WO2009150708A1 - 粒子線治療装置 - Google Patents

粒子線治療装置 Download PDF

Info

Publication number
WO2009150708A1
WO2009150708A1 PCT/JP2008/060553 JP2008060553W WO2009150708A1 WO 2009150708 A1 WO2009150708 A1 WO 2009150708A1 JP 2008060553 W JP2008060553 W JP 2008060553W WO 2009150708 A1 WO2009150708 A1 WO 2009150708A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
respiration
patient
particle beam
target
Prior art date
Application number
PCT/JP2008/060553
Other languages
English (en)
French (fr)
Inventor
久 原田
明彦 星
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US12/682,012 priority Critical patent/US8274243B2/en
Priority to PCT/JP2008/060553 priority patent/WO2009150708A1/ja
Priority to JP2009553534A priority patent/JP4531122B2/ja
Publication of WO2009150708A1 publication Critical patent/WO2009150708A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring

Definitions

  • This invention relates to a particle beam therapy system such as a particle beam cancer therapy system.
  • a radiotherapy apparatus such as a cancer therapy apparatus
  • it is required to cope with a change in the position and shape of a target affected part due to a physiological phenomenon of a patient.
  • the target affected area is the chest or abdomen
  • the change in the position or shape of the target affected area may lead to deterioration of treatment or diagnostic accuracy, and sometimes may cause unnecessary exposure to the patient.
  • a particle beam therapy apparatus generally includes a particle beam generation unit such as a synchrotron, a particle beam irradiation unit that irradiates a patient with a particle beam generated by the particle beam generation unit via a particle beam transport unit, and a patient's
  • a respiration signal processing unit that determines whether or not the respiration phase may be irradiated based on a time change of the respiration signal obtained from the respiration measurement device, and a control unit that controls the particle beam generation unit and the particle beam irradiation unit Etc.
  • Irradiation can be performed when the position of the affected part and the shape of the affected part are substantially constant (see, for example, Patent Document 1).
  • An object of the present invention is to solve such a problem, and teaches a patient fixed information on breathing predetermined along a synchrotron irradiation cycle, and matches the patient's breathing cycle with this. It is to provide a particle beam therapy system that can efficiently perform particle beam irradiation by assisting the user to receive the beam.
  • the particle beam therapy system includes a particle beam generator, a patient respiration measurement device for measuring a patient's respiration state, and respiration that permits irradiation of a particle beam to a patient based on measurement information of the patient respiration measurement device. And a breathing information teaching device for teaching the patient information related to breathing synchronization, and teaching the patient of target breathing information whose period is determined in advance based on the operation timing information of the particle beam generator.
  • a breathing information teaching device for teaching the patient information related to breathing synchronization, and teaching the patient of target breathing information whose period is determined in advance based on the operation timing information of the particle beam generator.
  • ⁇ Respiration is stabilized when the patient consciously adjusts to the target respiration information, and is in a state suitable for the operation cycle of the synchrotron, thereby improving driving efficiency. This increases the timing at which the respiratory gate signal and synchrotron emission enable signal overlap, thereby reducing the treatment irradiation time.
  • Is a main configuration diagram of the particle beam therapy system of the present invention Is an arrangement configuration diagram when the present invention is applied to a plurality of treatment rooms and X-ray CT rooms, Is an operation waveform diagram of each part of the particle beam therapy system of the present invention, Is a diagram explaining the procedure to create target respiratory information,
  • Is a table showing an example of setting the respiration gate width for the operation parameters A and B of two types of synchrotrons Is a case where irradiation is performed twice per respiration cycle.
  • FIG. 1 shows one of a plurality of treatment rooms (for example, A), and shows an example in which the treatment room, a positioning control console, and a treatment irradiation control console are used.
  • the therapist works in one of these three locations.
  • reference numeral 1 denotes an accelerator system such as a synchrotron for accelerating particle beams, and further includes a synchrotron deflection electromagnet power supply 11 and an accelerator timing system 12 inside.
  • Reference numeral 2 denotes a respiratory synchronization device, and a respiratory synchronization sensor 21 serving as a patient respiratory measurement device for detecting a patient's respiratory state and a sensor amplifier 22 for converting and amplifying a signal from the sensor 21 are installed in a treatment room.
  • the breathing synchronization display device 26B is installed on the positioning control console.
  • the treatment irradiation control console processes a signal amplified by the sensor amplifier 22 and controls a respiratory synchronization signal generator 23 for controlling the output of the respiratory synchronization signal, and parameter setting during operation of the respiratory synchronization signal generator 23.
  • the respiratory synchronization control computer 24 that sets the timing for generating the synchronization signal, and the respiratory waveform output from the signal generator 23 and the respiratory synchronization waveform output from the respiratory synchronization control computer 24 are converted into signals, the accelerator system 1 and the display
  • a respiratory synchronization signal control unit 25 that distributes to the device 26B, and a respiratory synchronization display device 26C that displays the respiratory synchronization signal and the operation state of the particle beam therapy system to an operator are installed.
  • Reference numeral 3 denotes a respiratory navigation apparatus.
  • the respiratory navigation computer 31 is used to input a respiratory waveform, a respiratory gate signal, accelerator information, and the like from the respiratory synchronization control computer 24, and to store, process, and manage information.
  • Information editing terminals 32B and 32C for editing and changing the information, and breathing information teaching devices 33A, 33B and 33C for teaching information to the patient.
  • Reference numeral 4 denotes a treatment information server configured by a computer, a sequencer, and the like, which stores patient treatment data. Information related to respiratory navigation is stored and managed together with the patient treatment data in the treatment information treatment information server 4.
  • the breathing information teaching device 33 and the information editing terminal 32 may be provided at a plurality of locations.
  • the respiratory information teaching apparatus is installed in a treatment room, a positioning console, and a treatment irradiation control console.
  • the acquisition of treatment plan information is performed in the X-ray CT imaging control room, it may be installed in the X-ray CT imaging control room.
  • FIG. 3 shows a configuration example in the case where the present apparatus is installed in a plurality of treatment rooms A, B, C and an X-ray CT imaging room used before creating a treatment plan.
  • These terminals are used by medical personnel, and are used to acquire, create, and edit control data before treatment irradiation, confirm the respiratory synchronization state during treatment irradiation, adjust the respiratory phase, and the like.
  • the respiratory navigation computer is provided separately from the respiratory synchronization control computer so that the function can be easily added.
  • the respiratory synchronization control computer and the respiratory navigation computer may be shared by one computer. Is possible.
  • the breathing synchronization display device is provided separately from the breathing information teaching device, the function described in the present embodiment can be realized by switching one display device.
  • a method of measuring respiration by the respiration synchronization sensor 21 a method of detecting a laser light source attached to the abdomen of the patient with a position sensitive detector, or a temperature change in the vicinity of the nasal cavity due to inhalation of the patient by a thermistor or an infrared camera.
  • a method of measuring using image processing There are some known methods such as a method of measuring using image processing.
  • FIG. 3 is an operation waveform diagram of each part of the particle beam therapy system.
  • A is a respiration waveform
  • (b) is a respiration gate
  • (c) is a synchrotron deflection electromagnet current
  • (d) is a synchrotron emission enable gate
  • (e) schematically shows the timing of the synchrotron radiation beam signal.
  • a threshold is set for the respiration waveform (a) detected by the respiration synchronization sensor 21, the respiration gate (b) is turned on when respiration is stable, and the respiration gate width (arrow) Instruct the accelerator that irradiation is possible.
  • the current (c) of the bending magnet repeats the cycle of incidence, acceleration, emission, and deceleration at a constant period, whereas according to the synchrotron emission enable gate (d) and the breathing gate signal (b), The beam emission is turned on and off (phase control), and the emitted beam (e) is given to the target of the affected area only at a respiration phase suitable for irradiation.
  • the synchrotron operation repeats the cycle of incidence, acceleration, emission, and deceleration at a certain cycle.
  • the operation cycle depends on the acceleration time, the extraction time, and the operation energy of the synchrotron, and is approximately 1 second to several seconds.
  • the synchrotron is irradiated with a particle beam from a device called an injector and acceleration of the synchrotron is started when a sufficient number of particles are accumulated.
  • the emission device is prepared, and when the preparation is completed, the emission enable gate signal (d) is turned ON by the synchrotron control system.
  • the breathing gate is ON when the beam can be emitted, the beam is emitted from the synchrotron.
  • the maximum time that the synchrotron can continuously emit the beam is called the spill time. After the spill time has elapsed, the emission enable gate is turned off, and the synchrotron device starts preparation for deceleration. After the deceleration is completed, the next operation cycle is incident.
  • the target breathing timing (hereinafter referred to as target breathing information) is previously presented to the patient in a cycle suitable for the operation cycle of the synchroton, and the patient breathes in synchronization therewith.
  • target breathing information The main point is.
  • the respiratory cycle is longer than the synchrotron operating cycle.
  • the normal breathing cycle is 3 seconds or more, and the resting cycle is usually around 4 seconds or longer, while the synchrotron operation cycle is about 3 seconds, and if it is short, it is 2 seconds or less. Become. Therefore, although this assumption is usually satisfied, the effect of the present invention does not depend on this assumption.
  • the target respiratory cycle can be an integer multiple of the synchrotron operating cycle. By doing so, the movement of the synchrotron for each respiratory cycle can be kept constant. Higher efficiency is obtained when the integer is selected as a multiple as low as possible. That is, if the operation cycle and the respiration cycle of the synchrotron are 1: 1, irradiation can be performed every respiration cycle, and a beam accelerated by the synchrotron can be used every time, so that an efficient operation can be realized. However, if the target breathing cycle is too far from the patient's spontaneous breathing, it will be difficult for the patient to adjust, which is undesirable.
  • the time width of the breathing gate may be important, and it is necessary to select the breathing cycle so that a desired breathing gate can be easily obtained.
  • the breathing cycle is a half-integer multiple (0.5 times, 1.5 times, etc.) of the synchrotron driving cycle, the driving operation is different every other breathing cycle. In this case, the efficiency is slightly lowered, but the effect of the present invention can be obtained even at that time.
  • the target respiration gate width it is desirable to set the target respiration gate width to be the same as the synchrotron spill time width or a little longer than that in consideration of respiration variation. By doing so, it is possible to make maximum use of the particles accelerated by the synchrotron in one emission. For example, when the spill time width of the synchrotron is set to about 0.5 seconds, it is not difficult for the patient to realize such a respiration gate width even in natural breathing.
  • FIG. 6 is a table showing an example of setting the target breathing cycle and the target breathing gate width for the operation parameters of two types of synchrotrons A and B, and shows a case where irradiation is performed once per breathing cycle.
  • “respiration gate efficiency” is calculated as a value obtained by dividing the time when the respiration gate is ON by the respiration cycle.
  • “irradiation efficiency” indicates a rate at which the synchrotron beam can be used, assuming that the operation is not breath-synchronized, that is, when the irradiation can be performed without waste in all the operation cycles of the synchrotron.
  • Accelerator parameter A shows a case where the synchrotron operating cycle is 2 seconds and the spill time is 0.4 seconds. At this time, the target breathing cycle is 2 seconds, 4 seconds, 6 seconds, and 8 seconds, but 2 seconds was excluded from the target because the cycle was slightly too short. If the target breathing gate can be secured for 0.4 seconds or longer, all synchrotron spills can be irradiated. Such a breathing gate can be easily realized for a patient by using a breathing navigation function. Among cases (1) to (3), the 4-second cycle of case (1) is most preferable because it is close to the breathing cycle at rest and the irradiation efficiency is higher than other cases.
  • the irradiation efficiency is highest in the case (4).
  • the respiration of the 3.2 second period seems to be too short for the patient, the use of the case (5) Is also possible.
  • the target respiratory information having a predetermined cycle is taught to the patient by the respiratory information teaching device 33, and the patient is guided to consciously match the respiratory state with the target respiratory information. To do.
  • synchrotron timing information (accelerator information) is transmitted via the respiratory synchronization control computer 24, but from the synchrotron and the accelerator timing systems 11 and 12, the respiratory navigation device 31.
  • the timing information may be transmitted directly by hard wire.
  • the target breathing pattern is created in advance with an optimal phase.
  • the timing of teaching the target breathing pattern is delayed by the breathing navigation computer 31 and the delay can be set in time (seconds)
  • the timing of breathing taught to the patient by the treatment engineer can be corrected appropriately. Can do.
  • the method of irradiating once per breath has been described.
  • a method of irradiating twice per breath will be described.
  • the length of the breathing gate needs to be at least (n ⁇ 1) ⁇ Tsync + Tspill.
  • Tsync represents one breathing cycle
  • Tspill represents the spill time described above.
  • FIG. 7 is a table showing an example of setting the respiratory gate width for the operation parameters A and B of the two types of synchrotrons, and shows a case where irradiation is performed twice per respiratory cycle.
  • Case (7) has the highest irradiation efficiency, but breathing that secures a breathing gate of 2.4 seconds in the breathing cycle of 4 seconds is a patient. It can be difficult for them.
  • the threshold value of the respiration waveform is set high, the respiration gate can be lengthened, but there are cases where accuracy is sacrificed and inconvenient. In such a case, the case (8) may be used.
  • the case of the accelerator parameter B in the case (10), the respiration that secures the respiration gate of 2.4 seconds in the respiration cycle of 3.2 seconds becomes more severe for the patient than the case (7). (11) seems more realistic.
  • the respiration cycle is set to an integral multiple of the synchrotron operation cycle in the vicinity of 3 to 6 seconds according to the above method, and is as close to the patient's natural breathing cycle as possible and painful for the patient. What is necessary is just to select the period which can be realized.
  • the respiration gate is set so that the respiration gate efficiency is about 50% or less when irradiation is performed twice per respiration cycle. In the case of one irradiation per one breathing cycle, the restriction on the breathing gate width need not be considered. From these conditions, the most efficient breathing pattern may be selected as the target breathing information.
  • target respiration information at which point in the treatment flow before obtaining treatment plan information.
  • a treatment plan is created before performing treatment irradiation, and it is necessary to acquire an X-ray CT image of the affected area in the treatment plan.
  • the therapeutic engineer can designate which part of the respiration waveform continuously acquired to be used according to the start time and the end time.
  • the therapeutic engineer sets a target respiratory cycle that is an integral multiple of the operation cycle of the synchrotron based on the obtained average cycle.
  • the respiratory cycle is set to the target respiratory rate by expanding or contracting (in this case, expanding) the respiratory waveform A in the upper part of the figure as shown in the lower part B. It is preferable to average the amplitude of the respiration waveform as shown by the dotted line in FIG.
  • the respiratory waveform obtained in this way and averaged for one respiratory cycle is used as a target respiratory waveform (information).
  • the therapeutic engineer can specify which part of the breathing waveform acquired continuously is used for averaging depending on the start time and the end time.
  • the target respiratory information created as described above should be edited on the information editing terminal so that it can be fine-tuned.
  • a function is provided in which the target respiratory waveform is automatically divided into a plurality of line segments (division points for editing), and the division points of the line segments can be dragged and edited on the screen using a mouse.
  • Providing such an editing function is convenient when setting the breathing gate to the target value.
  • a patient's respiration is measured, and a standard respiration waveform is generated by averaging respiration time-series information in units of cycles by the method described above.
  • An efficient target respiratory cycle is set from the cycle of the target respiratory waveform and the operation cycle of the synchrotron, and the target respiratory information is obtained by expanding and contracting the cycle of the standard respiratory waveform.
  • the respiration gate width and amplitude of this waveform may be edited in consideration of the patient's ease of respiration as described above.
  • the phase may be set so that the center of the respiratory gate and the spill center of the synchrotron overlap as described above. It is also conceivable to set in consideration of respiratory delay due to patient reaction time. As described above, by providing a function capable of adjusting the phase of the target respiratory information in real time on the information editing terminal 32, the phase can be adjusted at the treatment site, so that even if the phase is shifted during the treatment, it can be recovered. .
  • the target breathing gate width When it is irradiated twice per breathing cycle, it is necessary to confirm that not only the target breathing cycle but also the target breathing gate width is secured. If the respiration gate width obtained by applying the threshold value to the target respiration waveform created above is sufficiently long, the target respiration waveform can be used as it is. If the length of the breathing gate width is insufficient, the target breathing waveform may be edited by instructing the necessary breathing gate width on the information editing terminal of the target breathing waveform on the information editing terminal.
  • the amplitude of the respiratory waveform may become small and unstable, making it difficult to perform synchronized breathing.
  • the patient can control his breathing to a state suitable for irradiation.
  • the respiration waveform is taught as a time graph and the patient can easily identify the past and the future, the patient can be predicted and can easily match the target respiration information.
  • FIG. 5 shows an example of a display screen for performing such teaching, and (a) to (e) are the same as those described in FIG.
  • the waveform in the figure scrolls from left to right in real time. From the center of the screen, the left shows past results, and the right shows future waveforms.
  • the thick respiratory waveform indicates the actual waveform of the patient, and the thin respiratory waveform indicates the target respiratory information.
  • a visual display method a method of installing a liquid crystal display screen at a position that can be seen by a patient sleeping on a treatment table, projecting it on a treatment device wall, a treatment room wall, or the like, or using a head mounted display can be considered.
  • the respiration waveform and synchrotron operation pattern As information to be displayed visually, it is conceivable to display the respiration waveform and synchrotron operation pattern as time-series pattern information that flows from left to right on the screen. It is conceivable to display a time-series data curve such as a respiration waveform, or display target respiration information and an actual respiration state of a patient by changing the position of a displayed object such as a bar display. Various similar methods are conceivable, such as representing the same information as an object shape change, dimension change, color change, or brightness change.
  • a speaker near the patient and to instruct the timing of exhalation and inspiration by voice guidance.
  • an integer multiple of the music beat (beat time interval) can be matched to the respiratory cycle using known digital processing techniques.
  • a method of instructing the patient on the respiratory cycle by changing the pitch, changing the tone, changing the tone, etc. can be considered.
  • the amplitude of the respiratory waveform can be expressed using the pitch of the sound.
  • other methods such as using the respiratory cycle for the patient by controlling the vibration of the vibration device that directly contacts the patient, such as having the patient hold the vibrating device, can be considered.
  • the auditory teaching method may be used in combination with the visual teaching method.
  • the excitation current of the main deflection electromagnet of the synchrotron is suitable.
  • a master signal that indicates the beginning of the synchrotron operation pattern.
  • specific events within the synchrotron operation cycle such as the start of incidence, the start of acceleration, the end of acceleration, and the start of extraction timing are also possible. It is conceivable to use the timing signal corresponding to the signal for teaching the patient, but any of these timing signals can be generated by providing an appropriate delay from the master signal based on the operation pattern of the synchrotron. Basically it is equivalent to the master signal.
  • synchrotron operation information to the patient allows the patient to understand the operation status of the synchrotron and is useful as support information for approaching the target breathing pattern.
  • the transmission of synchrotron operation information may be input to the respiratory navigation device via the respiratory synchronization signal generator, but there is also a method of directly branching from the accelerator timing system and the synchrotron deflection magnet power supply to the respiratory navigation device. .
  • the target respiratory information is stored in a portable device that can be recorded and displayed like a notebook computer, or if it is stored in a storage medium such as a CD-ROM, the patient can use the computer at home or in a hospital room. It can also be used for breathing training in advance. This allows the patient to more closely bring their breath closer to the target breathing pattern. Since it is not easy to use the respiration measurement device during training, only the target respiration information needs to be taught to the patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

 患者の呼吸パターンをあらかじめシンクロトロンの運転周期に適した周期に定められた目標呼吸情報として作成しておき、目標呼吸情報を患者に教示することにより、教示した情報に患者が意識的に合わせることによって患者の呼吸タイミングをシンクロトロンの運転に適した状態にもっていくようになされている。

Description

粒子線治療装置
 この発明は粒子線がん治療装置等の粒子線治療装置に関するものである。
 例えば、がん治療装置等の放射線治療装置を使用するに際して、患者の生理的現象により対象患部の位置や形状が変化することへの対応が求められている。特に、対象患部が胸部や腹部である場合には、対象患部の位置や形状の変化が、治療や診断精度の劣化につながり、時には患者に不要な被爆を与えたりすることがあるためである。
 粒子線治療装置は、一般に、シンクロトロン等の粒子線発生部と、この粒子線発生部で発生された粒子線を粒子線輸送部を経由して患者に照射する粒子線照射部と、患者の呼吸測定装置より得られた呼吸信号の時間変化に基づき呼吸の位相が照射してもよい状態かどうかを判断する呼吸信号処理部と、上記粒子線発生部や粒子線照射部を制御する制御部などから構成される。
 そして、肺や肝臓などのように呼吸に伴って動く部位への治療照射の場合、目標呼吸情報を変化させることによって患者の呼吸を粒子線照射のタイミングに同期しやすい状態に誘導することで、患部の位置、患部形状がほぼ一定のときに照射することができるようにしている(例えば、特許文献1を参照)。
特開2003-33443(図1、図7を参照)
 しかしながら、上記特許文献1に記載されたような患者呼吸誘導方法では、患者に対する目標呼吸情報の最終波形の教示はなく、変化する目標呼吸情報にその都度合わせて行くため、患者にとって最終目標波形が何だか分かり難く、シンクロトロン固有の粒子線照射タイミングとの同期が取りにくい問題があり、効率の良い装置の実現が困難であった。
 この発明の目的はかかる問題点を解決するためになされたものであり、患者に予めシンクロトロンの照射周期に沿って定められた固定の目標呼吸情報を教示し、これに患者の呼吸周期を合わせてもらうよう支援することにより、効率よく粒子線の照射を行うことができる粒子線治療装置を提供することである。
 この発明の粒子線治療装置は、粒子線発生装置と、患者の呼吸状態を測定するための患者呼吸測定装置と、上記患者呼吸測定装置の測定情報に基づき患者への粒子線照射を許可する呼吸同期装置と、上記呼吸同期に関する情報を患者に教示するための呼吸情報教示装置を具備し、上記粒子線発生装置の運転タイミング情報に基づいて予め周期が定められた目標呼吸情報を患者に教示し、患者が上記目標呼吸情報に意識的に呼吸状態を合わせることによって、呼吸同期の治療照射中に、あるいは治療計画用X線CTの画像取得時に、患者が上記粒子線発生装置の周期に適したタイミングで呼吸するように支援するものである。
 患者が意識的に目標呼吸情報に合わせることによって呼吸が安定化され、シンクロトロンの運転周期にも適した状態となり、運転効率が向上する。これによって呼吸ゲート信号とシンクロトロンの出射可信号の重なり合うタイミングが増えるため、治療照射時間が短縮される。
は本発明の粒子線治療装置の主要構成図、 は複数の治療室およびX線CT室に本発明を適用した場合の配置構成図、 は本発明の粒子線治療装置の各部動作波形図、 は目標呼吸情報を作成する手順を説明する図、 は呼吸情報教示装置の表示画面の一例を示す図である。 は2種類のシンクロトロンA、Bの運転パラメータに対する目標呼吸周期と目標呼吸ゲート幅の設定例を示す表で、呼吸周期につき1回照射する場合を示している。 は2種類のシンクロトロンの運転パラメータA、Bに対する呼吸ゲート幅の設定例を示す表で、呼吸周期につき2回照射する場合を示している。
 本発明の粒子線治療装置の実施の形態について図1の主要構成図を用いて説明する。図1は複数ある治療室のうち1室(例えばA)について示したもので、治療室と、位置決め制御卓と、治療照射制御卓の3つの作業場所から構成されている例を示している。治療技師はこの3つの場所のいずれかで作業する。図中、1は粒子線を加速するための例えばシンクロトロン等の加速器系で、さらに内部にシンクロトロン偏向電磁石電源11や加速器タイミングシステム12を備えている。2は呼吸同期装置で、治療室に患者の呼吸状態を検出する患者呼吸測定装置となる呼吸同期センサ21と、上記センサ21からの信号を変換処理し増幅するためのセンサアンプ22とが設置され、位置決め制御卓に呼吸同期表示装置26Bが設置されている。
 更に治療照射制御卓には、上記センサアンプ22で増幅した信号を処理し、呼吸同期信号の出力を制御する呼吸同期信号発生器23と、上記呼吸同期信号発生器23の動作時のパラメータ設定や同期信号を発生させるタイミングを設定する呼吸同期制御計算機24と、上記信号発生器23から出力される呼吸波形や呼吸同期制御計算機24から出力される呼吸同期波形を信号変換し、加速器系1や表示装置26Bに分配する呼吸同期信号制御ユニット25と、上記呼吸同期信号と粒子線治療装置の動作状態をオペレータに表示する呼吸同期表示装置26Cとが設置されている。
 3は呼吸ナビゲーション装置であり、上記呼吸同期制御計算機24から呼吸波形、呼吸ゲート信号、加速器情報等を入力し、記憶、処理、管理するための呼吸ナビ計算機31と、呼吸ナビ計算機31からの情報を編集したり変更したりするための情報編集端末32B、32Cと、患者に情報を教示するための呼吸情報教示装置33A、33B、33Cとから構成されている。4はコンピュータ、シーケンサ等で構成され、患者の治療データを保存する治療情報サーバである。呼吸ナビに関する情報は上記治療情報治療情報サーバ4にて上記患者の治療データと共に保存し管理される。
 呼吸情報教示装置33や情報編集端末32は複数の箇所に設けておくとよい。例えば呼吸情報教示装置は治療室、位置決め操作卓、および治療照射制御卓に設置する。また、治療計画情報の取得作業はX線CT撮影制御室で行われるのでX線CT撮影制御室にも設置するとよい。複数の治療室A、B、Cおよび治療計画作成前に用いるX線CT撮影室に本装置を設置する場合の構成例を図3に示している。これらの端末は医療関係者によって使用され、治療照射前の制御データの取得、作成、編集の各作業、および治療照射時の呼吸同期状態の確認、呼吸位相の調整などに使用される。
 なお、本実施の形態では呼吸ナビ計算機を呼吸同期制御計算機と別に設けることによって機能の追加を容易にする構成としたが、呼吸同期制御計算機と呼吸ナビ計算機を1台の計算機で共有することも可能である。また、呼吸同期表示装置を呼吸情報教示装置とは別に設けたが、1台の表示装置を切り替えることによって、本実施の形態で述べる機能を実現することも可能である。
 呼吸同期センサ21による呼吸の測定方法としては、患者の腹部の動きを腹部に取り付けたレーザ光源をポジションセンシティブディテクタで検出する方式や、患者の吸気に伴う鼻腔付近の温度変化をサーミスタや赤外線カメラによる画像処理を用いて計測する方式など、既知の方式がいくつかある。
 図3は上記粒子線治療装置の各部動作波形図であり、(a)は呼吸波形、(b)は呼吸ゲート、(c)はシンクロトロン偏向電磁石電流、(d)はシンクロトロン出射可ゲート、(e)はシンクロトロン出射ビーム信号のタイミングを模式的に示したものである。
 図に示すように、呼吸同期センサ21で検出する呼吸波形(a)に対して閾値を設定して、呼吸の安定した状態の時に呼吸ゲート(b)をONにして、呼吸ゲート幅(矢印)にて加速器に照射可能であることを指示する。
 加速器側では偏向電磁石の電流(c)が、入射、加速、出射、減速のサイクルを一定周期で反復するのに対し、シンクロトロン出射可ゲート(d)と呼吸ゲート信号(b)に応じて、ビーム出射の入り切り(位相制御)を行い、照射に適した呼吸位相でのみ出射ビーム(e)を患部の標的に所定線量付与する。
 次にシンクロトロンの運転について詳細に説明する。シンクロトロン運転は上述したように、入射、加速、出射、減速のサイクルをある一定の周期で繰り返す。運転の周期は加速時間、出射時間、およびシンクロトロンの運転エネルギーに依存し、概ね1秒~数秒である。シンクロトロンには入射器と呼ばれる装置から粒子線が入射され、十分な粒子数が蓄積された時点でシンクロトロンの加速が開始される。加速が終了後に出射機器の準備を行い、準備完了した時点でシンクロトロンの制御系によって出射可ゲート信号(d)がONになる。
 出射可の状態のとき、呼吸ゲートがONであればシンクロトロンからビームが出射される。シンクロトロンが連続してビームを出射できる最大時間をスピル時間というが、スピル時間が経過した後に出射可ゲートがOFFになり、シンクロトロンの装置は減速準備を開始する。減速が完了した後、次の運転周期の入射が実施される。
 この発明は、目標となる呼吸のタイミング(以下目標呼吸情報という)を予め上記シンクロトンの運転周期に適した周期を患者に提示して、患者にこれに同期して呼吸してもらうようにすることに主眼がある。次に上記目標呼吸情報を作成する際に望ましい特性について述べる。ここでは呼吸周期の方がシンクロトロンの運転周期より長い場合を想定して述べる。通常の呼吸周期は3秒以上であり、安静時の周期は4秒前後かそれより長いものが普通であるのに対し、シンクロトロンの運転周期は3秒程度で、短い場合は2秒以下となる。従ってこの仮定条件は通常満足されるが、本発明の効果はこの仮定に依存するものではない。
 目標呼吸周期はシンクロトロン運転周期の整数倍とすることが考えられる。こうすることによって、呼吸周期毎のシンクロトロンの動きを一定に保つことができる。前記整数はなるべく低い倍数で選ぶ方が高い効率が得られる。すなわちシンクロトロンの運転周期と呼吸周期が1対1であれば、呼吸周期毎に照射ができ、かつシンクロトロンで加速されたビームを毎回使うことができるため、効率的な運転が実現できる。但し、目標呼吸周期が患者の自然呼吸からあまりかけ離れると、患者にとって合わせ難くなり、望ましくない。
 また以下で述べるように、呼吸ゲートの時間幅も重要な場合があり、その際に所望の呼吸ゲートが得られやすいように呼吸周期を選択する必要がある。呼吸周期がシンクロトロン運転周期の半整数倍(0.5倍、1.5倍など)のときは、呼吸1周期おきに異なる運転動作となる。この場合、やや効率が落ちるが、そのときでも本発明の効果は得られる。
 次に、目標呼吸ゲート幅については、シンクロトロンのスピル時間幅と同じか、呼吸の変動を考慮してそれより少し長く設定することが望ましい。こうすることによって、1回の出射で、シンクロトロンで加速された粒子を最大限に利用することができる。例えばシンクロトロンのスピル時間幅が0.5秒程度に設定された場合、自然呼吸でもこの程度の呼吸ゲート幅を実現するのは患者にとって難しくない。
 図6は2種類のシンクロトロンA、Bの運転パラメータに対する目標呼吸周期と目標呼吸ゲート幅の設定例を示す表で、呼吸周期につき1回照射する場合を示している。図6において、「呼吸ゲート効率」は呼吸ゲートがONの時間を呼吸周期で割った値として計算している。また、「照射効率」は呼吸同期でない運転、すなわちシンクロトロンの全ての運転周期で無駄なく照射できる場合を1としてシンクロトロンのビームが使える割合を示している。
 加速器パラメータAではシンクロトロン運転周期が2秒で、スピル時間が0.4秒である場合を示している。このとき目標呼吸周期は2秒、4秒、6秒、8秒となるが、2秒はやや周期が短すぎるため対象外とした。目標呼吸ゲートとしては0.4秒以上確保できればシンクロトロンのスピル全てが照射できる。この程度の呼吸ゲートは呼吸ナビゲーション機能を用いれば患者にとっても容易に実現できる。ケース(1)~ケース(3)の中では、ケース(1)の4秒周期が安静時の呼吸周期に近いうえ、他のケースよりも照射効率が高いので最も好ましい。
 加速器パラメータBでは、前記パラメータAの場合と同様にケース(4)が最も照射効率が高いが、3.2秒周期の呼吸が患者にとって短すぎると感じるようであれば、ケース(5)の使用も考えられる。
 以上のようにシンクロトロンの運転周期に基づいて、あらかじめ周期が定められた目標呼吸情報を呼吸情報教示装置33により患者に教示し、患者が上記目標呼吸情報に意識的に呼吸状態を合わせるよう誘導するものである。
 次に呼吸とシンクロトロン間の位相の設定について記載する。呼吸波形とシンクロトロンの運転パターンの位相は、呼吸波形の振幅が最大値となる点の中間付近、すなわち呼吸波形の谷間の中央部にシンクロトロンの出射可能ゲートがくるように位相を選択することが望ましい。図1の構成においては、シンクロトロンのタイミング情報(加速器情報)が呼吸同期制御計算機24を経由して電送されるようになっているが、シンクロトロンや加速器タイミングシステム11、12から呼吸ナビ装置31に直接ハードワイヤでタイミング情報を電送してもよい。目標呼吸パターンは、あらかじめ最適な位相で作成しておく。
 更に本発明の実装においては、情報編集端末32上で位相を自由に設定できるような機能を設けておくと、リアルタイムで位相を微調整することができ、便利である。例えば、呼吸ナビ計算機31にて目標呼吸パターンの教示のタイミングを遅延させ、その遅れを時間(秒)で設定できるようにしておけば、治療技師が患者に教示する呼吸のタイミングを適宜修正することができる。
ここまでは1回の呼吸につき1回照射する方法について述べてきたが、次に1回の呼吸につき2回照射する方法について述べる。一般的に1回の呼吸につきn回の照射をするためには、呼吸ゲートの長さが少なくとも(n-1)・Tsync+Tspill必要となる。なお、Tsyncは1回の呼吸周期を、Tspillは上述したスピル時間を表している。
 図7は2種類のシンクロトロンの運転パラメータA、Bに対する呼吸ゲート幅の設定例を示す表で、呼吸周期につき2回照射する場合を示している。目標呼吸ゲート幅を2.4秒以上に設定した場合、ケース(7)は照射効率が最も高いが、呼吸周期の4秒の中で2.4秒の呼吸ゲートを確保するような呼吸は患者にとって困難な場合もある。呼吸波形の閾値を高く設定すれば呼吸ゲートを長くすることができるが、精度が犠牲になり不都合な場合もある。そのような場合はケース(8)を使えばよい。加速器パラメータBの場合、ケース(10)では呼吸周期の3.2秒の中で2.4秒の呼吸ゲートを確保するような呼吸は患者にとってケース(7)より更に厳しくなってしまうので、ケース(11)のほうが現実的と思われる。
 このように、目標呼吸情報の設定においては、上記の手法に従って呼吸周期を3秒から6秒近辺のシンクロトロン運転周期の整数倍とし、なるべく患者の自然呼吸周期に近い周期で、かつ患者にとって苦痛なく実現できる周期を選択すればよい。呼吸ゲートは1回の呼吸周期につき2回照射の場合は呼吸ゲート効率が50%程度以下になるように設定する。1回の呼吸周期につき1回照射の場合は、呼吸ゲート幅への制約は気にしなくてもよい。これらの条件から、最も効率がよい呼吸パターンを目標呼吸情報として選べばよい。
 次に、目標呼吸情報の作成手順について説明する。治療フローの中のどの時点で目標呼吸情報を作成するかについては、治療計画情報を取得する前が適切である。粒子線治療では治療照射を行う前に治療計画を作成するが、治療計画には患部のX線CT画像を取得する必要がある。このとき、治療照射が呼吸同期照射となるような肺や肝臓といった部位では、治療計画用X線CT画像の取得も同様に呼吸同期を用いて行う必要がある。このため、治療計画用X線CT画像取得前に目標呼吸情報を作成しておき、X線CT撮影時も治療照射と同様の呼吸状態にしておくことが望ましい。
 まずは患者に楽な呼吸をしてもらい、呼吸波形を取得し、その平均的な周期を求める。このとき連続的に取得される呼吸波形のどの部分を使用するかを治療技師が開始時点と終了時点によって指定できるようにしておくとよい。次に求まった平均的な周期に基づき、シンクロトロンの運転周期の整数倍となるような目標呼吸周期を治療技師が設定する。
 この周期を患者に教示して患者に呼吸してもらい、再度呼吸波形を取得し、取得された呼吸波形を図4のAのように平均化する。平均化する際に、呼吸波形の異なる部分によって呼吸周期にばらつきがあるので、図の上段の呼吸波形Aを下段Bに示すように伸縮(この場合は伸張)することによって呼吸の周期を目標呼吸周期に合わせてから呼吸波形の振幅を図の点線のように平均化するとよい。このようにして取得された、かつ平均化された呼吸1周期分の呼吸波形を目標呼吸波形(情報)とする。このとき、前記と同様に、連続的に取得される呼吸波形のどの部分を平均化に使用するかを治療技師が開始時点と終了時点によって指定できるようにしておくとよい。
 上記のように作成された目標呼吸情報は、情報編集端末上で編集し、微調整ができるようにしておくとよい。例えば、目標呼吸波形を複数の線分に自動分割し(編集用の分割点)、線分の分割点を画面上でマウスを使ってドラッグして編集できるような機能を設けておく。このような編集機能を設けておくと、呼吸ゲートを目標値に設定する場合に便利である。また、目標呼吸波形の振幅に係数をかけることによって調整する機能や、ベースラインを上下させる調整機能を設けておくと便利である。
 目標呼吸情報を作成する別の手順として、患者の呼吸を計測し、上記で述べた手法によって呼吸の時系列的な情報を周期単位で平均化することで標準呼吸波形を生成する。その目標呼吸波形の周期とシンクロトロンの運転周期から、効率のよい目標呼吸周期を設定し、上記標準呼吸波形の周期を伸縮することで目標呼吸情報とする。そして、この波形の呼吸ゲート幅や振幅などは前記のとおり、患者の呼吸のしやすさを考慮して編集してもよい。
 位相の設定は前述のように呼吸ゲートの中心とシンクロトロンのスピル中心が重なるようにすればよい。また、患者の反応時間による呼吸の遅れを考慮して設定しておくことも考えられる。前述のように情報編集端末32上で目標呼吸情報の位相調整がリアルタイムでできる機能を設けておくと、治療現場での位相調整ができるので治療中に位相がずれた場合でも回復することができる。
 1回の呼吸周期につき2回照射するような場合は、目標呼吸周期だけでなく、目標呼吸ゲート幅が確保できていることを確認する必要がある。上記で作成した目標呼吸波形に閾値を適用して得られた呼吸ゲート幅が十分長ければ目標呼吸波形をそのまま使用できる。もし、呼吸ゲート幅の長さが不十分であれば、情報編集端末上の目標呼吸波形の情報編集端末上で必要な呼吸ゲート幅を指示して目標呼吸波形を編集すればよい。
 次に呼吸情報教示装置による目標呼吸情報、呼吸状態情報、シンクロトロン運転状態などの情報の教示方法について図5を参照して説明する。
 患者に教示する情報として、呼吸波形ではなく、呼気、吸気などのタイミングのみをほぼリアルタイム教示することも考えられるが、呼吸波形のように、呼吸の振幅情報も含む情報、すなわち目標値と現状値と両方をリアルタイムで教示した方が、患者の呼吸が安定化されるので望ましい。
 一部の患者においては、呼吸波形の振幅が小さくなったりして不安定となって、呼吸同期照射がし難くなる場合があるが、呼吸振幅の目標値と現状値を患者に教示することで、患者が自身の呼吸を照射に適した状態に制御することができる。さらに呼吸波形を時間のグラフとして教示し、患者が過去と未来を識別しやすく表示すれば、患者にとっても予測がつくので目標呼吸情報に合わせやすくなる。
 図5はこのような教示を行うための表示画面の例を示しており、(a)から(e)は図3で説明したものと同一である。図中の波形はリアルタイムで左から右にスクロールする。画面中央から左は過去の実績で右は未来の波形を示す。太い呼吸波形は患者の実際の波形を、細い呼吸波形は目標呼吸情報を示す。
 視覚的な表示方法としては、治療台に寝た患者から見える位置に液晶表示画面を設置したり、治療装置壁面や治療室壁面などに投影したり、ヘッドマウントディスプレイを使う方法が考えられる。
 視覚的に表示する情報としては呼吸波形やシンクロトロンの運転パターンを時系列のパターン情報として画面に左から右に流れる形で表示することが考えられる。呼吸波形のような時系列なデータ曲線による表示、あるいは目標呼吸情報と患者の実際の呼吸状態をバー表示など表示されたオブジェクトの位置変化によって表示することも考えられる。同じ情報をオブジェクトの形状変化、寸法変化、色変化、又は明るさの変化で表すなど、様々な類似の方法が考えられる。
 また、視覚的でない情報の教示方法として患者の近くにスピーカを設置し、音声ガイダンスによって呼気や吸気のタイミングを指示することが考えられる。同様に音楽を使って、既知のデジタル加工技術を使って音楽のビート(拍の時間間隔)の整数倍を呼吸周期に合わせることも考えられる。音楽ではなく音のトーンを使う場合には音程の高低の変化、強弱の変化、音色の変化などで呼吸周期を患者に指示する方法が考えられる。このとき音の高低を使って呼吸波形の振幅を表現することができる。また、視覚、聴覚以外にも、振動する装置を患者に握ってもらうなど患者に直接接触する振動装置の振動を制御することにより呼吸周期を患者に用いるなどの方法が考えられる。聴覚的な教示方法は視覚的な教示方法と併用することも考えられる。
シンクロトロンの運転情報として患者に教示する情報としては、シンクロトロンの主偏向電磁石の励磁電流が適している。これ以外にもシンクロトロンの運転パターンの最初を示すマスタ信号というものがあり、マスタ信号以外にも、入射開始、加速開始、加速終了、出射可時期開始などのシンクロトロン運転サイクル内の特定なイベントに対応するタイミング信号を患者に教示する情報として用いることが考えられるが、これらのタイミング信号はいずれもシンクロトロンの運転パターンに基づいてマスタ信号から適切な遅延を設けることで発生することもできるので基本的にはマスタ信号と同等である。
 シンクロトロンの運転情報を患者に教示することで、患者はシンクロトロンの運転状態を理解することができ、目標呼吸パターンに近づけることの支援情報として役に立つ。シンクロトロンの運転情報の電送は呼吸同期信号発生装置を経由して呼吸ナビ装置に入力すればよいが、加速器タイミングシステムおよびシンクロトロン偏向電磁石電源から直接分岐して呼吸ナビ装置に電送する方法もある。
 前述の目標呼吸情報をノート型パソコンのように記録と表示ができる可搬型の装置に保存したり、CD-ROMのような記憶媒体に保存すれば、患者が自宅や病室などでパソコンを使って事前に呼吸のトレーニングに使用することもできる。これによって患者はより忠実に呼吸を目標呼吸パターン近づけることができる。トレーニングの時には呼吸測定装置まで使うことが容易でないため、目標呼吸情報のみを患者に教示すればよい。

Claims (12)

  1. 粒子線発生装置と、患者の呼吸状態を測定するための患者呼吸測定装置と、上記患者呼吸測定装置の測定情報に基づき患者への粒子線照射を許可する呼吸同期装置と、上記呼吸同期に関する情報を患者に教示するための呼吸情報教示装置を具備し、上記粒子線発生装置の運転タイミング情報に基づいてあらかじめ周期が定められた目標呼吸情報を患者に教示し、患者が上記目標呼吸情報に意識的に呼吸状態を合わせることによって、呼吸同期の治療照射中に、あるいは治療計画用X線CTの画像取得時に、患者が上記粒子線発生装置の周期に適したタイミングで呼吸するように支援することを特徴とする粒子線治療装置。
  2. 治療照射中に患者呼吸測定装置で計測された患者呼吸状態情報を前記呼吸 情報教示装置によってリアルタイムで患者に教示し、その情報によって患者が上記目標呼吸情報で示された呼吸タイミングで呼吸するように支援することを特徴とする請求項1に記載の粒子線治療装置。
  3. 治療照射中に、上記粒子線発生装置の運転に係わるタイミング情報、上記 粒子線発生装置の電磁石に通電される電流波形、及びビームが実際に出射されたときの出射ビーム信号を含む上記粒子線発生装置の運転状態情報を前記呼吸情報教示装置によってリアルタイムで患者に教示し、その情報によって患者が上記目標呼吸情報で示された呼吸タイミングで呼吸するように支援することを特徴とする請求項1または請求項2に記載の粒子線治療装置。
  4. 目標呼吸情報あるいは患者呼吸状態情報として、前記呼吸測定装置で計測された呼吸の振幅に係わる情報を時系列に定量化した呼吸波形の情報を前記呼吸情報教示装置に教示することを特徴とする上記請求項1または請求項2に記載の粒子線治療装置。
  5. 目標呼吸情報あるいは患者呼吸状態情報として、前記呼吸波形に基づいて作成された呼気開始、吸気開始の呼吸状態タイミング情報を、前記呼吸情報教示装置に教示することを特徴とする上記請求項1または請求項2に記載の粒子線治療装置。
  6. 目標呼吸情報あるいは患者呼吸状態情報として、前記呼吸波形に対して閾 値を定めて、その閾値に対して作成される呼吸ゲート信号を前記呼吸情報教示装置に教示することを特徴とする上記請求項1または請求項2に記載の粒子線治療装置。
  7. 前記目標呼吸情報の周期が上記粒子線発生装置の運転周期の整数倍か半整数倍とし、患者の自然呼吸周期に近い周期で、かつ患者にとって苦痛なく実現できる周期を選択することを特徴とする請求項1に記載の粒子線治療装置。
  8. 前記目標呼吸情報の前記呼吸ゲート信号の時間幅がn・Tsync+Tspill( nは0を含む自然数)あるいはそれ以上となることを特徴とする請求項6に記載の粒子線治療装置。
  9. 治療計画用X線CT撮影前あるいは治療照射の前に、予め患者の呼吸を計測し呼吸の平均周期を求め、その周期から上記粒子線発生装置の運転周期に適した目標呼吸周期を設定し、目標呼吸周期の信号を患者に教示したときの時系列的な呼吸情報を目標呼吸情報とし、治療計画用X線CT撮影時あるいは治療照射中に前記呼吸情報教示装置に前記目標呼吸情報を患者に対して教示することを特徴とする請求項1に記載の粒子線治療装置。
  10. 治療計画用X線CT撮影前あるいは治療照射の前に、予め患者の呼吸を計測し呼吸の時系列的な情報を周期単位で平均化し、その情報に基づいて、上記粒子線発生装置の運転周期に適した目標呼吸情報を作成し、治療計画用X線CT撮影時あるいは治療照射中に前記呼吸情報教示装置に前記目標呼吸情報を患者に対して教示することを特徴とする請求項1に記載の粒子線治療装置。
  11. 前記目標呼吸情報の前記呼吸ゲート信号と上記粒子線発生装置の出射可ゲート信号の重なりが最大となるように目標呼吸情報の位相を上記粒子線発生装置の周期に対して設定したことを特徴とする請求項6に記載の粒子線治療装置。
  12. 前記目標呼吸情報を別の計算機にエクスポートすることにより、患者が 前記計算機を使って治療前に呼吸のトレーニングを行えるようにしたことを特徴とする請求項1に記載の粒子線治療装置。
PCT/JP2008/060553 2008-06-09 2008-06-09 粒子線治療装置 WO2009150708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/682,012 US8274243B2 (en) 2008-06-09 2008-06-09 Particle beam treatment apparatus and respiration navigation apparatus used therefor
PCT/JP2008/060553 WO2009150708A1 (ja) 2008-06-09 2008-06-09 粒子線治療装置
JP2009553534A JP4531122B2 (ja) 2008-06-09 2008-06-09 粒子線治療装置及びこれに用いられる呼吸ナビゲーション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060553 WO2009150708A1 (ja) 2008-06-09 2008-06-09 粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2009150708A1 true WO2009150708A1 (ja) 2009-12-17

Family

ID=41416433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060553 WO2009150708A1 (ja) 2008-06-09 2008-06-09 粒子線治療装置

Country Status (3)

Country Link
US (1) US8274243B2 (ja)
JP (1) JP4531122B2 (ja)
WO (1) WO2009150708A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214134A (ja) * 2010-06-08 2010-09-30 Mitsubishi Electric Corp 粒子線治療装置に用いられる呼吸ナビゲーション装置及び呼吸タイミング表示方法並びに粒子線治療システム
WO2012066630A1 (ja) * 2010-11-16 2012-05-24 三菱電機株式会社 呼吸誘導装置、呼吸誘導プログラムおよび粒子線治療装置
US8481979B2 (en) 2010-09-09 2013-07-09 Mitsubishi Electric Company Particle beam therapy system with respiratory synchronization control
JP2013252446A (ja) * 2013-08-19 2013-12-19 Mitsubishi Electric Corp 粒子線治療装置および照射対象治療室の選定方法
JP2019010508A (ja) * 2017-06-29 2019-01-24 キヤノンメディカルシステムズ株式会社 放射線治療システム及び治療支援装置
JP2021078989A (ja) * 2019-11-22 2021-05-27 キヤノンメディカルシステムズ株式会社 患者制動ガイド装置及び放射線治療装置
US11273326B2 (en) 2017-06-29 2022-03-15 Canon Medical Systems Corporation Radiotherapy system and treatment support apparatus
JP7512094B2 (ja) 2020-06-05 2024-07-08 株式会社東芝 放射線治療用ct撮像システム及び放射線治療用ct撮像方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105031830B (zh) * 2010-09-09 2018-04-27 三菱电机株式会社 粒子射线治疗装置
US9265970B2 (en) * 2011-03-02 2016-02-23 Mitsubishi Electric Corporation Particle beam irradiation system
US8619945B2 (en) * 2011-09-20 2013-12-31 Siemens Medical Solutions Usa, Inc. Prediction-based breathing control apparatus for radiation therapy
JP5896211B2 (ja) 2011-11-30 2016-03-30 株式会社日立製作所 荷電粒子照射システムおよび荷電粒子照射システムの作動方法
WO2013133936A1 (en) * 2012-03-03 2013-09-12 The Board Of Trustees Of The Leland Stanford Junior University Pluridirectional very high electron energy radiation therapy systems and processes
CN104470583B (zh) * 2012-07-13 2016-12-07 三菱电机株式会社 X射线定位装置、x射线定位方法及关注图像拍摄方法
WO2015102681A2 (en) * 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for rf power generation and distribution to facilitate rapid radiation therapies
EP3043864A4 (en) 2013-09-11 2017-07-26 The Board of Trustees of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
EP3072554A4 (en) * 2013-11-21 2017-07-19 Mitsubishi Electric Corporation Particle therapy device
CN104274914B (zh) * 2014-09-25 2018-01-12 中国科学院近代物理研究所 离子束呼吸门控治疗中的呼吸引导装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518330A (ja) * 1997-10-01 2001-10-16 ボストン メディカル テクノロジーズ インコーポレイテッド 吸息容量の測定のための方法及び装置
JP2002360543A (ja) * 2001-06-12 2002-12-17 Sangaku Renkei Kiko Kyushu:Kk 呼吸位相における同期点決定方法、及びそのために用いる呼吸位相モニタ装置
JP2003033443A (ja) * 2001-07-24 2003-02-04 Mitsubishi Electric Corp 放射線発生装置、それを用いた放射線治療装置および放射線診断装置
JP2007042659A (ja) * 2006-11-02 2007-02-15 Mitsubishi Electric Corp 直線加速装置、シンクロトロン加速装置、粒子線治療装置および加速装置の制御方法
JP2007190278A (ja) * 2006-01-20 2007-08-02 Omron Healthcare Co Ltd 呼吸訓練器
JP2007236760A (ja) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634786B2 (ja) 1989-09-26 1994-05-11 株式会社東芝 磁気共鳴イメージング装置
JP2921433B2 (ja) * 1994-03-17 1999-07-19 株式会社日立製作所 荷電粒子出射方法及び荷電粒子出射装置
JPH1028742A (ja) * 1996-07-18 1998-02-03 Hitachi Medical Corp 放射線治療装置
US7769430B2 (en) * 2001-06-26 2010-08-03 Varian Medical Systems, Inc. Patient visual instruction techniques for synchronizing breathing with a medical procedure
JP4257741B2 (ja) * 2004-04-19 2009-04-22 三菱電機株式会社 荷電粒子ビーム加速器、荷電粒子ビーム加速器を用いた粒子線照射医療システムおよび、粒子線照射医療システムの運転方法
JP4650382B2 (ja) 2006-09-12 2011-03-16 三菱電機株式会社 荷電粒子ビーム加速器及びその荷電粒子ビーム加速器を用いた粒子線照射システム
JP5329788B2 (ja) 2006-10-11 2013-10-30 株式会社東芝 X線コンピュータ断層撮影装置、呼吸指示装置及び医用画像撮影装置
WO2008115830A2 (en) * 2007-03-16 2008-09-25 Cyberheart, Inc. Radiation treatment planning and delivery for moving targets in the heart

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518330A (ja) * 1997-10-01 2001-10-16 ボストン メディカル テクノロジーズ インコーポレイテッド 吸息容量の測定のための方法及び装置
JP2002360543A (ja) * 2001-06-12 2002-12-17 Sangaku Renkei Kiko Kyushu:Kk 呼吸位相における同期点決定方法、及びそのために用いる呼吸位相モニタ装置
JP2003033443A (ja) * 2001-07-24 2003-02-04 Mitsubishi Electric Corp 放射線発生装置、それを用いた放射線治療装置および放射線診断装置
JP2007190278A (ja) * 2006-01-20 2007-08-02 Omron Healthcare Co Ltd 呼吸訓練器
JP2007236760A (ja) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法
JP2007042659A (ja) * 2006-11-02 2007-02-15 Mitsubishi Electric Corp 直線加速装置、シンクロトロン加速装置、粒子線治療装置および加速装置の制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214134A (ja) * 2010-06-08 2010-09-30 Mitsubishi Electric Corp 粒子線治療装置に用いられる呼吸ナビゲーション装置及び呼吸タイミング表示方法並びに粒子線治療システム
EP2952226A1 (en) 2010-09-09 2015-12-09 Mitsubishi Electric Corporation Particle beam therapy system
US8481979B2 (en) 2010-09-09 2013-07-09 Mitsubishi Electric Company Particle beam therapy system with respiratory synchronization control
US8664626B2 (en) 2010-09-09 2014-03-04 Mitsubishi Electric Corporation Particle beam therapy systems and the methods for time-sharing irradiation
WO2012066630A1 (ja) * 2010-11-16 2012-05-24 三菱電機株式会社 呼吸誘導装置、呼吸誘導プログラムおよび粒子線治療装置
CN102985137A (zh) * 2010-11-16 2013-03-20 三菱电机株式会社 呼吸引导装置、呼吸引导程序及粒子射线治疗装置
US8808341B2 (en) 2010-11-16 2014-08-19 Mitsubishi Electric Corporation Respiratory induction apparatus, respiratory induction program, and particle beam therapy system
JP5602873B2 (ja) * 2010-11-16 2014-10-08 三菱電機株式会社 粒子線治療装置
CN102985137B (zh) * 2010-11-16 2015-10-21 三菱电机株式会社 呼吸引导装置、呼吸引导程序及粒子射线治疗装置
JP2013252446A (ja) * 2013-08-19 2013-12-19 Mitsubishi Electric Corp 粒子線治療装置および照射対象治療室の選定方法
JP2019010508A (ja) * 2017-06-29 2019-01-24 キヤノンメディカルシステムズ株式会社 放射線治療システム及び治療支援装置
US11273326B2 (en) 2017-06-29 2022-03-15 Canon Medical Systems Corporation Radiotherapy system and treatment support apparatus
JP7356211B2 (ja) 2017-06-29 2023-10-04 キヤノンメディカルシステムズ株式会社 放射線治療システム
JP2021078989A (ja) * 2019-11-22 2021-05-27 キヤノンメディカルシステムズ株式会社 患者制動ガイド装置及び放射線治療装置
JP7404039B2 (ja) 2019-11-22 2023-12-25 キヤノンメディカルシステムズ株式会社 患者制動ガイド装置及び放射線治療装置
JP7512094B2 (ja) 2020-06-05 2024-07-08 株式会社東芝 放射線治療用ct撮像システム及び放射線治療用ct撮像方法

Also Published As

Publication number Publication date
JPWO2009150708A1 (ja) 2011-11-04
US20100207042A1 (en) 2010-08-19
US8274243B2 (en) 2012-09-25
JP4531122B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4531122B2 (ja) 粒子線治療装置及びこれに用いられる呼吸ナビゲーション装置
JP5602873B2 (ja) 粒子線治療装置
JP6534441B2 (ja) 呼吸誘導システム及びその方法
JP5610441B2 (ja) 放射線治療システム
JP4247533B2 (ja) 呼吸同期装置
WO2016045517A1 (zh) 离子束呼吸门控照射中的呼吸引导装置及方法
JP5274516B2 (ja) 粒子線治療装置に用いられる呼吸ナビゲーション装置及び呼吸タイミング表示方法並びに粒子線治療システム
US20130116555A1 (en) System and Method of Radiation Dose Targeting Through Ventilatory Controlled Anatomical Positioning
JP2021058627A (ja) 電流生成装置、電流生成装置の制御方法、動体追跡照射システム、x線照射装置、及びx線照射装置の制御方法
JP2019201929A (ja) 放射線撮影システム及び撮影ガイドパターン選択装置
JP3881199B2 (ja) 放射線発生装置、それを用いた放射線治療装置および放射線診断装置
JP2004089516A (ja) 放射線照射装置
JP4991135B2 (ja) 医用画像診断装置
EP3261699B1 (en) Ventilator system
JP2021053317A (ja) 治療支援装置、放射線治療装置、放射線治療システム及び医用画像診断装置
JP7404039B2 (ja) 患者制動ガイド装置及び放射線治療装置
JP2005095640A (ja) 放射線照射方法及び放射線照射装置
KR101537772B1 (ko) 호흡 유도 시스템
JP5638710B2 (ja) 呼吸誘導装置、呼吸誘導プログラムおよび粒子線治療装置
JP6916055B2 (ja) 放射線治療システム及び放射線照射時間管理装置
JP2024046063A (ja) 呼吸訓練システム、呼吸訓練方法および呼吸訓練プログラム
CN105031830B (zh) 粒子射线治疗装置
JP2019072236A (ja) 放射線治療システム
JPWO2019209142A5 (ja) ヒトの睡眠の理学療法的修正及び治療のシステムの作動方法及びシステム
Comsa et al. Advances in Radiation Oncology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009553534

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12682012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765343

Country of ref document: EP

Kind code of ref document: A1