JP2016009579A - Separator for lithium ion secondary battery - Google Patents

Separator for lithium ion secondary battery Download PDF

Info

Publication number
JP2016009579A
JP2016009579A JP2014129128A JP2014129128A JP2016009579A JP 2016009579 A JP2016009579 A JP 2016009579A JP 2014129128 A JP2014129128 A JP 2014129128A JP 2014129128 A JP2014129128 A JP 2014129128A JP 2016009579 A JP2016009579 A JP 2016009579A
Authority
JP
Japan
Prior art keywords
separator
pigment
inorganic pigment
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014129128A
Other languages
Japanese (ja)
Other versions
JP2016009579A5 (en
Inventor
加藤 真
Makoto Kato
真 加藤
友洋 佐藤
Tomohiro Sato
友洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2014129128A priority Critical patent/JP2016009579A/en
Publication of JP2016009579A publication Critical patent/JP2016009579A/en
Publication of JP2016009579A5 publication Critical patent/JP2016009579A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator by using which a lithium ion secondary battery high in safety, less in deterioration with age of battery characteristics and capable of obtaining an extremely low internal resistance can be manufactured.SOLUTION: A separator for a lithium ion secondary battery is provided with a layer including an inorganic pigment in a non-woven fabric. In the inorganic pigment, the surface of a pigment particle comprises magnesium hydroxide, and the inside of the pigment particle is mainly composed of magnesium oxide.

Description

本発明は、リチウムイオン二次電池用セパレータに関する。   The present invention relates to a separator for a lithium ion secondary battery.

リチウムイオン二次電池(以下、「電池」と略記する場合がある)には、正負極間の接触を防ぐためのセパレータが用いられている。   In a lithium ion secondary battery (hereinafter sometimes abbreviated as “battery”), a separator for preventing contact between positive and negative electrodes is used.

リチウムイオン二次電池用セパレータ(以下、「セパレータ」と略記する場合がある)として従来用いられているポリエチレン又はポリプロピレンからなる多孔性フィルムは、耐熱性が低く、安全上重大な問題を抱えている。すなわち、このような多孔性フィルムをセパレータとして用いた電池は、内部短絡等の原因により電池内部で局部的な発熱が生じた場合、発熱部位周辺のセパレータが収縮して内部短絡がさらに拡大し、暴走的に発熱して発火・破裂等の重大な事象に至ることがある。   A porous film made of polyethylene or polypropylene, which is conventionally used as a separator for a lithium ion secondary battery (hereinafter sometimes abbreviated as “separator”), has low heat resistance and has serious safety problems. . That is, when a battery using such a porous film as a separator causes local heat generation inside the battery due to an internal short circuit or the like, the separator around the heat generation site contracts and the internal short circuit further expands. Runaway fever may lead to serious events such as ignition and rupture.

このような問題に対し、ポリエチレンテレフタレート(PET)等の耐熱性の高い繊維からなる不織布に、アルミナ等の無機顔料及び有機ポリマーバインダーを塗工してなるセパレータが提案されている(例えば、特許文献1参照)。   For such a problem, a separator is proposed in which an inorganic pigment such as alumina and an organic polymer binder are coated on a nonwoven fabric made of highly heat-resistant fibers such as polyethylene terephthalate (PET) (for example, patent document). 1).

しかし、塗工層にアルミニウム系無機顔料を用いたセパレータには、電解液の分解を促進し、電池特性の経年劣化が促進される場合があるという問題があった。このような問題を回避するため、無機顔料として、酸化マグネシウム、水酸化マグネシウム等のマグネシウム系無機顔料を用いたセパレータが提案されている(例えば、特許文献2参照)。   However, a separator using an aluminum-based inorganic pigment for the coating layer has a problem that the decomposition of the electrolytic solution is accelerated and the deterioration of battery characteristics over time may be promoted. In order to avoid such a problem, a separator using a magnesium-based inorganic pigment such as magnesium oxide or magnesium hydroxide has been proposed as an inorganic pigment (see, for example, Patent Document 2).

しかし、近年、リチウムイオン二次電池用セパレータに求められる性能が高度化しており、特に急速充放電を可能にするために求められている極めて低い内部抵抗という性能は、アルミニウム系・マグネシウム系いずれの無機顔料を用いたセパレータの場合においても、十分に実現されているとは言い難かった。   However, in recent years, the performance required for lithium ion secondary battery separators has been advanced, and in particular, the performance of extremely low internal resistance required to enable rapid charge / discharge has been achieved for either aluminum or magnesium. Even in the case of a separator using an inorganic pigment, it was difficult to say that it was sufficiently realized.

特表2009−507353号公報Special table 2009-507353 特開2012−134024号公報JP 2012-134024 A

本発明の課題は、リチウムイオン二次電池用セパレータに関し、これを用いた電池の安全性が高く、電池特性の経年劣化が小さく、かつ極めて低い内部抵抗の電池が得られるセパレータを提供することにある。   An object of the present invention relates to a separator for a lithium ion secondary battery, and to provide a separator in which a battery using the same is high, a battery characteristic is little deteriorated over time, and a battery having an extremely low internal resistance can be obtained. is there.

上記課題を解決するために鋭意研究し、下記手段を見出した。   In order to solve the above problems, intensive research was conducted and the following means were found.

不織布に無機顔料を含む層を設けてなるリチウムイオン二次電池用セパレータであって、無機顔料が、顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料であることを特徴とするリチウムイオン二次電池用セパレータ。   A separator for a lithium ion secondary battery in which a layer containing an inorganic pigment is provided on a non-woven fabric, wherein the inorganic pigment is an inorganic pigment whose pigment particle surface is composed of magnesium hydroxide and whose pigment particles are mainly composed of magnesium oxide. A separator for a lithium ion secondary battery.

本発明のセパレータを用いることで、安全性が高く、電池特性の経年劣化が小さく、かつ電池の内部抵抗が極めて低いリチウムイオン二次電池を製造することができる。   By using the separator of the present invention, it is possible to produce a lithium ion secondary battery with high safety, small deterioration of battery characteristics over time, and extremely low internal resistance of the battery.

本発明のセパレータは、顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料を含む層を不織布に設けてなることを特徴とする。本発明のセパレータは、顔料粒子表面が水酸化マグネシウムであり、顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料を用いる点で、従来提案されている、顔料粒子全体が水酸化マグネシウムである無機顔料を用いたセパレータや顔料粒子全体が酸化マグネシウムである無機顔料を用いたセパレータとは異なる。顔料粒子表面が水酸化マグネシウムであり、顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料を用いることで、低い内部抵抗が得られる理由は究明できていないが、酸化マグネシウム粒子の形状と、水酸化マグネシウム粒子の表面物性を併せ持つ粒子であることが、内部抵抗に対し有利に作用しているものと推察している。   The separator of the present invention is characterized in that a layer containing an inorganic pigment whose pigment particle surface is made of magnesium hydroxide and the inside of the pigment particle is mainly composed of magnesium oxide is provided on the nonwoven fabric. The separator according to the present invention is a conventionally proposed inorganic pigment in which the entire pigment particle is magnesium hydroxide in that the pigment particle surface is magnesium hydroxide and the inside of the pigment particle is mainly composed of magnesium oxide. And separators using inorganic pigments in which the entire pigment particles are magnesium oxide. The reason why low internal resistance can be obtained by using an inorganic pigment whose pigment particle surface is magnesium hydroxide and the inside of the pigment particle is mainly composed of magnesium oxide has not been investigated. It is presumed that the particles having the surface properties of magnesium particles have an advantageous effect on the internal resistance.

本発明において、無機顔料の組成は、作製されたセパレータの断面において観察される顔料粒子表面及び断面を、走査型電子顕微鏡に備えられたエネルギー分散型X線分析装置により分析することによって調べることができる。本発明において、「顔料粒子表面が水酸化マグネシウムからなる」とは、X線光電子分光法により求められる酸素原子:マグネシウム原子の原子数比が1.8〜2.1であることを言う。また、「顔料粒子内部が酸化マグネシウムを主体としてなる」とは、エネルギー分散型X線分析装置により求められる酸素原子:マグネシウム原子の原子数比が0.9〜1.6であることを言う。X線光電子分光法は、試料の表面から数nmの領域における原子組成が測定されるのに対し、エネルギー分散型X線分析装置は、試料の表面から1μm程度の領域における原子組成が測定されるため、両者を併用することによって、顔料粒子の表面及び内部それぞれの原子組成を測定することができる。酸化マグネシウム及び水酸化マグネシウムにおいて、量論的には、酸素原子:マグネシウム原子の原子数比が1.0を下回ることや、2.0を超えることは無いが、これら測定方法による分析結果は、5%程度の誤差を含むことがあるため、0.9と言った低い原子数比や、2.1と言った高い原子数比が観測される場合がある。   In the present invention, the composition of the inorganic pigment can be examined by analyzing the surface and cross section of the pigment particles observed in the cross section of the produced separator using an energy dispersive X-ray analyzer provided in the scanning electron microscope. it can. In the present invention, “the pigment particle surface is made of magnesium hydroxide” means that the atomic ratio of oxygen atom: magnesium atom determined by X-ray photoelectron spectroscopy is 1.8 to 2.1. Further, “the inside of the pigment particle is mainly composed of magnesium oxide” means that the atomic ratio of oxygen atom: magnesium atom determined by an energy dispersive X-ray analyzer is 0.9 to 1.6. In the X-ray photoelectron spectroscopy, the atomic composition in a region of several nm from the surface of the sample is measured, whereas in the energy dispersive X-ray analyzer, the atomic composition in a region of about 1 μm from the surface of the sample is measured. Therefore, by using both in combination, the atomic composition of the surface and the inside of the pigment particle can be measured. In magnesium oxide and magnesium hydroxide, stoichiometrically, the atomic ratio of oxygen atom: magnesium atom does not fall below 1.0 or exceed 2.0, but the analysis results by these measuring methods are as follows: Since an error of about 5% may be included, a low atomic ratio such as 0.9 or a high atomic ratio such as 2.1 may be observed.

顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料は、酸化マグネシウム粒子を水中での分散状態に置き、その表面の酸化マグネシウムを、加水分解することによって得られる。酸化マグネシウムの加水分解では、MgO+HO→Mg(OH)の反応によって、酸化マグネシウムが水酸化マグネシウムへ変換する。しかし、酸化マグネシウム粒子を長時間水中での分散状態に置いた場合には、顔料粒子の内部までが水酸化マグネシウムに高度に変換されてしまい、本発明の効果である内部抵抗の低減を好ましい水準で得ることができない。本発明において、酸化マグネシウム粒子を水中での分散状態に置く時間の好ましい範囲は、酸化マグネシウム粒子の種類や、添加される他の材料によっても異なるが、概ね2時間〜200時間の範囲にある。 An inorganic pigment in which the pigment particle surface is made of magnesium hydroxide and the inside of the pigment particle is mainly composed of magnesium oxide is obtained by placing the magnesium oxide particles in a dispersed state in water and hydrolyzing the magnesium oxide on the surface. It is done. In the hydrolysis of magnesium oxide, magnesium oxide is converted into magnesium hydroxide by a reaction of MgO + H 2 O → Mg (OH) 2 . However, when the magnesium oxide particles are left in a dispersed state in water for a long time, the inside of the pigment particles is highly converted to magnesium hydroxide, and the internal resistance reduction which is an effect of the present invention is a preferable level. Can't get in. In the present invention, the preferred range of the time for placing the magnesium oxide particles in a dispersed state in water varies depending on the type of the magnesium oxide particles and other materials added, but is generally in the range of 2 hours to 200 hours.

なお、水酸化マグネシウムと酸化マグネシウムが複合した無機顔料としては、上記の酸化マグネシウム粒子を水中での分散状態に置いて得られた無機顔料の他に、水酸化マグネシウムを低温焼成するか又は短時間焼成し、部分的に脱水して酸化マグネシウムとした無機顔料が挙げられる。しかし、このような無機顔料は、顔料粒子表面において酸化マグネシウムの割合が高く、顔料粒子の内部において水酸化マグネシウムの割合が高いか、又は顔料粒子表面と内部とで、両者の割合が変わらない。そのため、このような無機顔料を用いたセパレータでは、本発明の効果である極めて内部抵抗の低い電池を得ることはできない   In addition, as an inorganic pigment in which magnesium hydroxide and magnesium oxide are combined, in addition to the inorganic pigment obtained by placing the above magnesium oxide particles in a dispersed state in water, magnesium hydroxide is calcined at low temperature or for a short time. Examples thereof include inorganic pigments that are baked and partially dehydrated to form magnesium oxide. However, such an inorganic pigment has a high ratio of magnesium oxide on the surface of the pigment particles and a high ratio of magnesium hydroxide in the interior of the pigment particles, or the ratio of both does not change between the surface of the pigment particles and the inside. Therefore, a separator using such an inorganic pigment cannot obtain a battery having an extremely low internal resistance, which is an effect of the present invention.

本発明のセパレータに用いる不織布は、特に制限されないが、耐熱性の高いセパレータを製造するという目的を達成するためには、不織布についても耐熱性の高いものであることが好ましい。このような観点からは、不織布が融点の高い繊維から構成されることが好ましい。本発明のセパレータに用いる不織布を形成する繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート等のポリエステル、ポリアクリロニトリル等のアクリル、6,6ナイロン、6ナイロン等のポリアミド等の各種合成繊維、木材パルプ、麻パルプ、コットンパルプ等の各種セルロースパルプ、レーヨン、リヨセルなどのセルロース系再生繊維等が例示される。これらの中で、耐熱性、低吸湿性等の理由から、ポリエステル又はポリプロピレンを主体とした不織布が好ましい。不織布を形成する繊維の好ましい繊維径は、塗液の物性にも依存するが、1〜8μmの範囲にあることが好ましい。不織布の厚みとしては、8〜25μmの範囲にあることが好ましい。   Although the nonwoven fabric used for the separator of this invention is not restrict | limited in particular, In order to achieve the objective of manufacturing a separator with high heat resistance, it is preferable that a nonwoven fabric is also high heat resistance. From such a viewpoint, it is preferable that the nonwoven fabric is composed of fibers having a high melting point. Examples of fibers forming the nonwoven fabric used in the separator of the present invention include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate, polyethylene isophthalate, and polyethylene naphthalate, acrylics such as polyacrylonitrile, 6,6 nylon, and 6 nylon. Examples include various synthetic fibers such as polyamide, various cellulose pulps such as wood pulp, hemp pulp and cotton pulp, and cellulose-based regenerated fibers such as rayon and lyocell. Among these, non-woven fabrics mainly composed of polyester or polypropylene are preferred for reasons such as heat resistance and low hygroscopicity. Although the preferable fiber diameter of the fiber which forms a nonwoven fabric is dependent also on the physical property of a coating liquid, it is preferable to exist in the range of 1-8 micrometers. The thickness of the nonwoven fabric is preferably in the range of 8 to 25 μm.

本発明において、無機顔料を含む層(塗層)にバインダーを含むことが好ましく、高い塗層強度が得られる。バインダーとしては、各種の有機ポリマーを用いることができる。その例としては、スチレン−ブタジエン共重合エラストマー、アクリロニトリル−ブタジエン共重合エラストマー、(メタ)アクリル酸エステル重合体エラストマー、スチレン−(メタ)アクリル酸エステル重合体エラストマー、フッ化ビニリデン重合体等の各種有機ポリマーが挙げられる。   In the present invention, the layer containing the inorganic pigment (coating layer) preferably contains a binder, and high coating layer strength is obtained. Various organic polymers can be used as the binder. Examples include various organic materials such as styrene-butadiene copolymer elastomers, acrylonitrile-butadiene copolymer elastomers, (meth) acrylic acid ester polymer elastomers, styrene- (meth) acrylic acid ester polymer elastomers, and vinylidene fluoride polymers. Polymers.

本発明において、塗層を形成するために用いる塗液には、前記無機顔料及びバインダーの他に、ポリアクリル酸、カルボキシメチルセルロースナトリウム等の各種分散剤、ヒドロキシエチルセルロース、カルボキシメチルセルロースナトリウム、ポリエチレンオキサイド等の各種増粘剤、各種の濡れ剤、防腐剤、消泡剤等の各種添加剤を、必要に応じて配合することもできる。   In the present invention, the coating liquid used to form the coating layer includes, in addition to the inorganic pigment and binder, various dispersing agents such as polyacrylic acid and sodium carboxymethyl cellulose, hydroxyethyl cellulose, sodium carboxymethyl cellulose, polyethylene oxide and the like. Various additives such as various thickeners, various wetting agents, preservatives, and antifoaming agents can be blended as necessary.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、断りのない限り、全て質量基準である。また、塗工量は絶乾塗工量である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and part are all based on mass unless otherwise specified. The coating amount is an absolutely dry coating amount.

<不織布の作製>
繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維50質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)50質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、円網型抄紙機により抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET系短繊維同士、及びバインダー用PET系短繊維と配向結晶化PET系短繊維の交点を接着させて強度を発現させ、目付12g/mの不織布とした。さらに、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み18μmの不織布を作製した。
<Production of non-woven fabric>
50 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.1 dtex (average fiber diameter of 3.0 μm) and a fiber length of 3 mm, a fineness of 0.2 dtex (average fiber diameter of 4.3 μm), and a single fiber length of 3 mm 50 parts by mass of a PET short fiber for a one-component binder (softening point 120 ° C., melting point 230 ° C.) was dispersed in water by a pulper to prepare a uniform papermaking slurry having a concentration of 1% by mass. This slurry for papermaking is made up by a circular net type paper machine, and the PET short fibers for binders and the intersections of PET short fibers for binders and oriented crystallized PET short fibers are bonded by a cylinder dryer at 135 ° C. It was made to express strength and it was set as the nonwoven fabric of 12 g / m < 2 > of fabric weights. Furthermore, this nonwoven fabric was subjected to conditions of a hot roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min, using a 1-nip thermal calender consisting of a dielectric heating jacket roll (metal hot roll) and an elastic roll. To produce a nonwoven fabric having a thickness of 18 μm.

<塗液A>
水80部にマレイン酸−アクリル酸共重合体からなる分散剤0.4部を溶解し、体積平均粒子径0.7μm、比表面積11m/gの水酸化マグネシウム100部を投入し、ローター−ステーター型分散機により30分間分散した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩の0.5%水溶液を200部(固形分として1.0部)、スチレン−ブタジエンラテックス(固形分率48質量%)3部(固形分として1.5部)を添加した後15分間撹拌し、水を追加して、固形分率25質量%の塗液Aを調製した。
<Coating liquid A>
In 80 parts of water, 0.4 part of a dispersant comprising a maleic acid-acrylic acid copolymer is dissolved, and 100 parts of magnesium hydroxide having a volume average particle diameter of 0.7 μm and a specific surface area of 11 m 2 / g is added. Dispersion was performed for 30 minutes by a stator type disperser. Next, 200 parts (1.0 part as a solid content) of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1 mass% aqueous solution, and a styrene-butadiene latex (solid content ratio: 48 mass) %) 3 parts (1.5 parts as a solid content) was added and stirred for 15 minutes, and water was added to prepare a coating liquid A having a solid content rate of 25 mass%.

<塗液B>
水80部にマレイン酸−アクリル酸共重合体からなる分散剤0.4部を溶解し、体積平均粒子径0.8μm、比表面積10m/gの酸化マグネシウム100部を投入し、ローター−ステーター型分散機により30分間分散した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩の0.5%水溶液を200部(固形分として1.0部)、スチレン−ブタジエンラテックス(固形分率48質量%)3部(固形分として1.5部)を添加した後15分間撹拌し、水を追加して、固形分率25質量%の塗液Bを調製した。
<Coating fluid B>
In 80 parts of water, 0.4 part of a dispersant composed of a maleic acid-acrylic acid copolymer is dissolved, and 100 parts of magnesium oxide having a volume average particle diameter of 0.8 μm and a specific surface area of 10 m 2 / g is added to the rotor-stator. Dispersed for 30 minutes with a mold disperser. Next, 200 parts (1.0 part as a solid content) of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1 mass% aqueous solution, and a styrene-butadiene latex (solid content ratio: 48 mass) %) 3 parts (1.5 parts as a solid content) was added and stirred for 15 minutes, and water was added to prepare a coating liquid B having a solid content rate of 25 mass%.

<塗液C>
水80部にマレイン酸−アクリル酸共重合体からなる分散剤0.4部を溶解し、体積平均粒子径0.8μm、比表面積10m/gの部分焼成水酸化マグネシウム100部を投入し、ローター−ステーター型分散機により30分間分散した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩の0.5%水溶液を200部(固形分として1.0部)、スチレン−ブタジエンラテックス(固形分率48質量%)3部(固形分として1.5部)を添加した後15分間撹拌し、水を追加して、固形分率25質量%の塗液Cを調製した。
<Coating liquid C>
In 80 parts of water, 0.4 part of a dispersant comprising a maleic acid-acrylic acid copolymer is dissolved, and 100 parts of partially calcined magnesium hydroxide having a volume average particle diameter of 0.8 μm and a specific surface area of 10 m 2 / g is added. The dispersion was performed for 30 minutes by a rotor-stator type disperser. Next, 200 parts (1.0 part as a solid content) of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1 mass% aqueous solution, and a styrene-butadiene latex (solid content ratio: 48 mass) %) 3 parts (1.5 parts as a solid content) was added and stirred for 15 minutes, and water was added to prepare a coating liquid C having a solid content of 25% by mass.

<セパレータA1の作製>
塗液Aを調製してから10分経過後、前記不織布上に、ロッドコーターを用いて絶乾塗工量が8g/mとなるように塗工し、熱風乾燥機により乾燥して、厚み25μmのセパレータAを作製した。
<Preparation of separator A1>
After 10 minutes from the preparation of the coating liquid A, it was coated on the non-woven fabric using a rod coater so that the absolute dry coating amount was 8 g / m 2, and dried by a hot air dryer. A separator A having a thickness of 25 μm was produced.

<セパレータA2、B1〜B3、C1〜C2の作製>
各面に塗工した塗液の種類、塗液を調製してから塗工までの時間を表1のように変更した以外は、セパレータA1と同様にして、セパレータA2、B1〜B3、C1〜C2を作製した。
<Preparation of separators A2, B1-B3, C1-C2>
Separators A2, B1 to B3, C1 to C1 are the same as separator A1, except that the type of coating liquid applied to each surface and the time from preparation of the coating liquid to coating are changed as shown in Table 1. C2 was produced.

Figure 2016009579
Figure 2016009579

<評価用電池の作製>
正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウムの1mol/L炭酸ジエチル/炭酸エチレン(容量比7/3)混合溶媒溶液、セパレータに前記セパレータA1〜A2、B1〜B3、C1〜C2を用いた、設計容量30mAhの評価用電池を作製した。なお、セパレータの塗工面は、負極に対向するようにした。
<Production of evaluation battery>
Lithium manganate as the positive electrode, mesocarbon microbeads as the negative electrode, 1 mol / L diethyl carbonate / ethylene carbonate (volume ratio 7/3) mixed solvent solution of lithium hexafluorophosphate as the electrolyte, and separators A1 to A2, B1 as separators A battery for evaluation having a design capacity of 30 mAh using -B3 and C1-C2 was produced. In addition, the coating surface of the separator was made to oppose the negative electrode.

<内部抵抗の評価>
作製した各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクルのシーケンスにて、5サイクルの慣らし充放電を行った後、60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)を測定、を行い、内部抵抗Ω=(電圧a−電圧b)/(90mA−6mA)の式で内部抵抗を求めた。結果を表1に記す。
<Evaluation of internal resistance>
About each produced battery, 60mA constant current charge-> 4.2V constant voltage charge (1 hour)-> constant current discharge at 60mA-> When it becomes 2.8V, 5 cycles of acclimatization charge-discharge are performed in the next cycle sequence. Then, 60 mA constant current charge → 4.2 V constant voltage charge (1 hour) → 30 mA constant current discharge at 6 mA (discharge amount 3 mAh) → Measure the voltage just before the end of discharge (voltage a) → 60 mA constant current charge → 4 .2V constant voltage charging (1 hour) → constant current discharge at 90 mA for 2 minutes (discharge amount 3 mAh) → measurement of voltage (voltage b) just before the end of discharge, internal resistance Ω = (voltage a−voltage b) / The internal resistance was determined by the formula (90 mA-6 mA). The results are shown in Table 1.

<無機顔料の原子組成>
作製した各セパレータについて、無機顔料の顔料粒子表面における酸素/マグネシウムの原子数比を、X線光電子分光装置(装置名:PHI5400、アルバック・ファイ株式会社)により、無機顔料の内部における酸素/マグネシウムの原子数比を、走査型電子顕微鏡(装置名:JSM−6610、日本電子株式会社)に備えられたエネルギー分散型X線分析装置(装置名:6743A、サーモサイエンティフィック株式会社)により分析した。結果を表1に示す。
<Atomic composition of inorganic pigment>
About each produced separator, the atomic ratio of oxygen / magnesium on the pigment particle surface of an inorganic pigment was measured with an X-ray photoelectron spectrometer (device name: PHI5400, ULVAC-PHI Co., Ltd.). The atomic ratio was analyzed by an energy dispersive X-ray analyzer (device name: 6743A, Thermo Scientific Co., Ltd.) provided in a scanning electron microscope (device name: JSM-6610, JEOL Ltd.). The results are shown in Table 1.

表1に記すように、不織布に無機顔料を含む層を設けてなるリチウムイオン二次電池用セパレータであって、当該無機顔料が、顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料であることによって、電池の内部抵抗を低くすることができる。すなわち、顔料粒子表面及び内部がいずれも水酸化マグネシウムからなるセパレータA1及びA2の内部抵抗はいずれも4.4Ωであり、顔料粒子表面が水酸化マグネシウムと酸化マグネシウムの混合物からなり、顔料粒子内部が酸化マグネシウムを主体としてなるセパレータB1の内部抵抗は4.3Ωであり、顔料粒子表面及び内部がいずれも水酸化マグネシウムと酸化マグネシウムの混合物からなるセパレータC1の内部抵抗は4.4Ωであり、顔料粒子表面が水酸化マグネシウムからなり、顔料粒子内部が酸化マグネシウムを主体としていないセパレータC2の内部抵抗は4.3Ωであった。これらに対し、顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなるセパレータB2及びB3の内部抵抗はいずれも3.9Ωと低い。   As shown in Table 1, a separator for a lithium ion secondary battery in which a layer containing an inorganic pigment is provided on a non-woven fabric, the inorganic pigment is made of magnesium hydroxide on the pigment particle surface, and the inside of the pigment particle is oxidized. By using an inorganic pigment mainly composed of magnesium, the internal resistance of the battery can be lowered. That is, the internal resistances of the separators A1 and A2, both of which are made of magnesium hydroxide on the pigment particle surface and inside, are 4.4Ω, the pigment particle surface is made of a mixture of magnesium hydroxide and magnesium oxide, The internal resistance of the separator B1 mainly composed of magnesium oxide is 4.3Ω, and the internal resistance of the separator C1 made of a mixture of magnesium hydroxide and magnesium oxide both on the surface and inside of the pigment particles is 4.4Ω. The internal resistance of the separator C2 whose surface is made of magnesium hydroxide and whose pigment particles are mainly composed of magnesium oxide was 4.3Ω. In contrast, the internal resistance of separators B2 and B3, in which the pigment particle surface is made of magnesium hydroxide and the inside of the pigment particle is mainly composed of magnesium oxide, is as low as 3.9Ω.

また、本発明のセパレータは、ポリエチレンテレフタレート(PET)等の耐熱性の高い繊維からなる不織布に無機顔料を含む層を設けてなるため、耐熱性が高く、これを用いて製造された電池の安全性が高い。   Moreover, since the separator of this invention provides the layer containing an inorganic pigment in the nonwoven fabric which consists of fiber with high heat resistance, such as a polyethylene terephthalate (PET), it has high heat resistance, and the safety | security of the battery manufactured using this High nature.

また、本発明のセパレータは、マグネシウム系無機顔料を用いているため、電解液の分解を促進することが無く、電池特性の経年劣化が小さい。   Moreover, since the separator of the present invention uses a magnesium-based inorganic pigment, it does not promote the decomposition of the electrolytic solution, and the deterioration of battery characteristics over time is small.

本発明は、電池の安全性が高く、電池特性の経年劣化が小さく、かつ極めて低い内部抵抗の電池が得られるセパレータの製造に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for manufacturing a separator that provides a battery with high battery safety, low aging deterioration of battery characteristics, and extremely low internal resistance.

Claims (1)

不織布に無機顔料を含む層を設けてなるリチウムイオン二次電池用セパレータであって、無機顔料が、顔料粒子表面が水酸化マグネシウムからなり、かつ顔料粒子内部が酸化マグネシウムを主体としてなる無機顔料であることを特徴とするリチウムイオン二次電池用セパレータ。   A separator for a lithium ion secondary battery in which a layer containing an inorganic pigment is provided on a non-woven fabric, wherein the inorganic pigment is an inorganic pigment whose pigment particle surface is composed of magnesium hydroxide and whose pigment particles are mainly composed of magnesium oxide. A separator for a lithium ion secondary battery.
JP2014129128A 2014-06-24 2014-06-24 Separator for lithium ion secondary battery Pending JP2016009579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129128A JP2016009579A (en) 2014-06-24 2014-06-24 Separator for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129128A JP2016009579A (en) 2014-06-24 2014-06-24 Separator for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016009579A true JP2016009579A (en) 2016-01-18
JP2016009579A5 JP2016009579A5 (en) 2016-12-15

Family

ID=55227008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129128A Pending JP2016009579A (en) 2014-06-24 2014-06-24 Separator for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016009579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157398A (en) * 2016-03-01 2017-09-07 株式会社日本触媒 Anion conducting membrane
JP2020021553A (en) * 2018-07-30 2020-02-06 積水化学工業株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN111710816A (en) * 2020-06-23 2020-09-25 深圳市德立新材料科技有限公司 Preparation method of nanoscale PET material applied to lithium battery non-woven fabric diaphragm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232357A (en) * 2012-04-30 2013-11-14 Nippon Sheet Glass Co Ltd Separator for nonaqueous electrolyte secondary battery, and battery
WO2014050707A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries
WO2014083988A1 (en) * 2012-11-30 2014-06-05 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232357A (en) * 2012-04-30 2013-11-14 Nippon Sheet Glass Co Ltd Separator for nonaqueous electrolyte secondary battery, and battery
WO2014050707A1 (en) * 2012-09-28 2014-04-03 日本ゼオン株式会社 Method for producing porous membrane separator for lithium ion secondary batteries, and method for producing laminate for lithium ion secondary batteries
WO2014083988A1 (en) * 2012-11-30 2014-06-05 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157398A (en) * 2016-03-01 2017-09-07 株式会社日本触媒 Anion conducting membrane
JP2020021553A (en) * 2018-07-30 2020-02-06 積水化学工業株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN111710816A (en) * 2020-06-23 2020-09-25 深圳市德立新材料科技有限公司 Preparation method of nanoscale PET material applied to lithium battery non-woven fabric diaphragm
CN111710816B (en) * 2020-06-23 2022-08-30 深圳市德立新材料科技有限公司 Preparation method of nanoscale PET material applied to lithium battery non-woven fabric diaphragm

Similar Documents

Publication Publication Date Title
Fang et al. Electrospun montmorillonite modified poly (vinylidene fluoride) nanocomposite separators for lithium-ion batteries
Li et al. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors
JP6292626B2 (en) Nonwoven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP6152076B2 (en) Lithium ion battery negative electrode material for in-vehicle use and energy storage, and manufacturing method thereof
Aydın et al. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application
Wang et al. Aqueous aluminide ceramic coating polyethylene separators for lithium-ion batteries
JP6100250B2 (en) Nonaqueous battery separator and nonaqueous battery
Bai et al. Preparation and electrochemical properties of profiled carbon fiber-supported Sn anodes for lithium-ion batteries
Jing et al. Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La2Zr2O7 fibers-filled composite solid electrolyte
JP6892399B2 (en) Separator for lithium-ion batteries
CN109524601A (en) A kind of diaphragm of power lithium ion battery and preparation method thereof
Wang et al. Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li 4 Ti 5 O 12 nanoparticles embedded in carbon nanofibers
JP6294989B2 (en) Lithium ion battery separator
JP6317556B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2016009579A (en) Separator for lithium ion secondary battery
US10818898B2 (en) Separator for electrochemical elements and electrochemical element including separator for electrochemical elements
JP6408810B2 (en) Lithium secondary battery separator and method for producing lithium secondary battery separator
JP6049595B2 (en) Lithium ion battery separator
Wang et al. Enhanced electrochemical performance of Cu 2 O-modified Li 4 Ti 5 O 12 anode material for lithium-ion batteries
JP2014182892A (en) Method for manufacturing slurry for lithium secondary battery electrode use, and slurry for electrode use
JP6049588B2 (en) Lithium ion battery separator
JP6016512B2 (en) Lithium secondary battery separator and lithium secondary battery
Wang et al. Constructing BaLi 2 Ti 6 O 14@ C nanofibers with a low carbon content as high-performance anode materials for Li-ion batteries
CN104659312B (en) Isolator Used For Lithium Ion Battery
JP2013254570A (en) Lithium ion battery separator and lithium ion battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522