WO2009148292A2 - 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법 - Google Patents

표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법 Download PDF

Info

Publication number
WO2009148292A2
WO2009148292A2 PCT/KR2009/004151 KR2009004151W WO2009148292A2 WO 2009148292 A2 WO2009148292 A2 WO 2009148292A2 KR 2009004151 W KR2009004151 W KR 2009004151W WO 2009148292 A2 WO2009148292 A2 WO 2009148292A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
biomass
bacterial biomass
valuable metal
cationic polymer
Prior art date
Application number
PCT/KR2009/004151
Other languages
English (en)
French (fr)
Other versions
WO2009148292A3 (ko
Inventor
윤영상
원성욱
최순범
김석
마호주엔
곽인섭
박지영
송명희
배민아
이시인
머띠스크리쉬나
팜티풍투이
조철웅
Original Assignee
전북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080050833A external-priority patent/KR100894585B1/ko
Priority claimed from KR20090032092A external-priority patent/KR101100770B1/ko
Application filed by 전북대학교 산학협력단 filed Critical 전북대학교 산학협력단
Priority to US13/264,216 priority Critical patent/US8906132B2/en
Priority to JP2012505794A priority patent/JP2012523247A/ja
Priority to EP09758545.9A priority patent/EP2471750B1/en
Publication of WO2009148292A2 publication Critical patent/WO2009148292A2/ko
Publication of WO2009148292A3 publication Critical patent/WO2009148292A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention relates to a surface-modified biomass, a method for preparing the same, and a biosorbent using the same, and more particularly, an amine group-containing cationic polymer is crosslinked on the surface of the bacterial biomass, thereby adsorbing on anionic contaminants and A surface-modified biomass with improved affinity, a method for producing the same, and a method for recovering valuable metals using the same.
  • Wastewater containing heavy metals or dyes such as lead, mercury and cadmium is generated in various industrial sites such as dyeing plants. Since such heavy metal or dye-containing wastewater enters the water system, it causes serious pollution, destroys the aquatic ecosystem, and has a harmful effect on humans by bioconcentration.
  • Chemical treatment methods include chlorine-based oxidation, Fenton's reagent method, ozone method and the like.
  • this chemical treatment has the disadvantage of generating chemical sludge, generating harmful intermediates, and expensive operating costs.
  • Biological treatment method is generally used the activated sludge process to adsorb or decompose organic matter by the activated aerobic microorganisms, but this has the disadvantage that the amount of sludge generated and the solid-liquid separation in the sedimentation tank is not good.
  • the dyes in the dyeing waste water are mostly made of a material that is difficult to biologically decompose and can produce toxic substances even if degraded, resulting in poor treatment efficiency.
  • Physical treatment methods of industrial wastewater include precipitation, ion exchange resin, adsorption, electrophoresis and membrane removal, but these methods have problems such as high sludge generation, non-selectivity, excessive initial facility cost and high operating cost.
  • the smelting process for recovering platinum group metals from mineral resources and secondary resources consists of concentration, extraction, separation and refining of the platinum group metals, and recovery processes.
  • Separation and purification of platinum group metals is very closely related to solution chemistry, and widely used separation and purification methods include chemical precipitation and crystallization, solvent extraction and ion exchange, oxidation distillation, and electrolytic refining.
  • the separation and purification of platinum group metals is mainly performed by chemical precipitation or solvent extraction.
  • the development of new separation technologies that can guarantee more environmentally friendly and safe operation is urgently needed.
  • One technical problem to be solved by the present invention is to provide a surface-modified biomass and a biosorbent using the same having excellent performance in the removal of anionic contaminants.
  • One technical problem to be solved by the present invention is to provide a method for recovering valuable metals that are environmentally friendly and harmless to humans.
  • One aspect of the invention relates to a surface modified bacterial biomass comprising an amine group-containing cationic polymer crosslinked on the bacterial biomass surface.
  • the surface modified bacterial biomass may be cross-linked to the surface of the bacterial biomass by an amine group or a hydroxy group.
  • One aspect of the present invention comprises the steps of adsorbing the valuable metals by adding one or more of the surface-modified bacterial biomass, activated carbon and carbon nanotubes to the valuable metal-containing solution; Sintering the adsorbed material to which the valuable metal is adsorbed;
  • the present invention relates to a valuable metal recovery method comprising the step of separating the valuable metal from the ash by adding ash and the valuable metal generated in the painting step to the melting point or more of the valuable metal.
  • the surface-modified biomass of the present invention is to recycle fermentation waste, it is eco-friendly and economical, and can be widely used as a low-cost biosorbent material that can replace the existing expensive adsorbent.
  • Surface-modified bacterial biomass using Corynebacterium cells of the present invention has excellent adsorption performance, economical, repeatable regeneration, and biosorbents that can effectively adsorb and remove dyestuffs that cause chromaticity in dyeing wastewater. Can be provided.
  • the surface modified biomass of the present invention exhibits excellent adsorptive performance against anionic contaminants.
  • Valuable metal recovery method can recover the concentrated valuable metal in the solid phase in an environmentally friendly, economical and harmless way by using a surface-modified biomass without using chemicals such as solvents, extractants, reducing agents. .
  • FIG. 1 is a schematic diagram showing the structure of a main functional group when bacterial biomass is present in an aqueous solution.
  • Figure 2 is a schematic diagram for explaining a method for producing a surface-modified bacterial biomass according to one embodiment of the present invention.
  • FIG. 3 is a graph showing a comparison of the results of dye adsorption using the biomass of Example 1-10 and Comparative Example 1.
  • FIG. 5 is a graph showing the maximum adsorption amount of biomass on gold according to Example 12 and Comparative Example 2.
  • FIG. 5 is a graph showing the maximum adsorption amount of biomass on gold according to Example 12 and Comparative Example 2.
  • Figure 6 is a graph showing the desorption rate of palladium according to the content of the thiourea added to 0.1M HCl solution.
  • One embodiment of the invention relates to surface modified bacterial biomass comprising an amine group-containing cationic polymer crosslinked on the bacterial biomass surface.
  • biomass refers to a living or dead biological material that can be used for industrial production.
  • the bacterial biomass of the present invention is killed by E. coli or Corynebacterium. It means a biomass consisting of the bacterial cells.
  • Bacteria such as E. coli and Corynebacterium, are widely used as strains to produce substances such as antibiotics, anticancer agents, amino acids, nucleic acids, etc., which are killed after being used and disposed of as solid fermentation waste.
  • Figure 1 is a schematic diagram showing the structure of the main functional group when the solid waste bacterial biomass is present in the aqueous solution.
  • the bacterial biomass is rich in anionic functional groups (carboxyl or phosphate groups) and cationic functional groups (amine groups).
  • a cationic polymer containing a large amount of an amine group, which is a cationic functional group is further introduced on the surface of the bacterial biomass to adsorb valuable metals showing anionicity in solution to increase the content of the cationic functional group, or It may be used that the functional group is blocked or removed.
  • the bacterial biomass preferably comprises an amine group-containing cationic polymer crosslinked on its surface.
  • amine group-containing cationic polymer refers to a polymer having an amine group in the main chain or side chain and having a totally positive charge.
  • the amine group-containing cationic polymer of the present invention is one or more cations. It can be prepared by polymerizing a monomer, or by polymerizing one or more nonionic monomers and one or more cationic monomers.
  • the method for crosslinking the amine group-containing cationic polymer to the bacterial biomass is not particularly limited, but preferably the amine group-containing cationic polymer is crosslinked to the bacterial biomass surface by an amine group or a hydroxy group. It is preferable.
  • the bacterial biomass is at least one selected from the group consisting of Corynebacterium sp ., Escherichia sp. , Bacillus sp. , And Serratia sp. It can be composed of bacterial cells.
  • Non-limiting examples of the bacteria that make up such bacterial biomass include Corynebacterium ammoniagenes, Corynebacterium glutamicum, Escherichia coli, and Bacillus megate. Bacteria such as Bacillus megatherium and Serratia marcescens and Brevibacterium ammoniagenes.
  • Examples of the amine group-containing cationic polymer usable in the present invention include polyethyleneimine, amine-terminated polyethylene oxide, amine-terminated polyethylene / propylene oxide, polymer of dimethyl amino ethyl methacrylate and dimethyl aminoethyl meta It can be selected from the group consisting of copolymers of acrylate and vinylpyrrolidone, linear polymers of epichlorohydrin and dimethylamine, polydiallyldimethylammonium chloride, polyethanolamine / methylchloride and modified polyethyleneimines. . More preferred are polymers having primary amines among polymers having primary, secondary and tertiary amines.
  • the amine group-containing cationic polymer may be a polyethyleneimine homopolymer of Formula 1 or a modified polyethyleneimine.
  • n 10 to 500.
  • the amine group-containing cationic polymer may have a cationic charge of 70 mol% or more, and the molecular weight of the amine group-containing cationic polymer is not particularly limited, but may be, for example, in the range of 1000 to 200,000.
  • the amine group-containing cationic polymer is a polyethyleneimine homopolymer and the biomass may be a biomass of Corynebacterium glutamicum.
  • Surface modified bacterial biomass of one embodiment of the present invention may be further blocked anionic functional groups on the surface to increase the adsorption capacity of the anionic contaminants.
  • the dried bacterial biomass is added to the amine group-containing cationic polymer solution and reacted.
  • a crosslinking agent is added to the bacterial biomass and the amine group-containing cationic polymer solution to react, and finally, the biomass is washed and dried to prepare a surface modified bacterial biomass.
  • the amine group-containing cationic polymer used in the present invention has a cationic charge of 70 mol% or more, and the molecular weight is preferably in the range of 1000 to 200,000.
  • the method of the present invention may further comprise the step of minimizing functional groups exhibiting repulsive force against anionic contaminants by blocking the anionic functional groups on the surface.
  • the surface-modified bacterial biomass may be blocked by anionic functional groups on the surface substituted with a compound having a cationic functional group such as an amine group or an amino group.
  • the amine group-containing cationic polymer solution may include one or more selected from the group consisting of water, alcohol, chloroform and pyridine as a solvent.
  • the ratio of the biomass and the amine group-containing cationic polymer is 1: 0.5-2 (w: w). ), Preferably it is mixed in 1: 1 or (w: w).
  • the temperature for reacting the bacterial biomass with the amine group-containing cationic polymer is not particularly limited, but may be, for example, reacted at a temperature of about 20 ° C. to 150 ° C. to increase the reaction efficiency.
  • the crosslinking agent is treated to secure the chemical bond between the bacterial biomass and the amine group-containing cationic polymer.
  • at least one selected from the group consisting of glutaraldehyde, isocyanide derivatives, and bisdiazobibenzidine may be used as the crosslinking agent.
  • the crosslinking agent when treating the crosslinking agent, may be mixed in a volume ratio of about 1: 1 to 10: 1 with respect to the mixed solution of the biomass and the amine group-containing cationic polymer in a solution state. Preferably it is mixed at a volume ratio of about 5: 1.
  • solvent one or more selected from the group consisting of water, methanol, chloroform, pyridine and (alcohols such as ethanol and butanol) can be used.
  • the biomass is washed and dried.
  • the washing and drying method is not particularly limited.
  • the biomass may be freeze dried or dried in a hot oven for a certain time.
  • the drying temperature and drying time can be arbitrarily adjusted according to the moisture content of the biomass and the like.
  • the surface-modified bacterial biomass usable in the present invention may be one in which an anionic functional group on the surface is blocked or removed to increase the adsorption capacity of the anionic complex.
  • anionic functional groups such as carboxyl groups and phosphate groups present on the surface of the bacterial biomass exist in a negatively charged state in water
  • the repulsive force acts with the anionic valuable metal complex. This repulsive force interferes with the binding of biomass and anionic complexes.
  • the bacterial biomass may use a surface-modified biomass substituted with a compound having a cationic functional group, such as an amine group, a phosphate group, a sulfonic acid group, and an anionic functional group serving as a hinder.
  • a compound having a cationic functional group such as an amine group, a phosphate group, a sulfonic acid group, and an anionic functional group serving as a hinder.
  • the bacterial biomass may use a surface-modified biomass in which a carboxyl group, phosphoric acid group, or sulfonic acid group on its surface is alkylated, cycloalkylated, or arylated.
  • Chemical Formula 1 is a structure in which hydrogen of the carboxyl or phosphate group of the bacterial biomass is substituted with an alkyl group, a cycloalkyl group, an aryl group, or an amine group.
  • R is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms or NR 1 R 2 .
  • R 1 and R 2 are each hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • the method of alkylating, cycloalkylating and arylating the amino group of the biomass may include reacting the biomass in a mixed solution of aldehyde and carboxylic acid.
  • the content ratio of the aldehyde, carboxylic acid, and biomass is not necessarily limited, it is preferable to react the mixed solution of 1 ml to 40 ml of aldehyde and 1 ml to 160 ml of carboxylic acid based on 1 g of biomass.
  • the volume ratio of aldehyde and carboxylic acid is more preferably 1 to 1/4.
  • the content ratio of the aldehyde, the carboxylic acid and the biomass is 20ml: 40ml: 1g.
  • the aldehyde is formaldehyde and the carboxylic acid is formic acid in terms of reducibility, and a method of alkylating the amino group of the biomass using the same may be represented by the following Scheme 1.
  • the reaction is preferably reacted for 1 to 48 hours at 10 to 100 °C.
  • the reaction may be reacted at 10 to 1000 rpm in a mixed reactor.
  • the valuable metal complex is cationic
  • a compound having at least one of a carboxyl group, a sulfonic acid group and a phosphoric acid group to the raw material biomass, a bacterial biomass with increased anionicity can be prepared.
  • Compound having a carboxyl group further bonded to the raw material biomass may be represented by the formula (3).
  • R 1 is a carboxyl group, a linear or branched alkyl group having 1 to 10 carbon atoms, at least one carboxyl group, an alkenyl group or an alkoxy group, or represented by the following general formula (4).
  • R 2 and R 3 are each H, —OH, —COOH, —CH 2 —OOH.
  • the compound having the carboxyl group may be represented by the following formula (5).
  • Formula 5 is a structure in which an amine group or amino group of a raw material biomass is substituted with a compound having a carboxyl group.
  • R 4 is a linear or branched alkylene group having 1-10 carbon atoms, a linear or branched alkenylene group having 2-10 carbon atoms, and R 5 is H, Na or K.
  • the structure in which the amine group or amino group of the biomass is alkylated, cycloalkylated, or arylated may be represented by the following Chemical Formula 1. Substituted amino groups with alkyl groups, cycloalkyl groups, and aryl groups will be referred to as alkylation, cycloalkylation, and arylation.
  • R is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • the step is the step of adsorbing the valuable metal in the valuable metal-containing solution using the above-mentioned surface-modified bacterial biomass.
  • the surface modified bacterial biomass can be used as the adsorption material.
  • non-ferrous metals such as waste catalysts, waste scraps, waste batteries, industrial waste liquids, converter dust, and waste cans.
  • Wastes containing valuable metals occur mainly in industries that use valuable metals as catalysts in the chemical process and in the electrical and electronics industry.
  • the wastewater generated in the wastewater generated in the chemical plant contains ruthenium (Ru) and iridium (Ir), and the ICP analysis wastewater contains various valuable metal species (especially platinum and rhodium). .
  • the valuable metal may be at least one selected from the group consisting of gold, silver, palladium, platinum, iridium, osmium, rhodium and ruthenium.
  • the solubilizer may be appropriately selected depending on the kind of the valuable metal.
  • the solubilizer may include at least one of hydrochloric acid, nitric acid, aqua regia, sulfuric acid, cyan (CN) and halogen elements.
  • the halogen element include fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and asatin (At), and preferably include one or more of iodine and bromine. Can be.
  • a platinum group metal that is very poorly soluble in acids is dissolved by hydrochloric acid in the presence of an oxidizing agent.
  • Oxidizing agents include nitric acid, chlorine gas, hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), sodium hypochlorite (NaClO3), hydrogen peroxide (H2O2), and others (Bradford, 1975).
  • Platinum, palladium and rhodium are dissolved into PtCl 6 -2 PdCl 4 -2 and RhCl 6 -3 by hydrochloric acid in the presence of a chlorine-based oxidant, respectively.
  • Sulfuric acid may be used as the solubilizer, and more specifically, 60% H 2 SO 4 solution +0.1 M solution may be used to dissolve the platinum group metal.
  • Iodine / iodinide can be used as the solubilizer, and dissolution of palladium is preferred.
  • the dissolution may use a cyanation method using cyan (CN).
  • Examples of the structure of the complex formed by dissolving by the solubilizer include palladium (PdCl 4 2- , PdCl 3 ⁇ ), gold (Au (CN) 2 ⁇ ), platinum (PtCl 4 2- , PtCl 6 4- ), and the like. Can be mentioned.
  • the valuable metal complex is charged and preferably anionic.
  • Bacterial biomass having an increased content of the above cationic functional groups or blocked anionic functional groups may adsorb the anionic valuable metal complex by electrostatic attraction.
  • Activated carbon and carbon nanotubes may be used as the adsorption material used in the valuable metal recovery method of the present invention.
  • Activated carbon may be a known carbon product that activates an internal surface area through a steam and chemical activation process using a palm shell, wood, olive fruit peel, coal series, and peat, which are porous materials.
  • the average pore diameter of the activated carbon may be greater than 15 seconds and 30 mu m or less, preferably 20 or more and 30 mu m or less.
  • the step is to sinter the adsorption material adsorbed the valuable metal.
  • the incineration step may include the step of separating the valuable metal-containing adsorption material from the solution and drying at 20 ⁇ 100 °C. In the drying step it is possible to remove all the water remaining in the adsorption material.
  • the incineration step may burn the valuable metal-containing adsorption material below the melting point of the valuable metal 300 ° C or more. Preferably, it can incinerate at 600-1000 degreeC, Most preferably, 800-1000 degreeC. The recovery and purity of the metal is the highest when the temperature is around 900 ° C.
  • the recovery of the valuable metal adsorbed on the activated carbon by sintering can adjust the recovery rate of the valuable metal according to the incineration conditions (particularly, temperature and oxygen concentration).
  • Bacterial biomass which is the adsorbent material, may be generally ignited and combusted at 600 ° C., but the valuable metals do not melt or burn at the temperature.
  • the device When incineration is complete, the device is cooled down and the ash containing metal is collected.
  • the separating step is a step of melting the valuable metal to separate from the ash.
  • the step may include heating and melting the valuable metal contained in the ash above the melting point of the valuable metal, and separating the liquid valuable metal from the ash.
  • the melting point of gold which is one of the valuable metals, is 1064 ° C, and the melting point of platinum is 1768.3 ° C.
  • the heating temperature may be more than 3100 °C melting point or less.
  • the present invention comprises the steps of adsorbing the valuable metal by injecting the surface-modified bacterial biomass in the valuable metal-containing solution; And it relates to a valuable metal recovery method comprising the step of desorbing the valuable metal adsorbed from the bacterial biomass by putting the bacterial biomass in a strong acid solution.
  • the present invention is a method for recovering the valuable metal adsorbed on the bacterial biomass by desorption.
  • the desorption step may be a step of desorption of the bacterial biomass into a mixed solution of thiourea and a strong acid.
  • a mixed solution used for the desorption if a mixture of an acid and a thiourea is used, the desorption efficiency is greatly increased.
  • the strong acid is preferably hydrochloric acid, sulfuric acid or nitric acid solution.
  • the strong acid aqueous solution may be used in the range of 0.01M ⁇ 10M, preferably 0.1M ⁇ 3M, the thiourea 0.005M ⁇ 5M, preferably 0.1M ⁇ 1M range.
  • Q max is the maximum dye adsorption (mg / g)
  • b L is the Langmuir equilibrium constant (l / mg)
  • C f is the final concentration of the dye.
  • K S is the Dox model isothermal constant ((l / g) ⁇ S )
  • a S is the Dozen model constant
  • ⁇ S is the Dozen model index ((l / mg) ⁇ S
  • C f is Final concentration.
  • PEI-surface modified biomass showed a significant difference in adsorption performance according to PEI, GA, and reaction time, among which PEI (w / v): GA
  • PEI (w / v) GA
  • the ratio of (v / v) was 5: 1 and the reaction time was 60 minutes
  • the maximum adsorption amount of RR4 was 613 mg / g. This is a result of about 5.5 times increase in adsorption performance compared to raw material biomass.
  • Corynebacterium glutamicum biomass obtained from the fermentation process in the form of powder dried from fermentation process (2.5 g of pyridine) and 95 ml of pyridine
  • a mixed solution consisting of chloroform and stirred at room temperature.
  • 5 ml of 4-bromobutyryl chloride was added dropwise to the mixed solution, followed by reaction with stirring at 25 ° C. for 12 hours in a sealed state, thereby acylating the biomass.
  • Acylated biomass was washed with chloroform to remove unreacted 4-bromobutyryl chloride.
  • the biomass obtained in the previous step was added to a 90 ml tert-amyl alcohol solution to which 10 g of polyethyleneimide (weight average molecular weight 25000 g / l) and 0.1 g of KOH were added, followed by stirring at 75 for about 24 hours. After the reaction was completed, the biomass was washed several times with methanol and deionized water, and then lyophilized to obtain a surface-modified biomass with polyethyleneimide.
  • C. glutamicum biomass ( C. glutamicum biomass), a fermentation waste obtained in the form of a dry powder from the fermentation process, was subjected to 1 N HNO 3 solution at room temperature for 24 hours with 1N HNO 3 solution. Acid treated. The acid treated biomass was repeated three times of washing with distilled water and dried at 60 ° C. for 24 hours. 3 g of the dried biomass was dispersed in 300 mL of anhydrous methanol, and an acid catalyst, HNO 3, was added thereto to obtain a final concentration of 1M. Thereafter, the mixture was stirred at 160 rpm for 6 hours using a rotary stirrer at room temperature to give a biomass from which carboxyl groups were removed.
  • the gold mixture (KAu (CN) 2 ) was dissolved in gold by dissolving hydrochloric acid, and then 5 g / L of the surface-modified biomass obtained above was added thereto, followed by stirring at pH 2.5 for 2 hours to adsorb gold. Subsequently, the biomass to which gold was adsorbed was heated to 20 to 100 ° C. in a dryer to remove moisture. The biomass was heated to about 600 ° C. in a combustion furnace. Ash and gold produced by combustion were collected and heated to about 1200 ° C. in a dry furnace apparatus to melt the gold and separate it from the ash.
  • Table 1 below shows the adsorption amount and purity of the valuable metals in Examples 11 and 12.
  • Adsorption amount indicates the amount of valuable metal adsorbed by the adsorption material and is in the state before painting.
  • the valuable metals such as gold and platinum using bacterial biomass can be obtained in a method that is harmless to the human body even though a simple process of adsorption / ignition / separation method compared to conventional chemical precipitation or solvent extraction. It can be confirmed that.
  • the upper photo of FIG. 4 shows a raw material biomass in which gold is not adsorbed, and an incorporation thereof
  • the lower photo shows a raw material biomass in which gold is adsorbed and a gold-containing adsorbent material after incorporating it (in Example 12).
  • gold is adsorbed to the biomass in a considerable amount.
  • FIG. 5 is a graph showing the maximum adsorption amount of biomass on gold according to Example 12 and Comparative Example 2.
  • the maximum adsorption amount of the biomass of Comparative Example 2 is only about 30 mg / g, but in the case of Example 12, there is an improvement of adsorption performance of 2.4 times as 72 mg / g.
  • Figure 6 is a graph showing the desorption rate of palladium according to the content of the thiourea added to 0.1M HCl solution. Referring to FIG. 6, only the sample containing no thioelement showed a desorption rate of 30%, and the samples containing other thioelements showed almost 100% desorption rate.
  • the desorption rate is a value converted from 100 to 86.5 mg / g, which is the amount of palladium adsorbed on PEIB.

Abstract

본 발명은 세포 바이오매스 표면에 아민기-함유 양이온성 폴리머가 가교된 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수방법에 관한 것으로, 본 발명의 표면개질된 바이오매스는 그 표면에 아민기-함유 양이온성 폴리머의 가교에 의해 양이온성 작용기가 추가로 도입되어 음이온성 오염물질에 대한 흡착성능 및 친화도가 향상된 이점을 가진다. 또한, 본 발명에 의한 유가금속 회수방법은 친환경적, 경제적 및 인체에 무해한 방법으로 유가금속을 회수할 수 있다.

Description

표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법
본 발명은 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 생체흡착제에 관한 것으로, 보다 상세하게는 세균 바이오매스의 표면에 아민기-함유 양이온성 폴리머가 가교되어 음이온성 오염물질에 대한 흡착성능 및 친화도가 향상된 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수방법에 관한 것이다.
염색 공장 등의 각종 산업현장에서는 납, 수은, 카드뮴 등의 중금속 또는 염료가 함유된 폐수가 발생하고 있다. 이러한 중금속 또는 염료 함유 폐수가 수계에 유입시 심각한 오염을 유발하여 수중 생태계를 파괴하고 생물농축에 의해 인간에게까지 해로운 영향을 미치기 때문에 효과적인 처리 방법이 모색되고 있다.
산업 폐수 중의 염료 및 중금속 등의 오염물질을 제거하는 방법으로는 화학적 처리방법, 물리화학적 처리방법및 생물학적 처리방법 등이 사용되고 있다. 화학적 처리방법으로는 대표적으로 염소계 산화법, 펜톤 시약법, 오존법 등이 있다. 그러나 이러한 화학적 처리방법은 화학적 슬러지를 발생하고 해로운 중간 생성물이 발생되며 운전비용이 비싸다는 단점이 있다.
생물학적 처리방법은 일반적으로 활성화된 호기성 미생물에 의해 유기물을 흡착 또는 분해시키는 활성슬러지 공정이 가장 많이 이용되고 있으나, 이것은 슬러지 발생량이 많고 침전조에서 고액분리가 잘 되지 않는 단점이 있다. 또한, 염색폐수 내의 염료는 대부분이 생물학적으로 분해하기 어려운 물질로 구성되어 있고 분해가 되더라도 독성물질을 생성할 수 있기 때문에 처리효율이 좋지 못하다. 산업 폐수의 물리적인 처리 방법으로는 침전법, 이온교환수지법, 흡착법, 전기영동법 및 막 제거법이 있으나, 이들 방법은 높은 슬러지의 생성, 비선택성, 과다한 초기 시설비와 높은 운전비 등의 문제가 있다. 따라서 환경친화적이면서도 염료 및 중극속 등의 난분해성 물질에 대한 높은 선택성 및 효율성을 가지는 생물학적 방법이 필요한데, 생물학적인 방법으로 이러한 난분해성 물질을 제거할 경우 선택적으로 제거할 수 있으며, 적당한 고정화 방법을 이용하면 기존의 공정과 비교하여 경제성 및 효율성이 높을 것으로 예상되므로 생체흡착기술에 대한 관심이 높아지고 있다. 따라서 염료, 중금속 등과 같은 난분해성 오염물질을 효과적으로 처리할 수 있는 바이오매스의 개발이 요구되고 있다.
한편, 광물자원과 2차 자원(제조공정에서 발생하는 스크랩과 폐기물 그리고 사용 후 버리지는 폐제품 등)으로부터 백금족 금속을 회수하는 제련공정은 백금족 금속의 농축, 추출, 분리정제 그리고 회수공정으로 이루어져 있다. 백금족 금속의 분리정제는 용액화학과 매우 밀접하게 연관되어 있으며, 널리 사용되고 있는 분리정제방법으로는 크게 화학침전 및 결정화법, 용매추출 및 이온교환법, 산화증류법, 전해정련법 등이 있다. 이 중 백금족 금속의 분리정제는 화학침전법 또는 용매추출법을 중심으로 이루어지고 있다. 하지만 최근 환경규제 및 작업조건의 인체 위해성에 대한 규제가 엄격하여짐에 따라 보다 환경친화적이고 안전한 조업을 보장할 수 있는 새로운 분리기술의 개발이 절실해지고 있다.
본 발명이 해결하고자 하는 하나의 기술적 과제는 음이온성 오염물질의 제거에 탁월한 성능을 가지는 표면 개질된 바이오매스 및 그를 이용한 생체흡착제를 제공하는 것이다.
본 발명이 해결하고자 하는 하나의 기술적 과제는 친환경적이고 인체에 무해한 유가금속의 회수방법을 제공하는 것이다.
본 발명의 하나의 양상은 세균 바이오매스 표면에 가교된 아민기-함유 양이온성 폴리머를 포함하는 표면개질된 세균 바이오매스에 관한 것이다.
본 발명의 일구현예에 의한 표면개질된 세균 바이오매스는 상기 아민기-함유 양이온성 폴리머가 아민 그룹 또는 히드록시 그룹에 의해 세균 바이오매스 표면에 가교되어 있을 수 있다.
본 발명의 하나의 양상은 유가금속 함유 용액에 표면개질된 세균 바이오매스, 활성탄 및 탄소나노튜브 중 하나 이상을 투입하여 유가금속을 흡착시키는 단계 ; 상기 유가금속이 흡착된 흡착소재를 회화시키는 단계 ; 상기 회화단계에서 생성된 재(ash)와 유가금속을 상기 유가금속의 녹는점 이상으로 가하여 상기 재(ash)로부터 상기 유가금속을 분리시키는 단계를 포함하는 유가금속 회수 방법에 관한 것이다.
본 발명의 표면개질된 바이오매스는 발효폐기물을 재활용하는 것이므로 친환경적이고 경제적이며, 기존의 고가의 흡착제를 대체할 수 있는 저가의 생체흡착소재로서 널리 활용할 수 있다.
본 발명의 코리네박테리움 균체를 이용한 표면개질된 세균 바이오매스는 흡착성능이 우수하고 경제적이며, 반복하여 재생이 가능하고, 염색 폐수 중의 색도를 유발하는 염료물질을 효과적으로 흡착 제거할 수 있는 생체흡착제를 제공할 수 있다. 특히, 본 발명의 표면개질된 바이오매스는 음이온성 오염물질에 대해 탁월한 흡착 성능을 시현한다.
본 발명에 의한 유가금속 회수방법은 용매나 추출제, 환원제 등 화학물질을 사용하지 않고 표면개질된 바이오매스를 이용하여 친환경적, 경제적 및 인체에 무해한 방법으로 고체상의 농축된 유가금속을 회수할 수 있다.
도 1은 세균 바이오매스가 수용액 중에 존재할 때의 주요 작용기의 구조를 나타낸 모식도이다.
도 2는 본 발명의 일구현예에 의한 표면 개질된 세균 바이오매스의 제조방법을 설명하기 위한 모식도이다.
도 3은 실시예 1-10 및 비교예 1의 바이오매스를 이용하여 염료를 흡착한 결과를 비교하여 나타낸 그래프이다.
도 4의 상부 사진은 금이 흡착되지 않은 원료바이오매스와 이를 회화한 것을 나타내고, 하부 사진은 금이 흡착된 원료바이오매스와 이를 회화한 후의 금 함유된 흡착소재를 나타낸다.
도 5는 실시예 12 및 비교예 2에 의한 금에 대한 바이오매스의 최대 흡착량을 나타낸 그래프이다.
도 6은 0.1M HCl 용액에 첨가된 싸이오요소의 함량에 따른 팔라듐의 탈착률을 나타낸 그래프이다.
이하에서 본 발명을 더욱 상세하게 설명한다.
본 발명의 일구현예는 세균 바이오매스 표면에 가교된 아민기-함유 양이온성 폴리머를 포함하는 표면개질된 세균 바이오매스에 관한 것이다.
본 발명에서 “바이오매스(biomass)"라 함은 산업 생산에 사용될 수 있는 살아있거나 죽은 생물학적 재료(biological material)를 의미하는 것으로, 특히 본 발명의 세균 바이오매스는 대장균 또는 코리네박테리움 등의 사멸된 세균 균체로 이루어진 바이오매스를 의미한다.
대장균이나 코리네박테리움과 같은 세균은 항생제, 항암제, 아미노산, 핵산 등의 물질을 생산하는 균주로 많이 이용되고 있는데, 사용된 후 사멸되어 고형의 발효폐기물로 폐기된다.
도 1은 고형폐기물인 세균 바이오매스가 수용액 중에 존재할 때의 주요 작용기의 구조를 나타낸 모식도이다. 도 1을 참조하면, 세균 바이오매스에는 음이온성 작용기(카르복실기 또는 인산기)와 양이온성 작용기(아민기)가 풍부하다.
본 발명에서는 용액에서 음이온성을 나타내는 유가금속을 흡착하기 위해 양이온성 작용기인 아민기를 다량 포함하는 양이온성 폴리머를 세균 바이오매스 표면에 추가로 도입하여 양이온성 작용기의 함량을 증대시키거나, 또는 음이온성 작용기가 봉쇄되거나 제거된 것을 사용할 수 있다.
상기 세균 바이오매스는 그 표면에 가교된 아민기-함유 양이온성 폴리머를 포함하는 것이 바람직하다.
본 발명에서 “아민기-함유 양이온성 폴리머(cationic polymer")라는 용어는 주쇄 또는 측쇄에 아민기를 포함하고 전체적으로 양전하를 띄는 폴리머를 의미한다. 본 발명의 아민기-함유 양이온성 폴리머는 하나 이상의 양이온성 모노머를 중합하거나, 하나 이상의 비이온성 모노머와 하나 이상의 양이온성 모노머를 중합하여 제조될 수 있다.
상기 세균 바이오매스에 아민기-함유 양이온성 폴리머를 가교시키는 방법은 특별히 제한되지 않으나, 바람직하게는 상기 아민기-함유 양이온성 폴리머가 아민 그룹 또는 히드록시 그룹에 의해 세균 바이오매스 표면에 가교되어 있는 것이 바람직하다.
본 발명에서 세균 바이오매스는 코리네박테리움(Corynebacterium sp.), 에스케리치아 (Escherichia sp.), 바실러스 (Bacillus sp.) 및 세라샤 (Serratia sp.)로 구성되는 군에서 선택되는 1종 이상의 세균 균체로 구성될 수 있다.
이러한 세균 바이오매스를 구성하는 세균의 비제한적인 예들은 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 에스케리치아 콜라이(Escherichia coli), 바실러스 메가테리움 (Bacillus megatherium) 및 세라샤 마르세센스(Serratia marcescens) 및 브레비박테리움 암모니아게네스(Brevibacterium ammoniagenes) 등의 세균을 포함할 수 있다.
상술한 세균 이외에도 코리네박테리움 베타이(Corynebacterium betae), 코리네박테리움 베티콜라(Corynebacterium beticola), 코리네박테리움 보비스(Corynebacterium bovis), 코리네박테리움 칼루나이(Corynebacterium callunae), 코리네박테리움 키스티티디스(Corynebacterium cystitidis), 코리네박테리움 디프테리아이(Corynebacterium diphtheriae), 코리네박테리움 에쿠이 (Corynebacterium equi), 코리네박테리움 파스키안스 (Corynebacterium fascians), 코리네박테리움 플라쿰파케엔스(Corynebacterium flaccumfaci), 코리네박테리움 플라베스켄스(Corynebacterium flavescens), 코리네박테리움 호아기(Corynebacterium hoagii), 코리네박테리움 일리키스(Corynebacterium ilicis), 코리네박테리움 인시디오숨(Corynebacterium insidiosum), 코리네박테리움 쿠트스케리(Corynebacterium kutscheri), 코리네박테리움 릴리움(Corynebacterium lilium) 등의 세균들도 포함할 수 있다.
본 발명에서 사용가능한 상기 아민기-함유 양이온성 폴리머의 예들은 폴리에틸렌이민, 아민-터미네이티드 폴리에틸렌옥사이드, 아민-터미네이티드 폴리에틸렌/프로필렌 옥사이드, 디메틸 아미노 에틸 메타크릴레이트의 폴리머 및 디메틸 아미노에틸 메타크릴레이트와 비닐피롤리돈의 코폴리머, 에피클로로히드린과 디메틸아민의 선형 폴리머, 폴리디알릴디메틸암모니움 클로라이드, 폴리에탄올아민/메틸클로라이드 및 개질된 폴리에틸렌이민으로 구성되는 군에서 선택될 수 있다. 1차, 2차, 3차 아민들을 갖는 폴리머 가운데 1차 아민을 가진 폴리머가 더욱 바람직하다.
상기 아민기-함유 양이온성 폴리머는 하기 화학식 1의 폴리에틸렌이민 호모폴리머 또는 개질된 폴리에틸렌이민일 수 있다.
화학식 1
Figure PCTKR2009004151-appb-C000001
상시 식에서, n은 10 내지 500이다.
상기 아민기-함유 양이온성 폴리머는 70몰% 이상의 양전하(cationic charge)를 가질 수 있고, 상기 아민기-함유 양이온성 폴리머의 분자량은 특별히 제한되지 않으나, 일례로 1000 내지 200,000의 범위 내일 수 있다.
상기 아민기-함유 양이온성 폴리머는 폴리에틸렌이민 호모 폴리머이고 상기 바이오매스는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 바이오매스일 수 있다.
본 발명의 일구현예의 표면개질된 세균 바이오매스는 음이온성 오염물질의 흡착능력 증대를 위해 표면상의 음이온성 작용기가 추가로 봉쇄될 수 있다.
본 발명의 방법에 의해서 표면 개질된 세균 바이오매스를 제조하는 경우에는 먼저 건조된 세균 바이오매스를 아민기-함유 양이온성 폴리머 용액에 가하여 반응시킨다. 이어서 상기 세균 바이오매스와 아민기-함유 양이온성 폴리머 용액에 가교제를 가하여 반응시키고, 끝으로 바이오매스를 세정한 후 건조시켜 표면 개질된 세균 바이오매스를 제조할 수 있다.
본 발명에서 사용되는 상기 아민기-함유 양이온성 폴리머는 70몰% 이상의 양 전하(cationic charge)를 갖고, 분자량은 1000 내지 200,000의 범위 내인 것이 좋다.
본 발명의 방법은 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기를 봉쇄하여 음이온성 오염물질에 대해서 반발력을 나타내는 작용기를 최소화화는 단계를 추가로 포함할 수 있다. 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기가 아민기 또는 아미노기 등의 양이온성 작용기를 갖는 화합물로 치환되어 봉쇄될 수 있다.
상기 아민기-함유 양이온성 폴리머 용액은 용매로서 물, 알코올, 클로로포름, 피리딘로 구성되는 군에서 선택되는 1종 이상을 포함할 수 있다. 이 단계에서 상기 바이오매스를 충분한 양의 아민기-함유 양이온성 폴리머에 분산시키는 것이 바람직하고, 예를 들면, 바이오매스와 아민기-함유 양이온성 폴리머의 비율을 1 : 0.5~2(w:w), 바람직하게는 1 : 1~2(w:w)로 혼합하는 것이 바람직하다.
세균 바이오매스와 아민기-함유 양이온성 폴리머를 반응시키기 위한 온도는 특별히 제한되는 것은 아니나, 일례로 반응효율을 높이기 위해서 약 20도 내지 150℃의 온도에서 반응시킬 수 있다.
세균 바이오매스의 표면에 아민기-함유 양이온성 폴리머가 가교되면, 세균 바이오매스와 아민기-함유 양이온성 폴리머 사이의 화학적 결합을 공고하게 하기 위하여 가교제를 처리한다. 이때 가교제로는 글루타르알데하이드 (glutaraldehyde), 이소시아나이드 유도체(isocyanide derivatives) 및 비스디아조벤지딘으로 구성되는 군에서 선택되는 1종 이상을 사용할 수 있다.
도 2에 도시된 바와 같이, 가교제를 처리하는 경우에는 가교제를 용액상태로 바이오매스와 아민기-함유 양이온성 폴리머의 혼합액에 대하여 약 1 : 1 내지 10 : 1의 부피비로 혼합할 수 있고, 바람직하게는 약 5 : 1의 부피비로 혼합하는 것이 좋다.
용매로는 물, 메탄올, 클로로포름, 피리딘, (에탄올, 부탄올과 같은 알콜류 )로 구성되는 군에서 선택되는 1종 이상을 사용할 수 있다.
가교제 처리가 완료되면 상기 바이오매스를 세척 및 건조시킨다. 상기 세척 및 건조 방법은 특별히 제한되는 것은 아니다. 일례로 바이오매스를 동결 건조하거나 고온의 오븐에서 일정 시간 건조시킬 수 있다. 건조 온도 및 건조 시간은 바이오매스의 함수율 등에 따라서 임의로 조정될 수 있다.
본 발명에서 사용가능한 표면개질된 세균 바이오매스는 음이온성 착화물의 흡착능력 증대를 위해 표면상의 음이온성 작용기가 봉쇄되거나 제거된 것일 수 있다.
도 1에 도시된 바와 같이, 세균 바이오매스의 표면에 존재하는 카르복실기 및 인산기 등의 음이온성 작용기는 수중에서 음전하를 띤 상태로 존재하기 때문에 음이온성 유가금속 착화물과는 반발력이 작용하게 된다. 이런 반발력은 바이오매스와 음이온성 착화물과의 결합을 방해하는 역할을 한다.
상기 세균 바이오매스는 방해기 역할을 하는 음이온성 작용기인 카르복실기, 인산기, 술폰산기를 아민기 또는 아미노기 등의 양이온성 작용기를 갖는 화합물로 치환된 표면개질된 바이오매스를 사용할 수 있다.
상기 세균 바이오매스는 그 표면의 카르복실기, 인산기, 술폰산기가 알킬화, 사이클로알킬화, 또는 아릴화된 표면개질된 바이오매스를 사용할 수 있다.
상기의 표면개질된 바이오매스의 하나의 예로서 하기 화학식 1로 표시될 수 있는데, 상기 화학식 1은 상기 세균 바이오매스의 카르복실기 또는 인산기의 수소가 알킬기, 사이클로알킬기, 아릴기 또는 아민기로 치환된 구조이다.
화학식 2
Figure PCTKR2009004151-appb-C000002
상기 식에서, R 은 탄소수 1 내지 10개의 알킬기, 탄소수 3 내지 10개의 사이클로알킬기 또는 탄소수 6 내지 15개의 아릴기이거나 NR1R2이다. 여기서 R1 및 R2가 각각 수소, 탄소수 1 내지 10개의 알킬기, 탄소수 3 내지 10개의 사이클로알킬기 또는 탄소수 6 내지 15개의 아릴기이다.
상기 식에서 탄소수가 너무 많으면 상용화에 다소 어려움이 있을 수 있으므로 탄소수 1 내지 6개인 알킬기로 알킬화하는 것이 더욱 바람직하고, 메틸화하는 것이 가장 바람직하다.
상기 바이오매스의 아미노기를 알킬화, 사이클로알킬화, 아릴화시키는 방법은 상기 바이오매스를 알데히드와 카르복실산의 혼합 용액에 넣은 후 반응시키는 단계를 포함할 수 있다.
상기 알데히드, 카르복실산, 바이오매스의 함량비에 제한이 반드시 있는 것은 아니지만, 바이오매스 1g 기준으로 알데히드 1ml~40ml, 카르복실산 1ml ~ 160ml의 혼합 용액에 반응시키는 것이 바람직하다.
상기 함량에 있어서, 알데히드와 카르복실산의 부피비가 1 ~ 1/4인 것이 보다 바람직하다.
상기 알데히드와 카르복실산, 바이오매스의 함량비가 20ml:40ml:1g인 것이 가장 바람직하다.
상기 알데히드가 포름알데히드이고, 카르복실산이 포름산인 것이 환원성의 면에서 바람직하고, 이를 사용하여 바이오매스의 아미노기를 알킬화하는 방법을 하기 반응식 1로 나타낼 수 있다.
[반응식 1]
Figure PCTKR2009004151-appb-I000001
상기 반응은 10 내지 100℃에서 1 내지 48시간 동안 반응시키는 것이 바람직하다. 상기 반응을 혼합반응기에서 10 내지 1000rpm으로 반응시킬 수 있다.
한편, 유가금속 착화물이 양이온성을 띄는 경우에는 음이온성이 증대된 표면개질된 바이오매스를 사용할 수 있다. 상기 원료 바이오매스에 카르복실기, 술폰산기 및 인산기 중 하나 이상을 구비하는 화합물을 추가로 결합시켜 음이온성이 증대된 세균 바이오매스를 제조할 수 있다.
상기 원료 바이오매스에 추가로 결합된 카르복실기를 가지는 화합물이 하기 화학식 3으로 표시될 수 있다.
화학식 3
Figure PCTKR2009004151-appb-C000003
상기 식에서, R1은 카르복실기, 하나 이상의 카르복실기를 포함하는 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기 또는 알콕시기이고, 또는 하기 화학식 4로 표시된다.
화학식 4
Figure PCTKR2009004151-appb-C000004
여기서, R2 및 R3이 각각 H, -OH, -COOH, -CH2-OOH이다.
상기 카르복실기를 가지는 화합물이 하기 화학식 5로 표시될 수 있다. 하기 화학식 5는 원료바이오매스의 아민기 또는 아미노기를 카르복실기를 가지는 화합물로 치환한 구조이다.
화학식 5
Figure PCTKR2009004151-appb-C000005
상기 식에서, R4는 탄소수 1-10인 선형 또는 분지형 알킬렌기, 탄소수 2-10인 선형 또는 분지형 알케닐렌기이고, R5는 H, Na 또는 K이다.
상기 바이오매스의 아민그룹 또는 아미노기가 알킬화, 사이클로알킬화, 아릴화된 구조는 하기 화학식 1로 표시될 수 있다. 아미노기를 알킬기로, 사이클로알킬기로, 아릴기로 치환된 것을 알킬화, 사이클로알킬화, 아릴화로 표현하기로 한다.
화학식 6
Figure PCTKR2009004151-appb-C000006
상기 식에서, R 은 탄소수 1 내지 10개의 알킬기, 탄소수 3 내지 10개의 사이클로알킬기 또는 탄소수 6 내지 15개의 아릴기이다.
이하에서 상기 표면 개질된 바이오매스를 이용하여 유가금속을 회수하는 방법에 대해 상술한다.
유가금속 흡착단계
상기 단계는 앞에서 언급한 상기 표면 개질된 세균 바이오매스를 이용하여 유가금속 함유 용액에서 유가금속을 흡착시키는 단계이다. 상기 표면 개질된 세균 바이오매스가 흡착소재로서 사용될 수 있다.
상기 유가금속을 함유한 용액으로는 폐촉매, 폐스크랩, 폐건전지, 산업폐액, 전로 더스트, 폐캔 등의 비철금속을 함유 폐기물을 예로 들 수 있다.
유가금속이 함유되어 있는 산업폐액은 주로 화학공정에서 유가금속을 촉매로 사용하는 산업과 전기전자 산업에서 발생한다. 특히, 화학공장에서 발생되는 초산폐액에는 류테늄(Ru)과 이리듐(Ir)이 포함된 상태로 폐수가 발생하며, ICP 분석 폐수에는 다양한 유가금속종(특히, 백금, 로듐 등)이 포함되어 있다.
상기 유가금속은 금, 은, 팔라듐, 백금, 이리듐, 오스뮴, 로듐 및 루테늄으로 이루어지는 군에서 선택된 하나 이상일 수 있다.
상기 유가금속이 다양한 리간드와 배위착물들을 형성하도록 용해제를 사용하여 상기 유가금속을 용해하여 수용액으로 만드는 것이 바람직하다.
상기 용해제로는 상기 유가금속의 종류에 따라 공지된 용해제를 적절하게 선택할 수 있다. 상기 용해제로는 염산, 질산, 왕수, 황산, 시안(CN) 및 할로겐 원소 중 하나 이상을 포함할 수 있다. 상기 할로겐 원소로는 플루오린(F)· 염소(Cl)· 브로민(Br)· 아이오딘(I)· 아스타틴(At)등이 있고, 바람직하게는 아이오딘 및 브로민 중 하나 이상을 포함할 수 있다.
일예로서, 산에 매우 난용성인 백금족 금속은 산화제의 존재하에 염산에 의하여 용해된다. 산화제로는 질산, 염소가스, 하이포염소산(HOCl), 차염소산소다(NaOCl), 차아염소산나트륨(NaClO3), 과산화수소(H2O2)등이 있다(Bradford, 1975). 백금, 팔라듐 및 로듐은 염소계 산화제의 존재하에 염산에 의하여 각각 PtCl6-2 PdCl4-2 와 RhCl6-3으로 용해되어진다.
상기 용해제로는 황산을 사용할 수 있는데, 좀 더 구체적으로는 60% H2SO4용액+0.1 M 용액을 사용하여 백금족 금속을 용해할 수 있다.
상기 용해제로서 아이오딘/아이오딘화물을 사용할 수 있으며, 팔라듐의 용해가 바람직하다.
상기 용해는 시안(CN)을 사용하는 청화법을 사용할 수 있다.
상기 용해제에 의해 용해되어 형성된 착화물의 구조로는 팔라듐(PdCl4 2-, PdCl3 -), 금(Au(CN)2 -), 백금(PtCl4 2-, PtCl6 4-) 등을 일예로 들 수 있다.
상기 유가금속 착화물은 전하를 띄는데 바람직하게는 음이온성를 나타낸다. 앞에서 상술한 양이온성 작용기의 함량이 증대되거나, 음이온성 작용기가 봉쇄된 세균 바이오매스는 정전기적 인력에 의해 상기 음이온성의 유가금속 착화물을 흡착할 수 있다.
본 발명의 유가금속 회수방법에 사용되는 흡착소재로는 활성탄소, 탄소나노튜브를 사용할 수 있다.
활성탄소(Activated Carbon)는 다공성 물질인 야자껍질, 목재, 올리브 열매껍질, 및 석탄계열 그리고 이탄 등을 사용하여 증기 및 화학 활성화 공정을 거처 내부 표면적을 활성화시킨 탄소 제품으로서 공지된 것을 사용할 수 있다.
상기 활성탄의 평균 세공직경에 대해 특별한 제한이 있는 것은 아니지만, 평균세공직경이 15초과 30Å 이하, 바람직하게는 20 이상 30Å이하일 수 있다.
회화단계
상기 단계는 상기 유가금속이 흡착된 흡착소재를 회화시키는 단계이다.
상기 회화단계는 상기 유가금속 함유 흡착소재를 용액으로부터 분리시킨 후 20~100℃에서 건조시키는 단계를 포함할 수 있다. 상기 건조단계에서 흡착소재에 잔존하고 있는 물을 모두 제거할 수 있다.
이어서, 상기 회화단계는 상기 유가금속 함유 흡착소재를 300℃이상 상기 유가금속의 녹는점 미만에서 연소시킬 수 있다. 바람직하게는 600~1000℃, 가장 바람직하게는 800~1000℃에서 회화할 수 있다. 상기 온도가 약 900℃ 부근일 때 금속의 회수율 및 순도가 가장 높다.
활성탄에 흡착된 유가금속을 회화시켜 회수하는 것은 회화조건(특히, 온도와 산소의 농도)에 따라 유가금속의 회수율을 조절할 수 있다.
상기 흡착소재인 세균 바이오매스는 일반적으로 600℃에서 점화되어 연소될 수 있으나 상기 유가금속은 상기 온도에서 녹거나 연소하지 않는다.
회화가 완료되면, 장치를 냉각시키고, 금속이 포함된 회를 수집한다.
분리단계
상기 분리단계는 상기 유가금속을 녹여 상기 재로부터 분리하는 단계이다.
상기 단계는 상기 재(ash)속에 포함된 유가금속을 상기 유가금속의 녹는점 이상으로 가열하여 녹이고, 액상의 유가금속을 상기 재(ash)로부터 분리시키는 단계를 포함할 수 있다.
상기 유가금속중의 하나인 금의 녹는점은 1064℃이고, 백금의 녹는점은 1768.3℃이므로 상기 온도 이상으로 가열하면 유가금속을 녹일 수 있다. 바람직하게는 상기 가열 온도가 녹는점 이상 3100℃이하일 수 있다.
다른 양상에서 본 발명은 유가금속 함유 용액에 상기 표면개질된 세균 바이오매스를 투입하여 유가금속을 흡착시키는 단계 ; 및 상기 세균바이오매스를 강산용액에 넣어 흡착된 유가금속을 상기 세균 바이오매스로부터 탈착시키는 단계를 포함하는 유가금속 회수 방법에 관계한다.
본 발명은 상기 세균바이오매스에 흡착된 유가금속을 탈착(desorption)에 의해 회수하는 방법이다.
상기 탈착단계는 상기 세균바이오매스를 싸이오요소(thiourea)와 강산의 혼합용액에 넣어 탈착시키는 단계일 수 있다. 상기 탈착에 사용되는 혼합용액으로는 산과 싸이오요소(thiourea)를 혼합한 것을 사용하면 탈착효율이 매우 증대한다.
상기 강산은 염산, 황산 또는 질산수용액을 사용하는 것이 바람직하다. 상기 강산수용액은 0.01M~10M, 바람직하게는 0.1M~3M의 범위로, 싸이오요소는 0.005M ~5M, 바람직하게는 0.1M~1M 범위로 사용할 수 있다.
이하에서, 실시예를 들어 본 발명에 대하여 더욱 상세하게 설명할 것이나, 이들은 단지 본 발명의 바람직한 구현예를 예시하기 위한 것으로, 실시예가 본 발명의 범위를 제한하는 것은 아니다.
실시예 1-10
전처리 없이 건조시킨 발효폐기물인 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 바이오매스 2g을 하기 표 1에 표기된 바와 같은 다양한 농도의 PEI가 들어 있는 500 ml 증류수에 넣고 상온에서 2시간 동안 교반하였다. 이어서 하기 표 1에 나타낸 바와 같이, 농도가 다른 글루타알데하이드(glutaraldehyde (GA)) 500ml 용액을 바이오매스가 포함된 혼합액에 넣고 반응시간을 하기 표 1에 나타낸 바와 같이 달리하여 교반하였다. 이때 각 성분의 비는 아래의 표와 같다. 반응의 완료 후 탈이온수로 세척하고 동결건조하여 PEI-표면개질된 바이오매스를 수득하고 흡착량을 아래의 방법으로 평가하여 그 결과를 하기 표 1 및 도 3에 나타내었다.
등온흡착실험
바이오매스의 염료 흡착 성능을 확인하기 위하여 pH=2에서 등온흡착 실험을 수행하였다. 이 실험은 온도와 pH를 일정하게 유지시키고 다양한 염료 농도에서 염료의 흡착량을 측정하는 실험이다. 실험은 여러 개의 50mL 튜브에 실시예 1-10 및 비교예 1의 바이오매스 0.4g과 염료 초기 농도를 50 mg/L에서 2000mg/L로 달리한 RR4 염료수용액 40 mL씩을 넣고 각 튜브의 pH를 특정한 값으로 일정하게 하였다. 각 튜브는 약 25℃의 상온에서 24시간 동안 160rpm으로 교반시켰다. 흡착실험이 진행되는 동안 pH를 관찰하면서 1N HNO3 수용액을 이용하여 용액의 pH를 6으로 일정하게 조절하였다. 흡착이 평형에 도달한 후, 염료의 잔류 농도를 분석하였다. 최대 흡착성능과 결합 친화력을 계산하기 위해 실험 데이터를 하기 수학식 1의 랭뮤어 모델(Langumuir model) 및 하기 수학식 2의 십스 모델 (Sips model)을 사용하여 모델링하였다.
수학식 1
Figure PCTKR2009004151-appb-M000001
상기 식에서, Q max 는 최대 염료 흡착량(mg/g)이고, b L 은 랭뮤어 평형상수(l/mg)이며, Cf는 염료의 최종농도이다.
수학식 2
Figure PCTKR2009004151-appb-M000002
상기 식에서, K S 는 십스 모델 등온상수((l/g) β S )이고, a S 는 십스 모델 상수이며, β S 는 십스 모델 지수((l/mg) β S 이고, Cf는 염료의 최종농도이다.
비교예 1
발효폐기물인 코리네박테리움 글루타미쿰 바이오매스를 세척한 후 아무런 처리를 가하지 않은 상태로 흡착제로 사용하여 동일한 방법으로 흡착량을 평가한 후 그 결과를 하기 표 1 및 도 3에 함께 나타내었다.
표 1
시료 비교예 1 실시예
2 3 4 5 6 7 8 9 10
반응시간(min) 10 10 10 10 60 10 60 60 60
PEI % (w/v) 5 15 5 15 1 0.1 0.1 0.5 1
GA % (v/v) 0.5 0.5 1.5 1.5 1 0.05 0.05 0.1 0.2
PEI:GA 10:1 30:1 3.3:1 10:1 1:1 2:1 2:1 5:1 5:1
흡착량(q) (mg/g) 111.71 228.4 276.3 178.1 322.5 268.2 159.8 176.3 613.0 597.4
증가배수(배) 1.00 2.04 2.47 1.59 2.89 2.40 1.43 1.58 5.49 5.35
상기 표 1 및 도 3의 결과를 통해서 확인되는 바와 같이, PEI-표면개질된 바이오매스는 PEI, GA, 반응시간에 따라 현격한 흡착성능 차이를 보였으며, 그 중 PEI(w/v): GA(v/v)의 비율이 5:1, 반응시간이 60분일 때 RR4(반응성염료)의 최대흡착량은 613 mg/g으로 가장 우수하였다. 이는 원료 바이오매스에 비해 약 5.5배 흡착성능이 증가한 결과이다.
실시예 11
발효 공정으로부터 건조된 분말 형태로 수득한 발효폐기물인 코리네박테리움 글루타미쿰 바이오매스(C. glutamicum biomass)(대상(주) 군산공장, 전북 군산) 10g을 2.5ml의 피리딘(pyridine)과 95ml 클로로포름(chloroform)으로 이루어진 혼합용액에 넣고 상온에서 교반시켰다. 이어서, 혼합용액에 5 ml의 4-브로모부티릴 클로라이드(bromobutyryl chloride)를 적가하여 밀봉된 상태에서 25도에서 12시간 동안 교반하면서 반응시켜 바이오매스를 아실화하였다. 아실화된 바이오매스를 클로로포름으로 세정하여 반응되지 않은 4-브로모부티릴 클로라이드를 제거하였다.
이어서 10g의 폴리에틸렌이미드(중량평균분자량 25000g/l)와 0.1g의 KOH가 첨가된 90ml tert-아밀 알콜 용액에 전단계에서 얻은 바이오매스를 넣고 75에서 약 24시간 동안 교반하였다. 반응이 완료된 후 바이오매스를 메탄올과 탈이온수로 여러 차례 세척한 후 동결건조하여 폴리에틸렌이미드로 표면개질된 바이오매스를 수득하였다.
주로 백금과 로듐을 포함하고 있는 ICP 분석 폐수를 대상으로 백금과 로듐을 회수하기 위하여, 상기에서 수득한 표면개질된 바이오매스 5g/L를 투입하고, pH -0.58조건에서 2시간 동안 교반하여 금을 흡착시켰다. 이어서, 백금과 로듐이 흡착된 바이오매스를 건조기에서 200~100℃로 가열하여 수분을 제거하였다. 상기 바이오매스를 연소로에서 약 600℃로 가열하였다. 연소에 의해 생성된 재와 백금, 로듐을 수집하여 건식로 장치에서 약 1850℃로 가열하여 백금을 녹여 재로부터 분리시켰고 약 2000℃로 가열하여 로듐을 녹여 재로부터 분리시켰다.
실시예 12
발효 공정으로부터 건조된 분말 형태로 수득한 발효폐기물인 코리네박테리움 글루타미쿰 바이오매스(C. glutamicum biomass)(대상(주) 군산공장, 전북 군산)을 1N HNO3 용액으로 24시간 동안 상온에서 산처리하였다. 이와 같이 산처리된 바이오매스는 증류수로 세척하는 과정을 3회 반복하고 60℃에서 24시간 동안 건조하였다. 상기 건조된 바이오매스 3 g을 무수 메탄올 300 mL에 분산시키고, 여기에 산 촉매인 HNO3을 첨가하여 최종 농도가 1M이 되도록 하였다. 이 후 이 혼합물을 상온에서 회전 교반기로 6시간 동안 160 rpm으로 교반시켜 반응시킨 후 카르복실 그룹이 제거된 바이오매스를 수득하였다.
금 혼합물(KAu(CN)2)에 용해제 염산을 넣어 금을 용해시킨 후, 상기에서 수득한 표면개질된 바이오매스 5g/L를 투입하고, pH 2.5조건에서 2시간 동안 교반하여 금을 흡착시켰다. 이어서, 금이 흡착된 바이오매스를 건조기에서 20~100℃로 가열하여 수분을 제거하였다. 상기 바이오매스를 연소로에서 약 600℃로 가열하였다. 연소에 의해 생성된 재와 금을 수집하여 건식로 장치에서 약 1200℃로 가열하여 금을 녹여 재로부터 분리시켰다.
비교예 2
발효폐기물인 코리네박테리움 글루타미쿰 바이오매스를 세척한 후 아무런 처리를 가하지 않은 상태로 실시예 12와 동일하게 실시하였다.
하기 표 1은 실시예 11 및 12에서의 유가금속의 흡착량과 순도를 나타낸다.
표 2
유가금속 a)흡착량(mg/g) b)순도(%)
실시예 11 백금 69.3 58.7
63.0 59.9
실시예 12 63.5 58.9
71.7 61.9
a)흡착량은 흡착소재에 의해 유가금속이 흡착된 양을 나타내며, 회화 전 상태임.
b)유가금속이 포함된 흡착소재를 회화한 후에 재 속에 포함된 유가금속의 %를 나타냄.
Figure PCTKR2009004151-appb-I000002
Figure PCTKR2009004151-appb-I000003
상기 표 2를 참조하면, 세균 바이오매스를 이용하여 금, 백금 등의 유가금속을 기존의 화학침전법이나 용매추출법에 비해 흡착/회화/분리방법의 간단한 공정을 거치면서도 인체에 무해한 방법으로 수득할 수 있음을 확인할 수 있다.
도 4의 상부 사진은 금이 흡착되지 않은 원료바이오매스와 이를 회화한 것을 나타내고, 하부 사진은 금이 흡착된 원료바이오매스와 이를 회화한 후의 금 함유된 흡착소재를 나타낸다(실시예 12의 경우). 상기 도 4의 하부 사진을 참조하면, 실시예 12의 경우에 바이오매스에 금이 상당량 흡착되어 있음을 확인할 수 있다.
도 5는 실시예 12 및 비교예 2에 의한 금에 대한 바이오매스의 최대 흡착량을 나타낸 그래프이다. 상기 도 5를 참조하면, 비교예 2의 바이오매스의 최대 흡착량은 약 30mg/g에 불과하나 실시예 12의 경우에는 72mg/g으로서 2.4배의 흡착성능의 향상이 있다.
실시예 13 및 비교예 3
팔라듐(Pd) 용액(100 mg/L) 30 mL에 실시예 11에서 수득한 폴리에틸렌이미드로 표면처리된 바이오매스(PEIB) 0.03g을 넣고 상온에서 하루 동안 교반시켰다. 이어서, 팔라듐이 흡착된 PEIB를 0.1M HCl 용액에 0~2M 범위의 싸이오요소(thiourea)가 혼합된 용액에 넣고 상온에서 하루 동안 교반시켰다.
도 6은 0.1M HCl 용액에 첨가된 싸이오요소의 함량에 따른 팔라듐의 탈착률을 나타낸 그래프이다. 도 6을 참조하면, 싸이오요소가 들어가지 않은 샘플만 30%의 탈착률을 보였으며, 그 외 싸이오요소가 포함된 샘플들은 거의 100%에 가까운 탈착률을 보여줌을 알 수 있다. 여기서 탈착률은 팔라듐이 PEIB에 흡착된 양인 86.5 mg/g을 100으로 환산한 값이다.
이상에서 본 발명의 바람직한 구현예를 예로 들어 상세하게 설명하였으나, 이러한 설명은 단순히 본 발명의 예시적인 실시예를 설명 및 개시하는 것이다. 당업자는 본 발명의 범위 및 정신으로부터 벗어남이 없이 상기 설명 및 첨부 도면으로부터 다양한 변경, 수정 및 변형예가 가능함을 용이하게 인식할 것이다.

Claims (41)

  1. 세균 바이오매스 표면에 가교된 아민기-함유 양이온성 폴리머를 포함하는 표면개질된 세균 바이오매스.
  2. 제 1항에 있어서, 상기 아민기-함유 양이온성 폴리머가 아민 그룹 또는 히드록시 그룹에 의해 세균 바이오매스 표면에 가교되어 있는 것을 특징으로 하는 표면개질된 세균 바이오매스.
  3. 제 1항에 있어서, 상기 세균은 코리네박테리움(Corynebacterium sp.), 에스케리치아(Escherichia sp.), 바실러스 (Bacillus sp.) 및 세라샤 (Serratia sp.) 으로 구성되는 군에서 선택되는 세균인 것을 특징으로 하는 표면개질된 세균 바이오매스.
  4. 제 1항에 있어서, 상기 세균은 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 에스케리치아 콜라이(Escherichia coli), 바실러스 메가테리움 (Bacillus megatherium) 및 세라샤 마르세센스(Serratia marcescens) 및 브레비박테리움 암모니아게네스(Brevibacterium ammoniagenes)로 구성되는 군에서 선택되는 세균인 것을 특징으로 하는 표면개질된 세균 바이오매스.
  5. 제 1항에 있어서, 상기 아민기-함유 양이온성 폴리머는 폴리에틸렌이민, 아민-터미네이티드 폴리에틸렌옥사이드, 아민-터미네이티드 폴리에틸렌/프로필렌 옥사이드, 디메틸 아미노 에틸 메타크릴레이트의 폴리머 및 디메틸 아미노에틸 메타크릴레이트와 비닐피롤리돈의 코폴리머, 에피클로로히드린과 디메틸아민의 선형 폴리머, 폴리디알릴디메틸암모니움 클로라이드, 폴리에탄올아민/메틸클로라이드 및 개질된 폴리에틸렌이민으로 구성되는 군에서 선택되는 것임을 특징으로 하는 표면개질된 세균 바이오매스.
  6. 제 1항에 있어서, 상기 아민기-함유 양이온성 폴리머는 폴리에틸렌이민 호모 리머이고 상기 바이오매스는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 바이오매스인 것을 특징으로하 는 표면개질된 세균 바이오매스.
  7. 제 1항에 있어서, 상기 아민기-함유 양이온성 폴리머는 70몰% 이상의 양 전하(cationic charge)를 갖는 것을 특징으로 하는 표면개질된 세균 바이오매스.
  8. 제 1항에 있어서, 상기 아민기-함유 양이온성 폴리머의 분자량은 1000 내지 200,000의 범위 내인 것을 특징으로 하는 표면개질된 세균 바이오매스.
  9. 제 1항에 있어서, 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기가 봉쇄되어 있는 것을 특징으로 하는 표면개질된 세균 바이오매스.
  10. 제 1항에 있어서, 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기가 아민기 또는 아미노기를 갖는 화합물에 의해 치환되어 봉쇄되어 있는 것을 특징으로 하는 표면개질된 세균 바이오매스.
  11. 제 1항 내지 제 10항 중 어느 하나의 항의 표면개질된 세균 바이오매스를 포함하는 생체흡착제.
  12. 건조된 세균 바이오매스를 아민기-함유 양이온성 폴리머 용액에 가하여 반응시키는 단계;
    상기 세균 바이오매스와 아민기-함유 양이온성 폴리머 용액에 가교제를 가하여 반응시키는 단계;
    바이오매스를 세정한 후 건조시키는 단계를 포함하는 것을 특징으로 하는 표면 개질된 세균 바이오매스의 제조방법.
  13. 제 12항에 있어서, 상기 세균은 코리네박테리움 (Corynebacterium sp.), 에스케리치아 (Escherichia sp.), 바실러스 (Bacillus sp.) 및 세라샤 (Serratia sp.) 으로 구성되는 군에서 선택되는 세균인 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  14. 제 12항에 있어서, 상기 세균은 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 에스케리치아 콜라이(Escherichia coli), 바실러스 메가테리움 (Bacillus megatherium) 및 세라샤 마르세센스(Serratia marcescens) 및 브레비박테리움 암모니아게네스(Brevibacterium ammoniagenes)로 구성되는 군에서 선택되는 세균인 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  15. 제 12항에 있어서, 상기 아민기-함유 양이온성 폴리머는 폴리에틸렌이민, 아민-터미네이티드 폴리에틸렌옥사이드, 아민-터미네이티드 폴리에틸렌/프로필렌 옥사이드, 디메틸 아미노 에틸 메타크릴레이트의 폴리머 및 디메틸 아미노에틸 메타크릴레이트와 비닐피롤리돈의 코폴리머, 에피클로로히드린과 디메틸아민의 선형 폴리머, 폴리디알릴디메틸암모니움 클로라이드, 폴리에탄올아민/메틸클로라이드 및 개질된 폴리에틸렌이민으로 구성되는 군에서 선택되는 것임을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  16. 제 12항에 있어서, 상기 아민기-함유 양이온성 폴리머는 폴리에틸렌이민 호모폴리머이고, 상기 바이오매스는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 바이오매스인 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  17. 제 12항에 있어서, 상기 아민기-함유 양이온성 폴리머는 70몰% 이상의 양 전하(cationic charge)를 갖는 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  18. 제 12항에 있어서, 상기 아민기-함유 양이온성 폴리머의 분자량은 1,000 내지 200,000의 범위 내인 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  19. 제 12항에 있어서, 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기가 봉쇄되어 있는 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  20. 제 12항에 있어서, 상기 표면개질된 세균 바이오매스는 표면상의 음이온성 작용기가 아민기 또는 아미노기를 갖는 화합물로 치환되어 봉쇄되어 있는 것을 특징으로 하는 표면개질된 세균 바이오매스의 제조방법.
  21. 제 12항에 있어서, 상기 가교제는 글루타르알데하이드(glutaraldehyde), 이소시아나이드 유도체(isocyanide derivatives) 및 비스디아조벤지딘으로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 세균 바이오매스의 제조방법.
  22. 제 12항에 있어서, 상기 아민기-함유 양이온성 폴리머 용액은 용매로서 물, 메탄올, 에탄올, 부탄올, 클로로포름 및 피리딘으로 구성되는 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 표면 개질된 세균 바이오매스의 제조방법.
  23. 제 12항에 있어서, 상기 가교제를 용액상태로 바이오매스와 아민기-함유 양이온성 폴리머의 혼합액에 대하여 10 : 1 내지 1 : 1의 부피비로 가하는 것을 특징으로 하는 표면 개질된 세균 바이오매스의 제조방법.
  24. 제 12항에 있어서, 상기 가교제를 용액상태로 바이오매스와 아민기-함유 양이온성 폴리머의 혼합액에 대하여 5 : 1의 부피비로 가하는 것을 특징으로 하는 표면 개질된 세균 바이오매스의 제조방법.
  25. 유가금속 함유 용액에 표면개질된 세균 바이오매스, 활성탄 및 탄소나노튜브 중 하나 이상의 흡착소재를 투입하여 유가금속을 흡착시키는 단계 ;
    상기 유가금속이 흡착된 흡착소재를 회화시키는 단계 ;
    상기 회화단계에서 생성된 재(ash)와 유가금속을 상기 유가금속의 녹는점 이상으로 가열하여 상기 재(ash)로부터 상기 유가금속을 분리시키는 단계를 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  26. 제 25항에 있어서, 상기 세균 바이오매스는 상기 제 1항 내지 제 10항 중 어느 한 항에 따른 표면개질된 세균 바이오매스인 것을 특징으로 하는 유가금속 회수 방법.
  27. 제 25항에 있어서, 상기 세균 바이오매스는 그 표면의 카르복실기가 알킬화, 사이클로알킬화, 아릴화 또는 아민화된 것을 특징으로 하는 유가금속 회수 방법.
  28. 제 25항에 있어서, 상기 세균 바이오매스는 그 표면에 카르복실기, 술폰산기 및 인산기 중 하나 이상을 구비하는 화합물을 추가로 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  29. 제 25항에 있어서, 상기 세균 바이오매스는 양이온성 작용기인 아민기 또는 아미노기가 카르복실기, 인산기, 술폰산기 등의 음이온성 작용기를 갖는 화합물로 치환된 것을 특징으로 하는 유가금속 회수방법.
  30. 제 25항에 있어서, 상기 유가금속이 금, 은, 팔라듐, 백금, 이리듐, 오스뮴, 로듐 및 루테늄으로 이루어지는 군에서 선택된 하나 이상인 것을 특징으로 하는 유가금속 회수 방법.
  31. 제 25항에 있어서, 상기 유가금속 함유 용액은 상기 유가금속을 용해시키는 용해제로서 염산, 질산, 왕수, 황산, 시안(CN) 및 할로겐 원소 중 하나 이상을 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  32. 제 25항에 있어서, 상기 회화단계는 상기 유가금속 함유 흡착소재를 용액으로부터 분리시킨 후 20~100℃에서 건조시키는 단계를 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  33. 제 25항에 있어서, 상기 회화단계는 상기 유가금속의 녹는점 미만에서 상기 유가금속이 흡착된 흡착소재를 연소시키는 것을 특징으로 하는 유가금속 회수 방법.
  34. 제 25항에 있어서, 상기 회화단계는 600 내지 1000℃로 상기 유가금속이 흡착된 흡착소재를 연소시키는 것을 특징으로 하는 유가금속 회수 방법.
  35. 제 25항에 있어서, 상기 분리단계는 상기 재(ash)속에 포함된 유가금속을 상기 유가금속의 녹는점 이상으로 가열하여 녹이는 단계 ; 및 액상의 유가금속을 상기 재(ash)로부터 분리시키는 단계를 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  36. 제 35항에 있어서, 상기 분리단계는 상기 유가금속을 유가금속의 녹는점 이상 3100℃ 이하로 가열하는 녹이는 것을 특징으로 하는 유가금속 회수 방법.
  37. 제 27항에 있어서, 상기 알킬화, 사이클로알킬화, 아릴화는 카르복실기의 수소가 탄소수 1 내지 10개의 알킬기, 탄소수 3 내지 10개의 사이클로알킬기 또는 탄소수 6 내지 15개의 아릴기로 치환된 것을 특징으로 하는 유가금속 회수 방법.
  38. 제 27항에 있어서, 상기 아민화는 카르복실기의 수소가 탄소수 1 내지 10개의 알킬기, 탄소수 3 내지 10개의 사이클로알킬기 또는 탄소수 6 내지 15개의 아릴기를 포함하는 1차 또는 2차 아민으로 치환된 것을 특징으로 하는 유가금속 회수 방법.
  39. 유가금속 함유 용액에 상기 제 1항 내지 제 10항 중 어느 한 항에 따른 표면개질된 세균 바이오매스를 투입하여 유가금속을 흡착시키는 단계 ; 및 상기 세균바이오매스를 강산용액에 넣어 흡착된 유가금속을 상기 세균 바이오매스로부터 탈착시키는 단계를 포함하는 것을 특징으로 하는 유가금속 회수 방법.
  40. 제 39항에 있어서, 상기 탈착단계는 상기 세균바이오매스를 싸이오요소(thiourea)와 강산의 혼합용액에 넣어 탈착시키는 단계인 것을 특징으로 하는 유가금속 회수 방법.
  41. 제 40항에 있어서, 상기 혼합용액은 강산수용액 0.01M ~ 10M, 싸이오요소 0.005M ~ 5M로 혼합된 것을 특징으로 하는 유가금속 회수 방법.
PCT/KR2009/004151 2008-05-30 2009-07-27 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법 WO2009148292A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/264,216 US8906132B2 (en) 2009-04-14 2009-07-27 Surface-modified biomass, preparation method thereof, and method for recovering valuable metals using the same
JP2012505794A JP2012523247A (ja) 2009-04-14 2009-07-27 表面改質されたバイオマス、その製造方法およびそれを用いた有価金属の回収方法
EP09758545.9A EP2471750B1 (en) 2009-04-14 2009-07-27 Method for recovering precious metals using surface-modified biomass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0050833 2008-05-30
KR1020080050833A KR100894585B1 (ko) 2008-05-30 2008-05-30 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 생체흡착제
KR10-2009-0032092 2009-04-14
KR20090032092A KR101100770B1 (ko) 2009-04-14 2009-04-14 유가금속의 회수방법

Publications (2)

Publication Number Publication Date
WO2009148292A2 true WO2009148292A2 (ko) 2009-12-10
WO2009148292A3 WO2009148292A3 (ko) 2010-03-25

Family

ID=41398696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004151 WO2009148292A2 (ko) 2008-05-30 2009-07-27 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법

Country Status (1)

Country Link
WO (1) WO2009148292A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179239A (zh) * 2016-07-12 2016-12-07 梁珑 柚子皮改性氨基功能化吸附剂的制备方法及其应用
CN113200607A (zh) * 2021-05-17 2021-08-03 合肥工业大学 一种脱氮除磷效果稳定的基质填料、基质和人工湿地
CN116554486A (zh) * 2023-05-23 2023-08-08 杭州普力材料科技有限公司 一种三叶草型高选择性吸附钴离子的吸附剂及其制备方法
CN116554486B (zh) * 2023-05-23 2024-05-17 合肥普力先进材料科技有限公司 一种三叶草型高选择性吸附钴离子的吸附剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097621A (ko) * 2000-04-25 2001-11-08 유대식 공장폐수로부터 화학유연제와 화학호제 등을 제거하는세균 및 그의 고정화균체의 제조방법
US7358223B2 (en) * 2004-10-04 2008-04-15 Nitto Denko Corporation Biodegradable cationic polymers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2471750A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179239A (zh) * 2016-07-12 2016-12-07 梁珑 柚子皮改性氨基功能化吸附剂的制备方法及其应用
CN113200607A (zh) * 2021-05-17 2021-08-03 合肥工业大学 一种脱氮除磷效果稳定的基质填料、基质和人工湿地
CN116554486A (zh) * 2023-05-23 2023-08-08 杭州普力材料科技有限公司 一种三叶草型高选择性吸附钴离子的吸附剂及其制备方法
CN116554486B (zh) * 2023-05-23 2024-05-17 合肥普力先进材料科技有限公司 一种三叶草型高选择性吸附钴离子的吸附剂及其制备方法

Also Published As

Publication number Publication date
WO2009148292A3 (ko) 2010-03-25

Similar Documents

Publication Publication Date Title
KR101100770B1 (ko) 유가금속의 회수방법
Wu et al. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline
WO2016188326A1 (zh) 兰炭废水处理及再生循环利用方法
WO2009148292A2 (ko) 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 유가금속의 회수 방법
JPH0412200B2 (ko)
WO2019146987A1 (ko) 폴리아닐린 전도성 고분자에 유기산 및 금속이온이 일정 순서로 도핑되는 항균 및 중금속 제거용 폴리아닐린 복합체의 제조방법 및 그 방법에 의해 제조된 폴리아닐린 복합체
US5589118A (en) Process for recovering iron from iron-containing material
CN110983057B (zh) 一种可实现UPOPs合成阻滞和低温分解的烟灰处理方法
CN112620336A (zh) 一种持久性有机物污染土壤的化学氧化修复方法
WO2019117457A1 (ko) 다공성 포르피린 고분자 및 이를 이용한 귀금속 원소의 회수 방법
KR100894585B1 (ko) 표면개질된 바이오매스, 그의 제조방법 및 그를 이용하는 생체흡착제
WO2024058441A1 (ko) 바이오시안화물 및 이온성 액체를 이용하여 폐촉매로부터 백금족 금속을 회수하는 공정
Xiu et al. High-efficiency promotion on dechlorination of polyvinyl chloride in subcritical water treatment by introducing waste concrete
CN1261716C (zh) 含氰废盐渣的处理方法
JPH06102633B2 (ja) 高純度テレフタル酸の製造方法
KR20150032400A (ko) 고순도의 루테늄 회수방법
KR101092856B1 (ko) 표면개질된 바이오매스의 제조방법 및 그를 이용하는 생체흡착제
CN104843937B (zh) 一种邻苯二胺生产废水的处理方法
WO2020130264A1 (ko) 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치
WO2019112080A1 (ko) 폴리아닐린 전도성 고분자에 유기산 및 금속이온이 일정 순서로 도핑되는 항균 및 중금속 제거용 폴리아닐린 복합체의 제조방법 및 그 방법에 의해 제조된 폴리아닐린 복합체
CN112676315A (zh) 一种垃圾焚烧飞灰无害化资源化处理改良方法
NZ303005A (en) Process for recovering iron from iron-rich material
KR20190036607A (ko) 산업폐기물로부터 은, 백금족 및 중금속 분리 회수방법
WO2022231384A1 (ko) 슬러지의 처리 공정
CN115571898B (zh) 一种焚烧飞灰资源化回收处置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758545

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2008-0050833

Country of ref document: KR

Date of ref document: 20101122

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

REEP Request for entry into the european phase

Ref document number: 2009758545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13264216

Country of ref document: US

Ref document number: 2009758545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012505794

Country of ref document: JP