JP2012003873A - Base material for lithium secondary battery - Google Patents

Base material for lithium secondary battery Download PDF

Info

Publication number
JP2012003873A
JP2012003873A JP2010135670A JP2010135670A JP2012003873A JP 2012003873 A JP2012003873 A JP 2012003873A JP 2010135670 A JP2010135670 A JP 2010135670A JP 2010135670 A JP2010135670 A JP 2010135670A JP 2012003873 A JP2012003873 A JP 2012003873A
Authority
JP
Japan
Prior art keywords
base material
secondary battery
lithium secondary
fiber
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135670A
Other languages
Japanese (ja)
Inventor
Takahiro Tsukuda
貴裕 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010135670A priority Critical patent/JP2012003873A/en
Publication of JP2012003873A publication Critical patent/JP2012003873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base material for a lithium secondary battery which has excellent surface smoothness after coating without strike-through of coating liquid of filler particles and resins, high electrolyte retention rate, and excellent heat resistance.SOLUTION: The base material for the lithium secondary battery is characterized by comprising a wet nonwoven fabric containing fibrillation heat resistant fibers and synthetic staple fibers as essential components.

Description

本発明は、リチウム二次電池用基材に関する。   The present invention relates to a base material for a lithium secondary battery.

近年の携帯電子機器の普及及びその高性能化に伴い、高エネルギー密度を有する二次電池が望まれている。この種の電池として、有機電解液を使用するリチウムイオン電池が注目されてきた。このリチウムイオン電池は、平均電圧として従来の二次電池であるアルカリ二次電池の約3倍である3.7V程度が得られることから高エネルギー密度となるが、アルカリ二次電池のように水系の電解液を用いることができないため、十分な耐酸化還元性を有する非水電解液を用いている。非水電解液は可燃性であるため発火等の危険性があり、その使用において安全性には細心の注意が払われている。発火等の危険に曝されるケースとしていくつか考えられるが、特に過充電が危険である。   With the recent spread of portable electronic devices and higher performance, secondary batteries having high energy density are desired. As this type of battery, a lithium ion battery using an organic electrolyte has attracted attention. This lithium ion battery has a high energy density because an average voltage of about 3.7 V, which is about three times that of an alkaline secondary battery, which is a conventional secondary battery, is obtained. Therefore, a nonaqueous electrolytic solution having sufficient oxidation-reduction resistance is used. Since non-aqueous electrolytes are flammable, there is a risk of ignition and the like, and careful attention is paid to safety in their use. There are several possible cases of exposure to fire and other hazards, but overcharging is particularly dangerous.

過充電を防止するために、現状の非水系二次電池では定電圧・定電流充電が行われ、電池に精密なIC(保護回路)が装備されている。この保護回路にかかるコストは大きく、非水系二次電池をコスト高にしている要因にもなっている。   In order to prevent overcharging, current non-aqueous secondary batteries are charged at a constant voltage and a constant current, and the battery is equipped with a precise IC (protection circuit). The cost required for this protection circuit is large, and it is a factor that increases the cost of non-aqueous secondary batteries.

保護回路で過充電を防止する場合、当然保護回路がうまく作動しないことも想定され、本質的に安全であるとは言い難い。現状の非水系二次電池には、過充電時に保護回路が壊れ、過充電されたときに安全に電池を破壊する目的で、安全弁・PTC素子の装備、セパレータには熱ヒューズ機能を有する工夫がなされている。しかし、上記のような手段を装備していても、過充電される条件によっては、確実に過充電時の安全性が保証されているわけではなく、実際には非水系二次電池の発火事故は現在でも起こっている。   When overcharging is prevented by the protection circuit, it is naturally assumed that the protection circuit does not operate well, and it is difficult to say that it is intrinsically safe. The current non-aqueous secondary battery has a safety circuit / PTC element equipped and a separator with a thermal fuse function for the purpose of destroying the battery safely when overcharged. Has been made. However, even if equipped with the above-mentioned means, depending on the overcharge conditions, the safety during overcharge is not guaranteed, and in fact, non-aqueous secondary battery ignition accidents Is still happening.

セパレータとしては、ポリエチレン等のポリオレフィンからなるフィルム状の多孔質フィルムが多く使用されており、電池内部の温度が130℃近傍になった場合、溶融して微多孔を塞ぐことで、リチウムイオンの移動を防ぎ、電流を遮断させる熱ヒューズ機能(シャットダウン機能)があるが、何らかの状況により、さらに温度が上昇した場合、ポリオレフィン自体が溶融してショートし、熱暴走する可能性が示唆されている。そこで、現在、200℃近くの温度でも溶融及び収縮しない耐熱性セパレータが開発されている。   As the separator, a film-like porous film made of a polyolefin such as polyethylene is often used. When the temperature inside the battery reaches around 130 ° C., it melts and closes the micropores, thereby transferring lithium ions. Although there is a thermal fuse function (shutdown function) that cuts off the current and shuts off the current, it is suggested that if the temperature further increases due to some situation, the polyolefin itself melts and short-circuits, causing a thermal runaway. In view of this, a heat-resistant separator that does not melt and shrink even at temperatures close to 200 ° C. has been developed.

耐熱性セパレータとしては、ポリエステル不織布(例えば、特許文献1参照)が開示されている。また、ポリエステル不織布を内包し、電解液に膨潤する有機高分子を保持したセパレータを用いたリチウムイオン二次電池(例えば、特許文献2参照)、融点が80〜130℃の樹脂A、加熱により電解液を吸収して膨潤する樹脂Bの少なくとも1種の樹脂と多孔質基体とフィラー粒子とを含む多孔質膜からなる電気化学素子用セパレータが開示されている(例えば、特許文献3参照)。しかしながら、これらのセパレータは、何れも不織布の孔が大きいため、塗工の際に塗液が裏抜けしてしまい、塗工後の表面平滑性が悪い問題と、不織布内部にフィラー粒子が充填され、不織布内部の空孔を閉塞するため、電解液保持性が悪く、セパレータの内部抵抗が高くなる問題があった。   As the heat resistant separator, a polyester nonwoven fabric (for example, see Patent Document 1) is disclosed. In addition, a lithium ion secondary battery using a separator encapsulating a polyester nonwoven fabric and holding an organic polymer that swells in an electrolyte solution (see, for example, Patent Document 2), a resin A having a melting point of 80 to 130 ° C., and electrolysis by heating A separator for an electrochemical element is disclosed which includes a porous film including at least one resin B that swells by absorbing liquid, a porous substrate, and filler particles (see, for example, Patent Document 3). However, all of these separators have large pores in the nonwoven fabric, so that the coating liquid penetrates during coating, and the surface smoothness after coating is poor, and filler particles are filled inside the nonwoven fabric. Further, since the pores inside the nonwoven fabric are closed, there is a problem that the electrolytic solution retention is poor and the internal resistance of the separator is increased.

特開2003−123728号公報JP 2003-123728 A 特開2005−293891号公報JP 2005-293891 A 特開2007−157723号公報JP 2007-157723 A

本発明の課題は、フィラー粒子や樹脂を含有する塗液の裏抜けがなく、塗工後の表面平滑性に優れ、電解液保持率が高く、耐熱性に優れるセパレータを実現するリチウム二次電池用基材を提供することにある。   An object of the present invention is to provide a lithium secondary battery that realizes a separator that does not show through the coating liquid containing filler particles or resin, has excellent surface smoothness after coating, has a high electrolyte solution retention ratio, and excellent heat resistance. It is to provide a substrate for use.

本発明者は、上記課題を解決するために鋭意研究した結果、フィブリル化耐熱性繊維と合成短繊維とを必須成分として含有してなる湿式不織布からなることを特徴とするリチウム二次電池用基材を見出した。   As a result of earnest research to solve the above problems, the inventor has a base for a lithium secondary battery comprising a wet nonwoven fabric containing fibrillated heat-resistant fibers and synthetic short fibers as essential components. I found the material.

本発明のリチウム二次電池用基材は、フィブリル化耐熱性繊維と合成短繊維とを必須成分として含有してなる湿式不織布からなるため、基材の空孔が小さく、比較的均一に形成される。そのため、フィラー粒子を含有する塗液の裏抜けが抑制され、フィラー粒子が基材表面に集中的に積層されるため、塗工後の表面平滑性に優れ、電極との間に無用の隙間が生じにくい。また、塗液の裏抜けが抑制されることから、フィラー粒子が基材内部に充填されて、基材内部の空孔を閉塞することがないため、電解液保持率の高いセパレータを得ることができる。フィブリル化耐熱性繊維を含有するため、耐熱性に優れ、リチウム二次電池が内部短絡して発熱し、温度上昇してもセパレータが溶融、収縮することがない。   The base material for a lithium secondary battery according to the present invention is a wet nonwoven fabric containing fibrillated heat-resistant fibers and synthetic short fibers as essential components, so that the base material has small pores and is formed relatively uniformly. The Therefore, the back-through of the coating liquid containing the filler particles is suppressed, and the filler particles are intensively laminated on the surface of the base material. Therefore, the surface smoothness after coating is excellent, and there is no useless gap between the electrodes. Hard to occur. Further, since the back-through of the coating liquid is suppressed, the filler particles are not filled inside the base material and do not block the pores inside the base material, so that a separator having a high electrolytic solution retention rate can be obtained. it can. Since it contains fibrillated heat-resistant fibers, it has excellent heat resistance, the lithium secondary battery is internally short-circuited and generates heat, and even if the temperature rises, the separator does not melt or shrink.

本発明のリチウム二次電池用基材(以下、「基材」と表記することもある)とは、フィラー粒子を含有するスラリーを含浸または塗工するための基材、多孔質フィルムを積層一体化するための基材、固体電解質やゲル状電解質を含浸または塗工するための基材であり、リチウム二次電池用セパレータの前駆体シートである。フィラーは、無機、有機の何れでも良い。無機フィラーとしては、アルミナ、シリカ、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物、窒化アルミニウムや窒化珪素などの無機窒化物、アルミニウム化合物、ゼオライト、マイカなどが挙げられる。有機フィラーとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレンオキシド、ポリスチレン、ポリフッ化ビニリデン、エチレン−ビニルモノマー共重合体、ポリオレフィンワックスなどが挙げられる。   The base material for lithium secondary battery of the present invention (hereinafter sometimes referred to as “base material”) is a base material for impregnating or coating a slurry containing filler particles, and a porous film laminated together. It is a base material for impregnation or coating with a solid electrolyte, a solid electrolyte or a gel electrolyte, and is a precursor sheet for a lithium secondary battery separator. The filler may be either inorganic or organic. Examples of the inorganic filler include inorganic oxides such as alumina, silica, titanium oxide, barium titanate, and zirconium oxide, inorganic nitrides such as aluminum nitride and silicon nitride, aluminum compounds, zeolite, and mica. Examples of the organic filler include polyethylene, polypropylene, polyacrylonitrile, polymethyl methacrylate, polyethylene oxide, polystyrene, polyvinylidene fluoride, ethylene-vinyl monomer copolymer, polyolefin wax, and the like.

本発明におけるリチウム二次電池とは、リチウムイオン電池やリチウムイオンポリマー電池を意味する。リチウム二次電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム、シリカ、スズ、ニッケル、鉛から選ばれる1種以上の金属とリチウムとの合金、SiO、SnO、Fe、WO、Nb、Li4/3Ti5/3等の金属酸化物、Li0.4CoNなどの窒化物が用いられる。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム、リチウムニッケルマンガン酸化物、リン酸鉄リチウムが用いられる。リン酸鉄リチウムは、さらに、マンガン、クロム、コバルト、銅、ニッケル、バナジウム、モリブデン、チタン、亜鉛、アルミニウム、ガリウム、マグネシウム、ホウ素、ニオブから選ばれる1種以上の金属との複合物でも良い。 The lithium secondary battery in the present invention means a lithium ion battery or a lithium ion polymer battery. Examples of the negative electrode active material of the lithium secondary battery include carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, and an alloy of lithium and lithium, SiO, SnO, Fe Metal oxides such as 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN are used. As the positive electrode active material, lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, or lithium iron phosphate is used. Further, the lithium iron phosphate may be a composite with one or more metals selected from manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, and niobium.

リチウム二次電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウムや4フッ化ホウ酸リチウムが挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが用いられる。   As an electrolytic solution for a lithium secondary battery, a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used. Examples of the lithium salt include lithium hexafluorophosphate and lithium tetrafluoroborate. As solid electrolyte, what melt | dissolved lithium salt in gel-like polymers, such as polyethyleneglycol, its derivative (s), polymethacrylic acid derivative, polysiloxane, its derivative (s), polyvinylidene fluoride, is used.

本発明のリチウム二次電池用基材を構成する必須成分であるフィブリル化耐熱性繊維としては、全芳香族ポリアミド、全芳香族ポリエステル、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリ−p−フェニレンベンゾビスチアゾール、ポリ−p−フェニレンベンゾビスオキサゾール、ポリテトラフルオロエチレンなどからなる耐熱性繊維をフィブリル化したものが用いられる。これらの中でも全芳香族ポリアミドが電解液との親和性に優れるため好ましい。フィブリル化の程度としては、JIS P8121に規定されるカナダ標準形濾水度0〜400mlが好ましい。400mlを超えると、繊維径分布が広くなり、地合斑や厚み斑になる場合や塗液の裏抜けが生じる場合がある。フィブリル化耐熱性繊維の長さ加重平均繊維長は、0.2〜2.0mmであることが好ましい。0.2mm未満だと、基材から脱落する場合や基材が毛羽立つ場合があり、2.0mmより長いとダマになる場合がある。   The fibrillated heat-resistant fiber, which is an essential component constituting the base material for the lithium secondary battery of the present invention, includes wholly aromatic polyamide, wholly aromatic polyester, polyimide, polyamideimide, polyetheretherketone, polyphenylene sulfide, polybenzoe. A fibrillated heat-resistant fiber made of imidazole, poly-p-phenylenebenzobisthiazole, poly-p-phenylenebenzobisoxazole, polytetrafluoroethylene, or the like is used. Of these, wholly aromatic polyamides are preferred because of their excellent affinity with the electrolyte. The degree of fibrillation is preferably a Canadian standard freeness of 0 to 400 ml as defined in JIS P8121. If it exceeds 400 ml, the fiber diameter distribution becomes wide, and there are cases where it becomes a textured spot or a thick spot, or the coating liquid may fall through. The length weighted average fiber length of the fibrillated heat resistant fiber is preferably 0.2 to 2.0 mm. If it is less than 0.2 mm, it may fall off from the substrate or the substrate may become fluffy, and if it is longer than 2.0 mm, it may become lumpy.

フィブリル化耐熱性繊維は、耐熱性繊維をリファイナー、ビーター、ミル、摩砕装置、高速の回転刃によりせん断力を与える回転式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間でせん断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも3000psiの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維にせん断力、切断力を加える高圧ホモジナイザー等を用いて処理することによって得られる。   Fibrilized heat-resistant fibers consist of refiners, beaters, mills, grinding devices, rotary homogenizers that apply shear force to high-speed rotary blades, cylindrical inner blades that rotate at high speed, and fixed outer blades. High-speed homogenizer that produces a shearing force between them, an ultrasonic crusher that is refined by impact by ultrasonic waves, a pressure difference of at least 3000 psi to the fiber suspension and a small-diameter orifice And by using a high-pressure homogenizer or the like that applies a shearing force or a cutting force to the fiber by causing it to collide and rapidly decelerate.

本発明のリチウム二次電池用基材を構成する必須成分である合成短繊維は、ポリオレフィン、ポリエステル、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリアミド、アクリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルエーテル、ポリビニルケトン、ポリエーテル、ポリビニルアルコール、ジエン、ポリウレタン、フェノール、メラミン、フラン、尿素、アニリン、不飽和ポリエステル、フッ素、シリコーン、これらの誘導体などの樹脂からなる短繊維、上記した耐熱性繊維が挙げられる。合成短繊維は基材の引張強度や突刺強度を強くする。   Synthetic short fibers which are essential components constituting the base material for lithium secondary battery of the present invention are polyolefin, polyester, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, Short fibers made of resins such as polyvinyl ether, polyvinyl ketone, polyether, polyvinyl alcohol, diene, polyurethane, phenol, melamine, furan, urea, aniline, unsaturated polyester, fluorine, silicone, and derivatives thereof, and the above heat-resistant fiber Is mentioned. Synthetic short fibers increase the tensile strength and puncture strength of the substrate.

合成短繊維は、単一の樹脂からなる繊維(単繊維)であっても良いし、2種以上の樹脂からなる複合繊維であっても良い。また、本発明のリチウム二次電池用基材に含まれる合成短繊維は、1種でも良いし、2種類以上を組み合わせて使用しても良い。複合繊維は、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型が挙げられる。   The synthetic short fiber may be a fiber (single fiber) made of a single resin or a composite fiber made of two or more kinds of resins. Moreover, the synthetic short fiber contained in the base material for lithium secondary batteries of this invention may be 1 type, and may be used in combination of 2 or more types. Examples of the composite fiber include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, and a multiple bimetal type.

合成短繊維の繊度は、0.007〜1.1dtexが好ましく、0.02〜0.6dtexがより好ましい。合成短繊維の繊度が1.1dtexを超えた場合、厚さ方向における繊維本数が少なくなるため、塗液が裏抜けする場合や厚みを薄くしにくくなる。また、凹凸が大きくなって、塗工後の表面平滑性が損なわれる場合がある。合成短繊維の繊度が0.007dtex未満の場合、繊維の安定製造が困難になる。   The fineness of the synthetic short fiber is preferably 0.007 to 1.1 dtex, and more preferably 0.02 to 0.6 dtex. When the fineness of the synthetic short fiber exceeds 1.1 dtex, the number of fibers in the thickness direction is reduced, so that it is difficult for the coating liquid to break through or to reduce the thickness. Moreover, unevenness | corrugation becomes large and the surface smoothness after coating may be impaired. When the fineness of the synthetic short fiber is less than 0.007 dtex, stable production of the fiber becomes difficult.

合成短繊維の繊維長としては、1mm以上10mm以下が好ましく、1mm以上6mm以下がより好ましい。繊維長が10mmを超えた場合、地合不良となることがある。一方、繊維長が1mm未満の場合には、基材の機械的強度が低くなって、含浸や塗工の際に基材が破損する場合がある。   The fiber length of the synthetic short fiber is preferably 1 mm or more and 10 mm or less, and more preferably 1 mm or more and 6 mm or less. If the fiber length exceeds 10 mm, formation may be poor. On the other hand, when the fiber length is less than 1 mm, the mechanical strength of the base material becomes low, and the base material may be damaged during impregnation or coating.

本発明のリチウム二次電池用基材において、フィブリル化耐熱性繊維と合成単繊維との合計含有率は、50〜100質量%が好ましく、60〜100質量%がより好ましく、80〜100質量%がさらに好ましい。合計含有率が50質量%未満だと、塗液の裏抜けが生じる場合がある。フィブリル化耐熱性繊維:合成短繊維の質量比率は、7:1〜1:19が好ましく、5:1〜3:17がより好ましく、4:1〜1:5がさらに好ましい。合成短繊維の比率が1:19より多いと、塗液の裏抜けが生じる場合があり、7:1より少ないと基材の突刺強度が弱くなり、基材の取り扱い時や塗工時に破損する場合がある。   In the base material for a lithium secondary battery of the present invention, the total content of the fibrillated heat-resistant fiber and the synthetic single fiber is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 80 to 100% by mass. Is more preferable. If the total content is less than 50% by mass, the coating liquid may be broken through. The mass ratio of fibrillated heat resistant fiber: synthetic short fiber is preferably 7: 1 to 1:19, more preferably 5: 1 to 3:17, and even more preferably 4: 1 to 1: 5. If the ratio of the synthetic short fibers is more than 1:19, the coating liquid may fall through. If it is less than 7: 1, the puncture strength of the base material becomes weak, and the base material is damaged during handling or coating. There is a case.

本発明のリチウム二次電池用基材は、フィブリル化耐熱性繊維と合成短繊維以外の繊維を含有しても良い。例えば、セルロース繊維、セルロース繊維のパルプ化物やフィブリル化物、合成樹脂からなるフィブリッド、パルプ化物、フィブリル化物、無機繊維が挙げられる。無機繊維としては、ガラス、アルミナ、シリカ、セラミックス、ロックウールが挙げられる。無機繊維を含有する場合は、基材の耐熱寸法安定性や突刺強度が向上するため好ましい。セルロース繊維は、天然セルロース、再生セルロースの何れでも良い。   The base material for lithium secondary batteries of the present invention may contain fibers other than fibrillated heat-resistant fibers and synthetic short fibers. Examples thereof include cellulose fibers, pulped and fibrillated cellulose fibers, fibrils made of synthetic resin, pulped products, fibrillated products, and inorganic fibers. Examples of the inorganic fiber include glass, alumina, silica, ceramics, and rock wool. When inorganic fiber is contained, it is preferable because the heat-resistant dimensional stability and puncture strength of the base material are improved. The cellulose fiber may be either natural cellulose or regenerated cellulose.

本発明のリチウム二次電池用基材の厚みは、4〜45μmが好ましく、6〜30μmがより好ましく、8〜20μmがさらに好ましい。45μmを超えると、セパレータの抵抗値が高くなる場合があり、4μm未満であると、基材の強度が弱くなりすぎて、基材の取り扱い時や塗工時に破損する恐れがある。   4-45 micrometers is preferable, as for the thickness of the base material for lithium secondary batteries of this invention, 6-30 micrometers is more preferable, and 8-20 micrometers is further more preferable. If it exceeds 45 μm, the resistance value of the separator may be high, and if it is less than 4 μm, the strength of the base material becomes too weak and may be damaged during handling or coating of the base material.

本発明のリチウム二次電池用基材の密度は、0.250〜0.700g/cmが好ましく、0.400〜0.600g/cmがより好ましい。密度が0.250g/cm未満だと、塗液が裏抜けする場合があり、0.700g/cm超だと、セパレータの抵抗値が高くなる場合がある。 Density of the lithium secondary battery base material of the present invention is preferably 0.250~0.700g / cm 3, 0.400~0.600g / cm 3 is more preferable. When the density is less than 0.250 g / cm 3 , the coating liquid may be seen through, and when it exceeds 0.700 g / cm 3 , the resistance value of the separator may be increased.

本発明のリチウム二次電池用基材は、湿式抄紙法で製造される。湿式抄紙法は、繊維を水に分散して均一な抄紙スラリーとし、この抄紙スラリーを抄紙機で漉きあげて湿式不織布を作製する。抄紙機としては、円網抄紙機、長網抄紙機、傾斜型抄紙機、傾斜短網抄紙機、これらの複合抄紙機が挙げられる。湿式不織布を製造する工程においては、必要に応じて、水流交絡処理を施しても良い。湿式不織布の加工処理として、熱処理、カレンダー処理、熱カレンダー処理などを施しても良い。   The base material for lithium secondary batteries of the present invention is produced by a wet papermaking method. In the wet papermaking method, fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is rolled up with a papermaking machine to produce a wet nonwoven fabric. Examples of the paper machine include a circular paper machine, a long paper machine, an inclined paper machine, an inclined short paper machine, and a composite paper machine of these. In the process of manufacturing a wet nonwoven fabric, a hydroentanglement process may be performed as necessary. As the wet nonwoven fabric processing, heat treatment, calendar treatment, thermal calendar treatment, or the like may be performed.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example.

実施例1、4、5、6、7
表1に示したスラリー1、4、5、6、7を調製し、円網抄紙機を用いて湿式抄紙した後、200℃に加熱した金属ロールに両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、実施例1、4、5、6、7の基材を作製した。
Examples 1, 4, 5, 6, 7
Slurries 1, 4, 5, 6, and 7 shown in Table 1 were prepared, wet papermaking was performed using a circular paper machine, both surfaces were brought into contact with a metal roll heated to 200 ° C., and heat treatment was performed. Then, the thickness was adjusted to produce substrates of Examples 1, 4, 5, 6, and 7.

実施例2、3
表1に示したスラリー2、3を調製し、円網抄紙機を用いて湿式抄紙した後、カレンダー処理して厚み調整し、実施例2、3の基材を作製した。
Examples 2 and 3
Slurries 2 and 3 shown in Table 1 were prepared, wet papermaking was carried out using a circular paper machine, and then calendered to adjust the thickness to produce substrates of Examples 2 and 3.

(比較例1)
表1に示したスラリー8を調製し、円網抄紙機を用いて湿式抄紙した後、200℃に加熱した金属ロールに両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、比較例1の基材を作製した。
(Comparative Example 1)
After preparing slurry 8 shown in Table 1 and wet papermaking using a circular paper machine, both sides were brought into contact with a metal roll heated to 200 ° C., heat treated, and further calendered to adjust thickness, Comparative Example 1 substrate was produced.

(比較例2、4、5)
表1に示したスラリー9、11、12を調製し、円網抄紙機を用いて湿式抄紙した後、カレンダー処理して厚み調整し、比較例2、4、5の基材を作製した。
(Comparative Examples 2, 4, 5)
Slurries 9, 11, and 12 shown in Table 1 were prepared, wet papermaking was performed using a circular paper machine, and then the thickness was adjusted by calendering to prepare substrates of Comparative Examples 2, 4, and 5.

(比較例3)
表1に示したスラリー10を調製し、円網抄紙機を用いて湿式抄紙したが、フィブリル化全芳香族ポリアミド繊維に結着力がないため、基材を作製することができなかった。
(Comparative Example 3)
The slurry 10 shown in Table 1 was prepared, and wet papermaking was performed using a circular paper machine. However, since the fibrillated wholly aromatic polyamide fiber had no binding force, a substrate could not be produced.

Figure 2012003873
Figure 2012003873

表1中のA1、A3、A6はフィブリル化全芳香族ポリアミド、A2はフィブリル化全芳香族ポリエステル、A4はフィブリル化ポリイミド、A5はフィブリル化ポリフェニレンスルフィドを意味し、これらのカナダ標準濾水度は表1に示した通りである。B1は繊度0.06dtex、繊維長3mmのポリエステル短繊維(帝人ファイバー製、商品名:TP04N)、B2は繊度1.1dtex、繊維長5mmの熱融着性芯鞘ポリエステル短繊維(帝人ファイバー製、商品名:TJ04CN)、B3は繊度0.1dtex、繊維長3mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル(登録商標))、B4は繊度0.1dtex、繊維長3mmのナイロン6,6短繊維、B5はポリビニルアルコール短繊維(クラレ製、商品名:VPB107−1x3)を意味する。C1はカナダ標準濾水度500mlの麻パルプを意味する。   In Table 1, A1, A3, and A6 are fibrillated wholly aromatic polyamides, A2 is fibrillated wholly aromatic polyester, A4 is fibrillated polyimide, and A5 is fibrillated polyphenylene sulfide. As shown in Table 1. B1 is a polyester short fiber having a fineness of 0.06 dtex and a fiber length of 3 mm (manufactured by Teijin Fibers, trade name: TP04N). Trade name: TJ04CN), B3 is 0.1 dtex fine fiber, 3 mm long acrylic short fiber (Mitsubishi Rayon, trade name: Bonnell (registered trademark)), B4 is 0.1 dtex fine fiber, 3 mm long nylon 6,6 Short fiber, B5 means polyvinyl alcohol short fiber (manufactured by Kuraray, trade name: VPB107-1x3). C1 means Canadian hemp pulp with a standard freeness of 500 ml.

[セパレータの作製]
板状ベーマイト(平均粒径:1μm、アスペクト比:10)1000g、N−メチルピロリドン1000g、ポリフッ化ビニリデン375gを容器に入れ、撹拌機(商品名:スリーワンモーター、新東科学(株)製)で1時間撹拌して分散させ、均一なスラリーとした。実施例及び比較例の基材に、アプリケーターを用いて、このスラリーを塗工し、防爆型乾燥機で乾燥し、片面あたりの厚さが3μmのベーマイト層を有する長尺のセパレータを得た。
[Preparation of separator]
Plate boehmite (average particle size: 1 μm, aspect ratio: 10), 1000 g of N-methylpyrrolidone, and 375 g of polyvinylidene fluoride are placed in a container and stirred with a stirrer (trade name: Three-One Motor, Shinto Kagaku Co., Ltd.). The mixture was stirred and dispersed for 1 hour to obtain a uniform slurry. This slurry was applied to the base materials of Examples and Comparative Examples using an applicator and dried with an explosion-proof dryer to obtain a long separator having a boehmite layer with a thickness of 3 μm per side.

[評価]
実施例及び比較例の基材及び該基材を用いて作製したセパレータについて、下記の評価を行い、結果を表2に示した。
[Evaluation]
The following evaluation was performed about the base material of an Example and a comparative example, and the separator produced using this base material, and the result was shown in Table 2.

<基材の厚み>
JIS C2111に準拠して厚みを測定し、その平均値を算出した。
<Thickness of base material>
The thickness was measured according to JIS C2111, and the average value was calculated.

<基材の密度>
JIS C2111に準拠して密度を測定した。
<Density of base material>
The density was measured according to JIS C2111.

<裏抜け>
セパレータの製造工程において、塗液が基材を全く裏抜けしなかった場合を○、若干裏抜けしたが、裏面が塗工装置のロールに貼りつくなどの支障がなかった場合を△、裏抜けして裏面がロールに貼りついて円滑な塗工ができないなどの支障を来たした場合を×とした。
<Back-through>
In the manufacturing process of the separator, ○ when the coating liquid did not penetrate the substrate at all, △, when the back surface did not interfere with the roll of the coating device In the case where the back surface was stuck to the roll and a trouble such as inability to perform smooth coating was observed, the case was evaluated as x.

<表面平滑性>
セパレータについて、任意の10ヶ所の厚みを測定し、その標準偏差(μm)を算出し、表面平滑性の指標とした。標準偏差の値が小さいほど、表面平滑性に優れることを意味する。
<Surface smoothness>
About the separator, the thickness of arbitrary 10 places was measured, the standard deviation (micrometer) was computed, and it was set as the parameter | index of surface smoothness. It means that it is excellent in surface smoothness, so that the value of a standard deviation is small.

<電解液保持率>
セパレータについて、100mm巾×100mm長さに切り揃え、電解液に1分間浸漬した後、1分間吊るして余剰電解液を切り、セパレータの質量W1を測定した。W1から電解液を保持させる前のセパレータの質量W0を差し引いて得られる値W2をW0で除して100倍した値を電解液保持率(%)とした。電解液としては、LiPFを1mol/l溶解させた混合溶液を使用した。混合溶液は、エチレンカーボネートとジエチルカーボネートを質量比率で3:7としたものである。
<Electrolytic solution retention>
The separator was cut to a width of 100 mm × 100 mm and immersed in the electrolyte for 1 minute, then suspended for 1 minute to cut off the excess electrolyte, and the mass W1 of the separator was measured. The value obtained by subtracting the mass W0 of the separator before holding the electrolytic solution from W1 and dividing the value W2 by W0 and multiplying by 100 was defined as the electrolytic solution retention rate (%). As the electrolytic solution, a mixed solution in which 1 mol / l of LiPF 6 was dissolved was used. The mixed solution is ethylene carbonate and diethyl carbonate in a mass ratio of 3: 7.

<耐熱性>
セパレータを200mm巾×200mm長さに切り、200℃の恒温乾燥機に3時間静置し、長さ方向及び巾方向の収縮率を算出し、その平均値を表2に示した。
<Heat resistance>
The separator was cut into 200 mm width × 200 mm length and left to stand in a constant temperature dryer at 200 ° C. for 3 hours, the shrinkage in the length direction and the width direction was calculated, and the average value is shown in Table 2.

Figure 2012003873
Figure 2012003873

実施例1〜7のリチウム二次電池用基材は、フィブリル化耐熱性繊維と合成短繊維とを含有する湿式不織布からなるため、フィラー粒子を含有する塗液の裏抜けが抑制され、塗工面の表面平滑性が良く、電解液保持率が高く、耐熱性に優れていた。   Since the base materials for lithium secondary batteries of Examples 1 to 7 are made of a wet nonwoven fabric containing fibrillated heat-resistant fibers and synthetic short fibers, the back-through of the coating liquid containing filler particles is suppressed, and the coated surface The surface smoothness was good, the electrolyte solution retention was high, and the heat resistance was excellent.

一方、比較例1、2のリチウム二次電池用基材は、フィブリル化耐熱性繊維を含有せず、合成短繊維のみで構成されているため、フィラー粒子を含有する塗液の裏抜けが生じ、塗工面の表面平滑性が悪かった。また、基材内部にフィラー粒子が充填されてしまい、基材内部の空孔が閉塞されたため、電解液保持率が悪かった。フィブリル化耐熱性繊維を含有しないため、耐熱性が劣っていた。   On the other hand, the base materials for lithium secondary batteries of Comparative Examples 1 and 2 do not contain fibrillated heat-resistant fibers, but are composed only of synthetic short fibers, so that the coating liquid containing filler particles is broken through. The surface smoothness of the coated surface was poor. Further, the filler particles were filled in the base material, and the pores inside the base material were closed, so that the electrolyte solution retention rate was poor. Since it does not contain fibrillated heat resistant fibers, the heat resistance was poor.

比較例3は、フィブリル化耐熱性繊維のみでリチウム二次電池用基材の作製を試みたが、該繊維に結着力がないため、リチウム二次電池用基材を作製することはできなかった。   In Comparative Example 3, an attempt was made to produce a base material for a lithium secondary battery using only fibrillated heat-resistant fibers, but the base material for a lithium secondary battery could not be produced because the fibers had no binding force. .

比較例4のリチウム二次電池用基材は、合成短繊維を含有せず、フィブリル化耐熱性繊維と天然パルプからなるため、耐熱性は良く、フィラー粒子を含有する塗液の裏抜けは抑制されたものの、基材が緻密すぎるため電解液保持率が悪かった。   The base material for the lithium secondary battery of Comparative Example 4 does not contain synthetic short fibers, and is composed of fibrillated heat resistant fibers and natural pulp. Therefore, the heat resistance is good and the back-through of the coating liquid containing filler particles is suppressed. However, since the base material was too dense, the electrolyte retention rate was poor.

比較例5のリチウム二次電池用基材は、フィブリル化耐熱性繊維を含有せず、合成短繊維と天然パルプからなるため、耐熱性がやや悪く、基材内部にフィラー粒子が充填されてしまい、基材内部の空孔が閉塞されたため、電解液保持率が悪く、塗工面の表面平滑性が悪かった。   The base material for the lithium secondary battery of Comparative Example 5 does not contain fibrillated heat-resistant fibers, and is composed of synthetic short fibers and natural pulp. Therefore, the heat resistance is somewhat poor, and filler particles are filled inside the base material. Since the pores inside the substrate were closed, the electrolyte retention rate was poor and the surface smoothness of the coated surface was poor.

本発明のリチウム二次電池用基材は、リチウムイオン二次電池、リチウムイオンポリマー二次電池等のリチウムイオン二次電池に好適に使用できる。   The base material for lithium secondary batteries of this invention can be used conveniently for lithium ion secondary batteries, such as a lithium ion secondary battery and a lithium ion polymer secondary battery.

Claims (2)

フィブリル化耐熱性繊維と合成短繊維とを必須成分として含有してなる湿式不織布からなることを特徴とするリチウム二次電池用基材。   A base material for a lithium secondary battery, comprising a wet nonwoven fabric containing fibrillated heat-resistant fibers and synthetic short fibers as essential components. フィブリル化耐熱性繊維が、フィブリル化全芳香族ポリアミド繊維であることを特徴とする請求項1記載のリチウム二次電池用基材。   The base material for a lithium secondary battery according to claim 1, wherein the fibrillated heat-resistant fiber is a fibrillated wholly aromatic polyamide fiber.
JP2010135670A 2010-06-15 2010-06-15 Base material for lithium secondary battery Pending JP2012003873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135670A JP2012003873A (en) 2010-06-15 2010-06-15 Base material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135670A JP2012003873A (en) 2010-06-15 2010-06-15 Base material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2012003873A true JP2012003873A (en) 2012-01-05

Family

ID=45535670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135670A Pending JP2012003873A (en) 2010-06-15 2010-06-15 Base material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2012003873A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118639A1 (en) 2012-02-09 2013-08-15 三菱製紙株式会社 Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
JP2013258069A (en) * 2012-06-13 2013-12-26 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator, and lithium ion battery separator
JP2014013692A (en) * 2012-07-04 2014-01-23 Mitsubishi Paper Mills Ltd Base material for lithium ion secondary battery separator, and lithium ion secondary battery separator
JP2014022093A (en) * 2012-07-13 2014-02-03 Mitsubishi Paper Mills Ltd Separator for lithium ion battery
JP2015099673A (en) * 2013-11-19 2015-05-28 三菱製紙株式会社 Lithium ion battery separator
US11637349B2 (en) 2016-09-08 2023-04-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118639A1 (en) 2012-02-09 2013-08-15 三菱製紙株式会社 Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
US9570726B2 (en) 2012-02-09 2017-02-14 Mitsubishi Paper Mills Limited Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
JP2013258069A (en) * 2012-06-13 2013-12-26 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator, and lithium ion battery separator
JP2014013692A (en) * 2012-07-04 2014-01-23 Mitsubishi Paper Mills Ltd Base material for lithium ion secondary battery separator, and lithium ion secondary battery separator
JP2014022093A (en) * 2012-07-13 2014-02-03 Mitsubishi Paper Mills Ltd Separator for lithium ion battery
JP2015099673A (en) * 2013-11-19 2015-05-28 三菱製紙株式会社 Lithium ion battery separator
US11637349B2 (en) 2016-09-08 2023-04-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator

Similar Documents

Publication Publication Date Title
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
JP5613063B2 (en) Separator for lithium secondary battery
JP5552040B2 (en) Separator for lithium secondary battery
JP5613069B2 (en) Separator for lithium secondary battery
JP5576740B2 (en) Electrochemical element
JP2012003873A (en) Base material for lithium secondary battery
JP2008004438A (en) Separator for battery, and lithium secondary cell
JP5752584B2 (en) Separator
JP2009123399A (en) Separator for lithium-ion secondary battery, and lithium-ion secondary battery
US20220158299A1 (en) Lithium ion battery separator and lithium ion battery
JP2012123957A (en) Base material of lithium secondary battery and separator for lithium secondary battery
JP2013125731A5 (en)
JP2012155941A (en) Separator for electrochemical element, and electrochemical element using the same
JP2012195162A (en) Substrate for lithium secondary battery, and separator for lithium secondary battery
JP7156819B2 (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2013235810A (en) Separator for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
WO2019188292A1 (en) Separator for electrochemical element
JP2012134097A (en) Separator for lithium secondary battery
JP2012134135A (en) Base material for lithium secondary battery, and separator for lithium secondary battery
JP5690222B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP6765277B2 (en) Lithium ion battery
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator
JP5840990B2 (en) Electrochemical element separator and electrochemical element
JP2019087455A (en) Lithium ion battery separator and lithium ion battery