JP6016512B2 - Lithium secondary battery separator and lithium secondary battery - Google Patents
Lithium secondary battery separator and lithium secondary battery Download PDFInfo
- Publication number
- JP6016512B2 JP6016512B2 JP2012175629A JP2012175629A JP6016512B2 JP 6016512 B2 JP6016512 B2 JP 6016512B2 JP 2012175629 A JP2012175629 A JP 2012175629A JP 2012175629 A JP2012175629 A JP 2012175629A JP 6016512 B2 JP6016512 B2 JP 6016512B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- paper
- lithium secondary
- secondary battery
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Description
本発明は、リチウム二次電池用セパレータ及びリチウム二次電池に関する。 The present invention relates to a separator for a lithium secondary battery and a lithium secondary battery.
従来、リチウム二次電池用セパレータとしては、ポリプロピレンやポリエチレンなどの樹脂製の微多孔質フィルムが使用されている。最近では、特定の電極からなるリチウムイオン電池において、セルロース繊維を主体とする不織布や紙がセパレータとして使用されるようになっている。叩解されてなる再生セルロース繊維を含有する紙をセパレータとして用いてなる電池(例えば、特許文献1参照)、最大繊維太さが1000nm以下のセルロース繊維からなるセパレータ(例えば、特許文献2参照)、特定範囲の平均繊維径を有するセルロース繊維と、特定の平均繊維径を有するポリオレフィンとを含む、厚み20μm以下の不織布からなるセパレータ(例えば、特許文献3参照)、合成繊維と特定範囲の変法濾水度を有する溶剤紡糸セルロース繊維を含有するセパレータ(例えば、特許文献4参照)が開示されている。また、粒子が充填された不織布からなるセパレータ(例えば、特許文献5参照)、AlOOH又はAl2O3・H2Oで示される化合物を主成分とする粒子を含有してなるセパレータ(例えば、特許文献6参照)が開示されている。 Conventionally, as a separator for a lithium secondary battery, a resin-made microporous film such as polypropylene or polyethylene has been used. Recently, non-woven fabrics and papers mainly composed of cellulose fibers have been used as separators in lithium ion batteries comprising specific electrodes. Batteries using paper containing regenerated cellulose fibers beaten as separators (for example, see Patent Document 1), separators made of cellulose fibers with a maximum fiber thickness of 1000 nm or less (for example, see Patent Document 2), specific Separator made of a nonwoven fabric having a thickness of 20 μm or less, including cellulose fibers having an average fiber diameter in a range and polyolefin having a specific average fiber diameter (see, for example, Patent Document 3), synthetic fibers and modified filtered water in a specific range A separator containing solvent-spun cellulose fibers having a degree (for example, see Patent Document 4) is disclosed. The separator made of nonwoven fabric particles are filled (e.g., see Patent Document 5), a separator comprising the particles composed mainly of a compound represented by AlOOH or Al 2 O 3 · H 2 O ( for example, patent Document 6) is disclosed.
特許文献1のセパレータは、再生セルロース繊維の叩解度と平均繊維長とフェルトへの転写性の関係について考慮されていないため、叩解されてなる再生セルロース繊維100%からなる場合は、叩解が進みすぎて平均繊維長が短いときには、フェルトへの転写性が悪く、安定して抄紙できないことがあった。また、叩解されてなる再生セルロース繊維と他のセルロースパルプとを混抄してなる場合は、もこついた不均一な地合になり、充放電効率が低くなる問題や電池特性のばらつきが大きくなる問題、ピンホールが生じやすい問題があった。特許文献2、3のセパレータは、微細なセルロース繊維のみで構成されるが、通常の乾燥方法では、セルロース繊維同士が結着して皮膜を形成するなどして繊維間の空隙が閉塞されてしまうため、湿紙の水分を有機溶媒に置換して低温乾燥させなければならないという制約があった。従って、湿紙の水分を有機溶媒に置換する工程は時間がかかることと、溶媒置換により経時でバット内の有機溶媒の濃度が低くなっていき、経時で置換効率が低下するため、大量の湿紙を連続で処理することは難しく、バッチ式で作業せざるを得ず、巻き取りでの製造が困難という問題があった。 Since the separator of Patent Document 1 does not consider the relationship between the beating degree of the regenerated cellulose fiber, the average fiber length, and the transferability to the felt, when the regenerated cellulose fiber is 100% regenerated, the beating progresses too much. When the average fiber length is short, the transferability to the felt is poor and papermaking may not be stable. In addition, when regenerated cellulose fibers that have been beaten and other cellulose pulps are mixed, problems such as poor and uneven formation, low charge / discharge efficiency, and large variations in battery characteristics There was a problem that pinholes were easily generated. The separators of Patent Documents 2 and 3 are composed only of fine cellulose fibers. However, in a normal drying method, the cellulose fibers are bound to each other to form a film, and the gaps between the fibers are blocked. For this reason, there has been a restriction that the moisture of the wet paper must be replaced with an organic solvent and dried at a low temperature. Therefore, the process of replacing the moisture in the wet paper with the organic solvent takes time, and the concentration of the organic solvent in the vat decreases with time due to solvent replacement, and the replacement efficiency decreases with time. It was difficult to process the paper continuously, and there was a problem that it was necessary to work in a batch type, making it difficult to manufacture by winding.
特許文献4のセパレータは、叩解が進みすぎてセルロース繊維の平均繊維長が短い場合は、繊維同士の絡み合いが不十分になるため、抄紙網への繊維取られが生じ、湿紙のフェルトへの転写不良が生じることや、透けやピンホールが生じることがあった。逆に、叩解が甘く、平均繊維長が長い場合は、太い繊維が多数含まれるため、もこついた地合になり、粗密斑ができるため、充放電効率が低くなる問題や電池特性のばらつきが大きくなる問題があった。 In the separator of Patent Document 4, when the average fiber length of the cellulose fibers is too short due to beating, the fibers are not sufficiently entangled, so that the fibers are taken into the papermaking net, and the wet paper felt is fed to the felt. In some cases, transfer defects occurred, and show-through and pinholes occurred. Conversely, when beating is sweet and the average fiber length is long, a large number of thick fibers are included, resulting in a tight formation and coarse and dense spots, resulting in low charge / discharge efficiency problems and variations in battery characteristics. There was a problem of getting bigger.
特許文献5、6のセパレータは、実質的には粒子を含有する溶液を不織布に含浸又は塗布する方法で作製される。該溶液には粒子を不織布に固着させるため、又は、粒子同士を固着させるためのバインダーが添加されており、バインダーの添加量が多いと、バインダーが粒子を被覆し、粒子間の空隙を閉塞してしまう問題があった。逆に、バインダーの添加量が少ないと、粒子が粉落ちしやすい問題があった。不織布に粒子を塗りきりで作製する方法では、ピンホールを生じさせずに厚みの薄いセパレータを作製することは困難であった。一旦、不織布に粒子を塗布した後、塗布層を不織布から剥離する方法では、剥離した塗布層が脆く、柔軟性に欠け、割れやすい問題があった。 The separators of Patent Documents 5 and 6 are produced by a method in which a nonwoven fabric is substantially impregnated or coated with a solution containing particles. A binder for fixing the particles to the nonwoven fabric or for fixing the particles to each other is added to the solution. When the amount of the binder added is large, the binder covers the particles and closes the gaps between the particles. There was a problem. On the other hand, when the amount of the binder added is small, there is a problem that the particles easily fall off. In the method of painting particles on a nonwoven fabric, it has been difficult to produce a thin separator without causing pinholes. Once the particles are applied to the nonwoven fabric, the method of peeling the coating layer from the nonwoven fabric has a problem that the peeled coating layer is brittle, lacks flexibility, and is easily broken.
リチウム二次電池は、何らかのアクシデントにより過充電される場合がある。過充電されると、負極表面にリチウムデンドライトと呼ばれる針状の金属リチウムが析出し、電極間で短絡してしまうことや、電池特性が劣化してしまうことがある。そのため、万一過充電されても電池特性が劣化しにくいリチウム二次電池が求められている。 The lithium secondary battery may be overcharged by some accident. When the battery is overcharged, acicular metal lithium called lithium dendrite is deposited on the negative electrode surface, which may cause a short circuit between the electrodes or battery characteristics. Therefore, there is a demand for a lithium secondary battery in which battery characteristics are unlikely to deteriorate even if overcharged.
本発明の課題は、抄紙安定性に優れ、薄膜で均一性が高く、充放電効率が高く、過充電された場合であっても放電容量維持率が高いリチウム二次電池用セパレータ及びそれを用いてなるリチウム二次電池を提供することにある。 An object of the present invention is a lithium secondary battery separator having excellent papermaking stability, high uniformity with a thin film, high charge / discharge efficiency, and high discharge capacity retention even when overcharged, and using the same To provide a lithium secondary battery.
上記課題を解決するために鋭意研究した結果、特定範囲の変法濾水度、且つ、特定範囲の平均繊維長を有する溶剤紡糸セルロース繊維を用いることにより、抄紙安定性に優れ、薄くて均一性が高く、充放電効率が高いリチウム二次電池用セパレータを実現できることを見出した。また、無機フィラーを含有させることにより、過充電された場合であっても放電容量維持率が高いリチウム二次電池用セパレータを実現できることを見出した。 As a result of diligent research to solve the above problems, by using solvent-spun cellulose fibers having a specific range of modified freeness and an average fiber length of a specific range, excellent papermaking stability, thin and uniform It has been found that a separator for a lithium secondary battery having a high charge and discharge efficiency can be realized. Further, it has been found that by including an inorganic filler, a lithium secondary battery separator having a high discharge capacity retention rate can be realized even when overcharged.
本発明のリチウムイオン二次電池用セパレータは、変法濾水度が75〜250mlで、且つ、長さ加重平均繊維長が0.80〜1.80mmである溶剤紡糸セルロース繊維からなる紙であるため、抄紙網への繊維取られが生じにくく、湿紙をフェルトへ転写させやすく、抄紙安定性に優れ、薄くて均一性が高く、充放電効率が高い。また、無機フィラーを含有する場合は、リチウム二次電池が過充電された場合であっても高い放電容量維持率が得られる。 The separator for a lithium ion secondary battery of the present invention is a paper made of solvent-spun cellulose fibers having a modified freeness of 75 to 250 ml and a length weighted average fiber length of 0.80 to 1.80 mm. Therefore, fibers are not easily taken on the papermaking net, the wet paper is easily transferred to the felt, excellent in papermaking stability, thin and highly uniform, and high charge / discharge efficiency. Moreover, when it contains an inorganic filler, even if it is a case where a lithium secondary battery is overcharged, a high discharge capacity maintenance factor is obtained.
本発明において、「セパレータ」と表記する場合は、リチウム二次電池用セパレータを意味する。本発明において、「所定の溶剤紡糸セルロース繊維」と表記する場合は、変法濾水度が75〜250mlで、且つ、長さ加重平均繊維長が0.80〜1.80mmである溶剤紡糸セルロース繊維を意味する。 In the present invention, the expression “separator” means a lithium secondary battery separator. In the present invention, when “predetermined solvent-spun cellulose fiber” is described, a solvent-spun cellulose having a modified freeness of 75 to 250 ml and a length-weighted average fiber length of 0.80 to 1.80 mm. Means fiber.
本発明におけるリチウム二次電池とは、リチウムイオン電池、リチウムイオンポリマー電池などを指す。リチウム二次電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム、シリカ、スズ、ニッケル、鉛から選ばれる1種以上の金属とリチウムとの合金、SiO、SnO、Fe2O3、WO2、Nb2O5、Li4/3Ti5/3O4等の金属酸化物、Li0.4CoNなどの窒化物が用いられる。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム、リチウムニッケルマンガン酸化物、リン酸鉄リチウムが用いられる。リン酸鉄リチウムは、さらに、マンガン、クロム、コバルト、銅、ニッケル、バナジウム、モリブデン、チタン、亜鉛、アルミニウム、ガリウム、マグネシウム、ホウ素、ニオブから選ばれる1種以上の金属との複合物でも良い。 The lithium secondary battery in the present invention refers to a lithium ion battery, a lithium ion polymer battery, or the like. Examples of the negative electrode active material of the lithium secondary battery include carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, and an alloy of lithium and lithium, SiO, SnO, Fe Metal oxides such as 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN are used. As the positive electrode active material, lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, or lithium iron phosphate is used. Further, the lithium iron phosphate may be a composite with one or more metals selected from manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, and niobium.
リチウム二次電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、テトラヒドロフラン、スルホラン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム、4フッ化ホウ酸リチウム、過塩素酸リチウムが挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが用いられる。 The electrolyte of the lithium secondary battery includes propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, acetonitrile, γ-butyrolactone, dimethylformamide, tetrahydrofuran, sulfolane, and mixed solvents thereof. A solution in which a lithium salt is dissolved is used. Examples of the lithium salt include lithium hexafluorophosphate, lithium tetrafluoroborate, and lithium perchlorate. As solid electrolyte, what melt | dissolved lithium salt in gel-like polymers, such as polyethyleneglycol, its derivative (s), polymethacrylic acid derivative, polysiloxane, its derivative (s), polyvinylidene fluoride, is used.
本発明に用いられる溶剤紡糸セルロース繊維とは、セルロース誘導体を経ずに、直接、有機溶剤に溶解させて紡糸して得られるセルロース繊維を意味する。JIS L0204−2では、この繊維の名称として「リヨセル」という用語が用いられている。本発明では、様々な変法濾水度と長さ加重平均繊維長の溶剤紡糸セルロース繊維を作製し、転写性と緻密性の関係を調査した結果、変法濾水度75〜250mlで、且つ、長さ加重平均繊維長0.80〜1.80mmの溶剤紡糸セルロース繊維が転写性と緻密性に優れ、抄紙網への繊維取られが生じにくく、フェルトへ転写させやすいことを見出した。変法濾水度が75ml未満又は長さ加重平均繊維長が0.80mm未満であると、抄紙網への繊維取られが生じ、フェルトへの転写ができない問題や透けやピンホールができる問題が発生する。変法濾水度が250ml超又は長さ加重平均繊維長が1.80mm超であると、紙の厚みを薄くしにくく、地合斑やピンホールが生じる問題が発生する。 The solvent-spun cellulose fiber used in the present invention means a cellulose fiber obtained by spinning by dissolving directly in an organic solvent without passing through a cellulose derivative. In JIS L0204-2, the term “Lyocell” is used as the name of this fiber. In the present invention, solvent-spun cellulose fibers having various modified freeness and length-weighted average fiber length were prepared, and as a result of investigating the relationship between transferability and denseness, the modified freeness was 75 to 250 ml, and The present inventors have found that solvent-spun cellulose fibers having a length-weighted average fiber length of 0.80 to 1.80 mm are excellent in transferability and denseness, are less likely to be picked up by a papermaking net, and can be easily transferred to felt. If the modified freeness is less than 75 ml or the length-weighted average fiber length is less than 0.80 mm, fibers are taken into the papermaking net and cannot be transferred to the felt, and there is a problem of see-through and pinholes. Occur. If the modified freeness exceeds 250 ml or the length-weighted average fiber length exceeds 1.80 mm, it is difficult to reduce the thickness of the paper, causing problems of formation of uneven spots and pinholes.
溶剤紡糸セルロース繊維の変法濾水度は、90〜220mlがより好ましく、90〜175mlがさらに好ましい。長さ加重平均繊維長は0.90〜1.60mmがより好ましく、0.90〜1.30mmがさらに好ましい。所定の溶剤紡糸セルロース繊維の繊維長分布は、ピークが1つでも良く、2つ以上あっても良い。 The modified freeness of the solvent-spun cellulose fiber is more preferably 90 to 220 ml, further preferably 90 to 175 ml. The length weighted average fiber length is more preferably 0.90 to 1.60 mm, and further preferably 0.90 to 1.30 mm. The fiber length distribution of a given solvent-spun cellulose fiber may have one peak or two or more peaks.
本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1%にした以外はJIS P8121に準拠して測定した濾水度である。ここに試料濃度の「%」とは、「質量分率(%)」である。本発明において、変法濾水度を採用する理由は、1つはJIS P8121で規定されるカナダ標準型濾水度が数十〜0ml近辺で、叩解度の差をこれ以上判別できない試料の叩解度を明確にできるからであり、もう1つは叩解によって繊維長が短くなり、カナダ標準濾水度の計測で使用するふるい板の孔をパルプ試料がすり抜けてしまい、正確な濾水度を計測できない試料の叩解度を明確にできるからである。 The modified freeness in the present invention is that a wire mesh (made by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. The freeness measured in accordance with JIS P8121. Here, “%” of the sample concentration is “mass fraction (%)”. The reason why the modified freeness is adopted in the present invention is that the Canadian standard freeness specified in JIS P8121 is around several tens to 0 ml and the difference in the freeness cannot be discriminated any more. This is because the fiber length is shortened by beating, and the pulp sample slips through the holes in the sieve plate used in the Canadian standard freeness measurement, and the precise freeness is measured. This is because it is possible to clarify the beating degree of the sample that cannot be performed.
長さ加重平均繊維長は、繊維にレーザー光を当てて得られる偏光特性を利用して求める市販の繊維長測定器を用いて測定することができる。本発明では、JAPAN TAPPI 紙パルプ試験方法No.52「紙及びパルプの繊維長 試験方法(光学的自動計測法)」に準じてKajaaniFiberLabV3.5(Metso Automation社製)を使用して測定した。溶剤紡糸セルロース繊維の「長さ加重平均繊維長」とは、上記に従って測定・算出される「長さ加重平均繊維長」を意味する。 The length-weighted average fiber length can be measured by using a commercially available fiber length measuring instrument that is obtained by using polarization characteristics obtained by applying laser light to the fiber. In the present invention, JAPAN TAPPI paper pulp test method no. It was measured using Kajaani Fiber Lab V3.5 (manufactured by Metso Automation) according to 52 “Fiber length test method for paper and pulp (automatic optical measurement method)”. “Length-weighted average fiber length” of solvent-spun cellulose fiber means “length-weighted average fiber length” measured and calculated according to the above.
本発明における所定の溶剤紡糸セルロース繊維は、リファイナー、ビーター、ビートファイナー、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、高圧ホモジナイザーなどに通して、刃の形状、試料濃度、流量、処理回数、処理速度などの条件を調節して作製される。 The predetermined solvent-spun cellulose fiber in the present invention is fixed to a refiner, a beater, a beat refiner, a mill, an attritor, a rotary blade homogenizer that applies a shearing force by a high-speed rotary blade, and a cylindrical inner blade that rotates at high speed. Double-cylindrical high-speed homogenizer that generates shearing force with the outer blade, ultrasonic crusher that is refined by impact by ultrasonic waves, high-pressure homogenizer, etc. It is produced by adjusting conditions such as processing speed.
本発明のセパレータにおいて、紙が所定の溶剤紡糸セルロース繊維以外に無機フィラーを含有することが好ましい。無機フィラーとしては、炭酸カルシウム、炭酸ナトリウム、アルミナ、ギブサイト、ベーマイト、酸化マグネシウム、水酸化マグネシウム、シリカ、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物や無機水酸化物、窒化アルミニウムや窒化珪素などの無機窒化物、アルミニウム化合物、ゼオライト、マイカなどが挙げられる。無機フィラーの形状は、球状、略球状、板状、直方体、星形、鱗片状、不定形の何れでも良い。無機フィラーの平均一次粒子径は0.01〜3.00μmが好ましく、0.1〜1.00μmがより好ましい。0.01μm未満だと、担持しにくくなる場合がある。3.00μm超だと、セパレータの厚みを薄くしにくくなる場合やピンホールが生じる場合がある。 In the separator of the present invention, the paper preferably contains an inorganic filler in addition to the predetermined solvent-spun cellulose fiber. Examples of inorganic fillers include calcium carbonate, sodium carbonate, alumina, gibbsite, boehmite, magnesium oxide, magnesium hydroxide, silica, titanium oxide, barium titanate, zirconium oxide, and other inorganic oxides, inorganic hydroxides, aluminum nitride, and nitride. Examples thereof include inorganic nitrides such as silicon, aluminum compounds, zeolites, and mica. The shape of the inorganic filler may be any of a spherical shape, a substantially spherical shape, a plate shape, a rectangular parallelepiped shape, a star shape, a scale shape, and an indefinite shape. The average primary particle diameter of the inorganic filler is preferably 0.01 to 3.00 μm, more preferably 0.1 to 1.00 μm. If it is less than 0.01 μm, it may be difficult to carry. If it exceeds 3.00 μm, it may be difficult to reduce the thickness of the separator or a pinhole may occur.
本発明のセパレータにおいて、紙が無機フィラーを含有する場合は、セルロース繊維同士が密着してセパレータの深さ方向及び平面方向の空隙が閉塞されることを抑制し、電解液の浸透性が向上し、イオン移動が円滑になるため、充放電効率や放電容量維持率がより高くなる。また、リチウムデンドライトの生成を抑制する効果があるのか、電解液の分解を抑制する効果があるのか機構は良くわからないが、過充電された場合であっても放電容量維持率が高く優れる。 In the separator of the present invention, when the paper contains an inorganic filler, it is possible to prevent the cellulose fibers from being in close contact with each other and block the gap in the depth direction and the planar direction of the separator, thereby improving the permeability of the electrolytic solution. Since the ion movement becomes smooth, the charge / discharge efficiency and the discharge capacity retention rate become higher. In addition, the mechanism of whether there is an effect of suppressing the generation of lithium dendrite or an effect of suppressing the decomposition of the electrolytic solution is not well understood, but the discharge capacity maintenance rate is excellent even when overcharged.
本発明のセパレータにおける無機フィラーの含有率は、0〜30質量%が好ましく、5〜20質量%がより好ましい。30質量%超では、セパレータにピンホールが生じる場合や強度が不十分になる場合がある。 0-30 mass% is preferable and, as for the content rate of the inorganic filler in the separator of this invention, 5-20 mass% is more preferable. If it exceeds 30 mass%, pinholes may be generated in the separator or the strength may be insufficient.
本発明のセパレータに係わる紙は、抄紙法で製造される。具体的には、繊維を水に分散して均一なスラリーとし、このスラリーを抄紙機で漉き上げて作製する。スラリーには、必要に応じて分散助剤、消泡剤、増粘剤、凝集剤、紙力増強剤、剥離剤などの薬品を添加しても良い。抄紙機としては、円網、長網、傾斜型、傾斜短網等の抄紙網を単独で使用する抄紙機や、これらの抄紙網を複数組み合わせた複合抄紙機が挙げられる。紙の坪量は12.0〜23.0g/m2が好ましく、13.0〜20.0g/m2がより好ましい。坪量が12.0g/m2未満だと、ピンホールが生じる場合がある。23.0g/m2超だと、セパレータの厚みを薄くしにくくなる場合がある。 The paper relating to the separator of the present invention is produced by a papermaking method. Specifically, the fiber is dispersed in water to form a uniform slurry, and this slurry is rolled up by a paper machine. You may add chemical | medical agents, such as a dispersing aid, an antifoamer, a thickener, a flocculant, a paper strength enhancer, and a release agent, to a slurry as needed. Examples of the paper machine include a paper machine that independently uses a paper net such as a circular net, a long net, an inclined type, and an inclined short net, and a composite paper machine that combines a plurality of these paper nets. The basis weight of the paper is preferably 12.0~23.0g / m 2, 13.0~20.0g / m 2 is more preferable. If the basis weight is less than 12.0 g / m 2 , pinholes may occur. If it exceeds 23.0 g / m 2 , it may be difficult to reduce the thickness of the separator.
本発明の紙は、抄紙後に必要に応じてカレンダー処理して厚みを調整すれば良い。厚みは、18〜35μmが好ましく、20〜30μmがより好ましい。厚みが18μm未満だと、ピンホールが生じる場合や、密度が高くなりすぎてセパレータの電気抵抗が高くなる場合がある。厚みが35μm超だと、リチウム二次電池の小型化や薄型化が不十分になる場合がある。カレンダー処理は、常温でも良く、加熱して実施しても良い。 The thickness of the paper of the present invention may be adjusted by calendering as necessary after paper making. The thickness is preferably 18 to 35 μm, and more preferably 20 to 30 μm. If the thickness is less than 18 μm, pinholes may be generated, or the density may be too high, and the electrical resistance of the separator may be increased. If the thickness exceeds 35 μm, the lithium secondary battery may not be sufficiently reduced in size and thickness. The calendar process may be performed at room temperature or by heating.
本発明のセパレータは、空孔率が50〜75%であることが好ましく、56〜70%がより好ましい。空孔率が50%未満だと、電解液保持性が不十分になり、内部抵抗が高くなる場合がある。75%超だと、セパレータの強度が不十分になる場合がある。 The separator of the present invention preferably has a porosity of 50 to 75%, more preferably 56 to 70%. When the porosity is less than 50%, the electrolyte solution retention becomes insufficient and the internal resistance may increase. If it exceeds 75%, the strength of the separator may be insufficient.
本発明のセパレータは、透気度が1.0〜20.0s/100mlであることが好ましく、2.0〜15.0s/100mlであることがより好ましい。1.0s/100ml未満だと、ピンホールが生じる場合がある。20.0s/100ml超だと、電解液の浸透性が不十分になる場合がある。 The separator of the present invention preferably has an air permeability of 1.0 to 20.0 s / 100 ml, and more preferably 2.0 to 15.0 s / 100 ml. If it is less than 1.0 s / 100 ml, pinholes may occur. If it exceeds 20.0 s / 100 ml, the electrolyte permeability may be insufficient.
本発明のセパレータは、引張強度が4.0N/15mm以上であることが好ましく、5.0N/15mm以上であることが好ましい。4.0N/15mm未満だと、巻回時などにセパレータが切断してしまう場合がある。 The separator of the present invention preferably has a tensile strength of 4.0 N / 15 mm or more, and preferably 5.0 N / 15 mm or more. If it is less than 4.0 N / 15 mm, the separator may be cut during winding.
本発明のセパレータは、ASTM−F316−86で規定される最大孔径が0.50〜5.00μmであることが好ましく、0.50〜3.00μmであることがより好ましい。0.50μm未満だと、電解液浸透性が悪くなる場合がある。5.00μmより大きいと、セパレータにピンホールができる場合がある。本発明のセパレータの平均孔径は、0.20〜0.90μmが好ましく、0.30〜0.75μmがより好ましい。平均孔径が0.20μm未満だと、電解液浸透性が悪くなる場合がある。0.90μm超だと、セパレータにピンホールができる場合がある。 The separator of the present invention preferably has a maximum pore size defined by ASTM-F316-86 of 0.50 to 5.00 μm, and more preferably 0.50 to 3.00 μm. If it is less than 0.50 μm, the electrolyte permeability may deteriorate. If it is larger than 5.00 μm, pinholes may be formed in the separator. The average pore diameter of the separator of the present invention is preferably 0.20 to 0.90 μm, and more preferably 0.30 to 0.75 μm. When the average pore diameter is less than 0.20 μm, electrolyte permeability may be deteriorated. If it exceeds 0.90 μm, pinholes may be formed in the separator.
以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。なお、実施例1〜8は参考例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example. Examples 1 to 8 are reference examples.
表1に実施例及び比較例で用いた溶剤紡糸セルロース繊維の変法濾水度、長さ加重平均繊維長、カナダ型標準濾水度を示した。カナダ型標準濾水度は、JIS P8121に準拠して測定した。比較例で用いたマニラ麻パルプ及びエスパルトパルプの長さ加重平均繊維長とカナダ型標準濾水度を示した。F1〜F9は、溶剤紡糸セルロース繊維(繊度1.7dtex、繊維長4mm、コートルズ社製)を原料とし、ダブルディスクリファイナーを用いて叩解し、叩解時間を変えて作製した。マニラ麻パルプ、エスパルトパルプもダブルディスクリファイナーを用いて叩解して作製した。 Table 1 shows the modified freeness, length weighted average fiber length, and Canadian standard freeness of solvent-spun cellulose fibers used in Examples and Comparative Examples. The Canadian standard freeness was measured in accordance with JIS P8121. The weight-weighted average fiber length and Canadian standard freeness of Manila hemp pulp and esparto pulp used in the comparative examples are shown. F1 to F9 were produced using solvent-spun cellulose fibers (fineness: 1.7 dtex, fiber length: 4 mm, manufactured by Coatles Co., Ltd.), beating using a double disc refiner, and changing the beating time. Manila hemp pulp and esparto pulp were also beaten using a double disc refiner.
表2に実施例及び比較例で用いた抄紙用スラリーを示した。表2中の「原料」の記号は、表1の「記号」に該当する。表2中の「原料」のB1とは、ベーマイト(平均一次粒子径0.5μm)を意味する。表2中の「原料」のM1とは、酸化マグネシウム(平均一次粒子径0.3μm)を意味する。実施例及び比較例で用いたベーマイト及び酸化マグネシウムの平均一次粒子径は、レーザー回折式粒度分布測定装置で測定したときの、質量比で積算50%のときの粒子径、即ちD50を意味する。 Table 2 shows the papermaking slurries used in Examples and Comparative Examples. The “raw material” symbol in Table 2 corresponds to the “symbol” in Table 1. B1 of “raw material” in Table 2 means boehmite (average primary particle size 0.5 μm). In Table 2, “raw material” M1 means magnesium oxide (average primary particle size 0.3 μm). The average primary particle diameters of boehmite and magnesium oxide used in Examples and Comparative Examples mean the particle diameter when the mass ratio is 50%, that is, D50, as measured with a laser diffraction particle size distribution analyzer.
実施例1〜5、7、8
パルパーを用いてスラリー1〜5、6、7を調製し、長網抄紙機に送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、実施例1〜5、7、8のセパレータを作製した。
Examples 1-5, 7, 8
Slurries 1 to 5, 6, and 7 were prepared using a pulper, fed to a long paper machine, paper-made, and dried with a 150 ° C. Yankee dryer. After paper making, the thickness was adjusted by calendar treatment, and separators of Examples 1 to 5, 7, and 8 were produced.
実施例6
スラリー5に、紙力増強剤(荒川化学製、商品名:ポリストロン(登録商標)1250)を溶剤紡糸セルロース繊維に対して2質量%添加して所定時間攪拌し、長網抄紙機へ送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、実施例6のセパレータを作製した。
Example 6
2% by mass of a paper strength enhancer (trade name: Polystron (registered trademark) 1250, manufactured by Arakawa Chemical Co., Ltd.) is added to the slurry 5 with respect to the solvent-spun cellulose fiber, and the mixture is stirred for a predetermined time, and is fed to a long paper machine. The paper was made and dried with a Yankee dryer at 150 ° C. After papermaking, calendar treatment was performed to adjust the thickness, and the separator of Example 6 was produced.
実施例9〜12
所定の溶剤紡糸セルロース繊維をパルパーで離解させながら、予めミキサーで分散させておいた所定量のベーマイトを添加し、凝集剤(三洋化成製、商品名:サンフロック(登録商標)C−009P)を溶剤紡糸セルロース繊維とベーマイトの合計質量に対して0.3質量%添加して所定時間攪拌し、さらに紙力増強剤(荒川化学製、商品名:ポリストロン(登録商標)1250)を溶剤紡糸セルロース繊維に対して2質量%添加して所定時間攪拌し、スラリー8〜11を調製した。スラリー8〜11を長網抄紙機へ送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、実施例9〜12のセパレータを作製した。実施例9〜12のセパレータを指で擦ったとき、無機フィラーの粉落ちは生じなかった。
Examples 9-12
While a predetermined solvent-spun cellulose fiber is disaggregated with a pulper, a predetermined amount of boehmite dispersed in advance with a mixer is added, and a flocculant (trade name: Sanfloc (registered trademark) C-009P, manufactured by Sanyo Kasei) is added. Add 0.3 mass% of the solvent-spun cellulose fiber and boehmite, stir for a predetermined time, and then add a paper strength enhancer (trade name: Polystron (registered trademark) 1250, manufactured by Arakawa Chemical) to solvent-spun cellulose. 2 mass% was added with respect to the fiber, and it stirred for the predetermined time, and prepared the slurry 8-11. Slurries 8 to 11 were fed to a long paper machine to make paper, and dried with a Yankee dryer at 150 ° C. After paper making, the thickness was adjusted by calendering to produce separators of Examples 9-12. When the separators of Examples 9 to 12 were rubbed with fingers, the inorganic filler did not fall off.
実施例13
所定の溶剤紡糸セルロース繊維をパルパーで離解させながら、予めミキサーで分散させておいた所定量の酸化マグネシウムを添加し、凝集剤(三洋化成製、商品名:サンフロック(登録商標)C−009P)を溶剤紡糸セルロース繊維と酸化マグネシウムの合計質量に対して0.3質量%添加して所定時間攪拌し、さらに紙力増強剤(荒川化学製、商品名:ポリストロン(登録商標)1250)を溶剤紡糸セルロース繊維に対して2質量%添加して所定時間攪拌し、スラリー12を調製した。スラリー12を長網抄紙機へ送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、実施例13のセパレータを作製した。該セパレータを指で擦ったとき、無機フィラーの粉落ちは生じなかった。
Example 13
While a predetermined solvent-spun cellulose fiber is disaggregated with a pulper, a predetermined amount of magnesium oxide previously dispersed with a mixer is added, and a flocculant (manufactured by Sanyo Chemical Co., Ltd., trade name: Sanfloc (registered trademark) C-009P) Is added in an amount of 0.3% by mass based on the total mass of the solvent-spun cellulose fiber and magnesium oxide, and the mixture is stirred for a predetermined time. Further, a paper strength enhancer (trade name: Polystron (registered trademark) 1250, manufactured by Arakawa Chemical Co., Ltd.) is used as the solvent. A slurry 12 was prepared by adding 2% by mass to the spun cellulose fiber and stirring for a predetermined time. Slurry 12 was fed to a long paper machine to make paper, and dried with a Yankee dryer at 150 ° C. After papermaking, calendar treatment was performed to adjust the thickness, and the separator of Example 13 was produced. When the separator was rubbed with a finger, the inorganic filler did not fall off.
比較例1〜4
パルパーを用いてスラリー13〜16を調製し、長網抄紙機に送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、比較例1〜4のセパレータを作製した。
Comparative Examples 1-4
Slurries 13 to 16 were prepared using a pulper, sent to a long paper machine to make paper, and dried with a 150 ° C. Yankee dryer. After paper making, the thickness was adjusted by calendering to produce separators of Comparative Examples 1 to 4.
比較例5
マニラ麻パルプをパルパーで離解させながら、予めミキサーで分散させておいた所定量のベーマイトを添加し、凝集剤(三洋化成製、商品名:サンフロック(登録商標)C−009P)をマニラ麻パルプとベーマイトの合計質量に対して0.3質量%添加して所定時間攪拌してスラリー17を調製し、長網抄紙機に送液して抄紙し、150℃のヤンキードライヤーで乾燥させた。抄紙後、カレンダー処理して厚みを調整し、比較例5のセパレータを作製した。該セパレータを指で擦ったとき、無機フィラーの粉落ちは生じなかった。
Comparative Example 5
While disaggregating the Manila hemp pulp with a pulper, a predetermined amount of boehmite dispersed in advance with a mixer is added, and a flocculant (manufactured by Sanyo Chemical Co., Ltd., trade name: Sanfloc (registered trademark) C-009P) is added to the Manila hemp pulp and boehmite. The slurry 17 was prepared by adding 0.3% by mass with respect to the total mass and stirring for a predetermined time. The slurry 17 was fed to a long net paper machine to make paper, and dried with a Yankee dryer at 150 ° C. After paper making, a calendar process was performed to adjust the thickness, and a separator of Comparative Example 5 was produced. When the separator was rubbed with a finger, the inorganic filler did not fall off.
[評価]
実施例及び比較例のセパレータについて、下記の評価を行い、結果を表3に示した。表3中の「−」は該当なしを意味する。
[Evaluation]
The separators of Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 3. “-” In Table 3 means not applicable.
<転写性>
セパレータの抄紙時に抄紙網に繊維取られがほとんどなく、湿紙をフェルトに安定して転写できた場合を「◎」、抄紙網への繊維取られは少なく、安定して転写できた場合、又は、抄紙網への繊維取られがやや多い場合もあるが、安定して転写できた場合を「○」、抄紙網の全面又は大部分に連続的に繊維取られが発生して安定して湿紙をフェルトに転写することができなかった場合を「×」とした。
<Transferability>
When the separator is made, there is almost no fiber taken on the paper web, and when the wet paper can be stably transferred to the felt `` ◎ '', when there is little fiber taken on the paper web and the paper can be transferred stably, or In some cases, the fibers are slightly picked up on the paper net, but “○” indicates that the fibers are stably transferred, and the fibers are continuously picked up on the entire surface or most of the paper net. The case where the paper could not be transferred to the felt was indicated as “x”.
<厚み>
JIS P8118に準拠して厚みを測定し、その平均値を算出した。
<Thickness>
The thickness was measured according to JIS P8118, and the average value was calculated.
<密度>
JIS P8124に準拠してセパレータの坪量を測定し、坪量を厚みで除して100倍した値を密度とした。
<Density>
The basis weight of the separator was measured in accordance with JIS P8124, and the value obtained by dividing the basis weight by the thickness and multiplying by 100 was defined as the density.
<ピンホール>
セパレータの裏側から光を当て、セパレータにピンホールがあるかどうかを目視で判定した。ピンホールがある場合を「あり」、ない場合を「なし」とした。
<Pinhole>
Light was applied from the back side of the separator, and it was visually determined whether or not the separator had a pinhole. When there is a pinhole, it is “Yes”, and when there is no pinhole, it is “No”.
<空孔率>
セパレータの空孔率は、セパレータの比重からセパレータの密度を差し引いて得られる値をセパレータの比重で除した後100倍して算出した。実施例1〜8、比較例1〜4のセパレータの比重については、セルロース繊維の比重1.5とした。実施例9〜12、比較例5のセパレータの比重については、ベーマイトの比重を3.04として、セルロース繊維とベーマイトの配合率に従って計算した。実施例13のセパレータの比重については、酸化マグネシウムの比重を3.65として、セルロース繊維と酸化マグネシウムの配合率に従って計算した。
<Porosity>
The porosity of the separator was calculated by dividing the value obtained by subtracting the density of the separator from the specific gravity of the separator by the specific gravity of the separator and multiplying by 100. About the specific gravity of the separator of Examples 1-8 and Comparative Examples 1-4, it was set as 1.5 specific gravity of a cellulose fiber. About the specific gravity of the separator of Examples 9-12 and the comparative example 5, the specific gravity of boehmite was set to 3.04, and it computed according to the compounding ratio of a cellulose fiber and boehmite. The specific gravity of the separator of Example 13 was calculated according to the blending ratio of cellulose fiber and magnesium oxide, with the specific gravity of magnesium oxide being 3.65.
<透気度>
外径28.6mmの円孔を有するガーレー透気度計を用いて、各セパレータにつき巾方向に10箇所のガーレー透気度を測定し、その平均値を示した。ガーレー透気度はJIS P8117に準拠して測定した。
<Air permeability>
Using a Gurley air permeability meter having a circular hole with an outer diameter of 28.6 mm, 10 Gurley air permeability values were measured in the width direction for each separator, and the average value was shown. The Gurley air permeability was measured according to JIS P8117.
<引張強度>
セパレータを15mm幅、200mm長に切りそろえた。200mm長は紙の流れ方向とした。試験片の上下を卓上型材料試験機(オリエンテック製)のチャックに100mm間隔で固定し、100mm/minの一定速度で試験片が切断するまで引き上げていったときの最大荷重とした。1つのセパレータにつき、5本以上の試験片を測定し、その平均値を示した。
<Tensile strength>
The separator was trimmed to a width of 15 mm and a length of 200 mm. The 200 mm length was the paper flow direction. The upper and lower sides of the test piece were fixed to a chuck of a tabletop material testing machine (Orientec) at 100 mm intervals, and the maximum load when the test piece was pulled up at a constant speed of 100 mm / min until it was cut. Five or more test pieces were measured for each separator, and the average value was shown.
<平均孔径>
孔径測定装置(PMI製、装置名:パームポロメーター(CFP−1500−A))を用いてセパレータの孔径分布を求め、得られた平均孔径を示した。
<Average pore diameter>
The pore size distribution of the separator was determined using a pore size measuring device (manufactured by PMI, device name: palm porometer (CFP-1500-A)), and the obtained average pore size was shown.
<均一性>
セパレータの裏側から光を当てて目視で観察し、地合の均一性が極めて良好なものを「◎」、◎よりは劣るが、ピンホールがなく良好なものを「○」、ピンホールが生じるほどの地合のもこつきや粗密斑があるものを「×」とした。
<Uniformity>
Observe light from the back side of the separator and visually observe that the uniformity of the formation is very good compared to `` ◎ '' and ◎, but there is no pinhole, `` ○ '', pinhole is generated “X” indicates that the texture and roughness of the texture are moderate.
[リチウムイオン電池の作製]
正極シート、セパレータ、負極シートの順に積層し、これをアルミニウムラミネート袋に収容し、電解液を注入して袋を封口し、リチウムイオン電池を作製した。正極は、活物質のコバルト酸リチウム、導電助剤のアセチレンブラック、結着剤のポリフッ化ビニリデンを質量比率で90:5:5に混合したスラリーをアルミニウム集電体の両面に塗布したものを用いた。負極は、天然黒鉛、ポリフッ化ビニリデンを質量比率で95:5に混合したスラリーを銅箔集電体の両面に塗布したものを用いた。電解液には、LiPF6を1モル/リットル溶解させた混合溶液を用いた。混合溶液は、エチレンカーボネートとジエチルカーボネートを質量比率で3:7混合したものである。
[Production of lithium-ion batteries]
A positive electrode sheet, a separator, and a negative electrode sheet were laminated in this order, accommodated in an aluminum laminate bag, the electrolyte was injected, the bag was sealed, and a lithium ion battery was produced. For the positive electrode, use is made of a slurry in which an active material lithium cobaltate, a conductive auxiliary agent acetylene black, and a binder polyvinylidene fluoride mixed in a mass ratio of 90: 5: 5 are applied to both sides of an aluminum current collector. It was. As the negative electrode, a slurry in which natural graphite and polyvinylidene fluoride were mixed at a mass ratio of 95: 5 was applied to both surfaces of a copper foil current collector. As the electrolytic solution, a mixed solution in which 1 mol / liter of LiPF 6 was dissolved was used. The mixed solution is a mixture of ethylene carbonate and diethyl carbonate in a mass ratio of 3: 7.
<充放電効率>
リチウムイオン電池を25℃、0.5mA/cm2で4.2Vまで定電流充電し、さらに4.2Vで定電圧充電し、電流値が0.2mA以下に減衰するまで充電した。このとき得られた容量を初期充電容量とした。充電完了後、20分間休止し、0.5mA/cm2で3.0Vまで放電した。このとき得られた容量を初期放電容量とし、初期充電容量に対する割合を算出し、充放電効率とした。充放電効率が高いほど好ましい。
<Charge / discharge efficiency>
The lithium ion battery was charged at a constant current of up to 4.2 V at 25 ° C. and 0.5 mA / cm 2 , further charged at a constant voltage of 4.2 V, and charged until the current value was attenuated to 0.2 mA or less. The capacity obtained at this time was defined as the initial charge capacity. After completion of charging, the battery was paused for 20 minutes, and discharged to 3.0 V at 0.5 mA / cm 2 . The capacity obtained at this time was used as the initial discharge capacity, and the ratio with respect to the initial charge capacity was calculated as the charge / discharge efficiency. Higher charge / discharge efficiency is preferable.
<放電容量維持率>
リチウムイオン電池を25℃、0.5mA/cm2で4.3Vになるまで定電流充電し、さらに4.3Vを24時間印加し、過充電した。次いで、30分間休止し、定電流0.5mA/cm2で3.0Vまで放電した。このとき得られた放電容量の初期放電容量に対する割合を放電容量維持率とした。放電容量維持率が高いほど好ましい。
<Discharge capacity maintenance rate>
The lithium ion battery was charged at a constant current until it reached 4.3 V at 25 ° C. and 0.5 mA / cm 2 , and further overcharged by applying 4.3 V for 24 hours. Subsequently, it rested for 30 minutes and discharged to 3.0 V at a constant current of 0.5 mA / cm 2 . The ratio of the discharge capacity obtained at this time to the initial discharge capacity was defined as the discharge capacity maintenance ratio. The higher the discharge capacity retention rate, the better.
実施例1〜8のセパレータは、溶剤紡糸セルロース繊維からなり、変法濾水度75〜250mlで、且つ、長さ加重平均繊維長0.80〜1.80mmであるため、湿紙のフェルトへの転写性が良く、抄紙安定性に優れていた。また、ピンホールがなく、薄くて均一性が高いセパレータが得られた。 The separators of Examples 1 to 8 are made of solvent-spun cellulose fibers, have a modified freeness of 75 to 250 ml, and a length-weighted average fiber length of 0.80 to 1.80 mm. Transferability was good and papermaking stability was excellent. Further, a thin and highly uniform separator without pinholes was obtained.
実施例9〜13のセパレータは、変法濾水度75〜250mlで、且つ、長さ加重平均繊維長0.80〜1.80mmの溶剤紡糸セルロース繊維と無機フィラーを含有してなるため、セルロース繊維同士の密着が抑制され、セルロース繊維間の空隙が保持されたため、電解液のイオン移動が円滑になり、実施例1〜8のセパレータよりも充放電効率が高く優れていた。さらに、過充電された場合も放電容量維持率が高く優れていた。 Since the separators of Examples 9 to 13 contain solvent-spun cellulose fibers having a modified freeness of 75 to 250 ml and a length-weighted average fiber length of 0.80 to 1.80 mm and an inorganic filler, cellulose Since the adhesion between the fibers was suppressed and the gaps between the cellulose fibers were retained, the ion migration of the electrolyte was smooth, and the charge / discharge efficiency was higher and superior to the separators of Examples 1-8. Furthermore, even when overcharged, the discharge capacity maintenance rate was high and excellent.
比較例1のセパレータは、溶剤紡糸セルロース繊維からなり、転写性は良好だったが、変法濾水度が250ml超で、且つ、長さ加重平均繊維長が1.80mm超であるため、太い繊維が多く含まれており、セルロース繊維同士の絡み合いが不十分であり、もこついた不均一な地合になり、厚みを薄くすることができず、ピンホールがあり、強度、充放電効率、放電容量維持率は何れも実施例1〜8(所定の溶剤紡糸セルロース繊維からなる紙)に比べて劣っていた。 The separator of Comparative Example 1 was composed of solvent-spun cellulose fibers and had good transferability, but was thick because the modified freeness was more than 250 ml and the length-weighted average fiber length was more than 1.80 mm. A lot of fibers are included, the entanglement between cellulose fibers is insufficient, it becomes a stiff and uneven texture, the thickness cannot be reduced, there are pinholes, strength, charge and discharge efficiency, The discharge capacity retention ratio was inferior to those of Examples 1 to 8 (paper made of a predetermined solvent-spun cellulose fiber).
比較例2のセパレータは、溶剤紡糸セルロース繊維からなるが、変法濾水度が75ml未満で、且つ、長さ加重平均繊維長が0.80mm未満であるため、抄紙網への繊維取られが多く、湿紙のフェルトへの転写が不安定となり、安定して抄紙することができなかったため、評価することができなかった。 The separator of Comparative Example 2 is composed of solvent-spun cellulose fibers, but has a modified freeness of less than 75 ml and a length-weighted average fiber length of less than 0.80 mm, so that the fibers are removed from the papermaking network. In many cases, the transfer of the wet paper to the felt became unstable, and the paper could not be stably produced.
比較例3のセパレータは、所定の溶剤紡糸セルロース繊維と麻パルプからなるため、湿紙の転写性は良好で抄紙安定性に優れており、実施例1〜13より強度は強かったが、麻パルプの一部が皮膜を形成するなどして地合が不均一でピンホールがあり、充放電効率と放電容量維持率が実施例1〜13より劣っていた。 Since the separator of Comparative Example 3 is composed of a predetermined solvent-spun cellulose fiber and hemp pulp, the transfer property of the wet paper is good and the paper making stability is excellent, and the strength is stronger than those of Examples 1 to 13, but hemp pulp A part of the film formed a film and the like was uneven and had pinholes, and the charge / discharge efficiency and the discharge capacity retention rate were inferior to those of Examples 1-13.
比較例4のセパレータは、所定の溶剤紡糸セルロース繊維とエスパルトパルプからなるため、湿紙の転写性は良好で抄紙安定性に優れていたが、エスパルトパルプが堅く、繊維同士の絡み合いが少ないため、地合が不均一でピンホールがあり、溶剤紡糸セルロース繊維のみからなる実施例5よりも充放電効率、放電容量維持率が劣っており、同じ坪量に換算したときの強度も劣っていた。 Since the separator of Comparative Example 4 is composed of a predetermined solvent-spun cellulose fiber and esparto pulp, the wet paper has good transferability and excellent papermaking stability, but the esparto pulp is stiff and there is little entanglement between fibers. Therefore, the formation is non-uniform, there are pinholes, the charge / discharge efficiency and the discharge capacity retention rate are inferior to those of Example 5 consisting only of solvent-spun cellulose fibers, and the strength when converted to the same basis weight is also inferior. It was.
比較例5のセパレータは、溶剤紡糸セルロース繊維を含有せず、麻パルプと無機フィラーからなるため、湿紙の転写性は良好で抄紙安定性に優れており、強度は強かったが、地合が不均一でピンホールがあり、無機フィラーを含有する実施例9〜13より充放電効率と放電容量維持率が劣っていた。 Since the separator of Comparative Example 5 does not contain solvent-spun cellulose fibers and is composed of hemp pulp and inorganic filler, the transfer property of the wet paper is good and the papermaking stability is excellent, and the strength is strong, but the formation is The charge and discharge efficiency and the discharge capacity maintenance rate were inferior to Examples 9 to 13 which were non-uniform and had pinholes and contained an inorganic filler.
本発明のリチウム二次電池用セパレータは、リチウムイオン電池、リチウムイオンポリマー電池等のリチウム二次電池に利用可能である。 The separator for lithium secondary batteries of the present invention can be used for lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries.
Claims (2)
変法濾水度:ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した濾水度。 A paper comprising a solvent-spun cellulose fiber having a modified freeness of 75 to 250 ml defined below and a length-weighted average fiber length of 0.80 to 1.80 mm and an inorganic filler. The separator for lithium secondary batteries is characterized in that the content of the inorganic filler in the separator is 5 to 30% by mass and contains only the solvent-spun cellulose fiber as a fiber component .
Modified freeness: Freeness measured in accordance with JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175629A JP6016512B2 (en) | 2012-08-08 | 2012-08-08 | Lithium secondary battery separator and lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012175629A JP6016512B2 (en) | 2012-08-08 | 2012-08-08 | Lithium secondary battery separator and lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014035850A JP2014035850A (en) | 2014-02-24 |
JP6016512B2 true JP6016512B2 (en) | 2016-10-26 |
Family
ID=50284752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012175629A Active JP6016512B2 (en) | 2012-08-08 | 2012-08-08 | Lithium secondary battery separator and lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6016512B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015179619A (en) * | 2014-03-19 | 2015-10-08 | 三菱製紙株式会社 | Separator for electrochemical element |
JP6942951B2 (en) * | 2016-10-14 | 2021-09-29 | 王子ホールディングス株式会社 | Battery separator, battery and battery separator coating |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3661104B2 (en) * | 1995-05-10 | 2005-06-15 | ニッポン高度紙工業株式会社 | Non-aqueous battery |
JP5113685B2 (en) * | 2008-09-09 | 2013-01-09 | 三菱製紙株式会社 | Electrochemical element separator |
JP5419530B2 (en) * | 2009-04-17 | 2014-02-19 | ニッポン高度紙工業株式会社 | Battery separator and battery |
JP2011253709A (en) * | 2010-06-02 | 2011-12-15 | Mitsubishi Paper Mills Ltd | Separator for electrochemical element |
CN102986060B (en) * | 2010-07-14 | 2016-04-27 | 三菱制纸株式会社 | Separator for lithium ion secondary battery and use its lithium rechargeable battery |
JP5613063B2 (en) * | 2011-01-06 | 2014-10-22 | 三菱製紙株式会社 | Separator for lithium secondary battery |
-
2012
- 2012-08-08 JP JP2012175629A patent/JP6016512B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014035850A (en) | 2014-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6542343B2 (en) | Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator | |
JP6953413B2 (en) | Base material for lithium-ion battery separator and lithium-ion battery separator | |
JP5613063B2 (en) | Separator for lithium secondary battery | |
JP5552040B2 (en) | Separator for lithium secondary battery | |
JP5695477B2 (en) | Electrochemical element separator and electrochemical element using the same | |
JP5613069B2 (en) | Separator for lithium secondary battery | |
CN104577009A (en) | Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2019046776A (en) | Separator for electrochemical element and electrochemical element including the same | |
JP2014053259A (en) | Separator for lithium secondary battery, and lithium secondary battery | |
JP6317556B2 (en) | Lithium ion secondary battery separator and lithium ion secondary battery using the same | |
JP2014056953A (en) | Separator for capacitor and capacitor | |
CN106716680A (en) | Electrochemical element separator and electrochemical element obtained using same | |
JP6408810B2 (en) | Lithium secondary battery separator and method for producing lithium secondary battery separator | |
JP6076278B2 (en) | Lithium ion secondary battery separator and lithium ion secondary battery using the same | |
JP6016512B2 (en) | Lithium secondary battery separator and lithium secondary battery | |
JP2012155941A (en) | Separator for electrochemical element, and electrochemical element using the same | |
JP2012003873A (en) | Base material for lithium secondary battery | |
JP2016171048A (en) | Lithium ion secondary battery separator and lithium ion secondary battery arranged by use thereof | |
JP2012227116A (en) | Separator for lithium secondary battery, and lithium secondary battery | |
JP2012195162A (en) | Substrate for lithium secondary battery, and separator for lithium secondary battery | |
JP2014036074A (en) | Separator for capacitor and capacitor | |
JP2012190622A (en) | Separator for electrochemical element, and electrochemical element including the same | |
JP2012134097A (en) | Separator for lithium secondary battery | |
JP6581512B2 (en) | Separator for lithium ion secondary battery | |
WO2009148178A1 (en) | Thin tissue material, manufacturing method thereof, and electrical and electronic parts using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6016512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |