JP6408810B2 - Lithium secondary battery separator and method for producing lithium secondary battery separator - Google Patents

Lithium secondary battery separator and method for producing lithium secondary battery separator Download PDF

Info

Publication number
JP6408810B2
JP6408810B2 JP2014143473A JP2014143473A JP6408810B2 JP 6408810 B2 JP6408810 B2 JP 6408810B2 JP 2014143473 A JP2014143473 A JP 2014143473A JP 2014143473 A JP2014143473 A JP 2014143473A JP 6408810 B2 JP6408810 B2 JP 6408810B2
Authority
JP
Japan
Prior art keywords
separator
lithium secondary
secondary battery
mass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014143473A
Other languages
Japanese (ja)
Other versions
JP2015088460A (en
Inventor
重松 俊広
俊広 重松
圭介 大山
圭介 大山
伯志 松田
伯志 松田
加寿美 加藤
加寿美 加藤
友洋 佐藤
友洋 佐藤
加藤 真
真 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2014143473A priority Critical patent/JP6408810B2/en
Priority to CN201410496299.4A priority patent/CN104518188B/en
Publication of JP2015088460A publication Critical patent/JP2015088460A/en
Application granted granted Critical
Publication of JP6408810B2 publication Critical patent/JP6408810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池、リチウムイオンポリマー二次電池等のリチウム二次電池に好適に使用できるリチウム二次電池用セパレータ用基材及びリチウム二次電池用セパレータに関する。以下、「リチウム二次電池用セパレータ用基材」を「基材」と表記する場合があり、「リチウム二次電池用セパレータ」を「セパレータ」と表記する場合がある。   The present invention relates to a lithium secondary battery separator substrate and a lithium secondary battery separator that can be suitably used for lithium secondary batteries such as lithium ion secondary batteries and lithium ion polymer secondary batteries. Hereinafter, the “base material for a lithium secondary battery separator” may be referred to as a “base material”, and the “lithium secondary battery separator” may be referred to as a “separator”.

近年の携帯電子機器の普及及びその高性能化に伴い、高エネルギー密度を有する二次電池が望まれている。高エネルギー密度を有する電池として、有機電解液(非水電解液)を使用するリチウムイオン二次電池、リチウムイオンポリマー二次電池等のリチウム二次電池に代表される非水系二次電池が注目されている。   With the recent spread of portable electronic devices and higher performance, secondary batteries having high energy density are desired. Non-aqueous secondary batteries typified by lithium secondary batteries such as lithium ion secondary batteries and lithium ion polymer secondary batteries using organic electrolytes (non-aqueous electrolytes) attract attention as batteries having high energy density. ing.

リチウム二次電池用セパレータとしては、従来多孔質フィルムが用いられている。多孔質フィルムは、ポリエチレン、ポリプロピレン等のポリオレフィンからなる多孔質フィルムであり、耐熱性が低く、安全上重大な問題を抱えている。すなわち、このような多孔質フィルムをセパレータとして用いた電池は、内部短絡等の原因によって電池内部で局部的な発熱が生じた場合、発熱部位周辺のセパレータが収縮して内部短絡が更に拡大し、暴走的に発熱して発火・破裂等の重大な事象に至ることがある。この問題を解決するために、耐熱性の高いセパレータが求められている。   Conventionally, a porous film is used as a separator for a lithium secondary battery. The porous film is a porous film made of polyolefin such as polyethylene and polypropylene, has low heat resistance, and has serious safety problems. That is, in the battery using such a porous film as a separator, when local heat generation occurs inside the battery due to an internal short circuit or the like, the separator around the heat generation site contracts and the internal short circuit further expands, Runaway fever may lead to serious events such as ignition and rupture. In order to solve this problem, a separator having high heat resistance is required.

耐熱性の高いセパレータとして、例えば、ポリオレフィンからなる多孔質フィルムに、ガラス繊維で構成した不織布を積層させてポリフッ化ビニリデン等の樹脂で接着して複合化したセパレータが提案されている。(例えば、特許文献1参照)。しかしながら、特許文献1のセパレータの場合、多孔質フィルムとガラス不織布を個別に製造した後に積層するため、どうしてもセパレータが厚くなってしまい、その結果、使用できる分野が限定されるという問題や、内部抵抗等の電池特性に劣るといった課題があった。   As a separator having high heat resistance, for example, a separator in which a nonwoven fabric made of glass fiber is laminated on a porous film made of polyolefin and bonded with a resin such as polyvinylidene fluoride has been proposed. (For example, refer to Patent Document 1). However, in the case of the separator of Patent Document 1, since the porous film and the glass nonwoven fabric are separately manufactured and then laminated, the separator becomes inevitably thick, and as a result, the field that can be used is limited, and the internal resistance There were problems such as poor battery characteristics.

一方、ポリオレフィンからなる多孔質フィルムではなく、不織布を用いた耐熱性セパレータが提案されている。例えば、ポリエステル系繊維で構成した不織布、ポリエステル系繊維に耐熱性繊維であるアラミド繊維を配合した不織布があるが、多孔質フィルムと比較すると、孔径が大きく、内部短絡が起きやすいという課題があった(例えば、特許文献2〜4参照)。   On the other hand, a heat-resistant separator using a nonwoven fabric instead of a porous film made of polyolefin has been proposed. For example, there are non-woven fabrics composed of polyester fibers, and non-woven fabrics in which aramid fibers, which are heat-resistant fibers, are blended with polyester fibers. However, compared to porous films, there are problems that the pore diameter is large and internal short-circuiting easily occurs. (For example, refer to Patent Documents 2 to 4).

一方、不織布、織布等をそのままセパレータとして使用するのではなく、基材として使用し、各種材料を該基材に複合化させて、耐熱性やシャットダウン機能等を付与した複合化セパレータが開示されている。例えば、基材に多孔質フィルムを貼り合せた複合化セパレータ、基材にフィラー粒子、樹脂、ゲル状電解質、固体電解質等を含浸・表面塗工した複合化セパレータが報告されている(例えば、特許文献5〜7参照)。しかしながら、これらの文献では、フィラー粒子、樹脂、多孔質フィルム等の複合化用の材料(以下、「複合化用の材料」を「複合化物」と表記する場合がある)については詳細な検討がなされているが、基材として用いられる不織布については、何ら検討がなされていない。これまで使用されてきた基材では、孔が大きいため、貼り合せ、表面塗工、含浸等によって、複合化した際の表面平滑性が悪く、また、複合化物の剥離や脱離しやすいという問題があった。また、基材内部に複合化物が充填されてしまって、基材内部の空孔を閉塞するため、セパレータの電解液保液性が悪くなり、電池の内部抵抗が高くなる問題があった。   On the other hand, a composite separator is disclosed in which non-woven fabrics, woven fabrics, etc. are not used as separators as they are, but are used as a base material, and various materials are combined with the base material to provide heat resistance, a shutdown function, etc. ing. For example, composite separators in which a porous film is bonded to a base material, and composite separators in which a base material is impregnated and coated with filler particles, resin, gel electrolyte, solid electrolyte, etc. have been reported (for example, patents) References 5-7). However, in these documents, detailed examinations are made on composite materials such as filler particles, resins, and porous films (hereinafter, “composite materials” may be referred to as “composites”). However, no consideration has been given to the nonwoven fabric used as the substrate. The base material that has been used so far has large pores, so that the surface smoothness when combined by bonding, surface coating, impregnation, etc. is poor, and the composite product is easily peeled off or detached. there were. In addition, since the composite material is filled in the base material and the pores inside the base material are closed, the electrolyte solution retention of the separator is deteriorated and the internal resistance of the battery is increased.

また、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理から選ばれる少なくとも1つの複合化処理を施してなるリチウム二次電池用セパレータとするためのリチウム二次電池用セパレータ用基材として、合成樹脂短繊維とフィブリル化したリヨセル繊維(溶剤紡糸セルロース繊維)とを必須成分として含有した不織布からなるリチウム二次電池用セパレータ用基材が開示されている(例えば、特許文献8参照)。特許文献8の基材は、フィブリル化したリヨセル繊維が合成樹脂短繊維と絡み合うことで、この基材に対して複合化処理を施して得られるリチウム二次電池用セパレータは、表面のバラつきが小さくなると共に、複合化物の剥離・脱落が起こりにくくなるという効果が得られている。また、リチウム二次電池用セパレータ用基材の表面に存在するフィブリル化したリヨセル繊維が複合化物と強固に結びつくことによって、複合化物の剥離・脱落をより抑制することができるという効果が得られている。   Also, a process of impregnating or applying a slurry containing filler particles, a process of impregnating or applying a slurry containing a resin, a process of laminating and integrating porous films, and impregnating or applying a solid electrolyte or gel electrolyte As a base material for a lithium secondary battery separator for producing a separator for a lithium secondary battery that is subjected to at least one composite treatment selected from the treatments to be performed, synthetic resin short fibers and fibrillated lyocell fibers (solvent-spun cellulose) A substrate for a separator for a lithium secondary battery made of a non-woven fabric containing a fiber) as an essential component is disclosed (for example, see Patent Document 8). The base material of Patent Document 8 is such that the fibrillated lyocell fiber is intertwined with the synthetic resin short fiber, so that the lithium secondary battery separator obtained by subjecting this base material to the composite treatment has a small surface variation. In addition, an effect is obtained that the composite is less likely to be peeled off or dropped off. In addition, the fibrillated lyocell fiber present on the surface of the base material for the lithium secondary battery separator is firmly bonded to the composite, thereby obtaining an effect that the composite can be further prevented from peeling and falling off. Yes.

しかし、さらなるリチウム二次電池の高性能化や高エネルギー密度が求められている流れの中で、セパレータの厚さを更に薄くすることが求められている。そのためには、基材も更に薄くする必要がある。一般的には、熱カレンダー処理やカレンダー処理を施して基材を薄くするが、坪量がそのままの状態で圧力をかけて薄くすると、基材の空隙が少なくなり過ぎて、電池の内部抵抗が高くなる場合がある。よって、基材を薄くするだけでなく、基材の坪量も下げる必要があり、坪量が10g/m以下で、且つ厚さが15μm以下である低坪量薄膜の基材が望まれている。特許文献8には、基材の坪量は、3.0〜30.0g/mが好ましいと記載されていて、基材の厚さは4〜45μmが好ましいと記載されている。しかし、特許文献8の実施例で作製されている基材を見ると、最低坪量8.0g/mの基材における厚さは18μmであり、最低厚さ14μmの基材における坪量は10.5g/mであり、坪量と厚さの両方において望まれている範囲を満たしている、低坪量薄膜の基材は得られていない。 However, it is required to further reduce the thickness of the separator in a trend where higher performance and higher energy density of lithium secondary batteries are required. For that purpose, it is necessary to make the substrate thinner. In general, the base material is thinned by applying heat calendering or calendering. However, if the base weight is kept as it is and the pressure is thinned, the voids in the base material become too small and the internal resistance of the battery decreases. May be higher. Therefore, it is necessary not only to make the substrate thin, but also to reduce the basis weight of the substrate, and a low basis weight thin film substrate having a basis weight of 10 g / m 2 or less and a thickness of 15 μm or less is desired. ing. Patent Document 8 describes that the basis weight of the substrate is preferably 3.0 to 30.0 g / m 2 , and the thickness of the substrate is preferably 4 to 45 μm. However, looking at the base material produced in the example of Patent Document 8, the thickness of the base material with the minimum basis weight of 8.0 g / m 2 is 18 μm, and the base weight of the base material with the minimum thickness of 14 μm is The substrate of the low basic weight thin film which is 10.5 g / m < 2 > and satisfy | fills the range desired in both basic weight and thickness is not obtained.

また、低坪量薄膜化の基材では、基材を取り扱う際や複合化処理が施される際に、基材が破損する場合がある。さらに、環境衛生、消防安全、労働衛生の観点から、複合化処理が水系処理であることが望まれている。すなわち、フィラー粒子を含有するスラリー、樹脂を含有するスラリー、固体電解質やゲル状電解質を含浸又は塗工するための塗液としては、主媒体が水である水系スラリー、水系塗液が望まれている。また、基材と多孔質フィルムを積層一体化する処理は、熱ラミネートによる積層一体化処理も可能であるが、接着剤を使用することもできる。接着剤としては、有機溶剤系接着剤よりも水系接着剤の方が望ましい。しかし、水系処理の場合には、水系スラリーや水系接着剤の表面張力が高いことから、基材上に形成された湿潤塗工膜が不均一になるという問題が発生しやすい。特に、水系スラリーでこの問題が生じやすい。したがって、水系処理において、基材を平坦な状態にするために、高い張力を付与することが好ましい。特に、高速で複合化処理するためには、基材に対してもより高い張力を付与することが好ましい。特許文献8では、基材の機械強度は突刺強度で評価されている。また、特許文献8では引張強度も測定されていて、基材の流れ方向の引張強度(MDs)と幅方向の引張強度(CDs)の比(MDs/CDs)が特定の範囲内であることによって、複合化した際のシワの発生やそれに伴う複合化物の脱落を抑制するという効果を達成しているが、引張強度の絶対値については検討されていない。前記した通り、水系処理に特に着目した場合には、突刺強度及び基材の流れ方向の引張強度(MDs)と幅方向の引張強度(CDs)の比のみならず、引張強度の絶対値を高くすることが望まれる。   Moreover, in the base material of low basic weight thin film, a base material may be damaged when handling a base material or when a composite treatment is performed. Furthermore, from the viewpoint of environmental sanitation, fire safety, and occupational health, it is desired that the combined treatment is an aqueous treatment. That is, as a slurry containing filler particles, a slurry containing a resin, and a coating liquid for impregnating or coating a solid electrolyte or a gel electrolyte, an aqueous slurry in which the main medium is water or an aqueous coating liquid is desired. Yes. In addition, the process of laminating and integrating the base material and the porous film can be performed by laminating and integrating by thermal lamination, but an adhesive can also be used. As the adhesive, a water-based adhesive is more preferable than an organic solvent-based adhesive. However, in the case of aqueous treatment, since the surface tension of the aqueous slurry or aqueous adhesive is high, there is a problem that the wet coating film formed on the substrate becomes non-uniform. This problem is particularly likely to occur with aqueous slurries. Therefore, in the aqueous treatment, it is preferable to apply a high tension in order to make the substrate flat. In particular, in order to perform the composite treatment at high speed, it is preferable to apply higher tension to the base material. In patent document 8, the mechanical strength of a base material is evaluated by puncture strength. Further, in Patent Document 8, the tensile strength is also measured, and the ratio (MDs / CDs) of the tensile strength (MDs) in the flow direction and the tensile strength (CDs) in the width direction of the base material is within a specific range. Although the effect of suppressing the generation of wrinkles at the time of compounding and the removal of the compounded product accompanying it is achieved, the absolute value of tensile strength has not been studied. As described above, when paying particular attention to the aqueous treatment, not only the ratio of the puncture strength and the tensile strength (MDs) in the flow direction of the substrate and the tensile strength (CDs) in the width direction, but also the absolute value of the tensile strength is increased. It is desirable to do.

さらに、合成樹脂短繊維とフィブリル化したリヨセル繊維とを必須成分として含有した不織布からなる基材は、フィブリル化したリヨセル繊維がセルロースであることから、水が接触する水系処理において、セルロースの水素結合が弱くなり、基材に起伏(凹凸、波打ち等)が生じやすく、平坦なセパレータを得るのが難しいという問題があった。特許文献8では、有機溶剤を使用した複合化処理を行っていて、この問題については検討されていないが、高エネルギー密度を有するリチウム二次電池のために基材の坪量を低くし、厚さを薄くした場合には、この起伏が特に発生しやすく、薄くて平坦なセパレータを得ることが難しかった。   Furthermore, since the base material made of nonwoven fabric containing synthetic resin short fibers and fibrillated lyocell fibers as essential components is cellulose, the fibrillated lyocell fibers are cellulose. However, there is a problem that undulations (unevenness, undulation, etc.) are likely to occur on the substrate, and it is difficult to obtain a flat separator. In Patent Document 8, composite treatment using an organic solvent is performed, and this problem has not been studied. However, for the lithium secondary battery having a high energy density, the base weight of the base material is lowered and the thickness is reduced. When the thickness is reduced, this undulation is particularly likely to occur, and it has been difficult to obtain a thin and flat separator.

特開2003−323878号公報JP 2003-323878 A 特開2003−123728号公報JP 2003-123728 A 特開2007−317675号公報JP 2007-317675 A 特開2006−19191号公報JP 2006-19191 A 特開2005−293891号公報JP 2005-293891 A 特表2005−536857号公報JP 2005-536857 A 特開2007−157723号公報JP 2007-157723 A 国際公開第2011/046066号パンフレットInternational Publication No. 2011/044606 Pamphlet

本発明の課題は、多孔質フィルム、フィラー粒子、樹脂、ゲル状電解質、固体電解質等の複合化物と共に複合化処理が施されてリチウム二次電池セパレータとするために使用され、フィブリル化した溶剤紡糸セルロース繊維と合成繊維を含有した不織布からなるリチウム二次電池用セパレータ用基材において、低坪量薄膜の基材でありながらも、低抵抗で、複合化した際の表面のバラツキが小さく、塗液の裏抜けが少なく、複合化物の剥離・脱落を少なくできるだけでなく、機械強度が強く、複合化処理の際に破損し難い基材を提供することである。また、複合化処理が水系処理であっても起伏が生じにくいリチウム二次電池用セパレータ用基材を提供することであり、さらに、このリチウム二次電池用セパレータ用基材を用いることによって、薄くて平坦なリチウム二次電池用セパレータを得ることである。   An object of the present invention is to provide a fibrillated solvent spinning that is used to form a lithium secondary battery separator by being subjected to a composite treatment together with a composite such as a porous film, filler particles, a resin, a gel electrolyte, and a solid electrolyte. In the separator base material for lithium secondary batteries made of nonwoven fabric containing cellulose fiber and synthetic fiber, it is a low-basis-thin film base material, but it has low resistance and small surface variation when combined. An object of the present invention is to provide a base material that not only has a small amount of back-through of the liquid and can reduce peeling and dropping off of the composite, but also has high mechanical strength and is not easily damaged during the composite treatment. Another object of the present invention is to provide a lithium secondary battery separator base material that is less likely to cause undulations even when the composite treatment is an aqueous process. Further, by using this lithium secondary battery separator base material, And obtaining a flat separator for a lithium secondary battery.

上記課題を解決するために鋭意研究した結果、下記手段を見出した。   As a result of intensive studies to solve the above problems, the following means have been found.

(1)フィブリル化した溶剤紡糸セルロース繊維と合成繊維を含有した不織布からなり、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が7.0〜10.0g/mで、且つ厚さが10.0〜15.0μmであり、引張強度が450〜700N/mであるリチウム二次電池用セパレータ用基材に、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理から選ばれる少なくとも1つの複合化処理を施してなることを特徴とするリチウム二次電池用セパレータ
(2)リチウム二次電池用セパレータ用基材に、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理から選ばれる少なくとも1つの複合化処理を施してリチウム二次電池用セパレータを製造するリチウム二次電池用セパレータの製造方法であって、
リチウム二次電池用セパレータ用基材が、フィブリル化した溶剤紡糸セルロース繊維と合成繊維を含有した不織布からなり、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が7.0〜10.0g/m で、且つ厚さが10.0〜15.0μmであり、引張強度が450〜700N/mであり、
フィラー粒子を含有するスラリー、樹脂を含有するスラリー、及び、固体電解質やゲル状電解質を含浸又は塗工するための塗液の主媒体として水が使用され、基材と多孔質フィルムを積層一体化する処理で、接着剤として水系接着剤が使用されることを特徴とするリチウム二次電池用セパレータの製造方法。
(1) fibrillated Ri Do from solvent-spun cellulose fiber and nonwoven fabric containing synthetic fibers, 10-30 wt% of the full Iburiru of the solvent-spun cellulose fiber, the orientation crystallization of the average fiber diameter 2.0~3.5μm It consists of a nonwoven fabric containing 40 to 50% by mass of polyester short fibers and 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, and has a basis weight of 7.0 to 10.0 g / m 2. in, and has a thickness of 10.0~15.0Myuemu, tensile strength in 450~700N / m der ruri lithium secondary battery separator base material, impregnating or coating a slurry containing filler particles Selected from a process for impregnating or applying a slurry containing a resin, a process for laminating and integrating a porous film, and a process for impregnating or applying a solid electrolyte or a gel electrolyte. A separator for a lithium secondary battery, wherein both are subjected to one composite treatment .
(2) Treatment for impregnating or applying a slurry containing filler particles to a separator base material for a lithium secondary battery, treatment for impregnating or applying a slurry containing a resin, and processing for laminating and integrating a porous film A method for producing a lithium secondary battery separator, wherein a separator for a lithium secondary battery is produced by performing at least one composite treatment selected from a treatment of impregnating or applying a solid electrolyte or a gel electrolyte,
A base material for a separator for a lithium secondary battery is composed of a nonwoven fabric containing a fibrillated solvent-spun cellulose fiber and a synthetic fiber, the fibrillated solvent-spun cellulose fiber is 10 to 30% by mass, and the average fiber diameter is 2.0 to 3 It consists of a nonwoven fabric containing 40 to 50% by mass of oriented crystallized polyester short fibers of 5 μm and 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, and has a basis weight of 7.0 to 7.0%. 10.0 g / m 2 , a thickness of 10.0 to 15.0 μm, a tensile strength of 450 to 700 N / m,
Water is used as the main medium for the slurry containing filler particles, the slurry containing the resin, and the coating liquid for impregnating or coating the solid electrolyte or the gel electrolyte, and the substrate and the porous film are laminated and integrated. A method for producing a separator for a lithium secondary battery, wherein a water-based adhesive is used as an adhesive in the treatment.

本発明のリチウム二次電池用セパレータ用基材は、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が10g/m以下で、且つ厚さが15μm以下である。この配合にすることによって、低坪量薄膜でありながらも、フィブリル化した溶剤紡糸セルロース繊維と細い配向結晶化ポリエステル短繊維とが絡み合い、未延伸バインダー用ポリエステル短繊維で繊維ネットワークの交点を固定化することができ、機械強度を高めることができる。また、機械強度としては、突刺強度だけでなく、引張強度も高めることができる。その結果、基材としてのハンドリング性を飛躍的に向上させることができ、基材を取り扱う際や複合化処理が施される際における基材破損を抑制することができる。また、本発明のリチウム二次電池用セパレータ用基材は、低坪量でありながらも、セパレータの空隙が少なくなり過ぎることなく、薄くすることができ、内部抵抗を低くできる。そして、本発明のリチウム二次電池用セパレータ用基材に、貼り合せ、含浸、表面塗工等の複合化処理が施されることによって得られる本発明のリチウム二次電池用セパレータは、表面のばらつきが小さくなると共に、複合化物の剥離、脱落が起こりにくくなる。また、リチウム二次電池用セパレータ用基材の表面に存在するフィブリル化した溶剤紡糸セルロース繊維と複合化物が強固に結びつくことによって、塗液の裏抜けや剥離・離脱をより抑制することができる。 The base material for a separator for a lithium secondary battery of the present invention is 10 to 30% by mass of fibrillated solvent-spun cellulose fiber and 40 to 50% by mass of oriented crystallized polyester short fiber having an average fiber diameter of 2.0 to 3.5 μm. %, A nonwoven fabric containing 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, a basis weight of 10 g / m 2 or less, and a thickness of 15 μm or less. With this formulation, fibrillated solvent-spun cellulose fibers and finely oriented crystallized polyester short fibers are intertwined with each other, and the intersection of the fiber network is fixed with polyester short fibers for unstretched binder. The mechanical strength can be increased. As mechanical strength, not only puncture strength but also tensile strength can be increased. As a result, the handling property as a base material can be dramatically improved, and the base material can be prevented from being damaged when the base material is handled or combined. Moreover, although the base material for separators for lithium secondary batteries of this invention is low basic weight, it can be made thin without reducing the space | gap of a separator too much, and can reduce internal resistance. The lithium secondary battery separator of the present invention obtained by subjecting the base material for a lithium secondary battery separator of the present invention to a composite treatment such as bonding, impregnation, surface coating, etc. As the variation is reduced, the composite is less likely to be peeled off or dropped off. In addition, when the fibrillated solvent-spun cellulose fiber and the composite existing on the surface of the separator base material for a lithium secondary battery are firmly bonded, it is possible to further suppress the back-through, peeling and detachment of the coating liquid.

また、本発明のリチウム二次電池用セパレータ用基材は、低坪量薄膜でありながらも、引張強度が高く、起伏も生じにくい。そのため、複合化処理に際して、高い張力を付与することができる。これにより、平坦な状態の基材に複合化処理を施すことが可能になり、基材の平坦性が低いと均一な湿潤塗工膜が得られにくい水系処理の場合においても、均一性の高い湿潤塗工膜を得ることができる。その結果、薄くて平坦なリチウム二次電池用セパレータを得ることができる。   Moreover, although the base material for separators for lithium secondary batteries of this invention is a low basic weight thin film, its tensile strength is high and it is hard to produce undulations. Therefore, high tension can be applied during the composite treatment. This makes it possible to perform a composite treatment on a substrate in a flat state, and the uniformity is high even in the case of an aqueous treatment in which it is difficult to obtain a uniform wet coating film if the substrate has low flatness. A wet coating film can be obtained. As a result, a thin and flat lithium secondary battery separator can be obtained.

以下、本発明のリチウム二次電池用セパレータ用基材及びリチウム二次電池用セパレータについて、詳細に説明する。   Hereinafter, the base material for a lithium secondary battery separator and the lithium secondary battery separator of the present invention will be described in detail.

本発明のリチウム二次電池用セパレータ用基材とは、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理等の複合化処理を施してセパレータを製造するための基材であり、リチウム二次電池用セパレータの前駆体シートである。   The base material for a lithium secondary battery separator of the present invention includes a process of impregnating or coating a slurry containing filler particles, a process of impregnating or applying a slurry containing a resin, and a porous film laminated and integrated. It is a base material for producing a separator by performing a compounding process such as a process, a process of impregnating or coating a solid electrolyte or a gel electrolyte, and a precursor sheet of a separator for a lithium secondary battery.

フィラー粒子を含有するスラリーを含浸又は塗工する処理は、耐熱性の高いセパレータが得られることから、これらの複合化処理の中でも好適な処理であり、フィラーが無機フィラーであることがより好ましい。環境衛生、消防安全、労働衛生の観点から、複合化処理が水系処理であることが好ましい。水系処理とは、フィラー粒子を含有するスラリー、樹脂を含有するスラリー、固体電解質やゲル状電解質を含浸又は塗工するための塗液の主媒体として、水が使用される処理である。また、基材と多孔質フィルムを積層一体化する処理は、熱ラミネートによる積層一体化処理も可能であるが、接着剤を使用することもできる。接着剤として、有機溶剤系接着剤ではなく、水系接着剤を使用する処理も水系処理に含まれる。また、水を主媒体として、フィラー粒子を含有するスラリーを含浸又は塗工する処理は、セパレータの内部抵抗がより低くなることから、特に好適な複合化処理である。   The treatment of impregnating or coating the slurry containing filler particles is a preferred treatment among these composite treatments because a separator having high heat resistance is obtained, and the filler is more preferably an inorganic filler. From the viewpoint of environmental hygiene, fire safety, and occupational health, the combined treatment is preferably an aqueous treatment. The aqueous treatment is a treatment in which water is used as a main medium of a coating liquid for impregnating or coating a slurry containing filler particles, a slurry containing a resin, a solid electrolyte or a gel electrolyte. In addition, the process of laminating and integrating the base material and the porous film can be performed by laminating and integrating by thermal lamination, but an adhesive can also be used. The treatment using an aqueous adhesive instead of an organic solvent adhesive as an adhesive is also included in the aqueous treatment. Further, the treatment of impregnating or coating the slurry containing filler particles with water as the main medium is a particularly suitable composite treatment because the internal resistance of the separator becomes lower.

フィラーは、無機、有機のいずれでも良い。無機フィラーとしては、アルミナ、ギブサイト、ベーマイト、酸化マグネシウム、水酸化マグネシウム、シリカ、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物、窒化アルミニウムや窒化珪素などの無機窒化物、アルミニウム化合物、ゼオライト、マイカなどが挙げられる。有機フィラーとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレンオキシド、ポリスチレン、ポリフッ化ビニリデン、エチレン−ビニルモノマー共重合、ポリオレフィンワックスなどが挙げられる。   The filler may be either inorganic or organic. Inorganic fillers include alumina, gibbsite, boehmite, magnesium oxide, magnesium hydroxide, silica, titanium oxide, barium titanate, zirconium oxide and other inorganic oxides, aluminum nitride and silicon nitride inorganic nitrides, aluminum compounds, zeolites And mica. Examples of the organic filler include polyethylene, polypropylene, polyacrylonitrile, polymethyl methacrylate, polyethylene oxide, polystyrene, polyvinylidene fluoride, ethylene-vinyl monomer copolymer, and polyolefin wax.

多孔質フィルムとしては、フィルムを形成できる樹脂であれば、特に制限はないが、ポリエチレン系樹脂及びポリプロピレン系樹脂といったポリオレフィン系樹脂が好ましい。ポリエチレン系樹脂としては、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、又は超高密度ポリエチレンのようなポリエチレン系樹脂単独だけでなく、エチレンプロピレン共重合体、又はポリエチレン系樹脂と他のポリオレフィン系樹脂との混合物などが挙げられる。ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、又はプロピレンとエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン若しくは1−デセンなどα−オレフィンとのランダム共重合体又はブロック共重合体などが挙げられる。   The porous film is not particularly limited as long as it is a resin capable of forming a film, but polyolefin resins such as polyethylene resins and polypropylene resins are preferable. Polyethylene resins include not only ultra-low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, or ultra high density polyethylene alone, but also ethylene propylene copolymers. Or a mixture of a polyethylene-based resin and another polyolefin-based resin. Polypropylene resins include homopropylene (propylene homopolymer), or α-, such as propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or 1-decene. Examples thereof include random copolymers with olefins and block copolymers.

本発明におけるリチウム二次電池とは、リチウムイオン電池、リチウムイオンポリマー電池等を意味する。リチウム二次電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム、シリカ、スズ、ニッケル、鉛から選ばれる1種以上の金属とリチウムとの合金、SiO、SnO、Fe、WO、Nb、Li4/3Ti5/3等の金属酸化物、Li0.4CoNなどの窒化物が用いられる。 The lithium secondary battery in the present invention means a lithium ion battery, a lithium ion polymer battery, or the like. Examples of the negative electrode active material of the lithium secondary battery include carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, and an alloy of lithium and lithium, SiO, SnO, Fe Metal oxides such as 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN are used.

充放電を繰り返した時に負極表面に金属リチウムが析出する「リチウムデンドライト」という現象が発生し、このリチウムデンドライトは徐々に成長し、セパレータを貫通して正極に達し、内部短絡の原因になることがある。本発明のリチウム二次電池用セパレータは、このリチウム二次電池に使用されても、内部短絡が発生し難いという効果が得られる。   A phenomenon called “lithium dendrite” in which metallic lithium is deposited on the negative electrode surface when charging and discharging are repeated, this lithium dendrite gradually grows, penetrates the separator, reaches the positive electrode, and may cause an internal short circuit. is there. Even if the separator for lithium secondary batteries of the present invention is used for this lithium secondary battery, an effect that an internal short circuit hardly occurs is obtained.

正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム、リチウムニッケルマンガン酸化物、リン酸鉄リチウムが用いられる。リン酸鉄リチウムは、さらに、マンガン、クロム、コバルト、銅、ニッケル、バナジウム、モリブデン、チタン、亜鉛、アルミニウム、ガリウム、マグネシウム、ホウ素、ニオブから選ばれる1種以上の金属との複合物でも良い。   As the positive electrode active material, lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, or lithium iron phosphate is used. Further, the lithium iron phosphate may be a composite with one or more metals selected from manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, and niobium.

リチウム二次電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム(LiBF)等が挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、アクリル樹脂、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが挙げられる。これらの固体電解質に有機溶媒を含有させてゲル状にしたゲル状電解質を用いても良い。 As an electrolytic solution for a lithium secondary battery, a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ). Examples of the solid electrolyte include those obtained by dissolving a lithium salt in a gel polymer such as polyethylene glycol and derivatives thereof, acrylic resin, polysiloxane and derivatives thereof, and polyvinylidene fluoride. You may use the gel electrolyte which made these solid electrolytes contain an organic solvent and made it gelatinous.

本発明のリチウム二次電池用セパレータ用基材は、フィブリル化した溶剤紡糸セルロース繊維と平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維と平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を含有する。   The base material for a separator for a lithium secondary battery of the present invention is a fibrillated solvent-spun cellulose fiber, an oriented crystallized polyester short fiber having an average fiber diameter of 2.0 to 3.5 μm, and an unstretched fiber having an average fiber diameter of 5.0 μm or less. Contains polyester staple fiber for binder.

溶剤紡糸セルロース繊維とは、従来のビスコースレーヨンや銅アンモニアレーヨンのように、セルロースを一旦セルロース誘導体に化学的に変換させたのち再度セルロースに戻す、いわゆる再生セルロース繊維と異なり、セルロースを化学的に変化させることなく、アミンオキサイドに溶解させた紡糸原液を水中に乾湿式紡糸してセルロースを析出させた繊維である。   Solvent-spun cellulose fibers are different from so-called regenerated cellulose fibers in which cellulose is once chemically converted to cellulose derivatives and then returned to cellulose, as in conventional viscose rayon and copper ammonia rayon. A fiber in which cellulose is precipitated by dry and wet spinning of a spinning solution dissolved in amine oxide in water without change.

溶剤紡糸セルロース繊維は、天然セルロース繊維、バクテリアセルロース繊維、レーヨン繊維などと比べ、繊維長軸方向に分子が高度に配列しているため、湿潤状態で摩擦等の機械的な力が加えられると、微細化しやすく、細くて長い微細繊維が生成する。この微細繊維間に電解液を強固に保持するため、天然セルロース繊維、バクテリアセルロース繊維、レーヨン繊維の微細化物に比べ、フィブリル化した溶剤紡糸セルロース繊維は、電解液の保液性に優れる。フィブリル化した繊維とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下になっている繊維を指す。フィブリル化した繊維において、長さと巾のアスペクト比が約20〜約100000の範囲にあることが好ましい。   Solvent-spun cellulose fibers are highly aligned in the fiber longitudinal direction compared to natural cellulose fibers, bacterial cellulose fibers, rayon fibers, etc., so when mechanical forces such as friction are applied in a wet state, It is easy to miniaturize, and thin and long fine fibers are produced. In order to firmly hold the electrolyte solution between the fine fibers, the fibrillated solvent-spun cellulose fiber is superior in liquid retention of the electrolyte solution compared to the refined product of natural cellulose fiber, bacterial cellulose fiber, and rayon fiber. The fibrillated fiber is not a film shape but a fiber shape having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a portion thereof has a fiber diameter of 1 μm or less. The fibrillated fibers preferably have a length to width aspect ratio in the range of about 20 to about 100,000.

本発明では、変法濾水度80〜130mlのフィブリル化した溶剤紡糸セルロース繊維が用いることが好ましい。フィブリル化した溶剤紡糸セルロース繊維の変法濾水度は、90〜120mlであることがより好ましく、95〜115mlであることが更に好ましい。変法濾水度が130mlより高いと、低坪量薄膜とした場合、十分な機械強度が得られず、表面のばらつきが大きくなると共に、塗液の裏抜けや複合化物の剥離や脱落が起こりやすくなる。一方、変法濾水度が80ml未満であると、平均繊維長が短くなり、ポリエステル繊維との絡みが低下するため、機械強度が低下するようになる。   In the present invention, it is preferable to use fibrillated solvent-spun cellulose fibers having a modified freeness of 80 to 130 ml. The modified drainage degree of the fibrillated solvent-spun cellulose fiber is more preferably 90 to 120 ml, and further preferably 95 to 115 ml. If the modified freeness is higher than 130 ml, when a thin film having a low basis weight is used, sufficient mechanical strength cannot be obtained, the variation in the surface becomes large, and the coating liquid is breached or the composite is peeled off or dropped off. It becomes easy. On the other hand, when the modified freeness is less than 80 ml, the average fiber length is shortened and the entanglement with the polyester fiber is lowered, so that the mechanical strength is lowered.

本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した値のことである。   The modified freeness in the present invention was measured in accordance with JIS P811, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as a sieve plate, and the sample concentration was 0.1%. It is a value.

溶剤紡糸セルロース繊維の場合、フィブリル化が進むにしたがって、繊維長が短くなっていき、特に試料濃度が薄いと、繊維同士の絡みが少なくなり、繊維ネットワークが形成されにくくなるため、溶剤紡糸セルロース繊維自体がふるい板の穴をすり抜けてしまう。つまり、フィブリル化した溶剤紡糸セルロースの場合は、JIS P8121の測定方法では正確な濾水度が計測できないのである。より詳細に説明すると、天然セルロース繊維は、微細化の程度が進むほど、繊維の幹から細かいフィブリルが多数裂けた状態になるため、フィブリルを介して繊維同士が絡みやすく、繊維ネットワークを形成しやすいのに対し、溶剤紡糸セルロース繊維は微細化処理によって繊維の長軸に平行に細かく分割されやすく、分割後の繊維1本1本における繊維径の均一性が高いため、平均繊維長が短くなるほど、繊維同士が絡みにくくなり、繊維ネットワークを形成しにくいと考えられる。そこで、本発明では、溶剤紡糸セルロース繊維の正確な濾水度を測定するために、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定する変法濾水度を用いた。   In the case of solvent-spun cellulose fibers, as the fibrillation progresses, the fiber length becomes shorter. Especially when the sample concentration is low, the entanglement between the fibers decreases and it becomes difficult to form a fiber network. It itself slips through the holes in the sieve plate. In other words, in the case of fibrillated solvent-spun cellulose, an accurate freeness cannot be measured by the measuring method of JIS P8121. In more detail, natural cellulose fibers are in a state where many fine fibrils are torn apart from the trunk of the fiber as the degree of refinement progresses. Therefore, the fibers are easily entangled with each other through the fibrils, and a fiber network is easily formed. On the other hand, the solvent-spun cellulose fiber is easily finely divided in parallel to the long axis of the fiber by the refining treatment, and since the uniformity of the fiber diameter in each fiber after division is high, the shorter the average fiber length, It is considered that the fibers do not easily entangle with each other and it is difficult to form a fiber network. Therefore, in the present invention, in order to measure the exact freeness of the solvent-spun cellulose fiber, an 80-mesh wire mesh having a wire diameter of 0.14 mm and an opening of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. The modified freeness measured according to JIS P8121 was used.

フィブリル化した溶剤紡糸セルロース繊維を作製する方法としては、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等が挙げられる。この中でも特にリファイナーが好ましい。   A fibrillated solvent-spun cellulose fiber is prepared by a refiner, a beater, a mill, an attritor, a rotary blade homogenizer that applies shear force with a high-speed rotary blade, and a cylindrical inner blade that rotates at high speed. Double-cylindrical high-speed homogenizer that generates shearing force between the outer blades, ultrasonic crusher that is refined by impact by ultrasonic waves, and passes through a small-diameter orifice by applying a pressure difference of at least 20 MPa to the fiber suspension. And a high-pressure homogenizer that applies a shearing force and a cutting force to the fiber by causing a high speed and colliding with this to rapidly decelerate. Of these, refiners are particularly preferred.

フィブリル化した溶剤紡糸セルロース繊維の長さ加重平均繊維長は特に限定されないが、0.70〜1.25mmが好ましく、0.80〜1.10mmがより好ましく、0.90〜1.05mmが更に好ましい。繊維長が0.70mmより短いと、基材の機械強度が低下する場合があり、1.25mmより長いと、表面のばらつきが大きくなる場合や塗液の裏抜けや複合化物の剥離や脱落が起こりやすくなる場合がある。   The length-weighted average fiber length of the fibrillated solvent-spun cellulose fiber is not particularly limited, but is preferably 0.70 to 1.25 mm, more preferably 0.80 to 1.10 mm, and further 0.90 to 1.05 mm. preferable. If the fiber length is shorter than 0.70 mm, the mechanical strength of the base material may be reduced. If the fiber length is longer than 1.25 mm, the variation in the surface may increase or the coating liquid may fall through or the composite may be peeled off or dropped off. May be more likely to occur.

本発明のリチウム二次電池用セパレータ用基材は、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%含有する。フィブリル化した溶剤紡糸セルロース繊維の含有量は、20〜30質量%がより好ましい。フィブリル化した溶剤紡糸セルロース繊維の含有率が10質量%未満の場合、低坪量薄膜とした場合、電解液の保液性が不十分で内部抵抗が高くなる場合や、塗液の裏抜けが生じる場合がある。フィブリル化した溶剤紡糸セルロース繊維の含有率が30質量%を超える場合、ポリエステル短繊維の含有量が減少するため、基材の機械強度や表面強度が低下し、基材の取り扱い時や複合化の際に基材が破損することや毛羽立つことがある。また、カレンダー処理や熱カレンダー処理による厚さ調整において、フィブリル化した溶剤紡糸セルロースが空隙を埋めてしまい、保液性が低下するため、内部抵抗が高くなる。さらに、坪量が10g/m以下で、且つ厚さが15μm以下の低坪量薄膜の基材に水系処理が施されてセパレータを製造する場合には、基材表面に起伏が生じやすく、平坦なセパレータが得られないという問題が発生する。 The base material for a separator for a lithium secondary battery of the present invention contains 10 to 30% by mass of a fibrillated solvent-spun cellulose fiber. The content of the fibrillated solvent-spun cellulose fiber is more preferably 20 to 30% by mass. When the content of the fibrillated solvent-spun cellulose fiber is less than 10% by mass, when the low basis weight thin film is used, when the electrolytic solution has insufficient liquid retention and internal resistance increases, May occur. When the content of the fibrillated solvent-spun cellulose fiber exceeds 30% by mass, the content of the polyester short fiber is decreased, so that the mechanical strength and surface strength of the base material are lowered, and the base material is handled or combined. In some cases, the substrate may be damaged or fluffed. In addition, in the thickness adjustment by the calendar process or the heat calendar process, the fibrillated solvent-spun cellulose fills the gaps and the liquid retention property is lowered, so that the internal resistance is increased. Furthermore, when a separator is manufactured by applying an aqueous treatment to a low-basis-weight thin film substrate having a basis weight of 10 g / m 2 or less and a thickness of 15 μm or less, undulations are likely to occur on the substrate surface, There arises a problem that a flat separator cannot be obtained.

本発明のリチウム二次電池用セパレータ用基材は、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%含有する。配向結晶化ポリエステル短繊維と未延伸バインダー用ポリエステル短繊維との接着性は高いため、例えば、坪量が10g/m以下で、且つ厚さが15μm以下の低坪量薄膜の基材においても、基材の機械強度を高くできる。配向結晶化ポリエステル短繊維の含有量が40質量%未満の場合、及び50質量%を超えた場合は、複合化処理に必要な基材の機械強度が不十分となる。 The base material for a separator for a lithium secondary battery of the present invention contains 40 to 50% by mass of oriented crystallized polyester short fibers having an average fiber diameter of 2.0 to 3.5 μm. Since the adhesiveness between the oriented crystallized polyester short fiber and the polyester short fiber for unstretched binder is high, for example, even in a base material of a low basis weight thin film having a basis weight of 10 g / m 2 or less and a thickness of 15 μm or less. The mechanical strength of the substrate can be increased. When the content of the oriented crystallized polyester short fiber is less than 40% by mass and exceeds 50% by mass, the mechanical strength of the base material necessary for the composite treatment becomes insufficient.

配向結晶化ポリエステル短繊維の平均繊維径は2.0〜3.5μmである。単位面積当たりの繊維本数を増やし、基材の表面平滑性を向上させるためには、配向結晶化ポリエステル短繊維の平均繊維径はできるだけ細い方が好ましい。単繊維強度の点から、溶融紡糸し、延伸した繊維を使用することが好ましいが、平均繊維径が2.0μm未満の繊維は溶融紡糸で製造することが難しく、安価な繊維を大量に入手することが困難である。平均繊維径が3.5μmを超えた場合、繊維本数が減るため、基材の機械強度が低下する。また、低坪量薄膜の基材の場合、基材の最大ポア径が拡大し、フィラー粒子や樹脂を含有するスラリーを表面塗工処理する場合、裏抜けすることがある。   The average fiber diameter of the oriented crystallized polyester short fibers is 2.0 to 3.5 μm. In order to increase the number of fibers per unit area and improve the surface smoothness of the substrate, the average fiber diameter of the oriented crystallized polyester short fibers is preferably as thin as possible. From the standpoint of single fiber strength, it is preferable to use melt-spun and drawn fibers, but fibers having an average fiber diameter of less than 2.0 μm are difficult to produce by melt spinning, and a large amount of inexpensive fibers are obtained. Is difficult. When the average fiber diameter exceeds 3.5 μm, the number of fibers decreases, so the mechanical strength of the substrate decreases. In the case of a low basis weight thin film base material, the maximum pore diameter of the base material is enlarged, and when the slurry containing filler particles and resin is subjected to surface coating treatment, it may be exposed.

本発明のリチウム二次電池用セパレータ用基材は、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有する。未延伸バインダー用ポリエステル短繊維の含有量が30質量%未満の場合、フィブリル化した溶剤紡糸セルロース繊維とポリエステル短繊維の接着が甘くなり、繊維の脱落や毛羽立ち等が生じやすく、基材の機械強度が低下する。含有量が40質量%を超えた場合、未延伸バインダー用ポリエステル短繊維同士が皮膜化し、イオン伝導性が阻害されることで、内部抵抗が高くなり、放電特性が低くなる。   The base material for separators for lithium secondary batteries of this invention contains 30-40 mass% of polyester short fibers for unstretched binders having an average fiber diameter of 5.0 μm or less. When the content of the polyester short fiber for unstretched binder is less than 30% by mass, the adhesion between the fibrillated solvent-spun cellulose fiber and the polyester short fiber becomes sweet, and the fiber tends to fall off and fluff, etc. Decreases. When the content exceeds 40% by mass, the polyester short fibers for unstretched binder form a film, and the ionic conductivity is inhibited, whereby the internal resistance is increased and the discharge characteristics are decreased.

未延伸バインダー用ポリエステル短繊維の平均繊維径は5.0μm以下である。平均繊維径が5.0μmを超えた場合、単位面積当たりの繊維本数が少なくなるため、フィブリル化した溶剤紡糸セルロースとポリエステル短繊維との接着が甘くなり、基材の機械強度が低下する。また、低坪量薄膜の基材の場合、基材の最大ポア径が拡大し、フィラー粒子や樹脂を含有するスラリーを表面塗工処理する場合、裏抜けしやすくなる。一方、平均繊維径の下限としては、3.0μmであることが好ましい。平均繊維径が3.0μm未満の場合、延伸倍率が高くなるため、ポリエステル短繊維の結晶化が進み、バインダーとしての接着力が低下するため、繊維本数は増やすことはできるが、基材の機械強度が低下する場合がある。   The average fiber diameter of the polyester short fibers for unstretched binder is 5.0 μm or less. When the average fiber diameter exceeds 5.0 μm, the number of fibers per unit area is reduced, so that the adhesion between the fibrillated solvent-spun cellulose and the polyester short fibers is weakened, and the mechanical strength of the substrate is lowered. In the case of a low basis weight thin film base material, the maximum pore diameter of the base material is increased, and when the slurry containing filler particles and resin is subjected to surface coating treatment, it becomes easy to see through. On the other hand, the lower limit of the average fiber diameter is preferably 3.0 μm. When the average fiber diameter is less than 3.0 μm, the draw ratio becomes high, so that the crystallization of polyester short fibers proceeds and the adhesive strength as a binder decreases, so the number of fibers can be increased. The strength may decrease.

本発明において、平均繊維径は、基材の断面を観察した走査型電子顕微鏡像における繊維径を測定して求める。走査型電子顕微鏡像から、無作為に選んだ100本の繊維における基材の厚さ方向の繊維径を測定し、その平均値を平均繊維径とする。基材の厚さ方向の繊維径を用いる理由は以下である。一般に、薄い不織布において、繊維は基材の厚さ方向に対して垂直方向に概ね配向する。一方、基材の厚さ方向に対して垂直な面において、繊維の配向は不定である。したがって、厚さ方向とは異なる方向の繊維径を測定した場合、実際の繊維径よりも著しく太い繊維径が計測される場合があるので、本発明では厚さ方向の繊維径を測定する。   In the present invention, the average fiber diameter is determined by measuring the fiber diameter in a scanning electron microscope image obtained by observing the cross section of the substrate. From the scanning electron microscope image, the fiber diameter in the thickness direction of the base material of 100 randomly selected fibers is measured, and the average value is defined as the average fiber diameter. The reason for using the fiber diameter in the thickness direction of the substrate is as follows. Generally, in a thin nonwoven fabric, the fibers are generally oriented in a direction perpendicular to the thickness direction of the substrate. On the other hand, the orientation of the fibers is indefinite on a plane perpendicular to the thickness direction of the substrate. Therefore, when the fiber diameter in a direction different from the thickness direction is measured, a fiber diameter that is significantly larger than the actual fiber diameter may be measured. Therefore, in the present invention, the fiber diameter in the thickness direction is measured.

配向結晶化ポリエステル短繊維と未延伸バインダー用ポリエステル短繊維の繊維長は1〜7mmが好ましく、1.5〜5mmがより好ましく、2〜3mmがさらに好ましい。繊維長が1mmより短いと、基材から脱落することがあり、7mmより長いと、繊維がもつれてダマになることがあり、また、繊維本数が少なくなるため、基材の機械強度が低下する場合がある。   The fiber length of the oriented crystallized polyester short fibers and the polyester short fibers for unstretched binder is preferably 1 to 7 mm, more preferably 1.5 to 5 mm, and even more preferably 2 to 3 mm. When the fiber length is shorter than 1 mm, it may fall off from the base material. When the fiber length is longer than 7 mm, the fiber may be entangled and become lumpy, and the number of fibers decreases, so the mechanical strength of the base material decreases. There is a case.

本発明で用いる配向結晶化ポリエステル短繊維と未延伸バインダーポリエステル短繊維の樹脂としては、例えば、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、ポリエチレンイソフタレート系樹脂、これらの誘導体等が挙げられる。これらの中でも、リチウム二次電池用セパレータ用基材に使用する場合には、耐熱性と耐電解液性に優れているポリエチレンテレフタレート系樹脂が好ましい。   Examples of the resin of oriented crystallized polyester short fiber and unstretched binder polyester short fiber used in the present invention include, for example, polyethylene terephthalate resin, polybutylene terephthalate resin, polytrimethylene terephthalate resin, polyethylene naphthalate resin, polybutylene. Examples thereof include naphthalate resin, polyethylene isophthalate resin, and derivatives thereof. Among these, when used for a separator base material for a lithium secondary battery, a polyethylene terephthalate resin excellent in heat resistance and electrolyte solution resistance is preferable.

リチウム二次電池用セパレータ用基材は、円網、長網、短網、傾斜型短網等の抄紙方式の中から1種の抄紙機方式を有する抄紙機、同種又は異種の2種以上の抄紙方式を組み合わせてなるコンビネーション抄紙機などを用いて抄紙する方法によって製造することができる。抄紙用スラリーには、繊維原料の他に、必要に応じて、分散剤、増粘剤、無機填料、有機填料、消泡剤などを適宜添加することができ、5〜0.001質量%程度の固形分濃度に抄紙用スラリーを調製する。この抄紙用スラリーをさらに所定濃度に希釈して抄紙し、乾燥する。   The separator base material for a lithium secondary battery is a paper machine having one type of paper machine among paper types such as a circular net, a long net, a short net, and an inclined short net, and two or more types of same or different types. It can be manufactured by a method of making paper using a combination paper machine that combines paper making methods. In addition to the fiber raw material, a slurry, a thickener, an inorganic filler, an organic filler, an antifoaming agent, and the like can be appropriately added to the papermaking slurry, if necessary, and about 5 to 0.001% by mass. A papermaking slurry is prepared at a solid content concentration of. The paper slurry is further diluted to a predetermined concentration to make paper, and then dried.

抄紙して得られたリチウム二次電池用セパレータ用基材は、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などが施される。本発明のリチウム二次電池用セパレータ用基材は、平均繊維径が5.0μm以下の未延伸バインダー用ポリエステル短繊維を用いることから、熱カレンダー処理が施されることが好ましい。熱カレンダー処理では、金属ロールと金属ロールの間、金属ロールと弾性ロールの間、又は金属ロールとコットンロールの間を通し、未延伸バインダー用ポリエステル短繊維が皮膜化しない温度(未延伸バインダー用ポリエステル短繊維の融点よりも20℃以上低い温度)で加圧するのが好ましい。未延伸バインダー用ポリエステル短繊維が皮膜化すると、内部抵抗が高くなり、放電特性が低下することに加え、基材の機械強度が低下するため好ましくない。   The base material for a lithium secondary battery separator obtained by papermaking is subjected to calendering, thermal calendering, heat treatment, and the like as necessary. Since the base material for a separator for a lithium secondary battery of the present invention uses polyester short fibers for an unstretched binder having an average fiber diameter of 5.0 μm or less, it is preferably subjected to a heat calendar treatment. In the heat calendering process, a temperature at which polyester short fibers for unstretched binder do not form a film (polyester for unstretched binder) passes between metal roll and metal roll, between metal roll and elastic roll, or between metal roll and cotton roll. It is preferable to apply pressure at a temperature 20 ° C. or more lower than the melting point of the short fiber. When the polyester short fiber for unstretched binder is formed into a film, it is not preferable because the internal resistance is increased, the discharge characteristics are lowered, and the mechanical strength of the substrate is lowered.

リチウム二次電池用セパレータ用基材の坪量は、10g/m以下であり、10.0g/m以下がより好ましい。坪量の下限は、5.0g/mが好ましく、6.0g/mがより好ましく、7.0g/m以上が更に好ましい。5.0g/m未満では、十分な機械強度が得られない場合があり、基材の取り扱い時や複合化の際に基材が破損することがある。10g/mを超えると、リチウム二次電池用セパレータ用基材の厚さが厚くなり、内部抵抗が高くなる場合や、放電特性が低くなる場合がある。本発明の基材の坪量は、JIS P8124に準拠して測定した値である。 The basis weight of the base material for a separator for a lithium secondary battery is 10 g / m 2 or less, and more preferably 10.0 g / m 2 or less. The lower limit of the basis weight is preferably 5.0 g / m 2, more preferably 6.0g / m 2, 7.0g / m 2 or more is more preferable. If it is less than 5.0 g / m 2 , sufficient mechanical strength may not be obtained, and the substrate may be damaged when the substrate is handled or combined. When it exceeds 10 g / m 2 , the thickness of the base material for a lithium secondary battery separator increases, and the internal resistance may increase or the discharge characteristics may decrease. The basis weight of the substrate of the present invention is a value measured according to JIS P8124.

リチウム二次電池用セパレータ用基材の厚さは、15μm以下であり、15.0μm以下がより好ましい。厚さの下限は、6μmが好ましく、8μmがより好ましく、10μmが更に好ましく、10.0μm以上が特に好ましい。6μm未満では、十分な機械強度が得られない場合や、内部抵抗が高くなる場合がある。15μmより厚いと、リチウム二次電池の内部抵抗が高くなり、放電特性が低くなる場合がある。また、これを用いて製造されるセパレータの厚みが厚くなるため、高エネルギー密度に対応できなくなる場合がある。なお、本発明のセパレータの厚さはJIS B7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。   The thickness of the base material for a lithium secondary battery separator is 15 μm or less, and more preferably 15.0 μm or less. The lower limit of the thickness is preferably 6 μm, more preferably 8 μm, further preferably 10 μm, and particularly preferably 10.0 μm or more. If the thickness is less than 6 μm, sufficient mechanical strength may not be obtained, and internal resistance may increase. If it is thicker than 15 μm, the internal resistance of the lithium secondary battery becomes high and the discharge characteristics may be lowered. Moreover, since the thickness of the separator manufactured using this becomes thick, it may become impossible to respond to a high energy density. The thickness of the separator of the present invention means a value measured by a method defined in JIS B7502, that is, a value measured by an outer micrometer at a load of 5N.

リチウム二次電池用セパレータ用基材の引張強度は、450N/m以上であることが好ましく、500N/m以上であることがより好ましい。引張強度が450N/m未満では、基材の取り扱いや複合化の際に基材が破損する場合がある。引張強度は高ければ高いほど好ましいが、引張強度が700N/mを超えた場合には、本発明の基材の場合、未延伸バインダー用ポリエステル短繊維の皮膜化が過剰に生じており、突刺強度が低下しやすく、基材の抵抗が高くなることもあり、放電特性が低くなることがある。よって、引張強度は700N/m以下であることが好ましく、650N/m以下であることがより好ましい。   The tensile strength of the separator base material for a lithium secondary battery is preferably 450 N / m or more, and more preferably 500 N / m or more. If the tensile strength is less than 450 N / m, the substrate may be damaged during the handling or combination of the substrate. The higher the tensile strength, the better. However, when the tensile strength exceeds 700 N / m, in the case of the base material of the present invention, the polyester short fiber for unstretched binder is excessively formed, and the puncture strength Is likely to decrease, the resistance of the substrate may be increased, and the discharge characteristics may be decreased. Therefore, the tensile strength is preferably 700 N / m or less, and more preferably 650 N / m or less.

リチウム二次電池用セパレータ用基材の突刺強度は、0.8N以上であることが好ましい。フィブリル化した溶剤紡糸セルロース繊維が配向結晶化ポリエステル短繊維と絡み合い、未延伸バインダー用ポリエステル短繊維で接着し、繊維間結合を強めることにより、この突刺強度を達成することができる。基材の突刺強度が0.8N未満では、基材に複合化処理を施してリチウム二次電池用セパレータとしても、捲回作業や捲回物を加熱プレスする際に内部短絡不良が発生しやすくなる。   The puncture strength of the lithium secondary battery separator base material is preferably 0.8 N or more. This puncture strength can be achieved by fibrillated solvent-spun cellulose fibers entangled with oriented crystallized polyester short fibers and bonded with polyester short fibers for unstretched binder to strengthen the bond between fibers. When the piercing strength of the substrate is less than 0.8N, internal short circuit defects are likely to occur when winding the wound material or heating and pressing the wound material even if the substrate is subjected to a composite treatment to form a separator for a lithium secondary battery. Become.

リチウム二次電池用セパレータ用基材の最大ポア径は、8.0μm以下であることが好ましい。フィブリル化した溶剤紡糸セルロース繊維を配合したことと、未延伸バインダー用ポリエステル繊維が溶融することによって、この最大ポア径を達成することができる。最大ポア径が8.0μmを超えた場合では、塗液の裏抜けが生じる場合や表面平滑性が低下し、複合化物の剥離・脱落が起こりやすくなり、微細なピンホールが発生することがある。   The maximum pore diameter of the base material for a lithium secondary battery separator is preferably 8.0 μm or less. This maximum pore diameter can be achieved by blending the fibrillated solvent-spun cellulose fiber and melting the polyester fiber for unstretched binder. If the maximum pore diameter exceeds 8.0 μm, the coating liquid may be exposed to the surface or the surface smoothness may be deteriorated, and the composite may be easily peeled or dropped off, resulting in generation of fine pinholes. .

リチウム二次電池用セパレータの内部抵抗は、電解液を浸透させた基材を電極で挟み込み、交流を印加して測定されたインピーダンスの実数成分と相関がある。このインピーダンスの実数成分が小さいほど、基材に複合化処理を施した後のリチウム二次電池用セパレータとしての内部抵抗も、低く抑えることができ、放電特性に優れたリチウム二次電池を得ることができる。   The internal resistance of the lithium secondary battery separator correlates with the real component of the impedance measured by applying an alternating current by sandwiching the substrate infiltrated with the electrolyte with the electrode. The smaller the real number component of this impedance, the lower the internal resistance as a lithium secondary battery separator after the composite treatment is applied to the base material, and to obtain a lithium secondary battery with excellent discharge characteristics. Can do.

以下、実施例により本発明を更に詳しく説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to an Example.

[基材の坪量]
JIS P8124に準拠して坪量を測定した。
[Basis weight of base material]
The basis weight was measured in accordance with JIS P8124.

[基材の厚さ]
JIS B7502に規定された方法、つまり、5N荷重時の外側マイクロメーターにより、厚さを測定した。
[Base material thickness]
The thickness was measured by the method defined in JIS B7502, that is, by an outer micrometer at 5N load.

実施例1
リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度97mlの溶剤紡糸セルロース繊維を10質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)短繊維を50質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%を一緒に混合し、パルパーの水中で離解させ、アジテーター(agitator)による撹拌のもと、均一な抄紙用スラリー(0.3質量%濃度)を調製した。この抄紙用スラリーを、1層目として傾斜型短網で、2層目として円網を用い、傾斜型短網と円網の坪量比を50:50として積層させ、湿潤シートを得て、ヤンキードライヤー温度130℃で乾燥した後、表面温度が195℃の金属ロールと弾性ロールによる熱カレンダー処理を施して、坪量8.2g/m、厚さ14.2μmのリチウム二次電池用セパレータ用基材を得た。
Example 1
A refiner is used to treat solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm, and 10 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml, an orientation of an average fiber diameter of 2.4 μm and a fiber length of 3 mm. 50% by mass of crystallized polyethylene terephthalate (PET) short fibers, an average fiber diameter of 4.4 μm, and a fiber length of 3 mm, 40% by mass of polyester fiber for unstretched binder are mixed together, disaggregated in water of a pulper, and an agitator ) To prepare a uniform papermaking slurry (concentration of 0.3% by mass). This papermaking slurry was layered with a slanted short net as the first layer and a circular net as the second layer, and the basis weight ratio of the slanted short net and the net was laminated at 50:50 to obtain a wet sheet, After drying at a Yankee dryer temperature of 130 ° C., a thermal calender treatment with a metal roll and an elastic roll with a surface temperature of 195 ° C. is performed, and a separator for a lithium secondary battery having a basis weight of 8.2 g / m 2 and a thickness of 14.2 μm A substrate was obtained.

実施例2
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を20質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.3g/m、厚さ13.6μmのリチウム二次電池用セパレータ用基材を得た。
Example 2
The solvent-spun cellulose fiber having a modified freeness of 97 ml used in Example 1 was 20% by mass, the average fiber diameter was 2.4 μm, the oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, and the average fiber diameter was 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.3 g / m 2 and a thickness of 13.6 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm is 40% by mass. A substrate was obtained.

実施例3
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維30質量%とした以外は、実施例1と同様な方法で、坪量8.4g/m、厚さ13.7μmのリチウム二次電池用セパレータ用基材を得た。
Example 3
30 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 40 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.4 g / m 2 and a thickness of 13.7 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 30% by mass. A substrate was obtained.

実施例4
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を20質量%、平均繊維径3.2μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.3g/m、厚さ13.5μmのリチウム二次電池用セパレータ用基材を得た。
Example 4
The solvent-spun cellulose fiber having a modified freeness of 97 ml used in Example 1 was 20% by mass, the average fiber diameter was 3.2 μm, the oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, and the average fiber diameter was 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.3 g / m 2 and a thickness of 13.5 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm is 40% by mass. A substrate was obtained.

実施例5
リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度113mlの溶剤紡糸セルロース繊維を20質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.4g/m、厚さ13.4μmのリチウム二次電池用セパレータ用基材を得た。
Example 5
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm are treated, and solvent-spun cellulose fibers having a modified freeness of 113 ml are 20% by mass, an average fiber diameter of 2.4 μm, and a fiber length of 3 mm. A basis weight of 8.4 g / min was obtained in the same manner as in Example 1 except that 40% by mass of the crystallized PET short fiber, 40% by mass of the unstretched binder polyester fiber having an average fiber diameter of 4.4 μm and a fiber length of 3 mm was used. A base material for a separator for a lithium secondary battery having m 2 and a thickness of 13.4 μm was obtained.

実施例6
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を20質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維40質量%とした以外は、実施例1と同様な方法で、坪量7.1g/m、厚さ11.6μmのリチウム二次電池用セパレータ用基材を得た。
Example 6
A modified solvent-spun cellulose fiber having a freeness of 97 ml was 20% by mass, an average fiber diameter of 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, an average fiber diameter of 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 7.1 g / m 2 and a thickness of 11.6 μm in the same manner as in Example 1 except that 40% by mass of PET short fibers for unstretched binder of 3 mm was used. Got.

実施例7
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量9.9g/m、厚さ15.0μmのリチウム二次電池用セパレータ用基材を得た。
Example 7
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 9.9 g / m 2 and a thickness of 15.0 μm, in the same manner as in Example 1, except that 30% by mass of 3 mm PET short fibers for unstretched binder was used. Got.

実施例8
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を20質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維40質量%とした以外は、実施例1と同様な方法で、坪量7.0g/m、厚さ10.1μmのリチウム二次電池用セパレータ用基材を得た。
Example 8
A modified solvent-spun cellulose fiber having a freeness of 97 ml was 20% by mass, an average fiber diameter of 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, an average fiber diameter of 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 7.0 g / m 2 and a thickness of 10.1 μm in the same manner as in Example 1 except that 40% by mass of PET short fibers for 3 mm of unstretched binder was used. Got.

実施例9
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量7.5g/m、厚さ12.2μmのリチウム二次電池用セパレータ用基材を得た。
Example 9
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 7.5 g / m 2 and a thickness of 12.2 μm, in the same manner as in Example 1 except that 30% by mass of 3 mm PET short fibers for unstretched binder was used. Got.

実施例10
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を10質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を50質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維40質量%とした以外は、実施例1と同様な方法で、坪量9.0g/m、厚さ15.0μmのリチウム二次電池用セパレータ用基材を得た。
Example 10
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 10% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 50% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 9.0 g / m 2 and a thickness of 15.0 μm in the same manner as in Example 1 except that 40% by mass of PET short fibers for 3 mm of unstretched binder was used. Got.

実施例11(参考例)
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量6.5g/m、厚さ10.6μmのリチウム二次電池用セパレータ用基材を得た。
Example 11 (Reference Example)
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 6.5 g / m 2 and a thickness of 10.6 μm, in the same manner as in Example 1 except that 30% by mass of 3 mm PET short fibers for unstretched binder was used. Got.

実施例12(参考例)
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量7.2g/m、厚さ9.8μmのリチウム二次電池用セパレータ用基材を得た。
Example 12 (Reference Example)
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 7.2 g / m 2 and a thickness of 9.8 μm, in the same manner as in Example 1 except that 30% by mass of 3 mm PET short fibers for unstretched binder was used. Got.

実施例13(参考例)
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を10質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を50質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.8g/m、厚さ13.1μmのリチウム二次電池用セパレータ用基材を得た。
Example 13 (Reference Example)
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 10% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 50% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 8.8 g / m 2 and a thickness of 13.1 μm, in the same manner as in Example 1, except that 40% by mass of PET short fibers for unstretched binder of 3 mm was used. Got.

比較例1
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を35質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を35質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維30質量%とした以外は、実施例1と同様な方法で、坪量8.4g/m、厚さ14.2μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 1
35 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 35 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.4 g / m 2 and a thickness of 14.2 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm is 30% by mass. A substrate was obtained.

比較例2
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を5質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を50質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維45質量%とした以外は、実施例1と同様な方法で、坪量8.2g/m、厚さ13.5μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 2
5 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 50 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.2 g / m 2 and a thickness of 13.5 μm, in the same manner as in Example 1 except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 45% by mass. A substrate was obtained.

比較例3
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を30質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.3g/m、厚さ13.5μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 3
30 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 30 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.3 g / m 2 and a thickness of 13.5 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm is 40% by mass. A substrate was obtained.

比較例4
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を10質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を60質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維30質量%とした以外は、実施例1と同様な方法で、坪量8.2g/m、厚さ13.7μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 4
10 mass% of solvent-spun cellulose fibers with a modified freeness of 97 ml used in Example 1, an average fiber diameter of 2.4 μm, 60% by mass of oriented crystallized PET short fibers with a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.2 g / m 2 and a thickness of 13.7 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 30% by mass. A substrate was obtained.

比較例5
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を10質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維50質量%とした以外は、実施例1と同様な方法で、坪量8.1g/m、厚さ13.5μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 5
10 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, an average fiber diameter of 2.4 μm, an oriented crystallized PET short fiber of 3 mm in fiber length of 40 mass%, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.1 g / m 2 and a thickness of 13.5 μm, in the same manner as in Example 1 except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 50% by mass. A substrate was obtained.

比較例6
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を50質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維20質量%とした以外は、実施例1と同様な方法で、坪量8.2g/m、厚さ13.2μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 6
30 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 50 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.2 g / m 2 and a thickness of 13.2 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 20% by mass. A substrate was obtained.

比較例7
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を20質量%、平均繊維径5.3μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.1g/m、厚さ13.5μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 7
The solvent-spun cellulose fiber having a modified freeness of 97 ml used in Example 1 was 20% by mass, the average fiber diameter was 5.3 μm, the oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, and the average fiber diameter was 4.4 μm. For a separator for a lithium secondary battery having a basis weight of 8.1 g / m 2 and a thickness of 13.5 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm was 40% by mass. A substrate was obtained.

比較例8
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を20質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径6.5μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.3g/m、厚さ13.6μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 8
The solvent-spun cellulose fiber having a modified freeness of 97 ml used in Example 1 was 20% by mass, the average fiber diameter was 2.4 μm, the oriented crystallized PET short fiber having a fiber length of 3 mm was 40% by mass, and the average fiber diameter was 6.5 μm. For a separator for a lithium secondary battery having a basis weight of 8.3 g / m 2 and a thickness of 13.6 μm, in the same manner as in Example 1, except that the polyester fiber for unstretched binder having a fiber length of 3 mm is 40% by mass. A substrate was obtained.

比較例9
実施例1で用いた変法濾水度97mlの溶剤紡糸セルロース繊維を70質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を15質量%、平均繊維径3.2μm、繊維長3mmの配向結晶化PET短繊維を15質量%とし、常温でカレンダー処理した以外は、実施例1と同様な方法で、坪量8.4g/m、厚さ13.1μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 9
70 mass% of solvent-spun cellulose fibers having a modified freeness of 97 ml used in Example 1, 15 mass% of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm, and an average fiber diameter of 3.2 μm. Lithium having a basis weight of 8.4 g / m 2 and a thickness of 13.1 μm was obtained in the same manner as in Example 1 except that 15% by mass of oriented crystallized PET short fibers having a fiber length of 3 mm was calendered at room temperature. A base material for a secondary battery separator was obtained.

比較例10
実施例1で用いた平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径3.2μm、繊維長3mmの配向結晶化PET短繊維を20質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用ポリエステル繊維40質量%とした以外は、実施例1と同様な方法で、坪量8.0g/m、厚さ13.0μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 10
40% by mass of oriented crystallized PET short fibers having an average fiber diameter of 2.4 μm and a fiber length of 3 mm used in Example 1, 20% by mass of oriented crystallized PET short fibers having an average fiber diameter of 3.2 μm and a fiber length of 3 mm, Lithium having a basis weight of 8.0 g / m 2 and a thickness of 13.0 μm in the same manner as in Example 1 except that the polyester fiber for unstretched binder having an average fiber diameter of 4.4 μm and a fiber length of 3 mm was 40% by mass. A base material for a secondary battery separator was obtained.

比較例11
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量10.5g/m、厚さ15.0μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 11
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 10.5 g / m 2 and a thickness of 15.0 μm, in the same manner as in Example 1, except that 30% by mass of 3 mm PET short fibers for unstretched binder was used. Got.

比較例12
変法濾水度97mlのフィブリル化した溶剤紡糸セルロース繊維を30質量%、平均繊維径2.4μm、繊維長3mmの配向結晶化PET短繊維を40質量%、平均繊維径4.4μm、繊維長3mmの未延伸バインダー用PET短繊維30質量%とした以外は、実施例1と同様な方法で、坪量8.5g/m、厚さ15.5μmのリチウム二次電池用セパレータ用基材を得た。
Comparative Example 12
A modified solvent-spun cellulose fiber having a freeness of 97 ml is 30% by mass, an average fiber diameter is 2.4 μm, an oriented crystallized PET short fiber having a fiber length of 3 mm is 40% by mass, an average fiber diameter is 4.4 μm, and a fiber length. A base material for a separator for a lithium secondary battery having a basis weight of 8.5 g / m 2 and a thickness of 15.5 μm, in the same manner as in Example 1, except that 30% by mass of PET short fibers for unstretched binder of 3 mm was used. Got.

実施例及び比較例のリチウム二次電池用セパレータ用基材を用いて、基材の評価、セパレータの作製及びセパレータの評価を行い、結果を表1〜表6に示した。   Using the substrates for separators for lithium secondary batteries of Examples and Comparative Examples, the evaluation of the substrates, the production of the separators and the evaluation of the separators were performed, and the results are shown in Tables 1 to 6.

[基材の引張強度]
作製した基材について、卓上型材料試験機(株式会社オリエンテック(Orientec Co,. LTD.)、商品名:STA−1150)を用いて、JIS P8113に準じて縦方向の引張強さを測定した。試験片のサイズは、縦方向250mm、幅50mmとし、2個のつかみ具の間隔を100mm、引張速度を300mm/minとした。
[Tensile strength of substrate]
About the produced base material, the tensile strength of the vertical direction was measured according to JISP8113 using the desktop type | mold material testing machine (Orientec Co., LTD., Brand name: STA-1150). . The size of the test piece was 250 mm in the vertical direction, 50 mm in width, the interval between the two grippers was 100 mm, and the tensile speed was 300 mm / min.

[基材の突刺強度]
作製した基材について、先端に曲率1.6の丸みをつけた直径1mmの金属針を卓上型材料試験機(株式会社オリエンテック(Orientec Co,. LTD.)、商品名:STA−1150)に装着し、試料面に対して直角に1mm/sの一定速度で貫通するまで降ろした。この時の最大荷重(N)を計測し、突刺強度を測定した。
[Puncture strength of substrate]
About the produced base material, a metal needle of 1 mm in diameter with a curvature of 1.6 at the tip is placed on a desktop material testing machine (Orientec Co., Ltd., trade name: STA-1150). It was mounted and lowered until it penetrated at a constant speed of 1 mm / s perpendicular to the sample surface. The maximum load (N) at this time was measured, and the puncture strength was measured.

[基材の最大ポア径]
作製した基材について、PMI社パームポロメーター(Perm−Porometer)CFP−1500Aを用いて、JIS K3832、ASTM F316−86、ASTM E1294−89に準じて測定を行い、最大ポア径を測定した。
[Maximum pore diameter of substrate]
About the produced base material, it measured according to JIS K3832, ASTM F316-86, and ASTM E1294-89 using PMI company palm porometer (Perm-Porometer) CFP-1500A, and measured the maximum pore diameter.

[基材のインピーダンス]
作製した基材について、電解液(1M−LiPF/エチレンカーボネート(EC)+ジエチルカーボネート(DEC)+ジメチルカーボネート(DMC)(1:1:1、vol比))に浸した後、2つの略円筒形銅電極(直径25mm)に挟み、LCRメーター(Instec社、装置名:LCR−821)を使用して、200kHzにおける交流インピーダンスの実数成分を測定した。
[Substrate impedance]
The prepared substrate was immersed in an electrolytic solution (1M-LiPF 6 / ethylene carbonate (EC) + diethyl carbonate (DEC) + dimethyl carbonate (DMC) (1: 1: 1, vol ratio)), and then two abbreviations. A real component of AC impedance at 200 kHz was measured using an LCR meter (Instec Corporation, apparatus name: LCR-821) sandwiched between cylindrical copper electrodes (diameter 25 mm).

[基材の耐摩耗性]
作製した基材を20mm幅、250mm長に裁断し、学振型摩擦堅牢度試験機(Color Fastness Rubbing Tester、テスター産業株式会社(TESTER SANGYO Co,. LTD.)、商品名:AB−301)にセットし、試験用黒布(倉敷紡績株式会社(KURABO INDUSTRIES LTD.)、クラボウコーマブロード(KURABO COMBED BROAD CLOTH)H−444)を磨耗治具にセット後、基材に磨耗治具を積載し、荷重は最低の200gf(1.96N)の荷重で、距離120mmを毎分30往復する速度で、5往復の擦り合わせによる起毛(毛羽)発生を目視観察し、以下の基準で評価を行った。「△」以上であれば、基材を取り扱う際や複合化処理の際に、工程上の問題は発生しなかった。
[Abrasion resistance of substrate]
The produced base material was cut into a width of 20 mm and a length of 250 mm, and it was applied to a Gakushin type friction fastness tester (Color Fastness Rubbing Tester, TESTER SANGYO Co., LTD., Trade name: AB-301). After setting the test black cloth (KURABO INDUSTRIES LTD., KURABO COMBED BROAD CLOTH H-444) on the wear jig, the wear jig is loaded on the base material. The load was a minimum load of 200 gf (1.96 N), and the occurrence of raising (fluff) by rubbing 5 reciprocations was visually observed at a speed of 30 reciprocations per minute at a distance of 120 mm, and evaluation was performed according to the following criteria. If it was “Δ” or more, no problem in the process occurred when handling the substrate or during the composite treatment.

○:黒布に毛羽による繊維粕はほぼ付着しなかった。
△:黒布に毛羽による繊維粕はほんのわずかに付着した。
×:黒布に毛羽による繊維粕が付着した。
○: Fiber wrinkles due to fluff hardly adhered to the black cloth.
(Triangle | delta): The fiber wrinkles by a fluff adhered to the black cloth only slightly.
X: Fiber wrinkles due to fluff adhered to the black cloth.

[セパレータAの作製]
板状ベーマイト(平均粒径:1μm、アスペクト比:10)1000g、N−メチルピロリドン1000g、ポリフッ化ビニリデン375gを容器に入れ、攪拌機(商品名:スリーワンモーター(Three one motor)、新東科学株式会社(Shinto Scientific Co., Ltd.))で1時間撹拌して分散させ、均一なスラリーとした。このスラリーを基材の片面ずつ表面塗工した後、所定の間隔を有するギャップの間を通し、その後、防爆型乾燥機にて120℃の温度で乾燥して、片面あたりの厚さが3μmの多孔膜を有するセパレータAを得た。
[Preparation of Separator A]
Plate boehmite (average particle size: 1 μm, aspect ratio: 10), 1000 g of N-methylpyrrolidone, and 375 g of polyvinylidene fluoride are placed in a container, and a stirrer (trade name: Three one motor, Shinto Kagaku Co., Ltd.). (Shinto Scientific Co., Ltd.) for 1 hour and dispersed to obtain a uniform slurry. After coating the slurry on one side of each surface of the substrate, the slurry is passed through a gap having a predetermined interval, and then dried at 120 ° C. with an explosion-proof dryer, and the thickness per side is 3 μm. A separator A having a porous film was obtained.

[セパレータBの作製]
板状ベーマイト(平均粒径:1μm、アスペクト比:10)1000g、水2000g、ポリアクリル酸ナトリウム5gを容器に入れ、鋸状翼を供えた分散機で1時間撹拌して分散させ、均一なスラリーとした。ここに、その1質量%溶液の粘度が8000mPa・秒であるカルボキシメチルセルロースナトリウムの1質量%水溶液1000gを添加し、さらに、15分間撹拌して水系スラリーを得た。この水系スラリーを基材の片面に表面塗工した後、乾燥後の塗工量が9g/mとなるように調整されたギャップの間を通し、その後、乾燥機にて120℃の熱風を当てて乾燥してセパレータBを得た。
[Preparation of Separator B]
Plate boehmite (average particle size: 1 μm, aspect ratio: 10), 1000 g of water, 2000 g of water, 5 g of sodium polyacrylate are placed in a container and dispersed by stirring for 1 hour with a disperser equipped with a saw blade. It was. To this, 1000 g of a 1% by mass aqueous solution of sodium carboxymethylcellulose having a viscosity of 8000 mPa · s of the 1% by mass solution was added and further stirred for 15 minutes to obtain an aqueous slurry. After surface-coating this aqueous slurry on one side of the substrate, it is passed through a gap adjusted so that the coating amount after drying is 9 g / m 2, and then hot air at 120 ° C. is applied in a dryer. It was applied and dried to obtain separator B.

[塗工性]
作製したセパレータAについて、任意の10箇所の厚さ測定を行い、次の評価で評価した。なお、厚さはJIS B7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。
[Coating properties]
About the produced separator A, thickness measurement of arbitrary 10 places was performed, and it evaluated by the following evaluation. The thickness means a value measured by a method defined in JIS B7502, that is, a value measured by an outer micrometer at 5N load.

○:厚さの差が、0.8μm以下である。
△:厚さの差が、0.8μmを超えて1μm以下である。
×:厚さの差が、1μmを超えている。
○: The difference in thickness is 0.8 μm or less.
(Triangle | delta): The difference of thickness exceeds 0.8 micrometer and is 1 micrometer or less.
X: The thickness difference exceeds 1 μm.

[脱落の有無]
作製したセパレータAについて、50mm幅×300mmの短冊状に切り揃え、直径10mmのポリテトラフルオロエチレン棒に巻き付け時の多孔膜の状態を目視で確認し、次の基準で評価した。
[Existence of dropout]
The produced separator A was cut into a strip of 50 mm width × 300 mm, the state of the porous film when wound around a polytetrafluoroethylene rod having a diameter of 10 mm was visually confirmed, and evaluated according to the following criteria.

○:多孔膜の状態に変化がない。
△:ひび割れが多孔膜の厚み全体に広がっているが、剥がれは生じていない。
×:剥がれが生じている。
○: No change in the state of the porous membrane.
(Triangle | delta): Although the crack has spread over the whole thickness of the porous film, peeling has not arisen.
X: Peeling has occurred.

[切断有無]
セパレータAの製造工程において、基材を塗工した時の基材の状態を観察し、次の基準で評価した。
[Cut off]
In the manufacturing process of the separator A, the state of the substrate when the substrate was applied was observed and evaluated according to the following criteria.

○:基材の切断、破れ、割れがなく、問題がなく塗工できた。
×:基材の切断、破れ、割れのいずれかが頻繁に発生して塗工に支障をきたした。
○: The substrate was not cut, torn or cracked, and could be applied without any problem.
X: Cutting, tearing, or cracking of the base material frequently occurred and hindered coating.

[裏抜け]
セパレータAの製造工程において、裏抜けを次の基準で評価した。
[Back-through]
In the manufacturing process of the separator A, the strike-through was evaluated according to the following criteria.

○:塗液が全く裏抜けしない。
△:若干裏抜けしたが、機材の裏面が塗工装置のロールに貼り付くなどの支障がない。
×:裏抜けして、基材の裏面がロールに貼り付いて、円滑な塗工ができないなどの支障をきたした。
○: The coating liquid does not show through at all.
Δ: Slightly overlooked, but there is no problem such as sticking the back of the equipment to the roll of the coating apparatus.
X: It broke through, and the back surface of the base material adhered to the roll, causing problems such as inability to perform smooth coating.

[起伏の形成]
セパレータBにおいて、起伏の形成を次の基準で評価した。
[Forming relief]
In separator B, the formation of undulations was evaluated according to the following criteria.

○:起伏が全く形成されていない。
△:起伏が形成されているが、ガラス板の間に挟み込むと平坦化し、電極との密着に支障がない。
×:起伏が形成されており、ガラス板の間に挟み込んでも平坦化せず、電極との密着に支障がある。
○: Unevenness is not formed at all.
(Triangle | delta): Although the undulation is formed, when it pinches | interposes between glass plates, it will planarize and there will be no trouble in contact | adherence with an electrode.
X: Unevenness is formed, and even if it is sandwiched between glass plates, it is not flattened, and there is a problem in close contact with the electrode.

Figure 0006408810
Figure 0006408810

Figure 0006408810
Figure 0006408810

Figure 0006408810
Figure 0006408810

Figure 0006408810
Figure 0006408810

Figure 0006408810
Figure 0006408810

Figure 0006408810
Figure 0006408810

実施例1〜13のリチウム二次電池用セパレータ用基材は、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が10g/m以下で、且つ厚さが15μm以下であるため、低坪量薄膜でありながらも、機械強度が強く、繊維の脱落や毛羽立ちが殆どなく、坪量が最も低い実施例11及び厚さが最も薄い実施例12以外の実施例の基材においては、セパレータ作製時に基材の切断や破れが発生しなかった。また、セパレータの塗工性に優れ、塗工後の多孔膜と基材の接着が強いため、多孔膜の脱落がなく、塗工処理において支障となる程度の塗液の裏抜けも発生しなかった。さらに、フィラー粒子を含有する水系スラリーを塗工した後の起伏も少なかった。また、インピーダンスの実数成分を低く抑えることができた。 The base material for separators for lithium secondary batteries of Examples 1 to 13 is 40 to 30 mass% of fibrillated solvent-spun cellulose fibers and 40 oriented crystallized polyester short fibers having an average fiber diameter of 2.0 to 3.5 μm. It consists of a nonwoven fabric containing 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, and a basis weight of 10 g / m 2 or less and a thickness of 15 μm or less. Therefore, in the base materials of Examples other than Example 11 and Example 12 other than Example 12 where the basis weight is the lowest and the thickness is the lowest, while the mechanical strength is strong, there is almost no flaking or fluffing of the fibers, even though it is a low basis weight thin film. In the separator production, the substrate was not cut or torn. In addition, the separator has excellent coatability and the adhesion between the porous film and the substrate after coating is strong, so the porous film does not fall off, and the coating liquid does not show through the screen to the extent that hinders the coating process. It was. Furthermore, there was little undulation after coating the aqueous slurry containing filler particles. Moreover, the real component of the impedance could be kept low.

実施例1〜5のリチウム二次電池用セパレータ用基材は、8g/m、13〜14μmという低坪量薄膜の基材である。フィブリル化した溶剤紡糸セルロースを10〜30質量%含有しているため、繊維同士が絡みやすく繊維ネットワークが形成されやすくなることから、低坪量薄膜であっても、基材の引張強度が強かった。特に、基材の突刺強度が、比較例10のポリエステル短繊維のみから構成された基材よりも強く、セパレータ作製時に基材の切断や破れが発生しなかった。また、本発明のリチウム二次電池用セパレータ用基材は、このような低坪量薄膜であっても、フィラー粒子を含有する水系スラリーを塗工した後の起伏が生じにくかった。 The base material for separators for lithium secondary batteries of Examples 1 to 5 is a low basis weight thin film base material of 8 g / m 2 and 13 to 14 μm. Since 10-30% by mass of the fibrillated solvent-spun cellulose is contained, the fibers are easily entangled with each other, so that a fiber network is easily formed. . In particular, the puncture strength of the base material was stronger than the base material composed only of the polyester short fibers of Comparative Example 10, and the base material was not cut or torn during the production of the separator. Moreover, even if the base material for separators for lithium secondary batteries of this invention is such a low basic weight thin film, it was hard to produce the relief | undulation after apply | coating the aqueous slurry containing a filler particle.

一方、比較例1〜10のリチウム二次電池用セパレータ用基材も、8g/m、13〜14μmという低坪量薄膜の基材である。比較例1と比較例2は、フィブリル化した溶剤紡糸セルロース繊維の含有量が10〜30質量%を外れた場合である。30質量%を超えた比較例1では、引張強度及び突刺強度が低下し、基材の切断や繊維の脱落が発生した。さらに、フィラー粒子を含有する水系スラリーを塗工した後の起伏が生じやすかった。また、10質量%未満の比較例2では、最大ポア径が拡大するため、裏抜けが発生し、未延伸バインダー用ポリエステル短繊維が増加したため、インピーダンスの実数成分が高くなった。また、塗工性や脱落が劣る結果となった。 On the other hand, the base material for separators for lithium secondary batteries of Comparative Examples 1 to 10 is also a low basis weight thin film base material of 8 g / m 2 and 13 to 14 μm. Comparative Example 1 and Comparative Example 2 are cases where the content of fibrillated solvent-spun cellulose fibers deviated from 10 to 30% by mass. In Comparative Example 1 exceeding 30% by mass, the tensile strength and puncture strength were lowered, and the substrate was cut and the fibers were dropped. Furthermore, the undulation after applying the aqueous slurry containing the filler particles was likely to occur. Further, in Comparative Example 2 of less than 10% by mass, the maximum pore diameter was increased, so that back-through occurred and the polyester short fibers for unstretched binder increased, and the real component of the impedance was increased. In addition, the coatability and dropout were inferior.

比較例3と比較例4は、配向結晶化ポリエステル短繊維の含有量が40〜50質量%を外れた場合である。40質量%未満の比較例3では、引張強度及び突刺強度が低下するため、基材の切断が発生した。また、50質量%を超えた比較例4では、最大ポア径が拡大するため、裏抜けが若干発生した。   Comparative Example 3 and Comparative Example 4 are cases where the content of oriented crystallized polyester short fibers deviated from 40 to 50% by mass. In Comparative Example 3 of less than 40% by mass, the tensile strength and the puncture strength were lowered, so that the substrate was cut. Further, in Comparative Example 4 exceeding 50% by mass, the maximum pore diameter was increased, so that a slight breakthrough occurred.

比較例5と比較例6は、未延伸バインダー用ポリエステル短繊維の含有量が30〜40質量%を外れた場合である。40質量%を超えた比較例5では、最大ポア径が拡大するため、裏抜けが発生した。また、インピーダンスの実数成分が高くなり、塗工性が低下した。一方、30質量%未満の比較例6では、引張強度及び突刺強度が低下するため、基材からの繊維の脱落や基材の切断が発生した。   Comparative Example 5 and Comparative Example 6 are cases where the content of polyester short fibers for unstretched binder deviates from 30 to 40% by mass. In Comparative Example 5 exceeding 40% by mass, the maximum pore diameter was increased, so that a back-through occurred. Moreover, the real number component of the impedance was increased, and the coatability was lowered. On the other hand, in Comparative Example 6 of less than 30% by mass, the tensile strength and the puncture strength were lowered, and therefore, the fibers dropped from the base material and the base material was cut.

比較例7は、配向結晶化ポリエステル短繊維の平均繊維径が3.5μmを超えた場合であるが、突刺強度が低下し、最大ポア径が拡大するため、若干裏抜けが発生し、塗工性が低下した。   Comparative Example 7 is a case where the average fiber diameter of the oriented crystallized polyester short fibers exceeds 3.5 μm, but since the piercing strength is reduced and the maximum pore diameter is enlarged, slight penetration occurs, Decreased.

比較例8は、未延伸バインダー用ポリエステル短繊維の平均繊維径が5.0μmを超えた場合であるが、未延伸バインダー用ポリエステル短繊維の繊維本数が減少するため、引張強度及び突刺強度が低下し、最大ポア径も拡大したため、塗工性が低下し、基材からの繊維の脱落があり、基材の切断や裏抜けが発生した。   Comparative Example 8 is a case where the average fiber diameter of the polyester short fibers for unstretched binder exceeds 5.0 μm, but the number of fibers of the polyester short fibers for unstretched binder is decreased, so that the tensile strength and puncture strength are decreased. However, since the maximum pore diameter was also increased, the coatability was lowered, the fibers were detached from the base material, and the base material was cut or breached.

比較例9は、未延伸バインダー用ポリエステル短繊維を含まない配合であるが、引張強度及び突刺強度が極端に低く、基材からの繊維の脱落があり、基材の切断も多発した。さらに、フィラー粒子を含有する水系スラリーを塗工した後の起伏が生じやすかった。   Comparative Example 9 was a composition that did not contain polyester short fibers for unstretched binders, but the tensile strength and puncture strength were extremely low, the fibers dropped off from the substrate, and the substrate was frequently cut. Furthermore, the undulation after applying the aqueous slurry containing the filler particles was likely to occur.

比較例10は、フィブリル化した溶剤紡糸セルロース繊維を含まない配合であるが、最大ポア径が大きく、裏抜けが発生した。また、塗工性が低下し、多孔膜が脱落した。   Comparative Example 10 was a formulation that did not contain fibrillated solvent-spun cellulose fibers, but the maximum pore diameter was large and show-through occurred. Moreover, coating property fell and the porous film fell off.

実施例1〜3の比較から、フィブリル化した溶剤紡糸セルロースの配合量が増えるほど、引張強度及び突刺強度はやや低下するが、基材の切断、基材からの繊維の脱落や毛羽立ちは発生しなかった。また、塗工性も良く、多孔膜の脱落もなく、インピーダンスの実数成分が低下した。   From the comparison of Examples 1 to 3, as the blended amount of fibrillated solvent-spun cellulose increases, the tensile strength and puncture strength decrease somewhat, but cutting of the base material, dropping of fibers from the base material and fluffing occur. There wasn't. Also, the coating property was good, the porous film did not fall off, and the real component of impedance was reduced.

実施例2と実施例4の比較から、配向結晶化ポリエステル短繊維を少し太くした実施例4のリチウム二次電池用セパレータ用基材は、最大ポア径が拡大したが、裏抜けや多孔膜の脱落は発生しなかった。実施例2と実施例5の比較から、溶剤紡糸セルロースのフィブリル化を抑えた実施例5の基材では、変法濾水度が113mlであっても、裏抜けは発生せず、塗工性も問題なく、多孔膜の脱落もなかった。   From the comparison between Example 2 and Example 4, the separator for lithium secondary battery of Example 4 in which the oriented crystallized polyester short fibers were slightly thickened had an enlarged maximum pore diameter. Dropout did not occur. From the comparison between Example 2 and Example 5, in the base material of Example 5 in which fibrillation of solvent-spun cellulose was suppressed, even if the modified freeness was 113 ml, no show-through occurred and the coating property was improved. There was no problem, and the porous membrane did not fall off.

実施例1〜13、比較例11〜12を比較すると、坪量が7.0g/m未満である実施例11では、実施例1〜10と比較して、引張強度及び突刺強度が低下する傾向が見られ、基材の切断が発生した。坪量が10.0g/mを超えた比較例11では、実施例1〜10と比較して、インピーダンスの実数成分が上昇した。この基材を使用した場合、電池の放電特性は低下すると推測される。厚さが10.0μm未満の実施例12では、実施例1〜10と比較して、インピーダンスの実数成分が上昇した。この基材を使用した場合、電池の放電性能は低下すると推測される。また、引張強度及び突刺強度も低下し、基材の切断が発生した。厚さが15.0μmを超えた比較例12では、実施例1〜10と比較して、未延伸バインダー用ポリエステル短繊維の融着が甘くなったため、引張強度が若干低下し、突刺強度も低下し、切断と繊維の毛羽立ちが発生した。引張強度が450N/m未満である実施例11及び12では、実施例1〜10と比較して、基材の切断が発生した。引張強度が700N/mよりも大きくなった実施例13では、実施例1〜10と比較して、熱カレンダー処理のカレンダー圧を上げたために、突刺強度が低下し、インピーダンスの実数成分が上昇した。この基材を使用した場合、放電性能が低下すると推測される。これらの結果から、坪量が7.0〜10.0g/mであること、厚さが10.0〜15.0μmであること、引張強度が450N/m以上であることが好ましいこと、引張強度が700N/m以下であることがより好ましいことがわかる。 When Examples 1-13 and Comparative Examples 11-12 are compared, in Example 11 whose basic weight is less than 7.0 g / m < 2 >, compared with Examples 1-10, tensile strength and puncture strength fall. A trend was seen and the substrate was cut. In Comparative Example 11 in which the basis weight exceeded 10.0 g / m 2 , the real number component of the impedance increased as compared with Examples 1 to 10. When this base material is used, it is estimated that the discharge characteristic of a battery falls. In Example 12 having a thickness of less than 10.0 μm, the real number component of the impedance increased as compared with Examples 1 to 10. When this base material is used, it is estimated that the discharge performance of a battery falls. In addition, the tensile strength and the puncture strength were lowered, and the substrate was cut. In Comparative Example 12 having a thickness exceeding 15.0 μm, the fusion of the polyester short fibers for unstretched binder became sweeter than in Examples 1 to 10, and the tensile strength was slightly reduced and the puncture strength was also reduced. Cutting and fiber fluffing occurred. In Examples 11 and 12 having a tensile strength of less than 450 N / m, the substrate was cut as compared with Examples 1 to 10. In Example 13 in which the tensile strength was greater than 700 N / m, compared to Examples 1 to 10, since the calender pressure of the thermal calendar process was increased, the puncture strength was decreased and the real component of the impedance was increased. . When this base material is used, it is estimated that discharge performance falls. From these results, it is preferable that the basis weight is 7.0 to 10.0 g / m 2 , the thickness is 10.0 to 15.0 μm, and the tensile strength is 450 N / m or more, It can be seen that the tensile strength is more preferably 700 N / m or less.

本発明の基材及びセパレータは、リチウムイオン二次電池やリチウムイオンポリマー二次電池等のリチウム二次電池に好適に利用できる。   The base material and separator of the present invention can be suitably used for lithium secondary batteries such as lithium ion secondary batteries and lithium ion polymer secondary batteries.

Claims (2)

フィブリル化した溶剤紡糸セルロース繊維と合成繊維を含有した不織布からなり、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が7.0〜10.0g/mで、且つ厚さが10.0〜15.0μmであり、引張強度が450〜700N/mであるリチウム二次電池用セパレータ用基材に、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理から選ばれる少なくとも1つの複合化処理を施してなることを特徴とするリチウム二次電池用セパレータFibrillated Ri Do from solvent-spun cellulose fiber and nonwoven fabric containing synthetic fibers, 10-30 wt% of the full Iburiru of the solvent-spun cellulose fibers, oriented crystallized polyester having an average fiber diameter 2.0~3.5μm short fibers 40 to 50% by mass, a nonwoven fabric containing 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, the basis weight is 7.0 to 10.0 g / m 2 , and has a thickness of 10.0~15.0Myuemu, the tensile strength 450~700N / m der ruri lithium secondary battery separator base material, a process for impregnating or coating a slurry containing the filler particles, At least one selected from a treatment of impregnating or applying a slurry containing a resin, a treatment of laminating and integrating porous films, and a treatment of impregnating or applying a solid electrolyte or gel electrolyte A separator for a lithium secondary battery, characterized by being subjected to two composite treatments . リチウム二次電池用セパレータ用基材に、フィラー粒子を含有するスラリーを含浸又は塗工する処理、樹脂を含有するスラリーを含浸又は塗工する処理、多孔質フィルムを積層一体化する処理、固体電解質やゲル状電解質を含浸又は塗工する処理から選ばれる少なくとも1つの複合化処理を施してリチウム二次電池用セパレータを製造するリチウム二次電池用セパレータの製造方法であって、A treatment for impregnating or coating a slurry containing filler particles on a separator substrate for a lithium secondary battery, a treatment for impregnating or applying a slurry containing a resin, a treatment for laminating and integrating a porous film, a solid electrolyte Or a method for producing a lithium secondary battery separator, wherein a separator for a lithium secondary battery is produced by performing at least one composite treatment selected from a treatment of impregnating or applying a gel electrolyte,
リチウム二次電池用セパレータ用基材が、フィブリル化した溶剤紡糸セルロース繊維と合成繊維を含有した不織布からなり、フィブリル化した溶剤紡糸セルロース繊維を10〜30質量%、平均繊維径2.0〜3.5μmの配向結晶化ポリエステル短繊維を40〜50質量%、平均繊維径5.0μm以下の未延伸バインダー用ポリエステル短繊維を30〜40質量%含有した不織布からなり、坪量が7.0〜10.0g/mA base material for a separator for a lithium secondary battery is composed of a nonwoven fabric containing a fibrillated solvent-spun cellulose fiber and a synthetic fiber, the fibrillated solvent-spun cellulose fiber is 10 to 30% by mass, and the average fiber diameter is 2.0 to 3 It consists of a nonwoven fabric containing 40 to 50% by mass of oriented crystallized polyester short fibers of 5 μm and 30 to 40% by mass of polyester short fibers for unstretched binder having an average fiber diameter of 5.0 μm or less, and the basis weight is 7.0 to 7.0%. 10.0 g / m 2 で、且つ厚さが10.0〜15.0μmであり、引張強度が450〜700N/mであり、And a thickness of 10.0 to 15.0 μm, a tensile strength of 450 to 700 N / m,
フィラー粒子を含有するスラリー、樹脂を含有するスラリー、及び、固体電解質やゲル状電解質を含浸又は塗工するための塗液の主媒体として水が使用され、基材と多孔質フィルムを積層一体化する処理で、接着剤として水系接着剤が使用されることを特徴とするリチウム二次電池用セパレータの製造方法。Water is used as the main medium for the slurry containing filler particles, the slurry containing the resin, and the coating liquid for impregnating or coating the solid electrolyte or the gel electrolyte, and the substrate and the porous film are laminated and integrated. A method for producing a separator for a lithium secondary battery, wherein a water-based adhesive is used as an adhesive in the treatment.
JP2014143473A 2013-09-26 2014-07-11 Lithium secondary battery separator and method for producing lithium secondary battery separator Active JP6408810B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014143473A JP6408810B2 (en) 2013-09-26 2014-07-11 Lithium secondary battery separator and method for producing lithium secondary battery separator
CN201410496299.4A CN104518188B (en) 2013-09-26 2014-09-25 Secondary lithium batteries partition board base material and secondary lithium batteries partition board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013199926 2013-09-26
JP2013199926 2013-09-26
JP2014143473A JP6408810B2 (en) 2013-09-26 2014-07-11 Lithium secondary battery separator and method for producing lithium secondary battery separator

Publications (2)

Publication Number Publication Date
JP2015088460A JP2015088460A (en) 2015-05-07
JP6408810B2 true JP6408810B2 (en) 2018-10-17

Family

ID=53050995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143473A Active JP6408810B2 (en) 2013-09-26 2014-07-11 Lithium secondary battery separator and method for producing lithium secondary battery separator

Country Status (1)

Country Link
JP (1) JP6408810B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207233A1 (en) * 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium cell, battery with the lithium cell, as well as motor vehicle, mobile device or stationary storage element comprising the battery
JP6605996B2 (en) 2016-03-17 2019-11-13 株式会社東芝 Batteries, battery packs, and vehicles
CN110114911A (en) * 2016-12-27 2019-08-09 三菱制纸株式会社 Lithium ion battery separator and lithium ion battery
JP2019204689A (en) * 2018-05-24 2019-11-28 株式会社日立製作所 Insulating layer, battery cell sheet, and secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923957B (en) * 2009-06-11 2013-02-06 株式会社巴川制纸所 Separator for power storage device
JP2011035373A (en) * 2009-07-10 2011-02-17 Tomoegawa Paper Co Ltd Separator for power storage device
CN102549805B (en) * 2009-10-15 2015-08-05 三菱制纸株式会社 Secondary lithium batteries base material and secondary lithium batteries dividing plate
JP2011187346A (en) * 2010-03-10 2011-09-22 Mitsubishi Paper Mills Ltd Base material for lithium ion secondary battery
JP5767222B2 (en) * 2010-07-14 2015-08-19 三菱製紙株式会社 Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2012195162A (en) * 2011-03-16 2012-10-11 Mitsubishi Paper Mills Ltd Substrate for lithium secondary battery, and separator for lithium secondary battery
JP2013175323A (en) * 2012-02-24 2013-09-05 Mitsubishi Paper Mills Ltd Method of manufacturing lithium ion secondary battery separator
JP6317556B2 (en) * 2013-09-18 2018-04-25 三菱製紙株式会社 Lithium ion secondary battery separator and lithium ion secondary battery using the same

Also Published As

Publication number Publication date
JP2015088460A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6542343B2 (en) Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP5651120B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP4095670B2 (en) Non-woven fabric for non-aqueous electrolyte battery separator and non-aqueous electrolyte battery using the same
US11637349B2 (en) Substrate for lithium ion battery separators and lithium ion battery separator
JP5613069B2 (en) Separator for lithium secondary battery
JP5552040B2 (en) Separator for lithium secondary battery
KR102398127B1 (en) Separator for electrochemical device and electrochemical device comprising same
CN104518188B (en) Secondary lithium batteries partition board base material and secondary lithium batteries partition board
JP6408810B2 (en) Lithium secondary battery separator and method for producing lithium secondary battery separator
JP6317556B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2018125272A (en) Lithium ion battery separator
JP6076278B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2012123957A (en) Base material of lithium secondary battery and separator for lithium secondary battery
JP2012155941A (en) Separator for electrochemical element, and electrochemical element using the same
JP7156819B2 (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2012195162A (en) Substrate for lithium secondary battery, and separator for lithium secondary battery
JP2012190622A (en) Separator for electrochemical element, and electrochemical element including the same
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator
JP6016512B2 (en) Lithium secondary battery separator and lithium secondary battery
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP6581512B2 (en) Separator for lithium ion secondary battery
JP3229070U (en) Lithium ion battery separator
JP2019212436A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2019212403A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2012227115A (en) Lithium secondary battery substrate and lithium secondary battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180921

R150 Certificate of patent or registration of utility model

Ref document number: 6408810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250