WO2009152907A1 - Glas-keramik-plättchen zur verwendung in pigmenten - Google Patents

Glas-keramik-plättchen zur verwendung in pigmenten Download PDF

Info

Publication number
WO2009152907A1
WO2009152907A1 PCT/EP2009/003486 EP2009003486W WO2009152907A1 WO 2009152907 A1 WO2009152907 A1 WO 2009152907A1 EP 2009003486 W EP2009003486 W EP 2009003486W WO 2009152907 A1 WO2009152907 A1 WO 2009152907A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
tio
sio
flakes
composition according
Prior art date
Application number
PCT/EP2009/003486
Other languages
English (en)
French (fr)
Inventor
Reinhold Rueger
Anke Geisen
Gerald Karn
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP09765487A priority Critical patent/EP2280910A1/de
Priority to CN2009801192966A priority patent/CN102046551A/zh
Priority to JP2011510867A priority patent/JP2011520764A/ja
Priority to US12/994,497 priority patent/US8568526B2/en
Publication of WO2009152907A1 publication Critical patent/WO2009152907A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0018Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings uncoated and unlayered plate-like particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0039Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0057Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer
    • C09C1/0066Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/217FeOx, CoOx, NiOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/301Thickness of the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2220/00Methods of preparing the interference pigments
    • C09C2220/10Wet methods, e.g. co-precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres

Definitions

  • the present invention relates to a glass composition containing crystalline phases and glass flakes consisting thereof.
  • Glass slides can be used as the base substrate for effect pigments.
  • the glass slides can continue to be used in paints, coatings, printing inks, plastics and in cosmetic formulations. 10
  • the glass flakes described therein have the disadvantage that they preferably contain high levels of toxic heavy metals such as lead, arsenic or antimony. Glasses with higher levels of heavy metal oxides usually have low softening temperatures and are higher than thin platelets
  • the object of the present invention is to provide a glass formulation which contains no toxic heavy metals, preferably has a refractive index> 1.65 and at the same time is chemically and mechanically stable. From this glass composition slightly dimensionally stable * ® glass plates should be produced. These glass flakes should be uncoated or coated for paints, coatings, plastics, printing inks, cosmetic formulations and as a filler and as a base substrate for effect pigments.
  • a further object of the present invention is to find glass compositions which have a strong absorption and / or a high scattering power for long-wave UV light (UV-A and UV-B) and in the form of thin platelets or finely divided spherical particles as a UV protective pigment, for example in sunscreens, in clearcoats, as a filler, are suitable. 5
  • Another object of the invention is to find glass compositions which have an intense body color and have a high covering power as thin platelets and / or show a metallic luster. 10
  • glasses with a high refractive index are obtained when the glass formulation has at least one crystalline phase of a high refractive index metal oxide.
  • the partial crystallization of individual glass components increases the refractive index of the glass composition compared to the amorphous state.
  • the softening temperature 20 of the glasses is increased by the formation of crystals, which is particularly important for the further processing of the glasses. If the crystalline phase is colored, glasses with interesting color effects can be produced.
  • the present invention thus provides a glass composition containing at least one crystalline phase, preferably a high-index metal oxide.
  • the invention likewise provides a process for the preparation of the glass composition and the use of the glasses, preferably in the form of glass flakes in paints, lacquers, powder coatings, plastics, in cosmetic formulations and as a base substrate for the production of effect pigments.
  • the essential component of the glass composition according to the invention is at least one crystallizable high refractive index metal oxide.
  • the crystallizable phase is at least one high refractive index metal oxide.
  • the crystallisable phase is anatase (TiO 2 ) and / or rutile (TiO 2 ). 5
  • Suitable crystallizable high refractive metal oxides are TiO 2 in the rutile modification, TiO 2 in the anatase modification, titanates, such as barium, strontium, calcium or Bismuttitanate, titanium suboxides, niobates, '5 such as sodium niobate, tantalates, tungstates, iron oxide, such as Hematite or magnetite, iron titanate such as ilmenite or pseudobrookite, or mixtures of said high refractive index metal oxides.
  • Particularly preferred high-index metal oxides are rutile and anatase.
  • the concentration of the high refractive crystallizable metal oxide component (s) in the inventive glass composition is preferably 3 - 70% by weight, in particular 15 -. 50% by weight and very particularly preferably 20 -. 40 wt.%.
  • the glass composition contains 3-70% by weight of anatase (TiO 2 ), rutile (TiO 2 ),
  • the glass composition according to the invention contains glass and network formers known to those skilled in the art, such as SiO 2 , B 2 O 3 , P 2 O 5 , Na 2 O, K 2 O, CaO, 30 Al 2 O 3 , MgO and / or ZnO.
  • glass and network formers known to those skilled in the art, such as SiO 2 , B 2 O 3 , P 2 O 5 , Na 2 O, K 2 O, CaO, 30 Al 2 O 3 , MgO and / or ZnO.
  • a preferred glass composition contains
  • a particularly preferred glass contains 0 40 - 50 wt.% SiO 2 10 - 20 wt.% B 2 O 3 10 - 20 wt.% Na 2 O 15 - 30 wt.% TiO 2 , the total amount ⁇ 100 wt.% is. 5
  • the glass composition according to the invention preferably has a refractive index of> 1.65, in particular of> 1.75.
  • the glass components are melted, the partial crystallization in
  • the glass composition is amorphous and the partial crystallization is carried downstream, the tempering of the glass at temperatures of 600 - reaches 1000 0 C - 5 1100 0 C, preferably 700th
  • Produce glass slides which are characterized in that they have a high softening temperature, preferably> 700 0 C, and thus have a high dimensional stability at high temperatures.
  • the term "softening temperature” refers to the temperature range in which the glass exhibits the greatest change in the deformability. The glass changes from a more brittle to a softer, more elastic shape. This transition can be z. B. by means of differential scanning calorimetry (DSC)
  • the softening temperature is not necessarily a fixed property of the glass composition. It is also dependent on the manufacturing process of the glass and in particular the cooling rate or a subsequent temperature treatment (annealing).
  • the preparation of the glass flakes for example, by up ⁇ melt of the mixture of the glass composition according to the invention at elevated temperature, preferably at> 1000 0 C, the melt, and discharging the melt purify through a nozzle into a rotating cup. Due to the centrifugal forces in the rotating cup, the incoming glass is drawn out into a thin lamella, which constantly solidifies at the edges and breaks up into platelets.
  • the partial crystallization already takes place during the production of the platelets in the cooler zones, ie at the edge of the lamella.
  • the glass plates obtained are initially amorphous and the partial crystallization is achieved by subsequent tempering of the platelets.
  • the platelets can be used directly or before a post-treatment, for. B. a leaching in water, acids or alkali or a coating.
  • a preferred variant for producing glassy platelets containing crystalline phases is the treatment of the thin platelets in aqueous suspension with acids or alkalis, preferably with acids.
  • acids or alkalis preferably with acids.
  • Extensive elution of the alkali and alkaline earth ions from the 2 glass beads increases the softening temperature of the glass plates very strongly.
  • Preferably leached in acidic glass plates with crystalline phases contain less than 5 mol% of alkali and alkaline earth metal ions, more preferably less than 3 mol%.
  • Such glass plates can be heated to 1000 0 C or even without deformation. By annealing at higher temperatures, for example> 400 ° C., crystallization of the high-index metal oxide phases in the platelets proceeds. In this way, it is also possible to convert metal oxides which, in the leaching process, are not yet spontaneously or not completely crystallized into the crystalline phase. 35
  • a preferred glass composition after leaching eg, an acid treatment, which is thin platelets 50-70% by weight of SiO 2 30-50% by weight of TiO 2 0-3% by weight of Na 2 O.
  • metal ions, anions or neutral molecules in the glass matrix, e.g. * ® iron ions, manganese ions, rare earth ions or phosphates. These ions can interact directly or during annealing with the metal oxides present in the glass, can be doped into the crystal phases or form mixed crystals. In this way it is possible to produce colored, opaque, luminescent or dark platelets.
  • Another possibility for producing colored, dark or shiny metallic platelets is the reduction of crystalline phases containing glass platelets at higher temperature, e.g. with elemental hydrogen (forming gas), with hydrocarbon compounds, with ammonia or e.g. ⁇ with elemental carbon or silicon.
  • elemental hydrogen forming gas
  • hydrocarbon compounds with ammonia or e.g. ⁇ with elemental carbon or silicon.
  • ammonia, melamine or other nitrogen-containing compounds By reaction with ammonia, melamine or other nitrogen-containing compounds, the high-index phases can be doped with nitrogen in the form of nitride and partially converted into nitrides.
  • the glass platelets preferably have a thickness of 0.2 and 10 .mu.m, in particular from 0.3 to 3 .mu.m.
  • the diameter of the glass flakes is preferably 5-300 .mu.m, more preferably 10-100 .mu.m, further 5-60 .mu.m.
  • the glass platelets preferably have a refractive index of> 1.65, in particular of> 1.75.
  • the invention also provides a process for producing such glass flakes.
  • Glass compositions are characterized not only by their high refractive index and their chemical and mechanical stability, but also by their optical effects.
  • the glass slides show a high depending on the nature and size of the crystalline phases
  • the glass flakes are outstandingly suitable as a substrate in the production of effect pigments.
  • they are preferably with or
  • metal oxides coated Preferably, in the metal oxides are TiO 2 (anatase or rutile), Fe 2 ⁇ 3 or a TiO 2 / Fe 2 O 3 - a mixture. It is often advisable to pre-coat the glass flakes with an SiO 2 layer prior to application with one or more metal oxides. Due to the SiO 2 occupancy, the glass surface before chemical
  • the softening temperature is significantly increased by the SiO 2 occupancy.
  • the final pigments are further distinguished by their optical properties
  • the glass flakes can be covered with a metal oxide layer or with two, three, four or more metal oxide layers. Coating in this application means the complete coating of the untreated or leached glass flakes according to the invention.
  • the coating of the glass flakes with one or more metal oxides is preferably carried out wet-chemically, wherein the wet-chemical coating processes developed for the production of pearlescent pigments can be used.
  • wet-chemical coating processes developed for the production of pearlescent pigments can be used.
  • Such methods are e.g. described in DE 14 67 468, DE 19 59 988, DE 22 09 566, DE 22 14 545, DE 22 15 191, DE 22 44 298, DE 23 13 331, DE 15 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017 or in other known in the art patent documents and other publications.
  • the glass slides are suspended in water and with one or more hydrolyzable metal salts or a water glass solution is added at a suitable pH for the hydrolysis, which is chosen so that the metal oxides or metal oxide are precipitated directly on the platelets, without causing Maugramlun-
  • the pH is usually kept constant by simultaneous addition of a base and / or acid. Subsequently, the pigments are separated, washed and dried at 50-150 0 C for 6-18 h and annealed for 0.5-3 h, the annealing temperature can be optimized with respect to the particular coating present. Usually
  • '0 are the annealing temperatures at 500 - 1000 0 C, preferably at 600 -
  • the pigments can be separated off after application of individual coatings, dried and, if appropriate, calcined, and then re-suspended to precipitate the further layers.
  • the precipitation of the SiO 2 layer on the glass plate and / or on the already coated substrate is usually carried out by adding a potassium or sodium water-glass solution at a suitable pH.
  • the coating can also be carried out in a fluidized bed reactor by * gas phase coating, wherein z.
  • the methods proposed in EP 0 045 851 and EP 0 106 235 for the preparation of pearlescent pigments can be applied correspondingly.
  • O f) or postcoating further increases the chemical and photochemical stability or facilitates the handling of the pigment, in particular the incorporation into different media.
  • the invention also relates to the use of the coated or uncoated glass flakes in formulations in the field of paints, coatings, automotive coatings, powder coatings, printing ⁇ ⁇ color, security printing inks, plastics, ceramic materials, cosmetics.
  • the coated and uncoated glass slides can be used in glasses, in paper, in paper coating, in toners for electrophotographic printing processes, in seeds, in greenhouse films and tarpaulins, as absorbers in laser marking
  • Plastics in Pigmentante Trental Trental Trental Trental Trental Trental Trental Trental aqueous solvents, in pigment preparations and dry preparations, such as. Granules, as a UV protective pigment e.g. in clearcoats in the industrial and automotive sector, in sunscreens, as a filler, in particular in cosmetics.
  • a UV protective pigment e.g. in clearcoats in the industrial and automotive sector
  • sunscreens as a filler, in particular in cosmetics.
  • Example 1 Preparation of a crystalline phase glass composition
  • quartz sand, titanium dioxide, borax and soda are melted at 1350 ° C. to form a liquid glass.
  • the glass is poured into a mold, cooled rapidly and solidified. From the obtained glass block thin sections are produced.
  • the glass is colorless and transparent, the refractive index is 1.64.
  • the glass is X-ray amorphous.
  • Samples of the glass thus prepared are tempered for 30 minutes at 650 0 C and a further 3 hours at 750 0 C and then cooled.
  • the refractive index of the glass is 1.76.
  • Example 2 Preparation of a crystalline phase glass composition
  • quartz sand, titanium dioxide, niobium oxide, borax and soda are melted at 1350 ° C into a liquid glass.
  • the glass is poured into a mold, cooled quickly and solidified. From the obtained glass block thin sections are produced.
  • the glass is colorless and transparent, the refractive index is 1, 85 -1, 9. Samples of the glass thus prepared are tempered for 30 minutes at 650 0 C and a further 3 hours at 800 0 C and then cooled. The glass is now opaque and shows a pronounced pearlescence.
  • the refractive index is 2.
  • Example 1 The glass composition of Example 1 is melted in a platinum pan IO and discharged through a nozzle at 1050 0 C in a cab device with a rotating cup. It glass plates are obtained with a thickness of about 1, 2 microns. With an air jet mill, the glass slides are ground and classified. 0 100 g of the glass flakes from Example 3 for 48 hours at 80 0 C and pH 1, stirred in 1 liter of water 8, wherein the pH is adjusted with hydrochloric acid and kept constant. The sodium ions are largely eluted and 14.5 g of HCl are consumed. The platelets are then filtered off, dried and calcined at 800 ° C. for 1 hour. Man ⁇ receives a silvery-white pigment powder. The pigment powder is incorporated into a nitrocellulose lacquer and spread on a lacquer card. This gives a silvery-white lacquer layer with a pronounced glittering effect.
  • Samples of the unirradiated and annealed glass slides are UV / Vis spectra recorded in aqueous suspension.
  • the spectra show a long-wave shift of the absorption band of the TiO 2 .
  • the absorption band of the annealed glass platelets starts at 375 nm and reaches the maximum 5 already at 325 nm.
  • the spectra of the annealed glass platelets correspond to that of nanoscale anatase TiO 2 .
  • the result shows that the glass flakes contain crystalline TiO 2 after annealing.
  • Example 4 Preparation of crystalline TiO 2 -containing glass flakes
  • the melt is then discharged through a nozzle at 1100 0 C in a thin stream into a cab device with a rotating cup. It glass plates are obtained with a thickness of about 0.8 microns. The resulting 1 ⁇ platelets are then ground with an air jet mill and classified.
  • Example 5 Acid treatment of the titanium dioxide-containing glass platelets 20
  • Example 4 A sample of the glass flakes from Example 4 is stirred in 10% aqueous suspension at 8O 0 C for 48 hours. The pH of the suspension is adjusted to 1.8 with hydrochloric acid and kept constant. The suspension is then brought to room temperature, the glass plates are filtered off, washed with water and dried at 110 ° C. overnight.
  • annealing tests are performed to determine the softening temperature. For this purpose, the samples are each annealed for 30 minutes at the respective temperature. As a comparison, a sample of the glass flakes of Example 4 without acid treatment is examined.
  • the glass slides obtained by means of glowing tests are examined for crystalline components by means of X-ray diffractometry. It will be at Glass flakes from Example 4 at 600 0 C found no crystalline phases, while in the annealed samples (600 0 C, 750 0 C and 950 0 C)
  • a refractive index of 1, 9 is determined for the sample annealed at 950 ° C.
  • Samples annealed at 950 0 C glass flakes are incorporated into a nitrocellulose lacquer and coated on paint cards.
  • the paint cards show under directional lighting a pronounced glittering effect.
  • the paint cards of the pigments are characterized by high chroma and high gloss.
  • Example 7 Production of effect pigments by coating the glass flakes with anatase TiO 2
  • the pigment samples are worked up and annealed as described in Example 5.
  • the pigments are also stable up to 1000 ° C.
  • pigment samples are calcined at 650 0 C and 750 0 C and finally sieved. While annealed at 650 0 C samples are finely powdered and show neither deformation nor agglomerations annealed at 750 0 C samples are highly agglomerated, numerous pigment particles are bent and glued. Become from the pigments
  • the paint cards of the annealed at 650 0 C pigments are characterized by high chroma and high gloss, while the annealed at 750 0 C pigments cause a rough paint surface and hardly show any interference colors.
  • the results show that the softening point of the comparative pigments in
  • the melt is then discharged through a nozzle at 1100 0 C in a thin stream into a cab device with a rotating cup. It glass plates are obtained with a thickness of about 0.3 microns. The obtained platelets are then ground with an air jet mill and classified.
  • ⁇ ⁇ is kept constant. Subsequently, titanium dioxide is precipitated by slow dropwise addition of titanium tetrachloride solution. The pH is kept constant during the precipitation by addition of sodium hydroxide solution. To evaluate the interference colors, samples are drawn during occupancy, the occupancy is after reaching an achromatic endpoint
  • the resulting pigment is filtered off, washed and calcined at 900 ° C.
  • the evaluation of the pigment in the lacquer card results in a very poor color pigment with weak yellow-green interference.
  • the UV / Vis spectrum is recorded in strongly diluted aqueous suspension. The spectrum shows a strong absorption band in the ou UV-A and UV-B range, beginning at 375 nm.
  • the pigment is suitable for use in sunscreens and lotions or as a UV-absorbing cosmetic filler. 35
  • Example 10 Blue and Silver Interference Pigments
  • Example 4 Glass slides of the composition of Example 4 and a thickness of 450 nm are stirred in 10% aqueous suspension at 80 ° C for 10 hours.
  • the pH of the suspension is adjusted to 1.8 with hydrochloric acid and kept constant.
  • a sample is taken from the suspension, filtered off, dried at 110 ° C. and calcined at 750 ° C. (sample 10-1).
  • the bulk of the suspension is stirred for a further 40 hours *.
  • the suspension is brought to room temperature, the glass flakes are filtered off, washed with water and dried at 110 0 C overnight and also calcined at 750 0 C (sample 10-2).
  • From the annealed glass slides paint cards are made.
  • the lacquer card from sample 10-1 shows an intense blue interference pigment with high gloss, while the lacquer card from 10-2 has a high-gloss silver-white interference color.
  • Dried glass slides of sample 10-2 from example 10 are calcined under formation gas (92% N 2 /8% H 2 ) at 550 ° C. for 30 minutes. After cooling under forming gas to obtain a silvery gray pigment powder.
  • the pigment powder is stirred into nitrocellulose lacquer and lacquer smears are produced on PET film and on lacquer cards with lacquer ⁇ .
  • the layer thickness of the dry layer is about 50 microns, the pigment volume concentration 10%. This gives a metallic-looking aluminum-colored lacquer layer with high hiding power.
  • Dried glass slides of sample 10-2 from example 10 are calcined under forming gas (92% N 2 /8% H 2 ) at 850 ° C. for 30 minutes. After cooling 35 under forming gas to obtain a blue-gray pigment powder.
  • the pigment powder is stirred into nitrocellulose lacquer and it will be Paint cards coated with it.
  • the paint cards show a blue luster pigment with high opacity and metallic luster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cosmetics (AREA)
  • Glass Compositions (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Glaszusammensetzung enthaltend kristalline Phasen sowie daraus hergestellte Glasplättchen. Diese Glasplättchen können als Basissubstrat für Effektpigmente Anwendung finden. Die Glasplättchen können weiterhin in Farben, Lacken, Druckfarben, Kunststoffen und in kosmetischen Formulierungen verwendet werden. Die Glasplättchen werden in Glaskeramiken umgewandelt, und befinden sich in einem der folgenden Zusammensetzungsbereiche I oder Il in Gew. %: I: 40-50 SiO2, 10-20 B2O3, 10-20 Na2O, 15-30 TiO2; II: 10-60 SiO2, 5-30 B2O3, 5-40 TiO2, 2-20 Nb2O5, 2-20 Fe2O3, 5-40 Na2O+K2O+CaO+SrO+BaO.

Description

GLAS-KERAMIK-PLATTCHEN ZUR VERWENDUNG IN PIGMENTEN
Die vorliegende Erfindung betrifft eine Glaszusammensetzung enthaltend * kristalline Phasen sowie daraus bestehende Glasplättchen. Diese
Glasplättchen können als Basissubstrat für Effektpigmente Anwendung finden. Die Glasplättchen können weiterhin in Farben, Lacken, Druckfarben, Kunststoffen und in kosmetischen Formulierungen verwendet werden. 10
Effektpigmente auf der Basis von Glasplättchen sind im Stand der Technik bekannt. So werden beispielsweise dünne Glasplättchen aus hochbrechenden Gläsern in dem U. S.-Patent 2,863,783 beschrieben. Diese Glasplättchen werden als Perlglanzpigmente in Beschichtungen und
^ Kunststoffen eingesetzt. Die dort beschriebenen Glasplättchen haben aber den Nachteil, dass sie vorzugsweise hohe Gehalte toxischer Schwermetalle wie Blei, Arsen oder Antimon enthalten. Gläser mit höheren Gehalten von Schwermetalloxiden haben in der Regel niedrige Erweichungstemperaturen und sind als dünne Plättchen bei höheren
^•υ Temperaturen mechanisch instabil. Hinzu kommt in der Regel eine geringe chemische Stabilität der Glasplättchen. Zudem zeichnen sich derartige Glasplättchen durch eine hohe Dichte aus. Besonders dicke und große Plättchen neigen in Lacken, Suspensionen und Schmelzen dann dazu, dass sie sich am Boden absetzen und nur schwer wiederaufrühren lassen. 25
Die Aufgabe der vorliegenden Erfindung ist es eine Glasformulierung bereit zu stellen, die keine toxischen Schwermetalle enthält, vorzugsweise eine Brechzahl > 1 ,65 aufweist und gleichzeitig chemisch und mechanisch stabil ist. Aus dieser Glaszusammensetzung sollten sich leicht formstabile *® Glasplättchen herstellen lassen. Diese Glasplättchen sollten unbeschichtet oder beschichtet für Farben, Lacke, Kunststoffe, Druckfarben, kosmetische Formulierungen sowie als Füllstoff und als Basissubstrat für Effektpigmente geeignet sein.
35 Eine weitere Aufgabe der vorliegenden Erfindung besteht darin Glaszusammensetzungen zu finden, die eine starke Absorption und/oder ein hohes Streuvermögen für langwelliges UV-Licht (UV-A und UV-B) besitzen und sich in Form dünner Plättchen oder feinteiliger sphärischer Partikel als UV-Schutzpigment, z.B. in Sonnenschutzmittel, in Klarlacken, als Füllstoff, eignen. 5
Eine weitere Aufgabe der Erfindung ist es Glaszusammensetzungen zu finden, die eine intensive Körperfarbe aufweisen und als dünne Plättchen ein hohes Deckvermögen aufweisen und/oder einen metallischen Glanz zeigen. 10
Überraschenderweise wurde nun gefunden, dass man Gläser mit einer hohen Brechzahl erhält, wenn die Glasformulierung mindestens eine kristalline Phase eines hochbrechenden Metalloxids aufweist. Durch die partielle Kristallisation von einzelnen Glaskomponenten wird die Brechzahl '^ der Glaszusammensetzung gegenüber dem amorphen Zustand erhöht.
Auf diese Weise können hohe Brechzahlen mit wesentlich niedrigeren Gehalten an hochbrechenden Metalloxiden erreicht werden als in Gläsern ohne partielle Kristallisation. Gleichzeitig wird die Erweichungstemperatur 20 der Gläser durch die Kristallbildung erhöht, was insbesondere für die weitere Verarbeitung der Gläser von Bedeutung ist. Ist die kristalline Phase farbig lassen sich Gläser mit interessanten Farbeffekten herstellen.
Gegenstand der vorliegenden Erfindung ist somit eine Glaszusammen- 25 setzung enthaltend mindestens eine kristalline Phase, vorzugsweise eines hochbrechenden Metalloxids.
Gegenstand der Erfindung ist ebenfalls ein Verfahren zur Herstellung der Glaszusammensetzung sowie die Verwendung der Gläser, vorzugsweise ^® in Form von Glasplättchen in Farben, Lacken, Pulverlacken, Kunststoffen, in kosmetischen Formulierungen und als Basissubstrat für die Herstellung von Effektpigmenten.
Die wesentliche Komponente der erfindungsgemäßen Glaszusammen- 35 setzung ist mindestens ein kristallisierbares hochbrechendes Metalloxid.
Unter „hochbrechend" wird in dieser Anmeldung ein Brechungsindex n von > 1 ,8 verstanden. Vorzugsweise ist die kristallisierbare Phase mindestens ein hochbrechendes Metalloxid. Ganz besonders bevorzugt handelt es sich bei der kristallisierbaren Phase um Anatas (TiO2) und/oder Rutil (TiO2). 5
Es können auch mehrere, vorzugsweise zwei oder drei, hochbrechende Phasen nebeneinander vorliegen, vorzugsweise handelt es sich dann um Phasen aus
- Anatas (TiO2) + Rutil (TiO2) oder 1 ° - Rutil (TiO2) + Natriumniobat.
Geeignete kristallisierbare hochbrechende Metalloxide sind TiO2 in der Rutilmodifikation, TiO2 in der Anatasmodifikation, Titanate, wie z.B. Barium-, Strontium-, Calcium- oder Bismuttitanate, Titansuboxide, Niobate, '5 wie z.B. Natriumniobat, Tantalate, Wolframate, Eisenoxid, wie z.B. Hämatit oder Magnetit, Eisentitanat, wie z.B. Ilmenit oder Pseudobrookit, oder Gemische aus den genannten hochbrechenden Metalloxiden. Besonders bevorzugte hochbrechende Metalloxide sind Rutil und Anatas.
^■u Die Konzentration der hochbrechenden kristallisierbaren Metalloxid- komponente(n) in der erfindungsgemäßen Glaszusammensetzung beträgt vorzugsweise 3 - 70 Gew.%, insbesondere 15 - 50 Gew.% und ganz besonders bevorzugt 20 - 40 Gew.%. Vorzugsweise enthält die Glaszusammensetzung 3 - 70 Gew.% an Anatas (TiO2), Rutil (TiO2),
ΔΌ Titanat, Niobat, Eisenoxid, Tantalat, Wolframat und/oder Eisentitanat.
Neben der hochbrechenden Metalloxidkomponente enthält die erfindungsgemäße Glaszusammensetzung dem Fachmann bekannte Glas- und Netzwerkbildner, wie z.B. SiO2, B2O3, P2O5, Na2O, K2O, CaO, 30 AI2O3, MgO und/oder ZnO.
Eine bevorzugte Glaszusammensetzung enthält
10 - 60 Gew.% SiO2
35 5 - 30 Gew.% B2O3
5 - 40 Gew.% TiO2 5 - 40 Gew.% (Na2O + K2O + MeO, wobei Me = Ca, Sr und/oder Ba bedeutet)
2 - 20 Gew.% Nb2O3 2 - 20 Gew.% Fe2O3, wobei die Gesamtmenge < 100 Gew.% beträgt.
Ein besonders bevorzugtes Glas enthält 0 40 - 50 Gew.% SiO2 10 - 20 Gew.% B2O3 10 - 20 Gew.% Na2O 15 - 30 Gew.% TiO2, wobei die Gesamtmenge ≤ 100 Gew.% beträgt. 5
Die erfindungsgemäße Glaszusammensetzung weist vorzugsweise eine Brechzahl von > 1 ,65, insbesondere von > 1 ,75 auf.
Zur Herstellung der erfindungsgemäßen Gläser werden die Glas-^ komponenten aufgeschmolzen, wobei die partielle Kristallisation in
Abhängigkeit der Glaszusammensetzung schon während der Herstellung in den kühleren Zonen stattfindet. Vorzugsweise ist die erhaltene Glaszusammensetzung amorph und die partielle Kristallisation wird durch die nachgelagerte Temperung des Glases bei Temperaturen von 600 -5 1100 0C, vorzugsweise 700 - 1000 0C, erreicht.
Eine bevorzugte Glaszusammensetzung wird hergestellt, indem man eine Glaszusammensetzung bestehend/enthaltend 10 - 60 Gew.% SiO2, 5 - 30 Gew.% B2O3, 5 - 40 Gew.% TiO2, 5 - 40 Gew.% (Na2O + K2O + MeO,0 wobei Me = Ca, Sr und/oder Ba bedeutet), 2 - 20 Gew.% Nb2O3 sowie 2 - 20 Gew.% Fe2O3, wobei die Gesamtmenge < 100 Gew.% beträgt, bei > 1000 0C zu flüssigem Glas schmilzt, abkühlen und erstarren lässt und bei 5 min - 3 h bei > 600 0C tempert. ^ Aus der erfindungsgemäßen Glaszusammensetzung lassen sich
Glasplättchen herstellen, die sich dadurch auszeichnen, dass sie eine hohe Erweichungstemperatur, vorzugsweise > 700 0C, und damit eine hohe Formstabilität bei hohen Temperaturen aufweisen.
^ Unter Erweichungstemperatur wird der Temperaturbereich verstanden, in dem das Glas die stärkste Änderung der Verformungsfähigkeit aufweist. Das Glas geht dabei von einer spröderen in eine weichere elastischere Form über. Dieser Übergang lässt sich z. B. mit Hilfe der dynamischen Differentialkalorimetrie (Differential Scanning Calorimetry - DSC)
'0 analytisch bestimmen.
Die Erweichungstemperatur ist nicht zwangsläufig eine feststehende Eigenschaft der Glaszusammensetzung. Sie ist auch abhängig vom Herstellprozess des Glases und dabei besonders der Abkühlrate oder 5 einer nachfolgenden Temperaturbehandlung (Tempern).
In der Praxis sind unbeschichtete oder mit ein oder mehreren Metalloxiden und/oder Metallen beschichtete Glasplättchen bis zur Erweichungstemperatur und knapp darüber noch formstabil und verkleben nicht. Bei u höheren Temperaturen treten Verformungen und Verklebungen der Plättchen auf. Bei beschichteten Glasplättchen oder kristalline Phasen enthaltenden Glasplättchen lässt sich die Erweichungstemperatur nicht mehr zuverlässig mit Hilfe der DSC-Methode ermitteln. Aus diesen rein praktischen Gründen soll in dieser Patentanmeldung für die ΔO unbeschichteten und beschichteten Glasplättchen unter Erweichungstemperatur die Temperatur verstanden werden, bei der die Plättchen beginnen sich zu verformen oder beginnen miteinander zu verkleben.
Die Herstellung der Glasplättchen erfolgt beispielsweise durch Auf- ^ schmelzen des Gemenges der erfindungsgemäßen Glaszusammensetzung bei höherer Temperatur, vorzugsweise bei > 1000 0C, läutern der Schmelze und Ablassen der Schmelze durch eine Düse in eine rotierende Tasse. Durch die Fliehkräfte in der rotierenden Tasse wird das einlaufende Glas zu einer dünnen Lamelle ausgezogen, die ständig an den Rändern ^ erstarrt und zu Plättchen zerbricht. Im einfachsten Fall findet die partielle Kristallisation schon während der Herstellung der Plättchen in den kühleren Zonen, also am Rand der Lamelle, statt. Vorzugsweise sind die erhaltenen Glasplättchen aber zunächst amorph und die partielle Kristallisation wird durch nachgelagerte Temperung der Plättchen erreicht. Dazu können die Plättchen direkt eingesetzt werden oder vorher einer Nachbehandlung, z. B. einer Auslaugung in Wasser, Säuren oder Alkali oder einer Beschichtung unterzogen werden.
10
Eine bevorzugte Variante zur Herstellung von kristallinen Phasen enthaltenden Glasplättchen ist die Behandlung der dünnen Plättchen in wässriger Suspension mit Säuren oder Laugen, vorzugsweise mit Säuren. Dabei werden lösliche Komponenten, z.B. in Säuren die Netzwerkwandler,
'5 wie z.B. Alkali- oder Erdalkalioxide aus den Glasplättchen herausgelöst. Überraschenderweise wurde auch gefunden, dass dabei säurelösliche Metalloxide bereits partiell kristallisieren können. Diese Prozesse verlaufen zunächst oberflächennah, was bei den Plättchen in Verlauf des Auslaugprozesses zur Ausbildung interferenzfähiger dünner Schichten
^O höherer Brechzahl führen kann. Durch geeignete Steuerung dieses Prozesses sind Glasplättchen mit interessanten Interferenzfarben zugänglich, ohne dass die Plättchen beschichtet werden müssen.
Durch weitgehende Elution der Alkali- und Erdalkaliionen aus den 2^ Glasplättchen steigt die Erweichungstemperatur der Glasplättchen sehr stark an. Vorzugsweise enthalten im Sauren ausgelaugte Glasplättchen mit kristallinen Phasen weniger als 5 Mol % Alkali- und Erdalkaliionen, besonders bevorzugt weniger als 3 Mol %. Solche Glasplättchen können ohne Verformung bis 1000 0C oder auch darüber erhitzt werden. Durch ^® Glühen bei höheren Temperaturen, beispielsweise > 400 0C, schreitet die Kristallisation der hochbrechenden Metalloxidphasen in den Plättchen fort. Auf diese Weise können auch Metalloxide, die bei dem Auslaugprozess noch nicht spontan oder nicht vollständig kristallisieren in kristalline Phase überführt werden. 35
Eine bevorzugte Glaszusammensetzung nach der Auslaugung, z.B. einer Säurebehandlung, der dünnen Plättchen ist 50 - 70 Gew. % SiO2 30 - 50 Gew. % TiO2 0 - 3 Gew. % Na2O
5 wobei die Gesamtmenge < 100 Gew.% beträgt bezogen auf das
Glasplättchen.
Es ist auch möglich, während oder nach dem Auslaugprozess Metallionen, Anionen oder neutrale Moleküle in die Glasmatrix einzubaden, z.B. *® Eisenionen, Manganionen, Ionen der selten Erden oder Phosphate. Diese Ionen können direkt oder während der Glühung mit den im Glas vorhandenen Metalloxiden wechselwirken, in die Kristallphasen eindotiert werden oder Mischkristalle bilden. Auf diese Weise ist es möglich, farbige, opake, lumineszierende oder dunkle Plättchen herzustellen. 15
Eine weitere Möglichkeit zur Herstellung farbiger, dunkler oder metallisch glänzender Plättchen ist die Reduktion kristalliner Phasen enthaltender Glasplättchen bei höherer Temperatur, z.B. mit elementarem Wasserstoff (Formiergas), mit Kohlenwasserstoffverbindungen, mit Ammoniak oder z.B. ^ mit elementarem Kohlenstoff oder Silizium. Durch Reaktion mit Ammoniak, Melamin oder anderen stickstoffhaltigen Verbindungen können die hochbrechenden Phasen mit Stickstoff in Form von Nitrid dotiert und partiell in Nitride umgewandelt werden.
25 Alternative Herstellverfahren für Glasplättchen mit der erfindungsgemäßen Glaszusammensetzung sind z. B. die Aufschäumung von flüssigem Glas und die Zerkleinerung des erstarrten Glasschaumes oder das Glasblasen und die Zerkleinerung der dünnwandigen Glashohlkörper.
^ Die Glassplättchen haben vorzugsweise eine Dicke von 0,2 und 10 μm, insbesondere von 0,3 - 3 μm.
Der Durchmesser der Glasplättchen liegt vorzugsweise bei 5-300 μm, insbesondere bevorzugt bei 10-100 μm, ferner bei 5-60 μm.
35
Die Glasplättchen weisen vorzugsweise eine Brechzahl von > 1 ,65, insbesondere von > 1 ,75 auf. Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung solcher Glasplättchen.
^ Die so hergestellten Glasplättchen bestehend aus der erfindungsgemäßen
Glaszusammensetzung zeichnen sich nicht nur durch ihren hohen Brechungsindex und ihre chemische und mechanische Stabilität aus, sondern auch durch ihre optischen Effekte. In den Formulierungen zeigen die Glasplättchen je nach Art und Größe der kristallinen Phasen eine hohe
^ Transparenz, hohen Glanz und intensive Glitzereffekte oder aber intensive Körperfarben bei hohem Glanz und gutem Deckvermögen.
Die Glasplättchen sind hervorragend als Substrat bei der Herstellung von Effektpigmenten geeignet. Hierzu werden sie vorzugsweise mit ein oder
^ mehreren Metalloxiden beschichtet. Vorzugsweise handelt es sich bei den Metalloxiden um TiO2 (Anatas oder Rutil), Fe2θ3 oder ein TiO2/Fe2O3- Gemisch. Häufig empfiehlt es sich vor der Applikation mit ein oder mehreren Metalloxiden die Glasplättchen vorab mit einer SiO2-Schicht zu belegen. Durch die SiO2-Belegung wird die Glasoberfläche vor chemischer
^ Veränderung wie Quellung, Auslaugen von Glasbestandteilen oder
Auflösung in den aggressiven sauren Belegungslösungen geschützt. Auch die Erweichungstemperatur wird durch die SiO2-Belegung deutlich erhöht. Die finalen Pigmente zeichnen sich weiterhin durch ihre optischen
Eigenschaften, insbesondere durch einen erhöhten Glanz, aus. 25
Besonders bevorzugte Effektpigmente basierend auf den erfindungsgemäßen Glasplättchen weisen vorzugsweise folgende Oxid- beschichtungen auf:
30 Glasplättchen + TiO2
Glasplättchen + TiO27Fe2O3
Glasplättchen + Fe2O3
Glasplättchen + TiO2 + Fe2O3
Glasplättchen + TiO2 + Fe3O4 35 Glasplättchen + TiO2 + SiO2 + TiO2
Glasplättchen + Fe2O3 + SiO2 + TiO2
Glasplättchen + TiO27Fe2O3 + SiO2 + TiO2 Glasplättchen + TiO2 + SiO2 + TiO2ZFe2O3
Glasplättchen + TiO2 + SiO2
Glasplättchen + TiO2 + SiO2/AI2O3 Glasplättchen + TiO2 + AI2O3
Glasplättchen + SnO2
Glasplättchen + SiO2
Glasplättchen + SiO2 + TiO2
Glasplättchen + SiO2 + TiO2ZFe2O3 Glasplättchen + SiO2 + Fe2O3
Glasplättchen + SiO2 + TiO2 + Fe2O3
Glasplättchen + SiO2 + TiO2 + Fe3O4
Glasplättchen + SiO2 + TiO2 + SiO2 + TiO2
Glasplättchen + SiO2 + Fe2O3 + SiO2 + TiO2 Glasplättchen + SiO2 + TiO2ZFe2O3 + SiO2 + TiO2
Glasplättchen + SiO2 + TiO2 + SiO2 + TiO2ZFe2O3
Glasplättchen + SiO2 + TiO2 + SiO2
Glasplättchen + SiO2 + TiO2 + SiO2/AI2O3
Glasplättchen + SiO2 + TiO2 + AI2O3
Die Glasplättchen können mit einer Metalloxidschicht oder mit zwei, drei, vier oder mehr Metalloxidschichten belegt werden. Unter Beschichtung sind in dieser Anmeldung die komplette Umhüllung der erfindungsgemäßen unbehandelten oder ausgelaugten Glasplättchen zu verstehen.
Die Belegung der Glasplättchen mit ein oder mehreren Metalloxiden erfolgt vorzugsweise nasschemisch, wobei die zur Herstellung von Perlglanzpigmenten entwickelten nasschemischen Beschichtungsverfahren angewendet werden können. Derartige Verfahren sind z.B. beschrieben in DE 14 67 468, DE 19 59 988, DE 20 09 566, DE 22 14 545, DE 22 15 191 , DE 22 44 298, DE 23 13 331 , DE 15 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017 oder auch in weiteren dem Fachmann bekannten Patentdokumenten und sonstigen Publikationen.
Bei der Nassbeschichtung werden die Glasplättchen in Wasser suspendiert und mit ein oder mehreren hydrolysierbaren Metallsalzen oder einer Wasserglaslösung bei einem für die Hydrolyse geeigneten pH-Wert versetzt, der so gewählt wird, dass die Metalloxide bzw. Metalloxidhydrate direkt auf den Plättchen ausgefällt werden, ohne dass es zu Nebenfällun-
5 gen kommt. Der pH-Wert wird üblicherweise durch gleichzeitiges Zudosieren einer Base und/oder Säure konstant gehalten. Anschließend werden die Pigmente abgetrennt, gewaschen und bei 50-150 0C für 6-18 h getrocknet und 0,5-3 h geglüht, wobei die Glühtemperatur im Hinblick auf die jeweils vorliegende Beschichtung optimiert werden kann. In der Regel
'0 liegen die Glühtemperaturen bei 500 - 1000 0C, vorzugsweise bei 600 -
900 0C. Falls gewünscht, können die Pigmente nach Aufbringen einzelner Beschichtungen abgetrennt, getrocknet und ggf. geglüht werden, um dann zur Auffällung der weiteren Schichten wieder resuspendiert zu werden.
' ^ Die Auffällung der SiO2-Schicht auf das Glasplättchen und/oder auf das bereits beschichtete Substrat erfolgt in der Regel durch Zugabe einer Kalium- oder Natronwasserglas-Lösung bei einem geeigneten pH-Wert.
Weiterhin kann die Beschichtung auch in einem Wirbelbettreaktor durch *® Gasphasenbeschichtung erfolgen, wobei z. B. die in EP 0 045 851 und EP 0 106 235 zur Herstellung von Perlglanzpigmenten vorgeschlagenen Verfahren entsprechend angewendet werden können.
Zur Erhöhung der Licht-, Wasser- und Wetterstabilität empfiehlt es sich 25 häufig, in Abhängigkeit vom Einsatzgebiet, das fertige Pigment einer Nachbeschichtung oder Nachbehandlung zu unterziehen. Als Nachbe- schichtungen bzw. Nachbehandlungen kommen beispielsweise die in den DE-PS 22 15 191 , DE-OS 31 51 354, DE-OS 32 35 017 oder DE-OS 33 34 598 beschriebenen Verfahren in Frage. Durch diese
O f) oυ Nachbeschichtung wird die chemische und photochemische Stabilität weiter erhöht oder die Handhabung des Pigments, insbesondere die Einarbeitung in unterschiedliche Medien, erleichtert. Zur Verbesserung der Benetzbarkeit, Dispergierbarkeit und/oder Verträglichkeit mit den Anwendermedien können beispielsweise funktionelle Beschichtungen aus
35 SiO2, AI2O3 oder ZrO2 oder deren Gemische auf die Pigmentoberfläche aufgebracht werden. Weiterhin sind organische Nachbeschichtungen möglich, z.B. mit Silanen, wie beispielsweise beschrieben in der EP 0 090259, EP 0 634 459, WO 99/57204, WO 96/32446, WO 99/57204, U.S. 5,759,255, U.S. 5,571 ,851 , WO 01/92425 oder in JJ. Ponjee, Philips Technical Review, Vol. 44, No. 3, 81 ff. und P.H. Harding J. C. Berg, J. Adhesion Sei. Technol. Vol. 11 No. 4, S. 471-493.
Gegenstand der Erfindung ist somit auch die Verwendung der beschichteten oder unbeschichteten Glasplättchen in Formulierungen aus dem Bereich der Farben, Lacke, Automobillacke, Pulverlacke, Druck- ι υ färben, Sicherheitsdruckfarben, Kunststoffe, keramischen Materialien, Kosmetik. Weiterhin können die beschichteten und unbeschichteten Glasplättchen eingesetzt werden in Gläser, im Papier, im Papierstrich, in Tonern für elektrophotographische Druckverfahren, im Saatgut, in Gewächshausfolien und Zeltplanen, als Absorber bei der Lasermarkierung
10 von Papier und Kunststoffen, als Absorber beim Laserschweißen von
Kunststoffen, in Pigmentanteigungen mit Wasser, organischen und/oder wässrigen Lösemitteln, in Pigmentpräparationen und Trockenpräparaten, wie z. B. Granulaten, als UV-Schutzpigment z.B. in Klarlacken im Industrie- und Automobilbereich, in Sonnenschutz-mitteln, als Füllstoff, insbesondere ^ in der Kosmetik.
Alle Prozentangaben in dieser Anmeldung sind, sofern nicht anders angegeben, Gewichtsprozent. ^ Die nachfolgenden Beispiele sollen die Erfindung näher erläutern ohne sie jedoch zu beschränken.
Beispiele 0
Beispiel 1 : Herstellung einer Glaszusammensetzung mit kristalliner Phase
In einem Platintiegel werden Quarzsand, Titandioxid, Borax und Soda bei 1350 0C zu einem flüssigen Glas geschmolzen. Die Zusammensetzung 5 des Glases in Gew.% ist 46 Gew.% SiO2 16 Gew.% B2O3 14 Gew.% Na2O 24 Gew.% TiO2.
Das Glas wird in eine Form gegossen, rasch abgekühlt und erstarrt. Aus dem erhaltenen Glasblock werden Dünnschliffe hergestellt. Das Glas ist farblos und transparent, die Brechzahl beträgt 1 ,64. Das Glas ist röntgenamorph.
Proben des so hergestellten Glases werden 30 Minuten bei 650 0C und weitere 3 Stunden bei 750 0C getempert und anschließend abgekühlt. Das
Glas ist nun weißlich opak. Die Brechzahl des Glases beträgt 1,76.
Die Untersuchung mittels Röntgenbeugung (Pulver-Röntgendiffraktometer Stoe Stadi 611 KL, Cu-Kαi -Strahlung) belegt die Anwesenheit von TiO2 in der Rutilmodifikation im Glas.
Beispiel 2: Herstellung einer Glaszusammensetzung mit kristalliner Phase
In einem Platintiegel werden Quarzsand, Titandioxid, Nioboxid, Borax und Soda bei 1350 °C zu einem flüssigen Glas geschmolzen. Die Zusammensetzung des Glases in Gew.% ist
12 Gew.% SiO2 14 Gew.% B2O3 12 Gew.% Na2O 16 Gew.% TiO2 46 Gew.% Nb2O3.
Das Glas wird in eine Form gegossen, schnell abgekühlt und erstarrt. Aus dem erhaltenen Glasblock werden Dünnschliffe hergestellt. Das Glas ist farblos und transparent, die Brechzahl beträgt 1 ,85 -1 ,9. Proben des so hergestellten Glases werden 30 Minuten bei 650 0C und weitere 3 Stunden bei 800 0C getempert und anschließend abgekühlt. Das Glas ist nun opak und zeigt einen ausgeprägten Perlmuttglanz. Die Brechzahl liegt bei 2.
Die Untersuchung mittels Röntgenbeugung (Pulver-Röntgendiffraktometer Stoe Stadi 611 KL1 Cu-Kαi -Strahlung) belegt die Anwesenheit von Rutil- Tiθ2 und kristallinem Natriumniobat im Glas. 0
Beispiel 3: Herstellung von Glasplättchen
Die Glaszusammensetzung von Beispiel 1 wird in einer Platinwanne I O geschmolzen und durch eine Düse bei 1050 0C in eine Fiakervorrichtung mit rotierender Tasse abgelassen. Es werden Glasplättchen mit einer Dicke von ca. 1 ,2 μm erhalten. Mit einer Luftstrahlmühle werden die Glasplättchen gemahlen und klassiert. 0 100 g der Glasplättchen aus Beispiel 3 werden 48 Stunden bei 80 0C und pH1 ,8 in 1 Liter Wasser gerührt, wobei der pH-Wert mit Salzsäure eingestellt und konstant gehalten wird. Dabei werden die Natriumionen weitgehend eluiert und 14,5 g HCl verbraucht. Die Plättchen werden anschließend abfiltriert, getrocknet und 1 Stunde bei 800 0C geglüht. Man ^ erhält ein silbrig-weißes Pigmentpulver. Das Pigmentpulver wird in einen Nitrocellulose-Lack eingearbeitet und auf einer Lackkarte ausgestrichen. Man erhält eine silbrig-weiße Lackschicht mit ausgeprägtem Glitzereffekt.
Von Proben der ungeglühten und geglühten Glasplättchen werden in^ wässriger Suspension UV/Vis-Spektren aufgenommen. Die Spektren zeigen eine langwellige Verschiebung der Absorptionsbande des TiO2. Im Unterschied zu den nicht geglühten Glasplättchen, die ansteigende Absorption von 310 bis 230 nm zeigen, beginnt die Absorptionsbande der geglühten Glasplättchen bereits bei 375 nm und erreicht das Maximum 5 bereits bei 325 nm. Die Spektren der geglühten Glasplättchen entsprechen dem von nanoskaligem Anatas-TiO2. Das Ergebnis zeigt, dass die Glasplättchen nach dem Glühen kristallines TiO2 enthalten. Beispiel 4: Herstellung von kristallinem TiO2 enthaltenden Glasplättchen
In einem Platintiegel werden Quarzsand, Titandioxid und Soda bei 1450 0C ^ zu einem flüssigen Glas geschmolzen. Die Zusammensetzung des Glases in Gew.% ist
36 Gew% SiO2 23 Gew% Na2O 10 41 Gew% TiO2.
Die Schmelze wird dann durch eine Düse bei 1100 0C in dünnem Strahl in eine Fiakervorrichtung mit rotierender Tasse abgelassen. Es werden Glasplättchen mit einer Dicke von ca. 0,8 μm erhalten. Die erhaltenen 1^ Plättchen werden anschließend mit einer Luftstrahlmühle gemahlen und klassiert.
Beispiel 5: Säurebehandlung der titandioxidhaltigen Glasplättchen 20
Eine Probe der Glasplättchen aus Beispiel 4 wird in 10 %iger wässriger Suspension 48 Stunden bei 8O 0 C gerührt. Der pH-Wert der Suspension wird mit Salzsäure auf 1 ,8 gestellt und konstant gehalten. Anschließend wird die Suspension auf Raumtemperatur gebracht, die Glasplättchen 25 abfiltriert, mit Wasser gewaschen und bei 110 CC über Nacht getrocknet.
Mit Proben der Glasplättchen werden Glühversuche durchgeführt, um die Erweichungstemperatur zu bestimmen. Dazu werden die Proben jeweils 30 Minuten bei der jeweiligen Temperatur geglüht. Als Vergleich wird eine ^ Probe der Glasplättchen aus Beispiel 4 ohne Säurebehandlung untersucht.
Während die Glasplättchen aus Beispiel 4 bereits bei 650 0C verkleben, sind die säurebehandelten Glasplättchen auch bei 1000 °C noch nicht erweicht und formstabil. 35
Die bei Glühversuchen erhaltenen Glasplättchen werden mit Hilfe der Röntgend iffraktometrie auf kristalline Anteile untersucht. Dabei werden bei Glasplättchen aus Beispiel 4 bei 600 0C keine kristallinen Phasen gefunden, während bei den geglühten Proben (600 0C, 750 0C und 950 0C)
Rutil und Anatas nachgewiesen werden. 5
Mit Hilfe der Immersionsmethode wird eine Brechzahl von 1 ,9 für die bei 950 0C geglühte Probe ermittelt.
Proben der bei 950 0C geglühten Glasplättchen werden in einen Nitrocelluloselack eingearbeitet und auf Lackkarten aufgebracht. Die Lackkarten zeigen unter gerichteter Beleuchtung einen ausgeprägten Glitzereffekt.
'^ Beispiel 6: Herstellung von Effektpigmenten durch Beschichtung der Glasplättchen mit Rutil-TiO2
Aus den Glasplättchen gemäß Beispiel 5 werden durch Beschichtung mit Titandioxid in saurer wässriger Suspension Interferenzpigmente
2® hergestellt. Dazu werden 100 g Glasplättchen in 1 Liter Wasser suspendiert. Unter Rühren werden bei 75 0C 48 g einer 3,3 %igen salzsauren SnCI4-Lösung zugetropft, anschließend eine salzsaure Titantetrachloridlösung zudosiert. Durch Entnahme von Proben während der Titandioxidfällung werden Pigmente unterschiedlicher Interferenzfarbe
25 gewonnen. Die Proben werden abfiltriert, gewaschen und getrocknet, anschließend geglüht und abschließend noch gesiebt. Durch Glühen bei verschiedenen Temperaturen im Abstand von 50 0C werden die Erweichungspunkte bestimmt. Bis 1000 0C sind die Pigmente stabil, Verformungen oder Verklebungen sind nicht erkennbar. Aus den
3® Pigmenten werden zur Beurteilung der Koloristik Lackkarten hergestellt. Die Lackkarten der Pigmente zeichnen sich durch hohe Buntheit und hohen Glanz aus.
Von Proben der Pigmente werden Röntgendiffraktogramme aufge- ^ nommen. Die Analysen ergeben Rutil als vorherrschende Titandioxidmodifikation. Beispiel 7: Herstellung von Effektpigmenten durch Beschichtung der Glasplättchen mit Anatas-TiO2
^ Glasplättchen gemäß Beispiel 5 werden wie in Beispiel 6 beschrieben mit
Titandioxid beschichtet, aber ohne die Vorbekeimung mit Zinndioxid. Die Pigmentproben werden wie in Beispiel 5 beschrieben, aufgearbeitet und geglüht. Die Pigmente sind ebenfalls bis 1000 0C stabil.
'0 Im Unterschied zu den Pigmenten mit Zinndioxid-Vorbekeimung zeigt die Röntgendiffraktometrie Anatas als alleinige Titandioxidmodifikation.
Beispiel 8: (Vergleich) 15
Handelsübliche Glasplättchen aus ECR-Glas mit einer Dicke von ca. 850 nm werden gemahlen und klassiert. Es wird eine Fraktion mit d50 von ca. 80 μm erhalten.
ΔKJ 100 g dieser Glasplättchen werden in saurer wässriger Suspension, wie in Beispiel 5 beschrieben, zunächst mit Zinndioxid, anschließend mit Titandioxid beschichtet. Durch Entnahme von Proben während der Titandioxidfällung werden Pigmente unterschiedlicher Interferenzfarbe gewonnen. Die Proben werden abfiltriert, gewaschen und getrocknet.
25 Anschließend werden Pigmentproben bei 650 0C und 750 0C geglüht und abschließend noch gesiebt. Während die bei 650 0C geglühten Proben feinpulverig sind und weder Verformungen noch Agglomerationen zeigen, sind die bei 750 0C geglühten Proben stark agglomeriert, zahlreiche Pigmentpartikel sind verbogen und verklebt. Aus den Pigmenten werden
3^ zur Beurteilung der Koloristik Lackkarten hergestellt. Die Lackkarten der bei 650 0C geglühten Pigmente zeichnen sich durch hohe Buntheit und hohen Glanz aus, während die bei 750 0C geglühten Pigmente eine rauhe Lackoberfläche verursachen und kaum noch Interferenzfarben zeigen. Die Ergebnisse zeigen, dass der Erweichungspunkt der Vergleichspigmente in
35 der Größenordnung von 650 - 700 0C liegt, während bei den erfindungsgemäßen Pigmenten kein Erweichungspunkt bis 1000 °C auffindbar ist. Beispiel 9: Unbuntes UV-Schutzpigment
In einem Platintiegel werden Quarzsand, Titandioxid und Soda bei 1450 0C ^ zu einem flüssigen Glas geschmolzen. Die Zusammensetzung des Glases in Gew.% ist
41 Gew.% SiO2 28 Gew.% Na2O 10 31 Gew.% TiO2.
Die Schmelze wird dann durch eine Düse bei 1100 0C in dünnem Strahl in eine Fiakervorrichtung mit rotierender Tasse abgelassen. Es werden Glasplättchen mit einer Dicke von ca. 0,3 μm erhalten. Die erhaltenen ^ Plättchen werden anschließend mit einer Luftstrahlmühle gemahlen und klassiert.
100 g der Glasplättchen werden in 1 Liter Wasser bei 80 0C und pH=1 ,8 24 Stunden gerührt, wobei der pH-Wert durch Zugabe von Salzsäure
^υ konstant gehalten wird. Anschließend wird durch langsames Zutropfen von Titantetrachloridlösung Titandioxid aufgefällt. Der pH-Wert wird während der Fällung durch Zugabe von Natronlauge konstant gehalten. Zur Beurteilung der Interferenzfarben werden Proben während der Belegung gezogen, die Belegung wird nach Erreichen eines unbunten Endpunktes
25 abgebrochen. Das erhaltene Pigment wird abfiltriert, gewaschen und bei 900 0C geglüht. Die Auswertung des Pigmentes in der Lackkarte ergibt ein sehr farbschwaches Pigment mit schwach gelb-grüner Interferenz. Von einer Probe des Pigmentes wird in stark verdünnter wässriger Suspension das UV/Vis-Spektrum aufgenommen. Das Spektrum zeigt eine starke ou Absorptionsbande im UV-A und UV-B-Bereich, beginnend bei 375 nm.
Aufgrund seiner UV-absorbierenden Eigenschaften ist das Pigment geeignet zur Verwendung in Sonnenschutzcremes und Lotionen oder auch als UV-absorbierender kosmetischer Füllstoff. 35 Beispiel 10: Blaue und silberweise Interferenzpigmente
Glassplättchen der Zusammensetzung aus Beispiel 4 und einer Dicke von ^ 450 nm werden in 10%iger wässriger Suspension 10 Stunden bei 80 °C gerührt. Der pH-Wert der Suspension wird mit Salzsäure auf 1 ,8 gestellt und konstant gehalten. Von der Suspension wird eine Probe entnommen, abfiltriert, gewaschen bei 110 0C getrocknet und bei 750 0C geglüht (Probe 10-1). Die Hauptmenge der Suspension wird noch 40 Stunden weiter *® gerührt. Anschließend wird die Suspension auf Raumtemperatur gebracht, die Glasplättchen abfiltriert, mit Wasser gewaschen und bei 110 0C über Nacht getrocknet und ebenfalls bei 750 0C geglüht (Probe 10-2). Von den geglühten Glasplättchen werden Lackkarten hergestellt. Die Lackkarte aus Probe 10-1 zeigt ein intensiv blaues Interferenzpigment mit hohem Glanz, ^ während die Lackkarte aus 10-2 eine hochglänzende silberweiße Interferenzfarbe aufweist.
Beispiel 11 : Reduktion 20
Getrocknete Glasplättchen der Probe 10-2 aus Beispiel 10 werden unter Formiergas (92 % N2/8 % H2) 30 min bei 550 0C geglüht. Nach Abkühlen unter Formiergas erhält man ein silbrig graues Pigmentpulver. Das Pigmentpulver wird in Nitrocelluloselack eingerührt und mit dem Lack ΔΌ werden Lackabstriche auf PET-Folie und auf Lackkarten hergestellt. Die Schichtdicke der trockenen Schicht beträgt ca. 50 μm, die Pigmentvolumenkonzentration 10 %. Man erhält eine metallisch anmutende aluminiumfarbene Lackschicht mit hohem Deckvermögen.
30
Beispiel 12: Reduktion
Getrocknete Glasplättchen der Probe 10-2 aus Beispiel 10 werden unter Formiergas (92 % N2/8 % H2) 30 min bei 850 0C geglüht. Nach Abkühlen 35 unter Formiergas erhält man ein blaugraues Pigmentpulver. Das Pigmentpulver wird in Nitrocelluloselack eingerührt und es werden Lackkarten damit beschichtet. Die Lackkarten zeigen ein blaues Glanzpigment mit hohem Deckvermögen und metallischem Glanz.

Claims

Patentansprüche
1. Glaszusammensetzung, dadurch gekennzeichnet, dass sie ^ mindestens eine kristalline Phase enthält.
2. Glaszusammensetzung nach Anspruch 1 , dadurch gekennzeichnet, dass die Glaszusammensetzung einen Brechungsindex von > 1 ,65 aufweist. 10
3. Glaszusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Glaszusammensetzung mindestens eine kristalline hochbrechende (Brechungsindex n > 1 ,8) Phase eines
Metalloxids enthält. 15
4. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie mindestens eine kristalline Phase aus Rutil (TiO2), Anatas (TiO2), Titanat, Niobat, Titansuboxid, Eisenoxid, Tantalat, Wolframat, Eisenoxid und/oder Eisentitanat oder
^u deren Gemische enthält.
5. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie eine kristalline Phase aus Bariumtitanat, Strontiumtitanat, Calciumtitanat und/oder Bismuttitanat
25 enthält.
6. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie eine kristalline Phase aus
Natriumniobat enthält. 30
7. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie eine kristalline Phase aus Hämatit und/oder Magnetit enthält.
^5 8. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie eine kristalline Phase aus Ilmenit und/oder Pseudobrookit enthält.
9. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie eine kristalline Phase aus Rutil (Tiθ2) und/oder eine kristalline Phase aus Anatas (TiO2) enthält.
10. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Glaszusammensetzung 3 - 70 Gew.% an Anatas (TiO2), Rutil (TiO2), Titanat, Niobat, Eisenoxid, Tantalat, Wolframat, Eisenoxid und/oder Eisentitanat enthält. 0
11. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Glaszusammensetzung
40 - 50 Gew.% SiO2 5 10 - 20 Gew.% B2O3
10 - 20 Gew.% Na2O 15 - 30 Gew.% TiO2, wobei die Gesamtmenge < 100 Gew.% beträgt, enthält. ^
12. Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Glaszusammensetzung
10 - 60 Gew.% SiO2
5 - 30 Gew.% B2O3 5 5 - 40 Gew.% TiO2
5 - 40 Gew.% (Na2O + K2O + MeO, wobei Me = Ca, Sr und/oder Ba bedeutet)
2 - 20 Gew.% Nb2O3 2 - 20 Gew.% Fe2O3, ^ wobei die Gesamtmenge < 100 Gew.% beträgt, enthält.
13. Verfahren zur Herstellung der Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man eine Glaszusammensetzung enthaltend mindestens ein5 kristallisierbares hochbrechendes Metalloxid bei > 1000 0C zu flüssigem Glas schmilzt, abkühlen und erstarren lässt und bei 5 min - 3 h bei > 600 0C tempert.
14. Verfahren zur Herstellung der Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man eine Glaszusammensetzung bestehend/enthaltend 10 - 60 Gew.% SiO2, 5 - 30 Gew.% B2O3, 5 - 40 Gew.% TiO2, 5 - 40 Gew.%
(Na2O + K2O + MeO, wobei Me = Ca, Sr und/oder Ba bedeutet), 2 - 20 Gew.% Nb2O3 sowie 2 - 20 Gew.% Fe2O3, wobei die Gesamtmenge < 100 Gew.% beträgt, bei > 1000 0C zu flüssigem Glas schmilzt, abkühlen und erstarren lässt und bei 5 min - 3 h bei > 0 600 0C tempert.
15. Verwendung der Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12 zur Herstellung von Glasplättchen.
ι υ 16. Verfahren zur Herstellung von Glasplättchen bestehend aus einer
Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass
- die Glasformulierung bei Temperaturen > 1000 0C aufge- ® schmolzen wird, die Schmelze geläutert und durch eine Düse in eine rotierende Tasse abgelassen wird, wobei in der rotierenden Tasse das einlaufende Glas zu einer dünnen Lamelle ausgezogen wird, die ständig an den Rändern erstarrt und zu Plättchen zerbricht, oder 5
- durch Aufschäumung von flüssigem Glas und Zerkleinerung des erstarrten Glasschaumes Plättchen erhalten werden, oder
- durch Glasblasen und die Zerkleinerung der dünnwandigen 0 Glashohlkörper Plättchen erhalten werden.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die finalen Glasplättchen abschließend einer Auslaugung in Wasser, Säuren oder Laugen unterzogen werden. 5
18. Glasplättchen bestehend aus der Glaszusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12.
19. Glasplättchen nach Anspruch 18, dadurch gekennzeichnet, dass sie zusätzlich einer Auslaugung in Wasser, Säuren oder Laugen unterzogen worden sind.
20. Glasplättchen nach Anspruch 19, dadurch gekennzeichnet, dass sie nach der Auslaugung eine Zusammensetzung aus
50 - 70 Gew. % SiO2 30 - 50 Gew. % TiO2
0 - 3 Gew. % Na2O aufweisen, wobei die Gesamtmenge < 100 Gew.% beträgt bezogen auf das Glasplättchen.
21. Glasplättchen nach einem oder mehreren der Ansprüche 18, 19 oder 20, dadurch gekennzeichnet, dass sie folgende Oxidbeschichtungen aufweisen:
Glasplättchen + TiO2 Glasplättchen + TiO27Fe2O3
Glasplättchen + Fe2O3
Glasplättchen + TiO2 + Fe2O3
Glasplättchen + TiO2 + Fe3O4
Glasplättchen + TiO2 + SiO2 + TiO2 Glasplättchen + Fe2O3 + SiO2 + TiO2
Glasplättchen + TiO27Fe2O3 + SiO2 + TiO2
Glasplättchen + TiO2 + SiO2 + TiO27Fe2O3
Glasplättchen + TiO2 + SiO2
Glasplättchen + TiO2 + SiO2/AI2O3 Glasplättchen + TiO2 + AI2O3
Glasplättchen + SnO2
Glasplättchen + SiO2
Glasplättchen + SiO2 + TiO2
Glasplättchen + SiO2 + TiO27Fe2O3 Glasplättchen + SiO2 + Fe2O3
Glasplättchen + SiO2 + TiO2 + Fe2O3
Glasplättchen + SiO2 + TiO2 + Fe3O4 Glasplättchen + SiO2 + TiO2 + SiO2 + TiO2 Glasplättchen + SiO2 + Fe2O3 + SiO2 + TiO2 Glasplättchen + SiO2 + TiO27Fe2O3 + SiO2 + TiO2 5 Glasplättchen + SiO2 + TiO2 + SiO2 + TiO27Fe2O3
Glasplättchen + SiO2 + TiO2 + SiO2 Glasplättchen + SiO2 + TiO2 + SiO2/AI2O3 Glasplättchen + SiO2 + TiO2 + AI2O3.
^
22. Verwendung der Glasplättchen nach einem oder mehreren der
Ansprüche 18 bis 21 in Farben, Lacken, Druckfarben, Kunststoffen, in kosmetischen Formulierungen, in Pigmentanteigungen, in Pigmentpräparationen, in Pigmentpräparaten, als Substrat für Effektpigmente, als Füllstoff, als UV-Schutzpigment, als Absorber bei
15 der Lasermarkierung von Kunststoffen, als Absorber beim
Laserschweißen von Kunststoffen
23. Effektpigmente, dadurch gekennzeichnet, dass sie auf Glasplättchen nach einem oder mehreren der Ansprüche 18 bis 21 basieren. 0
24. UV-Schutzpigmente, enthaltend Glasplättchen nach einem oder mehreren der Ansprüche 18 bis 21. 5
0
35
PCT/EP2009/003486 2008-05-27 2009-05-15 Glas-keramik-plättchen zur verwendung in pigmenten WO2009152907A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09765487A EP2280910A1 (de) 2008-05-27 2009-05-15 Glas-keramik-plättchen zur verwendung in pigmenten
CN2009801192966A CN102046551A (zh) 2008-05-27 2009-05-15 用于颜料中的玻璃-陶瓷薄片
JP2011510867A JP2011520764A (ja) 2008-05-27 2009-05-15 顔料における使用のためのガラス−セラミックフレーク
US12/994,497 US8568526B2 (en) 2008-05-27 2009-05-15 Glass-ceramic discs for use in pigments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008025277.8 2008-05-27
DE102008025277A DE102008025277A1 (de) 2008-05-27 2008-05-27 Glaszusammensetzung

Publications (1)

Publication Number Publication Date
WO2009152907A1 true WO2009152907A1 (de) 2009-12-23

Family

ID=41010028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/003486 WO2009152907A1 (de) 2008-05-27 2009-05-15 Glas-keramik-plättchen zur verwendung in pigmenten

Country Status (7)

Country Link
US (1) US8568526B2 (de)
EP (1) EP2280910A1 (de)
JP (1) JP2011520764A (de)
KR (1) KR20110017399A (de)
CN (1) CN102046551A (de)
DE (1) DE102008025277A1 (de)
WO (1) WO2009152907A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
CN105110646A (zh) * 2015-08-27 2015-12-02 陕西科技大学 一种含三斜铁辉石晶相的微晶玻璃及其制备方法
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
CN111020476A (zh) * 2019-12-29 2020-04-17 安徽立光电子材料股份有限公司 一种镀膜的pc复合板及其制作工艺

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0903460D0 (en) * 2009-03-02 2009-04-08 Watkinson Charles J Powdered glass
EP2607432A1 (de) * 2011-12-21 2013-06-26 Merck Patent GmbH Effektpigmente basierend auf Substraten die einen Kreisformfaktor von 1,2-2 aufweisen
ES2684773T3 (es) * 2013-04-30 2018-10-04 Merck Patent Gmbh Copos de alfa-Alúmina
CN105377783B (zh) 2013-05-10 2019-03-08 康宁股份有限公司 采用低熔融玻璃或薄吸收膜对透明玻璃片进行激光焊接
CN109071325B (zh) * 2013-05-10 2022-04-29 康宁股份有限公司 包含透明激光焊接区域的密封装置
CN111268912B (zh) 2013-08-30 2022-08-30 康宁股份有限公司 可离子交换玻璃、玻璃-陶瓷及其制造方法
US9926222B2 (en) * 2014-03-20 2018-03-27 General Electric Technology Gmbh Insulation material and a method to produce
CN105315723B (zh) * 2014-08-04 2020-04-03 福建坤彩材料科技股份有限公司 一种珠光颜料包膜材料的制备方法
ES2895430T3 (es) 2016-01-15 2022-02-21 Univ Minnesota Métodos y composiciones para el tratamiento de enfermedad neurológica
US20170362119A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
CN109963702B (zh) * 2016-11-22 2022-02-18 默克专利股份有限公司 用于激光可标记及激光可焊接的聚合物材料的添加剂
EP3561006B1 (de) * 2016-12-26 2021-02-24 Nippon Sheet Glass Company, Limited Glanzpigment, pigmenthaltige zusammensetzung und pigmenthaltiger beschichteter artikel
JP6243093B1 (ja) * 2016-12-26 2017-12-06 日本板硝子株式会社 光輝性顔料、顔料含有組成物、及び顔料含有塗装体
JPWO2018159564A1 (ja) * 2017-02-28 2019-12-19 味の素株式会社 樹脂組成物
JP6395987B1 (ja) * 2017-04-06 2018-09-26 日本板硝子株式会社 紫外線遮蔽材、並びに、それを配合した組成物及び塗装体
WO2018186076A1 (ja) * 2017-04-06 2018-10-11 日本板硝子株式会社 紫外線遮蔽材、並びに、それを配合した組成物及び塗装体
CN108840570B (zh) * 2018-07-18 2021-04-27 陕西科技大学 含NaNbO3相的Na2O-K2O-Nb2O5-SiO2低介电损耗储能玻璃陶瓷
CN109467313A (zh) * 2018-12-13 2019-03-15 同济大学 高储能密度铌酸钡钠基玻璃陶瓷储能材料及其制备和应用
CN109608046B (zh) * 2019-01-10 2021-06-01 陕西科技大学 一种含硼的玻璃结构紧密的铌酸盐基储能玻璃陶瓷及其制备方法
EP3826664A4 (de) 2019-02-06 2022-10-26 Sangamo Therapeutics, Inc. Verfahren zur behandlung von mukopolysaccharidose typ i
KR20210146986A (ko) 2019-04-02 2021-12-06 상가모 테라퓨틱스, 인코포레이티드 베타-지중해빈혈의 치료 방법
CN110240407A (zh) * 2019-07-02 2019-09-17 黄山市晶特美新材料有限公司 抗冲击玻璃油墨用含Nb2O5的低温无铅玻璃粉及其制备方法
CA3159620A1 (en) 2019-11-01 2021-05-06 Sangamo Therapeutics, Inc. Compositions and methods for genome engineering
EP4087740A4 (de) * 2020-01-08 2024-01-24 Brady Worldwide Inc Spezialisierte tintensätze und alternative fluide sowie verwandte systeme
CN111170645A (zh) * 2020-01-15 2020-05-19 浙江工业大学 一种含纳米颗粒的玻璃微粉及其制备方法
CN111423127A (zh) * 2020-04-21 2020-07-17 北京北旭电子材料有限公司 一种玻璃粉的制备方法和玻璃粉
DE102022107151A1 (de) 2022-03-25 2023-09-28 Institut Für Nanophotonik Göttingen E.V. Verfahren zum Versehen von Glas-Targets mit einer optisch wahrnehmbaren Markierung, Glaserzeugnis und Verwendung eines Titan-Silizium-Glases
CN117326797A (zh) * 2023-09-06 2024-01-02 景德镇陶瓷大学 一种光伏玻璃油墨用低熔点微晶玻璃熔剂的制备方法及其应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662020A (en) * 1950-05-26 1953-12-08 United Aircraft Corp Refractory vitreous ceramic coating material
US4140645A (en) * 1978-06-12 1979-02-20 Corning Glass Works Glasses and glass-ceramics suitable for induction heating
US20070225424A1 (en) * 2006-03-24 2007-09-27 Merck Patent Gmbh Glass flakes, and the use thereof as transparent filler
US20070265154A1 (en) * 2005-05-12 2007-11-15 Ferro Corporation Porcelain Enamel Having A Metallic Appearance
US20070289496A1 (en) * 2004-10-19 2007-12-20 Manfred Kieser Opaque Plastics

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863783A (en) 1956-11-15 1958-12-09 Francis Earle Lab Inc Nacreous material from glass
NL135722C (de) 1961-06-28
DE1522572A1 (de) 1967-03-23 1969-09-18 Marcus Cantarano Verfahren und Vorrichtung zum photoelektrischen Herstellen von Reproduktionen
DE2009566C2 (de) 1970-02-28 1972-06-15 Merck Patent Gmbh Verfahren zur Herstellung von Titandioxid- bzw. Titandioxidaquatüberzügen
CA964403A (en) 1971-03-26 1975-03-18 Howard R. Linton Nacreous pigments of improved luster and process for their manufacture
CA957108A (en) 1971-03-30 1974-11-05 E. I. Du Pont De Nemours And Company Pigments treated with methacrylatochromic chloride for improved humidity resistance
DE2244298C3 (de) 1972-09-09 1975-06-19 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente und Verfahren zu ihrer Herstellung
DE2313331C2 (de) 1973-03-17 1986-11-13 Merck Patent Gmbh, 6100 Darmstadt Eisenoxidhaltige Glimmerschuppenpigmente
DE3030056A1 (de) 1980-08-08 1982-03-25 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von mit metalloxiden beschichteten schuppenfoermigen glimmerpigmenten
DE3137808A1 (de) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente mit verbesserter lichtechtheit, verfahren zur herstellung und verwendung
DE3137809A1 (de) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt "perlglanzpigmente, ihre herstellung und ihre verwendung"
DE3151354A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente, verfahren zu ihrer herstellung und ihre verwendung
DE3151355A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt "perlglanzpigmente mit verbesserter lichtbestaendigkeit, ihre herstellung und verwendung"
DE3151343A1 (de) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente mit verbesserter lichtbestaendigkeit, ihre herstellung und ihre verwendung
DE3211166A1 (de) 1982-03-26 1983-09-29 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur hydrophobierung von perlglanzpigmenten
DE3211602A1 (de) 1982-03-30 1983-10-13 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur herstellung von perlglanzpigmenten mit verbesserten glanzeigenschaften
DE3235017A1 (de) 1982-09-22 1984-03-22 Merck Patent Gmbh, 6100 Darmstadt Perlglanzpigmente
DE3237264A1 (de) 1982-10-08 1984-04-12 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von mit metalloxid beschichteten effektpigmenten
DE3334598A1 (de) 1983-09-24 1985-04-18 Merck Patent Gmbh Witterungsbestaendige perlglanzpigmente
DE4323914A1 (de) 1993-07-16 1995-01-19 Merck Patent Gmbh Perlglanzpigment-Zubereitung
US5565388A (en) * 1993-11-16 1996-10-15 Ppg Industries, Inc. Bronze glass composition
US5571851A (en) 1994-01-28 1996-11-05 J.M. Huber Corporation Reinforcing fillers for plastics systems
JP3577576B2 (ja) 1995-04-10 2004-10-13 メルク株式会社 表面処理剤、表面処理薄片状顔料及びその製造方法
US5759255A (en) 1996-02-07 1998-06-02 Engelhard Corporation Pearlescent pigment for exterior use
DE19820112A1 (de) 1998-05-06 1999-11-11 Eckart Standard Bronzepulver Mit reaktiven Orientierungshilfsmitteln beschichtete Effektpigmente
US6245323B1 (en) 2000-05-26 2001-06-12 Engelhard Corporation Bonded metal hydroxide-organic composite polymer films on particulate substrates
US7740899B2 (en) 2002-05-15 2010-06-22 Ferro Corporation Electronic device having lead and cadmium free electronic overglaze applied thereto
US6875264B2 (en) * 2003-01-17 2005-04-05 Engelhard Corporation Multi-layer effect pigment
CN1720203A (zh) * 2003-02-27 2006-01-11 日本板硝子株式会社 鳞片状玻璃及其制造方法
JP2006062945A (ja) * 2004-07-27 2006-03-09 Asahi Fiber Glass Co Ltd ガラスパウダーおよびそれを配合してなる樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662020A (en) * 1950-05-26 1953-12-08 United Aircraft Corp Refractory vitreous ceramic coating material
US4140645A (en) * 1978-06-12 1979-02-20 Corning Glass Works Glasses and glass-ceramics suitable for induction heating
US20070289496A1 (en) * 2004-10-19 2007-12-20 Manfred Kieser Opaque Plastics
US20070265154A1 (en) * 2005-05-12 2007-11-15 Ferro Corporation Porcelain Enamel Having A Metallic Appearance
US20070225424A1 (en) * 2006-03-24 2007-09-27 Merck Patent Gmbh Glass flakes, and the use thereof as transparent filler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. R. PINCKNEY: "Glass-Ceramics", KIRK-OTHMER ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, vol. 12, 2002, pages 626 - 644, XP002544820 *
P. R. HRMA ET AL.: "Property/composition relationships for Hanford high-level waste glasses melting at 1150°C; PNL REPORT 10359 TO THE US DEPARTMENT OF ENERGY", 1994, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WA, USA, XP002544821 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
CN105110646A (zh) * 2015-08-27 2015-12-02 陕西科技大学 一种含三斜铁辉石晶相的微晶玻璃及其制备方法
CN111020476A (zh) * 2019-12-29 2020-04-17 安徽立光电子材料股份有限公司 一种镀膜的pc复合板及其制作工艺

Also Published As

Publication number Publication date
US8568526B2 (en) 2013-10-29
US20110129674A1 (en) 2011-06-02
CN102046551A (zh) 2011-05-04
KR20110017399A (ko) 2011-02-21
EP2280910A1 (de) 2011-02-09
JP2011520764A (ja) 2011-07-21
DE102008025277A1 (de) 2009-12-03

Similar Documents

Publication Publication Date Title
WO2009152907A1 (de) Glas-keramik-plättchen zur verwendung in pigmenten
EP1213330B1 (de) Silberfarbenes Glanzpigment
EP0933403B1 (de) Interferenzpigmente mit blauer Körperfarbe
EP2531563B1 (de) Effektpigmente
EP2370371B1 (de) Eingefärbte glaspartikel, verfahren zu deren herstellung und deren verwendung
DE4222372A1 (de) Rußhaltige Pigmente
WO2004055119A1 (de) Silberweisse interferenzpigmente mit hohem glanz aud der basis von transparenten substratplättchen
DE10120179A1 (de) Farbige Pigmente
EP1469040A2 (de) Interferenzpigmente mit einer lichtabsorbierenden Schicht
DE102004039554A1 (de) Perlglanzpigmente
EP0723998B1 (de) Farbstabiles Bismutvanadat-Gelbpigmente
EP0940451B9 (de) Goniochromatische Glanzpigmente auf Basis mehrfach beschichteter Eisenoxidplättchen
DE4429797A1 (de) Oberflächenmodifizierte Pigmente und deren Verwendung zur Vergilbungsinhibierung von pigmentierten Kunststoffen
EP3596170A1 (de) Effektpigmente
EP0544867B1 (de) Beschichtete plättchenförmige pigmente, deren herstellung und verwendung
WO2006042610A1 (de) Opake kunststoffe
DE102017011800A1 (de) Effektpigmente
DE10331903A1 (de) Deckendes Silberpigment
EP2859052B1 (de) Verfahren zur herstellung von zns-teilchen mit einer beschichtung aus metalloxid mit einem gehalt an kobalt, die so erhaltenen produkte und deren verwendung
EP2917286B1 (de) Pigment mit photokatalytischer aktivität, verfahren zu dessen herstellung und beschichtungsmittel
US3459574A (en) Opacifying pigment glass composition
EP0742271A2 (de) Farbpigmente
WO1993011194A1 (de) Pigmente mit verbessertem glanz
DE1496646A1 (de) Pigmentfritte fuer Lacke,Anstriche,Kunststoffe,Papier u.dgl.
DE4040162A1 (de) Zirkoniumsilikat-farbkoerper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119296.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09765487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009765487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12994497

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011510867

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107029053

Country of ref document: KR

Kind code of ref document: A