WO2019188292A1 - Separator for electrochemical element - Google Patents

Separator for electrochemical element Download PDF

Info

Publication number
WO2019188292A1
WO2019188292A1 PCT/JP2019/010277 JP2019010277W WO2019188292A1 WO 2019188292 A1 WO2019188292 A1 WO 2019188292A1 JP 2019010277 W JP2019010277 W JP 2019010277W WO 2019188292 A1 WO2019188292 A1 WO 2019188292A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
separator
fiber
fibers
polymer
Prior art date
Application number
PCT/JP2019/010277
Other languages
French (fr)
Japanese (ja)
Inventor
正典 森下
境 哲男
田中 政尚
佐藤 芳徳
Original Assignee
日本バイリーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バイリーン株式会社 filed Critical 日本バイリーン株式会社
Priority to CN201980022986.3A priority Critical patent/CN112042006B/en
Publication of WO2019188292A1 publication Critical patent/WO2019188292A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for an electrochemical element.
  • lithium ion secondary batteries have high energy density, they are expected to satisfy such demands.
  • the separator may be melted due to an increase in temperature, resulting in ignition.
  • the porous substrate is formed on at least one surface of the porous substrate, and the inorganic particles and the first binder are high.
  • a porous organic-inorganic coating layer comprising a mixture of molecules, and a second binder polymer dispersed on the surface of the porous organic-inorganic coating layer, and having a large number of interspersed uncoated regions
  • a separator comprising a copolymer having a second monomer unit made of (meth) acrylate having 1 to 14 alkyl groups ”(Patent Document 1) It is.
  • This separator is considered to be able to increase the binding force with the electrode, but it cannot prevent lithium dendrite during overdischarge and cannot prevent another short circuit. .
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a separator for an electrochemical element that is excellent in short circuit prevention by dendrites.
  • the present invention provides: [1] In the internal voids of the nonwoven fabric substrate, the inorganic particles are bonded to the nonwoven fabric substrate constituting fiber by a binder polymer, and are formed by the nonwoven fabric substrate constituting fiber, the inorganic particles, and the binder polymer. It is a separator for an electrochemical element, characterized by having a polymer electrolyte polymer in the formed void.
  • the amount of the polymer electrolyte polymer occupies 2 to 18 mass% of the whole separator for an electrochemical element.
  • the inorganic particles are preferably silica and / or alumina.
  • the nonwoven fabric base material is a composite nonwoven fabric in which short fibers and / or pulp fibers are contained in the gaps of the base nonwoven fabric.
  • the nonwoven fabric base-constituting fibers include heat-resistant fibers having a melting point or decomposition temperature of 180 ° C. or higher.
  • the inorganic particles are bonded to the nonwoven fabric constituent fibers by the binder polymer, and the nonwoven fabric in the internal voids of the nonwoven fabric substrate
  • the polymer electrolyte polymer has a dense structure in the gap formed by the base fiber, inorganic particles, and binder polymer.
  • the polymer electrolyte polymer may be a battery.
  • the nonwoven fabric base material is a composite nonwoven fabric in which short fibers and / or pulp-like fibers are contained in the voids of the base nonwoven fabric
  • the nonwoven fabric base material has a uniform and dense structure, and therefore prevents short circuit due to dendrites. It is superior to the nature.
  • the non-woven fabric base fiber contains a heat-resistant fiber having a melting point or decomposition temperature of 180 ° C. or higher, a short circuit or ignition due to shrinkage or melting of the separator for an electrochemical element is less likely to occur. In addition, it is easy to produce an electrochemical element having a long squill life because it can be sufficiently dried and moisture can be removed when the separator for an electrochemical element is produced.
  • the separator for an electrochemical element of the present invention (hereinafter, sometimes simply referred to as “separator”) is excellent in retention of the electrolytic solution, and can maintain the strength of the separator. Having a nonwoven substrate.
  • the resin composition of the fibers constituting the nonwoven fabric substrate is not particularly limited.
  • polyolefin resins polyethylene, polypropylene, polymethylpentene, hydrocarbons partially substituted with cyano groups or halogens such as fluorine or chlorine
  • Polyolefin resin having the structure described above polyolefin resin having the structure described above
  • styrene resin polyether resin (polyether ether ketone, polyacetal, phenol resin, melamine resin, urea resin, epoxy resin, modified polyphenylene ether, aromatic polyether ketone) Etc.)
  • polyester resin polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyarylate, wholly aromatic poly Steal resin, unsaturated polyester resin, etc.
  • polyimide resin polyamideimide resin
  • polyamide resin eg, aromatic polyamide resin, aromatic polyetheramide
  • the nonwoven fabric base-constituting fiber may be composed of one kind of organic resin as described above, or may be composed of two or more kinds.
  • the resin arrangement state in the cross section of the fiber can be, for example, a core-sheath type, sea-island type, side-by-side type, orange type, bimetal type, or the like.
  • the fibers are in a bonded state, and the internal voids of the nonwoven fabric base material are easily retained, so that the retention of inorganic particles, the binder polymer and the polymer electrolyte polymer is excellent.
  • the nonwoven fabric base-constituting fibers are composed of two or more kinds of organic resins, and the fiber surface preferably contains fibers composed of a low-melting-point resin.
  • the fiber surface preferably contains fibers composed of a low-melting-point resin.
  • the arrangement of the resin in the cross section of the fiber is a core-sheath type or sea-island type, the low melting point occupying the entire fiber surface (excluding both ends of the fiber) while maintaining the fiber form by the core component or island component This is preferable because the resin can be sufficiently fused.
  • the nonwoven fabric base material fiber is less likely to cause short circuit or ignition due to the shrinkage or melting of the separator, and can be sufficiently dried at the time of separator production to remove moisture and easily produce an electrochemical element having a long squill life.
  • it is preferable to contain the heat resistant fiber whose melting
  • heat-resistant fibers examples include styrene fibers, polyether fibers, polyester fibers, polyimide fibers, polyamideimide fibers, polyamide fibers, epoxy fibers, polysulfone fibers, fluorine fibers, cellulose, Polybenzimidazole fiber can be mentioned, and in particular, a wholly aromatic polyamide fiber that is a polyamide-based fiber or a wholly aromatic polyester fiber that is a polyester-based fiber has excellent heat resistance and has a low moisture content and is resistant to electrolyte.
  • the non-woven fabric substrate has a uniform and dense pore size, and is excellent in short circuit prevention due to dendrites. Therefore, it is preferable.
  • Such heat-resistant fibers are preferably contained in an amount of 5 mass% or more of the nonwoven fabric base component fiber, more preferably 10 mass% or more, and more preferably 15 mass% or more so as to have excellent performance. More preferably, it is more preferably 20% by mass or more.
  • Melting point refers to the melting temperature obtained from a differential thermal analysis curve (DTA curve) obtained by differential thermal analysis as defined in JIS K 7121-1987, and “decomposition temperature” as defined in JIS K 7120-1987. The temperature at the time when the mass of the completely dried test piece is reduced by 5% is measured.
  • DTA curve differential thermal analysis curve
  • the cross-sectional shape of the nonwoven fabric substrate constituting fiber may be circular or non-circular.
  • non-circular shapes include, for example, polygonal shapes such as substantially triangular shapes, alphabetic character shapes such as Y-shapes, symbol shapes such as irregular shapes, multileaf shapes, asterisk shapes, or a combination of these shapes. Examples include shapes.
  • the fiber diameter of the fibers constituting the nonwoven fabric substrate of the present invention is not particularly limited, but it is 0.1 to 0.1 so that the electrical insulation is excellent and the electrolyte retention is excellent.
  • the thickness is preferably 20 ⁇ m, more preferably 0.5 to 16 ⁇ m, and still more preferably 0.5 to 13 ⁇ m.
  • it since it can be a nonwoven fabric base material of a dense structure, it is suitable to contain two or more types of fibers having different fiber diameters. For example, when a fiber having a fiber diameter of 0.1 to 4 ⁇ m and a fiber having a fiber diameter of 4 to 20 ⁇ m are included, the separator has a dense structure and is excellent in electrical insulation. “Fiber diameter” means the shortest length of fiber when an electron micrograph is observed on the main surface of the nonwoven fabric substrate or separator.
  • the fiber length of the non-woven fabric substrate constituting fiber is preferably 0.1 to 20 mm, and preferably 0.5 to 15 mm so that the fibers are uniformly dispersed and the electrolyte solution can be easily held uniformly. Is more preferably 1 to 10 mm.
  • Fiber length means the length in the direction in which the fibers extend when an electron micrograph is observed on the main surface of the nonwoven fabric substrate or separator.
  • nonwoven fabric base-constituting fibers may be pulp-like fibers having fibrils or fibers having no fibrils, but if they are pulp-like fibers, the pore diameter of the nonwoven fabric base material is uniform and dense.
  • the structure is preferable because it is superior in the prevention of short circuit by dendrite.
  • the constituent fibers of the nonwoven fabric substrate may be in a state in which the fibers are bonded or in a state in which the fibers are not bonded, but when the fibers are bonded, a separator having excellent shape stability. Since it can be, it is a preferred embodiment.
  • Such fiber-to-fiber bonding is, for example, the deformation caused by the crystal orientation caused by the fusion of the low melting point resin as described above with the fibers constituting the fiber surface and the heating and pressurization of unstretched fibers (for example, unstretched polyester fibers) It can be an adhesive action by, an intertwining of fibers and / or an adhesive by a binder.
  • the nonwoven fabric substrate of the present invention is excellent in affinity with the electrolytic solution, and it is easy to hold the electrolytic solution uniformly, and the inorganic particles are easily adhered to the binder polymer.
  • the material-constituting fiber includes a hydrophobic fiber as in the case of including a polyester-based fiber
  • an affinity group is provided.
  • oxygen and / or sulfur-containing functional groups for example, sulfonic acid groups, sulfonic acid groups, sulfofluoride groups, hydroxyl groups, carboxyl groups, or carbonyl groups
  • hydrophilic monomers are graft-polymerized. It is preferable that a surfactant is applied or a hydrophilic resin is applied.
  • the fibers constituting the nonwoven fabric substrate of the present invention are the resin composition, the number of resin compositions, the arrangement state of the resin in the cross section of the fiber, the fiber diameter, the fiber length, the presence or absence of fibrils, and / or the degree of affinity, etc. It may be composed of two or more types of fibers that are different from each other.
  • the nonwoven fabric substrate of the present invention may have a single layer structure or a multilayer structure of two or more layers.
  • a single-layer or double-layer composite nonwoven fabric in which short fibers and / or pulp-like fibers enter the voids of the base nonwoven fabric has a uniform and dense structure in the pore diameter of the nonwoven fabric substrate, and prevents short circuiting due to dendrites. It is suitable because it is more excellent in properties.
  • the short fiber and / or pulp-like fiber which entered in this composite nonwoven fabric are entangled with the base nonwoven fabric constituting fiber, bonded with a binder, or entered with the short fiber or pulp-like fiber.
  • At least one of the base nonwoven fabric constituent fibers can be fused, and the short fibers and / or the pulp-like fibers can be fixed to the base nonwoven fabric.
  • the base non-woven fabric is not particularly limited as long as it can maintain the strength of the non-woven fabric substrate.
  • the base non-woven fabric can be a wet non-woven fabric including non-woven fabric constituting fibers as described above.
  • the nonwoven fabric base material preferably contains heat-resistant fibers, it is preferable that the base nonwoven fabric and / or short fibers and / or pulp-like fibers contain heat-resistant fibers. It is more preferable that both the short fiber and / or the pulp-like fiber contained in the nonwoven fabric contain a heat-resistant fiber.
  • the basis weight of the nonwoven fabric base material of the present invention is not particularly limited, but is preferably 1 g / m 2 or more, and preferably 3 g / m 2 or more so that the retention of inorganic particles described later is excellent. Is more preferably 5 g / m 2 or more, and further preferably 6 g / m 2 or more.
  • the upper limit of the basis weight is not particularly limited, but if the basis weight is high and the amount of fibers is large, the internal resistance tends to be high. Therefore, it is preferably 30 g / m 2 or less, and 25 g / m 2 or less. More preferably, it is more preferably 20 g / m 2 or less.
  • “weight per unit” means the basis weight obtained based on the method defined in JIS P8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate of the present invention is not particularly limited, but is preferably 50 ⁇ m or less, and preferably 40 ⁇ m or less so that an electrochemical element having a low internal resistance can be easily produced due to its thin thickness. Is more preferable, and it is still more preferable that it is 30 micrometers or less. On the other hand, if the thickness is too thin, the strength tends to decrease and the separator tends to be cracked, and the handleability tends to be inferior. Therefore, the thickness is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the “thickness” in the present invention is measured at 10 points selected at random using an outer micrometer (0 to 25 mm) defined in JIS B 7502: 1994, and the arithmetic average is obtained. Value.
  • the separator of the present invention is safe because the inorganic particles are bonded to the nonwoven fabric constituent fibers by the binder polymer in the internal voids of the nonwoven fabric base as described above, so that it has excellent heat resistance and is difficult to melt or shrink. Excellent in properties.
  • the particle diameter of the inorganic particles can be present in the internal voids in the nonwoven fabric base material, and can be any one that can reduce the internal voids of the nonwoven fabric base material, and is not particularly limited, but is preferably 3 ⁇ m or less, It is more preferably 1 ⁇ m or less, and further preferably 0.8 ⁇ m or less.
  • the lower limit value of the particle diameter of the inorganic particles is not particularly limited, but it is realistic that it is 0.01 ⁇ m or more.
  • the “particle size” in the present invention is particle size measurement data obtained from scatter intensity by performing continuous measurement for 3 minutes by dynamic light scattering method using FPRA1000 (measurement range: 3 nm to 5000 nm) manufactured by Otsuka Electronics Co., Ltd.
  • the particle size measurement data obtained by performing the particle size measurement five times and arranging the particle size measurement data obtained in the order of narrowing the particle size distribution width are the third particles having the narrowest particle size distribution width.
  • the particle diameter D 50 (hereinafter abbreviated as D 50 ) at the 50% cumulative value of particles is defined as the particle diameter.
  • the measurement liquid used for the measurement is adjusted to a temperature of 25 ° C., and pure water at 25 ° C. is used as a blank for scattering intensity.
  • the particle size distribution of the inorganic particles is not particularly limited. However, if the particle size distribution of the inorganic particles is too wide, the inorganic particles are non-uniformly present, resulting in variations in the pore diameter of the separator, resulting in a decrease in electrical insulation. because of its tendency to particle size distribution of the inorganic particles (D 50/2) or more, and preferably in the (D 50 ⁇ 2) within the following range.
  • the “particle size distribution” in the present invention is determined from the particle size measurement data obtained from the measured intensity measured by the dynamic light scattering method described above.
  • the composition of the inorganic particles used in the present invention is not particularly limited.
  • SiO 2 silicon
  • Al 2 O 3 alumina
  • alumina-silica composite oxide TiO 2 , SnO 2 , BaTiO 2
  • Oxides such as ZrO and tin-indium oxide (ITO)
  • nitrides such as aluminum nitride and silicon nitride
  • poorly soluble ionic crystals such as calcium fluoride, barium fluoride and barium sulfate
  • covalent bonds such as silicon and diamond
  • clays such as talc and montmorillonite
  • substances derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite and mica, or artificial products thereof.
  • silica and alumina are preferable because lithium dendrite can be prevented and charge / discharge can be easily performed again even when overdischarge occurs.
  • two or more kinds of inorganic particles having different compositions as described above may be included.
  • silica particles and alumina particles may be included.
  • inorganic particles having two or more kinds of compositions as described above, for example, silica-alumina particles may be contained.
  • the shape of the inorganic particles is not particularly limited, but for example, spherical (substantially spherical or true spherical), fibrous, needle-like (for example, tetrapot-like), flat plate, polyhedron, feather, A regular shape can be mentioned.
  • a true spherical shape is suitable because it can be easily packed in the inner space of the nonwoven fabric base material and the pore diameter of the separator can be reduced.
  • a method for producing inorganic particles by detonating a dust cloud of a raw material capable of preparing inorganic particles as an inorganic particle in a reaction gas atmosphere such as air, oxygen, chlorine, nitrogen or the like for example, JP-A-60.
  • Inorganic particles obtained by the method disclosed in JP-A-255602) (hereinafter sometimes referred to as “deflagration inorganic particles”) are preferable. This is because the deflagration inorganic particles have a spherical shape, have a small water content, and do not easily deteriorate the performance of the electrochemical device.
  • the separator of the present invention has inorganic particles in the internal voids of the nonwoven fabric substrate, but may contain not only internal voids but also inorganic particles deposited on the fibers constituting the surface of the nonwoven fabric substrate.
  • the amount of the inorganic particles is not particularly limited because the total volume of the inorganic particles varies depending on the specific gravity.
  • the inorganic voids are sufficiently filled in the internal voids of the nonwoven fabric substrate, and preferably the nonwoven fabric substrate.
  • the inorganic particle volume ratio (Vr) defined by the following formula is 0.1 or more so that inorganic particles are deposited on the surface and the electrolyte retainability is excellent. More preferably, it is 15 or more.
  • Vr Iv / Fv
  • Iv means the total volume of the inorganic particles and is a value obtained from the following formula
  • Fv means the total volume of the nonwoven fabric substrate constituting fibers and is a value obtained from the following formula.
  • Is the specific gravity of the inorganic particles
  • Ft the total mass of the nonwoven fabric base component fibers
  • Fs is the specific gravity of the nonwoven fabric base fabric fibers.
  • the inorganic particles are bonded to the nonwoven fabric base fiber with a binder polymer so that such inorganic particles do not fall off and are excellent in heat resistance and denseness.
  • the binder polymer is not particularly limited as long as it is capable of adhering inorganic particles to fibers constituting the nonwoven fabric base material and resistant to electrolytic solution.
  • the binder polymer preferably accounts for 0.5 mass% or more of the total amount of the inorganic particles and the binder polymer, more preferably 1 mass% or more so that the inorganic particles can be sufficiently bonded. It is more preferable to occupy the above. On the other hand, when the ratio of the binder polymer is too high, the internal resistance of the separator tends to increase, and therefore it is preferably 10 mass% or less.
  • the separator of the present invention has a polymer electrolyte polymer in the void formed by the nonwoven fabric substrate constituting fiber, the inorganic particles, and the binder polymer in the internal void of the nonwoven fabric substrate.
  • the polymer electrolyte polymer absorbs the electrolyte during battery construction and swells to effectively close the voids and diffuse metal ions. Since it functions as a barrier layer that prevents the occurrence of short circuiting, it is excellent in short circuit prevention by dendrite. Furthermore, it has been found that even when overdischarge occurs, dendrite can be prevented and charge / discharge can be performed again, which is remarkably excellent, contrary to conventional common sense.
  • the polyelectrolyte polymer in the separator of the present invention exists in the void formed by the nonwoven fabric substrate constituting fibers, the inorganic particles, and the binder polymer in the internal void of the nonwoven fabric substrate.
  • the surface has inorganic particles and a binder polymer, they may be present in the voids between the inorganic particles and the binder polymer.
  • the polyelectrolyte polymer is not particularly limited, and can be, for example, an ionomer resin, and includes, for example, an anion exchange group such as a quaternary ammonium group, a pyridinium group, an imidazolium group, a phosphonium group, and a sulfonium group. It can be a hydrocarbon-based resin (for example, polystyrene, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene, polybenzimidazole, polyimide, polyarylene ether, polyethylene oxide, etc.).
  • an anion exchange group such as a quaternary ammonium group, a pyridinium group, an imidazolium group, a phosphonium group, and a sulfonium group.
  • It can be a hydrocarbon-based resin (for example, polystyrene, polysulfone, polyethersulfone, polyetherether
  • the polymer electrolyte polymer can be a fluorine-based resin, such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) copolymer, polyvinylidene fluoride-trifluoride chloride. Swells by contact with non-aqueous solvent (electrolyte) such as ethylene (PVDF-CTFE) copolymer, polyvinylidene fluoride-4 ethylene fluoride-6 propylene copolymer (PVDF-TFE-HFP) copolymer, etc. And can form a gel.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-6-propylene fluoride copolymer
  • PVDF-trifluoride chloride polyvinylidene fluoride-trifluoride chloride. Swells by contact with non-aqueous solvent (electroly
  • the fluororesin may be a perfluorocarbon sulfonic acid resin comprising a main chain made of polytetrafluoroethylene and a side chain having a sulfonic acid group. More specifically, it can be a perfluorocarbon sulfonic acid resin represented by the following general formula.
  • n is 5 to 10000 (preferably about 1000), and z is 1 to 30]
  • the polymer electrolyte polymer absorbs the electrolyte during battery construction and effectively swells to effectively close the voids and function as a barrier layer to prevent the diffusion of metal ions.
  • It is preferably a fluorine-based resin that is excellent in preventing properties and that can easily be charged and discharged again and can form a gel by contact with a non-aqueous solvent (electrolytic solution).
  • a fluorine-based resin that is excellent in preventing properties and that can easily be charged and discharged again and can form a gel by contact with a non-aqueous solvent (electrolytic solution).
  • PVDF-HFP polyvinylidene fluoride-6-propylene fluoride
  • PVDF polyvinylidene fluoride
  • the polyelectrolyte polymer can prevent dendrite, and the polyelectrolyte polymer occupies 2 to 18 mass% of the entire separator so that charge and discharge can be easily performed even after overdischarge. It is preferable that it occupies 3 mass% or more, and more preferably occupies 3.5 mass% or more. On the other hand, if the amount of the polymer electrolyte polymer is too large, the internal resistance of the electrochemical element tends to increase. Therefore, the polymer electrolyte polymer preferably occupies 18 mass% or less of the entire separator, and 17.5 mass%. It is more preferable to occupy the following, and it is still more preferable to occupy 17 mass% or less.
  • the polyelectrolyte polymer of the present invention has a void formed by the nonwoven fabric base constituent fiber, the inorganic particles, and the binder polymer.
  • the binder polymer and the polymer electrolyte polymer may be mixed, it is preferable that the binder polymer and the polymer electrolyte polymer are not mixed and are in a separated state. If mixed, the polymer electrolyte polymer absorbs the electrolyte and swells to weaken the action of plugging the gap, resulting in a decrease in the function as a barrier layer and a tendency to reduce short-circuit prevention due to dendrites. Because there is.
  • the polyelectrolyte polymer is preferably in a state where it is coated with a binder polymer or in a state where it is partially in contact with the binder polymer.
  • the state in which the binder polymer and the polymer electrolyte polymer are separated can be formed, for example, by attaching the polymer electrolyte polymer after the inorganic particles are bonded to the nonwoven fabric constituting fiber with the binder polymer.
  • the basis weight of the separator of the present invention is not particularly limited, but is preferably 5 to 35 g / m 2 , more preferably 10 to 30 g / m 2 , and 15 to 25 g / m 2. Further preferred.
  • the thickness of the separator is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and more preferably 35 ⁇ m or less so that an electrochemical element having a low internal resistance can be easily produced. Is more preferable, and it is still more preferable that it is 30 micrometers or less. On the other hand, if the thickness is too thin, the strength tends to decrease and the separator tends to be cracked, and the handleability tends to be inferior. Therefore, the thickness is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the separator of the present invention is excellent in prevention of short circuit by dendrite, it can be suitably used as a separator for various electrochemical elements.
  • it can be suitably used as a separator for lithium ion secondary batteries, electric double layer capacitors such as lithium ion capacitors, electrolytic capacitors such as aluminum electrolytic capacitors, solid polymer type aluminum electrolytic capacitors, and in particular, separators for lithium ion secondary batteries.
  • the form is not specifically limited, For example, it can be a coin type, a pouch type, or a cylindrical type.
  • the kind of electrolyte solution is not specifically limited, It can apply with respect to the electrolyte solution of a water system, an organic type, or an ionic liquid.
  • the separator of the present invention can be manufactured, for example, by the following method.
  • fibers are prepared in order to produce a nonwoven fabric base material that will be the skeleton of the separator.
  • the fiber as described above can be used. That is, a fiber having a low moisture content and excellent electrolytic solution resistance, and a fiber surface composed of a polyolefin resin, a polyester resin, or a polyamide resin (excluding both ends of the fiber), a melting point or a decomposition temperature of 180 It is preferable to prepare a heat-resistant fiber having a temperature of 0 ° C. or higher. In particular, it is preferable to prepare a fully aromatic polyamide fiber or a fully aromatic polyester fiber.
  • the fiber surface is composed of a low melting point resin (for example, a core-sheath type or sea-island type composite fiber in which the resin is arranged in the cross section of the fiber), or an unstretched fiber (for example, unstretched fiber). It is preferable to prepare a fiber that exhibits an adhesive action by deformation accompanying crystal orientation by heating and pressing, such as a stretched polyester fiber).
  • cross-sectional shape of the fiber may be circular or non-circular.
  • the fiber diameter of the fiber is preferably 0.1 to 20 ⁇ m, preferably 0.5 to 16 ⁇ m so that the electrical insulation property is excellent and the electrolytic solution retainability is excellent. Is more preferably 0.5 to 13 ⁇ m.
  • the fiber length of the fiber is preferably 0.1 to 20 mm, more preferably 0.5 to 15 mm, and still more preferably 1 to 10 mm.
  • it may be a pulp-like fiber having fibrils or may be a fiber not having fibrils, but a pulp-like fiber is preferable because a nonwoven fabric substrate having a uniform and dense pore diameter can be produced. It is.
  • a fiber web is formed using one kind or two or more kinds of such fibers.
  • the method for forming the fiber web include direct methods such as a dry method, a wet method, and a melt blow method.
  • a wet method is used so that the fibers can be uniformly dispersed and the electrolyte can be held uniformly.
  • the preferable wet method include a horizontal long net method, an inclined wire type short net method, a circular net method, and a long net / circular net combination method.
  • a composite fiber web may be formed by laminating or combining a fiber web and a base nonwoven fabric. For example, after preparing a base nonwoven fabric, the formed fiber web is laminated on one main surface of the base nonwoven fabric, or short fibers and / or pulp-like fibers are included on one main surface of the base nonwoven fabric. By drawing up the dispersion, a composite fiber web in which short fibers and / or pulp-like fibers are contained in the voids of the base nonwoven fabric may be formed.
  • the base nonwoven fabric and the fiber web or the dispersion contains heat-resistant fibers, and more preferably both include heat-resistant fibers.
  • the nonwoven fabric substrate can be formed by bonding the fiber web constituent fibers together.
  • the bonding between the fibers can be performed, for example, by fusing the fibers, an adhesion action due to deformation accompanying the crystal orientation of the unstretched fibers, entanglement between the fibers, and / or adhesion of the binder polymer.
  • fusing fibers together they may be performed under no pressure, may be performed under pressure, or may be pressurized after being melted under no pressure.
  • the fiber web when making it adhere
  • the binder polymer can be the same binder polymer as the binder polymer that can participate in the bonding of the inorganic particles to the non-woven fabric substrate constituting fiber.
  • the binder polymer can be in the form of an emulsion, suspension, dispersion, or solution, and can be impregnated, applied, or sprayed onto the fiber web, and then dried and bonded.
  • the affinity of the nonwoven fabric substrate thus formed with the binder polymer or inorganic particles is insufficient, it is preferable to impart or improve the affinity of the nonwoven fabric substrate.
  • methods for imparting or improving this affinity include sulfonation treatment (particularly sulfonation treatment with anhydrous sulfuric acid gas), fluorine gas treatment, graft polymerization treatment, discharge treatment (particularly plasma treatment), surfactant treatment, Or hydrophilic resin provision processing etc. can be mentioned.
  • the inorganic particle provided with respect to a nonwoven fabric base material is prepared.
  • the inorganic particles preferably have a particle size of 0.01 to 3 ⁇ m, more preferably 0.01 to 1 ⁇ m, and still more preferably 0.01 to 0.5 ⁇ m.
  • the composition of the inorganic particles is preferably silica and / or alumina.
  • the shape of the inorganic particles is preferably a true sphere. In particular, deflagration inorganic particles are preferable.
  • a binder polymer for bonding the inorganic particles to the nonwoven fabric base fiber is prepared.
  • This binder polymer can be the above-mentioned binder polymer, and a binder polymer made of an acrylic resin that is excellent not only in the adhesion of inorganic particles but also in the permeability and withstand voltage of the electrolyte is suitable.
  • the binder polymer can be in the form of an emulsion, suspension, dispersion, or solution.
  • the precursor separator in which the inorganic particles are bonded to the nonwoven fabric substrate constituting fibers by the binder polymer Can be prepared.
  • the volume ratio (Vr) of the inorganic particles in the precursor separator is 0.1 or more, more preferably 0.15 or more, and the binder polymer is 0.5 to 10 mass% (total amount of the inorganic particles and the binder polymer).
  • the binder solution is preferably applied so as to occupy 1 to 10 mass%, more preferably 2 to 10 mass%.
  • the application of the binder solution to the nonwoven fabric base material is not particularly limited as long as the inorganic particles can be applied to the internal voids of the nonwoven fabric base material.
  • the nonwoven fabric base material is immersed in the binder solution.
  • the method can be carried out by a method in which a binder solution is applied to or spread on a nonwoven fabric substrate.
  • the above is a method for producing a precursor separator in which a binder solution is applied after forming a nonwoven fabric substrate.
  • a nonwoven fabric substrate is produced by adhering a fiber web with a binder polymer
  • the fiber web is inorganic.
  • a binder solution containing particles and a binder polymer is applied, and the fibers are bonded to each other with a binder polymer.
  • inorganic particles are bonded to the fibers with a binder polymer, and a precursor separator can be produced simultaneously with the formation of the nonwoven fabric substrate.
  • a polymer electrolyte polymer to be applied to the precursor separator is prepared.
  • the polymer electrolyte polymer is preferably a fluororesin that can form a gel by contact with a non-aqueous solvent (electrolyte), and in particular, a polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) copolymer.
  • PVDF-HFP polyvinylidene fluoride
  • the polyelectrolyte polymer can be in the form of an emulsion, suspension, dispersion, or solution.
  • a separator having a polymer can be prepared.
  • the amount of the polymer electrolyte polymer in this separator is preferably 2 to 18 mass% of the whole separator, more preferably 3 to 17.5 mass%, further preferably 3.5 to 17 mass%, still more preferably 3.5 to 17 mass%. Apply polyelectrolyte polymer solution to occupy.
  • the application of the polymer electrolyte polymer solution to the precursor separator is not particularly limited as long as the polymer electrolyte polymer can be applied to the internal voids of the precursor separator.
  • the precursor separator is attached to the polymer electrolyte. It can be carried out by a method of immersing in a polymer solution or a method of applying or dispersing a polymer electrolyte polymer solution to a precursor separator.
  • the method of applying the polyelectrolyte polymer solution to the precursor separator a dense structure in which the polyelectrolyte polymer exists in the voids formed by the non-woven fabric substrate constituent fibers, the inorganic particles, and the binder polymer,
  • the molecular electrolyte polymer is preferred because it easily absorbs the electrolyte during battery construction and swells to form a barrier layer.
  • the water content in the separator is large, the charge / discharge characteristics of the electrochemical element tend to be deteriorated. Therefore, it is preferable to dry the water so that the water content is small. For example, drying at a temperature of 120 ° C. or higher is preferable, drying at a temperature of 130 ° C. or higher is more preferable, and drying at a temperature of 140 ° C. or higher is particularly preferable.
  • the upper limit of the drying temperature varies depending on the heat resistance of the separator and is not particularly limited. However, from the viewpoint of removing moisture, it is sufficient up to 180 ° C. May be.
  • the binder solution is applied to the nonwoven fabric substrate and dried to prepare a precursor separator, and then the polymer electrolyte polymer solution is applied to the precursor separator and dried.
  • a separator in which the polymer electrolyte polymer and the binder polymer are separated from each other in the voids formed by the nonwoven fabric base-constituting fibers, the inorganic particles, and the binder polymer can be produced.
  • polyethylene terephthalate unstretched short fibers fineness: 0.2 dtex, fiber diameter: 4.3 ⁇ m, fiber length: 3 mm, melting point: 260 ° C., cross-sectional shape: circular
  • pulp-like wholly aromatic polyamide fibers freeness: 50 ml CSF, decomposition temperature: about 500 ° C.
  • a web was formed.
  • the composite fiber web is dried by heat treatment in an atmosphere at a temperature of 145 ° C., and then heated and pressurized through a heat roll adjusted to a surface temperature of 180 ° C.
  • nonwoven fabric substrate B Polyethylene terephthalate unstretched short fiber (fineness: 0.2 dtex, fiber diameter: 4.3 ⁇ m, fiber length: 3 mm, melting point: 260 ° C., cross-sectional shape: circular) and pulp-like wholly aromatic polyamide fiber (freeness: 80 ml CSF) , Decomposition temperature: about 500 ° C.) in a mass ratio of 30:70 was prepared.
  • nonwoven fabric substrate C Fused fiber (average fiber diameter: 0.8 dtex, fiber diameter: 10.5 ⁇ m, fiber length: 5 mm) whose core component is made of polypropylene (melting point: 168 ° C.) and whose sheath component is made of high-density polyethylene (melting point: 135 ° C.) , The cross-sectional shape: circular) only, and a wet fiber web was formed by an inclined wire type short net wet method.
  • Fused fiber average fiber diameter: 0.8 dtex, fiber diameter: 10.5 ⁇ m, fiber length: 5 mm
  • core component is made of polypropylene (melting point: 168 ° C.) and whose sheath component is made of high-density polyethylene (melting point: 135 ° C.)
  • the wet fiber web is supported by a conveyor, and sucked from below the conveyor to convey the wet fiber web in close contact with the conveyor.
  • the water which is a dispersion medium is suctioned and removed from the base nonwoven fabric side, and a polypropylene microfiber is formed on one main surface of a base nonwoven fabric. While having a deposited layer, a part of the polypropylene ultrafine fibers entered the voids of the base nonwoven fabric to form a composite fiber web integrated with the base nonwoven fabric constituting fibers.
  • microporous membrane substrate D A commercially available polypropylene microporous membrane (registered trademark: Celgard, product number: 2400, basis weight: 15 g / m 2 , thickness: 25 ⁇ m) was prepared as the microporous membrane substrate D.
  • Celgard polypropylene microporous membrane
  • Preparation of binder solution (1) Preparation of binder solution a; As inorganic particles, a deflagration silica particle dispersion [shape: true sphere, particle size: 450 nm, particle size distribution: 225 to 900 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer.
  • a binder solution a (acrylic resin was 3 mass% of the total amount of deflagration silica particles and acrylic resin) was prepared with the following composition.
  • binder solution b As inorganic particles, an alumina particle dispersion [shape: crushed, particle size: 790 nm, particle size distribution: 395 to 1580 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer.
  • a binder solution b (acrylic resin was 3 mass% of the total amount of alumina particles and acrylic resin) was prepared with the following composition.
  • binder solution c As inorganic particles, a deflagration silica particle dispersion [shape: true sphere, particle size: 450 nm, particle size distribution: 225 to 900 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer. Furthermore, as the polymer electrolyte polymer, polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) particles [average particle size: 1 ⁇ m] were prepared.
  • PVDF-HFP polyvinylidene fluoride-6-propylene fluoride
  • a binder solution c (acrylic resin was 3 mass% of the total amount of deflagration silica particles and acrylic resin) was prepared with the following composition.
  • PVDF-HFP Polyvinylidene fluoride-6-propylene fluoride
  • NMP N-methylpyrrolidone
  • PVDF Polyvinylidene fluoride
  • Examples 1 to 6 The binder solution a (containing deflagration silica particles) was applied to the fiber deposition layer surface of the nonwoven fabric substrate A using a gravure roll coating machine, and then dried with a dryer to obtain a precursor separator (weight per unit: 17.5 g / m 2 , Thickness: 27 ⁇ m, inorganic particle volume ratio: 0.28) was prepared.
  • a precursor separator weight per unit: 17.5 g / m 2 , Thickness: 27 ⁇ m, inorganic particle volume ratio: 0.28, was prepared.
  • deflagration silica particles are adhered to the constituent fibers of the nonwoven fabric substrate A by an acrylic resin binder in the internal space of the nonwoven fabric substrate A, and the fiber deposition layer surface of the nonwoven fabric substrate A The deflagration silica particles were adhered to the fibers constituting the material by an acrylic resin binder.
  • the polymer electrolyte polymer solution i is applied to the application surface of the binder solution a of the nonwoven fabric substrate A using a gravure roll coating machine, followed by drying with a drier, the basis weight and thickness shown in Table 1 A separator according to the present invention having was prepared.
  • the PVDF-HFP amount (solid content) was adjusted to 0.2 g / m 2 (Example 1), 0.4 g / m 2 (Example 2), 0.7 g / m 2 by adjusting the coating amount. (Example 3) 1.7 g / m 2 (Example 4), 3.4 g / m 2 (Example 5), and 4.0 g / m 2 (Example 6).
  • These separators have PVDF-HFP in the voids formed by the constituent fibers of the nonwoven fabric substrate A, the deflagration silica particles, and the acrylic resin binder in the internal voids of the nonwoven fabric substrate A, and PVDF-HFP is an acrylic resin.
  • the binder was coated and separated from the acrylic resin binder.
  • Example 7 A separator having the basis weight and thickness shown in Table 2 was prepared in the same manner as in Example 3 except that the nonwoven fabric substrate A was used instead of the nonwoven fabric substrate A.
  • This separator has PVDF-HFP in the void formed by the constituent fibers of the nonwoven fabric base material B, the deflagration silica particles, and the acrylic resin binder in the internal space of the nonwoven fabric base material B.
  • PVDF-HFP is an acrylic resin. The binder was coated and separated from the acrylic resin binder.
  • Example 8 A separator having the basis weight and thickness shown in Table 2 was prepared in the same manner as in Example 3 except that the binder solution b (containing alumina particles) was used instead of the binder solution a (containing deflagration silica particles).
  • This separator has PVDF-HFP in the voids formed by the constituent fibers of the nonwoven fabric substrate A, the alumina particles, and the acrylic resin binder in the internal voids of the nonwoven fabric substrate A.
  • PVDF-HFP is an acrylic resin binder. And was separated from the acrylic resin binder.
  • Example 9 A separator having the basis weight and thickness shown in Table 2 was obtained in the same manner as in Example 2 except that the polymer electrolyte polymer solution ii (PVDF) was used instead of the polymer electrolyte polymer solution i (PVDF-HFP). Prepared.
  • This separator has PVDF in the void formed by the constituent fibers of the nonwoven fabric substrate A, the silica particles, and the acrylic resin binder in the internal void of the nonwoven fabric substrate A, and the PVDF covers the acrylic resin binder, It was in a state separated from the acrylic resin binder.
  • Example 1 A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the polymer electrolyte polymer solution i was not applied to the precursor separator. That is, the precursor separator was a separator.
  • Example 2 A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the microporous membrane substrate D was used instead of the nonwoven fabric substrate A.
  • the silica particles are filled in the micropores of the microporous membrane substrate D, the movement of ions is inhibited. Therefore, when preparing this separator, the silica particles are placed in the micropores of the microporous membrane substrate D.
  • a layer of silica particles and an acrylic resin binder was formed on the surface of the microporous membrane substrate D so as not to be filled. Therefore, this separator has PVDF-HFP in the space between the silica particles and the acrylic resin binder, and the PVDF-HFP is covered with the acrylic resin binder and separated from the acrylic resin binder.
  • Comparative Example 3 A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Comparative Example 2 except that the polymer electrolyte polymer solution i was not applied to the precursor separator. That is, the precursor separator was a separator.
  • a separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the nonwoven fabric substrate A was used instead of the nonwoven fabric substrate A.
  • This separator has PVDF-HFP in the void formed by the constituent fibers of the nonwoven fabric substrate C, the deflagration silica particles, and the acrylic resin binder in the internal void of the nonwoven fabric substrate C.
  • the PVDF-HFP is an acrylic resin. The binder was coated and separated from the acrylic resin binder.
  • this positive electrode material paste was applied onto an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to produce a positive electrode (capacity: 2.43 mAh / cm 2 ). Subsequently, the terminal was connected to the aluminum foil part of the electrode with an ultrasonic welding machine.
  • this negative electrode material paste was applied onto a copper foil having a thickness of 15 ⁇ m, dried, and pressed to prepare a negative electrode (capacitance: 2.51 mAh / cm 2 ).
  • a terminal was connected to the copper foil portion of the produced negative electrode by an ultrasonic welding machine.
  • the electrode laminate was inserted into an aluminum laminate bag coated with a polyester resin, and after pouring the non-aqueous electrolyte, the laminate type lithium ion secondary battery was produced by vacuum lamination. .
  • the nonwoven fabric substrate preferably contains heat-resistant fibers.
  • the amount of the polymer electrolyte polymer is preferably 2 to 18 mass% of the whole separator.
  • the nonwoven fabric base material has a single-layer structure or a two-layer structure, and both the initial battery capacity and the battery capacity after overdischarge are large. It was found that the structure of the nonwoven fabric substrate does not affect the short circuit prevention.
  • the separator of the present invention Since the separator of the present invention has excellent short circuit prevention and heat resistance due to dendrites, it is a lithium ion secondary battery, an electric double layer capacitor such as a lithium ion capacitor, an electrolytic capacitor such as an aluminum electrolytic capacitor, a solid polymer type aluminum electrolysis It can be suitably used as a separator for capacitors and the like, and can be particularly suitably used as a separator for lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention provides a separator for an electrochemical element such that excellent protective properties against dendrite-induced short circuits are demonstrated. The separator for an electrochemical element according to the present invention comprises a nonwoven substrate having internal gaps in which inorganic particles are adhered to nonwoven constituent fibers via polymer binders, with polyelectrolytes being in the gaps formed by the nonwoven constituent fibers, the inorganic particles, and the polymer binders. It is preferable that the amount of polyelectrolytes is 2 to 18 mass% of the entire separator for an electrochemical element; the inorganic particles are made up of silica or alumina; the nonwoven substrate is made up of a composite of nonwoven fabrics where short fibers and/or pulp fibers enter the gaps in the base nonwoven fabric; and the nonwoven constituent fibers include heat resistant fibers having a melting point or a decomposition temperature of 180°C or greater.

Description

電気化学素子用セパレータElectrochemical element separator
 本発明は電気化学素子用セパレータに関する。 The present invention relates to a separator for an electrochemical element.
 近年、電気機器の小型、軽量化に伴い、その電源である電池に対しても、小型、軽量、かつ、高エネルギー密度化の要望が強い。リチウムイオン二次電池はエネルギー密度が高いため、このような要望を満足できる電池として期待されている。 In recent years, along with the reduction in size and weight of electrical equipment, there is a strong demand for a battery that is a power source for reduction in size, weight, and high energy density. Since lithium ion secondary batteries have high energy density, they are expected to satisfy such demands.
 このようなリチウムイオン二次電池のセパレータとして、ポリオレフィン微孔膜を使用するのが一般的であった。これは、電池の外部短絡等により異常な大電流が流れたときに電池温度が著しく上昇して、可燃性ガスの発生や電池の破裂や発火を防ぐため、その熱によってポリオレフィン微孔膜が収縮又は溶融し、微孔を閉塞してイオン透過性を遮断する機能(シャットダウン機能)を兼ね備えていると考えられているためである。しかしながら、温度の上昇とともに、セパレータの幅方向に熱収縮して幅方向の寸法が小さくなり、セパレータの幅方向端部と接触していた電極が露出してしまい、短絡を引き起す懸念があった。或いは、温度の上昇によりセパレータが溶融してしまい、発火に至ることがあった。 As a separator for such a lithium ion secondary battery, it was common to use a polyolefin microporous membrane. This is because the battery temperature rises markedly when an abnormal large current flows due to an external short circuit of the battery, etc., and the polyolefin microporous membrane contracts due to the heat to prevent the generation of flammable gas, battery rupture or ignition. Or it is because it is thought that it has the function (shutdown function) which melt | dissolves and obstruct | occludes a micropore and interrupts | blocks ion permeability. However, as the temperature rises, heat shrinks in the width direction of the separator to reduce the width dimension, and the electrodes that are in contact with the width direction end of the separator are exposed, which may cause a short circuit. . Alternatively, the separator may be melted due to an increase in temperature, resulting in ignition.
 そのため、ポリオレフィン微孔膜に無機粒子をコーティングすることで、温度が上昇した場合であっても、ポリオレフィン微孔膜の熱収縮を抑え、短絡を防止することが提案されている。 Therefore, it has been proposed to coat the polyolefin microporous membrane with inorganic particles to suppress thermal contraction of the polyolefin microporous membrane and prevent short circuit even when the temperature rises.
 しかしながら、このように無機粒子をコーティングしたセパレータは電極との結着性に劣るため、「多孔性基材と、前記多孔性基材の少なくとも一面に形成され、かつ、無機物粒子と第1バインダー高分子との混合物を備えてなる多孔性有機-無機コーティング層と、及び前記多孔性有機-無機コーティング層の表面に第2バインダー高分子が分散され、散在した多数の非コーティング領域を有してなる有機コーティング層とを備えてなり、前記第1バインダー高分子が、(a)側鎖にアミン基またはアミド基の少なくとも1つ以上を含む第1単量体ユニットと、及び(b)炭素数が1ないし14のアルキル基を有する(メタ)アクリレートからなる第2単量体ユニットとを備えた共重合体を含んでなるセパレータ。」(特許文献1)が提案されている。このセパレータは電極との結着力を増大できるものであると考えられるが、過放電時におけるリチウムのデンドライトを防止することができず、別の意味での短絡を防止することができないものであった。 However, since the separator coated with inorganic particles is inferior in binding properties with the electrode, “the porous substrate is formed on at least one surface of the porous substrate, and the inorganic particles and the first binder are high. A porous organic-inorganic coating layer comprising a mixture of molecules, and a second binder polymer dispersed on the surface of the porous organic-inorganic coating layer, and having a large number of interspersed uncoated regions An organic coating layer, wherein the first binder polymer includes (a) a first monomer unit containing at least one amine group or amide group in the side chain, and (b) a carbon number. A separator comprising a copolymer having a second monomer unit made of (meth) acrylate having 1 to 14 alkyl groups ”(Patent Document 1) It is. This separator is considered to be able to increase the binding force with the electrode, but it cannot prevent lithium dendrite during overdischarge and cannot prevent another short circuit. .
 別の電気化学素子として、例えば、リチウムイオンキャパシタがあり、負極活物質として、負極電位を十分に低下させる観点から、リチウムをドープすることが望ましいが、充放電によりリチウムのデンドライトが成長し、内部短絡が発生しやすくなることがあった。このように、リチウムイオン二次電池以外の電気化学素子においても、デンドライトを防止することができず、短絡が発生しやすいという問題があった。 As another electrochemical element, for example, there is a lithium ion capacitor, and it is desirable to dope lithium as a negative electrode active material from the viewpoint of sufficiently lowering the negative electrode potential. Short circuit may occur easily. Thus, even in electrochemical elements other than lithium ion secondary batteries, there is a problem that dendrites cannot be prevented and short circuits are likely to occur.
特表2014-505344号公報Special table 2014-505344 gazette
 本発明はこのような状況下においてなされたもので、デンドライトによる短絡防止性に優れる電気化学素子用セパレータを提供することを目的とする。 The present invention has been made under such circumstances, and an object of the present invention is to provide a separator for an electrochemical element that is excellent in short circuit prevention by dendrites.
 本発明は、[1]不織布基材の内部空隙において、無機粒子がバインダポリマーによって不織布基材構成繊維に接着しているとともに、前記不織布基材構成繊維と前記無機粒子と前記バインダポリマーとによって形成された空隙に、高分子電解質ポリマーを有することを特徴とする、電気化学素子用セパレータである。 The present invention provides: [1] In the internal voids of the nonwoven fabric substrate, the inorganic particles are bonded to the nonwoven fabric substrate constituting fiber by a binder polymer, and are formed by the nonwoven fabric substrate constituting fiber, the inorganic particles, and the binder polymer. It is a separator for an electrochemical element, characterized by having a polymer electrolyte polymer in the formed void.
 なお、[2]前記高分子電解質ポリマー量が、電気化学素子用セパレータ全体の2~18mass%を占めるのが好ましい。 [2] It is preferable that the amount of the polymer electrolyte polymer occupies 2 to 18 mass% of the whole separator for an electrochemical element.
 また、[3]前記無機粒子がシリカ及び/又はアルミナであるのが好ましい。 [3] The inorganic particles are preferably silica and / or alumina.
 更に、[4]前記不織布基材が、ベース不織布の空隙に、短繊維及び/又はパルプ状繊維が入り込んだ複合不織布であるのが好ましい。 Furthermore, [4] It is preferable that the nonwoven fabric base material is a composite nonwoven fabric in which short fibers and / or pulp fibers are contained in the gaps of the base nonwoven fabric.
 更に、[5]前記不織布基材構成繊維として、融点又は分解温度が180℃以上の耐熱性繊維を含むのが好ましい。 Furthermore, [5] It is preferable that the nonwoven fabric base-constituting fibers include heat-resistant fibers having a melting point or decomposition temperature of 180 ° C. or higher.
 [1]詳細な機序は不明であるが、過放電となった場合であっても、リチウムのデンドライトを防止することができ、再度、充放電が可能であるという、従来の常識に反する著しく優れた効果を奏する。また、不織布基材の緻密化には限界があるが、不織布基材の内部空隙において、無機粒子がバインダポリマーによって不織布基材構成繊維に接着しているとともに、不織布基材の内部空隙における、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に、高分子電解質ポリマーを有し、緻密な構造であり、高分子電解質ポリマーと電解液の組合せによっては、高分子電解質ポリマーが電池構成時に電解液を吸液し、膨潤することで空隙を有効に塞ぎ、金属イオンの拡散を防ぐバリア層として機能するため、デンドライトによる短絡防止性に優れている。更に、無機粒子を含んでいるため、耐熱性に優れ、電気化学素子用セパレータが溶融又は収縮しにくいため、安全性に優れている。 [1] Although the detailed mechanism is unclear, even in the case of overdischarge, lithium dendrite can be prevented and charge / discharge is possible again, contrary to the conventional common sense. Excellent effect. Further, there is a limit to densification of the nonwoven fabric substrate, but in the internal voids of the nonwoven fabric substrate, the inorganic particles are bonded to the nonwoven fabric constituent fibers by the binder polymer, and the nonwoven fabric in the internal voids of the nonwoven fabric substrate The polymer electrolyte polymer has a dense structure in the gap formed by the base fiber, inorganic particles, and binder polymer. Depending on the combination of the polymer electrolyte polymer and the electrolyte, the polymer electrolyte polymer may be a battery. Since it absorbs the electrolyte during the construction and swells, it effectively closes the voids and functions as a barrier layer that prevents the diffusion of metal ions. Furthermore, since inorganic particles are included, the heat resistance is excellent, and the separator for electrochemical elements is hardly melted or shrunk, so that the safety is excellent.
 [2]高分子電解質ポリマー量が、電気化学素子用セパレータ全体の2~18mass%を占めると、過放電となった場合であっても、リチウムのデンドライトを防止することができ、再度、充放電が可能であるという、著しく優れた効果を奏する。 [2] When the amount of the polymer electrolyte occupies 2 to 18 mass% of the entire separator for electrochemical devices, lithium dendrite can be prevented even in the case of overdischarge. It is possible to achieve a remarkably excellent effect.
 [3]無機粒子がシリカ及び/又はアルミナであると、過放電となった場合であっても、リチウムのデンドライトを防止することができ、再度、充放電が可能であるという、著しく優れた効果を奏する。 [3] When the inorganic particles are silica and / or alumina, even if overdischarge occurs, lithium dendrite can be prevented and charge / discharge is possible again. Play.
 [4]不織布基材が、ベース不織布の空隙に、短繊維及び/又はパルプ状繊維が入り込んだ複合不織布であると、不織布基材の孔径が均一かつ緻密な構造であるため、デンドライトによる短絡防止性により優れている。 [4] When the nonwoven fabric base material is a composite nonwoven fabric in which short fibers and / or pulp-like fibers are contained in the voids of the base nonwoven fabric, the nonwoven fabric base material has a uniform and dense structure, and therefore prevents short circuit due to dendrites. It is superior to the nature.
 [5]不織布基材構成繊維として、融点又は分解温度が180℃以上の耐熱性繊維を含んでいると、電気化学素子用セパレータの収縮又は溶融による短絡又は発火がより生じにくい。また、電気化学素子用セパレータ製造時に充分に乾燥し、水分を除去できるため、サクイル寿命の長い電気化学素子を製造しやすい。 [5] If the non-woven fabric base fiber contains a heat-resistant fiber having a melting point or decomposition temperature of 180 ° C. or higher, a short circuit or ignition due to shrinkage or melting of the separator for an electrochemical element is less likely to occur. In addition, it is easy to produce an electrochemical element having a long squill life because it can be sufficiently dried and moisture can be removed when the separator for an electrochemical element is produced.
 本発明の電気化学素子用セパレータ(以下、単に「セパレータ」と表記することがある)は、電解液の保持性に優れているように、また、セパレータの強度を保持することができるように、不織布基材を有する。 The separator for an electrochemical element of the present invention (hereinafter, sometimes simply referred to as “separator”) is excellent in retention of the electrolytic solution, and can maintain the strength of the separator. Having a nonwoven substrate.
 この不織布基材を構成する繊維の樹脂組成は特に限定するものではないが、例えば、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテン、炭化水素の一部をシアノ基またはフッ素或いは塩素といったハロゲンで置換した構造のポリオレフィン系樹脂など)、スチレン系樹脂、ポリエーテル系樹脂(ポリエーテルエーテルケトン、ポリアセタール、フェノール系樹脂、メラミン系樹脂、ユリア系樹脂、エポキシ系樹脂、変性ポリフェニレンエーテル、芳香族ポリエーテルケトンなど)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアリレート、全芳香族ポリエステル樹脂、不飽和ポリエステル樹脂など)、ポリイミド系樹脂、ポリアミドイミド樹脂、ポリアミド系樹脂(例えば、芳香族ポリアミド樹脂、芳香族ポリエーテルアミド樹脂、ナイロン樹脂など)、二トリル基を有する樹脂(例えば、ポリアクリロニトリルなど)、ウレタン系樹脂、エポキシ系樹脂、ポリスルホン系樹脂(ポリスルホン、ポリエーテルスルホンなど)、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、セルロース、ポリベンゾイミダゾール樹脂、アクリル系樹脂(例えば、アクリル酸エステルあるいはメタクリル酸エステルなどを共重合したポリアクリロニトリル系樹脂、アクリロニトリルと塩化ビニルまたは塩化ビニリデンを共重合したモダアクリル系樹脂など)などの有機樹脂を挙げることができる。これらの中でも、低水分率で、耐電解液性に優れる、繊維表面が、ポリオレフィン系樹脂、ポリエステル系樹脂、又はポリアミド系樹脂から構成された繊維(繊維両末端部を除く)であるのが好ましい。 The resin composition of the fibers constituting the nonwoven fabric substrate is not particularly limited. For example, polyolefin resins (polyethylene, polypropylene, polymethylpentene, hydrocarbons partially substituted with cyano groups or halogens such as fluorine or chlorine) Polyolefin resin having the structure described above), styrene resin, polyether resin (polyether ether ketone, polyacetal, phenol resin, melamine resin, urea resin, epoxy resin, modified polyphenylene ether, aromatic polyether ketone) Etc.), polyester resin (polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyarylate, wholly aromatic poly Steal resin, unsaturated polyester resin, etc.), polyimide resin, polyamideimide resin, polyamide resin (eg, aromatic polyamide resin, aromatic polyetheramide resin, nylon resin, etc.), a resin having a nitrile group (eg, Polyacrylonitrile), urethane resin, epoxy resin, polysulfone resin (polysulfone, polyethersulfone, etc.), fluorine resin (polytetrafluoroethylene, polyvinylidene fluoride, etc.), cellulose, polybenzimidazole resin, acrylic resin (For example, polyacrylonitrile resin copolymerized with acrylic acid ester or methacrylic acid ester, modacrylic resin copolymerized with acrylonitrile and vinyl chloride or vinylidene chloride, etc.) Door can be. Among these, it is preferable that the fiber surface (excluding both ends of the fiber) is composed of a polyolefin-based resin, a polyester-based resin, or a polyamide-based resin. .
 なお、不織布基材構成繊維は前述のような有機樹脂1種類から構成されていても、2種類以上から構成されていても良い。例えば、2種類以上から構成されている場合、繊維の横断面における樹脂の配置状態としては、例えば、芯鞘型、海島型、サイドバイサイド型、オレンジ型、バイメタル型などの繊維であることができる。本発明の不織布基材においては、繊維同士が結合した状態にあり、不織布基材の内部空隙を保持しやすいことによって、無機粒子、バインダポリマー及び高分子電解質ポリマーの保持性に優れているように、不織布基材構成繊維は2種類以上の有機樹脂から構成されており、繊維表面が低融点樹脂から構成されている繊維を含んでいるのが好ましい。特に、繊維の横断面における樹脂の配置状態が芯鞘型又は海島型であると、芯成分又は島成分によって繊維形態を維持しつつ、繊維表面全体(繊維両末端部を除く)を占める低融点樹脂によって充分に融着することができるため好適である。 In addition, the nonwoven fabric base-constituting fiber may be composed of one kind of organic resin as described above, or may be composed of two or more kinds. For example, in the case of being composed of two or more types, the resin arrangement state in the cross section of the fiber can be, for example, a core-sheath type, sea-island type, side-by-side type, orange type, bimetal type, or the like. In the nonwoven fabric base material of the present invention, the fibers are in a bonded state, and the internal voids of the nonwoven fabric base material are easily retained, so that the retention of inorganic particles, the binder polymer and the polymer electrolyte polymer is excellent. The nonwoven fabric base-constituting fibers are composed of two or more kinds of organic resins, and the fiber surface preferably contains fibers composed of a low-melting-point resin. In particular, if the arrangement of the resin in the cross section of the fiber is a core-sheath type or sea-island type, the low melting point occupying the entire fiber surface (excluding both ends of the fiber) while maintaining the fiber form by the core component or island component This is preferable because the resin can be sufficiently fused.
 また、セパレータの収縮又は溶融による短絡又は発火がより生じにくく、また、セパレータ製造時に充分に乾燥して水分を除去でき、サクイル寿命の長い電気化学素子を製造しやすいように、不織布基材構成繊維として、融点又は分解温度が180℃以上の耐熱性繊維を含んでいるのが好ましい。このような耐熱性繊維としては、例えば、スチレン系繊維、ポリエーテル系繊維、ポリエステル系繊維、ポリイミド系繊維、ポリアミドイミド繊維、ポリアミド系繊維、エポキシ系繊維、ポリスルホン系繊維、フッ素系繊維、セルロース、ポリベンゾイミダゾール繊維を挙げることができ、特に、ポリアミド系繊維である全芳香族ポリアミド繊維、又はポリエステル系繊維である全芳香族ポリエステル繊維であると、耐熱性に優れ、低水分率で耐電解液性に優れていることに加えて、繊維径の小さい繊維、又はフィブリルを有するパルプ状繊維であることができることにより、不織布基材の孔径が均一かつ緻密な構造となり、デンドライトによる短絡防止性に優れているため好適である。このような耐熱性繊維は前記性能に優れているように、不織布基材構成繊維の5mass%以上含まれているのが好ましく、10mass%以上含まれているのがより好ましく、15mass%以上含まれているのが更に好ましく、20mass%以上含まれているのが更に好ましい。なお、「融点」はJIS K 7121-1987に規定されている示差熱分析により得られる示差熱分析曲線(DTA曲線)から得られる融解温度をいい、「分解温度」はJIS K 7120-1987に規定されている熱重量測定を行い、絶乾状態の試験片の質量が5%減量した時点での温度をいう。 In addition, the nonwoven fabric base material fiber is less likely to cause short circuit or ignition due to the shrinkage or melting of the separator, and can be sufficiently dried at the time of separator production to remove moisture and easily produce an electrochemical element having a long squill life. As for it, it is preferable to contain the heat resistant fiber whose melting | fusing point or decomposition temperature is 180 degreeC or more. Examples of such heat-resistant fibers include styrene fibers, polyether fibers, polyester fibers, polyimide fibers, polyamideimide fibers, polyamide fibers, epoxy fibers, polysulfone fibers, fluorine fibers, cellulose, Polybenzimidazole fiber can be mentioned, and in particular, a wholly aromatic polyamide fiber that is a polyamide-based fiber or a wholly aromatic polyester fiber that is a polyester-based fiber has excellent heat resistance and has a low moisture content and is resistant to electrolyte. In addition to excellent properties, it can be a fiber having a small fiber diameter or a pulp-like fiber having fibrils, so that the non-woven fabric substrate has a uniform and dense pore size, and is excellent in short circuit prevention due to dendrites. Therefore, it is preferable. Such heat-resistant fibers are preferably contained in an amount of 5 mass% or more of the nonwoven fabric base component fiber, more preferably 10 mass% or more, and more preferably 15 mass% or more so as to have excellent performance. More preferably, it is more preferably 20% by mass or more. “Melting point” refers to the melting temperature obtained from a differential thermal analysis curve (DTA curve) obtained by differential thermal analysis as defined in JIS K 7121-1987, and “decomposition temperature” as defined in JIS K 7120-1987. The temperature at the time when the mass of the completely dried test piece is reduced by 5% is measured.
 また、不織布基材構成繊維の横断面形状は円形であっても良いし、非円形であっても良い。非円形の例としては、例えば、略三角形形状などの多角形形状、Y字形状などのアルファベット文字形状、不定形形状、多葉形状、アスタリスク形状などの記号形状、あるいはこれらの形状が複数結合した形状などを挙げることができる。 Further, the cross-sectional shape of the nonwoven fabric substrate constituting fiber may be circular or non-circular. Examples of non-circular shapes include, for example, polygonal shapes such as substantially triangular shapes, alphabetic character shapes such as Y-shapes, symbol shapes such as irregular shapes, multileaf shapes, asterisk shapes, or a combination of these shapes. Examples include shapes.
 本発明の不織布基材を構成する繊維の繊維径は特に限定するものではないが、電気絶縁性に優れているように、また、電解液の保持性に優れているように、0.1~20μmであるのが好ましく、0.5~16μmであるのがより好ましく、0.5~13μmであるのが更に好ましい。なお、繊維径の異なる2種類以上の繊維を含んでいると、緻密な構造の不織布基材であることができるため好適である。例えば、繊維径が0.1~4μmの繊維と繊維径が4~20μmの繊維とを含んでいると、緻密な構造を有し、電気絶縁性に優れるセパレータとなりやすい。なお、「繊維径」は不織布基材又はセパレータの主面における電子顕微鏡写真を観察した時の、繊維の最も短い長さを意味する。 The fiber diameter of the fibers constituting the nonwoven fabric substrate of the present invention is not particularly limited, but it is 0.1 to 0.1 so that the electrical insulation is excellent and the electrolyte retention is excellent. The thickness is preferably 20 μm, more preferably 0.5 to 16 μm, and still more preferably 0.5 to 13 μm. In addition, since it can be a nonwoven fabric base material of a dense structure, it is suitable to contain two or more types of fibers having different fiber diameters. For example, when a fiber having a fiber diameter of 0.1 to 4 μm and a fiber having a fiber diameter of 4 to 20 μm are included, the separator has a dense structure and is excellent in electrical insulation. “Fiber diameter” means the shortest length of fiber when an electron micrograph is observed on the main surface of the nonwoven fabric substrate or separator.
 また、不織布基材構成繊維の繊維長は繊維が均一に分散しており、均一に電解液を保持しやすいように、0.1~20mmであるのが好ましく、0.5~15mmであるのがより好ましく、1~10mmであるのが更に好ましい。なお、「繊維長」は不織布基材又はセパレータの主面における電子顕微鏡写真を観察した時の、繊維の伸長する方向における長さを意味する。 In addition, the fiber length of the non-woven fabric substrate constituting fiber is preferably 0.1 to 20 mm, and preferably 0.5 to 15 mm so that the fibers are uniformly dispersed and the electrolyte solution can be easily held uniformly. Is more preferably 1 to 10 mm. "Fiber length" means the length in the direction in which the fibers extend when an electron micrograph is observed on the main surface of the nonwoven fabric substrate or separator.
 なお、不織布基材構成繊維はフィブリルを有するパルプ状繊維であっても良いし、フィブリルを有しない繊維であっても良いが、パルプ状繊維であると、不織布基材の孔径が均一かつ緻密な構造であり、デンドライトによる短絡防止性により優れているため好適である。 In addition, the nonwoven fabric base-constituting fibers may be pulp-like fibers having fibrils or fibers having no fibrils, but if they are pulp-like fibers, the pore diameter of the nonwoven fabric base material is uniform and dense. The structure is preferable because it is superior in the prevention of short circuit by dendrite.
 更に、不織布基材の構成繊維は繊維同士が結合した状態にあっても良いし、結合していない状態にあっても良いが、繊維同士が結合していると、形態安定性に優れるセパレータであることができるため、好適な態様である。このような繊維同士の結合は、例えば、前述のような低融点樹脂が繊維表面を構成する繊維による融着、未延伸繊維(例えば、未延伸ポリエステル繊維)の加熱加圧による結晶配向に伴う変形による接着作用、繊維同士の絡合、及び/又はバインダによる接着であることができる。 Furthermore, the constituent fibers of the nonwoven fabric substrate may be in a state in which the fibers are bonded or in a state in which the fibers are not bonded, but when the fibers are bonded, a separator having excellent shape stability. Since it can be, it is a preferred embodiment. Such fiber-to-fiber bonding is, for example, the deformation caused by the crystal orientation caused by the fusion of the low melting point resin as described above with the fibers constituting the fiber surface and the heating and pressurization of unstretched fibers (for example, unstretched polyester fibers) It can be an adhesive action by, an intertwining of fibers and / or an adhesive by a binder.
 更に、本発明の不織布基材が電解液との親和性に優れ、電解液を均一に保持しやすいように、また、無機粒子がバインダポリマーによって均一に接着した状態にありやすいように、不織布基材構成繊維がポリエステル系繊維を含む場合のように疎水性繊維を含む場合、親和性基が付与されているのが好ましい。例えば、酸素及び/又は硫黄含有官能基(例えば、スルホン酸基、スルホン酸塩基、スルホフルオライド基、水酸基、カルボキシル基、又はカルボニル基など)が導入されていたり、親水性モノマーがグラフト重合されていたり、界面活性剤が付与されていたり、或いは親水性樹脂が付与されているのが好ましい。 Further, the nonwoven fabric substrate of the present invention is excellent in affinity with the electrolytic solution, and it is easy to hold the electrolytic solution uniformly, and the inorganic particles are easily adhered to the binder polymer. When the material-constituting fiber includes a hydrophobic fiber as in the case of including a polyester-based fiber, it is preferable that an affinity group is provided. For example, oxygen and / or sulfur-containing functional groups (for example, sulfonic acid groups, sulfonic acid groups, sulfofluoride groups, hydroxyl groups, carboxyl groups, or carbonyl groups) are introduced, or hydrophilic monomers are graft-polymerized. It is preferable that a surfactant is applied or a hydrophilic resin is applied.
 本発明の不織布基材を構成する繊維は、樹脂組成、樹脂組成の数、繊維の横断面における樹脂の配置状態、繊維径、繊維長、フィブリルの有無、及び/又は親和性の程度などの点で相違する、2種類以上の繊維から構成されていても良い。 The fibers constituting the nonwoven fabric substrate of the present invention are the resin composition, the number of resin compositions, the arrangement state of the resin in the cross section of the fiber, the fiber diameter, the fiber length, the presence or absence of fibrils, and / or the degree of affinity, etc. It may be composed of two or more types of fibers that are different from each other.
 本発明の不織布基材は一層構造であっても良いし、二層以上の多層構造であっても良い。特に、ベース不織布の空隙に、短繊維及び/又はパルプ状繊維が入り込んだ一層構造又は二層構造の複合不織布であると、不織布基材の孔径が均一かつ緻密な構造であり、デンドライトによる短絡防止性により優れているため好適である。なお、この複合不織布において入り込んだ短繊維及び/又はパルプ状繊維はベース不織布構成繊維に絡合していることにより、バインダで接着していることにより、又は、入り込んだ短繊維又はパルプ状繊維とベース不織布構成繊維の少なくとも一方が融着して、ベース不織布に短繊維及び/又はパルプ状繊維が固定されていることができる。なお、ベース不織布は不織布基材の強度を保持できるものであれば良く、特に限定するものではないが、例えば、前述のような不織布構成繊維を含む湿式不織布であることができる。また、前述の通り、不織布基材は耐熱性繊維を含んでいるのが好ましいため、ベース不織布及び/又は入り込んだ短繊維及び/又はパルプ状繊維として耐熱性繊維を含んでいるのが好ましく、ベース不織布と入り込んだ短繊維及び/又はパルプ状繊維のいずれも耐熱性繊維を含んでいるのがより好ましい。 The nonwoven fabric substrate of the present invention may have a single layer structure or a multilayer structure of two or more layers. In particular, a single-layer or double-layer composite nonwoven fabric in which short fibers and / or pulp-like fibers enter the voids of the base nonwoven fabric has a uniform and dense structure in the pore diameter of the nonwoven fabric substrate, and prevents short circuiting due to dendrites. It is suitable because it is more excellent in properties. In addition, the short fiber and / or pulp-like fiber which entered in this composite nonwoven fabric are entangled with the base nonwoven fabric constituting fiber, bonded with a binder, or entered with the short fiber or pulp-like fiber. At least one of the base nonwoven fabric constituent fibers can be fused, and the short fibers and / or the pulp-like fibers can be fixed to the base nonwoven fabric. The base non-woven fabric is not particularly limited as long as it can maintain the strength of the non-woven fabric substrate. For example, the base non-woven fabric can be a wet non-woven fabric including non-woven fabric constituting fibers as described above. Further, as described above, since the nonwoven fabric base material preferably contains heat-resistant fibers, it is preferable that the base nonwoven fabric and / or short fibers and / or pulp-like fibers contain heat-resistant fibers. It is more preferable that both the short fiber and / or the pulp-like fiber contained in the nonwoven fabric contain a heat-resistant fiber.
 本発明の不織布基材の目付は特に限定するものではないが、後述の無機粒子の保持性に優れているように、1g/m以上であるのが好ましく、3g/m以上であるのがより好ましく、5g/m以上であるのが更に好ましく、6g/m以上であるのが更に好ましい。なお、目付の上限は特に限定するものではないが、目付が高く、繊維量が多いと、内部抵抗が高くなる傾向があるため、30g/m以下であるのが好ましく、25g/m以下であるのがより好ましく、20g/m以下であるのが更に好ましい。なお、本発明において「目付」はJIS P8124(紙及び板紙-坪量測定法)に規定されている方法に基づいて得られる坪量を意味する。 The basis weight of the nonwoven fabric base material of the present invention is not particularly limited, but is preferably 1 g / m 2 or more, and preferably 3 g / m 2 or more so that the retention of inorganic particles described later is excellent. Is more preferably 5 g / m 2 or more, and further preferably 6 g / m 2 or more. The upper limit of the basis weight is not particularly limited, but if the basis weight is high and the amount of fibers is large, the internal resistance tends to be high. Therefore, it is preferably 30 g / m 2 or less, and 25 g / m 2 or less. More preferably, it is more preferably 20 g / m 2 or less. In the present invention, “weight per unit” means the basis weight obtained based on the method defined in JIS P8124 (paper and paperboard—basis weight measurement method).
 本発明の不織布基材の厚さは特に限定するものではないが、厚さが薄いことで内部抵抗が低い電気化学素子を作製しやすいように、50μm以下であるのが好ましく、40μm以下であるのがより好ましく、30μm以下であるのが更に好ましい。一方、厚さがが薄過ぎると強度が低下して、セパレータに亀裂が生じるなど、取り扱い性に劣る傾向があるため、5μm以上であるのが好ましく、10μm以上であるのがより好ましい。本発明における「厚さ」は、JIS B 7502:1994に規定されている外側マイクロメーター(0~25mm)を用いた5N荷重時の測定を、無作為に選んだ10点について行い、その算術平均した値をいう。 The thickness of the nonwoven fabric substrate of the present invention is not particularly limited, but is preferably 50 μm or less, and preferably 40 μm or less so that an electrochemical element having a low internal resistance can be easily produced due to its thin thickness. Is more preferable, and it is still more preferable that it is 30 micrometers or less. On the other hand, if the thickness is too thin, the strength tends to decrease and the separator tends to be cracked, and the handleability tends to be inferior. Therefore, the thickness is preferably 5 μm or more, and more preferably 10 μm or more. The “thickness” in the present invention is measured at 10 points selected at random using an outer micrometer (0 to 25 mm) defined in JIS B 7502: 1994, and the arithmetic average is obtained. Value.
 本発明のセパレータは前述のような不織布基材の内部空隙において、無機粒子がバインダポリマーによって不織布基材構成繊維に接着しているため、耐熱性に優れ、セパレータが溶融又は収縮しにくいため、安全性に優れている。 The separator of the present invention is safe because the inorganic particles are bonded to the nonwoven fabric constituent fibers by the binder polymer in the internal voids of the nonwoven fabric base as described above, so that it has excellent heat resistance and is difficult to melt or shrink. Excellent in properties.
 無機粒子の粒子径は不織布基材における内部空隙に存在することができ、不織布基材の内部空隙を小さくできるものであれば良く、特に限定するものではないが、3μm以下であるのが好ましく、1μm以下であるのがより好ましく、0.8μm以下であるのが更に好ましい。なお、無機粒子の粒子径の下限値は特に限定するものではないが、0.01μm以上であるのが現実的である。 The particle diameter of the inorganic particles can be present in the internal voids in the nonwoven fabric base material, and can be any one that can reduce the internal voids of the nonwoven fabric base material, and is not particularly limited, but is preferably 3 μm or less, It is more preferably 1 μm or less, and further preferably 0.8 μm or less. The lower limit value of the particle diameter of the inorganic particles is not particularly limited, but it is realistic that it is 0.01 μm or more.
 本発明における「粒子径」とは、大塚電子(株)製FPRA1000(測定範囲3nm~5000nm)により、動的光散乱法で3分間の連続測定を行い、散乱強度から得られた粒子径測定データから求めた値をいう。より具体的には、粒子径測定を5回行い、その測定して得られた粒子径測定データを粒子径分布幅が狭い順番に並べ、3番目に粒子径分布幅が狭い値を示した粒子径測定データにおける、粒子の累積値50%点の粒子径D50(以降、D50と略して称する)を粒子径とする。なお、測定に使用する測定液は温度25℃に調整し、25℃の純水を散乱強度のブランクとして用いる。 The “particle size” in the present invention is particle size measurement data obtained from scatter intensity by performing continuous measurement for 3 minutes by dynamic light scattering method using FPRA1000 (measurement range: 3 nm to 5000 nm) manufactured by Otsuka Electronics Co., Ltd. The value obtained from. More specifically, the particle size measurement data obtained by performing the particle size measurement five times and arranging the particle size measurement data obtained in the order of narrowing the particle size distribution width are the third particles having the narrowest particle size distribution width. In the diameter measurement data, the particle diameter D 50 (hereinafter abbreviated as D 50 ) at the 50% cumulative value of particles is defined as the particle diameter. In addition, the measurement liquid used for the measurement is adjusted to a temperature of 25 ° C., and pure water at 25 ° C. is used as a blank for scattering intensity.
 なお、無機粒子の粒子径分布は特に限定するものではないが、無機粒子の粒子径分布が広過ぎると、無機粒子が不均一に存在し、セパレータの孔径にバラツキが生じ、電気絶縁性が低下する傾向があるため、無機粒子の粒子径分布は(D50/2)以上、かつ(D50×2)以下の範囲内にあるのが好ましい。なお、本発明における「粒子径分布」は、前述した動的光散乱法で測定し、測定強度から得られた粒子径測定データから求める。 The particle size distribution of the inorganic particles is not particularly limited. However, if the particle size distribution of the inorganic particles is too wide, the inorganic particles are non-uniformly present, resulting in variations in the pore diameter of the separator, resulting in a decrease in electrical insulation. because of its tendency to particle size distribution of the inorganic particles (D 50/2) or more, and preferably in the (D 50 × 2) within the following range. The “particle size distribution” in the present invention is determined from the particle size measurement data obtained from the measured intensity measured by the dynamic light scattering method described above.
 本発明で使用する無機粒子の組成は特に限定するものではないが、例えば、SiO(シリカ)、Al(アルミナ)、アルミナ-シリカ複合酸化物、TiO、SnO、BaTiO、ZrO、スズ-インジウム酸化物(ITO)などの酸化物;窒化アルミニウム、窒化ケイ素などの窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;タルク、モンモリロナイトなどの粘土;ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質またはそれらの人造物などを挙げることができる。これらの中でも、シリカ、アルミナは過放電となった場合であっても、リチウムのデンドライトを防止することができ、再度、充放電が可能になりやすいため好適である。なお、不織布基材中に、上述のような組成の異なる2種類以上の無機粒子が含まれていても良い。例えば、シリカ粒子及びアルミナ粒子が含まれていても良い。また、上述のような2種類以上の組成からなる無機粒子、例えば、シリカ-アルミナ粒子が含まれていても良い。 The composition of the inorganic particles used in the present invention is not particularly limited. For example, SiO 2 (silica), Al 2 O 3 (alumina), alumina-silica composite oxide, TiO 2 , SnO 2 , BaTiO 2 , Oxides such as ZrO and tin-indium oxide (ITO); nitrides such as aluminum nitride and silicon nitride; poorly soluble ionic crystals such as calcium fluoride, barium fluoride and barium sulfate; covalent bonds such as silicon and diamond Examples thereof include clays such as talc and montmorillonite; substances derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite and mica, or artificial products thereof. Among these, silica and alumina are preferable because lithium dendrite can be prevented and charge / discharge can be easily performed again even when overdischarge occurs. In addition, in the nonwoven fabric base material, two or more kinds of inorganic particles having different compositions as described above may be included. For example, silica particles and alumina particles may be included. Further, inorganic particles having two or more kinds of compositions as described above, for example, silica-alumina particles may be contained.
 なお、無機粒子の形状は特に限定するものではないが、例えば、球状(略球状や真球状)、繊維状、針状(例えば、テトラポット状など)、平板状、多面体形状、羽毛状、不定形形状などを挙げることができる。特に、真球状であると、不織布基材の内部空隙に最密充填しやすく、セパレータの孔径を小さくすることができるため好適である。 The shape of the inorganic particles is not particularly limited, but for example, spherical (substantially spherical or true spherical), fibrous, needle-like (for example, tetrapot-like), flat plate, polyhedron, feather, A regular shape can be mentioned. In particular, a true spherical shape is suitable because it can be easily packed in the inner space of the nonwoven fabric base material and the pore diameter of the separator can be reduced.
 特に、無機粒子として、無機粒子を調製可能な原料の粉塵雲を、例えば、空気、酸素、塩素、窒素などの反応ガス雰囲気下で爆燃させ、無機粒子を製造する方法(例えば、特開昭60-255602号公報に開示の方法など)により得た無機粒子(以下、「爆燃無機粒子」と表記することがある)であるのが好ましい。爆燃無機粒子は真球状形状を有し、また、水分量が少なく、電気化学素子の性能を低下させにくいためである。 In particular, a method for producing inorganic particles by detonating a dust cloud of a raw material capable of preparing inorganic particles as an inorganic particle in a reaction gas atmosphere such as air, oxygen, chlorine, nitrogen or the like (for example, JP-A-60). Inorganic particles obtained by the method disclosed in JP-A-255602) (hereinafter sometimes referred to as “deflagration inorganic particles”) are preferable. This is because the deflagration inorganic particles have a spherical shape, have a small water content, and do not easily deteriorate the performance of the electrochemical device.
 本発明のセパレータは不織布基材の内部空隙に無機粒子を有するものであるが、内部空隙だけではなく、不織布基材の表面を構成する繊維上に堆積した無機粒子を含んでいても良い。 The separator of the present invention has inorganic particles in the internal voids of the nonwoven fabric substrate, but may contain not only internal voids but also inorganic particles deposited on the fibers constituting the surface of the nonwoven fabric substrate.
 このような無機粒子量は比重により無機粒子の総体積が異なるため、特に限定するものではないが、不織布基材の内部空隙に無機粒子が充分に充填された状態であり、好ましくは不織布基材表面に無機粒子が堆積した状態にあり、電解液の保持性に優れているように、次の式で定義される無機粒子体積比率(Vr)が0.1以上であるのが好ましく、0.15以上であるのがより好ましい。 The amount of the inorganic particles is not particularly limited because the total volume of the inorganic particles varies depending on the specific gravity. However, the inorganic voids are sufficiently filled in the internal voids of the nonwoven fabric substrate, and preferably the nonwoven fabric substrate. It is preferable that the inorganic particle volume ratio (Vr) defined by the following formula is 0.1 or more so that inorganic particles are deposited on the surface and the electrolyte retainability is excellent. More preferably, it is 15 or more.
 Vr=Iv/Fv
 式中、Ivは無機粒子の総体積を意味し、次の式から得られる値であり、Fvは不織布基材構成繊維の総体積を意味し、次の式から得られる値である。
 Iv=It/Is
 Fv=Ft/Fs
 式中、Itは無機粒子の総質量、Isは無機粒子の比重、Ftは不織布基材構成繊維の総質量、Fsは不織布基材構成繊維の比重を、それぞれ意味する。
Vr = Iv / Fv
In the formula, Iv means the total volume of the inorganic particles and is a value obtained from the following formula, and Fv means the total volume of the nonwoven fabric substrate constituting fibers and is a value obtained from the following formula.
Iv = It / Is
Fv = Ft / Fs
In the formula, It is the total mass of the inorganic particles, Is is the specific gravity of the inorganic particles, Ft is the total mass of the nonwoven fabric base component fibers, and Fs is the specific gravity of the nonwoven fabric base fabric fibers.
 本発明のセパレータにおいては、このような無機粒子が脱落せず、耐熱性、緻密性に優れているように、無機粒子がバインダポリマーによって不織布基材構成繊維に接着している。このバインダポリマーは無機粒子を不織布基材構成繊維に接着することができ、耐電解液性のものであれば良く、特に限定するものではないが、例えば、ポリオレフィン、エチレンビニルアルコール共重合体、エチレン-エチルアクリレート共重合体などのエチレン-アクリレート共重合体、各種ゴム又はその誘導体[スチレン-ブタジエンゴム(SBR)、フッ素ゴム、ウレタンゴム、エチレン-プロピレン-ジエンゴム(EPDM)など]、セルロース誘導体[カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど]、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、エポキシ樹脂、PVDF、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、アクリル系樹脂などを挙げることができ、これらを単独で、又は2種以上であることができる。これらの中でも、アクリル系樹脂からなるバインダポリマーは無機粒子の接着性に優れるばかりでなく、電解液の浸透性及び耐電圧にも優れているため好適である。 In the separator of the present invention, the inorganic particles are bonded to the nonwoven fabric base fiber with a binder polymer so that such inorganic particles do not fall off and are excellent in heat resistance and denseness. The binder polymer is not particularly limited as long as it is capable of adhering inorganic particles to fibers constituting the nonwoven fabric base material and resistant to electrolytic solution. For example, polyolefin, ethylene vinyl alcohol copolymer, ethylene -Ethylene-acrylate copolymers such as ethyl acrylate copolymer, various rubbers or derivatives thereof [styrene-butadiene rubber (SBR), fluororubber, urethane rubber, ethylene-propylene-diene rubber (EPDM), etc.], cellulose derivatives [carboxy Methyl cellulose (CMC), hydroxyethyl cellulose, hydroxypropyl cellulose, etc.], polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyurethane, epoxy resin, PVDF, vinyl fluoride Down - hexafluoropropylene copolymer (PVDF-HFP), mention may be made of an acrylic resin, can these alone, or two or more kinds. Among these, a binder polymer made of an acrylic resin is suitable because it is excellent not only in the adhesion of inorganic particles but also in the permeability of the electrolytic solution and the withstand voltage.
 なお、バインダポリマーは無機粒子を充分に接着できるように、無機粒子とバインダポリマーの総量の0.5mass%以上を占めているのが好ましく、1mass%以上を占めているのがより好ましく、2mass%以上を占めているのが更に好ましい。一方でバインダポリマーの割合が高過ぎると、セパレータの内部抵抗が高くなる傾向があるため、10mass%以下であるのが好ましい。 The binder polymer preferably accounts for 0.5 mass% or more of the total amount of the inorganic particles and the binder polymer, more preferably 1 mass% or more so that the inorganic particles can be sufficiently bonded. It is more preferable to occupy the above. On the other hand, when the ratio of the binder polymer is too high, the internal resistance of the separator tends to increase, and therefore it is preferably 10 mass% or less.
 本発明のセパレータは上述のような無機粒子とバインダポリマーに加えて、不織布基材の内部空隙における、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に、高分子電解質ポリマーを有することによって緻密な構造であり、高分子電解質ポリマーと電解液の組合せによっては、高分子電解質ポリマーが電池構成時に電解液を吸液し、膨潤することで空隙を有効に塞ぎ、金属イオンの拡散を防ぐバリア層として機能するため、デンドライトによる短絡防止性に優れている。更に、過放電となった場合であっても、デンドライトを防止することができ、再度、充放電が可能であるという、従来の常識に反する著しく優れた効果を奏することを見出した。 In addition to the inorganic particles and the binder polymer as described above, the separator of the present invention has a polymer electrolyte polymer in the void formed by the nonwoven fabric substrate constituting fiber, the inorganic particles, and the binder polymer in the internal void of the nonwoven fabric substrate. Depending on the combination of the polymer electrolyte polymer and the electrolyte, the polymer electrolyte polymer absorbs the electrolyte during battery construction and swells to effectively close the voids and diffuse metal ions. Since it functions as a barrier layer that prevents the occurrence of short circuiting, it is excellent in short circuit prevention by dendrite. Furthermore, it has been found that even when overdischarge occurs, dendrite can be prevented and charge / discharge can be performed again, which is remarkably excellent, contrary to conventional common sense.
 このように、本発明のセパレータにおける高分子電解質ポリマーは、不織布基材の内部空隙における、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に存在しているが、不織布基材表面に無機粒子とバインダポリマーとを有している場合には、その無機粒子とバインダポリマー間の空隙に存在していても良い。 Thus, the polyelectrolyte polymer in the separator of the present invention exists in the void formed by the nonwoven fabric substrate constituting fibers, the inorganic particles, and the binder polymer in the internal void of the nonwoven fabric substrate. When the surface has inorganic particles and a binder polymer, they may be present in the voids between the inorganic particles and the binder polymer.
 この高分子電解質ポリマーは特に限定するものではないが、例えば、アイオノマー樹脂であることができ、例えば、四級アンモニウム基、ピリジニウム基、イミダゾリウム基、ホスホニウム基、スルホニウム基等の陰イオン交換基を有する炭化水素系樹脂(例えば、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレン、ポリベンズイミダゾール、ポリイミド、ポリアリーレンエーテル、ポリエチレンオキサイド等)であることができる。また、高分子電解質ポリマーはフッ素系樹脂であることができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-6フッ化プロピレン(PVDF-HFP)共重合体、ポリフッ化ビニリデン-塩化3フッ化エチレン(PVDF-CTFE)共重合体、ポリフッ化ビニリデン-4フッ化エチレン-6フッ化プロピレン(PVDF-TFE-HFP)共重合体などの、非水溶媒(電解液)と接触することにより膨潤してゲルを形成するものであることができる。また、フッ素系樹脂として、ポリテトラフルオロエチレンよりなる主鎖とスルホン酸基を有する側鎖とからなるパーフルオロカーボンスルホン酸樹脂であることもできる。より具体的には、次の一般式で表わされるパーフルオロカーボンスルホン酸樹脂であることができる。 The polyelectrolyte polymer is not particularly limited, and can be, for example, an ionomer resin, and includes, for example, an anion exchange group such as a quaternary ammonium group, a pyridinium group, an imidazolium group, a phosphonium group, and a sulfonium group. It can be a hydrocarbon-based resin (for example, polystyrene, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene, polybenzimidazole, polyimide, polyarylene ether, polyethylene oxide, etc.). In addition, the polymer electrolyte polymer can be a fluorine-based resin, such as polyvinylidene fluoride (PVDF), polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) copolymer, polyvinylidene fluoride-trifluoride chloride. Swells by contact with non-aqueous solvent (electrolyte) such as ethylene (PVDF-CTFE) copolymer, polyvinylidene fluoride-4 ethylene fluoride-6 propylene copolymer (PVDF-TFE-HFP) copolymer, etc. And can form a gel. Further, the fluororesin may be a perfluorocarbon sulfonic acid resin comprising a main chain made of polytetrafluoroethylene and a side chain having a sulfonic acid group. More specifically, it can be a perfluorocarbon sulfonic acid resin represented by the following general formula.
Figure JPOXMLDOC01-appb-C000001
[式中、mは5~13.5であり、nは5~10000(好ましくは約1000)であり、zは1~30である]
Figure JPOXMLDOC01-appb-C000001
[Wherein m is 5 to 13.5, n is 5 to 10000 (preferably about 1000), and z is 1 to 30]
 これら高分子電解質ポリマーの中でも、高分子電解質ポリマーが電池構成時に電解液を吸液し、膨潤することで空隙を有効に塞ぎ、金属イオンの拡散を防ぐバリア層として機能することによって、デンドライトによる短絡防止性に優れており、しかも再度、充放電が可能となりやすい、非水溶媒(電解液)と接触によりゲル形成できるフッ素系樹脂であるのが好ましく、特に、ポリフッ化ビニリデン-6フッ化プロピレン(PVDF-HFP)共重合体、ポリフッ化ビニリデン(PVDF)であるのが好ましい。 Among these polymer electrolyte polymers, the polymer electrolyte polymer absorbs the electrolyte during battery construction and effectively swells to effectively close the voids and function as a barrier layer to prevent the diffusion of metal ions. It is preferably a fluorine-based resin that is excellent in preventing properties and that can easily be charged and discharged again and can form a gel by contact with a non-aqueous solvent (electrolytic solution). In particular, polyvinylidene fluoride-6-propylene fluoride ( PVDF-HFP) copolymer, polyvinylidene fluoride (PVDF) is preferred.
 なお、高分子電解質ポリマーはデンドライトを防止することができ、過放電後であっても、再度、充放電が可能となりやすいように、高分子電解質ポリマーはセパレータ全体の2~18mass%を占めているのが好ましく、3mass%以上を占めているのがより好ましく、3.5mass%以上を占めているのが更に好ましい。一方で、高分子電解質ポリマー量が多過ぎると、電気化学素子の内部抵抗が高くなる傾向があるため、高分子電解質ポリマーはセパレータ全体の18mass%以下を占めているのが好ましく、17.5mass%以下を占めているのがより好ましく、17mass%以下を占めているのが更に好ましい。 The polyelectrolyte polymer can prevent dendrite, and the polyelectrolyte polymer occupies 2 to 18 mass% of the entire separator so that charge and discharge can be easily performed even after overdischarge. It is preferable that it occupies 3 mass% or more, and more preferably occupies 3.5 mass% or more. On the other hand, if the amount of the polymer electrolyte polymer is too large, the internal resistance of the electrochemical element tends to increase. Therefore, the polymer electrolyte polymer preferably occupies 18 mass% or less of the entire separator, and 17.5 mass%. It is more preferable to occupy the following, and it is still more preferable to occupy 17 mass% or less.
 本発明の高分子電解質ポリマーは上述の通り、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に有する。なお、バインダポリマーと高分子電解質ポリマーとは混在した状態にあっても良いが、バインダポリマーと高分子電解質ポリマーとは混在していない、分かれた状態にあるのが好ましい。混在していると、高分子電解質ポリマーが電解液を吸液し、膨潤することによって空隙を塞ぐ作用が弱くなり、結果としてバリア層としての機能が低下し、デンドライトによる短絡防止性が低下する傾向があるためである。例えば、高分子電解質ポリマーはバインダポリマーを被覆した状態、バインダポリマーと部分的に接触した状態にあるのが好ましい。このようにバインダポリマーと高分子電解質ポリマーとが分かれた状態は、例えば、バインダポリマーにより無機粒子を不織布基材構成繊維に接着させた後、高分子電解質ポリマーを付与することによって形成できる。 As described above, the polyelectrolyte polymer of the present invention has a void formed by the nonwoven fabric base constituent fiber, the inorganic particles, and the binder polymer. Although the binder polymer and the polymer electrolyte polymer may be mixed, it is preferable that the binder polymer and the polymer electrolyte polymer are not mixed and are in a separated state. If mixed, the polymer electrolyte polymer absorbs the electrolyte and swells to weaken the action of plugging the gap, resulting in a decrease in the function as a barrier layer and a tendency to reduce short-circuit prevention due to dendrites. Because there is. For example, the polyelectrolyte polymer is preferably in a state where it is coated with a binder polymer or in a state where it is partially in contact with the binder polymer. Thus, the state in which the binder polymer and the polymer electrolyte polymer are separated can be formed, for example, by attaching the polymer electrolyte polymer after the inorganic particles are bonded to the nonwoven fabric constituting fiber with the binder polymer.
 本発明のセパレータの目付は特に限定するものではないが、5~35g/mであるのが好ましく、10~30g/mであるのがより好ましく、15~25g/mであるのが更に好ましい。また、セパレータの厚さは特に限定するものではないが、内部抵抗の低い電気化学素子を作製しやすいように、50μm以下であるのが好ましく、40μm以下であるのがより好ましく、35μm以下であるのが更に好ましく、30μm以下であるのが更に好ましい。一方、厚さがが薄過ぎると強度が低下して、セパレータに亀裂が生じるなど、取り扱い性に劣る傾向があるため、5μm以上であるのが好ましく、10μm以上であるのがより好ましい。 The basis weight of the separator of the present invention is not particularly limited, but is preferably 5 to 35 g / m 2 , more preferably 10 to 30 g / m 2 , and 15 to 25 g / m 2. Further preferred. The thickness of the separator is not particularly limited, but is preferably 50 μm or less, more preferably 40 μm or less, and more preferably 35 μm or less so that an electrochemical element having a low internal resistance can be easily produced. Is more preferable, and it is still more preferable that it is 30 micrometers or less. On the other hand, if the thickness is too thin, the strength tends to decrease and the separator tends to be cracked, and the handleability tends to be inferior. Therefore, the thickness is preferably 5 μm or more, and more preferably 10 μm or more.
 本発明のセパレータはデンドライトによる短絡防止性に優れるものであるため、各種電気化学素子のセパレータとして好適に使用できる。例えば、リチウムイオン二次電池、リチウムイオンキャパシタなどの電気二重層キャパシタ、アルミ電解コンデンサなどの電解コンデンサ、固体高分子型アルミ電解コンデンサなどのセパレータとして好適に使用でき、特にリチウムイオン二次電池のセパレータとして好適である。なお、その形態は特に限定されず、例えば、コイン型、パウチ型、又は円筒型であることができる。また、電解液の種類も特に限定されず、水系、有機系、又はイオン液体の電解液に対して適用できる。 Since the separator of the present invention is excellent in prevention of short circuit by dendrite, it can be suitably used as a separator for various electrochemical elements. For example, it can be suitably used as a separator for lithium ion secondary batteries, electric double layer capacitors such as lithium ion capacitors, electrolytic capacitors such as aluminum electrolytic capacitors, solid polymer type aluminum electrolytic capacitors, and in particular, separators for lithium ion secondary batteries. It is suitable as. In addition, the form is not specifically limited, For example, it can be a coin type, a pouch type, or a cylindrical type. Moreover, the kind of electrolyte solution is not specifically limited, It can apply with respect to the electrolyte solution of a water system, an organic type, or an ionic liquid.
 本発明のセパレータは、例えば、次の方法により製造することができる。 The separator of the present invention can be manufactured, for example, by the following method.
 まず、セパレータの骨格となる不織布基材を作製するために、繊維を用意する。この繊維としては、前述のような繊維を使用することができる。つまり、低水分率で、耐電解液性に優れる、繊維表面が、ポリオレフィン系樹脂、ポリエステル系樹脂、又はポリアミド系樹脂から構成された繊維(繊維両末端部を除く)、融点又は分解温度が180℃以上の耐熱性繊維を用意するのが好ましい。特に、全芳香族ポリアミド繊維又は全芳香族ポリエステル繊維を用意するのが好ましい。 First, fibers are prepared in order to produce a nonwoven fabric base material that will be the skeleton of the separator. As this fiber, the fiber as described above can be used. That is, a fiber having a low moisture content and excellent electrolytic solution resistance, and a fiber surface composed of a polyolefin resin, a polyester resin, or a polyamide resin (excluding both ends of the fiber), a melting point or a decomposition temperature of 180 It is preferable to prepare a heat-resistant fiber having a temperature of 0 ° C. or higher. In particular, it is preferable to prepare a fully aromatic polyamide fiber or a fully aromatic polyester fiber.
 なお、繊維同士が結合した状態にあり、不織布基材の内部空隙を保持しやすいことによって、無機粒子、バインダポリマー及び高分子電解質ポリマーの保持性に優れているように、2種類以上の有機樹脂から構成されており、繊維表面が低融点樹脂から構成されている繊維(例えば、繊維の横断面における樹脂の配置状態が芯鞘型又は海島型の複合繊維)、又は未延伸繊維(例えば、未延伸ポリエステル繊維)などの加熱加圧による結晶配向に伴う変形によって接着作用を奏する繊維を用意するのが好ましい。 It should be noted that two or more types of organic resins are used so that the fibers are bonded to each other and the internal voids of the nonwoven fabric base material are easily retained, so that the retention of the inorganic particles, the binder polymer, and the polymer electrolyte polymer is excellent. The fiber surface is composed of a low melting point resin (for example, a core-sheath type or sea-island type composite fiber in which the resin is arranged in the cross section of the fiber), or an unstretched fiber (for example, unstretched fiber). It is preferable to prepare a fiber that exhibits an adhesive action by deformation accompanying crystal orientation by heating and pressing, such as a stretched polyester fiber).
 また、繊維の横断面形状は円形であっても良いし、非円形であっても良い。 Further, the cross-sectional shape of the fiber may be circular or non-circular.
 更に、繊維の繊維径は電気絶縁性に優れているように、また、電解液の保持性に優れているように、0.1~20μmであるのが好ましく、0.5~16μmであるのがより好ましく、0.5~13μmであるのが更に好ましい。また、繊維の繊維長は0.1~20mmであるのが好ましく、0.5~15mmであるのがより好ましく、1~10mmであるのが更に好ましい。更に、フィブリルを有するパルプ状繊維であっても良いし、フィブリルを有しない繊維であっても良いが、パルプ状繊維であると、孔径が均一かつ緻密な構造の不織布基材を作製できるため好適である。 Further, the fiber diameter of the fiber is preferably 0.1 to 20 μm, preferably 0.5 to 16 μm so that the electrical insulation property is excellent and the electrolytic solution retainability is excellent. Is more preferably 0.5 to 13 μm. The fiber length of the fiber is preferably 0.1 to 20 mm, more preferably 0.5 to 15 mm, and still more preferably 1 to 10 mm. Furthermore, it may be a pulp-like fiber having fibrils or may be a fiber not having fibrils, but a pulp-like fiber is preferable because a nonwoven fabric substrate having a uniform and dense pore diameter can be produced. It is.
 次いで、このような繊維を1種類、又は2種類以上を使用して、繊維ウエブを形成する。なお、繊維ウエブの形成方法は、例えば、乾式法、湿式法、メルトブロー法などの直接法を挙げることができるが、繊維が均一に分散して、均一に電解液を保持できるように、湿式法により繊維ウエブを形成するのが好ましい。この好適である湿式法として、例えば、水平長網方式、傾斜ワイヤー型短網方式、円網方式、又は長網・円網コンビネーション方式を挙げることができる。なお、繊維ウエブが二層以上であると、緻密な構造であることができ、より短絡防止性に優れているため好適である。 Next, a fiber web is formed using one kind or two or more kinds of such fibers. Examples of the method for forming the fiber web include direct methods such as a dry method, a wet method, and a melt blow method. However, a wet method is used so that the fibers can be uniformly dispersed and the electrolyte can be held uniformly. It is preferable to form a fiber web. Examples of the preferable wet method include a horizontal long net method, an inclined wire type short net method, a circular net method, and a long net / circular net combination method. In addition, it is suitable for the fiber web to have two or more layers because it can have a dense structure and is more excellent in short circuit prevention.
 また、繊維ウエブとベース不織布とを積層又は複合した複合繊維ウエブを形成しても良い。例えば、ベース不織布を用意した後、このベース不織布の一方の主面上に、形成した繊維ウエブを積層する、又はベース不織布の一方の主面上に、短繊維および/またはパルプ状繊維を含んだ分散液を抄き上げることで、ベース不織布の空隙に短繊維および/またはパルプ状繊維が入り込んだ複合繊維ウエブを形成しても良い。なお、複合繊維ウエブを形成する場合、ベース不織布と繊維ウエブ又は分散液中の少なくとも一方に耐熱性繊維を含んでいるのが好ましく、両方に耐熱性繊維を含んでいるのがより好ましい。 Also, a composite fiber web may be formed by laminating or combining a fiber web and a base nonwoven fabric. For example, after preparing a base nonwoven fabric, the formed fiber web is laminated on one main surface of the base nonwoven fabric, or short fibers and / or pulp-like fibers are included on one main surface of the base nonwoven fabric. By drawing up the dispersion, a composite fiber web in which short fibers and / or pulp-like fibers are contained in the voids of the base nonwoven fabric may be formed. In addition, when forming a composite fiber web, it is preferable that at least one of the base nonwoven fabric and the fiber web or the dispersion contains heat-resistant fibers, and more preferably both include heat-resistant fibers.
 次いで、繊維ウエブ構成繊維同士を結合して不織布基材を形成できる。繊維同士の結合は、例えば、繊維の融着、未延伸繊維の結晶配向に伴う変形による接着作用、繊維同士の絡合、及び/又はバインダポリマーの接着により実施することができる。繊維同士を融着させる場合、無圧下で行なっても良いし、加圧下で行なっても良いし、無圧下で溶融させた後に加圧しても良い。このような融着を実施できる装置として、例えば、熱カレンダー、熱風貫通式熱処理器、シリンダ接触型熱処理器などがある。また、未延伸繊維の結晶配向に伴う変形により接着させる場合、繊維ウエブを加熱加圧することにより実施でき、例えば、熱カレンダーを使用することにより実施できる。更に、繊維同士を絡合する場合、例えば、水流などの流体流、ニードルを繊維ウエブに対して作用させることによって実施できる。更に、バインダポリマーで繊維同士を接着する場合、繊維ウエブにバインダポリマーを付与し、バインダポリマーの接着作用を発揮させることによって実施できる。なお、バインダポリマーは前述の無機粒子の不織布基材構成繊維との結合に関与できるバインダポリマーと同様のバインダポリマーであることができる。なお、バインダポリマーはエマルジョン、サスペンジョン、ディスパージョン、又は溶液の状態であることができ、繊維ウエブに含浸、塗布、又は散布して付与した後、乾燥して接着することができる。 Next, the nonwoven fabric substrate can be formed by bonding the fiber web constituent fibers together. The bonding between the fibers can be performed, for example, by fusing the fibers, an adhesion action due to deformation accompanying the crystal orientation of the unstretched fibers, entanglement between the fibers, and / or adhesion of the binder polymer. When fusing fibers together, they may be performed under no pressure, may be performed under pressure, or may be pressurized after being melted under no pressure. As an apparatus capable of performing such fusion, there are, for example, a thermal calendar, a hot air through heat treatment device, a cylinder contact heat treatment device, and the like. Moreover, when making it adhere | attach by the deformation | transformation accompanying the crystal orientation of an unstretched fiber, it can implement by heating and pressurizing a fiber web, for example, can be implemented by using a heat calendar. Further, when the fibers are entangled with each other, for example, a fluid flow such as a water flow or a needle can be applied to the fiber web. Furthermore, when bonding fibers with a binder polymer, it can be carried out by imparting a binder polymer to the fiber web and exerting an adhesive action of the binder polymer. The binder polymer can be the same binder polymer as the binder polymer that can participate in the bonding of the inorganic particles to the non-woven fabric substrate constituting fiber. The binder polymer can be in the form of an emulsion, suspension, dispersion, or solution, and can be impregnated, applied, or sprayed onto the fiber web, and then dried and bonded.
 このように形成した不織布基材の、バインダポリマー又は無機粒子との親和性が不充分な場合には、不織布基材に親和性を付与又は向上させるのが好ましい。この親和性を付与又は向上させる方法として、例えば、スルホン化処理(特に、無水硫酸ガスによるスルホン化処理)、フッ素ガス処理、グラフト重合処理、放電処理(特に、プラズマ処理)、界面活性剤処理、或いは親水性樹脂付与処理などを挙げることができる。 When the affinity of the nonwoven fabric substrate thus formed with the binder polymer or inorganic particles is insufficient, it is preferable to impart or improve the affinity of the nonwoven fabric substrate. Examples of methods for imparting or improving this affinity include sulfonation treatment (particularly sulfonation treatment with anhydrous sulfuric acid gas), fluorine gas treatment, graft polymerization treatment, discharge treatment (particularly plasma treatment), surfactant treatment, Or hydrophilic resin provision processing etc. can be mentioned.
 一方で、不織布基材に対して付与する無機粒子を用意する。この無機粒子は前述の通り、粒子径が0.01~3μmであるのが好ましく、0,01~1μmであるのがより好ましく、0.01~0.5μmであるのが更に好ましい。また、無機粒子の粒子径分布は(D50/2)以上、かつ(D50×2)以下の範囲内にあるのが好ましい。なお、無機粒子の組成はシリカ及び/又はアルミナであるのが好ましい。更に無機粒子の形状は真球状であるのが好ましい。特に、爆燃無機粒子であるのが好ましい。 On the other hand, the inorganic particle provided with respect to a nonwoven fabric base material is prepared. As described above, the inorganic particles preferably have a particle size of 0.01 to 3 μm, more preferably 0.01 to 1 μm, and still more preferably 0.01 to 0.5 μm. The particle size distribution of the inorganic particles (D 50/2) or more, and preferably in the (D 50 × 2) within the following range. The composition of the inorganic particles is preferably silica and / or alumina. Furthermore, the shape of the inorganic particles is preferably a true sphere. In particular, deflagration inorganic particles are preferable.
 更に、無機粒子を不織布基材構成繊維に接着するためのバインダポリマーを用意する。このバインダポリマーは前述のバインダポリマーであることができ、無機粒子の接着性に優れるばかりでなく、電解液の浸透性及び耐電圧にも優れている、アクリル系樹脂からなるバインダポリマーが好適である。このバインダポリマーはエマルジョン、サスペンジョン、ディスパージョン、又は溶液の状態であることができる。 Furthermore, a binder polymer for bonding the inorganic particles to the nonwoven fabric base fiber is prepared. This binder polymer can be the above-mentioned binder polymer, and a binder polymer made of an acrylic resin that is excellent not only in the adhesion of inorganic particles but also in the permeability and withstand voltage of the electrolyte is suitable. . The binder polymer can be in the form of an emulsion, suspension, dispersion, or solution.
 次いで、無機粒子とバインダポリマーとを混合したバインダ溶液を不織布基材に付与した後、乾燥して、不織布基材の内部空隙において、無機粒子がバインダポリマーによって不織布基材構成繊維に接着した前駆セパレータを調製することができる。この前駆セパレータにおける無機粒子の体積比率(Vr)が0.1以上、より好ましくは0.15以上であるように、また、バインダポリマーが無機粒子とバインダポリマーの総量の0.5~10mass%(好ましくは1~10mass%、より好ましくは2~10mass%)を占めるようにバインダ溶液を付与する。 Next, after applying a binder solution in which inorganic particles and a binder polymer are mixed to the nonwoven fabric substrate, drying is performed, and in the internal space of the nonwoven fabric substrate, the precursor separator in which the inorganic particles are bonded to the nonwoven fabric substrate constituting fibers by the binder polymer Can be prepared. The volume ratio (Vr) of the inorganic particles in the precursor separator is 0.1 or more, more preferably 0.15 or more, and the binder polymer is 0.5 to 10 mass% (total amount of the inorganic particles and the binder polymer). The binder solution is preferably applied so as to occupy 1 to 10 mass%, more preferably 2 to 10 mass%.
 なお、バインダ溶液の不織布基材への付与は、不織布基材の内部空隙に無機粒子を付与できる方法であれば良く、特に限定するものではないが、例えば、不織布基材をバインダ溶液に浸漬する方法、バインダ溶液を不織布基材に塗布又は散布する方法、により実施できる。 In addition, the application of the binder solution to the nonwoven fabric base material is not particularly limited as long as the inorganic particles can be applied to the internal voids of the nonwoven fabric base material. For example, the nonwoven fabric base material is immersed in the binder solution. The method can be carried out by a method in which a binder solution is applied to or spread on a nonwoven fabric substrate.
 以上は不織布基材を形成した後に、バインダ溶液を付与する前駆セパレータの作製方法であるが、繊維ウエブをバインダポリマーにより接着して不織布基材を作製する場合には、繊維ウエブに対して、無機粒子とバインダポリマーとを含むバインダ溶液を付与し、バインダーポリマーで繊維同士を接着すると同時に、バインダーポリマーで無機粒子を繊維に接着し、不織布基材の形成と同時に前駆セパレータを作製することもできる。 The above is a method for producing a precursor separator in which a binder solution is applied after forming a nonwoven fabric substrate. However, when a nonwoven fabric substrate is produced by adhering a fiber web with a binder polymer, the fiber web is inorganic. A binder solution containing particles and a binder polymer is applied, and the fibers are bonded to each other with a binder polymer. At the same time, inorganic particles are bonded to the fibers with a binder polymer, and a precursor separator can be produced simultaneously with the formation of the nonwoven fabric substrate.
 更に、前駆セパレータに対して付与する高分子電解質ポリマーを用意する。この高分子電解質ポリマーは前述の通り、非水溶媒(電解液)と接触によりゲル形成できるフッ素系樹脂であるのが好ましく、特に、ポリフッ化ビニリデン-6フッ化プロピレン(PVDF-HFP)共重合体、ポリフッ化ビニリデン(PVDF)であるのが好ましい。この高分子電解質ポリマーはエマルジョン、サスペンジョン、ディスパージョン、又は溶液の状態であることができる。 Furthermore, a polymer electrolyte polymer to be applied to the precursor separator is prepared. As described above, the polymer electrolyte polymer is preferably a fluororesin that can form a gel by contact with a non-aqueous solvent (electrolyte), and in particular, a polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) copolymer. Polyvinylidene fluoride (PVDF) is preferred. The polyelectrolyte polymer can be in the form of an emulsion, suspension, dispersion, or solution.
 そして、この高分子電解質ポリマー溶液を前駆セパレータに付与した後、乾燥して、不織布基材の内部空隙における、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に、高分子電解質ポリマーを有するセパレータを調製することができる。このセパレータにおける高分子電解質ポリマー量が、セパレータ全体の好ましくは2~18mass%、より好ましくは3~17.5mass%、更に好ましくは3.5~17mass%、更に好ましくは3.5~17mass%を占めるように、高分子電解質ポリマー溶液を付与する。 Then, after applying the polymer electrolyte polymer solution to the precursor separator, the polymer electrolyte is dried, and the polymer electrolyte is formed in the voids formed by the nonwoven fabric substrate constituent fibers, the inorganic particles, and the binder polymer in the voids of the nonwoven fabric substrate. A separator having a polymer can be prepared. The amount of the polymer electrolyte polymer in this separator is preferably 2 to 18 mass% of the whole separator, more preferably 3 to 17.5 mass%, further preferably 3.5 to 17 mass%, still more preferably 3.5 to 17 mass%. Apply polyelectrolyte polymer solution to occupy.
 なお、高分子電解質ポリマー溶液の前駆セパレータへの付与は、前駆セパレータの内部空隙に高分子電解質ポリマーを付与できる方法であれば良く、特に限定するものではないが、例えば、前駆セパレータを高分子電解質ポリマー溶液に浸漬する方法、高分子電解質ポリマー溶液を前駆セパレータに塗布又は散布する方法、により実施できる。特に、高分子電解質ポリマー溶液を前駆セパレータに塗布する方法によれば、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に高分子電解質ポリマーが存在する緻密な構造、また、高分子電解質ポリマーが電池構成時に電解液を吸液し、膨潤してバリア層を形成しやすい構造としやすいため、好適である。 The application of the polymer electrolyte polymer solution to the precursor separator is not particularly limited as long as the polymer electrolyte polymer can be applied to the internal voids of the precursor separator. For example, the precursor separator is attached to the polymer electrolyte. It can be carried out by a method of immersing in a polymer solution or a method of applying or dispersing a polymer electrolyte polymer solution to a precursor separator. In particular, according to the method of applying the polyelectrolyte polymer solution to the precursor separator, a dense structure in which the polyelectrolyte polymer exists in the voids formed by the non-woven fabric substrate constituent fibers, the inorganic particles, and the binder polymer, The molecular electrolyte polymer is preferred because it easily absorbs the electrolyte during battery construction and swells to form a barrier layer.
 また、セパレータにおける水分量が多いと、電気化学素子の充放電特性が悪くなる傾向があるため、水分量が少なくなるように乾燥するのが好ましい。例えば、120℃以上の温度で乾燥するのが好ましく、130℃以上の温度で乾燥するのがより好ましく、140℃以上の温度で乾燥するのが特に好ましい。一方、乾燥温度の上限はセパレータの耐熱性によって異なり、特に限定するものではないが、水分を除去するという観点から、180℃までであれば充分であり、170℃以下、或いは160℃以下であっても良い。 In addition, when the water content in the separator is large, the charge / discharge characteristics of the electrochemical element tend to be deteriorated. Therefore, it is preferable to dry the water so that the water content is small. For example, drying at a temperature of 120 ° C. or higher is preferable, drying at a temperature of 130 ° C. or higher is more preferable, and drying at a temperature of 140 ° C. or higher is particularly preferable. On the other hand, the upper limit of the drying temperature varies depending on the heat resistance of the separator and is not particularly limited. However, from the viewpoint of removing moisture, it is sufficient up to 180 ° C. May be.
 以上のような方法によれば、バインダ溶液を不織布基材に付与し、乾燥して、前駆セパレータを調製した後、前駆セパレータに高分子電解質ポリマー溶液を付与し、乾燥して、不織布基材の内部空隙における、不織布基材構成繊維と無機粒子とバインダポリマーとによって形成された空隙に、高分子電解質ポリマーを、バインダポリマーとは分かれた状態にあるセパレータを製造することができる。 According to the above method, the binder solution is applied to the nonwoven fabric substrate and dried to prepare a precursor separator, and then the polymer electrolyte polymer solution is applied to the precursor separator and dried. A separator in which the polymer electrolyte polymer and the binder polymer are separated from each other in the voids formed by the nonwoven fabric base-constituting fibers, the inorganic particles, and the binder polymer can be produced.
 以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
 (基材の準備)
(1)不織布基材Aの準備;
 ポリエチレンテレフタレート短繊維(繊度:0.2dtex、繊維径:4.3μm、繊維長:3mm、融点:260℃、横断面形状:円形)を未延伸ポリエチレンテレフタレート短繊維(融点:260℃)に由来する樹脂で接着固定した湿式不織布(目付:9g/m、厚さ:10μm、空隙率:56%)をベース不織布として用意した。
(Preparation of base material)
(1) Preparation of nonwoven fabric substrate A;
Polyethylene terephthalate short fibers (fineness: 0.2 dtex, fiber diameter: 4.3 μm, fiber length: 3 mm, melting point: 260 ° C., cross-sectional shape: circular) are derived from unstretched polyethylene terephthalate short fibers (melting point: 260 ° C.) A wet nonwoven fabric (weight per unit: 9 g / m 2 , thickness: 10 μm, porosity: 56%) bonded and fixed with a resin was prepared as a base nonwoven fabric.
 次いで、ポリエチレンテレフタレート未延伸短繊維(繊度:0.2dtex、繊維径:4.3μm、繊維長:3mm、融点:260℃、横断面形状:円形)とパルプ状全芳香族ポリアミド繊維(濾水度:50mlCSF、分解温度:約500℃)とを、20:80の質量比率で水中に分散させた分散液を調製した。 Next, polyethylene terephthalate unstretched short fibers (fineness: 0.2 dtex, fiber diameter: 4.3 μm, fiber length: 3 mm, melting point: 260 ° C., cross-sectional shape: circular) and pulp-like wholly aromatic polyamide fibers (freeness) : 50 ml CSF, decomposition temperature: about 500 ° C.) in a mass ratio of 20:80 was prepared.
 そして、ベース不織布の一方の主面上に前記分散液を抄き上げた後、ベース不織布側から分散媒である水をサクションして除去し、ベース不織布の一方の主面上に、ポリエチレンテレフタレート未延伸短繊維とパルプ状全芳香族ポリアミド繊維が混合した繊維堆積層を有し、この繊維堆積層構成繊維の一部がベース不織布の空隙に入り込み、ベース不織布構成繊維に絡んで一体化した複合繊維ウエブを形成した。 Then, after drawing up the dispersion on one main surface of the base non-woven fabric, water as a dispersion medium is suctioned and removed from the base non-woven fabric side, and polyethylene terephthalate uncoated on one main surface of the base non-woven fabric. A composite fiber having a fiber accumulation layer in which stretched short fibers and pulp-like wholly aromatic polyamide fibers are mixed, and part of the fibers constituting the fiber accumulation layer enter the voids of the base nonwoven fabric and entangle with the base nonwoven fabric constituting fibers. A web was formed.
 続いて、複合繊維ウエブをコンベアで支持したまま、温度145℃の雰囲気下で熱処理して複合繊維ウエブを乾燥した後、表面温度を180℃に調整したヒートロール間を通して加熱加圧し、ポリエチレンテレフタレート未延伸短繊維により、ポリエチレンテレフタレート未延伸短繊維自体及びパルプ状全芳香族ポリアミド繊維をベース不織布に接着して、二層構造の複合不織布(=不織布基材A、目付:12g/m、厚さ:17μm、耐熱性繊維比率:20mass%)を調製した。 Subsequently, while the composite fiber web is supported on the conveyor, the composite fiber web is dried by heat treatment in an atmosphere at a temperature of 145 ° C., and then heated and pressurized through a heat roll adjusted to a surface temperature of 180 ° C. By using the drawn short fiber, the polyethylene terephthalate undrawn short fiber itself and the pulp-like wholly aromatic polyamide fiber are bonded to the base non-woven fabric to form a two-layer composite non-woven fabric (= nonwoven fabric substrate A, basis weight: 12 g / m 2 , thickness : 17 μm, heat-resistant fiber ratio: 20 mass%).
(2)不織布基材Bの準備;
 ポリエチレンテレフタレート未延伸短繊維(繊度:0.2dtex、繊維径:4.3μm、繊維長:3mm、融点:260℃、横断面形状:円形)とパルプ状全芳香族ポリアミド繊維(濾水度:80mlCSF、分解温度:約500℃)とを、30:70の質量比率で水中に分散させた分散液を調製した。
(2) Preparation of nonwoven fabric substrate B;
Polyethylene terephthalate unstretched short fiber (fineness: 0.2 dtex, fiber diameter: 4.3 μm, fiber length: 3 mm, melting point: 260 ° C., cross-sectional shape: circular) and pulp-like wholly aromatic polyamide fiber (freeness: 80 ml CSF) , Decomposition temperature: about 500 ° C.) in a mass ratio of 30:70 was prepared.
 そして、前記分散液を抄き上げた後、分散媒である水をサクションして除去し、繊維ウエブを形成した後、繊維ウエブをコンベアで支持したまま、温度145℃の雰囲気下で熱処理して繊維ウエブを乾燥した後、表面温度を180℃に調整したヒートロール間を通して加熱加圧し、ポリエチレンテレフタレート未延伸短繊維により、パルプ状全芳香族ポリアミド繊維間を接着して、単層構造の不織布(=不織布基材B、目付:12g/m、厚さ:17μm、耐熱性繊維比率:70mass%))を調製した。 And after making up the said dispersion liquid, the water which is a dispersion medium is suctioned and removed, and after forming a fiber web, it heat-processes in the atmosphere of a temperature of 145 degreeC, supporting a fiber web with a conveyor. After drying the fiber web, it is heated and pressurized through a heat roll whose surface temperature is adjusted to 180 ° C., and the non-stretched short fibers of polyethylene terephthalate are used to bond the pulp-like wholly aromatic polyamide fibers together to form a single-layer nonwoven fabric ( = Nonwoven fabric base material B, basis weight: 12 g / m 2 , thickness: 17 μm, heat-resistant fiber ratio: 70 mass%)).
(3)不織布基材Cの準備;
 芯成分がポリプロピレン(融点:168℃)からなり、鞘成分が高密度ポリエチレン(融点:135℃)からなる融着繊維(平均繊維径:0.8dtex、繊維径:10.5μm、繊維長:5mm、横断面形状:円形)のみを使用し、傾斜ワイヤー型短網湿式法により湿式繊維ウエブを形成した。
(3) Preparation of nonwoven fabric substrate C;
Fused fiber (average fiber diameter: 0.8 dtex, fiber diameter: 10.5 μm, fiber length: 5 mm) whose core component is made of polypropylene (melting point: 168 ° C.) and whose sheath component is made of high-density polyethylene (melting point: 135 ° C.) , The cross-sectional shape: circular) only, and a wet fiber web was formed by an inclined wire type short net wet method.
 次いで、この湿式繊維ウエブをコンベアで支持し、コンベアの下方から吸引して湿式繊維ウエブをコンベアと密着させた状態で搬送しながら、湿式繊維ウエブを温度138℃に設定した熱風貫通式乾燥機により熱処理して、融着繊維の鞘成分のみを融着させて、融着不織布(=ベース不織布、目付:10g/m)を製造した。 Next, the wet fiber web is supported by a conveyor, and sucked from below the conveyor to convey the wet fiber web in close contact with the conveyor. By heat-treating, only the sheath component of the fused fiber was fused to produce a fused nonwoven fabric (= base nonwoven fabric, basis weight: 10 g / m 2 ).
 他方、ポリプロピレン極細繊維(繊度:0.02dtex、繊維径:1.7μm、繊維長:2mm、融点:168℃、横断面形状:円形)を準備した後、ポリプロピレン極細繊維が分散した分散液を調製した。 On the other hand, after preparing polypropylene fine fibers (fineness: 0.02 dtex, fiber diameter: 1.7 μm, fiber length: 2 mm, melting point: 168 ° C., cross-sectional shape: circular), a dispersion in which polypropylene fine fibers are dispersed is prepared. did.
 そして、ベース不織布の一方の主面上に前記分散液を抄き上げた後、ベース不織布側から分散媒である水をサクションして除去し、ベース不織布の一方の主面上に、ポリプロピレン極細繊維堆積層を有するとともに、ポリプロピレン極細繊維の一部がベース不織布の空隙に入り込み、ベース不織布構成繊維に絡んで一体化した複合繊維ウエブを形成した。 And after drawing up the said dispersion liquid on one main surface of a base nonwoven fabric, the water which is a dispersion medium is suctioned and removed from the base nonwoven fabric side, and a polypropylene microfiber is formed on one main surface of a base nonwoven fabric. While having a deposited layer, a part of the polypropylene ultrafine fibers entered the voids of the base nonwoven fabric to form a composite fiber web integrated with the base nonwoven fabric constituting fibers.
 続いて、複合繊維ウエブをコンベアで支持したまま、温度138℃の雰囲気下で熱処理して複合繊維ウエブを乾燥すると同時に、ベース不織布を構成する融着繊維を再融着させ、ポリプロピレン極細繊維をベース不織布に融着して、二層構造の複合不織布(=不織布基材C、目付:13g/m、厚さ:25μm)を調製した。 Subsequently, while the composite fiber web is supported on the conveyor, the composite fiber web is dried by heat treatment in an atmosphere at a temperature of 138 ° C., and at the same time, the fusion fibers constituting the base nonwoven fabric are re-fused, and the polypropylene ultrafine fiber is used as the base. A composite nonwoven fabric having a two-layer structure (= nonwoven fabric substrate C, basis weight: 13 g / m 2 , thickness: 25 μm) was prepared by fusing to a nonwoven fabric.
(4)微多孔膜基材Dの準備;
 市販のポリプロピレン製微多孔膜(登録商標:セルガード、品番:2400、目付:15g/m、厚さ:25μm)を微多孔膜基材Dとして用意した。
(4) Preparation of microporous membrane substrate D;
A commercially available polypropylene microporous membrane (registered trademark: Celgard, product number: 2400, basis weight: 15 g / m 2 , thickness: 25 μm) was prepared as the microporous membrane substrate D.
 (バインダ溶液の準備)
(1)バインダ溶液aの準備;
 無機粒子として、爆燃シリカ粒子分散液[形状:真球状、粒子径:450nm、粒子径分布:225~900nm、2-プロパノール水溶液(10wt%)、固形分濃度:45mass%]を用意した。また、バインダポリマーとして、アクリル系樹脂ディスパージョン(固形分濃度:45%)を用意した。
(Preparation of binder solution)
(1) Preparation of binder solution a;
As inorganic particles, a deflagration silica particle dispersion [shape: true sphere, particle size: 450 nm, particle size distribution: 225 to 900 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer.
 次いで、次の配合でバインダ溶液a(アクリル系樹脂は爆燃シリカ粒子とアクリル系樹脂の総量の3mass%)を調製した。 Next, a binder solution a (acrylic resin was 3 mass% of the total amount of deflagration silica particles and acrylic resin) was prepared with the following composition.
 (ア)アクリル系樹脂ディスパージョン : 1.5mass%
 (イ)爆燃シリカ粒子分散液      : 48.5mass%
 (ウ)水               : 50mass%
(A) Acrylic resin dispersion: 1.5 mass%
(I) Deflagration silica particle dispersion: 48.5 mass%
(U) Water: 50 mass%
(2)バインダ溶液bの準備;
 無機粒子として、アルミナ粒子分散液[形状:破砕状、粒子径:790nm、粒子径分布:395~1580nm、2-プロパノール水溶液(10wt%)、固形分濃度:45mass%]を用意した。また、バインダポリマーとして、アクリル系樹脂ディスパージョン(固形分濃度:45%)を用意した。
(2) Preparation of binder solution b;
As inorganic particles, an alumina particle dispersion [shape: crushed, particle size: 790 nm, particle size distribution: 395 to 1580 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer.
 次いで、次の配合でバインダ溶液b(アクリル系樹脂はアルミナ粒子とアクリル系樹脂の総量の3mass%)を調製した。 Next, a binder solution b (acrylic resin was 3 mass% of the total amount of alumina particles and acrylic resin) was prepared with the following composition.
 (ア)アクリル系樹脂ディスパージョン : 1.5mass%
 (イ)アルミナ粒子分散液       : 48.5mass%
 (ウ)水               : 50mass%
(A) Acrylic resin dispersion: 1.5 mass%
(A) Alumina particle dispersion: 48.5 mass%
(U) Water: 50 mass%
(3)バインダ溶液cの準備;
 無機粒子として、爆燃シリカ粒子分散液[形状:真球状、粒子径:450nm、粒子径分布:225~900nm、2-プロパノール水溶液(10wt%)、固形分濃度:45mass%]を用意した。また、バインダポリマーとして、アクリル系樹脂ディスパージョン(固形分濃度:45%)を用意した。更に、高分子電解質ポリマーとして、ポリフッ化ビニリデン-6フッ化プロピレン(PVDF-HFP)粒子[平均粒子径:1μm]を用意した。
(3) Preparation of binder solution c;
As inorganic particles, a deflagration silica particle dispersion [shape: true sphere, particle size: 450 nm, particle size distribution: 225 to 900 nm, 2-propanol aqueous solution (10 wt%), solid content concentration: 45 mass%] was prepared. Moreover, acrylic resin dispersion (solid content concentration: 45%) was prepared as a binder polymer. Furthermore, as the polymer electrolyte polymer, polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) particles [average particle size: 1 μm] were prepared.
 次いで、次の配合でバインダ溶液c(アクリル系樹脂は爆燃シリカ粒子とアクリル系樹脂の総量の3mass%)を調製した。 Next, a binder solution c (acrylic resin was 3 mass% of the total amount of deflagration silica particles and acrylic resin) was prepared with the following composition.
 (ア)アクリル系樹脂ディスパージョン : 1.5mass%
 (イ)爆燃シリカ粒子分散液      : 48.5mass%
 (ウ)水               : 49.6mass%
 (エ)PVDF-HFP粒子       : 0.4mass%
(A) Acrylic resin dispersion: 1.5 mass%
(I) Deflagration silica particle dispersion: 48.5 mass%
(U) Water: 49.6 mass%
(D) PVDF-HFP particles: 0.4 mass%
 (高分子電解質ポリマー溶液の準備)
(1)高分子電解質ポリマー溶液iの準備;
 高分子電解質ポリマーとして、ポリフッ化ビニリデン-6フッ化プロピレン(PVDF-HFP)を用意した。次いで、PVDF-HFPをN-メチルピロリドン(NMP)に溶解させ、高分子電解質ポリマー溶液i(固形分濃度:3mass%)を調製した。
(Preparation of polymer electrolyte polymer solution)
(1) Preparation of polyelectrolyte polymer solution i;
Polyvinylidene fluoride-6-propylene fluoride (PVDF-HFP) was prepared as the polymer electrolyte polymer. Next, PVDF-HFP was dissolved in N-methylpyrrolidone (NMP) to prepare a polymer electrolyte polymer solution i (solid content concentration: 3 mass%).
(2)高分子電解質ポリマー溶液iiの準備;
 高分子電解質ポリマーとして、ポリフッ化ビニリデン(PVDF)を用意した。次いで、PVDFをN-メチルピロリドン(NMP)に溶解させ、高分子電解質ポリマー溶液ii(固形分濃度:3mass%)を調製した。
(2) Preparation of polyelectrolyte polymer solution ii;
Polyvinylidene fluoride (PVDF) was prepared as a polymer electrolyte polymer. Next, PVDF was dissolved in N-methylpyrrolidone (NMP) to prepare a polymer electrolyte polymer solution ii (solid content concentration: 3 mass%).
 (実施例1~6)
 前記バインダ溶液a(爆燃シリカ粒子含有)を、グラビアロール塗工機を用いて不織布基材Aの繊維堆積層面に塗布した後、ドライヤーで乾燥し、前駆セパレータ(目付:17.5g/m、厚さ:27μm、無機粒子体積比率:0.28)を調製した。なお、この前駆セパレータにおいては、不織布基材Aの内部空隙に、爆燃シリカ粒子がアクリル系樹脂バインダによって、不織布基材Aの構成繊維に接着しており、また、不織布基材Aの繊維堆積層面を構成する繊維上に、アクリル系樹脂バインダによって爆燃シリカ粒子が接着していた。
(Examples 1 to 6)
The binder solution a (containing deflagration silica particles) was applied to the fiber deposition layer surface of the nonwoven fabric substrate A using a gravure roll coating machine, and then dried with a dryer to obtain a precursor separator (weight per unit: 17.5 g / m 2 , Thickness: 27 μm, inorganic particle volume ratio: 0.28) was prepared. In this precursor separator, deflagration silica particles are adhered to the constituent fibers of the nonwoven fabric substrate A by an acrylic resin binder in the internal space of the nonwoven fabric substrate A, and the fiber deposition layer surface of the nonwoven fabric substrate A The deflagration silica particles were adhered to the fibers constituting the material by an acrylic resin binder.
 次いで、不織布基材Aのバインダ溶液aの塗布面に、グラビアロール塗工機を用いて前記高分子電解質ポリマー溶液iを塗布し、続いて、ドライヤーで乾燥し、表1に示す目付、厚さを有する本発明のセパレータを調製した。なお、PVDF-HFP量(固形分量)は、塗布量を調節することにより、0.2g/m(実施例1)、0.4g/m(実施例2)、0.7g/m(実施例3)、1.7g/m(実施例4)、3.4g/m(実施例5)、4.0g/m(実施例6)とした。これらセパレータは不織布基材Aの内部空隙における、不織布基材Aの構成繊維と爆燃シリカ粒子とアクリル系樹脂バインダとによって形成された空隙に、PVDF-HFPを有し、PVDF-HFPはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。 Next, the polymer electrolyte polymer solution i is applied to the application surface of the binder solution a of the nonwoven fabric substrate A using a gravure roll coating machine, followed by drying with a drier, the basis weight and thickness shown in Table 1 A separator according to the present invention having was prepared. The PVDF-HFP amount (solid content) was adjusted to 0.2 g / m 2 (Example 1), 0.4 g / m 2 (Example 2), 0.7 g / m 2 by adjusting the coating amount. (Example 3) 1.7 g / m 2 (Example 4), 3.4 g / m 2 (Example 5), and 4.0 g / m 2 (Example 6). These separators have PVDF-HFP in the voids formed by the constituent fibers of the nonwoven fabric substrate A, the deflagration silica particles, and the acrylic resin binder in the internal voids of the nonwoven fabric substrate A, and PVDF-HFP is an acrylic resin. The binder was coated and separated from the acrylic resin binder.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例7)
 不織布基材Aに替えて、不織布基材Bを使用したこと以外は実施例3と同様にして、表2に示す目付、厚さを有するセパレータを調製した。このセパレータは不織布基材Bの内部空隙における、不織布基材Bの構成繊維と爆燃シリカ粒子とアクリル系樹脂バインダとによって形成された空隙に、PVDF-HFPを有し、PVDF-HFPはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。
(Example 7)
A separator having the basis weight and thickness shown in Table 2 was prepared in the same manner as in Example 3 except that the nonwoven fabric substrate A was used instead of the nonwoven fabric substrate A. This separator has PVDF-HFP in the void formed by the constituent fibers of the nonwoven fabric base material B, the deflagration silica particles, and the acrylic resin binder in the internal space of the nonwoven fabric base material B. PVDF-HFP is an acrylic resin. The binder was coated and separated from the acrylic resin binder.
 (実施例8)
 バインダ溶液a(爆燃シリカ粒子含有)に替えて、バインダ溶液b(アルミナ粒子含有)を使用したこと以外は実施例3と同様にして、表2に示す目付、厚さを有するセパレータを調製した。このセパレータは不織布基材Aの内部空隙における、不織布基材Aの構成繊維とアルミナ粒子とアクリル系樹脂バインダとによって形成された空隙に、PVDF-HFPを有し、PVDF-HFPはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。
(Example 8)
A separator having the basis weight and thickness shown in Table 2 was prepared in the same manner as in Example 3 except that the binder solution b (containing alumina particles) was used instead of the binder solution a (containing deflagration silica particles). This separator has PVDF-HFP in the voids formed by the constituent fibers of the nonwoven fabric substrate A, the alumina particles, and the acrylic resin binder in the internal voids of the nonwoven fabric substrate A. PVDF-HFP is an acrylic resin binder. And was separated from the acrylic resin binder.
 (実施例9)
 高分子電解質ポリマー溶液i(PVDF-HFP)に替えて、高分子電解質ポリマー溶液ii(PVDF)を使用したこと以外は実施例2と同様にして、表2に示す目付、厚さを有するセパレータを調製した。このセパレータは不織布基材Aの内部空隙における、不織布基材Aの構成繊維とシリカ粒子とアクリル系樹脂バインダとによって形成された空隙に、PVDFを有し、PVDFはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。
Example 9
A separator having the basis weight and thickness shown in Table 2 was obtained in the same manner as in Example 2 except that the polymer electrolyte polymer solution ii (PVDF) was used instead of the polymer electrolyte polymer solution i (PVDF-HFP). Prepared. This separator has PVDF in the void formed by the constituent fibers of the nonwoven fabric substrate A, the silica particles, and the acrylic resin binder in the internal void of the nonwoven fabric substrate A, and the PVDF covers the acrylic resin binder, It was in a state separated from the acrylic resin binder.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (比較例1)
 高分子電解質ポリマー溶液iを前駆セパレータに付与しなかったこと以外は実施例3と同様にして、表3に示す目付、厚さを有するセパレータを調製した。つまり、前駆セパレータをセパレータとした。
(Comparative Example 1)
A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the polymer electrolyte polymer solution i was not applied to the precursor separator. That is, the precursor separator was a separator.
 (比較例2)
 不織布基材Aに替えて、微多孔膜基材Dを使用したこと以外は実施例3と同様の操作により、表3に示す目付、厚さを有するセパレータを調製した。なお、微多孔膜基材Dの微孔にシリカ粒子が充填されると、イオンの移動が阻害されるため、このセパレータを調製する際には、微多孔膜基材Dの微孔にシリカ粒子が充填されないように、微多孔膜基材Dの表面にシリカ粒子とアクリル系樹脂バインダとの層を形成した。そのため、このセパレータはシリカ粒子とアクリル系樹脂バインダとの層の空隙に、PVDF-HFPを有し、PVDF-HFPはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。
(Comparative Example 2)
A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the microporous membrane substrate D was used instead of the nonwoven fabric substrate A. In addition, when the silica particles are filled in the micropores of the microporous membrane substrate D, the movement of ions is inhibited. Therefore, when preparing this separator, the silica particles are placed in the micropores of the microporous membrane substrate D. A layer of silica particles and an acrylic resin binder was formed on the surface of the microporous membrane substrate D so as not to be filled. Therefore, this separator has PVDF-HFP in the space between the silica particles and the acrylic resin binder, and the PVDF-HFP is covered with the acrylic resin binder and separated from the acrylic resin binder.
 (比較例3)
 高分子電解質ポリマー溶液iを前駆セパレータに付与しなかったこと以外は比較例2と同様にして、表3に示す目付、厚さを有するセパレータを調製した。つまり、前駆セパレータをセパレータとした。
(Comparative Example 3)
A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Comparative Example 2 except that the polymer electrolyte polymer solution i was not applied to the precursor separator. That is, the precursor separator was a separator.
 (参考例1)
 不織布基材Aに替えて、不織布基材Cを使用したこと以外は実施例3と同様にして、表3に示す目付、厚さを有するセパレータを調製した。このセパレータは不織布基材Cの内部空隙における、不織布基材Cの構成繊維と爆燃シリカ粒子とアクリル系樹脂バインダとによって形成された空隙に、PVDF-HFPを有し、PVDF-HFPはアクリル系樹脂バインダを被覆し、アクリル系樹脂バインダと分かれた状態にあった。
(Reference Example 1)
A separator having the basis weight and thickness shown in Table 3 was prepared in the same manner as in Example 3 except that the nonwoven fabric substrate A was used instead of the nonwoven fabric substrate A. This separator has PVDF-HFP in the void formed by the constituent fibers of the nonwoven fabric substrate C, the deflagration silica particles, and the acrylic resin binder in the internal void of the nonwoven fabric substrate C. The PVDF-HFP is an acrylic resin. The binder was coated and separated from the acrylic resin binder.
 (参考例2)
 バインダ溶液aに替えて、バインダ溶液cを使用したこと、及び高分子電解質ポリマー溶液iを付与しなかったこと以外は実施例2と同様にして、表3に示す目付、厚さを有するセパレータを調製した。このセパレータは、不織布基材Aの内部空隙における不織布基材Aの構成繊維に、シリカ粒子及びPVDF-HFP粒子がアクリル系樹脂バインダによって不織布基材Aの構成繊維に接着した状態にあった。このように、アクリル系樹脂バインダとPVDF-HFP粒子とは混在した状態にあった。
(Reference Example 2)
A separator having the basis weight and thickness shown in Table 3 was obtained in the same manner as in Example 2 except that the binder solution c was used instead of the binder solution a, and the polymer electrolyte polymer solution i was not applied. Prepared. This separator was in a state in which silica particles and PVDF-HFP particles were adhered to the constituent fibers of the nonwoven fabric substrate A by an acrylic resin binder on the constituent fibers of the nonwoven fabric substrate A in the internal voids of the nonwoven fabric substrate A. Thus, the acrylic resin binder and the PVDF-HFP particles were in a mixed state.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (リチウムイオン二次電池の作製)
(1)正極の電極の作製;
 ニッケルコバルト酸リチウム[Li(NiCoAl)O](=NCA)及びアセチレンブラック(=AB)を用意した。また、ポリフッ化ビニリデン(=PVDF)を用意し、PVDFをN-メチルピロリドン(=NMP)に溶解させることにより、PVDF溶液(固形分濃度:13mass%)を調製した。
(Production of lithium ion secondary battery)
(1) Production of positive electrode;
Lithium nickel cobaltate [Li (NiCoAl) O 2 ] (= NCA) and acetylene black (= AB) were prepared. Polyvinylidene fluoride (= PVDF) was prepared, and PVDF was dissolved in N-methylpyrrolidone (= NMP) to prepare a PVDF solution (solid content concentration: 13 mass%).
 次いで、NCA、AB及びPVDFの固形分質量比率で、NCA:AB:PVDF=93:4:3となるように、NCA、AB及びPVDFを混合して正極材ペーストを調製した。 Next, NCA, AB, and PVDF were mixed to prepare a positive electrode material paste such that NCA: AB: PVDF = 93: 4: 3 at a solid mass ratio of NCA, AB, and PVDF.
 続いて、この正極材ペーストを厚さ20μmのアルミ箔上に塗布し、乾燥した後にプレスして、正極の電極(容量:2.43mAh/cm)を作製した。次いで、電極のアルミ箔部分に、超音波溶接機にて端子を接続した。 Subsequently, this positive electrode material paste was applied onto an aluminum foil having a thickness of 20 μm, dried and then pressed to produce a positive electrode (capacity: 2.43 mAh / cm 2 ). Subsequently, the terminal was connected to the aluminum foil part of the electrode with an ultrasonic welding machine.
(2)負極の電極の作製;
 天然黒鉛粉末、ハードカーボン(=HC)、及びアクリル系バインダ(固形分濃度:13mass%)を用意した。
(2) Production of negative electrode;
Natural graphite powder, hard carbon (= HC), and an acrylic binder (solid content concentration: 13 mass%) were prepared.
 次いで、天然黒鉛粉末、HC及びアクリル系バインダの固形分質量比率で、(天然黒鉛粉末):HC:(アクリル系バインダ)=87.3:9.7:3となるように、天然黒鉛粉末、HC及びアクリル系バインダを混合して負極材ペーストを調製した。 Next, natural graphite powder, natural graphite powder, so that (natural graphite powder): HC: (acrylic binder) = 87.3: 9.7: 3 by solid content mass ratio of natural graphite powder, HC and acrylic binder, A negative electrode material paste was prepared by mixing HC and an acrylic binder.
 続いて、この負極材ペーストを厚さ15μmの銅箔上に塗布し、乾燥した後にプレスして、負極の電極(容量:2.51mAh/cm)を作製した。次いで、作製した負極の電極の銅箔部分に、超音波溶接機にて端子を接続した。 Subsequently, this negative electrode material paste was applied onto a copper foil having a thickness of 15 μm, dried, and pressed to prepare a negative electrode (capacitance: 2.51 mAh / cm 2 ). Next, a terminal was connected to the copper foil portion of the produced negative electrode by an ultrasonic welding machine.
(3)非水系電解液の用意;
 エチレンカーボネートとジエチルカーボネートを体積比率が(50:50)となるように混合した混合溶媒に、1モル/Lの濃度となるようにLiPFを溶解させて、非水系電解液を調製した。
(3) Preparation of non-aqueous electrolyte solution;
LiPF 6 was dissolved to a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed so that the volume ratio was (50:50) to prepare a non-aqueous electrolyte solution.
(4)リチウムイオン二次電池の作製;
 前記正極の電極の正極材ペースト塗付面と負極の電極の負極材ペースト塗付面との間に各セパレータを挟むように積層した後、温度150℃で12時間乾燥して、電極積層物とした。
(4) Production of lithium ion secondary battery;
After laminating each separator between the positive electrode paste applied surface of the positive electrode and the negative electrode paste applied surface of the negative electrode, the laminate was dried at a temperature of 150 ° C. for 12 hours, did.
 その後、ポリエステル樹脂がコーティングされたアルミラミネート袋内に、前記電極積層物を挿入し、前記非水系電解液を注液した後に、真空ラミネートすることで、ラミネート型リチウムイオン二次電池をそれぞれ作製した。 Thereafter, the electrode laminate was inserted into an aluminum laminate bag coated with a polyester resin, and after pouring the non-aqueous electrolyte, the laminate type lithium ion secondary battery was produced by vacuum lamination. .
 (電池性能試験)
(1)初期容量の確認;
 各リチウムイオン二次電池を、2.0Vから4.2Vまで0.2Cの定電流・定電圧充電することにより活性化させ、初期電池容量を確認した。これらの結果は表1~3に示す通りであった。
(Battery performance test)
(1) Confirm initial capacity;
Each lithium ion secondary battery was activated by charging at a constant current / constant voltage of 0.2 C from 2.0 V to 4.2 V, and the initial battery capacity was confirmed. These results are shown in Tables 1 to 3.
(2)過放電後の電池容量の確認;
 (2.0Vから4.2Vまで0.2Cの定電流・定電圧充電)-(0.06Cで0Vまで定電流放電)-(回路電圧での1時間放置)を1サイクルとする充放電を10サイクル行なった後、2.0Vから4.2Vまで0.2Cの定電流・定電圧充電を行い、0V放電後、つまり過放電後の電池容量を確認した。これらの結果は表1~3に示す通りであった。
(2) Confirmation of battery capacity after overdischarge;
Charging / discharging with a cycle of (constant current / constant voltage charging of 0.2C from 2.0V to 4.2V)-(constant current discharging from 0.06C to 0V)-(left for 1 hour at circuit voltage) After 10 cycles, 0.2 C constant current / constant voltage charge was performed from 2.0 V to 4.2 V, and the battery capacity after 0 V discharge, that is, after overdischarge was confirmed. These results are shown in Tables 1 to 3.
 (考察)
 これら表1~3から、次のことが分かった。
(イ)実施例3と比較例1との対比から、高分子電解質ポリマーを含んでいることによって、過放電後の電池容量が維持されることが分かった。つまり、デンドライトによる短絡防止性に優れていることが分かった。
(ロ)実施例2、3と比較例2との対比から、無機粒子等を担持する基材が不織布構造であることによって、初期電池容量、過放電後の電池容量ともに大きい電気化学素子を製造できることが分かった。
(ハ)実施例2、3と参考例1との対比から、水分を除去するために120℃以上の温度で乾燥するのが好ましいが、不織布基材の耐熱性が不充分であると、初期電池容量、過放電後の電池容量ともに小さくなる傾向があるため、不織布基材は耐熱性繊維を含んでいるのが好ましいことが分かった。
(ニ)実施例1~6の結果から、高分子電解質ポリマー量がセパレータ全体の2~18mass%であるのが好ましいことが分かった。
(ホ)実施例3と実施例7の結果から、不織布基材は単層構造であっても、二層構造であっても、初期電池容量、過放電後の電池容量ともに大きいため、デンドライトによる短絡防止性に不織布基材の構造は影響を与えないことが分かった。
(ヘ)実施例3と実施例8の結果から、無機粒子がシリカであっても、アルミナであっても、初期電池容量、過放電後の電池容量ともに大きいため、デンドライトによる短絡防止性に無機粒子の組成は影響を与えないことが分かった。
(ト)実施例2と実施例9の結果から、いずれも過放電後の電池容量が維持されたことから、高分子電解質ポリマーの種類に関係なく、デンドライトによる短絡防止性に優れていることが分かった。
(チ)実施例2と参考例2の結果から、高分子電解質ポリマーはバインダポリマーと混在しておらず、バインダポリマーを被覆し、バインダポリマーと分かれた状態にあるのが好ましいことが分かった。
(Discussion)
From Tables 1 to 3, the following was found.
(A) From the comparison between Example 3 and Comparative Example 1, it was found that the battery capacity after overdischarge was maintained by including the polymer electrolyte polymer. That is, it was found that the short circuit prevention property by dendrite is excellent.
(B) From the comparison between Examples 2 and 3 and Comparative Example 2, an electrochemical device having a large initial battery capacity and a large battery capacity after overdischarge is produced by the base material carrying inorganic particles or the like having a nonwoven fabric structure. I understood that I could do it.
(C) From the comparison between Examples 2 and 3 and Reference Example 1, it is preferable to dry at a temperature of 120 ° C. or higher in order to remove moisture, but if the heat resistance of the nonwoven fabric substrate is insufficient, the initial Since both the battery capacity and the battery capacity after overdischarge tend to be small, it has been found that the nonwoven fabric substrate preferably contains heat-resistant fibers.
(D) From the results of Examples 1 to 6, it was found that the amount of the polymer electrolyte polymer is preferably 2 to 18 mass% of the whole separator.
(E) From the results of Examples 3 and 7, the nonwoven fabric base material has a single-layer structure or a two-layer structure, and both the initial battery capacity and the battery capacity after overdischarge are large. It was found that the structure of the nonwoven fabric substrate does not affect the short circuit prevention.
(F) From the results of Example 3 and Example 8, even if the inorganic particles are silica or alumina, both the initial battery capacity and the battery capacity after overdischarge are large, so that the short-circuit prevention property by dendrites is inorganic. It was found that the composition of the particles had no effect.
(G) From the results of Example 2 and Example 9, since the battery capacity after overdischarge was maintained, it was excellent in short circuit prevention by dendrite regardless of the type of polymer electrolyte polymer. I understood.
(H) From the results of Example 2 and Reference Example 2, it was found that the polymer electrolyte polymer is not mixed with the binder polymer, and is preferably coated with the binder polymer and separated from the binder polymer.
 本発明のセパレータはデンドライトによる短絡防止性及び耐熱性の優れるものであるため、リチウムイオン二次電池、リチウムイオンキャパシタなどの電気二重層キャパシタ、アルミ電解コンデンサなどの電解コンデンサ、固体高分子型アルミ電解コンデンサなどのセパレータとして好適に使用でき、特にリチウムイオン二次電池のセパレータとして好適に使用できる。 Since the separator of the present invention has excellent short circuit prevention and heat resistance due to dendrites, it is a lithium ion secondary battery, an electric double layer capacitor such as a lithium ion capacitor, an electrolytic capacitor such as an aluminum electrolytic capacitor, a solid polymer type aluminum electrolysis It can be suitably used as a separator for capacitors and the like, and can be particularly suitably used as a separator for lithium ion secondary batteries.

Claims (5)

  1.  不織布基材の内部空隙において、
     無機粒子がバインダポリマーによって不織布基材構成繊維に接着しているとともに、前記不織布基材構成繊維と前記無機粒子と前記バインダポリマーとによって形成された空隙に、高分子電解質ポリマーを有することを特徴とする、電気化学素子用セパレータ。
    In the internal space of the nonwoven fabric substrate,
    The inorganic particles are bonded to the non-woven fabric base fiber with a binder polymer, and a polymer electrolyte polymer is provided in a void formed by the non-woven fabric base material fiber, the inorganic particles, and the binder polymer. A separator for electrochemical devices.
  2.  前記高分子電解質ポリマー量が、電気化学素子用セパレータ全体の2~18mass%を占めることを特徴とする、請求項1記載の電気化学素子用セパレータ。 2. The separator for an electrochemical element according to claim 1, wherein the amount of the polymer electrolyte polymer occupies 2 to 18 mass% of the whole separator for an electrochemical element.
  3.  前記無機粒子がシリカ及び/又はアルミナであることを特徴とする、請求項1又は請求項2記載の電気化学素子用セパレータ。 The separator for an electrochemical element according to claim 1 or 2, wherein the inorganic particles are silica and / or alumina.
  4.  前記不織布基材が、ベース不織布の空隙に、短繊維及び/又はパルプ状繊維が入り込んだ複合不織布であることを特徴とする、請求項1~3のいずれかに記載の電気化学素子用セパレータ。 The separator for an electrochemical element according to any one of claims 1 to 3, wherein the nonwoven fabric base material is a composite nonwoven fabric in which short fibers and / or pulp fibers are contained in the gaps of the base nonwoven fabric.
  5.  前記不織布基材構成繊維として、融点又は分解温度が180℃以上の耐熱性繊維を含むことを特徴とする、請求項1~4のいずれかに記載の電気化学素子用セパレータ。 The separator for an electrochemical element according to any one of claims 1 to 4, wherein the nonwoven fabric constituting fiber includes a heat-resistant fiber having a melting point or decomposition temperature of 180 ° C or higher.
PCT/JP2019/010277 2018-03-29 2019-03-13 Separator for electrochemical element WO2019188292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022986.3A CN112042006B (en) 2018-03-29 2019-03-13 Separator for electrochemical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-066219 2018-03-29
JP2018066219A JP7191536B2 (en) 2018-03-29 2018-03-29 Separator for electrochemical device

Publications (1)

Publication Number Publication Date
WO2019188292A1 true WO2019188292A1 (en) 2019-10-03

Family

ID=68061553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010277 WO2019188292A1 (en) 2018-03-29 2019-03-13 Separator for electrochemical element

Country Status (3)

Country Link
JP (1) JP7191536B2 (en)
CN (1) CN112042006B (en)
WO (1) WO2019188292A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210904A (en) * 2019-12-23 2022-10-18 株式会社杰士汤浅国际 Nonaqueous electrolyte storage element and method for manufacturing same
CN112927937A (en) * 2021-01-23 2021-06-08 深圳市凯特电子有限公司 Processing technology of high-voltage electrolytic capacitor for gallium nitride charger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042867A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium ion secondary battery
JP2005302341A (en) * 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2012522352A (en) * 2009-04-10 2012-09-20 エルジー・ケム・リミテッド Separator including porous coating layer, method for producing the same, and electrochemical device including the same
JP2012256478A (en) * 2011-06-08 2012-12-27 Mitsubishi Paper Mills Ltd Base material for lithium secondary battery and separator for lithium secondary battery
JP2013235809A (en) * 2012-04-11 2013-11-21 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery, method for manufacturing the same, and lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845239B1 (en) * 2006-08-07 2008-07-10 한국과학기술연구원 Separator having ultrafine fibrous layer with heat resistance and secondary battery having the same
CN104852006A (en) * 2015-04-13 2015-08-19 江苏华东锂电技术研究院有限公司 Composite diaphragm and preparation method therefor, and lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042867A (en) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd Lithium ion secondary battery
JP2005302341A (en) * 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2012522352A (en) * 2009-04-10 2012-09-20 エルジー・ケム・リミテッド Separator including porous coating layer, method for producing the same, and electrochemical device including the same
JP2012256478A (en) * 2011-06-08 2012-12-27 Mitsubishi Paper Mills Ltd Base material for lithium secondary battery and separator for lithium secondary battery
JP2013235809A (en) * 2012-04-11 2013-11-21 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery, method for manufacturing the same, and lithium secondary battery

Also Published As

Publication number Publication date
JP7191536B2 (en) 2022-12-19
JP2019175827A (en) 2019-10-10
CN112042006B (en) 2023-07-11
CN112042006A (en) 2020-12-04

Similar Documents

Publication Publication Date Title
TWI618279B (en) Divider material
US10700325B2 (en) Nonwoven fabric separator for lead storage battery, and lead storage battery using same
JP5470255B2 (en) Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
JP5031835B2 (en) Heat-resistant ultrafine fiber separation membrane and secondary battery using the same
JP5031836B2 (en) Separation membrane having heat-resistant ultrafine fiber layer and secondary battery using the same
JP6541002B2 (en) Low shrinkage single layer lithium ion battery separator
JP6208663B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
CN107834009B (en) Separator for lithium ion battery
JP5113685B2 (en) Electrochemical element separator
TW200415813A (en) Durable separator for an electrochemical cell
JP2006059733A (en) Separator for electronic component and its manufacturing method
JP4577819B2 (en) Wet nonwoven fabric, method for producing wet nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor, lithium ion secondary battery
JP6347690B2 (en) Electrochemical element separator
JP6984033B2 (en) Separator for non-water-based secondary battery and non-water-based secondary battery
JP2018006258A (en) Lead-acid battery separator and lead-acid battery using the same
KR20180042831A (en) Laminated separator for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
WO2019188292A1 (en) Separator for electrochemical element
JP2017188576A (en) Separator for electrochemical device
JP6172910B2 (en) Electrochemical element separator
JP5840990B2 (en) Electrochemical element separator and electrochemical element
JP5850687B2 (en) Electrochemical element separator and electrochemical element
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2024030996A (en) Separator for electrochemical devices
JP6047906B2 (en) Electrochemical element separator and electrochemical element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776720

Country of ref document: EP

Kind code of ref document: A1