとは、アルカノールアミンの窒素原子に水素原子が1つ付加した陽イオンをいう。この際、R及びRは、同じであってもよく、異なっていてもよい。R又はRがアルキル基である場合、式(II-1)はマレイン酸エステルを表す。また、R又はRがアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオン、アルキルアンモニウムイオン、又はアルカノールアンモニウムイオンである場合、式(II-1)はマレイン酸塩を表す。 In the formula (II-1), R 3 and R 4 are at least one selected from the group consisting of a hydrogen atom, an alkyl group, an alkali metal ion, an alkaline earth metal ion, an ammonium ion, an alkyl ammonium ion, and an alkanol ammonium ion. Represents. Here, the alkylammonium ion refers to a cation obtained by adding one hydrogen atom to the nitrogen atom of alkylamine. The alkanol ammonium ion refers to a cation obtained by adding one hydrogen atom to the nitrogen atom of alkanolamine. At this time, R 3 and R 4 may be the same or different. When R 3 or R 4 is an alkyl group, formula (II-1) represents a maleate ester. When R 3 or R 4 is an alkali metal ion, an alkaline earth metal ion, an ammonium ion, an alkyl ammonium ion, or an alkanol ammonium ion, the formula (II-1) represents a maleate.
 式(II-1)で表されるマレイン酸類の具体例としては、マレイン酸エステル及びマレイン酸塩が挙げられる。
 マレイン酸エステルとしては、例えば、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノプロピル、マレイン酸ジプロピルなどが挙げられる。
 マレイン酸塩としては、例えば、マレイン酸モノリチウム、マレイン酸ジリチウム、マレイン酸モノナトリウム、マレイン酸ジナトリウム、マレイン酸モノカリウム、マレイン酸ジカリウム等のマレイン酸のアルカリ金属塩;マレイン酸カルシウム、マレイン酸マグネシウム等のマレイン酸のアルカリ土類金属塩;マレイン酸モノアンモニウム、マレイン酸ジアンモニウム等のマレイン酸のアンモニウム塩;マレイン酸モノメチルアンモニウム、マレイン酸ビスモノメチルアンモニウム、マレイン酸モノジメチルアンモニウム、マレイン酸ビスジメチルアンモニウム等のマレイン酸のアルキルアミン塩;マレイン酸-2-ヒドロキシエチルアンモニウム、マレイン酸ビス-2-ヒドロキシエチルアンモニウム、マレイン酸ジ(2-ヒドロキシエチル)アンモニウム、マレイン酸ビスジ(2-ヒドロキシエチル)アンモニウム等のマレイン酸のアルカノールアミン塩;などが挙げられる。
 また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Specific examples of maleic acids represented by the formula (II-1) include maleic acid esters and maleic acid salts.
Examples of maleic acid esters include monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, monopropyl maleate, dipropyl maleate and the like.
Examples of maleates include alkali metal salts of maleic acid such as monolithium maleate, dilithium maleate, monosodium maleate, disodium maleate, monopotassium maleate, dipotassium maleate; calcium maleate, maleic acid Alkaline earth metal salts of maleic acid such as magnesium; ammonium salts of maleic acid such as monoammonium maleate and diammonium maleate; monomethylammonium maleate, bismonomethylammonium maleate, monodimethylammonium maleate, bisdimethylmaleate Alkylamine salts of maleic acid such as ammonium; 2-hydroxyethylammonium maleate, bis-2-hydroxyethylammonium maleate, di (2-hydroxymaleate) And the like; chill) ammonium, alkanol amine salts of maleic acid, such as Bisuji maleate (2-hydroxyethyl) ammonium.
Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 さらに、式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体は、式(I)で表される構造単位(a)及び式(II)で表される構造単位(b)の他に、更に式(III)で表される構造単位(c)を含むことが好ましい。式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体が式(III)で表される構造単位(c)を有することにより、多孔膜における水分量を低減することができるので、リチウムイオン二次電池のサイクル特性を高めることができる。 Furthermore, the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) is a structural unit represented by the structural unit (a) and the formula (II) represented by the formula (I). In addition to (b), it is preferable to further contain a structural unit (c) represented by the formula (III). The maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) has the structural unit (c) represented by the formula (III), thereby reducing the water content in the porous membrane. Therefore, the cycle characteristics of the lithium ion secondary battery can be improved.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(III)において、Yは、炭素数2~12の炭化水素基を表す。また、この炭化水素基の価数は、通常2価である。 In the formula (III), Y represents a hydrocarbon group having 2 to 12 carbon atoms. The valence of this hydrocarbon group is usually divalent.
 式(III)で表される構造単位(c)は、例えば、エチレン、1-ブテン、イソブテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、イソブチレン、ジイソブチレン、1-ノネン、1-デセン、1-ドデセン等のオレフィン系炭化水素;スチレン、α-メチルスチレン等の芳香族炭化水素;などの炭化水素化合物から誘導されうる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The structural unit (c) represented by the formula (III) includes, for example, ethylene, 1-butene, isobutene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, isobutylene, diisobutylene, It can be derived from hydrocarbon compounds such as 1-nonene, 1-decene, 1-dodecene and other olefinic hydrocarbons; styrene, α-methylstyrene and other aromatic hydrocarbons. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体において、全構造単位の量を100モル%とした場合、式(I)で表される構造単位(a)の含有割合は、好ましくは5モル%以上、より好ましくは10モル%以上、特に好ましくは15モル%以上であり、好ましくは75モル%以下、より好ましくは60モル%以下、特に好ましくは45モル%以下である。マレイミド-マレイン酸共重合体における構造単位(a)の含有割合を前記範囲の下限値以上にすることにより、多孔膜の耐熱収縮性を効果的に高めることができる。また、非導電性粒子と水溶性高分子化合物との結着性を向上させることができる。さらに、前記範囲の上限値以下にすることにより、リチウムイオン二次電池において電解液に対する水溶性高分子化合物の膨潤性を低下させることができるので、リチウムイオン二次電池のサイクル特性を良好にすることができる。 In the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I), when the amount of all the structural units is 100 mol%, the structural unit (a) represented by the formula (I) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less. By setting the content ratio of the structural unit (a) in the maleimide-maleic acid copolymer to be equal to or higher than the lower limit of the above range, the heat shrinkage resistance of the porous film can be effectively enhanced. Further, the binding property between the non-conductive particles and the water-soluble polymer compound can be improved. Furthermore, by making the amount not more than the upper limit of the above range, the swelling property of the water-soluble polymer compound with respect to the electrolytic solution in the lithium ion secondary battery can be reduced, so that the cycle characteristics of the lithium ion secondary battery are improved. be able to.
 式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体において、全構造単位の量を100モル%とした場合、式(II)で表される構造単位(b)の含有割合は、好ましくは5モル%以上、より好ましくは10モル%以上、特に好ましくは15モル%以上であり、好ましくは75モル%以下、より好ましくは60モル%以下、特に好ましくは45モル%以下である。マレイミド-マレイン酸共重合体における構造単位(b)の含有割合を前記範囲の下限値以上にすることにより、多孔膜の水分量を効果的に少なくできるので、残留水分に起因する電解液の分解を抑制できる。このため、電解液の分解によるリチウムイオン二次電池の膨張を抑制でき、サイクル特性を向上させることができる。また、上限値以下にすることにより、マレイミド-マレイン酸共重合体の耐熱性を向上させて、多孔膜の耐熱収縮性を効果的に高めることができる。 In the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I), when the total amount of the structural units is 100 mol%, the structural unit (b) represented by the formula (II) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less. By setting the content ratio of the structural unit (b) in the maleimide-maleic acid copolymer to be equal to or higher than the lower limit of the above range, the water content of the porous film can be effectively reduced. Can be suppressed. For this reason, expansion of the lithium ion secondary battery due to decomposition of the electrolytic solution can be suppressed, and cycle characteristics can be improved. In addition, by setting it to the upper limit value or less, the heat resistance of the maleimide-maleic acid copolymer can be improved, and the heat shrinkage resistance of the porous film can be effectively enhanced.
 式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体において、全構造単位の量を100モル%とした場合、式(III)で表される構造単位(c)の含有割合は、好ましくは5モル%以上、より好ましくは10モル%以上、特に好ましくは15モル%以上であり、好ましくは75モル%以下、より好ましくは60モル%以下、特に好ましくは45モル%以下である。マレイミド-マレイン酸共重合体における構造単位(c)の含有割合を前記範囲の下限値以上にすることにより、マレイミド-マレイン酸共重合体の耐熱性を効果的に高めることができる。そのため、多孔膜セパレータの耐熱収縮性を改善することが可能である。また、上限値以下とすることにより、多孔膜における水分量を更に低減して、二次電池のサイクル特性を改善することができる。 In the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I), when the total amount of the structural units is 100 mol%, the structural unit (c) represented by the formula (III) Is preferably 5 mol% or more, more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 75 mol% or less, more preferably 60 mol% or less, particularly preferably 45 mol%. % Or less. By setting the content ratio of the structural unit (c) in the maleimide-maleic acid copolymer to be equal to or higher than the lower limit of the above range, the heat resistance of the maleimide-maleic acid copolymer can be effectively enhanced. Therefore, it is possible to improve the heat shrinkage resistance of the porous membrane separator. Moreover, by setting it as the upper limit value or less, the moisture content in the porous film can be further reduced, and the cycle characteristics of the secondary battery can be improved.
 式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体の製造方法としては、例えば、次の製法A及び製法Bが挙げられる。
 製法A:式(I-1)で表されるマレイミド類と、式(II-1)で表されるマレイン酸類又は式(II-2)で表される無水マレイン酸とを重合する方法。
 製法B:式(II-1)で表されるマレイン酸類又は(II-2)で表される無水マレイン酸を重合した後に、そのマレイン酸類又は無水マレイン酸を重合して形成される構造単位の一部を、式(I-1)における基Rを有する化合物でマレアミック酸化し、さらにその一部を環化脱水(イミド化)する方法。
Examples of the method for producing a maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) include the following production method A and production method B.
Production Method A: A method of polymerizing maleimides represented by the formula (I-1) and maleic acids represented by the formula (II-1) or maleic anhydride represented by the formula (II-2).
Production method B: a structural unit formed by polymerizing maleic acid represented by formula (II-1) or maleic anhydride represented by (II-2) and then polymerizing the maleic acid or maleic anhydride. A method in which a part is maleamically oxidized with a compound having the group R 2 in formula (I-1), and a part thereof is cyclized and dehydrated (imidized).
 製法Aにおける重合方法としては、公知の重合法を採用しうる。中でも、均一系での重合が好ましいため、溶液重合法が好ましい。溶液重合法に用いられる溶媒としては、例えば、メタノール、イソプロピルアルコール、イソブチルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、乳酸エチル、テトラヒドロフラン、ジオキサン、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ベンゼン、エチルベンゼン、トルエン、キシレン、シクロヘキサン、エチルシクロヘキサン、アセトニトリル等が挙げられる。これらの溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、これらの溶媒は脱水して用いてもよい。 As the polymerization method in production method A, a known polymerization method may be employed. Among these, a solution polymerization method is preferable because polymerization in a homogeneous system is preferable. Examples of the solvent used in the solution polymerization method include methanol, isopropyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, ethyl lactate, tetrahydrofuran, dioxane, butyl cellosolve, dimethylformamide, dimethyl sulfoxide. , Benzene, ethylbenzene, toluene, xylene, cyclohexane, ethylcyclohexane, acetonitrile and the like. These solvents may be used alone or in combination of two or more at any ratio. These solvents may be used after dehydration.
 溶媒の使用量は、製造されるマレイミド-マレイン酸共重合体100重量部に対して、通常600重量部以下、好ましくは400重量部以下である。これにより、高い分子量を有するマレイミド-マレイン酸共重合体を得ることができる。また、下限は溶液を形成できれば、特に制限されない。 The amount of the solvent used is usually 600 parts by weight or less, preferably 400 parts by weight or less with respect to 100 parts by weight of the maleimide-maleic acid copolymer to be produced. Thereby, a maleimide-maleic acid copolymer having a high molecular weight can be obtained. The lower limit is not particularly limited as long as a solution can be formed.
 製法Aにおいては、通常、重合原料を反応容器に仕込んで重合を行う。重合に際しては、例えば真空脱気又は窒素置換により、予め反応系外に溶存酸素を除外しておくことが望ましい。また、効率的に反応を進めるという点で、重合温度は、好ましくは-50℃以上、より好ましくは50℃以上であり、好ましくは200℃以下、より好ましくは150℃以下である。重合時間は、好ましくは1時間以上であり、好ましくは100時間以下、より好ましくは50時間以下の範囲である。重合温度および重合時間を前記範囲とすることで、重合制御の容易さ及び生産性を効果的に高めることができる。 In the production method A, polymerization is usually carried out by charging a polymerization raw material into a reaction vessel. In the polymerization, it is desirable to exclude dissolved oxygen from the reaction system in advance, for example, by vacuum degassing or nitrogen replacement. The polymerization temperature is preferably −50 ° C. or higher, more preferably 50 ° C. or higher, preferably 200 ° C. or lower, more preferably 150 ° C. or lower in terms of efficiently proceeding the reaction. The polymerization time is preferably 1 hour or longer, preferably 100 hours or shorter, more preferably 50 hours or shorter. By setting the polymerization temperature and the polymerization time in the above ranges, the ease of polymerization control and productivity can be effectively increased.
 製法Bにおいて、式(I-1)における基Rを有する化合物としては、例えば、アンモニア;アミノフェノール、ノルマルブチルアミン等の基Rを有する第1級アミンが挙げられる。これらの化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In the production method B, examples of the compound having the group R 2 in the formula (I-1) include ammonia; and primary amines having the group R 2 such as aminophenol and normal butylamine. These compounds may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 製法Bとしては、無水マレイン酸を重合して得られる単位を含む重合体を用いた製法として、例えば、炭素数2~12の炭化水素基と無水マレイン酸の共重合体を用いた、次の製法B-1及び製法B-2が挙げられる。 As production method B, as a production method using a polymer containing units obtained by polymerizing maleic anhydride, for example, a copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride is used. Examples thereof include Production Method B-1 and Production Method B-2.
 製法B-1:炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとを、ジメチルホルムアルデヒド等の有機溶媒中、通常40℃以上150℃以下の反応温度で、通常1時間~20時間反応させる。これにより、無水マレイン酸単位の一部をN-(ヒドロキシフェニル)マレアミック酸単位に変化させる。ここで、無水マレイン酸単位とは、無水マレイン酸を重合して形成される構造を有する構造単位を表す。また、N-(ヒドロキシフェニル)マレアミック酸単位とは、N-(ヒドロキシフェニル)マレアミック酸単位を重合して形成される構造を有する構造単位を表す。その後、さらに環化脱水で生成した水を除去するために共沸溶媒を混合し、通常80℃以上200℃以下の反応温度で、通常1時間~20時間環化脱水反応させて、マレイミド-マレイン酸共重合体を得る。 Production method B-1: A copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride and an aminophenol are usually reacted in an organic solvent such as dimethylformaldehyde at a reaction temperature of usually 40 ° C. or higher and 150 ° C. or lower. The reaction is allowed for 20 hours. Thereby, a part of the maleic anhydride unit is changed to an N- (hydroxyphenyl) malemic acid unit. Here, the maleic anhydride unit represents a structural unit having a structure formed by polymerizing maleic anhydride. The N- (hydroxyphenyl) maleamic acid unit represents a structural unit having a structure formed by polymerizing N- (hydroxyphenyl) malemic acid units. Thereafter, an azeotropic solvent is mixed in order to further remove the water generated by the cyclization dehydration, and the cyclization dehydration reaction is usually carried out at a reaction temperature of 80 ° C. or more and 200 ° C. or less for usually 1 hour to 20 hours. An acid copolymer is obtained.
 製法B-2:炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとを、ジメチルホルムアルデヒド等の有機溶媒中、共沸溶媒の存在下で、通常80℃以上200℃以下の反応温度で、通常1時間~20時間反応させる。これにより、無水マレイン酸単位の一部を、N-(ヒドロキシフェニル)マレアミック酸単位を経て環化脱水反応して、マレイミド-マレイン酸共重合体を得る。 Production method B-2: A copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride, and aminophenol are usually 80 ° C. or higher and 200 ° C. in an organic solvent such as dimethylformaldehyde in the presence of an azeotropic solvent. The reaction is usually carried out at the following reaction temperature for 1 to 20 hours. Thereby, a part of the maleic anhydride unit is subjected to cyclization dehydration through the N- (hydroxyphenyl) malemic acid unit to obtain a maleimide-maleic acid copolymer.
 前記製法B-1及び製法B-2に記載された、炭素数2~12の炭化水素基と無水マレイン酸の共重合体の具体例としては、イソブチレンと無水マレイン酸の共重合体(以下、適宜「イソブチレン-無水マレイン酸共重合体」と呼ぶことがある。)が挙げられる。 Specific examples of the copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride described in the above production method B-1 and production method B-2 include a copolymer of isobutylene and maleic anhydride (hereinafter, referred to as “copolymer of maleic anhydride”). As appropriate, it may be referred to as “isobutylene-maleic anhydride copolymer”).
 前記の製法B-1及び製法B-2のいずれの方法においても、環化脱水反応時に、共沸溶媒を使用せずに水を除去してもよい。例えば、100℃以上200℃以下の温度にして水を除去することができる。また、窒素ガスの流通により、効果的に脱水反応を行うことができる。 In any of the above production methods B-1 and B-2, water may be removed without using an azeotropic solvent during the cyclization dehydration reaction. For example, water can be removed at a temperature of 100 ° C. or higher and 200 ° C. or lower. Further, the dehydration reaction can be effectively performed by the circulation of nitrogen gas.
 上記の環化脱水反応において生成した水を除去するために使用される共沸溶媒としては、例えば、ベンゼン、トルエン、キシレン等を挙げることができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 環化脱水反応では、イソブチレン-無水マレイン酸共重合体中の無水マレイン酸単位とアミノフェノールとが反応して生成したN-(ヒドロキシフェニル)マレアミック酸単位1モルから、水1モルが生成する。共沸溶媒の使用量は、前記の生成水を共沸除去するに足る量としうる。
Examples of the azeotropic solvent used for removing water generated in the cyclization dehydration reaction include benzene, toluene, xylene and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
In the cyclization dehydration reaction, 1 mol of water is generated from 1 mol of N- (hydroxyphenyl) malemic acid unit generated by the reaction of maleic anhydride unit and aminophenol in the isobutylene-maleic anhydride copolymer. The amount of the azeotropic solvent used may be an amount sufficient to azeotropically remove the generated water.
 前記の製法B-1のように、炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとの反応を2段階で行う場合には、第1段目の反応の反応温度は、通常40℃以上、好ましくは50℃以上であり、通常150℃以下、好ましくは100℃以下である。また、第2段目の反応の反応温度は、通常80℃以上、好ましくは100℃以上であり、通常200℃以下、好ましくは150℃以下である。ここで、第1段目の反応とは、炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとの反応によりN-(ヒドロキシフェニル)マレアミック酸の共重合体を生成する反応を意味する。また、第2段目の反応とは、N-(ヒドロキシフェニル)マレアミック酸の共重合体を環化脱水する反応を意味する。 When the reaction of a hydrocarbon group having 2 to 12 carbon atoms, a maleic anhydride copolymer and aminophenol is carried out in two stages as in the above production method B-1, the reaction of the first stage reaction The temperature is usually 40 ° C. or higher, preferably 50 ° C. or higher, and is usually 150 ° C. or lower, preferably 100 ° C. or lower. The reaction temperature of the second stage reaction is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower. Here, the reaction in the first stage is to produce a copolymer of N- (hydroxyphenyl) malemic acid by reaction of a copolymer of a hydrocarbon group having 2 to 12 carbon atoms with maleic anhydride and aminophenol. Means a reaction to The second-stage reaction means a reaction in which a copolymer of N- (hydroxyphenyl) malemic acid is cyclized and dehydrated.
 さらに、前記の製法B-2のように、炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとの反応を脱水のための共沸溶媒の存在下に1段階で行う場合には、その反応温度は、通常80℃以上、好ましくは100℃以上であり、通常200℃以下、好ましくは150℃以下である。 Further, as in the above production method B-2, the reaction of a hydrocarbon group having 2 to 12 carbon atoms, a maleic anhydride copolymer and aminophenol is carried out in one step in the presence of an azeotropic solvent for dehydration. When carried out, the reaction temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower.
 前記の製法B-1及び製法B-2において、炭素数2~12の炭化水素基と無水マレイン酸の共重合体とアミノフェノールとの反応時間は、反応温度、アミノフェノールの使用量、及び目的とする反応率などにより異なる。ここで、前記の反応率としては、例えば、イソブチレン-無水マレイン酸共重合体中の無水マレイン酸単位のN-(ヒドロキシフェニル)マレイミド単位への変性率が挙げられる。通常、製法B-1において、第1段目及び第2段目の反応のいずれも、1時間~20時間としうる。また、製法B-2における反応時間は、1時間~20時間としうる。 In the above production method B-1 and production method B-2, the reaction time of the copolymer of a hydrocarbon group having 2 to 12 carbon atoms and maleic anhydride and aminophenol is the reaction temperature, the amount of aminophenol used, and the purpose. It depends on the reaction rate. Here, examples of the reaction rate include a modification rate of maleic anhydride units to N- (hydroxyphenyl) maleimide units in the isobutylene-maleic anhydride copolymer. In general, in the production method B-1, both the first stage reaction and the second stage reaction can be performed for 1 hour to 20 hours. In addition, the reaction time in production method B-2 can be 1 to 20 hours.
 上述した製法では、目的とするマレイミド-マレイン酸共重合体における式(I)で表される構造単位(a)の含有率の制御は、例えば、アミノフェノールの使用量、反応温度及び反応時間を調整することによって容易に行いうる。 In the production method described above, the content of the structural unit (a) represented by the formula (I) in the target maleimide-maleic acid copolymer is controlled by, for example, using the amount of aminophenol used, the reaction temperature, and the reaction time. It can be easily done by adjusting.
 反応終了後、反応溶液からのマレイミド-マレイン酸共重合体の回収は、例えば、水及びエーテル類などの不活性溶剤を用いて、マレイミド-マレイン酸共重合体を析出させることにより、容易に行いうる。 After completion of the reaction, the maleimide-maleic acid copolymer is easily recovered from the reaction solution by, for example, precipitating the maleimide-maleic acid copolymer using an inert solvent such as water and ethers. sell.
 上述の如くして得られるマレイミド-マレイン酸共重合体は、例えば、マレイミド-マレイン酸共重合体中のマレイン酸単位を、加水分解又は中和することにより、水に可溶にすることができる。具体例としては、(1)マレイミド-マレイン酸共重合体中の無水マレイン酸単位を高温(80℃以上100℃以下)で加水分解する方法;(2)マレイミド-マレイン酸共重合体中のマレイン酸単位を中和剤で中和する方法が挙げられる。なお、方法(1)においては、加水分解の際に中和剤を混合することが好ましい。また、(2)の方法において、中和剤を混合する際の温度は特に限定されず、例えば室温としうる。 The maleimide-maleic acid copolymer obtained as described above can be made soluble in water by, for example, hydrolysis or neutralization of maleic acid units in the maleimide-maleic acid copolymer. . Specific examples include (1) a method in which maleic anhydride units in a maleimide-maleic acid copolymer are hydrolyzed at a high temperature (80 ° C. or more and 100 ° C. or less); (2) a malein in the maleimide-maleic acid copolymer; The method of neutralizing an acid unit with a neutralizing agent is mentioned. In the method (1), it is preferable to mix a neutralizing agent during the hydrolysis. In the method (2), the temperature at which the neutralizing agent is mixed is not particularly limited, and may be, for example, room temperature.
 中和剤としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の、アルカリ金属水酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化バリウム等の、アルカリ土類金属水酸化物;水酸化アルミニウム等の、長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウム等の、アルカリ金属炭酸塩;炭酸マグネシウム等のアルカリ土類金属炭酸塩などの炭酸塩;有機アミンなどが挙げられる。有機アミンとしては、例えば、エチルアミン、ジエチルアミン、プロピルアミン等のアルキルアミン類;モノメタノールアミン、モノエタノールアミン、モノプロパノールアミン等のアルコールアミン類;アンモニア等のアンモニア類;などが挙げられる。これらのなかでも、水への可溶化効果の高い点で、ナトリウムイオン、リチウムイオン、アンモニウムイオンを生じうるものが好ましい。また、中和剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the neutralizing agent include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide, magnesium hydroxide, and barium hydroxide; Hydroxides such as hydroxides of metals belonging to Group IIIA in the long periodic table such as aluminum hydroxide; Alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkaline earth metal carbonates such as magnesium carbonate And carbonates of organic amines. Examples of the organic amine include alkyl amines such as ethylamine, diethylamine, and propylamine; alcohol amines such as monomethanolamine, monoethanolamine, and monopropanolamine; ammonia such as ammonia. Among these, those capable of generating sodium ions, lithium ions, and ammonium ions are preferable because they have a high effect of solubilization in water. Moreover, a neutralizing agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 また、水溶性高分子化合物のその他の例を挙げると、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体;ポリ(メタ)アクリル酸系重合体などが挙げられる。また、水溶性高分子化合物としては、例えばこれらのアンモニウム塩およびアルカリ金属塩等の塩が挙げられる。中でも、カルボキシメチルセルロースの塩が好ましく、カルボキシメチルセルロースのアンモニウム塩が特に好ましい。 Other examples of water-soluble polymer compounds include: carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and other cellulose derivatives; poly (meth) acrylic acid polymers Etc. Examples of the water-soluble polymer compound include salts such as ammonium salts and alkali metal salts. Among these, a salt of carboxymethyl cellulose is preferable, and an ammonium salt of carboxymethyl cellulose is particularly preferable.
 カルボキシメチルセルロースのアンモニウム塩は、市販のものを用いることができる。なお、市販のカルボキシメチルセルロースのアンモニウム塩には、中和に用いたアンモニアが残存している場合があり、その場合、残存しているアンモニアは低分子化合物Xとして扱う。 A commercially available ammonium salt of carboxymethyl cellulose can be used. In addition, ammonia used for neutralization may remain in the commercially available ammonium salt of carboxymethyl cellulose. In this case, the remaining ammonia is treated as the low molecular compound X.
 セルロース誘導体のエーテル化度は、好ましくは0.5以上であり、好ましくは2以下、より好ましくは1.5以下である。なお、ここでエーテル化度とは、セルロースのグルコース単位あたりに3個含まれる水酸基が、平均で何個エーテル化されているかを表す値である。エーテル化度を上記範囲とすることで、スラリー組成物の安定性が高く、固形分の沈降や凝集を生じにくくすることができる。さらに、セルロース誘導体を用いることにより、塗料の塗工性や流動性が向上する。
 上述した水溶性高分子化合物の中でも、カルボキシメチルセルロース及び式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体が好ましい。
 また、水溶性高分子化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
The degree of etherification of the cellulose derivative is preferably 0.5 or more, preferably 2 or less, more preferably 1.5 or less. Here, the degree of etherification is a value representing how many hydroxyl groups contained per 3 glucose units of cellulose are etherified on average. By making the degree of etherification within the above range, the slurry composition has high stability, and it is possible to make it difficult for sedimentation and aggregation of solids to occur. Furthermore, the coating property and fluidity | liquidity of a coating material improve by using a cellulose derivative.
Among the water-soluble polymer compounds described above, a maleimide-maleic acid copolymer containing carboxymethylcellulose and the structural unit (a) represented by the formula (I) is preferable.
Moreover, a water-soluble high molecular compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 水溶性高分子化合物の重量平均分子量は、好ましくは1000以上、より好ましくは1500以上、特に好ましくは2000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは150000以下である。また特に、式(I)で表される構造単位(a)を含むマレイミド-マレイン酸共重合体の重量平均分子量は、好ましくは50000以上100000以下である。水溶性高分子化合物の重量平均分子量を上記範囲の下限値以上とすることにより水溶性高分子化合物の強度を高くして安定な多孔膜を形成できるので、リチウムイオン二次電池のサイクル特性及び高温保存特性等の耐久性を改善できる。また、上記範囲の上限値以下とすることにより水溶性高分子化合物を柔らかくできるので、例えば多孔膜のセパレータ基材への結着性の改善が可能となる。ここで、水溶性高分子化合物の重量平均分子量は、GPC(ゲル浸透クロマトグラフィ)によって、展開液をN,N-ジメチルホルムアミド(DMF)とするゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の値として測定しうる。 The weight average molecular weight of the water-soluble polymer compound is preferably 1000 or more, more preferably 1500 or more, particularly preferably 2000 or more, preferably 500,000 or less, more preferably 250,000 or less, and particularly preferably 150,000 or less. In particular, the weight average molecular weight of the maleimide-maleic acid copolymer containing the structural unit (a) represented by the formula (I) is preferably 50,000 or more and 100,000 or less. By setting the weight average molecular weight of the water-soluble polymer compound to the lower limit of the above range or more, the strength of the water-soluble polymer compound can be increased and a stable porous film can be formed. Durability such as storage characteristics can be improved. Moreover, since the water-soluble polymer compound can be softened by setting it to the upper limit value or less of the above range, for example, the binding property of the porous film to the separator substrate can be improved. Here, the weight average molecular weight of the water-soluble polymer compound is a value in terms of polystyrene by GPC (gel permeation chromatography) and by gel permeation chromatography (GPC) using N, N-dimethylformamide (DMF) as a developing solution. Can be measured as
 水溶性高分子化合物の量は、多孔膜における量として、通常0.1重量%以上、通常30重量%以下である。中でも、非導電性粒子として無機粒子を用いる場合、好ましくは10重量%以下、より好ましくは5重量%以下である。また、非導電性粒子として有機粒子を用いる場合、好ましくは3重量%以上であり、好ましくは10重量%以下である。また、水溶性高分子化合物の量は、非導電性粒子100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、特に好ましくは0.5重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下、特に好ましくは10重量部以下である。水溶性高分子化合物の量を前記範囲の下限値以上とすることにより、多孔膜の強度及び結着性の向上、並びに、多孔膜用スラリー組成物の塗布性の向上が可能となる。また、上限値以下とすることにより、多孔膜の強度と空隙率の両方を高くできるので、多孔膜セパレータによる耐短絡性とリチウムイオン二次電池の電池特性の両方を良好にできる。 The amount of the water-soluble polymer compound is usually 0.1% by weight or more and usually 30% by weight or less as the amount in the porous membrane. Among these, when inorganic particles are used as the non-conductive particles, the amount is preferably 10% by weight or less, more preferably 5% by weight or less. When organic particles are used as the non-conductive particles, the amount is preferably 3% by weight or more, and preferably 10% by weight or less. The amount of the water-soluble polymer compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the non-conductive particles. It is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less. By setting the amount of the water-soluble polymer compound to be equal to or higher than the lower limit of the above range, it is possible to improve the strength and binding property of the porous film and the applicability of the slurry composition for porous film. Moreover, since both the intensity | strength and porosity of a porous membrane can be made high by setting it as an upper limit or less, both the short circuit resistance by a porous membrane separator and the battery characteristic of a lithium ion secondary battery can be made favorable.
 [1.1.2.3.低分子化合物]
 多孔膜用スラリー組成物は、アンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物Xを有する。前記の低分子化合物Xは、通常、多孔膜用スラリー組成物の膜を乾燥させる時に気化するので、多孔膜にはほとんど残留しない。しかし、前記の乾燥の際に低分子化合物Xが除去されることで何らかの作用が働き、多孔膜の耐水性が向上して、多孔膜が水に対して溶け難くなるものと考えられる。
[1.1.2.3. Low molecular weight compound]
The slurry composition for a porous film has at least one low molecular compound X selected from the group consisting of ammonia and an amine compound. Since the low molecular compound X is usually vaporized when the film of the slurry composition for porous film is dried, it hardly remains in the porous film. However, it is considered that the removal of the low molecular weight compound X during the above-described drying causes some action, improves the water resistance of the porous film, and makes the porous film difficult to dissolve in water.
 前記の低分子化合物Xとしては、例えば、アンモニア;ジメチルアミン、ジエチルアミン、ジブチルアミン等の2級アミン;トリメチルアミン、トリエチルアミン、トリブチルアミン、シアザビシクロノネン等の3級アミン;などが挙げられる。中でも、アンモニアが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the low molecular weight compound X include ammonia; secondary amines such as dimethylamine, diethylamine, and dibutylamine; tertiary amines such as trimethylamine, triethylamine, tributylamine, and cazabicyclononene. Of these, ammonia is preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 低分子化合物Xの分子量は、好ましくは17以上であり、好ましくは1000未満、より好ましくは200以下、特に好ましくは150以下である。低分子化合物Xの分子量を前記範囲の上限以下にすることにより、多孔膜用スラリー組成物の膜を乾燥させる際に低分子化合物Xを安定して気化させて、多孔膜から除去することができる。 The molecular weight of the low molecular compound X is preferably 17 or more, preferably less than 1000, more preferably 200 or less, and particularly preferably 150 or less. By setting the molecular weight of the low molecular compound X below the upper limit of the above range, the low molecular compound X can be stably vaporized and removed from the porous film when the film of the slurry composition for porous film is dried. .
 低分子化合物Xの沸点は、通常100℃以下、好ましくは90℃以下、より好ましくは80℃以下である。沸点がこのように低いことにより、多孔膜用スラリー組成物の膜を乾燥させる際に低分子化合物Xを安定して気化させて、多孔膜から除去することができる。また、下限に制限は無いが、通常-33℃以上である。 The boiling point of the low molecular compound X is usually 100 ° C. or lower, preferably 90 ° C. or lower, more preferably 80 ° C. or lower. When the boiling point is so low, the low molecular weight compound X can be stably vaporized and removed from the porous membrane when the membrane of the slurry composition for porous membrane is dried. The lower limit is not limited, but is usually −33 ° C. or higher.
 多孔膜用スラリー組成物において、低分子化合物Xの量は、水溶性高分子化合物100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、特に好ましくは0.1重量部以上であり、好ましくは50重量部以下、より好ましくは40重量部以下、特に好ましくは30重量部以下である。前記の低分子化合物Xの量が前記範囲の下限値以上となることによって、水溶性高分子化合物を中和し溶解させることができる。また、前記範囲の上限値以下となることによって、多孔膜用スラリー組成物の膜を乾燥させる際に低分子化合物Xを安定して気化させることができる。 In the slurry composition for a porous membrane, the amount of the low molecular compound X is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, particularly preferably 100 parts by weight of the water-soluble polymer compound. It is 0.1 parts by weight or more, preferably 50 parts by weight or less, more preferably 40 parts by weight or less, and particularly preferably 30 parts by weight or less. When the amount of the low molecular compound X is not less than the lower limit of the above range, the water-soluble polymer compound can be neutralized and dissolved. Moreover, when it becomes below the upper limit of the said range, when drying the film | membrane of the slurry composition for porous films, the low molecular compound X can be vaporized stably.
 [1.1.2.4.水]
 多孔膜用スラリー組成物における水の量は、非導電性粒子、水溶性高分子化合物及び低分子化合物Xの種類に応じ、多孔膜用スラリー組成物の粘度が塗布に好適な範囲になるように調整することが好ましい。具体的には、前記の非導電性粒子、水溶性高分子化合物及び低分子化合物X、並びに必要に応じて用いられるバインダー及び任意の成分を合わせた固形分の濃度が、好ましくは20重量%以上、より好ましくは30重量%以上、また、好ましくは60重量%以下、より好ましくは50重量%以下となる量の水を用いる。
[1.1.2.4. water]
The amount of water in the slurry composition for porous membranes is such that the viscosity of the slurry composition for porous membranes is in a range suitable for coating depending on the types of non-conductive particles, water-soluble polymer compound and low-molecular compound X. It is preferable to adjust. Specifically, the solid content concentration of the non-conductive particles, the water-soluble polymer compound and the low-molecular compound X, and the binder and optional components used as necessary is preferably 20% by weight or more. More preferably, water is used in an amount of 30% by weight or more, preferably 60% by weight or less, more preferably 50% by weight or less.
 [1.1.2.5.バインダー]
 多孔膜用スラリー組成物は、バインダーを含むことが好ましい。バインダーを含むことにより、多孔膜の結着性が向上し、撒回時、運搬時等の取扱い時に多孔膜セパレータにかかる機械的な力に対する強度を向上させることができる。
[1.1.2.5. binder]
It is preferable that the slurry composition for porous films contains a binder. By including the binder, the binding property of the porous membrane is improved, and the strength against mechanical force applied to the porous membrane separator during handling such as winding and transportation can be improved.
 バインダーとしては様々な重合体成分を用いうる。例えば、スチレン・ブタジエン共重合体(SBR)、アクリロニトリル・ブタジエン共重合体(NBR)、水素化SBR、水素化NBR、スチレン-イソプレン-スチレンブロック共重合体(SIS)、アクリル重合体などが挙げられる。中でも、バインダーとしてはアクリル重合体が好ましく、(メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との共重合体が特に好ましい。 As the binder, various polymer components can be used. Examples include styrene / butadiene copolymer (SBR), acrylonitrile / butadiene copolymer (NBR), hydrogenated SBR, hydrogenated NBR, styrene-isoprene-styrene block copolymer (SIS), acrylic polymer, and the like. . Among them, an acrylic polymer is preferable as the binder, and a copolymer of a (meth) acrylic acid ester monomer and a (meth) acrylonitrile monomer is particularly preferable.
 (メタ)アクリル酸エステル単量体としては、例えば、CH=CR-COORで表される化合物が挙げられる。ここで、Rは水素原子またはメチル基を表し、Rはアルキル基またはシクロアルキル基を表す。
 (メタ)アクリル酸エステル単量体の例を挙げると、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチル、アクリル酸ヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、ベンジルアクリレートなどのアクリレート;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、多孔膜の強度を向上できる点で、特に好ましい。また、これらの単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of (meth) acrylic acid ester monomers include compounds represented by CH 2 ═CR 5 —COOR 6 . Here, R 5 represents a hydrogen atom or a methyl group, and R 6 represents an alkyl group or a cycloalkyl group.
Examples of (meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, acrylic N-amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, acrylic Acrylates such as stearyl acid and benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, Acrylic acid isoamyl methacrylate n- hexyl, 2-ethylhexyl methacrylate, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, and methacrylate and the like such as benzyl methacrylate. Among these, acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the porous film can be improved. Moreover, these monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 (メタ)アクリロニトリル単量体及び(メタ)アクリロニトリル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The (meth) acrylonitrile monomer and the (meth) acrylonitrile monomer unit may be used alone or in combination of two or more at any ratio.
 (メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との重合比((メタ)アクリロニトリル単量体/(メタ)アクリル酸エステル単量体)は、好ましくは1/99以上、より好ましくは5/95以上であり、好ましくは30/70以下、より好ましくは25/75以下である。(メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との重合比を前記範囲の下限値以上にすることにより、電解液に対するバインダーの膨潤性を抑制して、イオン伝導性の低下を防止できる。また、上限値以下とすることにより、バインダーの強度を高くして、多孔膜セパレータの強度を高くできる。 The polymerization ratio of the (meth) acrylic acid ester monomer to the (meth) acrylonitrile monomer ((meth) acrylonitrile monomer / (meth) acrylic acid ester monomer) is preferably 1/99 or more. Preferably it is 5/95 or more, preferably 30/70 or less, more preferably 25/75 or less. By making the polymerization ratio of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer equal to or higher than the lower limit of the above range, the swellability of the binder with respect to the electrolytic solution is suppressed, and the ionic conductivity is lowered. Can be prevented. Moreover, the intensity | strength of a binder can be made high and the intensity | strength of a porous membrane separator can be made high by setting it as an upper limit or less.
 また、前記の(メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との共重合体は、必要に応じて、(メタ)アクリル酸エステル単量体及び(メタ)アクリロニトリル単量体以外の共重合成分を更に共重合したものであってもよい。これらの共重合成分に対応する構造単位としては、例えば、酸性基を有するビニル単量体を重合して形成される構造を有する構造単位、架橋性単量体単位などが挙げられる。 In addition, the copolymer of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer may include a (meth) acrylic acid ester monomer and a (meth) acrylonitrile monomer, if necessary. Further, copolymerization components other than those may be further copolymerized. Examples of the structural unit corresponding to these copolymer components include a structural unit having a structure formed by polymerizing a vinyl monomer having an acidic group, a crosslinkable monomer unit, and the like.
 酸性基を有するビニル単量体としては、例えば、-COOH基(カルボキシル基。「カルボン酸基」ともいう。)を有する単量体、-OH基(水酸基)を有する単量体、-SOH基(スルホ基。「スルホン酸基」ともいう。)を有する単量体、-PO基を有する単量体、-PO(OH)(OR)基(Rは炭化水素基を表す)を有する単量体、及び低級ポリオキシアルキレン基を有する単量体が挙げられる。また、加水分解によりカルボン酸基を生成する酸無水物も同様に使用することができる。 Examples of the vinyl monomer having an acidic group include a monomer having a —COOH group (carboxyl group; also referred to as “carboxylic acid group”), a monomer having an —OH group (hydroxyl group), and —SO 3. A monomer having an H group (sulfo group; also referred to as “sulfonic acid group”), a monomer having a —PO 3 H 2 group, a —PO (OH) (OR) group (R represents a hydrocarbon group) ) And a monomer having a lower polyoxyalkylene group. Moreover, the acid anhydride which produces | generates a carboxylic acid group by a hydrolysis can be used similarly.
 カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸、ジカルボン酸の無水物、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-エチルアクリル酸、イソクロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、メチルマレイン酸などが挙げられる。ジカルボン酸の酸無水物としては、例えば、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。 Examples of the monomer having a carboxylic acid group include monocarboxylic acids, dicarboxylic acids, dicarboxylic acid anhydrides, and derivatives thereof. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, 2-ethylacrylic acid, and isocrotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and methylmaleic acid. Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
 水酸基を有する単量体としては、例えば、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素又はメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。 Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid Alkanol esters of ethylenically unsaturated carboxylic acids such as -2-hydroxypropyl and methacrylic acid-2-hydroxyethyl; general formula CH 2 ═CR 7 —COO— (C n H 2n O) m —H (m is 2 An integer of 1 to 9, n is an integer of 2 to 4, R 7 represents hydrogen or a methyl group) and esters of (meth) acrylic acid and 2-hydroxyethyl-2 ′-( Dicarboxylic acids such as (meth) acryloyloxyphthalate and 2-hydroxyethyl-2 '-(meth) acryloyloxysuccinate Mono (meth) acrylic esters of droxy esters; vinyl ethers such as 2-hydroxyethyl vinyl ether and 2-hydroxypropyl vinyl ether; (meth) allyl-2-hydroxyethyl ether, (meth) allyl-2-hydroxypropyl ether Mono (meth) allyl ethers of alkylene glycols such as (meth) allyl-3-hydroxypropyl ether; polyoxyalkylene glycols (meth) such as diethylene glycol mono (meth) allyl ether and dipropylene glycol mono (meth) allyl ether Monoallyl ethers; glycerol mono (meth) allyl ether, (meth) allyl-2-chloro-3-hydroxypropyl ether, (meth) allyl-2-hydroxy-3-chloropropyl ether (Poly) alkylene glycol halogen and hydroxy substituted mono (meth) allyl ethers; poly (phenol) mono (meth) allyl ethers of polyphenols such as eugenol and isoeugenol and their halogen substituted products; (meth) allyl-2- And (meth) allyl thioethers of alkylene glycols such as hydroxyethyl thioether and (meth) allyl-2-hydroxypropyl thioether.
 スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。 Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide-2. -Methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid and the like.
 -PO基及び/又は-PO(OH)(OR)基(Rは炭化水素基を表す)を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。 Examples of a monomer having a —PO 3 H 2 group and / or —PO (OH) (OR) group (R represents a hydrocarbon group) include, for example, 2- (meth) acryloyloxyethyl phosphate, phosphorus Examples include methyl-2- (meth) acryloyloxyethyl acid, and ethyl (meth) acryloyloxyethyl phosphate.
 低級ポリオキシアルキレン基を有する単量体としては、例えば、ポリ(エチレンオキシド)等のポリ(アルキレンオキシド)などが挙げられる。 Examples of the monomer having a lower polyoxyalkylene group include poly (alkylene oxide) such as poly (ethylene oxide).
 酸性基を有するビニル単量体としては、これらの中でも、有機セパレーターへの密着性に優れること、及び正極活物質から溶出した遷移金属イオンを効率良く捕捉するという理由からカルボン酸基を有する単量体が好ましく、中でも、アクリル酸、メタクリル酸などのカルボン酸基を有する炭素数5以下のモノカルボン酸、並びに、マレイン酸、イタコン酸などのカルボン酸基を2つ有する炭素数5以下のジカルボン酸が好ましい。さらには、作製したスラリー組成物の保存安定性が高いという観点から、アクリル酸、メタクリル酸、イタコン酸が好ましい。 Among these, the vinyl monomer having an acidic group is a single monomer having a carboxylic acid group because of excellent adhesion to an organic separator and efficient capture of transition metal ions eluted from a positive electrode active material. Preferred are monocarboxylic acids having 5 or less carbon atoms having carboxylic acid groups such as acrylic acid and methacrylic acid, and dicarboxylic acids having 5 or less carbon atoms having two carboxylic acid groups such as maleic acid and itaconic acid. Is preferred. Furthermore, acrylic acid, methacrylic acid, and itaconic acid are preferable from the viewpoint that the prepared slurry composition has high storage stability.
 前記の(メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との共重合体における、酸性基を有するビニル単量体を重合して形成される構造を有する構造単位の含有割合は、好ましくは1.0重量%以上、より好ましくは1.5重量%以上であり、好ましくは3.0重量%以下、より好ましくは2.5重量%以下である。 In the copolymer of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer, the content ratio of the structural unit having a structure formed by polymerizing a vinyl monomer having an acidic group is The content is preferably 1.0% by weight or more, more preferably 1.5% by weight or more, preferably 3.0% by weight or less, more preferably 2.5% by weight or less.
 架橋性単量体単位は、架橋性単量体を重合して得られる構造単位である。架橋性単量体は、加熱又はエネルギー線照射により、重合中又は重合後に架橋構造を形成しうる単量体である。架橋性単量体の例としては、通常は、熱架橋性を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能の架橋性単量体;1分子あたり2つ以上のオレフィン性二重結合を有する多官能の架橋性単量体が挙げられる。 The crosslinkable monomer unit is a structural unit obtained by polymerizing a crosslinkable monomer. The crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or energy ray irradiation. As an example of the crosslinkable monomer, a monomer having thermal crosslinkability can be usually mentioned. More specifically, a monofunctional crosslinkable monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a polyfunctional monomer having two or more olefinic double bonds per molecule. A functional crosslinkable monomer is mentioned.
 熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。 Examples of thermally crosslinkable groups include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof. Among these, an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。 Examples of the crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl. Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid Examples include glycidyl esters of acids.
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。 Examples of the crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。 Examples of the crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。 Examples of the crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
 1分子あたり2つ以上のオレフィン性二重結合を有する架橋性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。 Examples of crosslinkable monomers having two or more olefinic double bonds per molecule include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth). Acrylate, tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane Diallyl ethers, allyl or vinyl ethers of other polyfunctional alcohols, triallylamine, methylenebisacrylamide, and divinylbenzene It is.
 これらの中でも、架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましい。
 また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, as the crosslinkable monomer, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable.
Moreover, a crosslinking | crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 前記の(メタ)アクリル酸エステル単量体と(メタ)アクリロニトリル単量体との共重合体における架橋性単量体単位の含有割合は、好ましくは0.1重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。架橋性単量体単位の含有割合を前記範囲とすることにより、重合体の電解液への溶出による、耐熱層の変形を抑制し、二次電池のサイクル特性を向上することができる。 The content ratio of the crosslinkable monomer unit in the copolymer of the (meth) acrylic acid ester monomer and the (meth) acrylonitrile monomer is preferably 0.1% by weight or more, preferably 10%. % By weight or less, more preferably 5% by weight or less. By making the content rate of a crosslinkable monomer unit into the said range, the deformation | transformation of a heat-resistant layer by the elution to the electrolyte solution of a polymer can be suppressed, and the cycling characteristics of a secondary battery can be improved.
 バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The binder may be used alone or in combination of two or more at any ratio.
 バインダーを形成する重合体の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。バインダーを形成する重合体の重量平均分子量が上記範囲にあると、多孔膜セパレータの強度及び非導電性粒子の分散性を良好にし易い。 The weight average molecular weight of the polymer forming the binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less. When the weight average molecular weight of the polymer forming the binder is in the above range, the strength of the porous membrane separator and the dispersibility of the nonconductive particles are easily improved.
 バインダーのガラス転移温度は、好ましくは-60℃以上、より好ましくは-55℃以上、特に好ましくは-50℃以上であり、通常20℃以下、好ましくは15℃以下、より好ましくは5℃以下である。バインダーのガラス転移温度を上記範囲の下限値以上にすることにより、バインダーの強度を高め、多孔膜の強度を向上させることができる。また、上限値以下とすることにより、多孔膜セパレータの柔軟性を高くすることができる。 The glass transition temperature of the binder is preferably −60 ° C. or higher, more preferably −55 ° C. or higher, particularly preferably −50 ° C. or higher, usually 20 ° C. or lower, preferably 15 ° C. or lower, more preferably 5 ° C. or lower. is there. By making the glass transition temperature of a binder more than the lower limit of the said range, the intensity | strength of a binder can be raised and the intensity | strength of a porous film can be improved. Moreover, the softness | flexibility of a porous membrane separator can be made high by setting it as an upper limit or less.
 また、バインダーとしては、粒子状のバインダーを用いることが好ましい。粒子状のバインダーを用いることにより、バインダーは非導電性粒子に対して面ではなく点で結着しうる。このため、非導電性粒子同士の間の空隙を大きくして、多孔膜の空隙率を高くできる。この場合、通常、バインダーは、非水溶性の重合体の粒子となる。 Further, it is preferable to use a particulate binder as the binder. By using a particulate binder, the binder can be bound to the non-conductive particles by points rather than surfaces. For this reason, the space | gap between nonelectroconductive particles can be enlarged and the porosity of a porous film can be made high. In this case, the binder is usually water-insoluble polymer particles.
 バインダーが粒子状である場合、その粒子状バインダーの体積平均粒径D50は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状バインダーの体積平均粒径D50が上記範囲にあることで、得られる多孔膜セパレータの強度および柔軟性を良好にできる。 When the binder is particulate, the volume average particle diameter D50 of the particulate binder is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less. When the volume average particle diameter D50 of the particulate binder is in the above range, the strength and flexibility of the obtained porous membrane separator can be improved.
 多孔膜用スラリー組成物におけるバインダーの量は、非導電性粒子100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下、特に好ましくは10重量部以下である。バインダーの量を前記範囲の下限値以上とすることにより、セパレータ基材と多孔膜との結着性を高くできる。また、上限値以下にすることにより、多孔膜セパレータによるイオン伝導性の低下を防止できる。 The amount of the binder in the slurry composition for a porous membrane is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, particularly preferably 0.5 parts by weight with respect to 100 parts by weight of the non-conductive particles. The amount is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less. By setting the amount of the binder to be equal to or higher than the lower limit of the above range, the binding property between the separator substrate and the porous film can be increased. Moreover, the fall of the ion conductivity by a porous membrane separator can be prevented by making it into an upper limit or less.
 バインダーの製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、乳化重合法などの、いずれの方法を用いてもよい。中でも、水中で重合をすることができ、そのまま多孔膜用スラリー組成物の材料として使用できるので、乳化重合法および懸濁重合法が好ましい。また、バインダーを製造する際、その反応系には分散剤を含ませることが好ましい。分散剤は通常の合成で使用されるものを用いうる。分散剤の量は任意に設定でき、モノマー総量100重量部に対して、通常0.01重量部以上10重量部以下程度である。分散剤を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。 The method for producing the binder is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method may be used. Among these, the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as a material for the slurry composition for porous membranes. Moreover, when manufacturing a binder, it is preferable to include a dispersing agent in the reaction system. As the dispersant, those used in usual synthesis can be used. The amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by weight with respect to 100 parts by weight of the total amount of monomers. By using a dispersing agent, sedimentation and aggregation of solid content in the slurry can be suppressed.
 [1.1.2.6.その他の成分]
 多孔膜用スラリー組成物は、必要に応じて、上述したもの以外の任意の成分を含んでいてもよい。このような成分としては、電池反応に影響を及ぼさないものを用いうる。これらの成分としては、例えば、イソチアゾリン系化合物、キレート化合物、ピリチオン化合物、分散剤、レベリング剤、酸化防止剤、増粘剤、消泡剤、界面活性剤が挙げられる。また、電解液分解抑制等の機能を有する電解液添加剤も挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1.1.2.6. Other ingredients]
The slurry composition for porous films may contain arbitrary components other than what was mentioned above as needed. As such components, those that do not affect the battery reaction can be used. Examples of these components include isothiazoline compounds, chelate compounds, pyrithione compounds, dispersants, leveling agents, antioxidants, thickeners, antifoaming agents, and surfactants. Moreover, the electrolyte solution additive which has functions, such as electrolytic solution decomposition suppression, is also mentioned. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 [1.1.2.7.多孔膜用スラリー組成物の状態及び製造方法]
 多孔膜用スラリー組成物は、通常、流体状となっている。多孔膜用スラリー組成物において、非導電性粒子は水に分散しており、前記の水溶性高分子化合物及び低分子化合物Xは水に溶解している。また、多孔膜用スラリー組成物では、通常、水溶性高分子化合物の一部は水中で遊離しているが、別の一部が非導電性粒子の表面に吸着することによって、非導電性粒子が水溶性高分子化合物の安定な層で覆われて、非導電性粒子の水中での分散性が向上している。このため、多孔膜用スラリー組成物は、セパレータ基材に塗布する際の塗工性が良好である。また、多孔膜用スラリー組成物がバインダーを含む場合、当該バインダーは水に溶解していてもよく、分散していてもよい。バインダーとして粒子状バインダーを用いる場合、通常は、バインダーは水に分散している。
[1.1.2.7. State and production method of slurry composition for porous membrane]
The slurry composition for a porous membrane is usually fluid. In the slurry composition for a porous membrane, the nonconductive particles are dispersed in water, and the water-soluble polymer compound and the low-molecular compound X are dissolved in water. In the slurry composition for porous membranes, a part of the water-soluble polymer compound is usually free in water, but another part is adsorbed on the surface of the non-conductive particle, thereby causing non-conductive particles. Is covered with a stable layer of a water-soluble polymer compound, and the dispersibility of non-conductive particles in water is improved. For this reason, the slurry composition for porous films has good coating properties when applied to the separator substrate. Moreover, when the slurry composition for porous films contains a binder, the binder may be dissolved in water or dispersed. When a particulate binder is used as the binder, the binder is usually dispersed in water.
 多孔膜用スラリー組成物は、非導電性粒子、水溶性高分子化合物、水、及び低分子化合物X、並びに、必要に応じてバインダー及び任意の成分を混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよい。また、任意の順番で複数工程に分けて混合してもよい。また、水溶性高分子化合物が酸性基を有する場合、水溶性高分子化合物は低分子化合物Xと塩を形成しうる場合がある。その場合、結果的に水溶性高分子化合物と低分子化合物Xとを含む多孔膜用スラリー組成物が得られるのであれば、水溶性高分子化合物と低分子化合物Xとを別々に混合する代わりに、水溶性高分子化合物と低分子化合物Xとの塩を混合してもよい。 The slurry composition for a porous membrane is obtained by mixing non-conductive particles, a water-soluble polymer compound, water, a low-molecular compound X, and a binder and optional components as necessary. Mixing may be performed by supplying the above components all at once to a mixer. Moreover, you may divide and mix in multiple steps in arbitrary orders. Further, when the water-soluble polymer compound has an acidic group, the water-soluble polymer compound may form a salt with the low-molecular compound X in some cases. In that case, if a porous slurry composition containing a water-soluble polymer compound and a low molecular compound X is obtained as a result, instead of mixing the water-soluble polymer compound and the low molecular compound X separately, A salt of the water-soluble polymer compound and the low-molecular compound X may be mixed.
 混合機としては、例えば、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いてもよい。 As the mixer, for example, a ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, or the like may be used.
 [1.1.3.塗布]
 多孔膜用スラリー組成物を用意した後で、多孔膜用スラリー組成物をセパレータ基材上に塗布する。これにより、多孔膜用スラリー組成物の膜がセパレータ基材上に形成される。
 多孔膜用スラリー組成物の塗布方法に制限は無い。塗布方法の例を挙げると、ドクターブレード法、ディップ法、ダイコート法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などが挙げられる。
 多孔膜用スラリー組成物の塗布量は、通常、所望の厚みの多孔膜が得られる範囲にする。
[1.1.3. Application]
After preparing the slurry composition for porous membranes, the slurry composition for porous membranes is applied onto the separator substrate. Thereby, the film | membrane of the slurry composition for porous films is formed on a separator base material.
There is no restriction | limiting in the application | coating method of the slurry composition for porous films. Examples of the coating method include a doctor blade method, a dipping method, a die coating method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
The application amount of the slurry composition for a porous film is usually within a range where a porous film having a desired thickness can be obtained.
 [1.1.4.乾燥]
 セパレータ基材上に多孔膜用スラリー組成物の膜を形成した後で、その膜を乾燥させる。乾燥により、多孔膜用スラリー組成物の膜から水が除去されて、多孔膜が得られる。また、乾燥の際には、低分子化合物Xの大部分は気化して多孔膜用スラリー組成物の膜から除去される。これにより、多孔膜の耐水性が顕著に向上し、当該多孔膜は水に溶け難くなる。
[1.1.4. Dry]
After forming the film | membrane of the slurry composition for porous films on a separator base material, the film | membrane is dried. By drying, water is removed from the membrane of the slurry composition for porous membrane, and a porous membrane is obtained. Further, during drying, most of the low molecular weight compound X is vaporized and removed from the membrane of the porous membrane slurry composition. Thereby, the water resistance of the porous film is remarkably improved, and the porous film is hardly dissolved in water.
 乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥、真空乾燥、赤外線、遠赤外線、電子線などのエネルギー線の照射による乾燥法などが挙げられる。 Examples of the drying method include drying with warm air, hot air, low-humidity air, and the like, vacuum drying, drying with irradiation of energy rays such as infrared rays, far infrared rays, and electron beams.
 乾燥の際の温度は、好ましくは40℃以上、より好ましくは45℃以上、特に好ましくは50℃以上であり、好ましくは90℃以下、より好ましくは80℃以下、特に好ましくは70℃以下である。乾燥温度を前記範囲の下限以上にすることにより多孔膜用スラリー組成物からの水分と低分子化合物Xを効率よく除去できる。また、上限以下とすることによりセパレータ基材の熱による収縮を抑え塗工できる。 The temperature during drying is preferably 40 ° C. or higher, more preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower, particularly preferably 70 ° C. or lower. . By setting the drying temperature to be equal to or higher than the lower limit of the above range, moisture and low molecular weight compound X from the slurry composition for porous membrane can be efficiently removed. Moreover, the shrinkage | contraction by the heat | fever of a separator base material can be suppressed by making it below an upper limit, and can be applied.
 乾燥時間は、好ましくは5秒以上、より好ましくは10秒以上、特に好ましくは15秒以上であり、好ましくは3分以下、より好ましくは2分以下、特に好ましくは1分以下である。乾燥時間を前記範囲の下限以上にすることにより、多孔膜から水を十分に除去できるので、電池の出力特性を向上させることができる。また、上限値以下とすることにより、製造効率を高めることができる。 The drying time is preferably 5 seconds or more, more preferably 10 seconds or more, particularly preferably 15 seconds or more, preferably 3 minutes or less, more preferably 2 minutes or less, and particularly preferably 1 minute or less. By setting the drying time to be equal to or more than the lower limit of the above range, water can be sufficiently removed from the porous film, so that the output characteristics of the battery can be improved. Moreover, manufacturing efficiency can be improved by setting it as an upper limit or less.
 [1.1.5.その他の操作]
 多孔膜を得る工程においては、上述した以外の任意の操作を行ってもよい。例えば、金型プレス及びロールプレス等のプレス方法によって、多孔膜に加圧処理を施してもよい。加圧処理を施すことにより、セパレータ基材と多孔膜との結着性を向上させることができる。ただし、過度に加圧処理を行うと、多孔膜の空隙率が損なわれる可能性があるため、圧力および加圧時間を適切に制御することが好ましい。また、残留水分除去のため真空乾燥やドライルーム内で乾燥することが好ましい。加熱処理することも好ましく、これによりバインダー内の熱架橋性基が架橋し、より結着力が向上する。
[1.1.5. Other operations]
In the step of obtaining the porous film, any operation other than those described above may be performed. For example, the porous film may be subjected to pressure treatment by a pressing method such as a mold press and a roll press. By performing the pressure treatment, the binding property between the separator substrate and the porous film can be improved. However, if the pressure treatment is excessively performed, the porosity of the porous film may be impaired. Therefore, it is preferable to appropriately control the pressure and the pressure time. Moreover, it is preferable to dry in vacuum drying or a dry room for residual moisture removal. Heat treatment is also preferred, whereby the thermally crosslinkable group in the binder is crosslinked, and the binding force is further improved.
 [1.1.6.多孔膜]
 上述した工程を経ることにより、セパレータ基材上に多孔膜が形成される。この多孔膜は、非導電性粒子及び水溶性高分子化合物、並びに、必要に応じてバインダー及び任意の成分を含む。非導電性粒子、水溶性高分子化合物及びバインダーの量は、通常は、多孔膜用スラリー組成物に含まれていた量と同様になる。
[1.1.6. Porous membrane]
By passing through the process mentioned above, a porous film is formed on a separator base material. This porous film contains non-conductive particles and a water-soluble polymer compound, and, if necessary, a binder and optional components. The amounts of the non-conductive particles, the water-soluble polymer compound and the binder are usually the same as the amounts contained in the porous membrane slurry composition.
 多孔膜において非導電性粒子間の空隙は孔を形成しているので、多孔膜は多孔質構造を有する。このため、多孔膜は透液性を有するので、多孔膜によりイオンの移動が妨げられることは無い。したがって、リチウムイオン二次電池において、多孔膜は電池反応を阻害しない。また、非導電性粒子は導電性を有さないので、多孔膜に絶縁性を発現させることができる。さらに、非導電性粒子を含むことにより多孔膜の剛性を高めることができるので、多孔膜セパレータの剛性も高めることが可能となり、短絡を安定して防止することが可能となる。 Since the voids between the non-conductive particles form pores in the porous film, the porous film has a porous structure. For this reason, since the porous film has liquid permeability, the movement of ions is not hindered by the porous film. Therefore, in the lithium ion secondary battery, the porous film does not inhibit the battery reaction. In addition, since the non-conductive particles do not have conductivity, the porous film can exhibit insulation. Furthermore, since the rigidity of the porous film can be increased by including non-conductive particles, the rigidity of the porous film separator can be increased, and a short circuit can be stably prevented.
 この多孔膜は、耐水性に優れ、水に対して溶け難くなっている。すなわち、多孔膜に含まれる水溶性高分子化合物が水に溶出し難くなっている。そのため、多孔膜は、セパレータ基材に対して高い結着性を有する。
 また、多孔膜は、乾燥によって水が除去されているので、水分の含有量が少ない。したがって、水によるガス発生を抑制できるので、充放電による放電容量の低下を抑制できる。このため、リチウムイオン二次電池のサイクル特性を改善することが可能である。
This porous film is excellent in water resistance and hardly dissolves in water. That is, the water-soluble polymer compound contained in the porous film is difficult to elute into water. Therefore, the porous film has a high binding property with respect to the separator substrate.
Moreover, since water is removed by drying, the porous film has a low water content. Therefore, since generation of gas due to water can be suppressed, a decrease in discharge capacity due to charge / discharge can be suppressed. For this reason, it is possible to improve the cycle characteristics of a lithium ion secondary battery.
 さらに乾燥の際に低分子化合物Xが多孔膜用スラリー組成物から除かれるので、多孔膜に残留する低分子化合物Xの濃度は、小さくなっている。具体的には、多孔膜における低分子化合物Xの濃度は、多孔膜の重量あたり、通常1000ppm以下、好ましくは500ppm以下、より好ましくは200ppm以下である。下限は、理想的には0ppmであるが、通常は1ppm以上である。 Further, since the low molecular compound X is removed from the slurry composition for the porous membrane during drying, the concentration of the low molecular compound X remaining in the porous membrane is small. Specifically, the concentration of the low molecular compound X in the porous membrane is usually 1000 ppm or less, preferably 500 ppm or less, more preferably 200 ppm or less per weight of the porous membrane. The lower limit is ideally 0 ppm, but is usually 1 ppm or more.
 多孔膜の厚みは、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。多孔膜の厚みを前記範囲の下限値以上とすることにより、多孔膜の耐熱性を高くすることができる。また上限値以下とすることにより、多孔膜によるイオン伝導性の低下を抑制することができる。 The thickness of the porous membrane is preferably 0.1 μm or more, more preferably 0.2 μm or more, particularly preferably 0.3 μm or more, preferably 20 μm or less, more preferably 15 μm or less, and particularly preferably 10 μm or less. By setting the thickness of the porous film to be equal to or more than the lower limit of the above range, the heat resistance of the porous film can be increased. Moreover, the fall of the ionic conductivity by a porous film can be suppressed by setting it as an upper limit or less.
 [1.2.接着層を得る工程]
 接着層を得る工程では、接着層用スラリー組成物を前記多孔膜上に塗布し、乾燥して接着層を得る。この際、多孔膜は高い耐水性を有するので、水を含む接着層用スラリー組成物を塗布しても、多孔膜は溶け難くなっている。
[1.2. Step of obtaining an adhesive layer]
In the step of obtaining the adhesive layer, the adhesive layer slurry composition is applied onto the porous film and dried to obtain the adhesive layer. At this time, since the porous film has high water resistance, the porous film is hardly dissolved even when the slurry composition for adhesive layer containing water is applied.
 [1.2.1.接着層用スラリー組成物]
 接着層用スラリー組成物は、粒子状重合体及び水を含む。また、接着層用スラリー組成物は、バインダーを含んでいてもよい。
[1.2.1. Slurry composition for adhesive layer]
The slurry composition for an adhesive layer contains a particulate polymer and water. Moreover, the slurry composition for adhesive layers may contain the binder.
 [1.2.1.1.粒子状重合体]
 粒子状重合体としては、通常10℃以上、好ましくは30℃以上、より好ましくは40℃以上、また、通常110℃以下、好ましくは100℃以下、より好ましくは90℃以下のガラス転移温度を有する粒子状の重合体を用いる。粒子状重合体のガラス転移温度が前記範囲の下限値以上であることにより、多孔膜セパレータの保存時、運搬時及び取り扱い時において粒子状重合体の軟化を抑制して、ブロッキングを防止できる。また、ガラス転移温度が高い粒子状重合体を用いることにより、接着層の耐熱性が向上する。そのため、リチウムイオン二次電池の使用時に当該電池が高温となっても多孔膜セパレータの剥離を防止でき、電池の安全性を高めることができる。また、上限値以下であることにより、多孔膜セパレータを電極に貼り合せる際に、熱により粒子状重合体を容易に軟化させることができる。また、セパレータ基材等の電池を構成する要素を損なわない低温において接着層の熱融着が可能となる。したがって、熱プレスによる多孔膜セパレータと電極との接着を容易に行うことが可能となる。
[1.2.1.1. Particulate polymer]
The particulate polymer usually has a glass transition temperature of 10 ° C. or higher, preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and usually 110 ° C. or lower, preferably 100 ° C. or lower, more preferably 90 ° C. or lower. A particulate polymer is used. When the glass transition temperature of the particulate polymer is equal to or higher than the lower limit of the above range, the softening of the particulate polymer can be suppressed during storage, transportation and handling of the porous membrane separator, and blocking can be prevented. Moreover, the heat resistance of a contact bonding layer improves by using a particulate polymer with a high glass transition temperature. Therefore, even if the battery becomes high temperature when the lithium ion secondary battery is used, peeling of the porous membrane separator can be prevented, and the safety of the battery can be improved. Moreover, when it is below the upper limit, the particulate polymer can be easily softened by heat when the porous membrane separator is bonded to the electrode. In addition, the adhesive layer can be heat-sealed at a low temperature without damaging the elements constituting the battery such as the separator substrate. Therefore, the porous membrane separator and the electrode can be easily bonded by hot pressing.
 粒子状重合体は、前記の範囲にガラス転移温度を有する様々な重合体を用いうる。
 中でも、粒子状重合体としては、アクリル酸エステル単量体を重合して形成される構造を有する構造単位(以下、適宜「アクリル酸エステル単量体単位」ということがある。)を含む重合体が好ましい。
 アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステルが挙げられる。これらは1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
As the particulate polymer, various polymers having a glass transition temperature in the above range can be used.
Among them, as the particulate polymer, a polymer containing a structural unit having a structure formed by polymerizing an acrylate monomer (hereinafter sometimes referred to as “acrylate ester monomer unit” as appropriate). Is preferred.
Examples of the acrylate monomer include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl. Examples include acrylic acid alkyl esters such as acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, and stearyl acrylate. These may use only 1 type and may use it combining 2 or more types by arbitrary ratios.
 粒子状重合体の単量体の総量におけるアクリル酸エステル単量体の比率は、通常1重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上であり、通常95重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。アクリル酸エステル単量体の比率を前記範囲の下限値以上とすることにより、接着層と多孔膜との結着性を高めることができる。また、上限値以下とすることにより、接着層の電解液に対する膨潤性を抑制して、多孔膜セパレータのイオン伝導度を高くできる。ここで、粒子状重合体の単量体の総量におけるアクリル酸エステル単量体の比率は、通常、粒子状重合体におけるアクリル酸エステル単量体単位の割合と一致する。 The ratio of the acrylate monomer in the total amount of the monomer of the particulate polymer is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, and usually 95% by weight or less. Preferably it is 90 weight% or less, More preferably, it is 85 weight% or less. By setting the ratio of the acrylate monomer to be equal to or higher than the lower limit of the above range, the binding property between the adhesive layer and the porous film can be enhanced. Moreover, the ionic conductivity of a porous membrane separator can be made high by suppressing the swelling property with respect to the electrolyte solution of an adhesive layer by setting it as an upper limit or less. Here, the ratio of the acrylate monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the acrylate monomer unit in the particulate polymer.
 また、粒子状重合体は、エチレン性不飽和カルボン酸単量体を重合して形成される構造を有する構造単位(以下、適宜「エチレン性不飽和カルボン酸単量体単位」ということがある。)を含む重合体が好ましい。
 エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸、エチレン性不飽和ジカルボン酸及びその酸無水物などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。粒子状重合体の水に対する分散性がより高めることができるからである。これらは1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Further, the particulate polymer may be referred to as a structural unit having a structure formed by polymerizing an ethylenically unsaturated carboxylic acid monomer (hereinafter, referred to as “ethylenically unsaturated carboxylic acid monomer unit” as appropriate). ) Is preferred.
Examples of the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof. Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like. Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of the acid anhydride of the ethylenically unsaturated dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like. Among these, ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. This is because the dispersibility of the particulate polymer in water can be further improved. These may use only 1 type and may use it combining 2 or more types by arbitrary ratios.
 粒子状重合体の単量体の総量におけるエチレン性不飽和カルボン酸単量体の比率は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、通常95重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。エチレン性不飽和カルボン酸単量体の比率を前記範囲の下限値以上とすることにより、多孔膜セパレータの耐ブロッキング性を高めることができる。また、上限値以下とすることにより、多孔膜セパレータと電極との接着強度を高めることができる。ここで、粒子状重合体の単量体の総量におけるエチレン性不飽和カルボン酸単量体の比率は、通常、粒子状重合体におけるエチレン性不飽和カルボン酸単量体単位の割合と一致する。 The ratio of the ethylenically unsaturated carboxylic acid monomer in the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. In general, it is 95% by weight or less, preferably 90% by weight or less, more preferably 85% by weight or less. By making the ratio of the ethylenically unsaturated carboxylic acid monomer equal to or higher than the lower limit of the above range, the blocking resistance of the porous membrane separator can be enhanced. Moreover, the adhesive strength of a porous membrane separator and an electrode can be raised by setting it as below an upper limit. Here, the ratio of the ethylenically unsaturated carboxylic acid monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the ethylenically unsaturated carboxylic acid monomer unit in the particulate polymer.
 さらに、粒子状重合体としては、芳香族ビニル単量体を重合して形成される構造を有する構造単位(以下、適宜「芳香族ビニル単量体単位」ということがある。)を含む重合体が好ましい。
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、及びジビニルベンゼンが挙げられる。中でも、スチレンが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Further, as the particulate polymer, a polymer containing a structural unit having a structure formed by polymerizing an aromatic vinyl monomer (hereinafter sometimes referred to as “aromatic vinyl monomer unit” as appropriate). Is preferred.
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyltoluene, and divinylbenzene. Of these, styrene is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 粒子状重合体の単量体の総量における芳香族ビニル単量体の比率は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、通常95重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。芳香族ビニル単量体の比率を前記範囲の下限値以上とすることにより、多孔膜セパレータの耐ブロッキング性を高めることができる。また、上限値以下とすることにより、多孔膜セパレータと電極との接着強度を高めることができる。ここで、粒子状重合体の単量体の総量における芳香族ビニル単量体の比率は、通常、粒子状重合体における芳香族ビニル単量体単位の割合と一致する。 The ratio of the aromatic vinyl monomer to the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, usually 95%. % By weight or less, preferably 90% by weight or less, more preferably 85% by weight or less. By making the ratio of the aromatic vinyl monomer equal to or higher than the lower limit of the above range, the blocking resistance of the porous membrane separator can be enhanced. Moreover, the adhesive strength of a porous membrane separator and an electrode can be raised by setting it as below an upper limit. Here, the ratio of the aromatic vinyl monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the aromatic vinyl monomer unit in the particulate polymer.
 また、粒子状重合体としては、(メタ)アクリロニトリル単量体を重合して形成される構造を有する構造単位(以下、適宜「(メタ)アクリロニトリル単量体単位」ということがある。)を含む重合体が好ましい。
 (メタ)アクリロニトリル単量体としては、例えば、アクリロニトリル及びメタクリロニトリルが挙げられる。(メタ)アクリロニトリル単量体は、アクリロニトリルだけを用いてもよく、メタクリロニトリルだけを用いてもよく、アクリロニトリル及びメタクリロニトリルの両方を任意の比率で組み合わせて用いてもよい。
The particulate polymer includes a structural unit having a structure formed by polymerizing a (meth) acrylonitrile monomer (hereinafter sometimes referred to as “(meth) acrylonitrile monomer unit” as appropriate). Polymers are preferred.
Examples of the (meth) acrylonitrile monomer include acrylonitrile and methacrylonitrile. As the (meth) acrylonitrile monomer, only acrylonitrile may be used, methacrylonitrile alone may be used, or both acrylonitrile and methacrylonitrile may be used in combination at any ratio.
 粒子状重合体の単量体の総量における(メタ)アクリロニトリル単量体の比率は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、通常95重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。(メタ)アクリロニトリル単量体の比率を前記範囲の下限値以上とすることにより、多孔膜セパレータと電極との接着強度を高めることができる。また、上限値以下とすることにより、接着層と多孔膜との結着性を高めることができる。ここで、粒子状重合体の単量体の総量における(メタ)アクリロニトリル単量体の比率は、通常、粒子状重合体における(メタ)アクリロニトリル単量体単位の割合と一致する。 The ratio of the (meth) acrylonitrile monomer in the total amount of the monomer of the particulate polymer is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. It is 95 weight% or less, Preferably it is 90 weight% or less, More preferably, it is 85 weight% or less. By setting the ratio of the (meth) acrylonitrile monomer to the lower limit value or more of the above range, the adhesive strength between the porous membrane separator and the electrode can be increased. Moreover, the binding property of a contact bonding layer and a porous film can be improved by setting it as an upper limit or less. Here, the ratio of the (meth) acrylonitrile monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the (meth) acrylonitrile monomer unit in the particulate polymer.
 また、粒子状重合体としては、架橋性基を有するものを用いることが好ましい。そこで、粒子状重合体の単量体としては、架橋性単量体を用いることが好ましい。ここで架橋性単量体とは、加熱により、重合中又は重合後に架橋構造を形成しうる単量体を表す。
 架橋性単量体としては、例えば、熱架橋性を有する単量体が挙げられる。より具体的には、例えば、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体;1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
Moreover, it is preferable to use what has a crosslinkable group as a particulate polymer. Therefore, it is preferable to use a crosslinkable monomer as the monomer of the particulate polymer. Here, the crosslinkable monomer represents a monomer capable of forming a crosslinked structure during or after polymerization by heating.
Examples of the crosslinkable monomer include a monomer having thermal crosslinkability. More specifically, for example, a monofunctional monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a polyfunctional monomer having two or more olefinic double bonds per molecule; A functional monomer is mentioned.
 熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。 Examples of thermally crosslinkable groups include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof. Among these, an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。 Examples of the crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl. Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of 3-cyclohexene carboxylic acid, glycidyl ester of 4-methyl-3-cyclohexene carboxylic acid Examples include glycidyl esters of acids.
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。 Examples of the crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。 Examples of the crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。 Examples of the crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
 1分子あたり2つ以上のオレフィン性二重結合を有する架橋性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。 Examples of crosslinkable monomers having two or more olefinic double bonds per molecule include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth). Acrylate, tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane Diallyl ethers, allyl or vinyl ethers of other polyfunctional alcohols, triallylamine, methylenebisacrylamide, and divinylbenzene It is.
 これらの例示物の中でも、架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましい。
 また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these examples, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable as the crosslinkable monomer.
Moreover, a crosslinking | crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 粒子状重合体の単量体の総量における架橋性単量体の比率は、通常0.01重量%以上、好ましくは0.05重量%以上であり、通常5重量%以下、好ましくは3重量%以下、より好ましくは2重量%以下である。架橋性単量体の比率を前記範囲の下限値以上とすることにより、多孔膜の強度を高めることができる。また、多孔膜の電解液による膨潤を抑制することができる。また、上限値以下とすることにより、多孔膜の柔軟性を高くできる。ここで、粒子状重合体の単量体の総量における架橋性単量体の比率は、通常、粒子状重合体における架橋性単量体単位の割合と一致する。 The ratio of the crosslinkable monomer in the total amount of the monomer of the particulate polymer is usually 0.01% by weight or more, preferably 0.05% by weight or more, usually 5% by weight or less, preferably 3% by weight. Hereinafter, it is more preferably 2% by weight or less. By setting the ratio of the crosslinkable monomer to the lower limit value or more of the above range, the strength of the porous film can be increased. In addition, swelling of the porous membrane due to the electrolytic solution can be suppressed. Moreover, the softness | flexibility of a porous film can be made high by setting it as an upper limit or less. Here, the ratio of the crosslinkable monomer in the total amount of the monomer of the particulate polymer usually coincides with the ratio of the crosslinkable monomer unit in the particulate polymer.
 粒子状重合体の体積平均粒径D50は、好ましくは10nm以上、より好ましくは50nm以上、特に好ましくは100nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下、特に好ましくは500nm以下である。粒子状重合体の体積平均粒径D50が上記範囲の下限値以上であることにより、多孔膜中の粒子充填率が高くなることを抑制できるため、多孔膜中のイオン伝導性が低下することを抑制でき、優れたサイクル特性を実現できる。また、上限値以下であることによりスラリーの分散状態の制御がしやすくなるため、均質な所定厚みの多孔膜の製造が容易になる。 The volume average particle diameter D50 of the particulate polymer is preferably 10 nm or more, more preferably 50 nm or more, particularly preferably 100 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, and particularly preferably 500 nm or less. Since the volume average particle diameter D50 of the particulate polymer is not less than the lower limit of the above range, it is possible to suppress an increase in the particle filling rate in the porous film, and thus the ionic conductivity in the porous film is reduced. Can be suppressed, and excellent cycle characteristics can be realized. Moreover, since it becomes easy to control the dispersion state of a slurry because it is below an upper limit, manufacture of the porous film of uniform predetermined thickness becomes easy.
 [1.2.1.2.バインダー]
 接着層用スラリー組成物は、バインダーを含んでいてもよい。バインダーを含むことにより、接着層の多孔膜に対する結着性を高めることができる。
[1.2.1.2. binder]
The slurry composition for adhesive layers may contain a binder. By including the binder, the binding property of the adhesive layer to the porous film can be enhanced.
 バインダーとしては、例えば、多孔膜用スラリー組成物の項で説明したバインダーと同様のものを用いうる。ただし、ガラス転移温度が粒子状重合体の項で説明した温度範囲に収まる粒子状の重合体は、バインダーではなく、粒子状重合体として取り扱うものとする。 As the binder, for example, the same binder as described in the section of the slurry composition for porous film can be used. However, the particulate polymer whose glass transition temperature falls within the temperature range described in the section of the particulate polymer is handled not as a binder but as a particulate polymer.
 接着層用スラリー組成物におけるバインダーの量は、粒子状重合体100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上、特に好ましくは1重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下、特に好ましくは10重量部以下である。バインダーの量を前記範囲の下限値以上とすることにより、粒子状重合体同士を結着力が向上し、粒子状重合体の剥離を防ぐことができる。また、上限値以下にすることにより、接着層のイオン伝導性が低下することを抑制でき、優れたサイクル特性を実現できる。 The amount of the binder in the slurry composition for the adhesive layer is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and particularly preferably 1 part by weight or more with respect to 100 parts by weight of the particulate polymer. Yes, preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and particularly preferably 10 parts by weight or less. By setting the amount of the binder to be equal to or more than the lower limit of the above range, the binding force between the particulate polymers can be improved, and the separation of the particulate polymers can be prevented. Moreover, it can suppress that the ionic conductivity of an contact bonding layer falls by setting it as an upper limit or less, and can implement | achieve the outstanding cycling characteristics.
 [1.2.1.3.水]
 接着層用スラリー組成物における水の量は、粒子状重合体及び必要に応じて用いられるバインダーの種類に応じ、接着層用スラリー組成物の粘度が塗布に好適な範囲になるように調整することが好ましい。具体的には、前記の粒子状重合体並びに必要に応じて用いられるバインダー及び任意の成分を合わせた固形分の濃度が、好ましくは10重量%以上、より好ましくは20重量%以上、また、好ましくは60重量%以下、より好ましくは50重量%以下となる量の水を用いる。
[1.2.1.3. water]
The amount of water in the slurry composition for the adhesive layer should be adjusted so that the viscosity of the slurry composition for the adhesive layer is in a range suitable for coating depending on the type of the particulate polymer and the binder used as necessary. Is preferred. Specifically, the solid content of the particulate polymer and the binder and optional components used as necessary is preferably 10% by weight or more, more preferably 20% by weight or more, and preferably Is used in an amount of 60% by weight or less, more preferably 50% by weight or less.
 [1.2.1.4.その他の成分]
 接着層用スラリー組成物は、必要に応じて、上述したもの以外の任意の成分を含んでいてもよい。このような成分としては、電池反応に影響を及ぼさないものを用いうる。これらの成分としては、例えば、粘度調整、沈降防止のための水溶性高分子、有機セパレータへの濡れ性向上のための濡れ剤などが挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1.2.1.4. Other ingredients]
The slurry composition for adhesive layers may contain arbitrary components other than what was mentioned above as needed. As such components, those that do not affect the battery reaction can be used. Examples of these components include water-soluble polymers for adjusting viscosity and preventing sedimentation, and wetting agents for improving wettability to organic separators. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 [1.2.1.5.接着層用スラリー組成物の状態及び製造方法]
 接着層用スラリー組成物は、通常、流体状となっている。接着層用スラリー組成物において、粒子状重合体は水に分散している。また、バインダーは、水に分散していてもよく、溶解していてもよい。バインダーとして粒子状バインダーを用いる場合、通常は、バインダーは水に分散している。
[1.2.1.5. State and production method of slurry composition for adhesive layer]
The slurry composition for an adhesive layer is usually fluid. In the slurry composition for an adhesive layer, the particulate polymer is dispersed in water. Further, the binder may be dispersed in water or dissolved. When a particulate binder is used as the binder, the binder is usually dispersed in water.
 接着層用スラリー組成物の製造方法は、特に限定はされない。通常は、上述した粒子状重合体及び水、並びに、必要に応じて用いられるバインダー及び任意の成分を混合して得られる。混合順序には特に制限は無い。また、混合方法にも特に制限は無い。 The method for producing the slurry composition for the adhesive layer is not particularly limited. Usually, it is obtained by mixing the above-mentioned particulate polymer and water, and a binder and optional components used as necessary. There is no particular limitation on the mixing order. There is no particular limitation on the mixing method.
 [1.2.2.塗布]
 接着層用スラリー組成物を用意した後で、接着層用スラリー組成物を多孔膜上に塗布する。これにより、接着層用スラリー組成物の膜が多孔膜上に形成される。
 接着層用スラリー組成物の塗布方法に制限は無い。塗布方法の例を挙げると、ドクターブレード法、ディップ法、ダイコート法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などが挙げられる。
 接着層用スラリー組成物の塗布量は、通常、所望の厚みの接着層が得られる範囲にする。
[1.2.2. Application]
After preparing the slurry composition for adhesive layers, the slurry composition for adhesive layers is apply | coated on a porous film. Thereby, the film | membrane of the slurry composition for contact bonding layers is formed on a porous film.
There is no restriction | limiting in the application method of the slurry composition for contact bonding layers. Examples of the coating method include a doctor blade method, a dipping method, a die coating method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
The application amount of the slurry composition for the adhesive layer is usually in a range where an adhesive layer having a desired thickness can be obtained.
 [1.2.3.乾燥]
 多孔膜上に接着層用スラリー組成物の膜を形成した後で、その膜を乾燥させる。乾燥により、接着層用スラリー組成物の膜から水が除去されて、接着層が得られる。
[1.2.3. Dry]
After forming the film | membrane of the slurry composition for contact bonding layers on a porous film, the film | membrane is dried. By drying, water is removed from the film | membrane of the slurry composition for contact bonding layers, and an contact bonding layer is obtained.
 乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥、真空乾燥、赤外線、遠赤外線、電子線などのエネルギー線の照射による乾燥法などが挙げられる。 Examples of the drying method include drying with warm air, hot air, low-humidity air, and the like, vacuum drying, drying with irradiation of energy rays such as infrared rays, far infrared rays, and electron beams.
 乾燥の際の温度は、好ましくは40℃以上、より好ましくは45℃以上、特に好ましくは50℃以上であり、好ましくは80℃以下、より好ましくは75℃以下、特に好ましくは70℃以下である。乾燥温度を前記範囲の下限以上にすることにより接着層用スラリー組成物からの水分を効率よく除去できる。また、上限以下とすることによりセパレータ基材の熱による収縮を抑え塗工できる。 The temperature during drying is preferably 40 ° C or higher, more preferably 45 ° C or higher, particularly preferably 50 ° C or higher, preferably 80 ° C or lower, more preferably 75 ° C or lower, particularly preferably 70 ° C or lower. . By making the drying temperature equal to or higher than the lower limit of the above range, moisture from the slurry composition for the adhesive layer can be efficiently removed. Moreover, the shrinkage | contraction by the heat | fever of a separator base material can be suppressed by making it below an upper limit, and can be applied.
 乾燥時間は、好ましくは5秒以上、より好ましくは10秒以上、特に好ましくは15秒以上であり、好ましくは3分以下、より好ましくは2分以下、特に好ましくは1分以下である。乾燥時間を前記範囲の下限以上にすることにより、接着層用スラリー組成物からの水分を十分除去できる。また、上限値以下とすることにより、セパレータ基材の熱による収縮を抑えることができる。 The drying time is preferably 5 seconds or more, more preferably 10 seconds or more, particularly preferably 15 seconds or more, preferably 3 minutes or less, more preferably 2 minutes or less, and particularly preferably 1 minute or less. By making drying time more than the minimum of the said range, the water | moisture content from the slurry composition for contact bonding layers can fully be removed. Moreover, the shrinkage | contraction by the heat | fever of a separator base material can be suppressed by setting it as an upper limit or less.
 [1.2.4.その他の操作]
 接着層を得る工程においては、上述した以外の任意の操作を行ってもよい。例えば、残留水分除去のため真空乾燥やドライルーム内で乾燥処理を行ってよいし、加熱処理を行ってもよい。
[1.2.4. Other operations]
In the step of obtaining the adhesive layer, any operation other than those described above may be performed. For example, in order to remove residual moisture, a drying process may be performed in vacuum drying or a dry room, or a heat treatment may be performed.
 [1.2.5.接着層]
 上述した工程を経ることにより、多孔膜上に接着層が形成され、多孔膜セパレータが得られる。この接着層は、粒子状重合体並びに必要に応じてバインダー及び任意の成分を含む。粒子状重合体及びバインダーの量は、通常は、接着層用スラリー組成物に含まれていた量と同様になる。
[1.2.5. Adhesive layer]
By passing through the process mentioned above, an adhesion layer is formed on a porous membrane and a porous membrane separator is obtained. This adhesive layer contains a particulate polymer and, if necessary, a binder and optional components. The amount of the particulate polymer and the binder is usually the same as the amount contained in the adhesive layer slurry composition.
 接着層において粒子状重合体間の空隙は孔を形成しているので、接着層は多孔質構造を有する。このため、接着層は透液性を有するので、接着層によりイオンの移動が妨げられることは無い。したがって、リチウムイオン二次電池において、接着層によっては電池反応は阻害されない。また、粒子状重合体は導電性を有さないので、接着層に絶縁性を発現させることができる。 Since the voids between the particulate polymers form pores in the adhesive layer, the adhesive layer has a porous structure. For this reason, since the adhesive layer has liquid permeability, the movement of ions is not hindered by the adhesive layer. Therefore, in the lithium ion secondary battery, the battery reaction is not inhibited by the adhesive layer. In addition, since the particulate polymer does not have conductivity, the adhesive layer can exhibit insulation.
 このような接着層においては、加熱することにより粒子状重合体が軟化しうる。そのため、加熱しながら加圧接着することにより、接着層は電極等の他の部材に対して良好に接着しうる。したがって、接着層を備える多孔膜セパレータは、高い接着強度で電極に対して接着可能となっている。また、粒子状重合体が高いガラス転移温度を有するため、接着層は高い耐熱性を有する。そのため、リチウムイオン二次電池の充放電に伴い高温となった場合でも、多孔膜セパレータは電極から剥がれ難くなっている。したがって、短絡をより安定して防止できるので、安全性を向上させることが可能である。 In such an adhesive layer, the particulate polymer can be softened by heating. Therefore, the adhesive layer can be favorably adhered to other members such as an electrode by performing pressure adhesion while heating. Therefore, the porous membrane separator provided with the adhesive layer can be adhered to the electrode with high adhesive strength. Moreover, since the particulate polymer has a high glass transition temperature, the adhesive layer has high heat resistance. Therefore, even when the temperature of the lithium ion secondary battery becomes high due to charging / discharging, the porous membrane separator is difficult to peel off from the electrode. Therefore, short circuit can be prevented more stably, and safety can be improved.
 接着層の厚みは、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上であり、好ましくは8.0μm以下、より好ましくは5.0μm以下、特に好ましくは3.0μm以下である。接着層の厚みを前記範囲の下限値以上とすることにより多孔膜セパレータと電極との密着強度を高くできる。また、上限値以下とすることにより、多孔膜セパレータのイオン伝導度を高くできる。 The thickness of the adhesive layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, particularly preferably 0.3 μm or more, preferably 8.0 μm or less, more preferably 5.0 μm or less, particularly preferably 3 0.0 μm or less. By setting the thickness of the adhesive layer to be equal to or more than the lower limit of the above range, the adhesion strength between the porous membrane separator and the electrode can be increased. Moreover, the ion conductivity of a porous membrane separator can be made high by setting it as an upper limit or less.
 [1.3.その他の工程]
 本発明の多孔膜セパレータの製造方法では、所望の多孔膜セパレータが得られる限り、上述した以外の工程を行ってもよい。例えば、残留水分除去のため真空乾燥やドライルーム内で乾燥処理を行ってよいし、加熱処理を行ってもよい。
[1.3. Other processes]
In the method for producing a porous membrane separator of the present invention, steps other than those described above may be performed as long as a desired porous membrane separator is obtained. For example, in order to remove residual moisture, a drying process may be performed in vacuum drying or a dry room, or a heat treatment may be performed.
[2.多孔膜セパレータ]
 本発明の多孔膜セパレータの製造方法で製造される多孔膜セパレータは、セパレータ基材、多孔膜及び接着層をこの順に備える。これらのセパレータ基材、多孔膜及び接着層には電解液が浸透できるので、電池特性に対して多孔膜セパレータが悪影響を及ぼすことは無い。また、多孔膜が接着層用スラリー組成物に溶け出し難いため、多孔膜の強度及び結着性は良好である。したがって、多孔膜セパレータの電極に対する接着強度を高くできるので、リチウムイオン二次電池の安全性を向上させることができる。さらに、接着層に含まれる粒子状重合体は、多孔膜セパレータの通常の使用環境において軟化し難くなっている。そのため、多孔膜セパレータは優れた耐ブロッキング性を有する。
[2. Porous membrane separator]
The porous membrane separator produced by the method for producing a porous membrane separator of the present invention comprises a separator substrate, a porous membrane, and an adhesive layer in this order. Since the electrolytic solution can permeate into these separator base material, porous membrane and adhesive layer, the porous membrane separator does not adversely affect the battery characteristics. Moreover, since the porous film is difficult to dissolve into the slurry composition for the adhesive layer, the strength and binding property of the porous film are good. Therefore, since the adhesive strength of the porous membrane separator to the electrode can be increased, the safety of the lithium ion secondary battery can be improved. Furthermore, the particulate polymer contained in the adhesive layer is difficult to soften in the normal use environment of the porous membrane separator. Therefore, the porous membrane separator has excellent blocking resistance.
 多孔膜セパレータは、セパレータ基材、多孔膜及び接着層以外の構成要素を備えていてもよい。
 また、多孔膜及び接着層は、それぞれ、セパレータ基材の片面だけに設けてもよく、両面に設けてもよい。
The porous membrane separator may include components other than the separator substrate, the porous membrane, and the adhesive layer.
In addition, the porous film and the adhesive layer may be provided on only one side of the separator substrate or on both sides.
[3.積層体の製造方法]
 本発明のリチウムイオン二次電池用積層体の製造方法は、電極と、本発明の多孔膜セパレータの製造方法で製造された多孔膜セパレータとを加圧接着することを含む。
[3. Manufacturing method of laminate]
The manufacturing method of the laminated body for lithium ion secondary batteries of this invention includes pressure-bonding an electrode and the porous membrane separator manufactured with the manufacturing method of the porous membrane separator of this invention.
 [3.1.電極]
 電極は、通常、集電体と、集電体上に設けられた電極活物質層とを備える。
[3.1. electrode]
The electrode usually includes a current collector and an electrode active material layer provided on the current collector.
 [3.1.1.集電体]
 集電体は、電気導電性を有し且つ電気化学的に耐久性のある材料を用いうる。中でも、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。その中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。
[3.1.1. Current collector]
As the current collector, a material having electrical conductivity and electrochemical durability can be used. Among these, metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable from the viewpoint of heat resistance. Among them, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
 集電体の形状は特に制限されないが、例えば、厚さ0.001mm以上0.5mm以下のシート状のものが好ましい。
 集電体は、電極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用されうる。
 また、電極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
The shape of the current collector is not particularly limited, but for example, a sheet shape having a thickness of 0.001 mm to 0.5 mm is preferable.
In order to increase the adhesive strength with the electrode active material layer, the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like can be used.
Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity with the electrode active material layer.
 [3.1.2.電極活物質層]
 電極活物質層は、電極活物質を含む。以下の説明においては、適宜、電極活物質の中でも特に正極用の電極活物質のことを「正極活物質」、負極用の電極活物質のことを「負極活物質」と呼ぶことがある。
[3.1.2. Electrode active material layer]
The electrode active material layer includes an electrode active material. In the following description, among the electrode active materials, the electrode active material for the positive electrode may be referred to as “positive electrode active material”, and the electrode active material for the negative electrode may be referred to as “negative electrode active material”.
 電極活物質は、電解液中で電位をかけることにより可逆的にリチウムイオンを挿入放出できるものを用いうる。電極活物質は、無機化合物を用いてもよく、有機化合物を用いてもよい。 As the electrode active material, a material capable of reversibly inserting and releasing lithium ions by applying a potential in an electrolytic solution can be used. As the electrode active material, an inorganic compound or an organic compound may be used.
 正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、例えば、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVO等のリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13等の遷移金属酸化物などが挙げられる。一方、有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体が挙げられる。 The positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds. Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides. Examples of the transition metal include Fe, Co, Ni, and Mn. Specific examples of inorganic compounds used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. Can be mentioned. On the other hand, examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
 さらに、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
 また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
 これらの正極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Furthermore, you may use the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
Alternatively, for example, a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material. Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
Furthermore, you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
These positive electrode active materials may be used alone or in combination of two or more at any ratio.
 正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択される。負荷特性、サイクル特性などの電池特性の向上の観点から、正極活物質の体積平均粒子径D50は、通常0.1μm以上、好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下である。正極活物質の体積平均粒子径D50がこの範囲であると、充放電容量が大きい電池を得ることができ、かつ活物質層用スラリー組成物および電極を製造する際の取扱いが容易である。 The particle size of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, the volume average particle diameter D50 of the positive electrode active material is usually 0.1 μm or more, preferably 1 μm or more, and usually 50 μm or less, preferably 20 μm or less. When the volume average particle diameter D50 of the positive electrode active material is within this range, a battery having a large charge / discharge capacity can be obtained, and handling in producing the slurry composition for an active material layer and the electrode is easy.
 負極活物質は、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属又は合金の酸化物;前記金属又は合金の硫酸塩;なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等を使用してもよい。さらに、電極活物質は、機械的改質法により表面に導電材を付着させたものも使用してもよい。これらの負極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene. Further, metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitride; silicon and the like may be used. Further, an electrode active material having a conductive material attached to the surface by a mechanical modification method may be used. These negative electrode active materials may be used alone or in combination of two or more at any ratio.
 負極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択される。初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、負極活物質の体積平均粒子径D50は、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。 The particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, the volume average particle diameter D50 of the negative electrode active material is usually 1 μm or more, preferably 15 μm or more, and usually 50 μm or less, preferably 30 μm or less. .
 電極活物質層は、電極活物質の他に、バインダーを含むことが好ましい。バインダーを含むことにより、電極中の電極活物質層の結着性が向上し、電極の撒回時等の工程上においてかかる機械的な力に対する強度が上がる。また、電極中の電極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。 The electrode active material layer preferably contains a binder in addition to the electrode active material. By including the binder, the binding property of the electrode active material layer in the electrode is improved, and the strength against the mechanical force is increased in the process of winding the electrode. In addition, since the electrode active material layer in the electrode is difficult to be detached, the risk of a short circuit due to the desorbed material is reduced.
 電極活物質層用のバインダーとしては様々な重合体成分を用いうる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いてもよい。また、多孔膜セパレータの多孔膜又は接着層の項で説明したものと同様のバインダーを用いてもよい。また、バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the binder for the electrode active material layer, various polymer components can be used. For example, polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like may be used. Moreover, you may use the binder similar to what was demonstrated by the term of the porous film of the porous film separator or the contact bonding layer. Moreover, a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 電極活物質層におけるバインダーの量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。バインダーの量が前記範囲であることにより、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐことができる。 The amount of the binder in the electrode active material layer is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the electrode active material. The amount is preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less. When the amount of the binder is within the above range, it is possible to prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction.
 電極活物質層には、本発明の効果を著しく損なわない限り、電極活物質及びバインダー以外にも、任意の成分が含まれていてもよい。その例を挙げると、導電材、補強材などが挙げられる。なお、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The electrode active material layer may contain any component other than the electrode active material and the binder as long as the effects of the present invention are not significantly impaired. Examples thereof include a conductive material and a reinforcing material. In addition, arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導電材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボン;黒鉛等の炭素粉末;各種金属のファイバー及び箔;などが挙げられる。導電材を用いることにより、電極活物質同士の電気的接触を向上させることができ、特にリチウム二次電池に用いる場合には放電特性を改善できる。 Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube; carbon powder such as graphite; fiber and foil of various metals; . By using a conductive material, electrical contact between electrode active materials can be improved, and discharge characteristics can be improved particularly when used in a lithium secondary battery.
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。 As the reinforcing material, for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used.
 導電材及び補強材の使用量は、電極活物質100重量部に対して、それぞれ、通常0重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。 The amount of the conductive material and the reinforcing material used is usually 0 part by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the electrode active material. is there.
 電極活物質層の厚みは、正極及び負極のいずれも、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。 The thickness of the electrode active material layer for both the positive electrode and the negative electrode is usually 5 μm or more, preferably 10 μm or more, and usually 300 μm or less, preferably 250 μm or less.
 電極活物質層の製造方法は特に制限されない。電極活物質層は、例えば、電極活物質及び溶媒、並びに、必要に応じてバインダー及び任意の成分を含むスラリーを集電体上に塗布し、乾燥させて製造しうる。溶媒としては、水及び有機溶媒のいずれも使用しうる。 The method for producing the electrode active material layer is not particularly limited. The electrode active material layer can be produced, for example, by applying a slurry containing an electrode active material and a solvent, and, if necessary, a binder and optional components on a current collector and drying it. As the solvent, either water or an organic solvent can be used.
 [3.2.加圧接着]
 電極と多孔膜セパレータとを加圧接着することにより、リチウム二次電池用積層体が得られる。電極が電極活物質層を備える場合、通常は、電極の電極活物質層と多孔膜セパレータの接着層とが向き合うように電極と多孔膜セパレータとを重ねて、接着を行う。
[3.2. Pressure bonding]
A laminate for a lithium secondary battery is obtained by pressure-bonding the electrode and the porous membrane separator. When the electrode includes an electrode active material layer, the electrode and the porous membrane separator are usually stacked and bonded so that the electrode active material layer of the electrode and the adhesive layer of the porous membrane separator face each other.
 接着の際に加える圧力の大きさは、通常0.01MPa以上、好ましくは0.05MPa以上、より好ましくは0.1MPa以上であり、通常2MPa以下、好ましくは1.5MPa以下、より好ましくは1MPa以下である。圧力の大きさを前記範囲の下限値以上とすることにより極板と接着層とを十分に接着できる。また、上限値以下とすることにより接着の際に多孔膜セパレータの破膜を防ぐことができる。 The magnitude of the pressure applied during bonding is usually 0.01 MPa or more, preferably 0.05 MPa or more, more preferably 0.1 MPa or more, and usually 2 MPa or less, preferably 1.5 MPa or less, more preferably 1 MPa or less. It is. By making the magnitude of the pressure equal to or greater than the lower limit of the above range, the electrode plate and the adhesive layer can be sufficiently bonded. Moreover, the film breakage of a porous membrane separator can be prevented at the time of adhesion | attachment by setting it as below an upper limit.
 また、接着の際には、通常、多孔膜セパレータを加熱する。このときの具体的な温度は、通常は多孔膜セパレータの接着層に含まれる粒子状重合体のガラス転移温度以上であり、好ましくは40℃以上、より好ましくは50℃以上、特に好ましくは60℃以上、また、好ましくは100℃以下、より好ましくは95℃以下、特に好ましくは90℃以下である。温度を前記範囲の下限値以上とすることにより電極と多孔膜セパレータとを強固に接着できる。また、上限値以下とすることにより、電池を構成する要素の熱による劣化を防止できる。 Also, the porous membrane separator is usually heated at the time of bonding. The specific temperature at this time is usually not lower than the glass transition temperature of the particulate polymer contained in the adhesive layer of the porous membrane separator, preferably 40 ° C. or higher, more preferably 50 ° C. or higher, particularly preferably 60 ° C. In addition, the temperature is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower. By setting the temperature to be equal to or higher than the lower limit of the above range, the electrode and the porous membrane separator can be firmly bonded. Moreover, deterioration by the heat | fever of the element which comprises a battery can be prevented by setting it as below an upper limit.
 前記のように圧力及び熱を加える時間は、好ましくは0.5秒以上、より好ましくは1秒以上、特に好ましくは2秒以上であり、好ましくは30秒以下、より好ましくは20秒以下、特に好ましくは10秒以下である。圧力及び熱を加える時間を前記範囲の下限値以上とすることにより電極と多孔膜セパレータとを強固に接着できる。また、上限値以下とすることにより、接着の際に多孔膜セパレータの破膜を防ぐことができる。 The time for applying pressure and heat as described above is preferably 0.5 seconds or more, more preferably 1 second or more, particularly preferably 2 seconds or more, preferably 30 seconds or less, more preferably 20 seconds or less, particularly Preferably it is 10 seconds or less. By setting the time for applying pressure and heat to be equal to or greater than the lower limit of the above range, the electrode and the porous membrane separator can be firmly bonded. Moreover, the film breakage of a porous membrane separator can be prevented at the time of adhesion | attachment by setting it as below an upper limit.
 前記のように加圧接着を行うことにより、電極及び多孔膜セパレータを備えるリチウムイオン二次電池用積層体が得られる。この際、多孔膜セパレータの片面だけに電極を接着してもよく、両面に電極を接着してもよい。例えば、セパレータ基材の両面に多孔膜及び接着層を備える多孔膜セパレータを用いる場合には、正極、多孔膜セパレータ及び負極をこの順に備えるリチウムイオン二次電池用積層体を製造しうる。 By performing pressure bonding as described above, a laminate for a lithium ion secondary battery including an electrode and a porous membrane separator is obtained. At this time, the electrode may be adhered to only one surface of the porous membrane separator, or the electrode may be adhered to both surfaces. For example, when using a porous membrane separator provided with a porous membrane and an adhesive layer on both sides of the separator substrate, a laminate for a lithium ion secondary battery comprising a positive electrode, a porous membrane separator, and a negative electrode in this order can be produced.
 [3.3.その他の処理]
 本発明のリチウムイオン二次電池用積層体の製造方法においては、上述した工程に加えて、更に任意の工程を行ってもよい。
 例えば、電極とセパレータを巻回または積層後、ラミネートフィルムに包埋し、電解液を注液し、セルを封した後にセルごと加圧して、電極とセパレータと接着してもよい。
[3.3. Other processing]
In the manufacturing method of the laminated body for lithium ion secondary batteries of this invention, in addition to the process mentioned above, you may perform an arbitrary process further.
For example, after winding or laminating an electrode and a separator, the electrode and the separator may be embedded, embedded in a laminate film, injected with an electrolytic solution, sealed, and then pressed together with the cell to adhere to the electrode and the separator.
[4.リチウムイオン二次電池]
 上述した製造方法によって得られた多孔膜セパレータ又はリチウムイオン二次電池用積層体を用いることにより、リチウムイオン二次電池を製造しうる。このリチウムイオン二次電池は、正極、多孔膜セパレータ及び負極をこの順に備え、更に電解液を備える。このリチウムイオン二次電池は、多孔膜セパレータと電極との接着性が高く、また通常は多孔膜セパレータの耐熱性が高いので、高い安全性を有する。
[4. Lithium ion secondary battery]
A lithium ion secondary battery can be manufactured by using the porous membrane separator or the laminate for a lithium ion secondary battery obtained by the manufacturing method described above. This lithium ion secondary battery includes a positive electrode, a porous membrane separator, and a negative electrode in this order, and further includes an electrolytic solution. This lithium ion secondary battery has high adhesiveness between the porous membrane separator and the electrode, and usually has high safety because the porous membrane separator has high heat resistance.
 多孔膜セパレータとしては、上述した製造方法により製造されたものを用いる。
 また、電極としては、例えば、リチウムイオン二次電池用積層体の製造方法の項で説明したものを用いうる。
As a porous membrane separator, what was manufactured by the manufacturing method mentioned above is used.
Moreover, as an electrode, what was demonstrated in the term of the manufacturing method of the laminated body for lithium ion secondary batteries can be used, for example.
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量をこの範囲に収めることにより、イオン導電度を高くして、リチウムイオン二次電池の充電特性及び放電特性を良好にできる。 The amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. By keeping the amount of the supporting electrolyte within this range, the ionic conductivity can be increased, and the charging characteristics and discharging characteristics of the lithium ion secondary battery can be improved.
 電解液に使用する溶媒としては、支持電解質を溶解させうるものを用いうる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the solvent used in the electrolytic solution, a solvent capable of dissolving the supporting electrolyte can be used. Examples of the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide. A solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 また、電解液には必要に応じて添加剤を含有させうる。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In addition, an additive may be included in the electrolytic solution as necessary. As the additive, for example, carbonate compounds such as vinylene carbonate (VC) are preferable. An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。 Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
 リチウムイオン二次電池の製造方法としては、例えば、電極、多孔膜セパレータ及びリチウムイオン二次電池用積層体を必要に応じて適切に組み合わせて重ね、電池形状に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。また、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、リード板、エキスパンドメタルなどを入れ、過充放電の防止、電池内部の圧力上昇の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。 As a method for producing a lithium ion secondary battery, for example, an electrode, a porous membrane separator, and a laminated body for a lithium ion secondary battery are appropriately combined as necessary, and are rolled, folded, or the like according to the battery shape. Examples of the method include putting the battery in a battery container, injecting an electrolyte into the battery container, and sealing. In addition, if necessary, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, an expanded metal, or the like may be inserted to prevent overcharging / discharging or an increase in pressure inside the battery. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
In the following description, “%” and “part” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
[評価方法]
 〔水溶性高分子化合物のフィルムの、水に対する再溶解率〕
 実施例1~4、6~9、11及び12、並びに比較例1~3では、カルボキシメチルセルロースアンモニウム塩及びアンモニアを含む水溶液を用意する。この水溶液としては、カルボキシメチルセルロースアンモニウム塩及びアンモニアを、各実施例及び比較例に係る多孔膜用スラリー組成物と同様の比率で含むものを用いる。
 実施例5及び10では、各実施例で用いた水溶性高分子化合物及び低分子化合物Xを、各実施例に係る多孔膜用スラリー組成物と同様の比率で含む水溶液を用意する。
[Evaluation methods]
[Resolution rate of water-soluble polymer compound film in water]
In Examples 1 to 4, 6 to 9, 11 and 12, and Comparative Examples 1 to 3, aqueous solutions containing carboxymethyl cellulose ammonium salt and ammonia are prepared. As this aqueous solution, what contains carboxymethylcellulose ammonium salt and ammonia in the ratio similar to the slurry composition for porous films which concerns on each Example and a comparative example is used.
In Examples 5 and 10, an aqueous solution containing the water-soluble polymer compound and the low-molecular compound X used in each Example in the same ratio as the porous membrane slurry composition according to each Example is prepared.
 厚み20μmの銅箔上に、用意した前記水溶液を、乾燥後の厚みが2μmとなるように塗布し、120℃、10分間で乾燥して、水溶性高分子化合物のフィルムを形成する。これにより、表面に水溶性高分子化合物のフィルムを有する銅箔を得る。この銅箔を1×1cmに切り取って、試験片とする。この試験片の重量M1を測定する。 The prepared aqueous solution is applied onto a copper foil having a thickness of 20 μm so that the thickness after drying is 2 μm and dried at 120 ° C. for 10 minutes to form a film of a water-soluble polymer compound. Thereby, a copper foil having a film of a water-soluble polymer compound on the surface is obtained. This copper foil is cut into 1 × 1 cm 2 and used as a test piece. The weight M1 of this test piece is measured.
 また、水溶性高分子化合物のフィルムを形成していない銅箔を、前記の試験片と同じ大きさで切り取り、その重量M0を測定する。 Further, a copper foil in which a film of a water-soluble polymer compound is not formed is cut out with the same size as the above test piece, and its weight M0 is measured.
 さらに、前記の試験片を、25℃のイオン交換水に1時間に浸漬する。その後、試験片をイオン交換水から取り出し、120℃で10分間乾燥する。乾燥した後で、その試験片の重量M2を測定する。 Further, the test piece is immersed in 25 ° C. ion exchange water for 1 hour. Thereafter, the test piece is taken out from the ion exchange water and dried at 120 ° C. for 10 minutes. After drying, the weight M2 of the test piece is measured.
 測定した重量M0、M1及びM2から、以下の式によって再溶解率ΔMを算出する。再溶解率ΔMが小さいほど、形態維持性に優れることを示す。
 ΔM=(M1-M2)/(M1-M0)×100(%)
 A:再溶解率ΔMが5%未満である
 B:再溶解率ΔMが5%以上10%未満である
 C:再溶解率ΔMが10%以上15%未満である
 D:再溶解率ΔMが15%以上である
From the measured weights M0, M1, and M2, the re-dissolution rate ΔM is calculated by the following equation. It shows that it is excellent in form maintenance property, so that re-dissolution rate (DELTA) M is small.
ΔM = (M1-M2) / (M1-M0) × 100 (%)
A: Re-dissolution rate ΔM is less than 5% B: Re-dissolution rate ΔM is 5% or more and less than 10% C: Re-dissolution rate ΔM is 10% or more and less than 15% D: Re-dissolution rate ΔM is 15 % Or more
 〔熱収縮性〕
 多孔膜セパレータを、幅5cm×長さ5cmの正方形に切って試験片とする。試験片を150℃の恒温槽に入れ1時間放置した後、正方形の面積変化を熱収縮率として求める。熱収縮率が小さいほど、多孔膜セパレータの熱収縮性が優れることを示す。
 A:熱収縮率が1%未満である。
 B:熱収縮率が1%以上5%未満である。
 C:熱収縮率が5%以上10%未満である。
 D:熱収縮率が10%以上である。
[Heat shrinkage]
A porous membrane separator is cut into a square having a width of 5 cm and a length of 5 cm to obtain a test piece. After putting a test piece into a 150 degreeC thermostat and leaving to stand for 1 hour, a square area change is calculated | required as a heat shrinkage rate. The smaller the heat shrinkage rate, the better the heat shrinkability of the porous membrane separator.
A: The heat shrinkage rate is less than 1%.
B: The heat shrinkage rate is 1% or more and less than 5%.
C: Thermal contraction rate is 5% or more and less than 10%.
D: Thermal contraction rate is 10% or more.
 〔電解液中における接着層の接着性〕
 多孔膜セパレータを幅5cm×長さ5cmに切り取り、これに電極活物質層を有する負極(幅4cm×長さ4cm)と重ね合わせて、90℃、0.5MPa、10秒間の条件でプレスを行い、多孔膜セパレータと電極活物質層を有する負極とを備える積層体を用意する。用意した積層体を10mm幅に切断してサンプルを得る。このサンプルを、電池の製造に用いたものと同じ電解液中に温度60℃で3日間浸漬する。その後、サンプルを電解液から取り出し、湿った状態で多孔膜セパレータを負極から剥離する。このときの接着性を以下の基準で評価する。多孔膜セパレータを負極の電極活物質から剥離するときに抵抗が大きいほど、電解液中における接着層の接着力の保持特性が高いことを示す。
[Adhesiveness of adhesive layer in electrolyte]
A porous membrane separator is cut into a width of 5 cm and a length of 5 cm, and superimposed on a negative electrode having an electrode active material layer (width of 4 cm and length of 4 cm), and pressed under conditions of 90 ° C., 0.5 MPa, and 10 seconds. A laminate comprising a porous membrane separator and a negative electrode having an electrode active material layer is prepared. The prepared laminate is cut into a width of 10 mm to obtain a sample. This sample is immersed for 3 days at a temperature of 60 ° C. in the same electrolyte used for the production of the battery. Then, a sample is taken out from electrolyte solution and a porous membrane separator is peeled from a negative electrode in the moist state. The adhesiveness at this time is evaluated according to the following criteria. The larger the resistance when the porous membrane separator is peeled from the negative electrode active material, the higher the retention property of the adhesive strength of the adhesive layer in the electrolytic solution.
 また、前記の多孔膜セパレータと負極とを備える積層体と同様にして、多孔膜セパレータと電極活物質層を有する正極とを備える積層体を用意する。この積層体についても、多孔膜セパレータと負極とを備える積層体と同様に、接着性を評価する。ここで、多孔膜セパレータと正極との接着性評価の結果が、多孔膜セパレータと負極との接着性評価の結果と同じである場合には、多孔膜セパレータと負極との接着性評価の結果のみを記載する。
 A:剥離した時に抵抗がある(接着性にすぐれる)。
 B:剥離した時に抵抗が殆どない(接着性に劣る)。
 C:電解液から取り出した時点で既に剥がれている。
Moreover, the laminated body provided with the positive electrode which has a porous membrane separator and an electrode active material layer similarly to the laminated body provided with the said porous membrane separator and a negative electrode is prepared. This laminate is also evaluated for adhesiveness in the same manner as a laminate comprising a porous membrane separator and a negative electrode. Here, when the result of the adhesive evaluation between the porous membrane separator and the positive electrode is the same as the result of the adhesive evaluation between the porous membrane separator and the negative electrode, only the result of the adhesive evaluation between the porous membrane separator and the negative electrode Is described.
A: There is resistance when peeled (excellent adhesion).
B: There is almost no resistance when it peels (it is inferior to adhesiveness).
C: It has already peeled off when taken out from the electrolyte.
 〔耐ブロッキング性〕
 多孔膜セパレータを、幅5cm×長さ5cm及び幅4cm×長さ4cmでそれぞれ正方形に切り取って、試験片を用意する。これら二枚の試験片を重ね合わせる。重ね合わせたが加圧していないサンプル(プレスされていないサンプル)と、重ね合わせた後に温度40℃、圧力10g/cmで加圧下に置いたサンプル(プレスされているサンプル)とを、それぞれ24時間放置する。24時間放置後、サンプルを目視で観察して、重ね合わせた多孔膜セパレータの接着状態(ブロッキング状態)を確認し、下記基準で評価した。ここでブロッキングするとは、重ね合わせた多孔膜セパレータ同士が接着する現象のことをいう。
 A:加圧した多孔膜セパレータ同士がブロッキングしないもの。
 B:加圧した多孔膜セパレータ同士がブロッキングするが剥がれるもの。
 C:加圧した二次電池用セパレータ同士がブロッキングし剥がれないもの。
 D:加圧していない多孔膜セパレータ同士がブロッキングするもの。
[Blocking resistance]
The porous membrane separator is cut into squares each having a width of 5 cm × a length of 5 cm and a width of 4 cm × a length of 4 cm to prepare a test piece. These two test pieces are overlapped. 24 samples, which were superposed but not pressurized (samples that were not pressed), and samples that were superposed at a temperature of 40 ° C. and a pressure of 10 g / cm 2 (pressed samples) were each 24 Leave for hours. After standing for 24 hours, the sample was visually observed to confirm the adhesion state (blocking state) of the laminated porous membrane separator and evaluated according to the following criteria. Here, blocking refers to a phenomenon in which the laminated porous membrane separators adhere to each other.
A: The pressurized porous membrane separators do not block each other.
B: The pressurized porous membrane separator is blocked but peeled off.
C: Pressurized secondary battery separator blocks and does not peel off.
D: The porous membrane separators that are not pressurized block each other.
 〔低分子化合物Xの残存濃度の測定方法〕
 多孔膜に含まれる、アンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物Xの定量は、以下に示すパージ&トラップ/ガスクロマトグラフィー(P&T/GC)法により行った。
 セパレータ基材、多孔膜及び接着層を備える多孔膜セパレータ0.1gをパージ容器に入れる。パージ容器にキャリアガスとしてヘリウムガスを50ml/分で流しながら、パージ容器内の温度を、10℃/分の速度で加熱する。加熱前は室温であったパージ容器内の温度は、加熱の開始後に上昇する。温度が150℃になったら、150℃の温度を30分間保持する。その後、10℃/分の速度で200℃まで加熱し、発生した揮発成分をトラップ管に捕集する。捕集後は、パージ容器の温度は室温に戻す。
[Measurement method of residual concentration of low molecular compound X]
The quantitative determination of at least one low-molecular compound X selected from the group consisting of ammonia and amine compounds contained in the porous membrane was performed by the following purge & trap / gas chromatography (P & T / GC) method.
0.1 g of a porous membrane separator provided with a separator substrate, a porous membrane and an adhesive layer is placed in a purge vessel. While flowing helium gas as a carrier gas into the purge vessel at 50 ml / min, the temperature in the purge vessel is heated at a rate of 10 ° C./min. The temperature in the purge container, which was room temperature before heating, rises after the start of heating. When the temperature reaches 150 ° C, the temperature of 150 ° C is held for 30 minutes. Thereafter, the sample is heated to 200 ° C. at a rate of 10 ° C./min, and the generated volatile components are collected in a trap tube. After collection, the temperature of the purge vessel is returned to room temperature.
 次いで、揮発成分を捕集したトラップ管を、130℃から280℃まで50℃/分の速度で加熱して、ガスクロマトグラフィーを用いて、下記条件で揮発成分の定量を行う。150℃以上200℃以下の温度に加熱した際に揮発する成分は低分子化合物Xであると考えられるので、前記の揮発成分の定量を行うことにより、低分子化合物Xの残存濃度を測定しうる。 Next, the trap tube collecting the volatile components is heated from 130 ° C. to 280 ° C. at a rate of 50 ° C./min, and the volatile components are quantified using gas chromatography under the following conditions. Since the component that volatilizes when heated to a temperature of 150 ° C. or more and 200 ° C. or less is considered to be the low molecular compound X, the residual concentration of the low molecular compound X can be measured by quantifying the volatile component. .
 ガスクロマトグラフィーの条件は、以下の通りである。
 測定装置:アジレント社製ガスクロマトグラフ9890(FID法)
 データ処理装置:島津製C-R7Aクロマトパック
 パージ&トラップサンプラー:アジレント社製TDS
 カラム:J&W社製DB-5(L=30m、I.D=0.32mm、Film=0.25μm)
 カラム温度:50℃(保持2分)~270℃(10℃/分昇温)
 試料送入温度:280℃
 検出温度:280℃
 キャリアガス:ヘリウムガス
 流量:1ml/分
The conditions for gas chromatography are as follows.
Measuring device: Agilent gas chromatograph 9890 (FID method)
Data processor: Shimadzu C-R7A Chromatopack Purge & Trap Sampler: Agilent TDS
Column: DB-5 manufactured by J & W (L = 30 m, ID = 0.32 mm, Film = 0.25 μm)
Column temperature: 50 ° C. (holding 2 minutes) to 270 ° C. (temperature increase 10 ° C./min)
Sample feeding temperature: 280 ° C
Detection temperature: 280 ° C
Carrier gas: Helium gas Flow rate: 1 ml / min
[実施例1]
 (1.1.メタ(アクリル)重合体の製造)
 撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し、混合物A1を得た。この混合物A1は、80℃に昇温した。
 一方、別の容器中で、アクリル酸ブチル83.8部、メタクリル酸2.0部、アクリロニトリル12.0部、アリルグリシジルエーテル1.0部、N-メチロールアクリルアミド1.2部、ドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物B1の分散体を調製した。
 この単量体混合物B1の分散体を、4時間かけて、上記の混合物A1中に、連続的に添加して重合させた。単量体混合物B1の分散体の連続的な添加中は、反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。これにより、(メタ)アクリル重合体からなるバインダーを含む水分散体を得た。
[Example 1]
(1.1. Production of meta (acrylic) polymer)
In a reactor equipped with a stirrer, 0.06 part of sodium dodecyl sulfate, 0.23 part of ammonium persulfate and 100 parts of ion-exchanged water were added and mixed to obtain a mixture A1. The mixture A1 was heated to 80 ° C.
On the other hand, in a separate container, 83.8 parts of butyl acrylate, 2.0 parts of methacrylic acid, 12.0 parts of acrylonitrile, 1.0 part of allyl glycidyl ether, 1.2 parts of N-methylol acrylamide, 0 sodium dodecyl sulfate 0.1 part and 100 parts of ion-exchanged water were mixed to prepare a dispersion of the monomer mixture B1.
The dispersion of the monomer mixture B1 was continuously added and polymerized in the mixture A1 over 4 hours. During the continuous addition of the dispersion of the monomer mixture B1, the reaction was carried out while maintaining the temperature of the reaction system at 80 ° C. After completion of the continuous addition, the reaction was further continued at 90 ° C. for 3 hours. This obtained the water dispersion containing the binder which consists of a (meth) acrylic polymer.
 得られたバインダーを含む水分散体を25℃に冷却後、これにアンモニア水を添加してpHを7に調整した。その後、スチームを導入して未反応の単量体を除去した。その後、直ちに、イオン交換水で固形分濃度の調整を更に行いながら、200メッシュ(目開き約77μm)のステンレス製金網でろ過を行い、平均粒子径370nm、固形分濃度40%のバインダーの水分散液を得た。 The obtained aqueous dispersion containing the binder was cooled to 25 ° C., and ammonia water was added thereto to adjust the pH to 7. Thereafter, steam was introduced to remove unreacted monomers. Immediately after that, while further adjusting the solid content concentration with ion-exchanged water, it is filtered through a 200 mesh (mesh size of about 77 μm) stainless steel wire mesh, and the binder is dispersed in water with an average particle size of 370 nm and a solid content concentration of 40%. A liquid was obtained.
 (1.2.多孔膜用スラリー組成物の製造)
 非導電性粒子としてアルミナ粒子(住友化学社製「AKP-3000」、体積平均粒子径D50=0.45μm、テトラポッド(登録商標)状粒子)を用意した。
 粘度調整剤として、カルボキシメチルセルロースアンモニウム塩(ダイセルファインケム社製「DN10L」)を用いた。このカルボキシメチルセルロースアンモニウム塩は、カルボキシメチルセルロースアンモニウム塩及びアンモニアを含む水溶液の状態で用意した。また、この粘度調整剤の1%水溶液の粘度は、10mPa・s以上50mPa・s以下であった。
(1.2. Production of slurry composition for porous membrane)
Alumina particles (“AKP-3000” manufactured by Sumitomo Chemical Co., Ltd., volume average particle diameter D50 = 0.45 μm, tetrapod (registered trademark) -like particles) were prepared as non-conductive particles.
As a viscosity modifier, carboxymethyl cellulose ammonium salt (“DN10L” manufactured by Daicel Finechem) was used. This carboxymethylcellulose ammonium salt was prepared in a state of an aqueous solution containing carboxymethylcellulose ammonium salt and ammonia. The viscosity of a 1% aqueous solution of this viscosity modifier was 10 mPa · s or more and 50 mPa · s or less.
 非導電性粒子100部、粘度調整剤としてのカルボキシメチルセルロースアンモニウム塩の前記水溶液をカルボキシメチルセルロースアンモニウム塩及びアンモニアの合計量で1.5部、及び、イオン交換水を固形分濃度が40重量%になるように混合し、攪拌した。また、バインダーとして前記工程(1.1)で得た(メタ)アクリル重合体を含む水分散液を固形分で4部混合した。さらに、ポリエチレングリコール型界面活性剤(サンノプコ社製「SNウェット366」)0.2部を混合し、多孔膜用スラリー組成物を製造した。 100 parts of non-conductive particles, the aqueous solution of carboxymethyl cellulose ammonium salt as a viscosity modifier is 1.5 parts in total of carboxymethyl cellulose ammonium salt and ammonia, and the solid content concentration of ion-exchanged water is 40% by weight. Mixed and stirred. Further, 4 parts of an aqueous dispersion containing the (meth) acrylic polymer obtained in the step (1.1) as a binder was mixed with a solid content. Further, 0.2 part of a polyethylene glycol type surfactant (“SN wet 366” manufactured by San Nopco) was mixed to produce a slurry composition for a porous membrane.
 ここで、粘度調整剤として用いたカルボキシメチルセルロースアンモニウム塩は、カルボキシメチルセルロースとアンモニアとの中和塩である。このカルボキシメチルセルロースアンモニウム塩を用いて製造した前記の多孔膜用スラリー組成物は、非導電性粒子100部に対して水溶性高分子化合物であるカルボキシメチルセルロースアンモニウム塩を1.4部含み、水溶性高分子化合物であるカルボキシメチルセルロースアンモニウム塩100部に対して低分子化合物Xであるアンモニア5部を含む。
 このカルボキシメチルセルロースアンモニウム塩を用いて、上述した要領で、水溶性高分子化合物のフィルムの水に対する再溶解率を測定した。
Here, the carboxymethylcellulose ammonium salt used as a viscosity modifier is a neutralized salt of carboxymethylcellulose and ammonia. The slurry composition for a porous membrane produced using this carboxymethyl cellulose ammonium salt contains 1.4 parts of carboxymethyl cellulose ammonium salt which is a water-soluble polymer compound with respect to 100 parts of non-conductive particles, and has a high water solubility. 5 parts of ammonia which is a low molecular compound X is contained with respect to 100 parts of carboxymethylcellulose ammonium salt which is a molecular compound.
Using this carboxymethylcellulose ammonium salt, the re-dissolution rate of the water-soluble polymer compound film in water was measured in the manner described above.
 (1.3.粒子状重合体の製造)
 攪拌機付きの5MPa耐圧容器に、(メタ)アクリル酸エステル単量体としてアクリル酸ブチル22.2部、エチレン性不飽和カルボン酸単量体としてメタクリル酸2部、芳香族ビニル単量体としてスチレン75部、架橋性単量体としてエチレンジメタクリレート0.8部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して、重合を開始した。重合転化率が96%になった時点で冷却して反応を停止し、粒子状重合体を含む水分散液を得た。得られた粒子状重合体の体積平均粒子径D50は0.15μm、ガラス転移温度は76℃であった。
(1.3. Production of particulate polymer)
In a 5 MPa pressure vessel equipped with a stirrer, 22.2 parts of butyl acrylate as a (meth) acrylate monomer, 2 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, and styrene 75 as an aromatic vinyl monomer Part, 0.8 part of ethylene dimethacrylate as a crosslinkable monomer, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, Stir. Then, it heated to 60 degreeC and superposition | polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain an aqueous dispersion containing a particulate polymer. The obtained particulate polymer had a volume average particle diameter D50 of 0.15 μm and a glass transition temperature of 76 ° C.
 (1.4.接着層用スラリー組成物の製造)
 前記工程(1.3)で得た粒子状重合体の水分散液を固形分で100部、及び、バインダとして前記工程(1.1)で得た(メタ)アクリル重合体を固形分で4部混合した。さらに、イオン交換水を混合して固形分濃度を20%にして、接着層用スラリー組成物を得た。
(1.4. Production of slurry composition for adhesive layer)
100 parts of the aqueous dispersion of the particulate polymer obtained in the step (1.3) in solid content and 4 parts of the (meth) acrylic polymer obtained in the step (1.1) as a binder in solid content. Mixed. Furthermore, ion-exchange water was mixed so that the solid content concentration was 20% to obtain a slurry composition for an adhesive layer.
 (1.5.多孔膜セパレータの製造)
 ポリエチレン製の多孔基材からなるセパレータ基材(厚み16μm)を用意した。用意したセパレータ基材の両面に、前記多孔膜用スラリー組成物を塗布し、50℃で3分間乾燥させた。これにより、1層あたりの厚み3μmの多孔膜をセパレータ基材上に形成した。
(1.5. Production of porous membrane separator)
A separator substrate (thickness 16 μm) made of a polyethylene porous substrate was prepared. The said slurry composition for porous films was apply | coated to both surfaces of the prepared separator base material, and it was made to dry for 3 minutes at 50 degreeC. Thereby, a porous film having a thickness of 3 μm per layer was formed on the separator substrate.
 次いで、各多孔膜の上に、上記接着層用スラリー組成物を塗布し、50℃で1分間乾燥して、1層当たりの厚み0.5μmの接着層を形成した。これにより、接着層、多孔膜、セパレータ基材、多孔膜及び接着層をこの順に備える多孔膜セパレータを得た。得られた多孔膜セパレータについて、熱収縮性、電解液中における接着層の接着性、及び、耐ブロッキング性を評価した。 Next, the adhesive layer slurry composition was applied on each porous film and dried at 50 ° C. for 1 minute to form an adhesive layer having a thickness of 0.5 μm per layer. Thereby, a porous membrane separator provided with an adhesive layer, a porous membrane, a separator substrate, a porous membrane, and an adhesive layer in this order was obtained. About the obtained porous membrane separator, heat shrinkability, the adhesiveness of the contact bonding layer in electrolyte solution, and blocking resistance were evaluated.
 (1.6.正極の製造)
 正極活物質としてスピネル構造を有するマンガン酸リチウム95部に、バインダーとしてのPVDF(ポリフッ化ビニリデン、クレハ社製、商品名:KF-1100)を固形分換算量で3部となるように加え、さらに、アセチレンブラック2部、及びN-メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して、正極用の活物質層用スラリー組成物を得た。この正極用の活物質層用スラリー組成物を、厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスして、全厚みが100μmの電極活物質層を有する正極を得た。
(1.6. Production of positive electrode)
To 95 parts of lithium manganate having a spinel structure as the positive electrode active material, PVDF (polyvinylidene fluoride, manufactured by Kureha Co., Ltd., trade name: KF-1100) as a binder was added to 3 parts in terms of solid content, and Then, 2 parts of acetylene black and 20 parts of N-methylpyrrolidone were added and mixed with a planetary mixer to obtain a slurry composition for an active material layer for a positive electrode. This positive electrode active material layer slurry composition is applied to one side of an 18 μm thick aluminum foil, dried at 120 ° C. for 3 hours, and then roll-pressed to have an electrode active material layer with a total thickness of 100 μm. A positive electrode was obtained.
 (1.7.負極の製造)
 負極活物質として粒径20μm、BET比表面積4.2m/gのグラファイト98部と、バインダーとしてSBR(スチレン-ブタジエンゴム、ガラス転移温度:-10℃)の固形分換算量1部とを混合し、この混合物にさらにカルボキシメチルセルロース1部を混合し、更に溶媒として水を加えて、これらをプラネタリーミキサーで混合し、負極用の活物質層用スラリー組成物を得た。この負極用の活物質層用スラリー組成物を、厚さ18μmの銅箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスして、全厚みが60μmの電極活物質層を有する負極を得た。
(1.7. Production of negative electrode)
98 parts of graphite having a particle size of 20 μm and a BET specific surface area of 4.2 m 2 / g are mixed as the negative electrode active material, and 1 part of solid content equivalent of SBR (styrene-butadiene rubber, glass transition temperature: −10 ° C.) is mixed as the binder. Then, 1 part of carboxymethylcellulose was further mixed with this mixture, water was added as a solvent, and these were mixed with a planetary mixer to obtain a slurry composition for an active material layer for a negative electrode. This negative electrode active material layer slurry composition was applied to one side of a 18 μm thick copper foil, dried at 120 ° C. for 3 hours, and then roll-pressed to have an electrode active material layer with a total thickness of 60 μm. A negative electrode was obtained.
 (1.8.二次電池用積層体の製造)
 前記の正極と多孔膜セパレータと負極とを重ねた。このとき、正極の正極活物質層と多孔膜セパレータの一方の接着層とが接し、また、負極の負極活物質層と多孔膜セパレータの他方の接着層とが接するようにした。その後、温度80℃、圧力0.5MPaで10秒プレスして、正極、多孔膜セパレータ及び負極を加圧接着した。これにより、正極、多孔膜セパレータ及び負極を備える二次電池用積層体を得た。
(1.8. Production of laminated body for secondary battery)
The positive electrode, the porous membrane separator, and the negative electrode were stacked. At this time, the positive electrode active material layer of the positive electrode and one adhesive layer of the porous membrane separator were in contact with each other, and the negative electrode active material layer of the negative electrode and the other adhesive layer of the porous membrane separator were in contact with each other. Thereafter, pressing was performed at a temperature of 80 ° C. and a pressure of 0.5 MPa for 10 seconds, and the positive electrode, the porous membrane separator, and the negative electrode were pressure bonded. This obtained the laminated body for secondary batteries provided with a positive electrode, a porous membrane separator, and a negative electrode.
 (1.9.リチウムイオン二次電池の製造)
 ポリプロピレン製パッキンを設けたステンレス鋼製のコイン型外装容器の内底面上に、負極/二次電池用セパレータ/正極の層構造を有する前記の二次電池用積層体を設置し、これらを容器内に収納した。容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約3.2mmのフルセル型のリチウムイオンニ次電池(コインセルCR2032)を製造した。電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
(1.9. Manufacture of lithium ion secondary battery)
On the inner bottom surface of a stainless steel coin-type outer container provided with a polypropylene packing, the aforementioned secondary battery laminate having a negative electrode / secondary battery separator / positive electrode layer structure is installed, and these are placed in the container. Stored. Inject the electrolyte into the container so that no air remains, fix the outer container with a 0.2 mm thick stainless steel cap through a polypropylene packing, seal the battery can, and 20 mm in diameter. A full-cell lithium ion secondary battery (coin cell CR2032) having a thickness of about 3.2 mm was manufactured. As an electrolytic solution, LiPF 6 is mixed at a concentration of 1 mol / liter in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 1: 2 (volume ratio at 20 ° C.). The dissolved solution was used.
[実施例2]
 前記工程(1.2)において、非導電性粒子としてアルミナ粒子の代わりにベーマイト粒子(Nabaltec社製「APYRAL AOH 60」、体積平均粒子径D50=0.9μm、板状粒子)を用いた。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 2]
In the step (1.2), boehmite particles (“APYRAL AOH 60” manufactured by Nabaltec, volume average particle diameter D50 = 0.9 μm, plate-like particles) were used instead of alumina particles as non-conductive particles. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例3]
 前記工程(1.2)において、非導電性粒子としてアルミナ粒子の代わりに酸化マグネシウム粒子(タテホ化学社製「PUREMAG FNM-G」、体積平均粒子径D50=0.5μm、楕円球状粒子と角が丸みを帯びた多面体形状粒子の混合物)を用いた。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 3]
In the step (1.2), magnesium oxide particles (“PUREMAG FNM-G” manufactured by Tateho Chemical Co., Ltd., volume average particle diameter D50 = 0.5 μm, elliptical spherical particles and angles are used as non-conductive particles instead of alumina particles. A mixture of rounded polyhedral particles). Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例4]
 (ポリマー粒子の製造)
 撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し、混合物A4を得た。この混合物A4は、80℃に加熱した。
[Example 4]
(Manufacture of polymer particles)
In a reactor equipped with a stirrer, 0.06 part of sodium dodecyl sulfate, 0.23 part of ammonium persulfate, and 100 parts of ion-exchanged water were added and mixed to obtain a mixture A4. This mixture A4 was heated to 80 ° C.
 一方、別の容器中で、アクリル酸ブチル93.8部、メタクリル酸2.0部、アクリロニトリル2.0部、アリルグリシジルエーテル1.0部、N-メチロールアクリルアミド1.2部、ドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物B4の分散体を調製した。 On the other hand, in a separate container, 93.8 parts of butyl acrylate, 2.0 parts of methacrylic acid, 2.0 parts of acrylonitrile, 1.0 part of allyl glycidyl ether, 1.2 parts of N-methylol acrylamide, sodium dodecyl sulfate 0 0.1 part and 100 parts of ion-exchanged water were mixed to prepare a dispersion of the monomer mixture B4.
 この単量体混合物B4の分散体を、4時間かけて、上記の混合物A4中に、連続的に添加して重合させた。単量体混合物B4の分散体の連続的な添加中は、反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。これにより、平均粒子径370nmのシードポリマー粒子C4の水分散体を得た。 The dispersion of the monomer mixture B4 was continuously added and polymerized in the mixture A4 over 4 hours. During the continuous addition of the dispersion of the monomer mixture B4, the reaction was carried out while maintaining the temperature of the reaction system at 80 ° C. After completion of the continuous addition, the reaction was further continued at 90 ° C. for 3 hours. Thereby, an aqueous dispersion of seed polymer particles C4 having an average particle diameter of 370 nm was obtained.
 次に、撹拌機を備えた反応器に、上記のシードポリマー粒子C4の水分散体を固形分基準(即ちシードポリマー粒子C4の重量基準)で20部、単量体としてエチレングリコールジメタクリレート(共栄社化学株式会社「ライトエステルEG」)を100部、ドデシルベンゼンスルホン酸ナトリウムを1.0部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製「パーブチルO」)を4.0部、及びイオン交換水を200部入れ、35℃で12時間撹拌することで、シードポリマー粒子C4に単量体及び重合開始剤を完全に吸収させた。次いで、これを90℃で5時間重合させた。その後、スチームを導入して未反応の単量体および開始剤分解生成物を除去した。これにより、体積平均粒子径D50が670nmの非導電性粒子としてポリマー粒子を含む水分散体を得た。 Next, in a reactor equipped with a stirrer, 20 parts of the above-mentioned aqueous dispersion of seed polymer particles C4 on the basis of solid content (that is, based on the weight of seed polymer particles C4) and ethylene glycol dimethacrylate as a monomer (Kyoeisha) Chemical Co., Ltd. “Light Ester EG”) 100 parts, sodium dodecylbenzenesulfonate 1.0 part, t-butylperoxy-2-ethylhexanoate as a polymerization initiator (“Perbutyl O” manufactured by NOF Corporation) 4.0 parts and 200 parts of ion exchange water were added and stirred at 35 ° C. for 12 hours to completely absorb the monomer and the polymerization initiator in the seed polymer particles C4. This was then polymerized at 90 ° C. for 5 hours. Thereafter, steam was introduced to remove unreacted monomers and initiator decomposition products. As a result, an aqueous dispersion containing polymer particles as non-conductive particles having a volume average particle diameter D50 of 670 nm was obtained.
 前記工程(1.2)において、非導電性粒子としてアルミナ粒子の代わりに前記のポリマー粒子を用いた。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。 In the step (1.2), the polymer particles were used as non-conductive particles instead of alumina particles. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例5]
 (5.1.マレイミド-マレイン酸共重合体の製造)
 撹拌機を備えた反応器に、イソブチレン-無水マレイン酸共重合体(株式会社クラレ社製「イソバン-04」)100部を入れた。反応器にアンモニアガスを吹き込み、水浴で冷却しながら発熱が止まるまで約1時間反応を行なった。続いてオイルバスで加熱しながらアンモニアガスを圧入し、生成する水を系外に留去しつつ200℃まで昇温して、イミド化反応を行なった。反応終了後、反応生成物を取り出し、加熱乾燥して、マレイミド-マレイン酸共重合体を得た。得られたマレイミド-マレイン酸共重合体の組成は、イソブチレン単位50モル%、無水マレイン酸単位18モル%、マレイン酸単位12モル%、およびマレイミド単位20モル%であった。
 また、撹拌機を備えた反応器に、得られたマレイミド-マレイン酸共重合体を100部、濃度25%のアンモニア水を540部入れ、90℃で5時間攪拌することで、固形分濃度が20%のマレイミド-マレイン酸共重合体の水溶液を得た。マレイミド-マレイン酸共重合体の重量平均分子量は60000であった。
[Example 5]
(5.1. Production of maleimide-maleic acid copolymer)
In a reactor equipped with a stirrer, 100 parts of isobutylene-maleic anhydride copolymer (“Isoban-04” manufactured by Kuraray Co., Ltd.) was placed. Ammonia gas was blown into the reactor and the reaction was continued for about 1 hour while cooling with a water bath until the exotherm stopped. Subsequently, ammonia gas was injected while heating in an oil bath, and the temperature was raised to 200 ° C. while distilling off the generated water to perform imidization reaction. After completion of the reaction, the reaction product was taken out and dried by heating to obtain a maleimide-maleic acid copolymer. The composition of the obtained maleimide-maleic acid copolymer was 50 mol% of isobutylene units, 18 mol% of maleic anhydride units, 12 mol% of maleic acid units, and 20 mol% of maleimide units.
Also, 100 parts of the obtained maleimide-maleic acid copolymer and 540 parts of 25% strength aqueous ammonia were placed in a reactor equipped with a stirrer, and stirred at 90 ° C. for 5 hours, so that the solid concentration was An aqueous solution of 20% maleimide-maleic acid copolymer was obtained. The weight average molecular weight of the maleimide-maleic acid copolymer was 60000.
 前記工程(1.2)において、非導電性粒子としてアルミナ粒子の代わりに実施例4で製造したポリマー粒子を用いた。
 また、前記工程(1.2)において、カルボキシメチルセルロースアンモニウム塩の水溶液の代わりに、前記工程(5.1)で得たマレイミド-マレイン酸共重合体100部を用いた。この際、マレイミド-マレイン酸共重合体は、水溶液の状態で添加した。得られた多孔膜用スラリーは、水溶性高分子化合物であるマレイミド-マレイン酸共重合体100部に対して、アンモニア15部を含む。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
In the step (1.2), polymer particles produced in Example 4 were used as non-conductive particles instead of alumina particles.
In the step (1.2), 100 parts of the maleimide-maleic acid copolymer obtained in the step (5.1) was used instead of the aqueous solution of carboxymethyl cellulose ammonium salt. At this time, the maleimide-maleic acid copolymer was added in the form of an aqueous solution. The obtained slurry for porous membrane contains 15 parts of ammonia with respect to 100 parts of maleimide-maleic acid copolymer which is a water-soluble polymer compound.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例6]
 前記工程(1.3)において、アクリル酸ブチルの量を52.2部に変更し、スチレンの量を45部に変更して、接着層の粒子状重合体のガラス転移温度を15℃に調整した。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 6]
In the step (1.3), the amount of butyl acrylate was changed to 52.2 parts, the amount of styrene was changed to 45 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 15 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例7]
 前記工程(1.3)において、アクリル酸ブチルの量を27.2部に変更し、スチレンの量を70部に変更して、接着層の粒子状重合体のガラス転移温度を35℃に調整した。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 7]
In the step (1.3), the amount of butyl acrylate was changed to 27.2 parts, the amount of styrene was changed to 70 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 35 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例8]
 前記工程(1.3)において、アクリル酸ブチルの量を7.2部に変更し、スチレンの量を90部に変更して、接着層の粒子状重合体のガラス転移温度を93℃に調整した。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 8]
In the step (1.3), the amount of butyl acrylate was changed to 7.2 parts, the amount of styrene was changed to 90 parts, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 93 ° C. did. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例9]
 前記工程(1.2)において、カルボキシメチルセルロースアンモニウム塩の水溶液の量を、カルボキシメチルセルロースアンモニウム塩とアンモニアとの合計量で7部に変更した。このカルボキシメチルセルロースアンモニウム塩の水溶液は、カルボキシメチルセルロースアンモニウム塩6.6部とアンモニア0.4部とを含む。これにより、多孔膜用スラリー組成物において、水溶性高分子化合物であるカルボキシメチルセルロースアンモニウム塩100部に対するアンモニアの量は、5部となった。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 9]
In the said process (1.2), the quantity of the aqueous solution of carboxymethylcellulose ammonium salt was changed into 7 parts by the total amount of carboxymethylcellulose ammonium salt and ammonia. This aqueous solution of carboxymethyl cellulose ammonium salt contains 6.6 parts of carboxymethyl cellulose ammonium salt and 0.4 part of ammonia. Thereby, in the slurry composition for porous films, the amount of ammonia with respect to 100 parts of carboxymethylcellulose ammonium salt which is a water-soluble polymer compound was 5 parts.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例10]
 カルボキシメチルセルロース及び2-アミノエタノールを含む水溶液を用意した。この水溶液において、カルボキシメチルセルロース100部に対する2-アミノエタノールの量は18部であった。なお、この水溶液において、カルボキシメチルセルロースと2-アミノエタノールが反応して水溶性高分子化合物であるカルボキシメチルセルロースと2-アミノエタノールとの中和塩が生成し、一部未反応の2-アミノエタノールが残存している。こうして用意した水溶液を、前記工程(1.2)において、カルボキシメチルセルロースアンモニウム塩の水溶液の代わりに用いた。この際の水溶液の量は、カルボキシメチルセルロースと2-アミノエタノールの中和塩1.5部と2-アミノエタノール0.1部とを含む量とした。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 10]
An aqueous solution containing carboxymethylcellulose and 2-aminoethanol was prepared. In this aqueous solution, the amount of 2-aminoethanol with respect to 100 parts of carboxymethylcellulose was 18 parts. In this aqueous solution, carboxymethylcellulose and 2-aminoethanol react to form a neutralized salt of carboxymethylcellulose and 2-aminoethanol, which is a water-soluble polymer compound, and partially unreacted 2-aminoethanol is converted to Remains. The aqueous solution thus prepared was used in place of the aqueous solution of carboxymethyl cellulose ammonium salt in the step (1.2). The amount of the aqueous solution at this time was an amount containing 1.5 parts of carboxymethyl cellulose, neutralized salt of 2-aminoethanol and 0.1 part of 2-aminoethanol.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例11]
 前記工程(1.2)において、多孔膜用スラリー組成物にアンモニア水溶液を添加することにより、水溶性高分子化合物であるカルボキシメチルセルロースアンモニウム塩100部に対する低分子化合物Xであるアンモニアの量を10部にした。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 11]
In the step (1.2), by adding an aqueous ammonia solution to the slurry composition for a porous membrane, the amount of ammonia that is the low molecular compound X is 10 parts with respect to 100 parts of the carboxymethyl cellulose ammonium salt that is the water-soluble polymer compound. I made it.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[実施例12]
 前記工程(1.2)において、多孔膜用スラリー組成物にアンモニア水溶液を添加することにより、水溶性高分子化合物であるカルボキシメチルセルロースアンモニウム塩100部に対する低分子化合物Xであるアンモニアの量を20部にした。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Example 12]
In the step (1.2), by adding an aqueous ammonia solution to the slurry composition for porous membrane, the amount of ammonia as the low molecular compound X with respect to 100 parts of the carboxymethyl cellulose ammonium salt as the water soluble polymer compound is 20 parts. I made it.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[比較例1]
 前記の工程(1.5)において、接着層を形成しなかった。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 1]
In the step (1.5), no adhesive layer was formed. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[比較例2]
 前記工程(1.3)において、アクリル酸ブチルの量を4.2部に変更し、メタクリル酸の量を10部に変更し、スチレンの量を85部に変更して、接着層の粒子状重合体のガラス転移温度を112℃に調整した。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 2]
In the step (1.3), the amount of butyl acrylate is changed to 4.2 parts, the amount of methacrylic acid is changed to 10 parts, the amount of styrene is changed to 85 parts, The glass transition temperature of the polymer was adjusted to 112 ° C. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[比較例3]
 前記工程(1.3)において、アクリル酸ブチルの代わりにアクリル酸エチル87.8部を用い、メタクリル酸の量を2部に変更し、スチレンの代わりにアクリロニトリル10部を用い、エチレンジメタクリレートの量を0.2部に変更して、接着層の粒子状重合体のガラス転移温度を5℃に調整した。以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 3]
In step (1.3), 87.8 parts of ethyl acrylate was used instead of butyl acrylate, the amount of methacrylic acid was changed to 2 parts, 10 parts of acrylonitrile was used instead of styrene, and ethylene dimethacrylate The amount was changed to 0.2 part, and the glass transition temperature of the particulate polymer of the adhesive layer was adjusted to 5 ° C. Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[比較例4]
 前記工程(1.2)において、カルボキシメチルセルロースアンモニウム塩の水溶液を用いなかった。
 さらに、前記工程(1.5)において、接着層の1層当たりの厚みを10μmに変更した。
 以上の事項以外は実施例1と同様にして、多孔膜セパレータ、二次電池用積層体及びリチウムイオン二次電池を製造し、評価した。
[Comparative Example 4]
In the step (1.2), an aqueous solution of carboxymethyl cellulose ammonium salt was not used.
Furthermore, in the said process (1.5), the thickness per layer of an adhesive layer was changed into 10 micrometers.
Except for the above, a porous membrane separator, a secondary battery laminate and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1.
[評価結果]
 実施例及び比較例の構成を表1~表4に示し、結果を表5~表7に示す。ここで、以下の表における略称の意味は、以下の通りである。
 「低分子化合物」欄の水溶性高分子100部に対する量:多孔膜用スラリー組成物における、水溶性高分子化合物100重量部に対する低分子化合物Xの量
 バインダ組成:バインダーにおける(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位の重量比
 低分子化合物の残存量:多孔膜における低分子化合物Xの残存量
 単量体I:アクリル酸エステル単量体
 単量体II:エチレン性不飽和カルボン酸単量体
 単量体III:芳香族ビニル単量体
 単量体IV:(メタ)アクリロニトリル単量体
 単量体V:架橋剤単量体
 CMC1:カルボキシメチルセルロースアンモニウム塩
 CMC2:カルボキシメチルセルロースと2-アミノエタノールの中和塩
 ACL:アクリルゴム
 BA:ブチルアクリレート
 EA:エチルアクリレート
 MAA:メタクリル酸
 ST:スチレン
 EDMA:エチレンジメタクリレート
 イソバン:マレイミド-マレイン酸共重合体
[Evaluation results]
The configurations of Examples and Comparative Examples are shown in Tables 1 to 4, and the results are shown in Tables 5 to 7. Here, the meanings of the abbreviations in the following table are as follows.
Amount relative to 100 parts of water-soluble polymer in the “low molecular compound” column: amount of low molecular compound X relative to 100 parts by weight of water-soluble polymer compound in slurry composition for porous membrane Binder composition: (meth) acrylonitrile monomer in binder Weight ratio of body unit / (meth) acrylic acid ester monomer unit Remaining amount of low molecular compound: Remaining amount of low molecular compound X in porous membrane Monomer I: Acrylic acid ester monomer Monomer II: Ethylene Unsaturated carboxylic acid monomer Monomer III: Aromatic vinyl monomer Monomer IV: (Meth) acrylonitrile monomer Monomer V: Crosslinker monomer CMC1: Carboxymethylcellulose ammonium salt CMC2: Carboxy Neutralized salt of methylcellulose and 2-aminoethanol ACL: Acrylic rubber BA: Butyl acrylate EA: Ethyl acrylate MAA: methacrylic acid ST: styrene EDMA: ethylene dimethacrylate isoban: maleimide-maleic acid copolymer
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[検討]
 表から分かるように、本発明によれば、水を含むスラリー組成物を用いて、多孔膜が接着層用のスラリー組成物に溶かされ難く、且つ、電極に対する接着性及び耐ブロッキング性の両方に優れる多孔膜セパレータを製造することができる。
[Consideration]
As can be seen from the table, according to the present invention, using the slurry composition containing water, the porous film is hardly dissolved in the slurry composition for the adhesive layer, and both the adhesion to the electrode and the blocking resistance are improved. An excellent porous membrane separator can be produced.

Claims (7)

  1.  非導電性粒子、水溶性高分子化合物、水、並びに、アンモニア及びアミン化合物からなる群より選ばれる少なくとも1種類の低分子化合物を含む多孔膜用スラリー組成物をセパレータ基材の少なくとも片面に塗布し、乾燥して多孔膜を得る工程、及び、
     ガラス転移温度が10℃以上110℃以下である粒子状重合体及び水を含む接着層用スラリー組成物を前記多孔膜上に塗布し、乾燥して接着層を得る工程を含む、リチウムイオン二次電池用の多孔膜セパレータの製造方法。
    A slurry composition for a porous film containing at least one kind of low-molecular compound selected from the group consisting of non-conductive particles, water-soluble polymer compounds, water, and ammonia and amine compounds is applied to at least one surface of a separator substrate. Drying to obtain a porous film, and
    A lithium ion secondary comprising a step of applying a slurry composition for an adhesive layer containing a particulate polymer having a glass transition temperature of 10 ° C. or higher and 110 ° C. or lower and water on the porous film and drying to obtain an adhesive layer. A method for producing a porous membrane separator for a battery.
  2.  前記水溶性高分子化合物が、酸性基を有する、請求項1記載の多孔膜セパレータの製造方法。 The method for producing a porous membrane separator according to claim 1, wherein the water-soluble polymer compound has an acidic group.
  3.  前記酸性基が、カルボキシル基である、請求項2記載の多孔膜セパレータの製造方法。 The method for producing a porous membrane separator according to claim 2, wherein the acidic group is a carboxyl group.
  4.  前記多孔膜における前記低分子化合物の濃度が、多孔膜の単位重量あたり1000ppm以下である、請求項1~3のいずれか一項に記載の多孔膜セパレータの製造方法。 The method for producing a porous membrane separator according to any one of claims 1 to 3, wherein the concentration of the low molecular compound in the porous membrane is 1000 ppm or less per unit weight of the porous membrane.
  5.  前記低分子化合物が、アンモニアである、請求項1~4のいずれか一項に記載の多孔膜セパレータの製造方法。 The method for producing a porous membrane separator according to any one of claims 1 to 4, wherein the low-molecular compound is ammonia.
  6.  前記水溶性高分子化合物が、カルボキシメチルセルロース、及び、下記式(I)で表される構造単位を含むマレイミド-マレイン酸共重合体からなる群より選ばれる少なくとも1種である、請求項1~5のいずれか一項に記載の多孔膜セパレータの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)において、Rは水素原子、炭素数1~6のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、炭素数1~6のアルキル基で置換されたフェニル基、炭素数1~6のアルキルオキシ基で置換されたフェニル基、ハロゲン原子で置換されたフェニル基及びヒドロキシフェニル基からなる群から選ばれる少なくとも一種である。)
    The water-soluble polymer compound is at least one selected from the group consisting of carboxymethylcellulose and a maleimide-maleic acid copolymer containing a structural unit represented by the following formula (I). The manufacturing method of the porous membrane separator as described in any one of these.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, (It is at least one selected from the group consisting of a phenyl group substituted with an alkyloxy group having 1 to 6 carbon atoms, a phenyl group substituted with a halogen atom, and a hydroxyphenyl group.)
  7.  電極と、請求項1~6のいずれか一項に記載の製造方法で製造された多孔膜セパレータとを加圧接着することを含む、リチウムイオン二次電池用積層体の製造方法。 A method for producing a laminate for a lithium ion secondary battery, comprising pressure bonding an electrode and a porous membrane separator produced by the production method according to any one of claims 1 to 6.
PCT/JP2013/075362 2012-09-28 2013-09-19 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries WO2014050707A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031776.3A CN104364938B (en) 2012-09-28 2013-09-19 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries
JP2014538445A JP6119759B2 (en) 2012-09-28 2013-09-19 Method for producing porous membrane separator for lithium ion secondary battery, and method for producing laminate for lithium ion secondary battery
KR1020147035289A KR102090111B1 (en) 2012-09-28 2013-09-19 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012218327 2012-09-28
JP2012-218327 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050707A1 true WO2014050707A1 (en) 2014-04-03

Family

ID=50388112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075362 WO2014050707A1 (en) 2012-09-28 2013-09-19 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries

Country Status (4)

Country Link
JP (1) JP6119759B2 (en)
KR (1) KR102090111B1 (en)
CN (1) CN104364938B (en)
WO (1) WO2014050707A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009579A (en) * 2014-06-24 2016-01-18 三菱製紙株式会社 Separator for lithium ion secondary battery
CN108260363A (en) * 2015-08-25 2018-07-06 株式会社Lg化学 The composite diaphragm for electrochemical element including adhesion coating and the electrochemical element including the composite diaphragm
JPWO2017090242A1 (en) * 2015-11-27 2018-09-13 日本ゼオン株式会社 Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
WO2019013218A1 (en) * 2017-07-12 2019-01-17 日本ゼオン株式会社 Method for producing member for electrochemical elements and laminate for electrochemical elements
JP2020187958A (en) * 2019-05-16 2020-11-19 Dic株式会社 Aqueous resin composition for lithium ion secondary battery separator heat resistant layer binder
WO2021039672A1 (en) * 2019-08-30 2021-03-04 日本ゼオン株式会社 Binder composition for heat-resistant layers of nonaqueous secondary batteries, slurry composition for heat-resistant layers of nonaqueous secondary batteries, heat-resistant layer for nonaqueous secondary batteries, and nonaqueous secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285978B1 (en) * 2017-04-14 2021-08-04 주식회사 엘지에너지솔루션 Secondry battery and manufacturing method for the same
JPWO2020175292A1 (en) * 2019-02-28 2020-09-03
JP7281086B2 (en) * 2019-10-09 2023-05-25 トヨタ自動車株式会社 Method for manufacturing porous body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167948A (en) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2007059271A (en) * 2005-08-25 2007-03-08 Nitto Denko Corp Adhesive supporting porous film for separator of battery, and manufacturing method for battery using it
JP2011008966A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayer porous membrane
JP2011005670A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayered porous film
JP2011077052A (en) * 2009-02-24 2011-04-14 Teijin Ltd Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2013035795A1 (en) * 2011-09-08 2013-03-14 日本ゼオン株式会社 Slurry for secondary batteries

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486735Y1 (en) 1969-04-10 1973-02-21
TW431001B (en) * 1998-08-31 2001-04-21 Toshiba Corp Nonaqueous electrolytic secondary battery and manufacture method thereof
JP4060465B2 (en) * 1998-11-02 2008-03-12 Tdk株式会社 Polymer solid electrolyte and electrochemical device using the same
US7318984B2 (en) * 2002-05-17 2008-01-15 Nitto Denko Corporation Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
CN100456532C (en) * 2004-05-14 2009-01-28 松下电器产业株式会社 Lithium-ion secondary battery and its manufacturing method
JP4657019B2 (en) 2005-06-15 2011-03-23 株式会社デンソー Non-aqueous electrolyte secondary battery
CA2560044C (en) * 2005-10-03 2010-11-23 Rohm And Haas Company Composite materials and methods of making the same
CN101932639B (en) 2008-01-30 2013-04-17 日本瑞翁株式会社 Porous film and secondary battery electrode
JP5390131B2 (en) 2008-06-26 2014-01-15 株式会社デンソー Non-aqueous electrolyte secondary battery electrode binder, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the binder
JP5328034B2 (en) * 2009-09-04 2013-10-30 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same
EP2680343B1 (en) * 2011-02-25 2016-11-30 Zeon Corporation Porous membrane for secondary battery, slurry for secondary battery porous membrane and secondary battery
CN102244223A (en) * 2011-05-26 2011-11-16 东莞新能源科技有限公司 Electrochemical device and inorganic/organic composite porous membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167948A (en) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2005353584A (en) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
JP2007059271A (en) * 2005-08-25 2007-03-08 Nitto Denko Corp Adhesive supporting porous film for separator of battery, and manufacturing method for battery using it
JP2011077052A (en) * 2009-02-24 2011-04-14 Teijin Ltd Porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011008966A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayer porous membrane
JP2011005670A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayered porous film
WO2013035795A1 (en) * 2011-09-08 2013-03-14 日本ゼオン株式会社 Slurry for secondary batteries

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009579A (en) * 2014-06-24 2016-01-18 三菱製紙株式会社 Separator for lithium ion secondary battery
CN108260363A (en) * 2015-08-25 2018-07-06 株式会社Lg化学 The composite diaphragm for electrochemical element including adhesion coating and the electrochemical element including the composite diaphragm
CN108260363B (en) * 2015-08-25 2022-02-01 株式会社Lg化学 Composite separator for electrochemical element comprising adhesive layer, and electrochemical element comprising same
JPWO2017090242A1 (en) * 2015-11-27 2018-09-13 日本ゼオン株式会社 Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
WO2019013218A1 (en) * 2017-07-12 2019-01-17 日本ゼオン株式会社 Method for producing member for electrochemical elements and laminate for electrochemical elements
CN110832680A (en) * 2017-07-12 2020-02-21 日本瑞翁株式会社 Method for producing member for electrochemical element, and laminate for electrochemical element
JPWO2019013218A1 (en) * 2017-07-12 2020-05-07 日本ゼオン株式会社 Method for manufacturing member for electrochemical device and laminate for electrochemical device
JP7088189B2 (en) 2017-07-12 2022-06-21 日本ゼオン株式会社 Manufacturing method of members for electrochemical elements and laminates for electrochemical elements
CN110832680B (en) * 2017-07-12 2022-08-26 日本瑞翁株式会社 Method for producing member for electrochemical element, and laminate for electrochemical element
JP2020187958A (en) * 2019-05-16 2020-11-19 Dic株式会社 Aqueous resin composition for lithium ion secondary battery separator heat resistant layer binder
WO2021039672A1 (en) * 2019-08-30 2021-03-04 日本ゼオン株式会社 Binder composition for heat-resistant layers of nonaqueous secondary batteries, slurry composition for heat-resistant layers of nonaqueous secondary batteries, heat-resistant layer for nonaqueous secondary batteries, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP6119759B2 (en) 2017-04-26
CN104364938A (en) 2015-02-18
KR102090111B1 (en) 2020-03-17
KR20150063020A (en) 2015-06-08
CN104364938B (en) 2017-03-22
JPWO2014050707A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6112115B2 (en) Porous membrane separator for secondary battery, method for producing the same, and secondary battery
JP6119759B2 (en) Method for producing porous membrane separator for lithium ion secondary battery, and method for producing laminate for lithium ion secondary battery
JP6024663B2 (en) Slurry for secondary battery
JP6601404B2 (en) Composition for porous membrane of lithium ion secondary battery, porous membrane for lithium ion secondary battery and lithium ion secondary battery
WO2015129408A1 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP6673341B2 (en) Composition for secondary battery porous membrane
JP6760280B2 (en) Composition for secondary battery porous membrane, porous membrane for secondary battery and secondary battery
WO2013146515A1 (en) Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
KR102335861B1 (en) A binder composition for a functional layer of a non-aqueous secondary battery, a composition for a functional layer of a non-aqueous secondary battery, a functional layer for a non-aqueous secondary battery, a battery member for a non-aqueous secondary battery, and a non-aqueous secondary battery
JP7342704B2 (en) Composition for nonaqueous secondary battery functional layer, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014032758A (en) Method of manufacturing electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020090395A1 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, separator for non-aqueous secondary battery, and non-aqueous secondary battery
CN111108629B (en) Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP7388506B2 (en) Non-aqueous secondary battery
WO2019065370A1 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
JP6233404B2 (en) Slurry for porous membrane of secondary battery separator, porous membrane for secondary battery separator and method for producing the same, separator for secondary battery, and secondary battery
WO2018163761A1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20200024791A (en) Binder composition for electrochemical device, slurry composition for electrochemical device functional layer, slurry composition for electrochemical device adhesive layer, and composite film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538445

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147035289

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842229

Country of ref document: EP

Kind code of ref document: A1