WO2009148722A2 - Adhesive encapsulating composition and electronic devices made therewith - Google Patents
Adhesive encapsulating composition and electronic devices made therewith Download PDFInfo
- Publication number
- WO2009148722A2 WO2009148722A2 PCT/US2009/041918 US2009041918W WO2009148722A2 WO 2009148722 A2 WO2009148722 A2 WO 2009148722A2 US 2009041918 W US2009041918 W US 2009041918W WO 2009148722 A2 WO2009148722 A2 WO 2009148722A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive encapsulating
- adhesive
- encapsulating composition
- composition
- meth
- Prior art date
Links
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 210
- 239000000853 adhesive Substances 0.000 title claims abstract description 208
- 239000000203 mixture Substances 0.000 title claims abstract description 188
- 229920005989 resin Polymers 0.000 claims abstract description 92
- 239000011347 resin Substances 0.000 claims abstract description 92
- 229920002367 Polyisobutene Polymers 0.000 claims abstract description 66
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 42
- 239000000178 monomer Substances 0.000 claims abstract description 37
- 239000010409 thin film Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 110
- 239000010408 film Substances 0.000 claims description 69
- 239000000758 substrate Substances 0.000 claims description 58
- 239000004065 semiconductor Substances 0.000 claims description 19
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 17
- 239000012790 adhesive layer Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 12
- 239000003999 initiator Substances 0.000 claims description 11
- 239000004593 Epoxy Substances 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229940048053 acrylate Drugs 0.000 claims 11
- 239000004820 Pressure-sensitive adhesive Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 46
- -1 JSR BUTYL Chemical class 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- 239000004902 Softening Agent Substances 0.000 description 23
- 229920006270 hydrocarbon resin Polymers 0.000 description 22
- 239000013032 Hydrocarbon resin Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 17
- 239000000945 filler Substances 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 9
- 239000007822 coupling agent Substances 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910010272 inorganic material Inorganic materials 0.000 description 6
- 239000011147 inorganic material Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 229920005549 butyl rubber Polymers 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229920001519 homopolymer Polymers 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 229920001083 polybutene Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910002012 Aerosil® Inorganic materials 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 4
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical class C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 244000028419 Styrax benzoin Species 0.000 description 3
- 235000000126 Styrax benzoin Nutrition 0.000 description 3
- 235000008411 Sumatra benzointree Nutrition 0.000 description 3
- 238000003848 UV Light-Curing Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 239000008393 encapsulating agent Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 235000019382 gum benzoic Nutrition 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920002098 polyfluorene Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000005061 synthetic rubber Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229920001109 fluorescent polymer Polymers 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 150000003097 polyterpenes Chemical class 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- PLCMVACJJSYDFV-UHFFFAOYSA-N 1,3-oxazole-2-carboxamide Chemical compound NC(=O)C1=NC=CO1 PLCMVACJJSYDFV-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- SBFJWYYUVYESMJ-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetrakis(3-methylphenyl)benzene-1,3-diamine Chemical compound CC1=CC=CC(N(C=2C=C(C)C=CC=2)C=2C=C(C=CC=2)N(C=2C=C(C)C=CC=2)C=2C=C(C)C=CC=2)=C1 SBFJWYYUVYESMJ-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- UIWLITBBFICQKW-UHFFFAOYSA-N 1h-benzo[h]quinolin-2-one Chemical compound C1=CC=C2C3=NC(O)=CC=C3C=CC2=C1 UIWLITBBFICQKW-UHFFFAOYSA-N 0.000 description 1
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical compound N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 description 1
- VEUMBMHMMCOFAG-UHFFFAOYSA-N 2,3-dihydrooxadiazole Chemical compound N1NC=CO1 VEUMBMHMMCOFAG-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- HXWWMGJBPGRWRS-CMDGGOBGSA-N 4- -2-tert-butyl-6- -4h-pyran Chemical compound O1C(C(C)(C)C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(C(CCN2CCC3(C)C)(C)C)=C2C3=C1 HXWWMGJBPGRWRS-CMDGGOBGSA-N 0.000 description 1
- RTNUTCOTGVKVBR-UHFFFAOYSA-N 4-chlorotriazine Chemical class ClC1=CC=NN=N1 RTNUTCOTGVKVBR-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- PCVRSXXPGXRVEZ-UHFFFAOYSA-N 9-(chloromethyl)anthracene Chemical compound C1=CC=C2C(CCl)=C(C=CC=C3)C3=CC2=C1 PCVRSXXPGXRVEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- GUUFUSNFDFBVIQ-UHFFFAOYSA-N CCC[Si](OC)(OC)OCCC1CO1 Chemical compound CCC[Si](OC)(OC)OCCC1CO1 GUUFUSNFDFBVIQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000157855 Cinchona Species 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229920002368 Glissopal ® Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920005987 OPPANOL® Polymers 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 241000705989 Tetrax Species 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- QROGIFZRVHSFLM-QHHAFSJGSA-N [(e)-prop-1-enyl]benzene Chemical compound C\C=C\C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012955 diaryliodonium Substances 0.000 description 1
- 125000005520 diaryliodonium group Chemical group 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000010985 glycerol esters of wood rosin Nutrition 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 1
- 150000002504 iridium compounds Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000012939 laminating adhesive Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229920006120 non-fluorinated polymer Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FPLYNRPOIZEADP-UHFFFAOYSA-N octylsilane Chemical compound CCCCCCCC[SiH3] FPLYNRPOIZEADP-UHFFFAOYSA-N 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical group PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- ASUOLLHGALPRFK-UHFFFAOYSA-N phenylphosphonoylbenzene Chemical class C=1C=CC=CC=1P(=O)C1=CC=CC=C1 ASUOLLHGALPRFK-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- MXXWOMGUGJBKIW-YPCIICBESA-N piperine Chemical compound C=1C=C2OCOC2=CC=1/C=C/C=C/C(=O)N1CCCCC1 MXXWOMGUGJBKIW-YPCIICBESA-N 0.000 description 1
- 229940075559 piperine Drugs 0.000 description 1
- WVWHRXVVAYXKDE-UHFFFAOYSA-N piperine Natural products O=C(C=CC=Cc1ccc2OCOc2c1)C3CCCCN3 WVWHRXVVAYXKDE-UHFFFAOYSA-N 0.000 description 1
- 235000019100 piperine Nutrition 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 125000003410 quininyl group Chemical group 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- MSFGZHUJTJBYFA-UHFFFAOYSA-M sodium dichloroisocyanurate Chemical compound [Na+].ClN1C(=O)[N-]C(=O)N(Cl)C1=O MSFGZHUJTJBYFA-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- QERYCTSHXKAMIS-UHFFFAOYSA-N thiophene-2-carboxylic acid Chemical compound OC(=O)C1=CC=CS1 QERYCTSHXKAMIS-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C09J123/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C09J123/22—Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C08L23/22—Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/842—Containers
- H10K50/8426—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
- Y10T428/2878—Adhesive compositions including addition polymer from unsaturated monomer
- Y10T428/2891—Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31935—Ester, halide or nitrile of addition polymer
Definitions
- a pressure sensitive adhesive composition comprising polyisobutylene is disclosed for use with electronic devices such as organic electroluminescent devices, touch screens, photovoltaic devices, and thin film transistors.
- Organic electroluminescent devices include an organic layer (hereinafter sometimes referred to as a "light-emitting unit") provided by placing organic charge transport layer(s) and organic light-emitting layers between an anode and a cathode. Electroluminescent devices often can provide high-intensity light emission while being driven by direct current and low- voltage. Electroluminescent devices have all constituent elements formed of a solid material and have the potential for being used as flexible displays.
- the performance of some electroluminescent devices can deteriorate over time.
- light emission characteristics such as light emission intensity, light emission efficiency and light emission uniformity can decrease over time.
- the deterioration of the light emission characteristics can be caused by oxidation of the electrode due to oxygen permeating into the organic electroluminescent device, oxidative decomposition of the organic material due to generation of heat from driving the device, corrosion of the electrode due to moisture in the air that permeates into the organic electroluminescent device, or breakdown of the organic material.
- interfacial separation of the structure may also give rise to deterioration of the light emission characteristics.
- the interfacial separation can result, for example, from the effects of oxygen or moisture and from the effects of heat generation while driving the device. Heat can trigger interfacial separation due to the generation of stress resulting from differences in the thermal expansion coefficients between adjacent layers.
- Organic electroluminescent devices are sometimes encapsulated with a polymeric material so as to protect the device from contact with moisture and/or oxygen.
- a polymeric material are insufficient because of their hermetic sealing properties, moisture resistance, moisture barrier properties, and the like.
- heat is used to cure the material, which can result in deterioration of the organic light-emitting layer and/or charge transfer layer, or the light- emitting characteristics of the device can deteriorate due to crystallization.
- a photocurable polymeric material is used, UV radiation is often used to cure the material, which can result in deterioration of the organic light-emitting layer and/or charge transfer layer. After the polymer material is cured, it can crack due to impact, bending, or vibrations which may occur when the device is used, and which can also lead to deterioration of the performance characteristics of the device.
- an adhesive encapsulating composition for use in an electronic device comprising: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol; and a multifunctional
- an adhesive encapsulating composition for use in an electronic device, comprising: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol; and a second polyisobutylene resin having a weight average molecular weight of less than about 100,000 g/mol, wherein the adhesive encapsulating composition is substantially free of tackifier.
- an adhesive encapsulating composition for use in an electronic device, comprising: a second polyisobutylene resin having a weight average molecular weight of less than about 300,000 g/mol; a multifunctional (meth)acrylate monomer; and a tackifier, wherein the adhesive encapsulating composition is free of a first polyisobutylene having a weight average molecular weight of greater than about 300,000 g/mol.
- an adhesive encapsulating composition for use in an electronic device, comprising: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol, wherein the first polyisobutylene resin comprises 20 wt.% or less of the total weight of the adhesive encapsulating composition; a second polyisobutylene resin having a weight average molecular weight of less than about 300,000 g/mol; a multifunctional (meth)acrylate monomer; and a tackifier.
- the adhesive encapsulating compositions disclosed herein may be photopolymerizable or thermally polymerizable.
- the adhesive encapsulating compositions may each be provided in the form of an adhesive layer disposed on a substrate.
- the adhesive encapsulating compositions are pressure sensitive adhesives.
- the adhesive encapsulating compositions may be used in electronic devices such as organic electroluminescent devices, photovoltaic devices, and thin film transistors.
- Figures 1A-1D show schematic cross sections of exemplary adhesive encapsulating films.
- Figure 2 shows a schematic cross section of an organic light emitting diode.
- Figures 3A-3C show schematic cross sections of exemplary photovoltaic cells.
- Figures 4A and 4B show schematic cross sections of exemplary thin film transistors.
- the adhesive encapsulating compositions disclosed herein may provide one or more advantages.
- the adhesive encapsulating compositions comprise little or no water which minimizes the adverse effects of moisture on the electronic devices. Another advantage is that they have low permeability to moisture such that exposure of the encapsulated electronic components to moisture may be prevented or minimized.
- the adhesive encapsulating compositions may also be designed to have little or no acidic components such that corrosion of metal components such as electrodes in the device may be prevented or minimized.
- the adhesive encapsulating compositions also exhibit good adhesive properties.
- the adhesive encapsulating compositions have sufficient flowability such that little or no air is trapped as voids in the encapsulated electronic device.
- the adhesive encapsulating compositions may exhibit little or no outgassing which is often a problem with adhesives used for electronic applications.
- the handleability of an adhesive encapsulating composition may be improved by providing the composition as a layer on a substrate to form an adhesive encapsulating film.
- the adhesive encapsulating compositions may have high transmission (at least about 80%) in the visible region of the electromagnetic spectrum, the visible region having a wavelength of from about 380 nm to about 800 nm. If an adhesive encapsulating composition has such high transmission in the visible region, it can be disposed on the side of a light-emitting or light-receiving surface of an electronic device without blocking light.
- the adhesive encapsulating compositions can be used in a variety of electronic devices. In such devices, generation of encapsulation defects due to impact or vibration can be minimized.
- One type of electronic device in which the adhesive encapsulating compositions may be used is in flexible displays. Other types of electronic devices include organic light emitting diodes, photovoltaic cells, thin film transistors, and touch screens.
- the adhesive encapsulating composition comprises: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol; and a multifunctional (meth)acrylate monomer; wherein the adhesive encapsulating composition is substantially free of tackifier.
- the first isobutylene resin may have a weight average molecular weight of greater than about 1,000,000 g/mol.
- the first polyisobutylene may comprise at least about 50 wt.% of the total weight of the adhesive encapsulating composition.
- the adhesive encapsulating composition comprises: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol; and a second polyisobutylene resin having a weight average molecular weight of less than about 100,000 g/mol, wherein the adhesive encapsulating composition is substantially free of tackifier.
- the first isobutylene resin may have a weight average molecular weight of greater than about 400,000 g/mol.
- the first isobutylene resin may also have a weight average molecular weight of greater than about 1,000,000 g/mol.
- the first polyisobutylene may comprise at least about 50 wt.
- the adhesive encapsulating composition may comprise: from about 50 to about 80 wt.% of the first polyisobutylene resin; from about 10 to about 30 wt.% of the second polyisobutylene resin; and from about 10 to about 20 wt.% of the multifunctional (meth)acrylate monomer; all relative to the total weight of the adhesive encapsulating composition.
- the adhesive encapsulating composition comprises: a second polyisobutylene resin having a weight average molecular weight of less than about 300,000 g/mol; a multifunctional (meth)acrylate monomer; and a tackifier, wherein the adhesive encapsulating composition is free of a first polyisobutylene having a weight average molecular weight of greater than about 300,000 g/mol.
- the second isobutylene resin may have a weight average molecular weight of less than about 100,000 g/mol.
- the adhesive encapsulating composition of this embodiment may comprise: from about 10 to about 50 wt.% of the second polyisobutylene resin; from about 10 to about 40 wt.% of the multifunctional (meth)acrylate monomer; from about 0 to about 60 wt.%, or from about 30 to about 60 wt.%, of the tackifier; all relative to the total weight of the adhesive encapsulating composition.
- the adhesive encapsulating composition comprises: a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mol, wherein the first polyisobutylene resin comprises 20 wt.% or less of the total weight of the adhesive encapsulating composition; a second polyisobutylene resin having a weight average molecular weight of less than about 300,000 g/mol; a multifunctional (meth)acrylate monomer; and a tackifier.
- the first isobutylene resin may have a weight average molecular weight of greater than about 1,000,000 g/mol.
- the adhesive encapsulating composition may comprise: from about 10 to about 30 wt.% of the second polyisobutylene resin; from about 10 to about 30 wt.% of the multifunctional (meth)acrylate monomer; from about 0 to about 60 wt.%, or from about 40 to about 60 wt.%, of the tackif ⁇ er; all relative to the total weight of the adhesive encapsulating composition.
- the first and second polyisobutylene resins are generally resins having a polyisobutylene resin skeleton in the main or a side chain.
- the first and second polyisobutylene resins are substantially homopolymers of isobutylene, for example, polyisobutylene resins available under the tradenames OPPANOL (BASF AG) and GLISSOPAL (BASF AG).
- the first and second polyisobutylene resins comprise copolymers of isobutylene, for example, synthetic rubbers wherein isobutylene is copolymerized with another monomer.
- Synthetic rubbers include butyl rubbers which are copolymers of mostly isobutylene with a small amount of isoprene, for example, butyl rubbers available under the tradenames VISTANEX (Exxon Chemical Co.) and JSR BUTYL (Japan Butyl Co., Ltd.). Synthetic rubbers also include copolymers of mostly isobutylene with n-butene or butadiene.
- a mixture of isobutylene homopolymer and butyl rubber may be used, i.e., the first polyisobutylene comprises a homopolymer of isobutylene and the second polyisobutylene comprises butyl rubber, or the first polyisobutylene comprises butyl rubber and the second polyisobutylene comprises a homopolymer of isobutylene.
- the first and second polyisobutylene resins may each comprise more than one resin.
- the polyisobutylene resins generally have a solubility parameter (SP value), which is an index for characterizing the polarity of a compound, that is similar to that of hydrogenated cycloaliphatic hydrocarbon resins, and exhibits good compatibility (i.e., miscibility) with hydrogenated cycloaliphatic hydrocarbon resins, if used, so that a transparent film can be formed.
- SP value solubility parameter
- the polyisobutylene resins have low surface energy and therefore can enable spreadability of the adhesive onto an adherent and the generation of voids at the interface is minimized.
- the glass transition temperature and the moisture permeability are low and therefore, the polyisobutylene resins are suitable as the base resin of the adhesive encapsulating composition.
- the polyisobutylene resins may have desirable viscoelastic properties that, in general, can be used to impart a desired degree of fluidity to the adhesive encapsulating composition.
- the higher the tan( ⁇ ) value the more the material is like a viscous material, and the lower the tan( ⁇ ) value, the more the material is like an elastic solid.
- the polyisobutylene resin may be selected such that the adhesive encapsulating composition has a tan( ⁇ ) value at relatively low frequency of at least about 0.5 when the composition is at temperatures of from about 70 0 C to about 110 0 C. In this way, the composition is able to flow sufficiently over uneven surfaces with little or no air entrapment.
- Desirable viscoelastic properties of the adhesive encapsulating composition may be obtained with a first polyisobutylene resin having a weight average molecular weight of greater than about 300,000 g/mole, or greater than 1,000,000, when used in combination with a multifunctional (meth)acrylate monomer without any tackifier. Further, desirable viscoelastic properties of the adhesive encapsulating composition may be obtained with greater than about 50 wt.% of the first polyisobutylene relative to the total weight of the adhesive encapsulating composition.
- the multifunctional (meth)acrylate monomer can be saturated or unsaturated and can include aliphatic, alicyclic, aromatic, heterocyclic, and/or epoxy functionality.
- saturated long-chain alkyl (meth)acrylates, cycloaliphatic (meth)acrylates, (meth)acrylate/epoxy monomers, or combinations thereof can be utilized as monomers because they can enhance the miscibility of the polyisobutylene resin and optional tackifier.
- the multifunctional (meth)acrylate monomer can be unsubstituted or substituted with various groups such as hydroxy or alkoxy groups.
- Exemplary long chain alkyl (meth)acrylates include, but are not limited to, octyl (meth)acrylate, stearyl (meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decandiol di(meth)acrylate, and hydrogenated polybutadiene di(meth)acrylate resin.
- Exemplary cycloaliphatic (meth)acrylates include, but are not limited to, isobornyl (meth)acrylate, tetramethylpiperidiyl methacrylate, pentamethylpiperidiyl methacrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, tricyclodecanediol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, and (meth)acrylated epoxies.
- multifunctional (meth)acrylate monomers having two, three, four, or even more than four (meth)acrylate groups may be utilized. It will also be understood by one of skill in the art that mixtures of multifunctional (meth)acrylate monomers can be utilized.
- the multifunctional (meth)acrylate monomer may be selected so as to optimize adhesion and wettability of the adhesive encapsulating composition for the adherend as described above for the polyisobutylene resin.
- the multifunctional (meth)acrylate monomer can increase the adhesion and retention strength of the adhesive encapsulating composition because the monomer is cured to form a resin.
- a tackifier may be used.
- a tackifier can be any compound or mixture of compounds that increases the tackiness of the adhesive encapsulating composition.
- the tackifier does not increase moisture permeability.
- the tackifier may comprise a hydrogenated hydrocarbon resin, a partially hydrogenated hydrocarbon resin, a non-hydrogenated hydrocarbon resin, or a combination thereof.
- tackifiers include, but are not limited to, hydrogenated terpene -based resins (for example, resins commercially available under the trade designation CLEARON P, M and K (Yasuhara Chemical)); hydrogenated resins or hydrogenated ester-based resins (for example, resins commercially available under the trade designation FORAL AX (Hercules Inc.); FORAL 105 (Hercules Inc.); PENCEL A (Arakawa Chemical Industries. Co., Ltd.); ESTERGUM H (Arakawa Chemical Industries Co., Ltd.); and SUPER ESTER A (Arakawa Chemical Industries.
- hydrogenated terpene -based resins for example, resins commercially available under the trade designation CLEARON P, M and K (Yasuhara Chemical
- hydrogenated resins or hydrogenated ester-based resins for example, resins commercially available under the trade designation FORAL AX (Hercules Inc.); FORAL 105 (Hercules Inc.); PENCEL A (Arakawa Chemical Industries.
- disproportionate resins or disproportionate ester-based resins for example, resins commercially available under the trade designation PINECRYSTAL (Arakawa Chemical Industries Co., Ltd.); hydrogenated dicyclopentadiene-based resins which are hydrogenated resins of a C5-type petroleum resin obtained by copolymerizing a C5 fraction such as pentene, isoprene, piperine and 1,3-pentadiene produced through thermal decomposition of petroleum naphtha (for example, resins commercially available under the trade designations ESCOREZ 5300 and 5400 series (Exxon Chemical Co.); EASTOTAC H (Eastman
- partially hydrogenated aromatic modified dicyclopentadiene-based resins for example, resins commercially available under the trade designation ESCOREZ 5600 (Exxon Chemical Co.)
- resins resulting from hydrogenation of a C9-type petroleum resin obtained by copolymerizing a C9 fraction such as indene, vinyltoluene and ⁇ - or ⁇ - methylstyrene produced by thermal decomposition of petroleum naphtha for example, resins commercially available under the trade designation ARCON P or ARCON M (Arakawa Chemical Industries Co., Ltd.)
- resins resulting from hydrogenation of a copolymerized petroleum resin of the above-described C5 fraction and C9 fraction for example, resin commercially available under the trade designation IMARV (Idemitsu Petrochemical Co.)).
- Non-hydrogenated hydrocarbon resins include C5, C9, C5/C9 hydrocarbon resins, polyterpene resins, aromatics-modif ⁇ ed polyterpene resins or rosin derivatives. If a non- hydrogenated hydrocarbon resin is used, it is typically used in combination with another hydrogenated or partially hydrogenated tackifier. A non-hydrogenated hydrocarbon resin may be used at amounts of less than about 30 wt.%, relative to the total weight of the adhesive encapsulating composition.
- the tackifier comprises a hydrogenated hydrocarbon resin, and particularly, a hydrogenated cycloaliphatic hydrocarbon resin.
- a specific example of a hydrogenated cycloaliphatic hydrocarbon resin includes ESCOREZ 5340 (Exxon Chemical).
- the hydrogenated cycloaliphatic hydrocarbon resin is a hydrogenated dicyclopentadiene -based resin because of its low moisture permeability and transparency.
- Hydrogenated cycloaliphatic hydrocarbon resins that can be utilized in the adhesive encapsulating compositions typically have a weight average molecular weight from about 200 to 5,000 g/mole. In another embodiment, the weight average molecular weight of the hydrogenated cycloaliphatic hydrocarbon resin is from about 500 to 3,000 g/mole. If the weight average molecular weight exceeds 5,000 g/mole, poor tackification may result or the compatibility with the polyisobutylene resin may decrease.
- the tackifier may have a softening temperature or point (ring and ball softening temperature) that may vary, depending at least in part, upon the adhesion of the composition, the temperature utilized, the ease of production, and the like.
- the ring and ball softening temperature can generally be from about 50 to 200 0 C. In some embodiments, the ring and ball softening temperature is from about 80 to 15O 0 C. If the ring and ball softening temperature is less than 8O 0 C, the tackifier may undergo separation and liquefaction due to heat generated upon the emission of light by the electronic device. This can cause deterioration of an organic layer such as a light-emitting layer when an organic electroluminescent device is encapsulated directly with an adhesive encapsulating composition. On the other hand, if the ring and ball softening point exceeds 15O 0 C, the amount of tackifier added is so low that satisfactory improvement of relevant characteristics may not be obtained.
- the tackifier comprises a hydrogenated hydrocarbon resin, and particularly, a hydrogenated cycloaliphatic hydrocarbon resin.
- a hydrogenated cycloaliphatic hydrocarbon resin includes ESCOREZ 5340 (Exxon
- the hydrogenated cycloaliphatic hydrocarbon resin is a hydrogenated dicyclopentadiene -based resin because of its low moisture permeability and transparency.
- Hydrogenated cycloaliphatic hydrocarbon resins that can be utilized in the adhesive encapsulating compositions typically have a weight average molecular weight from about 200 to 5,000 g/mole. In another embodiment, the weight average molecular weight of the hydrogenated cycloaliphatic hydrocarbon resin is from about 500 to 3,000 g/mole. If the weight average molecular weight exceeds 5,000 g/mole, poor tackification may result or the compatibility with the polyisobutylene resin may decrease.
- Thermal initiators and/or photoinitiators may be used in the adhesive encapsulating composition in order to initiate polymerization of the multifunctional (meth)acrylate monomer, if used.
- the choice of initiator will depend at least in part on the particular components used in the adhesive encapsulating composition as well as on the desired rate of curing.
- thermal initiators examples include azo compounds, quinines, nitro compounds, acyl halides, hydrazones, mercapto compounds, pyrylium compounds, imidazoles, chlorotriazines, benzoin, benzoin alkyl ethers, di-ketones, phenones, and organic peroxides such as dilauroyl peroxide and l,l-di(t-hexylperoxy)-3,3,5-trimethyl cyclohexane available as PERHEXA TMH from NOF Co.
- the thermal initiator is often used at a concentration of about 0.01 to about 10 weight percent or about 0.01 to about 5 weight percent based on the total weight of the adhesive encapsulating composition. Mixtures of thermal initiators may be used.
- photoinitiators examples include acetophenones, benzoins, benzophenones, benzoyl compounds, anthraquinones, thioxanthones, phospine oxides such as phenyl- and diphenyl phosphine oxides, ketones, and acridines.
- photoinitiators also include those available under the tradenames DAROCUR (Ciba Specialty Chemicals), IRGACURE (Ciba Specialty Chemicals), and LUCIRIN (BASF) such as ethyl 2,4,6- trimethylbenzoyldiphenyl phosphinate which is available as LUCIRIN TPO.
- the photoinitiator may also comprise a cationic photoinitiator available under the names UVI (Union Carbide Corp.), SP (Adeka Corp.), SI (Sanshin Chemical Co.), KI (Degussa AG), PHOTOINITIATOR (Rodia Inc.), CI (Nippon Soda Co., Ltd.), and ESACURE (Lamberdi SpA Chemical Specitalies).
- the photoinitiator is often used at a concentration of about 0.01 to about 10 weight percent or about 0.01 to about 5 weight percent based on the total weight of the adhesive encapsulating composition. Mixtures of photoinitiators may be used.
- the organic electroluminescent device may be made by: providing a pair of opposing electrodes; providing a light-emitting unit having at least an organic light-emitting layer, the light-emitting unit disposed between the pair of opposing electrodes; providing an adhesive encapsulating composition disposed on, above, or around the light-emitting unit, the adhesive encapsulating composition comprising any of those disclosed herein and a thermal initiator; and heating the adhesive encapsulating composition to form a polymerized adhesive encapsulating composition.
- heating the adhesive encapsulating composition comprises heating the composition to a temperature of less than about 110 0 C.
- the organic electroluminescent device may be made by: providing a pair of opposing electrodes; providing a light-emitting unit having at least an organic light-emitting layer, the light-emitting unit disposed between the pair of opposing electrodes; providing an adhesive encapsulating composition disposed on, above, or around the light-emitting unit, the adhesive encapsulating composition comprising any of those disclosed herein and a UV initiator; and applying UV radiation to the adhesive encapsulating composition to form a polymerized adhesive encapsulating composition.
- onium salts can be utilized because of their low level of metal ion contamination.
- Onium salts include, but are not limited to, iodonium, sulfonium and phosphonium complex salts.
- Generally useful onium salts can be of the general formula Y + X " .
- Y can include aryldialkylsulfonium, alkyldiarylsulfonium, triarylsulfonium, diaryliodonium and tetraaryl phosphonium cations, where each alkyl and aryl group can be substituted.
- X can include PF 6 " , SbF 6 " , CF 3 SO 3 " , (CF 3 SO 2 ⁇ N " , (CF 3 SO 2 ) 3 C, (C 6 Fs) 4 B " anions.
- the adhesive encapsulating composition may also contain optional additives.
- the adhesive encapsulating composition may contain a softening agent.
- the softening agent can be useful, for example, to adjust the composition viscosity to improve the processability (for example, making the composition suitable for extrusion), to enhance the initial adhesion at low temperatures due to a reduction in the glass transition temperature of the composition, or to provide an acceptable balance between the cohesion and adhesion.
- the softening agent is selected to have low volatility, to be transparent, and to be free of coloration and/or odor.
- softening agents examples include, but are not limited to, a petroleum-based hydrocarbon such as an aromatic type, paraffin type and naphthene type; a liquid rubber or a derivative thereof, such as liquid polyisobutylene resin, liquid polybutene and hydrogenated liquid polyisoprene; petrolatum; and petroleum-based asphalts.
- a petroleum-based hydrocarbon such as an aromatic type, paraffin type and naphthene type
- a liquid rubber or a derivative thereof such as liquid polyisobutylene resin, liquid polybutene and hydrogenated liquid polyisoprene
- petrolatum and petroleum-based asphalts.
- one softening agent or a combination of softening agents may be used.
- softening agents include, but are not limited to, those commercially available under the trade names NAPVIS (BP Chemicals), CALSOL 5120
- softening agents include other polyisobutylene resin homopolymers, polybutylene such as material commercially available from Idemitsu Kosan Co., Ltd., polybutene such as material commercially available from Nihon Yushi Co., Ltd., and other liquid polybutene polymers.
- softening agents include those commercially available under the trade names ESCOREZ 2520 (liquid aromatic petroleum hydrocarbon resin, Exxon Chemical Co.), REGALREZ 1018 (liquid hydrogenated aromatic hydrocarbon resin, Hercules Inc.), and SYLVATAC 5N (liquid resin of modified rosin ester, Arizona
- the softening agent is a saturated hydrocarbon compound.
- the softening agent is liquid polyisobutylene resin or liquid polybutene.
- Polyisobutylene resin and polybutene having a carbon-carbon double bond at the terminal and a modified polyisobutylene resin can be utilized.
- a modified polyisobutylene resin has a double bond that has been modified by hydrogenation, maleination, epoxidation, amination, or similar methods.
- a softening agent having a relatively high viscosity can be utilized to prevent the softening agent from separating from the adhesive encapsulating composition and permeating into the interface between the electrode and the light-emitting unit.
- a softening agent having a kinematic viscosity of 10,000 to 1,000,000 mm 2 /s can be used.
- the softening agent may have various molecular weights, but because of the direct encapsulation of an organic electroluminescent device with the adhesive encapsulating composition, the softening agent can have a weight average molecular weight of from about 1,000 to 500,000 g/mole. In even another embodiment, the weight average molecular weight can be from about 3,000 to 100,000 g/mole to prevent the softening agent from separating from the adhesive encapsulating composition and dissolving the organic materials such as layers of the organic light-emitting unit.
- the amount of the softening agent used is not generally limited but in light of the desired adhesive force, heat resistance, and rigidity of the adhesive encapsulating composition, the softening agent typically can be used in an amount of about 50 wt.% or less based on the entire adhesive encapsulating composition. In another embodiment, the adhesive encapsulating composition contains from about 5 to 40 wt.% softening agent. If the amount of softening agent used exceeds 50 wt.%, excessive plasticization may result, which can impact the heat resistance and rigidity.
- Fillers, coupling agents, ultraviolet absorbents, ultraviolet stabilizers, antioxidants, stabilizers, or some combination thereof may also be added to the adhesive encapsulating composition.
- the amount(s) of additive is typically chosen so that the it does not have an adverse effect on the curing rate of the multifunctional (meth)acrylate monomer, or it does not have an adverse effect on the adhesive physical properties of the adhesive encapsulating composition.
- fillers examples include, but are not limited to, a carbonate of calcium or magnesium (for example, calcium carbonate, magnesium carbonate, and dolomite); silicate (for example, kaolin, calcined clay, pyrophyllite, bentonite, sericite, zeolite, talc, attapulgite, and wollastonite); a silicic acid (for example, diatomaceous earth, and silica); an aluminum hydroxide; palaite; a barium sulfate (for example, precipitated barium sulfate); a calcium sulfate (for example, gypsum); a calcium sulfite; a carbon black; a zinc oxide; a titanium dioxide; a dessicant (for example, calcium oxide and barium oxide); and mixtures thereof.
- a carbonate of calcium or magnesium for example, calcium carbonate, magnesium carbonate, and dolomite
- silicate for example, kaolin, calcined clay,
- the filler may have different particle diameters. For example, if it is desired to provide an adhesive encapsulating composition having a high transmission in the visible range, an average primary particle diameter of the filler can be in the range of 1 to 100 nm. In another embodiment, the filler can have an average primary particle diameter in the range of 5 to 50 nm. Further, when fillers in the form of plates or squamations are used to improve the low moisture permeability, their average primary particle diameter can be in the range of 0.1 to 5 ⁇ m. Moreover, in view of the dispersability of the filler in the adhesive encapsulating composition, hydrophobic surface treated hydrophilic fillers can be used. Any conventional hydrophilic filler can be modified by a hydrophobic treatment.
- the surface of the hydrophilic filler could be treated with an alkyl, aryl or aralkyl silane coupling agent containing hydrophobic groups such as n-octyltrialkoxy silane, a silylation agent such as dimethyldichlorosilane and hexamethyldisilazane, polydimethylsiloxanes having hydroxyl terminals, higher alcohols such as stearyl alcohol, or higher aliphatic acids such as stearic acid.
- an alkyl, aryl or aralkyl silane coupling agent containing hydrophobic groups such as n-octyltrialkoxy silane, a silylation agent such as dimethyldichlorosilane and hexamethyldisilazane, polydimethylsiloxanes having hydroxyl terminals, higher alcohols such as stearyl alcohol, or higher aliphatic acids such as stearic acid.
- silica fillers include, but are not limited to, products treated with dimethyldichlorosilane such as those commercially available under the trade designation AEROSIL-R972, R974 or R976 (Nippon Aerosil Co., Ltd.); products treated with hexamethyldisilazane such as those commercially available under the trade designation AEROSIL-RX50, NAX50, NX90, RX200 or RX300 (Nippon Aerosil Co., Ltd.); products treated with octylsilane such as those commercially available under the trade designation AEROSIL-R805 (Nippon Aerosil Co., Ltd.); products treated with dimethylsilicone oil such as those commercially available under the trade designation AEROSIL-RY50, NY50,
- RY200S, R202, RY200 or RY300 (Nippon Aerosil Co., Ltd.); and products commercially available under the trade designation CAB ASIL TS-720 (Cabot Co., Ltd.).
- the fillers may be used alone, or in combination.
- the amount of fillers added is generally from 0.01 to 20 wt.% based on the total amount of the adhesive encapsulating composition.
- Couplings agents that are not used as surface modifiers of particles may be added to improve adhesion of the encapsulating composition.
- Coupling agents typically have portions that react or interact with organic components and portions that react or interact with inorganic components.
- a coupling agent When added to an adhesive encapsulating composition, a coupling agent my react or interact with polymers and an inorganic surface such as any conductive metal, e.g., ITO, disposed on the substrate. This can improve adhesive between the polymer and the substrate.
- Examples of useful coupling agents include methacryloxypropyl methyl dimethoxy silane (KBM502 from Shinestsu Chemical Co., Ltd.), 3-mercaptopropyl methyl dimethoxy silane (KBM802 from Shinestsu Chemical Co., Ltd.), and glycidyl propyl trimethoxysilane (KBM403 from Shinestsu Chemical Co., Ltd.).
- Examples of ultraviolet absorbents include, but are not limited to, benzotriazole- based compounds, oxazolic acid amide-based compounds, and benzophenone-based compounds. The ultraviolet absorbents, when used, can be used in an amount from about 0.01 to 3 wt. % based on the total amount of the adhesive encapsulating composition.
- antioxidants examples include, but are not limited to, hindered phenol-based compounds and phosphoric acid ester-based compounds. Such compounds, when used, can be used in an amount from about 0.01 to 2 wt.% based on the total amount of the adhesive encapsulating composition.
- stabilizers examples include, but are not limited to, phenol- based stabilizers, hindered amine-based stabilizers, imidazole-based stabilizers, dithiocarbamate-based stabilizers, phosphorus-based stabilizers, sulfur ester-based stabilizers, and phenothiazine. Such compounds, when utilized, can be used in an amount from about 0.001 to 3 wt.% based on the total amount of the adhesive encapsulating composition.
- the adhesive encapsulating composition may be prepared by various methods known to those of skill in the art.
- the adhesive encapsulating composition can be prepared by thoroughly mixing the above-described components.
- an arbitrary mixer such as a kneader or an extruder may be used.
- the resulting composition can be used as the adhesive encapsulating composition or can be combined with other components to form the adhesive encapsulating composition.
- the adhesive encapsulating composition can be used in a variety of forms.
- the adhesive encapsulating composition can be applied directly to a device or any of its components or the like by using a screen printing method or similar methods.
- the adhesive encapsulating composition may also be coated on an appropriate substrate to form an adhesive encapsulating film.
- Figure IA shows a cross-sectional structure of an exemplary adhesive encapsulating film IOOA comprising a substrate 110 and adhesive encapsulating layer 120.
- the substrate may be temporarily used for shaping or may be integrated until use of the adhesive encapsulating composition. In either case, the surface of the substrate can be release-treated, for example, with a silicone resin.
- Coating of the adhesive encapsulating composition can be carried out using methods known to those of skill in the art, for example, die coating, spin coating, doctor blade coating, calendaring, extrusion, and the like.
- the support used in the adhesive encapsulating film may comprise a backing, the backing comprising a film or a sheet of, for example, paper, plastic, and/or metal foil.
- the backing can be a release liner such that it is treated with a release agent, for example, a silicone resin.
- the adhesive encapsulating layer may have various thicknesses, for example, from about 5 to 200 ⁇ m, from about 10 to 100 ⁇ m, or from about 25 to 100 ⁇ m.
- the adhesive film may be used as an encapsulant by separating it from the backing.
- the outer surface of the adhesive encapsulating layer can be protected with means such as a release liner.
- the adhesive encapsulating film can be provided in various forms.
- the adhesive encapsulating composition is used as an encapsulant for an electronic device
- the adhesive encapsulating film may be used by combining it with a constituent element of the electronic device.
- the adhesive encapsulating film may further comprise a gas-barrier film 130 disposed on the adhesive encapsulating layer 120 opposite the substrate 110 as shown in Figure IB.
- the gas-barrier film 130 is a film having barrier properties to water vapor, oxygen, or both. Any suitable materials and construction can be used for the gas- barrier film 130.
- the gas-barrier layer may comprise an inorganic material such as SiO, SiN, DLF (Diamond-like Film), or DLG (Diamond-like Glass).
- the gas-barrier layer may also comprise a polymer film selected from the group consisting of: polyesters, polyethersulfones, polyimides, fluorocarbons, and multilayer films comprising alternating polymer and inorganic layers.
- the multilayer films comprising alternating polymer and inorganic layers are generally disposed on a flexible visible light transmissive substrate; these multilayer films are described in US 7,018,713 B2 (Padiyath et al.).
- the adhesive encapsulating film may further comprise a trapping agent 140 as shown in Figures 1C and ID.
- the trapping agent is disposed between gas- barrier film 130 and adhesive encapsulating composition 120.
- the trapping agent is disposed between the adhesive encapsulating composition and substrate 110.
- the trapping agent may comprise a material that functions as a water absorbent or desiccant. Any suitable materials and construction can be used for the trapping layer.
- the trapping layer may comprise an inorganic material such as a metal or metal oxide, e.g., Ca, Ba, CaO or BaO.
- a metal or metal oxide e.g., Ca, Ba, CaO or BaO.
- the shape is generally a film-like or sheet-like form. Also, as shown in Figure ID, the area and shape of each layer can be adjusted such that at least a part of the adhesive encapsulating layer directly adheres to the substrate.
- the adhesive encapsulating film may comprise both a gas-barrier film and a trapping agent. In this way, encapsulation of an electronic device can be enhanced and, at the same time, the encapsulation process can be simplified.
- the adhesive encapsulated film may be made by a variety of methods that include, but are not limited to, screen printing methods, spin coating methods, doctor blade methods, calendar methods, extrusion-forming methods using a rotary die, T-die, or the like.
- a lamination method includes forming the adhesive encapsulating film on a backing 110, serving as a release film, and then transferring the adhesive film to a component of the electroluminescent device. These methods may also be used to form the gas-barrier film and the trapping agent.
- the organic electroluminescent device may comprise: a pair of opposing electrodes; a light-emitting unit having at least an organic light-emitting layer, the light-emitting unit disposed between the pair of opposing electrodes; and an adhesive encapsulating composition disposed on, above, or around the light-emitting unit, the adhesive encapsulating composition comprising any one of the adhesive encapsulating compositions described herein.
- the electrodes and light-emitting unit may be referred to as a stacked body.
- the stacked body can have various constitutions, for example, the stacked body may comprise one light-emitting unit is incorporated or a combination of two or more light-emitting units. The constitution of the stacked body is described below.
- the stacked body is supported on a device substrate.
- Figure 2 shows exemplary organic electroluminescent device 200 comprising stacked body 205 disposed on substrate 201.
- the stacked body is encapsulated with adhesive encapsulating layer 206 and optional components 207 and 208.
- the stacked body 205 comprises anode 202, light-emitting unit 203, and cathode 204.
- the device substrate may be rigid or hard (not easily bended) or it may be flexible.
- Hard substrates may comprise an inorganic material such as yttria-stabilized zirconia (YSZ), glass, and metal, or the hard substrate may comprise a resin material such as polyesters, polyimides, and polycarbonates.
- Flexible substrates may comprise a resin material, for example, a fluorine-containing polymer (for example, polyethylene trifluoride, polychlorotrifluoroethylene (PCTFE), a copolymer of vinylidene fluoride (VDF) and chlorotrifluoroethylene CTFE), a polyimide, a polycarbonate, a polyethylene terephthalate, a polyethylene naphthalate, an alicyclic polyolefm, or an ethylene-vinyl alcohol copolymer.
- a fluorine-containing polymer for example, polyethylene trifluoride, polychlorotrifluoroethylene (PCTFE), a copolymer of vinylidene fluoride (VDF) and chlorotrifluoroethylene CTFE
- a polyimide for example, polyethylene trifluoride, polychlorotrifluoroethylene (PCTFE), a copolymer of vinylidene fluoride (VDF) and chlorotrifluoroethylene CT
- the device substrate is not limited in its shape, structure, dimension or the like.
- the device substrate often has a plate shape.
- the device substrate may be transparent, colorless, translucent, or opaque.
- the substrate can be coated with a gas-barrier layer containing an inorganic material such as SiO, SiN, DLF (Diamond-like Film), or DLG (Diamond-like Glass).
- the gas-barrier layer film may also comprise a flexible visible light transmissive substrate having alternating polymer and inorganic layers disposed thereon; these films are described in US 7,018,713 B2 (Padiyath et al.).
- the gas-barrier layer can be formed using a method such as vacuum vapor deposition, physical vapor deposition, and plasma CVD (Chemical Vapor Deposition).
- Optional component 207 may comprise a color filter layer.
- Optional component 208 may comprise a flexible or rigid or material.
- optional component 208 may comprise a sealing cap (sometimes called a sealing plate or the like) comprising a hard material, typically, glass or a metal.
- the optional component 207 may also comprise a gas-barrier layer.
- the stacked body 205 comprises a pair of opposing electrodes 202 and 204 (i.e., an anode and a cathode), and a light-emitting unit 203 disposed between the electrodes.
- the light-emitting unit may have various layered structures containing an organic light- emitting layer, which is described below.
- the anode generally functions to supply a hole to the organic light-emitting layer. Any known anode material can be used.
- the anode material generally has a work function of 4.0 eV or more, and suitable examples of the anode material include, but are not limited to, a semiconducting metal oxide such as tin oxide, zinc oxide, indium oxide and indium tin oxide (ITO); a metal such as gold, silver, chromium and nickel; and an organic electrically conducting material such as polyaniline and polythiophene.
- the anode usually includes a film formed, for example, by vacuum vapor deposition, sputtering, ion plating, CVD or plasma CVD. In some applications, the anode can be subjected to patterning by etching or the like. The thickness of the anode can be varied over a wide range and can generally be from about 10 nm to 50 ⁇ m.
- the cathode used in conjunction with the anode generally functions to inject an electron into the organic light-emitting layer.
- Any known cathode materials can be used.
- the cathode material generally has a work function of 4.5 eV or less, and suitable examples of the cathode material include, but are not limited to, alkali metals such as Li, Na, K and Cs; composite materials such as LiF/Al, alkaline earth metals such as Mg and Ca; rare earth metals such as gold, silver, indium and ytterbium; and alloys such as MgAg.
- the cathode usually includes a film formed, for example, by vacuum vapor deposition, sputtering, ion plating, CVD or plasma CVD. In some applications, the cathode can be subjected to patterning by etching or the like. The thickness of the cathode may be varied over a wide range but can be from about 10 nm to 50 ⁇ m.
- the light-emitting unit positioned between the anode and the cathode may have various layer structures.
- the light-emitting unit may have a single layer structure comprising only an organic light-emitting layer or may have a multilayer structure such as organic light-emitting layer/electron transport layer, hole transport layer/organic light-emitting layer, hole transport layer/organic light-emitting layer, hole transport layer/organic light-emitting layer/electron transport layer, organic light-emitting layer/electron transport layer/electron injection layer, and hole injection layer/hole transport layer/organic light-emitting layer/electron transport layer/electron injection layer.
- Each of these layers is described below.
- the organic light-emitting layer can comprise at least one light-emitting material and may optionally contain a hole transport material, an electron transport material, or the like.
- the light-emitting material is not particularly limited and any light-emitting material commonly used in the production of an organic electroluminescent device may be utilized.
- the light-emitting material can include a metal complex, a low molecular weight fluorescent coloring material, a fluorescent polymer compound, or a phosphorescent material.
- Suitable examples of the metal complex include, but are not limited to, tris(8- quinolinolate)aluminum complex (Alq3), bis(benzoquinolinolate)beryllium complex (BeBq2), bis(8-quinolinolate)zinc complex (Znq2), and phenanthroline-based europium complex (Eu(TTA)3(phen)).
- Suitable examples of the low molecular weight fluorescent coloring material include, but are not limited to, perylene, quinacridone, coumarin and 2- thiophenecarboxylic acid (DCJTB).
- Suitable examples of the fluorescent polymer compound include, but are not limited to, poly(p-phenylenevinylene) (PPV), 9- chloromethylanthracene(MEH-PPV), and polyfluorene (PF).
- Suitable examples of phosphorescent materials include platinum octaethyl porphryin and cyclometallated iridium compounds.
- the organic light-emitting layer can be formed from light-emitting materials such as those discussed above using any suitable method.
- the organic light- emitting layer can be formed using a film-forming method such as vacuum vapor deposition or physical vapor deposition.
- the thickness of the organic light-emitting layer is not particularly limited but can generally be from about 5 nm to 100 nm.
- the organic light-emitting unit may include a hole transport material.
- the hole transport material generally functions to inject a hole from the anode, transport a hole, or block an electron injected from the cathode.
- Suitable examples of hole transport materials include, but are not limited to, N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (TPD),
- the hole transport layer and the hole injection layer each may be formed by using a film-forming method such as vacuum vapor deposition and physical vapor deposition.
- the thickness of these layers is not particularly limited but can generally be from about 5 nm to 100 nm.
- the organic light-emitting unit can include an electron transport material.
- the electron transport material can function to transport an electron, or block a hole injected from the anode. Suitable examples of electron transport material include, but are not limited to, 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-l,3,4-oxadiazole (PBD); and 3-(4-tert- butylphenyl)-4-phenyl-5-(4-biphenylyl)-l,2,4-triazole (TAZ) AlQ.
- the electron transport layer and the electron injection layer each may be formed using a film- forming method such as vacuum vapor deposition and physical vapor deposition.
- the thickness of these layers is not particularly limited but can generally be from about 5 nm to 100 nm.
- the above-described stacked body may be encapsulated with the adhesive encapsulating composition or the adhesive encapsulating film. In either case, they may be used in the form of a layer entirely covering the exposed surface of the stacked body disposed on the device substrate.
- the adhesive encapsulating composition or the adhesive aencapsulating film has adhesive properties by itself.
- laminating the film does not require an additional adhesive layer. That is, additional laminating adhesives can be omitted and the simplification and reliability of the production process can be enhanced.
- an encapsulation space does not remain in the device because the stacked body is covered with adhesive encapsulating composition. Without the encapsulation space, moisture permeation is reduced, thereby preventing degradation of the device characteristics while maintaining compact and thin devices. If an encapsulation space is desired, a gasket of adhesive surrounding the device may be used.
- an adhesive encapsulating composition or an encapsulating film can be transparent in the visible region (380 to 800 nm) of the spectrum. Because the encapsulating film typically has an average transmittance of not less than 80% or not less than 90%, the encapsulating film does not substantially deteriorate the light-emission efficiency of the organic electroluminescent device. This may be particularly useful for top emitting OLEDs.
- a passivation film can be disposed to protect the top and bottom of the stacked body.
- the passivation film can be formed of an inorganic material such as SiO, SiN, DLG, or DLF by using a film-forming method such as, for example, vacuum vapor deposition and sputtering.
- the thickness of the passivation film is not particularly limited but can generally be about 5 nm to 100 nm.
- a material capable of absorbing moisture and/or oxygen or a layer thereof can also be disposed.
- a layer can be disposed at any position as long as the desired effect is provided.
- a material or layer is sometimes called a desiccant, moisture absorbent, desiccant layer or the like but is referred to herein as a "trapping agent" or a "trapping layer”.
- the trapping agents include, but are not limited to, metal oxides such as calcium oxide, magnesium oxide, and barium oxide; sulfates such as magnesium sulfate, sodium sulfate, and nickel sulfate; an organic metal compound such as aluminum oxide octylate; and B2O3 from US 2006/0063015
- the trapping layer may be formed by any method known to those of skill in the art based on the kind of trapping agent.
- the trapping layer can be formed by attaching a film having a trapping agent dispersed therein by using a pressure sensitive adhesive, spin-coating a trapping agent solution, or a film- forming method such as vacuum vapor deposition and sputtering.
- the thickness of the trapping layer is not limited but can generally be from about 5 nm to 500 ⁇ m.
- an organic electroluminescent device may additionally comprise various constituent elements known to those of skill in the art.
- an organic electroluminescent device employing a white light-emitting portion can be used in combination with a color filter. Such combination would not be necessary in a three-color light emitting method. Also, in the case of an organic electroluminescent device employing a color conversion method (CCM), a color filter for correction of color purity can be used in combination.
- CCM color conversion method
- the organic electroluminescent device may have a protective film as the outermost layer.
- This protective film can include a protective film having a water vapor-barrier or oxygen-barrier property and is sometimes called a "gas- barrier film” or a "gas-barrier film layer".
- the gas-barrier film layer may be formed of various materials having water vapor-barrier properties.
- Suitable materials include, but are not limited to, a polymer layer including a fluorine-containing polymer (e.g., polyethylene naphthalate, polyethylene trifluoride, polychlorotrifluoroethylene (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolef ⁇ n and an ethylene -vinyl alcohol copolymer; a stacked body of such polymer layers or a layer obtained by coating such a polymer layer with an inorganic thin film (e.g., silicon oxide, silicon nitride, aluminum oxide, DLG, or DLF) by using a film-forming method (e.g., sputtering), may be used.
- a fluorine-containing polymer e.g., polyethylene naphthalate, polyethylene trifluoride, polychlorotrifluoroethylene (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolef ⁇ n
- the gas-barrier layer film may also comprise a flexible visible light transmissive substrate having alternating polymer and inorganic layers disposed thereon; these films are described in US 7,018,713 B2 (Padiyath et al.).
- the thickness of the gas-barrier film layer may be varied over a wide range but can generally be from about 10 nm to 500 ⁇ m.
- the organic electroluminescent device disclosed herein can be utilized as an illumination or a display means in various fields. Examples of applications include illumination devices used in place of a fluorescent lamp; display devices of a computer device, television receiver, DVD (digital video disc), audio instrument, measurement hardware, cellular phone, PDA (personal digital assistance), panel or the like; backlight; and light source array of a printer or the like.
- the adhesive encapsulating compositions may also by used to encapsulate metal and metal oxide components disposed on a substrate.
- the adhesive encapsulating compositions may be used for touch screens in which a substantially transparent conductive metal such as indium tin oxide (ITO) is deposited on a substrate such as glass, or on a polymeric film such as cellulose triacetate.
- ITO indium tin oxide
- the adhesive encapsulating compositions may be low or free of acidic components which may cause corrosion to metals and/or substrates.
- a photovoltaic cell module comprising: a photovoltaic cell or an array of photovoltaic cells (a series of interconnected photovoltaic cells), and an adhesive encapsulating composition disposed on, above, or around the photovoltaic cell, the adhesive encapsulating composition comprising any of the above-described compositions for use with organic electroluminescent devices.
- photovoltaic cells are semiconductor devices used to convert light into electricity and may be referred to as solar cells.
- a photovoltaic cell Upon exposure to light, a photovoltaic cell generates a voltage across its terminals resulting in a consequent flow of electrons, the size of which is proportional to the intensity of the light impinging on the photovoltaic junction formed at the surface of the cell.
- a series of solar cell modules are interconnected to form a solar array which functions as a single electricity producing unit wherein the cells and modules are interconnected in such a way as to generate a suitable voltage in order to power a piece of equipment or supply a battery for storage, etc.
- Semiconductor materials used in photovoltaic cells include crystalline or polycrystalline silicon or thin film silicon, e.g., amorphous, semicrystalline silicon, gallium arsenide, copper indium diselenide, organic semiconductors, CIGS, and the like.
- crystalline or polycrystalline silicon or thin film silicon e.g., amorphous, semicrystalline silicon, gallium arsenide, copper indium diselenide, organic semiconductors, CIGS, and the like.
- photovoltaic cells wafers and thin films.
- a wafer is a thin sheet of semiconductor material made by mechanically sawing it from a single crystal or multicrystal ingot or casting.
- Thin film based photovoltaic cells are continuous layers of semiconducting materials typically deposited on a substrate or supersubstrate using sputtering or chemical vapour deposition processes or the like.
- Wafer and thin film photovoltaic cells are often fragile enough such that a module may require one or more supports.
- the support may be rigid, e.g., a glass plate rigid material, or it may be a flexible material, e.g., a metallic film and/or sheet of suitable polymer material such as a polyimide or polyethylene terephthalate.
- the support may be a top layer or superstrate, i.e., positioned between the photovoltaic cell and the light source, and which is transparent to light coming from the light source. Alternatively or in addition thereto, the support may be a bottom layer which is positioned behind the photovoltaic cell.
- the adhesive encapsulating composition may be disposed on, above, or around the photovoltaic cell.
- the adhesive encapsulating composition may be used to protect the photovoltaic cell from the environment, and/or it may be used to adhere the cell to the support(s).
- the adhesive encapsulating composition may be applied as one of several encapsulating layers which may either have the same compositions or different compositions. Futher, the adhesive encapsulating composition may be applied directly on the cell and then cured, or an adhesive encapsulating film may be used wherein the adhesive encapsulant layer is laminated to the photovoltaic cell and substrate and then the layer is cured.
- Figure 3 A shows a cross-sectional structure of an exemplary photovoltaic cell 300A comprising adhesive encapsulating layers 302 and 304 which encapsulate photovoltaic cell 303. Front substrate 301 and back substrate 305 are also shown.
- Figure 3B shows a cross-sectional structure of an exemplary photovoltaic cell 300B wherein photovoltaic cell 303 is deposited on front substrate 301 by a suitable method such as chemical vapor deposition after which adhesive encapsulating layer 304 is applied, (or the adhesive is preapplied to 305), for example, using an adhesive encapsulating film with a removable substrate.
- Figure 3B shows a cross-sectional structure of another exemplary photovoltaic cell 300C wherein photovoltaic cell 303 is deposited on back substrate 305 by a suitable method such as chemical vapor deposition after which adhesive encapsulating layer 302 is applied, for example, using an adhesive encapsulating film with a removable substrate.
- a front substrate may be utilized if required.
- a thin film transistor comprising a semiconductor layer and an adhesive encapsulating composition disposed on, above, or around the semiconductor layer, the adhesive encapsulating composition comprising any one of the adhesive encapsulating compositions described herein.
- a thin film transistor is a special kind of field effect transistor made by depositing thin films of semiconductor material, as well as a dielectric layer and metallic contacts over a substrate. The thin film transistor may be used to drive a light-emitting device.
- Useful semiconductor materials include those described above for photovoltaic cells as well as organic semiconductors.
- Organic semiconductors include aromatic or otherwise conjugated electron systems including small molecules such as rubrene, tetracene, pentacene, perylenediimides, tetracyanoquinodimethane, and polymers such as polythiophenes including poly(3-hexylthiophene), polyfluorene, polydiacetylene, poly(2,5-thienylene vinylene), poly(p-phenylene vinylene) and the like.
- Deposition of inorganic materials may be carried out using chemical vapor deposition methods or physical vapor deposition.
- Deposition of organic materials may be carried out by either vacuum evaporation of small molecules, or by solution-casting of polymers or small molecules.
- Thin film transistors generally include a gate electrode, a gate dielectric on the gate electrode, a source electrode, a drain electrode adjacent to the gate dielectric, and a semiconductor layer adjacent to the gate dielectric and adjacent to the source and drain electrodes; see, for example, S. M. Sze, Physics of Semiconductor Devices, 2 nd edition, John Wiley and Sons, page 492, New York (1981). These components can be assembled in a variety of configurations.
- Figure 4A shows a cross-sectional structure of an exemplary thin film transistor 400A disclosed in US 7,279,777 B2 (Bai et al.) comprising substrate 401, gate electrode 402 disposed on the substrate, dielectric material 403 disposed on the gate electrode, optional surface-modifying film 404 disposed on the gate electrode, semiconductor layer 405 adjacent to the surface-modifying film, and source electrode 406 and drain electrode
- Figure 4B shows a cross-sectional structure of another exemplary thin film transistor 400B dislosed in US 7,352,038 B2 (Kelley et al.) comprising gate electrode 407 disposed on substrate 413.
- Gate dielectric 408 is disposed on the gate electrode.
- a substantially non-fluorinated polymer layer 409 is interposed between the gate dielectric and organic semiconductor layer 410.
- Source 411 and drain 412 electrodes are provided on the semiconductor layer.
- the dynamic viscoelastic properties were measured with an ARES rheometer (manufactured by Rheometric Scientific Inc.) at shear mode of 1.0 Hz frequency in the range of from - 80 0 C to 150 0 C.
- ARES rheometer manufactured by Rheometric Scientific Inc.
- the laminate was irradiated with UV rays for 1 minute (F300S (H valve) made by Fusion Co., Ltd., 100 mJ *20 times) and stiffened using an oven at 90 0 C for 60 minutes.
- the thickness of the resulting adhesive layer was 100 ⁇ m.
- Examples 2-9 were prepared as described for Example 1 , except that the components shown in Table 2 were used.
- Example 10 was prepared as described for Example 1, except that the components shown in Table 2 were used. Instead of UV curing, the film was heat cured in an oven at 100 0 C for 60 minutes.
- Examples 11-13 were prepared as described for Example 1, except that the components shown in Table 2 were used. Instead of UV curing, the films were heat cured in an oven at 100 0 C for 15 minutes.
- Each example also contained 0.5 g of Coupling Agent 1 except that Example 5 contained 0.5 g of Coupling Agent 2.
- a glass substrate was used as the substrate 1 , and a glass substrate with an ITO film (manufactured by Sanyo Vacuum Industries Co., Ltd., ITO film thickness of 150 nm, sheet resistance ⁇ 14 ⁇ /D, glass thickness of 0.7 mm, dimension of 40 mm x 40 mm) was patterned by photolithography to form an ITO electrode pattern.
- the substrate was surface cleaned by solvent cleaning, and the organic functional and the metal electrode layer were formed on the ITO electrode.
- the metal electrode layer [an aluminum (purity of 99.99%, manufactured by Kojundo Kasei K.K.) layer 100 nm] was formed.
- the film sealing material (thickness 25 micron) was laminated to sealing glass (glass thickness of 0.7 mm, dimension of 30 mm x 30 mm).
- the sealing member and the OLED substrate were opposed to each other in an inert atmosphere of a nitrogen gas from which moisture and oxygen were removed as much as possible, and were laminated by using a vacuum laminator operating at 90 0 C, 1 N, for 30 minutes.
- the sealed device was cured by F300S (H valve) [made by Fusion Co., Ltd.] at 100 mJ *20 times.
- the OLED was subjected to a storage test in the air at 6O 0 C and a relative humidity of 90%. The time until light emission area reduced to 75% of an initial value was recorded. Results are shown in Table 3. Examples 14-19
- Example 14 was prepared and tested as follows. An adhesive comprising PIB 8 and HCRl (70:30 weight ratio) was coated at 25 um (1 mil) thickness on a release liner. The resulting adhesive layer (exposed surface) was transferred to a film comprising a flexible visible light transmissive substrate having alternating polymer and inorganic layers disposed thereon; these films are described in US 7,018,713 B2 (Padiyath et al). The adhesive and substrate were then baked in vacuum at 80 0 C until moisture was removed. Ca (reflective metallic) was coated on a glass substrate and the side with the Ca was disposed on the adhesive layer. The sandwich was laminated. Using a densitometer, optical density was measured at an initial time. The sample was then kept in an environmental chamber for accelerated aging at 60°C/90% relative humidity. For the first 3 days, optical densities were measured twice per day. Optical density was then measured once per day until the density was 50% of the initial density.
- PIB 8 and HCRl 70:30
- Examples 15-17 were prepared and tested as described for Example 14, except that the components shown in Table 4 were used.
- Examples 18 and 19 were prepared and tested as described for Example 14, except that the components shown in Table 4 were used.
- the adhesive was UV cured (3000 mJ/cm 2 ) after lamination.
- Examples 20-23 were prepared and tested as described for Example 14, except that the components shown in Table 5 were used.
- Examples 24-28 were prepared and tested as described for Example 14, except that the components shown in Table 5 were used.
- the adhesive was UV cured (3000 mJ/cm 2 ) after lamination.
- Example 29 was prepared and tested as described for Example 14, except that the components shown in Table 6 were used.
- the adhesive was UV cured (3000 mJ/cm 2 ) after lamination.
- Example 30 was prepared and tested as described for Example 14, except that the components shown in Table 6 were used.
- the adhesive was thermally cured, after lamination, by heating at 6O 0 C for 30 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Electroluminescent Light Sources (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Position Input By Displaying (AREA)
- Thin Film Transistor (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/995,565 US8232350B2 (en) | 2008-06-02 | 2009-04-28 | Adhesive encapsulating composition and electronic devices made therewith |
EP09758885.9A EP2291477B1 (en) | 2008-06-02 | 2009-04-28 | Adhesive encapsulating composition and electronic devices made therewith |
JP2011512496A JP5890177B2 (en) | 2008-06-02 | 2009-04-28 | Adhesive encapsulating composition and electronic device produced using the same |
CN2009801257532A CN102083930B (en) | 2008-06-02 | 2009-04-28 | Adhesive encapsulating composition and electronic devices made therewith |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5806608P | 2008-06-02 | 2008-06-02 | |
US61/058,066 | 2008-06-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009148722A2 true WO2009148722A2 (en) | 2009-12-10 |
WO2009148722A3 WO2009148722A3 (en) | 2010-04-15 |
Family
ID=41398753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/041918 WO2009148722A2 (en) | 2008-06-02 | 2009-04-28 | Adhesive encapsulating composition and electronic devices made therewith |
Country Status (7)
Country | Link |
---|---|
US (1) | US8232350B2 (en) |
EP (1) | EP2291477B1 (en) |
JP (1) | JP5890177B2 (en) |
KR (1) | KR101623220B1 (en) |
CN (1) | CN102083930B (en) |
TW (1) | TWI476258B (en) |
WO (1) | WO2009148722A2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010033419A2 (en) * | 2008-09-19 | 2010-03-25 | 3M Innovative Properties Company | Transparent pressure-sensitive adhesive sheet, image display apparatus comprising the same, and the production methods for making the image display apparatus |
EP2380930A1 (en) * | 2010-04-09 | 2011-10-26 | Nitto Denko Corporation | Sealing composition, multiple glass and solar cell panel |
JP2011231313A (en) * | 2010-04-05 | 2011-11-17 | Lintec Corp | Adhesive composition and adhesive sheet obtained from the composition |
JP2012057065A (en) * | 2010-09-09 | 2012-03-22 | Lintec Corp | Adhesive sheet for sealing, electronic device and organic device |
WO2012067741A1 (en) * | 2010-11-16 | 2012-05-24 | 3M Innovative Properties Company | Uv curable anhydride-modified poly(isobutylene) |
WO2013002288A1 (en) * | 2011-06-28 | 2013-01-03 | リンテック株式会社 | Adhesive composition and adhesive sheet |
EP2579353A2 (en) * | 2010-07-07 | 2013-04-10 | LG Chem, Ltd. | Organic light-emitting device comprising an encapsulation structure |
DE102012202377A1 (en) * | 2011-10-21 | 2013-04-25 | Tesa Se | Adhesive, in particular for encapsulating an electronic device |
US8597784B2 (en) | 2010-09-30 | 2013-12-03 | 3M Innovative Properties Company | Radiation curable poly(isobutylene) adhesive copolymers |
US8629209B2 (en) | 2010-12-02 | 2014-01-14 | 3M Innovative Properties Company | Moisture curable isobutylene adhesive copolymers |
CN103606635A (en) * | 2013-11-26 | 2014-02-26 | 上海和辉光电有限公司 | Method for packaging electric excitation light-emitting component |
US8663407B2 (en) | 2010-11-17 | 2014-03-04 | 3M Innovative Properties Company | Isobutylene (Co)polymeric adhesive composition |
CN103730603A (en) * | 2013-12-26 | 2014-04-16 | 京东方科技集团股份有限公司 | Method for encapsulating organic light-emitting device and organic light-emitting body |
JP2014132080A (en) * | 2011-09-29 | 2014-07-17 | Mitsui Chemicals Inc | Adhesive composition and image display device using the same |
CN105073900A (en) * | 2013-07-19 | 2015-11-18 | Lg化学株式会社 | Sealing composition |
EP2845241A4 (en) * | 2012-05-02 | 2016-02-10 | Henkel US IP LLC | Curable encapsulants and use thereof |
JP2016513155A (en) * | 2013-08-05 | 2016-05-12 | エルジー・ケム・リミテッド | Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and organic electronic device manufacturing method using the same |
US9422464B2 (en) | 2012-05-11 | 2016-08-23 | 3M Innovative Properties Company | Adhesives comprising reaction product of halogenated poly(isobutylene) copolymers and polyamines |
US9522211B2 (en) | 2010-09-17 | 2016-12-20 | 3M Innovative Properties Company | Antimicrobial disposable absorbent articles |
US9562180B2 (en) | 2012-03-29 | 2017-02-07 | 3M Innovative Properties Company | Adhesives comprising poly(isobutylene) copolymers comprising pendent free-radically polymerizable quaternary ammonium substituent |
US9587150B2 (en) | 2012-08-14 | 2017-03-07 | 3M Innovative Properties Company | Adhesives comprising grafted isobutylene copolymer |
EP3147338A4 (en) * | 2015-02-04 | 2018-01-17 | LG Chem, Ltd. | Encapsulation film |
WO2018019632A1 (en) | 2016-07-28 | 2018-02-01 | Tesa Se | Oled-compatible adhesives comprising cyclic azasilane water scavengers |
EP3275942A4 (en) * | 2015-03-24 | 2018-03-07 | LG Chem, Ltd. | Adhesive composition |
CN108258151A (en) * | 2018-01-19 | 2018-07-06 | 云谷(固安)科技有限公司 | Packaging film, flexible display apparatus and packaging film forming method |
WO2018152062A1 (en) * | 2017-02-16 | 2018-08-23 | 3M Innovative Properties Company | Polyisobutylene based passivation adhesive |
WO2018152164A1 (en) * | 2017-02-16 | 2018-08-23 | 3M Innovative Properties Company | Low water vapor transmission rate (wvtr) adhesive |
WO2018232065A1 (en) * | 2017-06-14 | 2018-12-20 | Henkel IP & Holding GmbH | Laminating film adhesives with ultra-low moisture permeability |
US10266733B2 (en) | 2014-08-11 | 2019-04-23 | Henkel IP & Holding GmbH | Optically clear hot melt adhesives and uses thereof |
WO2019081148A1 (en) | 2017-10-27 | 2019-05-02 | Tesa Se | Plasma edge encapsulation of adhesive strips |
WO2019223953A1 (en) | 2018-05-24 | 2019-11-28 | Tesa Se | Combination of a transparent full-area encapsulation with a (non-transparent) edge encapsulation having a high getter content |
US10784451B2 (en) | 2016-02-18 | 2020-09-22 | Dow Toray Co., Ltd. | Flexible laminate having viscoelasticity and flexible display using same |
US10988642B2 (en) | 2015-09-18 | 2021-04-27 | Henkel IP & Holding GmbH | Curable and optically clear pressure sensitive adhesive and uses thereof |
US11577492B2 (en) | 2016-09-21 | 2023-02-14 | 3M Innovative Properties Company | Protective display film with glass |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9024455B2 (en) | 2010-05-26 | 2015-05-05 | Hitachi Chemical Company, Ltd. | Semiconductor encapsulation adhesive composition, semiconductor encapsulation film-like adhesive, method for producing semiconductor device and semiconductor device |
DE102008060113A1 (en) * | 2008-12-03 | 2010-07-29 | Tesa Se | Method for encapsulating an electronic device |
JP2010278358A (en) * | 2009-05-29 | 2010-12-09 | Nitto Denko Corp | Adhesive seal material for end portion of frameless solar cell module, frameless solar cell module, and sealed structure of end portion thereof |
JP5768718B2 (en) | 2009-11-18 | 2015-08-26 | 味の素株式会社 | Resin composition |
CN102666714B (en) | 2009-11-19 | 2015-04-29 | 3M创新有限公司 | Pressure sensitive adhesive comprising blend of synthetic rubber and functionalized synthetic rubber bonded to an acylic polymer |
JP5695658B2 (en) | 2009-11-19 | 2015-04-08 | スリーエム イノベイティブ プロパティズ カンパニー | Pressure sensitive adhesives containing functionalized polyisobutylene hydrogen bonded to acrylic polymers |
JP5772085B2 (en) * | 2011-03-09 | 2015-09-02 | セイコーエプソン株式会社 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE |
KR101846434B1 (en) | 2011-06-10 | 2018-04-09 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
US9246024B2 (en) * | 2011-07-14 | 2016-01-26 | International Business Machines Corporation | Photovoltaic device with aluminum plated back surface field and method of forming same |
WO2013094617A1 (en) * | 2011-12-19 | 2013-06-27 | パナソニック株式会社 | Planar light-emitting element |
KR101974107B1 (en) * | 2012-02-02 | 2019-05-02 | 삼성디스플레이 주식회사 | Display apparatus |
JP5901741B2 (en) | 2012-03-21 | 2016-04-13 | 日本化薬株式会社 | Optical member and ultraviolet curable adhesive used in the production thereof |
KR101490553B1 (en) * | 2012-05-02 | 2015-02-05 | (주)엘지하우시스 | Pressure-sensitive adhesive composition with excellent barrier properities |
KR20130134878A (en) * | 2012-05-31 | 2013-12-10 | 제일모직주식회사 | Organic light emitting apparatus and adhesive film for organic light emitting apparatus |
WO2013183429A1 (en) * | 2012-06-07 | 2013-12-12 | コニカミノルタ株式会社 | Interior lighting method and organic electroluminescent element panel |
CN103571427B (en) * | 2012-08-07 | 2016-03-16 | 中化蓝天集团有限公司 | A kind of single component for solar module sealing takes off oxime type silicone sealant and preparation method thereof |
JP2014065781A (en) * | 2012-09-25 | 2014-04-17 | Hitachi Kasei Polymer Co Ltd | Production method of laminate member and hot melt resin composition used for the same |
US20150240133A1 (en) * | 2012-10-29 | 2015-08-27 | Lintec Corporation | Adhesive agent composition and adhesive sheet |
KR20140071552A (en) * | 2012-11-23 | 2014-06-12 | 삼성디스플레이 주식회사 | Organic light emitting display apparatus and manufacturing method thereof |
JPWO2014084352A1 (en) * | 2012-11-30 | 2017-01-05 | リンテック株式会社 | Adhesive composition, adhesive sheet, electronic device and method for producing the same |
RU2654030C2 (en) * | 2012-12-18 | 2018-05-15 | Лэнксесс Бутил Пте. Лтд. | Electronic devices comprising butyl rubber |
JP2014127575A (en) * | 2012-12-26 | 2014-07-07 | Nitto Denko Corp | Sealing sheet |
KR20170116232A (en) * | 2013-03-27 | 2017-10-18 | 후루카와 덴키 고교 가부시키가이샤 | Element-sealing resin composition for organic electronic device, element-sealing resin sheet for organic electronic device, organic electroluminescence element, and image display apparatus |
CN105122940B (en) * | 2013-03-29 | 2017-12-05 | 古河电气工业株式会社 | Organic electronic device component seal resin combination, organic electronic device component seal resin sheet, organic electroluminescent device and image display device |
KR101589372B1 (en) | 2013-05-21 | 2016-01-28 | 주식회사 엘지화학 | Encapsulation Film and Encapsulation Method of Organic Electronic Device Using the Same |
WO2014204223A1 (en) * | 2013-06-19 | 2014-12-24 | 주식회사 엘지화학 | Composition for encapsulation material film, encapsulation material film, and electronic device comprising same |
WO2015012239A1 (en) * | 2013-07-24 | 2015-01-29 | コニカミノルタ株式会社 | Organic electroluminescent element production method and production device |
JP6152319B2 (en) * | 2013-08-09 | 2017-06-21 | 日東電工株式会社 | Adhesive composition, adhesive tape or sheet |
KR101758418B1 (en) * | 2013-08-27 | 2017-07-14 | 주식회사 엘지화학 | Adhesive composition with excellent durability |
CN104870569B (en) * | 2013-09-24 | 2018-06-29 | Lg化学株式会社 | Pressure-sensitive adhesive composition |
CN103490019B (en) * | 2013-09-29 | 2016-02-17 | 京东方科技集团股份有限公司 | The encapsulating structure of organic electroluminescence device and method for packing, display unit |
JP5667282B1 (en) * | 2013-12-27 | 2015-02-12 | 古河電気工業株式会社 | Filling material for organic electroluminescence device and sealing method of organic electroluminescence device |
KR20150097359A (en) * | 2014-02-18 | 2015-08-26 | 주식회사 엘지화학 | Encapsulation film and organic electronic device comprising the same |
WO2015129624A1 (en) * | 2014-02-25 | 2015-09-03 | リンテック株式会社 | Adhesive composition, adhesive sheet, and electronic device |
KR20160125353A (en) * | 2014-02-25 | 2016-10-31 | 린텍 가부시키가이샤 | Adhesive composition, adhesive sheet, and electronic device |
KR102052359B1 (en) | 2014-06-30 | 2019-12-05 | 코오롱인더스트리 주식회사 | Encapsulation composition for light emitting diode divice |
US20160064299A1 (en) * | 2014-08-29 | 2016-03-03 | Nishant Lakhera | Structure and method to minimize warpage of packaged semiconductor devices |
GB201417985D0 (en) * | 2014-10-10 | 2014-11-26 | Zephyros Inc | Improvements in or relating to structural adhesives |
CN104282728B (en) * | 2014-10-10 | 2017-03-15 | 深圳市华星光电技术有限公司 | A kind of white light OLED display and its method for packing |
US9698374B2 (en) | 2014-11-12 | 2017-07-04 | Lg Chem, Ltd. | Pressure sensitive adhesive film |
KR20160082310A (en) | 2014-12-30 | 2016-07-08 | 코오롱인더스트리 주식회사 | Encapsulation composition for light emitting diode divice |
US10144853B2 (en) | 2015-02-06 | 2018-12-04 | Tesa Se | Adhesive compound with reduced yellowness index |
US11319468B2 (en) * | 2015-03-24 | 2022-05-03 | Lg Chem, Ltd. | Adhesive composition |
WO2016153297A1 (en) | 2015-03-24 | 2016-09-29 | 주식회사 엘지화학 | Adhesive composition |
KR101740184B1 (en) | 2015-03-24 | 2017-05-25 | 주식회사 엘지화학 | Adhesive composition |
TWI608045B (en) | 2015-03-24 | 2017-12-11 | Lg化學股份有限公司 | Adhesive composition |
CN113234289A (en) * | 2015-03-31 | 2021-08-10 | 康宁研究与开发公司 | Sealing composition and use thereof |
JP6704388B2 (en) * | 2015-04-02 | 2020-06-03 | 綜研化学株式会社 | Transparent conductive sheet, touch panel module and touch panel device |
CN104934550A (en) * | 2015-05-07 | 2015-09-23 | 京东方科技集团股份有限公司 | OLED device packaging structure, packaging method and electronic device |
CN107709418B (en) | 2015-05-08 | 2021-04-27 | 汉高知识产权控股有限责任公司 | Sinterable films and pastes and methods of use thereof |
US10752810B2 (en) | 2015-06-03 | 2020-08-25 | 3M Innovative Properties Company | Assembly layer for flexible display |
WO2016196541A1 (en) | 2015-06-03 | 2016-12-08 | 3M Innovative Properties Company | Acrylic-based flexible assembly layer |
EP3313661B1 (en) | 2015-06-29 | 2022-07-27 | 3M Innovative Properties Company | Ultrathin barrier laminates and devices |
WO2017031031A1 (en) * | 2015-08-17 | 2017-02-23 | 3M Innovative Properties Company | Barrier film constructions |
US10738224B2 (en) | 2015-08-17 | 2020-08-11 | 3M Innovative Properties Company | Nanoclay filled barrier adhesive compositions |
CN105070847B (en) * | 2015-09-10 | 2017-10-17 | 京东方科技集团股份有限公司 | A kind of composite bed, its preparation method and OLED |
CN111628101A (en) | 2015-10-26 | 2020-09-04 | Oti照明公司 | Method for patterning a surface overlayer and device comprising a patterned overlayer |
CN105552247B (en) * | 2015-12-08 | 2018-10-26 | 上海天马微电子有限公司 | Composite substrate, flexible display device and preparation method thereof |
JP6873682B2 (en) * | 2015-12-25 | 2021-05-19 | 日東電工株式会社 | A method for manufacturing a rubber-based pressure-sensitive adhesive composition, a rubber-based pressure-sensitive adhesive layer, an optical film with a rubber-based pressure-sensitive adhesive layer, an optical member, an image display device, and a rubber-based pressure-sensitive adhesive layer. |
CN108604141B (en) * | 2016-02-16 | 2021-08-24 | 高新特殊工程塑料全球技术有限公司 | Barrier film laminate, method of manufacture, and display comprising barrier film laminate |
CN109072028B (en) * | 2016-04-22 | 2020-09-04 | 株式会社Lg化学 | Optical adhesive composition and optical adhesive layer comprising cured product thereof |
US11034865B2 (en) | 2016-06-16 | 2021-06-15 | 3M Innovative Properties Company | Nanoparticle filled barrier adhesive compositions |
EP3472253A4 (en) * | 2016-06-16 | 2019-12-25 | 3M Innovative Properties Company | Nanoparticle filled barrier adhesive compositions |
JP6792382B2 (en) * | 2016-09-05 | 2020-11-25 | 日東電工株式会社 | Rubber-based pressure-sensitive adhesive composition, rubber-based pressure-sensitive adhesive layer, pressure-sensitive film, optical film with rubber-based pressure-sensitive adhesive layer, optical member, and image display device |
US20200172771A1 (en) * | 2016-09-23 | 2020-06-04 | Lg Chem, Ltd. | Adhesive composition |
CN118215324A (en) | 2016-12-02 | 2024-06-18 | Oti照明公司 | Device comprising a conductive coating disposed over an emission region and method thereof |
JP6294522B1 (en) * | 2017-02-14 | 2018-03-14 | 積水化学工業株式会社 | Sealant for organic EL display element and organic EL display element |
CN106893510A (en) * | 2017-03-01 | 2017-06-27 | 苏州赛伍应用技术有限公司 | A kind of photovoltaic component back plate preparation method of high-performance repair sheets band |
KR102585183B1 (en) | 2017-04-21 | 2023-10-04 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Barrier adhesive compositions and articles |
JP2020518107A (en) | 2017-04-26 | 2020-06-18 | オーティーアイ ルミオニクス インコーポレーテッドOti Lumionics Inc. | Method for patterning a coating on a surface and device containing the patterned coating |
CN110603301B (en) | 2017-05-05 | 2022-09-30 | 3M创新有限公司 | Polymer film and display device containing such film |
CN116997204A (en) | 2017-05-17 | 2023-11-03 | Oti照明公司 | Method for selectively depositing conductive coating on patterned coating and device comprising conductive coating |
US10724139B2 (en) * | 2017-06-19 | 2020-07-28 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Encapsulation method for OLED Panel |
WO2019111182A1 (en) | 2017-12-06 | 2019-06-13 | 3M Innovative Properties Company | Barrier adhesive compositions and articles |
KR102271843B1 (en) * | 2017-12-18 | 2021-07-01 | 주식회사 엘지화학 | Encapsulation film |
US11751415B2 (en) | 2018-02-02 | 2023-09-05 | Oti Lumionics Inc. | Materials for forming a nucleation-inhibiting coating and devices incorporating same |
US11349103B2 (en) * | 2018-03-15 | 2022-05-31 | Dell Products L.P. | Display assembly apparatus and methods for information handling systems |
JP7320851B2 (en) | 2018-05-07 | 2023-08-04 | オーティーアイ ルミオニクス インコーポレーテッド | Methods for providing auxiliary electrodes and devices containing auxiliary electrodes |
KR102238565B1 (en) | 2018-08-16 | 2021-04-09 | 주식회사 엘지화학 | Encapsulation film |
KR102577202B1 (en) * | 2018-11-14 | 2023-09-11 | 덴카 주식회사 | composition |
EP3924439A4 (en) * | 2019-02-11 | 2022-09-14 | Henkel AG & Co. KGaA | Light curable (meth)acrylate resin composition for thermoplastic elastomers bonding |
JP7135939B2 (en) * | 2019-02-28 | 2022-09-13 | 大日本印刷株式会社 | Encapsulant-integrated back protective sheet for solar cell module and method for producing the same |
KR20210149058A (en) | 2019-03-07 | 2021-12-08 | 오티아이 루미오닉스 인크. | Material for forming nucleation inhibiting coating and device comprising same |
KR20220009961A (en) | 2019-04-18 | 2022-01-25 | 오티아이 루미오닉스 인크. | Material for forming nucleation inhibiting coating and device comprising same |
JP2022532144A (en) | 2019-05-08 | 2022-07-13 | オーティーアイ ルミオニクス インコーポレーテッド | Materials for forming nucleation-suppressing coatings and devices incorporating them |
JP7346907B2 (en) * | 2019-05-21 | 2023-09-20 | 王子ホールディングス株式会社 | Method for producing adhesive sheet, adhesive sheet with release sheet, and laminate |
US11832473B2 (en) | 2019-06-26 | 2023-11-28 | Oti Lumionics Inc. | Optoelectronic device including light transmissive regions, with light diffraction characteristics |
JP7386556B2 (en) | 2019-06-26 | 2023-11-27 | オーティーアイ ルミオニクス インコーポレーテッド | Optoelectronic devices containing optically transparent regions with applications related to optical diffraction properties |
US20220278299A1 (en) | 2019-08-09 | 2022-09-01 | Oti Lumionics Inc. | Opto-electronic device including an auxiliary electrode and a partition |
KR102338360B1 (en) * | 2019-11-01 | 2021-12-10 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
KR102189312B1 (en) * | 2019-11-01 | 2020-12-10 | 삼성디스플레이 주식회사 | Organic light emitting diode display and method for manufacturing the same |
WO2021235406A1 (en) | 2020-05-21 | 2021-11-25 | デンカ株式会社 | Composition |
KR102495985B1 (en) * | 2020-12-03 | 2023-02-07 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
WO2022123431A1 (en) | 2020-12-07 | 2022-06-16 | Oti Lumionics Inc. | Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating |
WO2022230874A1 (en) | 2021-04-26 | 2022-11-03 | デンカ株式会社 | Composition |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2927104A (en) | 1957-12-18 | 1960-03-01 | Exxon Research Engineering Co | Preparation of high molecular weight polyisobutylene |
US3050497A (en) | 1961-03-15 | 1962-08-21 | Sinclair Research Inc | Improved high molecular weight polyisobutylene compositions and method of making |
US3657149A (en) * | 1968-10-14 | 1972-04-18 | Hercules Inc | Catalyst compositions |
US3657159A (en) * | 1968-10-14 | 1972-04-18 | Hercules Inc | Epoxide polymerization catalysts comprising complex organoaluminate compounds of silicon tin or phosphorus |
US4397570A (en) * | 1981-06-02 | 1983-08-09 | Pymah Corporation | Pressure sensitive adhesive containing a nucleating agent for use in a disposable thermometer |
EP0192965B1 (en) * | 1985-01-30 | 1990-04-04 | Kao Corporation | Absorbent article |
JPH0329291A (en) * | 1989-06-27 | 1991-02-07 | Sumitomo Bakelite Co Ltd | Water-absorbing film for organic compound dispersed el lamp |
US5188875A (en) | 1989-08-25 | 1993-02-23 | Mitsui Petrochemical Industries, Ltd. | Information recording medium and adhesive composition therefor |
US5238519A (en) * | 1990-10-17 | 1993-08-24 | United Solar Systems Corporation | Solar cell lamination apparatus |
JP3222361B2 (en) * | 1995-08-15 | 2001-10-29 | キヤノン株式会社 | Method of manufacturing solar cell module and solar cell module |
ID17196A (en) * | 1996-03-14 | 1997-12-11 | Dow Chemical Co | ADHESIVE INGREDIENTS THAT CONTAIN OLEFIN POLYMER |
AU731869B2 (en) * | 1998-11-12 | 2001-04-05 | Kaneka Corporation | Solar cell module |
AU1982100A (en) | 1998-12-14 | 2000-07-03 | Sartomer Company Inc. | Packaging material having improved barrier properties |
US6210517B1 (en) | 1999-04-13 | 2001-04-03 | Diversified Chemical Technologies, Inc. | Radiation-cured, non-blocking heat activated label adhesive and coatings and method for using same |
US6226890B1 (en) * | 2000-04-07 | 2001-05-08 | Eastman Kodak Company | Desiccation of moisture-sensitive electronic devices |
DE10142285A1 (en) * | 2001-08-29 | 2003-03-20 | Basf Ag | Polymer composition containing at least one medium molecular weight reactive polyisobutene |
US6946676B2 (en) * | 2001-11-05 | 2005-09-20 | 3M Innovative Properties Company | Organic thin film transistor with polymeric interface |
JP2003165841A (en) | 2001-11-29 | 2003-06-10 | Dow Corning Toray Silicone Co Ltd | Polyorganometaloxysiloxane and method for producing the same |
US6835950B2 (en) * | 2002-04-12 | 2004-12-28 | Universal Display Corporation | Organic electronic devices with pressure sensitive adhesive layer |
KR20100080632A (en) * | 2002-06-17 | 2010-07-09 | 세키스이가가쿠 고교가부시키가이샤 | Method for sealing organic electroluminescent element |
US7449629B2 (en) * | 2002-08-21 | 2008-11-11 | Truseal Technologies, Inc. | Solar panel including a low moisture vapor transmission rate adhesive composition |
US6975067B2 (en) * | 2002-12-19 | 2005-12-13 | 3M Innovative Properties Company | Organic electroluminescent device and encapsulation method |
US7018713B2 (en) | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
US7279777B2 (en) * | 2003-05-08 | 2007-10-09 | 3M Innovative Properties Company | Organic polymers, laminates, and capacitors |
JP2005057523A (en) | 2003-08-05 | 2005-03-03 | Mitsubishi Electric Corp | Program additional information extracting device, program display device, and program recording device |
JP4206899B2 (en) | 2003-10-27 | 2009-01-14 | Jsr株式会社 | Surface mount type LED element |
DE10357321A1 (en) * | 2003-12-05 | 2005-07-21 | Tesa Ag | Hochtackige adhesive, process for their preparation and their use |
JP4410055B2 (en) * | 2004-08-02 | 2010-02-03 | 日東電工株式会社 | Retardation pressure-sensitive adhesive layer, method for producing the same, pressure-sensitive adhesive optical film, method for producing the same, and image display device |
JP2005239359A (en) | 2004-02-26 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Stacking method of container with cooling device, and container yard |
US7316756B2 (en) * | 2004-07-27 | 2008-01-08 | Eastman Kodak Company | Desiccant for top-emitting OLED |
US7875686B2 (en) * | 2004-08-18 | 2011-01-25 | Promerus Llc | Polycycloolefin polymeric compositions for semiconductor applications |
US20060063015A1 (en) * | 2004-09-23 | 2006-03-23 | 3M Innovative Properties Company | Protected polymeric film |
WO2006057218A1 (en) | 2004-11-24 | 2006-06-01 | Kaneka Corporation | Curable composition and semiconductor device sealed/coated with such curable composition |
JP2006186175A (en) | 2004-12-28 | 2006-07-13 | Nippon Zeon Co Ltd | Resin film forming material for electronic component and laminate using it |
ATE437899T1 (en) * | 2005-01-04 | 2009-08-15 | Dow Corning | ORGANOSILICON FUNCTIONAL BORON-AMINE CATALYST COMPLEXES AND CUREABLE COMPOSITIONS PRODUCED THEREFROM |
JP5288150B2 (en) | 2005-10-24 | 2013-09-11 | 株式会社スリーボンド | Thermosetting composition for sealing organic EL elements |
JP5213303B2 (en) * | 2006-01-17 | 2013-06-19 | スリーエム イノベイティブ プロパティズ カンパニー | Photocurable hygroscopic composition and organic EL device |
JP2007197517A (en) * | 2006-01-24 | 2007-08-09 | Three M Innovative Properties Co | Adhesive sealing composition, sealing film and organic el element |
JP2009531516A (en) * | 2006-03-29 | 2009-09-03 | ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション | Radiation-curable rubber adhesive / sealant |
JP5023751B2 (en) | 2007-03-19 | 2012-09-12 | 株式会社Lixil | Exterior wall structure and exterior wall construction method |
JP2009012586A (en) | 2007-07-04 | 2009-01-22 | Toyota Auto Body Co Ltd | Sashless door structure of automobile |
JP5270755B2 (en) * | 2008-06-02 | 2013-08-21 | スリーエム イノベイティブ プロパティズ カンパニー | Adhesive encapsulating composition and electronic device made thereof |
JP2009296115A (en) | 2008-06-03 | 2009-12-17 | Daishinku Corp | Tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration device, and manufacturing method of tuning fork piezoelectric vibration piece |
-
2009
- 2009-04-28 US US12/995,565 patent/US8232350B2/en active Active
- 2009-04-28 WO PCT/US2009/041918 patent/WO2009148722A2/en active Application Filing
- 2009-04-28 KR KR1020107029736A patent/KR101623220B1/en active IP Right Grant
- 2009-04-28 CN CN2009801257532A patent/CN102083930B/en active Active
- 2009-04-28 JP JP2011512496A patent/JP5890177B2/en not_active Expired - Fee Related
- 2009-04-28 EP EP09758885.9A patent/EP2291477B1/en not_active Not-in-force
- 2009-05-12 TW TW098115744A patent/TWI476258B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010033419A3 (en) * | 2008-09-19 | 2010-05-20 | 3M Innovative Properties Company | Transparent pressure-sensitive adhesive sheet, image display apparatus comprising the same, and the production methods for making the image display apparatus |
WO2010033419A2 (en) * | 2008-09-19 | 2010-03-25 | 3M Innovative Properties Company | Transparent pressure-sensitive adhesive sheet, image display apparatus comprising the same, and the production methods for making the image display apparatus |
JP2011231313A (en) * | 2010-04-05 | 2011-11-17 | Lintec Corp | Adhesive composition and adhesive sheet obtained from the composition |
EP2380930A1 (en) * | 2010-04-09 | 2011-10-26 | Nitto Denko Corporation | Sealing composition, multiple glass and solar cell panel |
CN103081157A (en) * | 2010-07-07 | 2013-05-01 | 株式会社Lg化学 | Organic light-emitting device comprising an encapsulation structure |
EP2579353A4 (en) * | 2010-07-07 | 2014-07-02 | Lg Chemical Ltd | Organic light-emitting device comprising an encapsulation structure |
CN103081157B (en) * | 2010-07-07 | 2017-07-25 | 乐金显示有限公司 | Organic luminescent device including encapsulating structure |
EP2579353A2 (en) * | 2010-07-07 | 2013-04-10 | LG Chem, Ltd. | Organic light-emitting device comprising an encapsulation structure |
US9035545B2 (en) | 2010-07-07 | 2015-05-19 | Lg Chem, Ltd. | Organic light emitting device comprising encapsulating structure |
JP2012057065A (en) * | 2010-09-09 | 2012-03-22 | Lintec Corp | Adhesive sheet for sealing, electronic device and organic device |
US9522211B2 (en) | 2010-09-17 | 2016-12-20 | 3M Innovative Properties Company | Antimicrobial disposable absorbent articles |
US8597784B2 (en) | 2010-09-30 | 2013-12-03 | 3M Innovative Properties Company | Radiation curable poly(isobutylene) adhesive copolymers |
CN103210035A (en) * | 2010-11-16 | 2013-07-17 | 3M创新有限公司 | Uv curable anhydride-modified poly(isobutylene) |
WO2012067741A1 (en) * | 2010-11-16 | 2012-05-24 | 3M Innovative Properties Company | Uv curable anhydride-modified poly(isobutylene) |
US8673996B2 (en) | 2010-11-16 | 2014-03-18 | 3M Innovative Properties Company | UV curable anhydride-modified poly(isobutylene) |
US8882945B2 (en) | 2010-11-17 | 2014-11-11 | 3M Innovative Properties Company | Isobutylene (co)polymeric adhesive composition |
US8663407B2 (en) | 2010-11-17 | 2014-03-04 | 3M Innovative Properties Company | Isobutylene (Co)polymeric adhesive composition |
US8629209B2 (en) | 2010-12-02 | 2014-01-14 | 3M Innovative Properties Company | Moisture curable isobutylene adhesive copolymers |
JP5416316B2 (en) * | 2011-06-28 | 2014-02-12 | リンテック株式会社 | Adhesive composition and adhesive sheet |
JPWO2013002288A1 (en) * | 2011-06-28 | 2015-02-23 | リンテック株式会社 | Adhesive composition and adhesive sheet |
WO2013002288A1 (en) * | 2011-06-28 | 2013-01-03 | リンテック株式会社 | Adhesive composition and adhesive sheet |
US9657201B2 (en) | 2011-09-29 | 2017-05-23 | Mitsui Chemicals, Inc. | Adhesive composition and image display device using same |
JP2014132080A (en) * | 2011-09-29 | 2014-07-17 | Mitsui Chemicals Inc | Adhesive composition and image display device using the same |
DE102012202377A1 (en) * | 2011-10-21 | 2013-04-25 | Tesa Se | Adhesive, in particular for encapsulating an electronic device |
US9562180B2 (en) | 2012-03-29 | 2017-02-07 | 3M Innovative Properties Company | Adhesives comprising poly(isobutylene) copolymers comprising pendent free-radically polymerizable quaternary ammonium substituent |
EP2845241A4 (en) * | 2012-05-02 | 2016-02-10 | Henkel US IP LLC | Curable encapsulants and use thereof |
US9676928B2 (en) | 2012-05-02 | 2017-06-13 | Henkel IP & Holding GmbH | Curable encapsulants and use thereof |
US10141532B2 (en) | 2012-05-02 | 2018-11-27 | Henkel IP & Holding GmbH | Curable encapsulants and use thereof |
US9422464B2 (en) | 2012-05-11 | 2016-08-23 | 3M Innovative Properties Company | Adhesives comprising reaction product of halogenated poly(isobutylene) copolymers and polyamines |
US9587150B2 (en) | 2012-08-14 | 2017-03-07 | 3M Innovative Properties Company | Adhesives comprising grafted isobutylene copolymer |
US10050204B2 (en) | 2013-07-19 | 2018-08-14 | Lg Chem, Ltd. | Encapsulation composition (as amended) |
EP3023461A4 (en) * | 2013-07-19 | 2016-11-16 | Lg Chemical Ltd | Sealing composition |
CN105073900A (en) * | 2013-07-19 | 2015-11-18 | Lg化学株式会社 | Sealing composition |
JP2016513155A (en) * | 2013-08-05 | 2016-05-12 | エルジー・ケム・リミテッド | Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and organic electronic device manufacturing method using the same |
CN103606635A (en) * | 2013-11-26 | 2014-02-26 | 上海和辉光电有限公司 | Method for packaging electric excitation light-emitting component |
CN103730603A (en) * | 2013-12-26 | 2014-04-16 | 京东方科技集团股份有限公司 | Method for encapsulating organic light-emitting device and organic light-emitting body |
US10266733B2 (en) | 2014-08-11 | 2019-04-23 | Henkel IP & Holding GmbH | Optically clear hot melt adhesives and uses thereof |
US10074827B2 (en) | 2015-02-04 | 2018-09-11 | Lg Chem, Ltd. | Encapsulation film |
US12101958B2 (en) | 2015-02-04 | 2024-09-24 | Lg Chem, Ltd. | Organic electronic device including encapsulation layer |
EP3142164A4 (en) * | 2015-02-04 | 2018-01-17 | LG Chem, Ltd. | Encapsulation film |
EP3147338A4 (en) * | 2015-02-04 | 2018-01-17 | LG Chem, Ltd. | Encapsulation film |
US10355239B2 (en) | 2015-02-04 | 2019-07-16 | Lg Chem, Ltd. | Encapsulation film |
US10800953B2 (en) | 2015-03-24 | 2020-10-13 | Lg Chem., Ltd. | Adhesive composition |
US10421887B2 (en) | 2015-03-24 | 2019-09-24 | Lg Chem, Ltd. | Adhesive composition |
EP3275942A4 (en) * | 2015-03-24 | 2018-03-07 | LG Chem, Ltd. | Adhesive composition |
US10988642B2 (en) | 2015-09-18 | 2021-04-27 | Henkel IP & Holding GmbH | Curable and optically clear pressure sensitive adhesive and uses thereof |
US11891550B2 (en) | 2015-09-18 | 2024-02-06 | Henkel Ag & Co. Kgaa | Curable and optically clear pressure sensitive adhesives and uses thereof |
US10784451B2 (en) | 2016-02-18 | 2020-09-22 | Dow Toray Co., Ltd. | Flexible laminate having viscoelasticity and flexible display using same |
DE102016213911A1 (en) | 2016-07-28 | 2018-02-01 | Tesa Se | OLED compatible adhesives with cyclic azasilane water scavengers |
WO2018019632A1 (en) | 2016-07-28 | 2018-02-01 | Tesa Se | Oled-compatible adhesives comprising cyclic azasilane water scavengers |
US11577492B2 (en) | 2016-09-21 | 2023-02-14 | 3M Innovative Properties Company | Protective display film with glass |
CN110300784A (en) * | 2017-02-16 | 2019-10-01 | 3M创新有限公司 | Polyisobutenyl is passivated adhesive |
CN110300784B (en) * | 2017-02-16 | 2021-07-02 | 3M创新有限公司 | Polyisobutenyl-based passivating binders |
WO2018152164A1 (en) * | 2017-02-16 | 2018-08-23 | 3M Innovative Properties Company | Low water vapor transmission rate (wvtr) adhesive |
WO2018152062A1 (en) * | 2017-02-16 | 2018-08-23 | 3M Innovative Properties Company | Polyisobutylene based passivation adhesive |
WO2018232065A1 (en) * | 2017-06-14 | 2018-12-20 | Henkel IP & Holding GmbH | Laminating film adhesives with ultra-low moisture permeability |
DE102017219310A1 (en) | 2017-10-27 | 2019-05-02 | Tesa Se | Plasma edge encapsulation of adhesive tapes |
WO2019081148A1 (en) | 2017-10-27 | 2019-05-02 | Tesa Se | Plasma edge encapsulation of adhesive strips |
CN108258151B (en) * | 2018-01-19 | 2019-09-17 | 云谷(固安)科技有限公司 | Packaging film, flexible display apparatus and packaging film forming method |
CN108258151A (en) * | 2018-01-19 | 2018-07-06 | 云谷(固安)科技有限公司 | Packaging film, flexible display apparatus and packaging film forming method |
WO2019223953A1 (en) | 2018-05-24 | 2019-11-28 | Tesa Se | Combination of a transparent full-area encapsulation with a (non-transparent) edge encapsulation having a high getter content |
Also Published As
Publication number | Publication date |
---|---|
CN102083930B (en) | 2013-12-11 |
TW201002796A (en) | 2010-01-16 |
KR101623220B1 (en) | 2016-05-20 |
WO2009148722A3 (en) | 2010-04-15 |
US20110105637A1 (en) | 2011-05-05 |
KR20110014692A (en) | 2011-02-11 |
US8232350B2 (en) | 2012-07-31 |
CN102083930A (en) | 2011-06-01 |
JP2011526629A (en) | 2011-10-13 |
EP2291477A2 (en) | 2011-03-09 |
JP5890177B2 (en) | 2016-03-22 |
TWI476258B (en) | 2015-03-11 |
EP2291477A4 (en) | 2012-01-04 |
EP2291477B1 (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2291477B1 (en) | Adhesive encapsulating composition and electronic devices made therewith | |
EP2291479B1 (en) | Adhesive encapsulating composition and electronic devices made therewith | |
US20090026934A1 (en) | Adhesive encapsulating composition film and organic electroluminescence device | |
TWI663242B (en) | Adhesive tape for packaging organic electronic components and method for protecting organic electronic components provided on substrate | |
US10196534B2 (en) | Resin composition for sealing electronic device, and electronic device | |
US9627646B2 (en) | Method for encapsulating an electronic arrangement | |
US10196547B2 (en) | Resin composition for sealing electronic device, and electronic device | |
US20100148127A1 (en) | Method For Encapsulating An Electronic Arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980125753.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09758885 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12995565 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011512496 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009758885 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107029736 Country of ref document: KR Kind code of ref document: A |