WO2009150382A2 - Objet en verre creux - Google Patents

Objet en verre creux Download PDF

Info

Publication number
WO2009150382A2
WO2009150382A2 PCT/FR2009/051108 FR2009051108W WO2009150382A2 WO 2009150382 A2 WO2009150382 A2 WO 2009150382A2 FR 2009051108 W FR2009051108 W FR 2009051108W WO 2009150382 A2 WO2009150382 A2 WO 2009150382A2
Authority
WO
WIPO (PCT)
Prior art keywords
equal
object according
glass
transmission
content
Prior art date
Application number
PCT/FR2009/051108
Other languages
English (en)
Other versions
WO2009150382A3 (fr
Inventor
Neill Mcdonald
Original Assignee
Saint-Gobain Emballage
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Emballage filed Critical Saint-Gobain Emballage
Priority to CN200980121769.6A priority Critical patent/CN102056856B/zh
Priority to UAA201100322A priority patent/UA101508C2/ru
Priority to BRPI0914884-1A priority patent/BRPI0914884B1/pt
Priority to EP09761933A priority patent/EP2300382B1/fr
Priority to MX2010013516A priority patent/MX2010013516A/es
Priority to AU2009259115A priority patent/AU2009259115B2/en
Priority to ES09761933T priority patent/ES2381259T3/es
Priority to JP2011513035A priority patent/JP5635501B2/ja
Priority to AT09761933T priority patent/ATE542781T1/de
Priority to US12/996,269 priority patent/US8828511B2/en
Priority to RU2011100163/03A priority patent/RU2500630C2/ru
Priority to CA2727068A priority patent/CA2727068C/fr
Publication of WO2009150382A2 publication Critical patent/WO2009150382A2/fr
Publication of WO2009150382A3 publication Critical patent/WO2009150382A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/904Infrared transmitting or absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/905Ultraviolet transmitting or absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Definitions

  • the present invention relates to hollow glass articles, such as bottles, flasks, or jars, having a high light transmission and a strong protection against damage due to radiation.
  • ultraviolet (UV) radiation especially solar radiation
  • UV radiation can interact with many liquids, sometimes degrading their quality. This is for example the case of certain liquid foods, among which some wines such as Champagne, or beer, whose color and taste can be altered.
  • Glass hollow objects responding to this constraint are extremely common, but they generally have strong colorations, so a very low light transmission.
  • wine or beer is often packaged in bottles of amber or green hue, these colors being obtained by the addition of dyes such as chromium oxide or sulphides of transition elements, such as sulphides of iron.
  • dyes such as chromium oxide or sulphides of transition elements, such as sulphides of iron.
  • These tinted containers however have the disadvantage of masking the color of the liquid they contain. In some cases, it may be desirable, mainly for aesthetic reasons, to be able to fully appreciate the coloring of the contents, and thus to have hollow glass objects having both a high light transmission and a neutral hue.
  • WO2005 / 075368 discloses glass compositions capable of solving this problem. These compositions, which comprise vanadium oxide and manganese oxide, make it possible to obtain hollow glass objects having both low ultraviolet transmission (for wavelengths below 380 nm) and strong light transmission (in the wavelength range between 380 and 780 nm). However, it appeared that the protection conferred by these objects could in certain respects be insufficient in the long term, in particular for liquids such as white wines, still or effervescent, especially Champagne.
  • the invention aims to increase the shelf life of these liquids, contained in glass containers, while allowing to visualize the appearance of said liquids.
  • the subject of the invention is a hollow glass object having, for a thickness of 5 mm, an overall light transmission greater than or equal to 70%, said overall light transmission being calculated taking into consideration the illuminant C such as defined by the ISO / IEC 10526 standard and the CIE 1931 colorimetric reference observer as defined by ISO / CIE 10527, and a filtering capacity greater than or equal to 65%, especially 70%, said filtering power being defined as being equal to the value of 100% less the arithmetic average of the transmission between 330 and 450 nm.
  • the object according to the invention is such that its chemical composition is of the soda-lime-silica type and comprises the following optical absorbing agents in a content varying within the weight limits defined below:
  • the glass object according to the invention preferably has one or more of the following properties, always calculated for a thickness of 5 mm: a transmission for a wavelength of 440 nm less than or equal to 70%, preferably 65% including 60% and even 55% or 50%, or 45%, or 40% and even 35%.
  • a transmission for a wavelength of 440 nm less than or equal to 70%, preferably 65% including 60% and even 55% or 50%, or 45%, or 40% and even 35%.
  • an ultraviolet transmission calculated according to ISO 9050, less than or equal to 20%, preferably 15%, in particular 10% and even 5%.
  • these optical properties are those of the single glass object, thus excluding any organic or mineral coating.
  • the optical properties depend in known manner on the thickness of the glass. It's obvious that the glass object according to the invention does not necessarily have a thickness of 5 mm. On the other hand, it is important that the essential optical properties are respected for an equivalent thickness of 5 mm. In the case where the thickness of the object is not equal to 5 mm, it is easy to calculate these properties for an equivalent thickness of 5 mm from a measurement made on the object, taking into account its real thickness.
  • compositions are expressed in percentages by weight, and the content of an oxide of a given metal corresponds to the total content of this metal oxide, without prejudging the actual degree of oxidation of the metal ion in question.
  • preferred levels, minimum or maximum, are given it is understood that any range resulting from a combination of a minimum content and a maximum content is expressly part of the present description.
  • the composition preferably comprises one or more of the following limitations, alone or in combination: preferably, the iron oxide content is greater than or equal to 0.02%, especially 0.03% and even 0.04%, or 0.05% or 0.06% and / or less than or equal to 0.14%, in particular 0.13% and even 0.12%, or even 0.11% or 0.10%.
  • the content of titanium oxide is preferably greater than or equal to 0.6%, especially 0.7% and even 0.8% or 0.9%, or 1% and / or less than or equal to 2.5% including 2.4%, or even 2.3% and even 2.2% or 2.1%.
  • the sulphide content is preferably greater than or equal to 0.0015%, especially 0.0020% and / or less than or equal to 0.0040%, or even 0.0035%.
  • Redox defined by the ratio of the molar content of ferrous oxide (expressed as FeO) to the molar content of total iron (expressed as Fe2O3), which is an indicator of the redox state of the glass, is preferably greater or equal to 0.5, especially 0.55 and even 0.6.
  • Redox is generally controlled with oxidizing agents such as sodium sulfate, and reducing agents such as coke, whose relative contents are adjusted to achieve the desired redox.
  • the composition according to the invention preferably comprises no absorbing agent for a wavelength of between 300 and 1000 nm other than the iron and titanium oxides and the sulphide ions.
  • composition according to the invention preferably does not contain agents chosen from the following agents: oxides of transition elements such as CoO, CuO, Cr 2 ⁇ 3, V 2 O 5 , MnO 2 , oxides rare earths such as CeO 2 , La 2 ⁇ 3, Er 2 ⁇ 3, or
  • Nd 2 ⁇ 3 or else the elementary coloring agents such as Se, Ag, Cu.
  • optical absorbing agents within the limits of the invention makes it possible to confer the desired properties and also to better adjust the optical and energetic properties of the glass.
  • These properties result indeed from a complex interaction between the various agents whose behavior is further linked to the glass matrix used and their oxidation state. This is particularly the case for the compositions according to the invention, which contain at least two elements existing under several valences.
  • silico-soda-lime is used here in the broad sense and concerns any glass composition consisting of a glass matrix which comprises the following constituents (in percentage by weight): SiO 2 64 - 75%
  • the soda-lime glass composition may comprise, in addition to unavoidable impurities contained in particular in the raw materials, a small proportion (up to 1%) of others. constituents, for example agents assisting with the melting or refining of glass (SO3, Cl, Sb 2 ⁇ 3, As 2 Os) or from a possible addition of recycled cullet in the batch.
  • the silica is generally kept within narrow limits for the following reasons. Above 75%, the viscosity of the glass and its ability to devitrify greatly increase which makes it more difficult to melt and pour on the molten tin bath. Below 64%, the hydrolytic strength of the glass decreases rapidly and the transmission in the visible also decreases.
  • Alumina Al 2 O 3 plays a particularly important role in the hydrolytic resistance of glass.
  • the alumina content is preferably greater than or equal to 1%.
  • the alkaline oxides Na 2 O and K 2 O facilitate melting of the glass and allow its viscosity to be adjusted at high temperatures to keep it close to that of a standard glass.
  • K 2 O can be used up to 5% because beyond this arises the problem of the high cost of the composition.
  • the increase in the percentage of K 2 O can be done, for the most part, only to the detriment of Na 2 O, which contributes to increasing the viscosity.
  • the sum of the contents of Na 2 O and K 2 O, expressed in weight percentages, is preferably equal to or greater than 10% and advantageously less than 20%. If the sum of these contents is greater than 20% or if the Na 2 O content is greater than 18%, the hydrolytic resistance is greatly reduced.
  • the glasses according to the invention are preferably free of lithium oxide Li 2 O because of its high cost.
  • the alkaline earth oxides make it possible to adapt the viscosity of the glass to the conditions of preparation.
  • MgO may be used up to about 10% and its removal may be offset, at least in part, by an increase in Na2O and / or SiO2 content.
  • the MgO content is less than 5% and particularly advantageously less than 2% which has the effect of increasing the absorption capacity in the infrared without affecting the transmission in the visible.
  • Low levels of MgO also make it possible to reduce the number of raw materials required for melting the glass.
  • BaO has a much lower influence than CaO and MgO on the viscosity of glass and the increase in its content is mainly to the detriment of alkaline oxides, MgO and especially CaO. Any increase in BaO helps to increase the viscosity of the glass at low temperatures.
  • the glasses according to the invention are free of BaO and also of strontium oxide (SrO), these elements having a high cost.
  • the glass composition according to the invention is capable of being melted under the conditions of production of glass intended for forming hollow bodies by pressing, blowing or molding techniques.
  • the melting generally takes place in flame furnaces, possibly provided with electrodes for heating the glass in the mass by passing the electric current between the two electrodes.
  • the addition of the optical absorbing oxides can be carried out in the furnace (this is called “pool coloration”) or in the channels carrying the glass between the furnace and the forming plants (this is called “feeder coloration”).
  • the coloring feeder requires a particular installation of addition and mixing but on the other hand offers flexibility and responsiveness particularly appreciated when the production of a wide range of colors and / or special optical properties is required.
  • the optical absorbing agents are incorporated in glass frits or agglomerates, which are added to a clear glass to form after homogenization the glasses according to the invention. Different frits may be used for each added oxide, but it may be advantageous in some cases to have a single frit comprising all useful optical absorbers.
  • the levels of optical absorbing oxides in the frits or agglomerates employed be between 5 and 30%, so as not to exceed melting rates of frit in the molten glass greater than 10%, especially 5%, and advantageously 2%. Beyond that, it becomes indeed difficult to properly homogenize the molten glass while retaining strong runs compatible with a low overall economic cost of the process.
  • the invention therefore also relates to a method for manufacturing a glass having a composition according to the invention, comprising a step of melting a part of the vitrifiable mixture, a step of transporting the molten glass to the forming device during which oxide is added to said molten glass by means of sintered glass or agglomerates, at least a portion of the optical absorbing agents being provided to the composition during this step, and a step of forming said glass to obtain an object hollow.
  • all of the optical absorbing agents, except iron, are provided to the composition during the step of transporting the molten glass to the forming device.
  • the subject of the invention is also a method for manufacturing a glass having a composition according to the invention, comprising a step of melting the vitrifiable mixture in a melting furnace, said vitrifiable mixture providing all the oxides included in said composition, and a forming step.
  • any method for obtaining a hollow glass object is usable.
  • the object according to the invention is preferably a bottle, in particular likely to contain or containing beer or white wine, quiet or effervescent, especially Champagne.
  • the values of the following optical properties calculated under a glass thickness of 5 mm are given from experimental spectra: the overall light transmission (TL C ), calculated between 380 and 780 mm.
  • the filtering power (denoted by PF), defined as being equal to the value of 100% minus the arithmetic average of the transmission between 330 and
  • T 440 the transmission for a wavelength 440 nm
  • Table 1 Also shown in Table 1 are the weight levels of optical absorbing agents.
  • compositions appearing in Table 1 are made from the following glass matrix, the contents of which are expressed in percentages by weight, this being corrected at the silica level to adapt to the total content of added coloring agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Packages (AREA)

Abstract

L'invention se rapporte à un objet en verre creux présentant, pour une épaisseur de 5 mm, une transmission lumineuse globale supérieure ou égale à 70%, ladite transmission lumineuse globale étant calculée en prenant en considération l'illuminant C tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527, et un pouvoir filtrant supérieur ou égal à 65%, notamment 70%, ledit pouvoir filtrant étant défini comme étant égal à la valeur de 100% diminuée de la moyenne arithmétique de la transmission entre 330 et 450 nm, ledit objet ayant une composition chimique de type silico-sodo-calcique qui comprend les agents absorbants optiques suivants dans une teneur variant dans les limites pondérales ci-après définies : Fe2O3; (fer total) 0,01 à 0,15%; TiO2 0,5 à 3%; Sulfures (S2-) 0,0010 à 0,0050%;

Description

OBJET EN VERRE CREUX
La présente invention se rapporte à des objets en verre creux, tels que bouteilles, flacons, ou pots, présentant une transmission lumineuse élevée et une forte protection contre les dégradations dues aux rayonnements. II est connu que les rayonnements ultraviolets (UV), en particulier solaires, peuvent interagir avec de nombreux liquides en dégradant parfois leur qualité. C'est par exemple le cas de certains liquides alimentaires, parmi lesquels certains vins comme le Champagne, ou la bière, dont la couleur et le goût peuvent être altérés. Il y a donc un réel besoin, aussi bien dans l'industrie agro-alimentaire que cosmétique, de contenants en verre capables d'absorber la plus grande partie des rayonnements ultraviolets.
Des objets creux en verre répondant à cette contrainte sont extrêmement courants, mais ils présentent en général de fortes colorations, donc une très faible transmission lumineuse. Le vin ou la bière sont par exemple souvent conditionnés dans des bouteilles de teinte ambre ou verte, ces colorations étant obtenues par l'ajout de colorants tels que l'oxyde de chrome ou les sulfures d'éléments de transition, tels que les sulfures de fer. Ces récipients teintés présentent toutefois l'inconvénient de masquer la coloration du liquide qu'ils contiennent. Dans certains cas, il peut être souhaitable, principalement pour des raisons esthétiques, de pouvoir pleinement apprécier la coloration du contenu, et donc de disposer d'objets en verre creux présentant tout à la fois une transmission lumineuse élevée et une teinte neutre.
La demande WO2005/075368 décrit des compositions de verre aptes à résoudre ce problème. Ces compositions, qui comprennent de l'oxyde de vanadium et de l'oxyde de manganèse, permettent d'obtenir des objets en verre creux présentant à la fois une faible transmission ultraviolette (pour des longueurs d'ondes inférieures à 380 nm) et une forte transmission lumineuse (dans le domaine de longueurs d'ondes compris entre 380 et 780 nm). II est toutefois apparu que la protection conférée par ces objets pouvait à certains égards se révéler insuffisante dans la durée, en particulier pour des liquides tels que des vins blancs, tranquilles ou effervescents, notamment le Champagne. L'invention a pour but d'augmenter la durée de vie en étalage de ces liquides, contenus dans des emballages en verre, tout en permettant de visualiser l'aspect desdits liquides. A cet effet, l'invention a pour objet un objet en verre creux présentant, pour une épaisseur de 5 mm, une transmission lumineuse globale supérieure ou égale à 70%, ladite transmission lumineuse globale étant calculée en prenant en considération l'illuminant C tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527, et un pouvoir filtrant supérieur ou égal à 65%, notamment 70%, ledit pouvoir filtrant étant défini comme étant égal à la valeur de 100% diminuée de la moyenne arithmétique de la transmission entre 330 et 450 nm. L'objet selon l'invention est tel que sa composition chimique est de type silico-sodo-calcique et comprend les agents absorbants optiques suivants dans une teneur variant dans les limites pondérales ci-après définies :
Fe2O3 (fer total) 0,01 à 0,15%
TiO2 0,5 à 3%
Sulfures (S2") 0,0010 à 0,0050%
L'objet en verre selon l'invention possède de préférence une ou plusieurs des propriétés suivantes, toujours calculées pour une épaisseur de 5 mm : une transmission pour une longueur d'ondes de 440 nm inférieure ou égale à 70%, de préférence 65%, notamment 60% et même 55% ou 50%, ou encore 45%, ou 40% et même 35%. une transmission ultraviolette, calculée selon la norme ISO 9050, inférieure ou égale à 20%, de préférence 15%, notamment 10% et même 5%. une transmission lumineuse supérieure ou égale à 75%, notamment 80%, et même 85%.
Les rayonnements dont la longueur d'ondes est proche de 440 nm se sont révélés être, avec les rayonnements ultraviolets, les plus nocifs pour des liquides tels les vins blancs, notamment le Champagne.
De préférence, ces propriétés optiques sont celles du seul objet en verre, à l'exclusion donc de tout revêtement organique ou minéral. Les propriétés optiques dépendent de manière connue de l'épaisseur du verre. Il va de soi que l'objet en verre selon l'invention ne présente pas nécessairement une épaisseur de 5 mm. Il importe en revanche que les propriétés optiques essentielles soient respectées pour une épaisseur équivalente de 5 mm. Dans le cas où l'épaisseur de l'objet n'est pas égale à 5 mm, il est aisé de calculer ces propriétés pour une épaisseur équivalente de 5 mm à partir d'une mesure effectuée sur l'objet, en prenant en compte son épaisseur réelle.
De manière surprenante, cette combinaison de propriétés optiques s'est révélée à même de résoudre le problème technique à la base de l'invention, à savoir l'augmentation de la durée de vie en étalage de certains liquides, en particulier le Champagne, tout en permettant de visualiser l'aspect desdits liquides.
Ces deux propriétés (forte transmission lumineuse d'une part et pouvoir filtrant élevé d'autre part) étaient jusqu'à présent jugées incompatibles, puisqu'une transmission lumineuse élevée suppose une forte transmission dans le domaine du visible, donc entre 380 et 780 nm. Ainsi, les emballages existants dont le pouvoir filtrant est élevé présentent une teinte très soutenue (verte ou ambre) et par conséquent une faible transmission lumineuse.
Sauf indications contraires, toutes les compositions sont exprimées en pourcentages pondéraux, et la teneur en un oxyde d'un métal donné correspond à la teneur totale en cet oxyde métallique, sans préjuger du degré d'oxydation réel de l'ion métallique considéré. Lorsque des teneurs préférées, minimales ou maximales, sont données, il est entendu que toute plage résultant d'une combinaison entre une teneur minimale et une teneur maximale fait expressément partie de la présente description. La composition comprend de préférence une ou plusieurs des limitations suivantes, seules ou en combinaison : de préférence, la teneur en oxyde de fer est supérieure ou égale à 0,02%, notamment 0,03% et même 0,04%, ou encore 0,05% ou 0,06% et/ou inférieure ou égale à 0,14%, notamment 0,13% et même 0,12%, voire 0,11 % ou 0,10%. la teneur en oxyde de titane est de préférence supérieure ou égale à 0,6%, notamment 0,7% et même 0,8% ou 0,9%, ou encore 1 % et/ou inférieure ou égale à 2,5%, notamment 2,4%, voire 2,3% et même 2,2% ou encore 2,1 %. la teneur en sulfures est de préférence supérieure ou égale à 0,0015%, notamment 0,0020% et/ou inférieure ou égale à 0,0040%, voire 0,0035%.
Le rédox, défini par le rapport de la teneur molaire en oxyde ferreux (exprimé en FeO) à la teneur molaire en fer total (exprimé en Fe2θ3), qui est un indicateur de l'état d'oxydoréduction du verre, est de préférence supérieur ou égal à 0,5, notamment 0,55 et même 0,6. Le rédox est généralement contrôlé à l'aide d'agents oxydants tels que le sulfate de sodium, et d'agents réducteurs tels que du coke, dont les teneurs relatives sont ajustées pour obtenir le rédox souhaité. La composition selon l'invention ne comprend de préférence aucun agent absorbant pour une longueur d'ondes comprise entre 300 et 1000 nm autre que les oxydes de fer et de titane et les ions sulfures. En particulier, la composition selon l'invention ne contient de préférence pas d'agents choisis parmi les agents suivants : les oxydes d'éléments de transition tels que CoO, CuO, Cr2θ3, V2O5, MnO2, les oxydes de terres rares tels que CeO2, La2θ3, Er2θ3, ou
Nd2θ3, ou encore les agents colorants à l'état élémentaire tels que Se, Ag, Cu.
L'utilisation des agents absorbants optiques précités dans les limites de l'invention permet de conférer les propriétés recherchées et aussi d'ajuster au mieux les propriétés optiques et énergétiques du verre. En règle générale, il est difficile de prévoir les propriétés optiques et énergétiques d'un verre lorsque celui-ci contient plusieurs agents absorbants optiques. Ces propriétés résultent en effet d'une interaction complexe entre les différents agents dont le comportement est en outre lié à la matrice verrière employée et à leur état d'oxydation. Cela est particulièrement le cas pour les compositions selon l'invention, lesquelles contiennent au moins deux éléments existant sous plusieurs valences.
L'expression silico-sodo-calcique est ici utilisée dans le sens large et concerne toute composition de verre constituée d'une matrice verrière qui comprend les constituants suivants (en pourcentage en poids) : SiO2 64 - 75 %
AI2O3 0 - 5 % B2O3 0 - 5 %, de préférence 0 CaO 5 - 15 % MgO 0 - 10 % Na2O 10 - 18 % K2O 0 - 5 %
BaO 0 - 5 %, de préférence 0. On convient ici que la composition de verre silico-sodo-calcique peut comprendre, outre les impuretés inévitables contenues notamment dans les matières premières, une faible proportion (jusqu'à 1 %) d'autres constituants, par exemple des agents aidant à la fusion ou l'affinage du verre (SO3, Cl, Sb2θ3, As2Os) ou provenant d'un ajout éventuel de calcin recyclé dans le mélange vitrifiable.
Dans les verres selon l'invention, la silice est généralement maintenue dans des limites étroites pour les raisons suivantes. Au-dessus de 75 %, la viscosité du verre et son aptitude à la dévitrification augmentent fortement ce qui rend plus difficile sa fusion et sa coulée sur le bain d'étain fondu. Au- dessous de 64 %, la résistance hydrolytique du verre décroît rapidement et la transmission dans le visible diminue également.
L'alumine AI2Û3 joue un rôle particulièrement important sur la résistance hydrolytique du verre. Lorsque le verre selon l'invention est destiné à former des corps creux contenant des liquides, la teneur en alumine est de préférence supérieure ou égale à 1 %.
Les oxydes alcalins Na2O et K2O facilitent la fusion du verre et permettent d'ajuster sa viscosité aux températures élevées afin de le maintenir proche de celle d'un verre standard. K2O peut être utilisé jusqu'à 5 % car au- delà se pose le problème du coût élevé de la composition. Par ailleurs, l'augmentation du pourcentage de K2O ne peut se faire, pour l'essentiel, qu'au détriment de Na2O, ce qui contribue à augmenter la viscosité. La somme des teneurs en Na2O et K2O, exprimées en pourcentages pondéraux, est de préférence égale ou supérieure à 10 % et avantageusement inférieure à 20 %. Si la somme de ces teneurs est supérieure à 20 % ou si la teneur en Na2O est supérieure à 18 %, la résistance hydrolytique est fortement réduite. Les verres selon l'invention sont de préférence exempts d'oxyde de lithium Li2O du fait de son coût élevé. Les oxydes alcalino-terreux permettent d'adapter la viscosité du verre aux conditions d'élaboration.
MgO peut être utilisé jusqu'à 10 % environ et sa suppression peut être compensée, au moins en partie, par une augmentation de la teneur en Na2Û et/ou Siθ2. De préférence, la teneur en MgO est inférieure à 5 % et de manière particulièrement avantageuse est inférieure à 2 % ce qui a pour effet d'augmenter la capacité d'absorption dans l'infrarouge sans nuire à la transmission dans le visible. De faibles teneurs en MgO permettent en outre de diminuer le nombre de matières premières nécessaires à la fusion du verre. BaO a une influence beaucoup plus faible que CaO et MgO sur la viscosité du verre et l'augmentation de sa teneur se fait essentiellement au détriment des oxydes alcalins, de MgO et surtout de CaO. Toute augmentation de BaO contribue à augmenter la viscosité du verre aux basses températures. De manière préférée, les verres selon l'invention sont exempts de BaO et également d'oxyde de strontium (SrO), ces éléments présentant un coût élevé.
Outre le respect des limites définies précédemment pour la variation de la teneur de chaque oxyde alcalino-terreux, il est préférable pour obtenir les propriétés de transmission recherchées de limiter la somme des pourcentages pondéraux de MgO, CaO et BaO à une valeur égale ou inférieure à 15 %. La composition de verre conforme à l'invention est apte à être fondue dans les conditions de production du verre destiné au formage de corps creux par les techniques de pressage, de soufflage ou encore de moulage. La fusion a généralement lieu dans des fours à flamme, éventuellement pourvus d'électrodes assurant le chauffage du verre dans la masse par passage du courant électrique entre les deux électrodes. Pour faciliter la fusion, et notamment rendre celle-ci mécaniquement intéressante, la composition de verre présente avantageusement une température correspondant à une viscosité η telle que log η = 2 qui est inférieure à 15000C. De préférence encore, la température correspondant à la viscosité η telle que log η = 3,5 (notée T(log η = 3,5)) et la température au liquidus (notée T|iq) satisfont la relation :
T(log η = 3,5) - Thq > 200C et mieux encore : T(log η = 3,5) - Thq > 500C
L'ajout des oxydes absorbants optiques peut être effectué dans le four (on parle alors de « coloration en bassin ») ou dans les canaux transportant le verre entre le four et les installations de formage (on parle alors de « coloration en feeder »). La coloration en feeder nécessite une installation particulière d'ajout et de mélange mais présente en revanche des avantages de souplesse et de réactivité particulièrement appréciés lorsque la production d'une gamme étendue de teintes et/ou de propriétés optiques particulières est requise. Dans le cas particulier de la coloration en feeder, les agents absorbants optiques sont incorporés dans des frittes de verre ou des agglomérés, lesquels sont ajoutés à un verre clair pour former après homogénéisation les verres selon l'invention. On peut employer des frittes différentes pour chaque oxyde ajouté, mais il peut être avantageux dans certains cas de disposer d'une fritte unique comprenant tous les agents absorbants optiques utiles. Il est souhaitable que les teneurs en oxydes absorbants optiques dans les frittes ou les agglomérés employés soient comprises entre 5 et 30%, de manière à ne pas dépasser des taux de dilution de fritte dans le verre fondu supérieurs à 10%, notamment 5%, et avantageusement 2%. Au delà, il devient en effet difficile d'homogénéiser convenablement le verre fondu tout en conservant de fortes tirées compatibles avec un faible coût économique global du procédé.
L'invention a donc également pour objet un procédé de fabrication d'un verre présentant une composition selon l'invention, comprenant une étape de fusion d'une partie du mélange vitrifiable, une étape de transport du verre fondu jusqu'au dispositif de formage, pendant laquelle on ajoute audit verre fondu des oxydes par le biais de frittes de verre ou d'agglomérés, au moins une partie des agents absorbants optiques étant apportés à la composition durant cette étape, et une étape de formage dudit verre pour obtenir un objet creux.
De préférence, la totalité des agents absorbants optiques, à l'exception du fer, sont apportés à la composition durant l'étape de transport du verre fondu jusqu'au dispositif de formage.
L'invention a aussi pour objet un procédé de fabrication d'un verre présentant une composition selon l'invention, comprenant une étape de fusion du mélange vitrifiable dans un four de fusion, ledit mélange vitrifiable apportant l'intégralité des oxydes compris dans ladite composition, et une étape de formage.
Tout procédé permettant d'obtenir un objet en verre creux est utilisable. A titre d'exemples non limitatifs, on peut citer les procédés « pressé-soufflé » et « soufflé-soufflé » bien connus de l'homme du métier.
L'objet selon l'invention, est de préférence une bouteille, en particulier susceptible de contenir ou contenant de la bière ou du vin blanc, tranquille ou effervescent, en particulier du Champagne.
La présente invention sera mieux comprise à la lecture de la description détaillée ci-après d'exemples de réalisation non limitatifs illustrés par le tableau 1.
Dans ces exemples, on indique les valeurs des propriétés optiques suivantes calculées sous une épaisseur de verre de 5 mm à partir de spectres expérimentaux : - la transmission lumineuse globale (TLC), calculée entre 380 et 780 mm.
Ces calculs sont effectués en prenant en considération l'illuminant C tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527.
- le pouvoir filtrant (noté PF), défini comme étant égal à la valeur de 100% diminuée de la moyenne arithmétique de la transmission entre 330 et
450 nm,
- la transmission ultraviolette (TUV) calculée selon la norme ISO 9050,
- la transmission pour une longueur d'ondes 440 nm (T440).
Sont également indiquées dans le tableau 1 les teneurs pondérales en agents absorbants optiques.
Les compositions figurant dans le tableau 1 sont réalisées à partir de la matrice verrière suivante, dont les teneurs sont exprimées en pourcentages pondéraux, celle-ci étant corrigée au niveau de la silice pour s'adapter à la teneur totale en agents colorants ajoutés. SiO2 71 ,0 %
AI2O3 1 ,40 % Fe2O3 0,05% CaO 12,0 % MgO 0,1 %
Na2O 13,0%
K2O 0,35 %.
Tableau 1
Figure imgf000010_0001

Claims

REVENDICATIONS
1. Objet en verre creux présentant, pour une épaisseur de 5 mm, une transmission lumineuse globale supérieure ou égale à 70%, ladite transmission lumineuse globale étant calculée en prenant en considération l'illuminant C tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527, et un pouvoir filtrant supérieur ou égal à 65%, notamment 70%, ledit pouvoir filtrant étant défini comme étant égal à la valeur de 100% diminuée de la moyenne arithmétique de la transmission entre 330 et 450 nm, ledit objet ayant une composition chimique de type silico-sodo-calcique qui comprend les agents absorbants optiques suivants dans une teneur variant dans les limites pondérales ci-après définies :
Fe2O3 (fer total) 0,01 à 0,15%
TiO2 0,5 à 3%
Sulfures (S2") 0,0010 à 0,0050%.
2. Objet selon la revendication 1 , présentant pour une épaisseur de 5 mm une transmission pour une longueur d'ondes de 440 nm inférieure ou égale à
70%.
3. Objet selon l'une des revendications précédentes, présentant une transmission ultraviolette, calculée selon la norme ISO 9050, inférieure ou égale à 20%.
4. Objet selon la revendication précédente, présentant une transmission ultraviolette inférieure ou égale à 10%, notamment 5%.
5. Objet selon l'une des revendications précédentes, présentant une transmission pour une longueur d'ondes de 440 nm inférieure ou égale à 50%, notamment 40%.
6. Objet selon l'une des revendications précédentes, présentant une transmission lumineuse supérieure ou égale à 75%, notamment 80%, et même
85%.
7. Objet selon l'une des revendications précédentes, tel que le rédox du verre est supérieur ou égal à 0,5.
8. Objet selon l'une des revendications précédentes, tel que la teneur en oxyde de fer est comprise entre 0,04% et 0,12%.
9. Objet selon l'une des revendications précédentes, tel que la teneur en oxyde de titane est comprise entre 0,8% et 2,2%.
10. Objet selon l'une des revendications précédentes, tel que la teneur en en sulfures est comprise entre 0,0015% et 0,0040%.
11. Objet selon l'une des revendications précédentes, qui est une bouteille contenant de la bière ou du vin blanc, notamment du Champagne.
PCT/FR2009/051108 2008-06-12 2009-06-12 Objet en verre creux WO2009150382A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN200980121769.6A CN102056856B (zh) 2008-06-12 2009-06-12 由空心玻璃制成的物品
UAA201100322A UA101508C2 (ru) 2008-06-12 2009-06-12 Полый предмет из стекла
BRPI0914884-1A BRPI0914884B1 (pt) 2008-06-12 2009-06-12 Objeto de vidro oco
EP09761933A EP2300382B1 (fr) 2008-06-12 2009-06-12 Objet en verre creux
MX2010013516A MX2010013516A (es) 2008-06-12 2009-06-12 Objetos hechos de vidrio hueco.
AU2009259115A AU2009259115B2 (en) 2008-06-12 2009-06-12 Object made of hollow glass
ES09761933T ES2381259T3 (es) 2008-06-12 2009-06-12 Objeto de vidrio hueco
JP2011513035A JP5635501B2 (ja) 2008-06-12 2009-06-12 中空ガラス製製品
AT09761933T ATE542781T1 (de) 2008-06-12 2009-06-12 Gegenstand aus hohlglas
US12/996,269 US8828511B2 (en) 2008-06-12 2009-06-12 Object made of hollow glass
RU2011100163/03A RU2500630C2 (ru) 2008-06-12 2009-06-12 Полый предмет из стекла
CA2727068A CA2727068C (fr) 2008-06-12 2009-06-12 Objet en verre creux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853901 2008-06-12
FR0853901A FR2932473B1 (fr) 2008-06-12 2008-06-12 Objet en verre creux

Publications (2)

Publication Number Publication Date
WO2009150382A2 true WO2009150382A2 (fr) 2009-12-17
WO2009150382A3 WO2009150382A3 (fr) 2010-02-11

Family

ID=40225623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051108 WO2009150382A2 (fr) 2008-06-12 2009-06-12 Objet en verre creux

Country Status (15)

Country Link
US (1) US8828511B2 (fr)
EP (1) EP2300382B1 (fr)
JP (1) JP5635501B2 (fr)
CN (1) CN102056856B (fr)
AT (1) ATE542781T1 (fr)
AU (1) AU2009259115B2 (fr)
BR (1) BRPI0914884B1 (fr)
CA (1) CA2727068C (fr)
ES (1) ES2381259T3 (fr)
FR (2) FR2932473B1 (fr)
MX (1) MX2010013516A (fr)
PT (1) PT2300382E (fr)
RU (1) RU2500630C2 (fr)
UA (1) UA101508C2 (fr)
WO (1) WO2009150382A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
WO2017191410A1 (fr) * 2016-05-04 2017-11-09 Saint-Gobain Emballage Composition de verre silico-sodo-calcique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932473B1 (fr) * 2008-06-12 2020-01-10 Saint Gobain Emballage Objet en verre creux
US9475724B2 (en) 2013-11-25 2016-10-25 Owens-Brockway Glass Container Inc. Soda-lime glass from 100% recycled glass-forming materials
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120663A2 (fr) * 2005-05-13 2006-11-16 Heye Research And Development Limited Compositions de verre a la chaux sodee et procede de fabrication de contenants a partir de ces compositions

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1671625A1 (ru) * 1987-03-19 1991-08-23 Государственный научно-исследовательский институт стекла Желтое стекло
DE69120509T2 (de) * 1990-11-26 1996-10-31 Central Glass Co Ltd Infrarote und Ultraviolette Strahlung absorbierendes Glas
JP2000185934A (ja) * 1997-07-02 2000-07-04 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
US6037286A (en) * 1998-03-20 2000-03-14 Owens-Brockway Glass Container Inc. UV absorbing container glass compositions
US5962356A (en) * 1998-03-26 1999-10-05 Ford Motor Company Dark bronze glass with improved UV and IR absorption and nitrate-free manufacturing process therefor
DE29819347U1 (de) * 1998-10-30 2000-01-27 Flachglas Ag Kalknatron-Silikatglas-Zusammensetzung
JP2000143287A (ja) * 1998-11-09 2000-05-23 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
US6652935B1 (en) * 2000-02-28 2003-11-25 Owens-Brookway Glass Container Inc. Flint/amber laminated glass container and method of manufacture
NL1016392C2 (nl) * 2000-10-12 2001-09-28 Viosol B V Houder voor hoogwaardige natuurproducten.
BE1014543A3 (fr) * 2001-12-14 2003-12-02 Glaverbel Verre sodo-calcique colore.
JP2004091308A (ja) * 2002-07-11 2004-03-25 Nippon Electric Glass Co Ltd 照明用ガラス
FR2850373B1 (fr) * 2003-01-24 2006-05-26 Saint Gobain Composition de verre silico-sodo-cacique gris destinee a la fabrication de vitrages
JP4400362B2 (ja) * 2003-08-08 2010-01-20 日本電気硝子株式会社 外部電極蛍光ランプ用外套容器
WO2005042425A1 (fr) * 2003-10-31 2005-05-12 Central Glass Company, Limited Verre verdatre absorbant les rayonnements ultraviolets et infrarouges
FR2865729B1 (fr) * 2004-01-30 2007-10-05 Saint Gobain Emballage Composiion de verre silico-sodo-calcique
JP5146897B2 (ja) * 2004-04-05 2013-02-20 日本電気硝子株式会社 照明用ガラス
FR2932473B1 (fr) * 2008-06-12 2020-01-10 Saint Gobain Emballage Objet en verre creux
EA019049B1 (ru) * 2008-09-01 2013-12-30 Сэн-Гобэн Гласс Франс Способ получения стекла и полученное стекло

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120663A2 (fr) * 2005-05-13 2006-11-16 Heye Research And Development Limited Compositions de verre a la chaux sodee et procede de fabrication de contenants a partir de ces compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199247 Thomson Scientific, London, GB; AN 1992-388488 XP002559574 -& SU 1 671 625 A1 (GLASS RES INST) 23 août 1991 (1991-08-23) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
WO2017191410A1 (fr) * 2016-05-04 2017-11-09 Saint-Gobain Emballage Composition de verre silico-sodo-calcique
FR3050991A1 (fr) * 2016-05-04 2017-11-10 Saint-Gobain Emballage Composition de verre silico-sodo-calcique
US20190144328A1 (en) * 2016-05-04 2019-05-16 Verallia France Soda-lime-silica glass composition

Also Published As

Publication number Publication date
AU2009259115B2 (en) 2014-10-30
JP5635501B2 (ja) 2014-12-03
PT2300382E (pt) 2012-05-09
MX2010013516A (es) 2011-02-18
FR2932473A1 (fr) 2009-12-18
ES2381259T3 (es) 2012-05-24
ATE542781T1 (de) 2012-02-15
JP2011523933A (ja) 2011-08-25
RU2500630C2 (ru) 2013-12-10
UA101508C2 (ru) 2013-04-10
US20110081458A1 (en) 2011-04-07
CN102056856A (zh) 2011-05-11
BRPI0914884A2 (pt) 2015-11-24
EP2300382B1 (fr) 2012-01-25
CA2727068C (fr) 2016-09-13
CN102056856B (zh) 2015-08-05
FR2932473B1 (fr) 2020-01-10
US8828511B2 (en) 2014-09-09
EP2300382A2 (fr) 2011-03-30
BRPI0914884B1 (pt) 2019-05-21
AU2009259115A1 (en) 2009-12-17
FR2932472B1 (fr) 2012-09-21
CA2727068A1 (fr) 2009-12-17
WO2009150382A3 (fr) 2010-02-11
RU2011100163A (ru) 2012-07-20
FR2932472A1 (fr) 2009-12-18

Similar Documents

Publication Publication Date Title
EP1713734B1 (fr) Composition de verre silico-sodo-calcique
EP1846341B1 (fr) Composition de verre destinee a la fabrication de vitrages absorbant les radiations ultraviolettes et infrarouges.
EP0722427A1 (fr) Composition de verre destinee a la fabrication de vitrage
EP2834202B1 (fr) Feuille de verre à haute transmission énergétique
EP1599426B1 (fr) Composition de verre silico-sodo-calcique gris destinee a la fabrication de vitrages
EP2300382B1 (fr) Objet en verre creux
EP1401780B1 (fr) Composition de verre gris destinee a la fabrication de vitrage
FR2903397A1 (fr) Composition de verre silico-sodo-calcique
EP1487752A1 (fr) Composition de verre destinee a la fabrication de vitrage
EP3452420B1 (fr) Composition de verre silico-sodo-calcique
BE1017302A3 (fr) Composition de verre silico-sodo-calcique.
FR2918052A1 (fr) Composition de verre silico-sodo-calcique.
FR2876095A1 (fr) Composition de verre silico-sodo-calcique
FR2909663A1 (fr) Composition de verre silico-sodo-calcique
FR2895740A1 (fr) Composition de verre silico-sodo-calcique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121769.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761933

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009761933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12996269

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2727068

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4672/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/013516

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011513035

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009259115

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2011100163

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2009259115

Country of ref document: AU

Date of ref document: 20090612

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0914884

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101208