WO2009148155A1 - 薄膜太陽電池製造装置 - Google Patents

薄膜太陽電池製造装置 Download PDF

Info

Publication number
WO2009148155A1
WO2009148155A1 PCT/JP2009/060356 JP2009060356W WO2009148155A1 WO 2009148155 A1 WO2009148155 A1 WO 2009148155A1 JP 2009060356 W JP2009060356 W JP 2009060356W WO 2009148155 A1 WO2009148155 A1 WO 2009148155A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cathode
film
solar cell
film formation
Prior art date
Application number
PCT/JP2009/060356
Other languages
English (en)
French (fr)
Inventor
康男 清水
英之 小形
松本 浩一
恭史 野口
洋介 神保
智彦 岡山
和 森岡
哲康 杉山
貴司 重田
広行 栗原
征典 橋本
貞次 若松
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to EP09758422A priority Critical patent/EP2293343A4/en
Priority to CN2009801127543A priority patent/CN102017169B/zh
Priority to JP2010515938A priority patent/JP5535906B2/ja
Priority to US12/995,794 priority patent/US20110094446A1/en
Priority to KR1020107022724A priority patent/KR101221954B1/ko
Publication of WO2009148155A1 publication Critical patent/WO2009148155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin-film solar cell manufacturing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2008-149937 filed on June 6, 2008, the contents of which are incorporated herein by reference.
  • the plasma CVD apparatus has a film formation chamber.
  • a substrate on which a film is formed is accommodated in the film formation chamber, and after the pressure in the film formation chamber is reduced to a vacuum, a film formation gas is supplied into the film formation chamber. It is configured.
  • a high-frequency electrode (cathode) that generates plasma of a deposition gas is installed in the deposition chamber. Then, when the film formation gas (radical) decomposed by the plasma reaches the film formation surface (surface on which the film is formed) of the substrate, a desired film is formed on the film formation surface of the heated substrate.
  • the high frequency electrode is connected to a high frequency power source via a matching circuit.
  • the high frequency power supply has an oscillation circuit or an amplifier circuit, and receives AC or DC input and outputs high frequency power.
  • the matching circuit is a circuit for matching a high-frequency power source and a high-frequency electrode, and a desired high-frequency power is input to the high-frequency electrode by the matching circuit (see, for example, Patent Document 1).
  • a feeding point for inputting high-frequency power is often provided at approximately one center in the plane of the high-frequency electrode.
  • the feeding point By disposing the feeding point at the center of the high-frequency electrode, it becomes easy to supply power having the same potential to the entire high-frequency electrode, whereby a uniform film can be formed on the entire film-forming surface of the substrate.
  • the high-frequency electrode when the high-frequency electrode is enlarged, a potential difference is generated between the central portion and the side surface portion (outer peripheral portion) of the high-frequency electrode only by providing one feeding point at the approximate center of the plane of the high-frequency electrode. There is a problem that it is difficult to form a uniform film on the entire film formation surface of the substrate. In addition, even if the entire high-frequency electrode can be made to have the same potential, the film is uniformly formed on the entire film formation surface of the substrate depending on the conditions at the time of film formation, such as when the temperature of the substrate is not uniform at all locations. There is a problem that it is difficult to form.
  • the present invention has been made in view of the above-described circumstances, and even if the high-frequency electrode is enlarged or the conditions for film formation are changed, a uniform film is formed on the film formation surface of the substrate.
  • a thin-film solar cell manufacturing apparatus that can be formed is provided.
  • the inventors of the present invention provide a cathode unit having a discharge surface (cathode) on both sides in order to achieve high productivity while obtaining a high quality film quality, and dispose the anodes on both sides of the cathode unit.
  • Thin film solar cell manufacturing apparatuses are being studied.
  • plasma CVD apparatus discharge spaces are formed on both sides of the cathode unit. When the impedance balance between the two discharge spaces is lost, the discharge is biased to either direction, and plasma may be generated non-uniformly. In order to avoid this, there is a problem that severe adjustment such as electrode spacing is necessary.
  • the substrate is disposed so that the film formation surface of the substrate is substantially parallel to the direction of gravity, and a desired film is formed on the film formation surface by a CVD method.
  • the potential of the entire cathode can be set uniformly even when the cathode is enlarged.
  • the potential applied to each power feeding point can be adjusted while checking the quality of the film formed on the substrate. For this reason, for example, even when the temperature of the substrate is not uniform at all locations, a uniform film can be formed on the film formation surface of the substrate.
  • the anode is disposed so as to face both surfaces of each cathode, it is possible to form a film on two substrates at the same time in a space in which space saving is realized.
  • the substrate is disposed so that the film formation surface of the substrate is substantially parallel to the direction of gravity, and a desired film is formed on the film formation surface by a CVD method.
  • the stray capacitance is provided by inserting a dielectric (insulating member) between the two cathodes. ) Mutual interference can be suppressed.
  • the substrate is disposed so that the film formation surface of the substrate is substantially parallel to the direction of gravity, and a desired film is formed on the film formation surface by a CVD method.
  • the voltages applied to the pair of cathodes can be applied to the pair of cathodes without interfering with each other. For this reason, the discharge in the two film formation spaces is performed without interfering with each other, and uniform and stable film formation can be achieved.
  • the substrate is disposed so that the film formation surface of the substrate is substantially parallel to the direction of gravity, and a desired film is formed on the film formation surface by a CVD method.
  • a film forming space; a cathode to which a voltage is applied; a cathode intermediate member in which the cathode is installed on both sides thereof and two or more power supply points are arranged on the side surfaces thereof;
  • the cathode intermediate member on which the cathodes are installed on both sides has a feeding point, and has two or more feeding points. There is no need to provide a feeding point, and a voltage having the same potential and the same phase can be applied.
  • the potential of the entire cathode can be set uniformly even when the cathode is enlarged.
  • FIG. 1 It is a schematic sectional drawing which shows the thin film solar cell in 1st embodiment of this invention. It is a schematic block diagram which shows the thin film solar cell manufacturing apparatus in 1st embodiment of this invention. It is a perspective view which shows the film-forming chamber in 1st embodiment of this invention. It is the perspective view which looked at the film-forming chamber in 1st embodiment of this invention from another angle. It is a side view which shows the film-forming chamber in 1st embodiment of this invention. It is a perspective view which shows the electrode unit in 1st embodiment of this invention. It is the perspective view which looked at the electrode unit in 1st embodiment of this invention from another angle. It is a disassembled perspective view which shows the electrode unit in 1st embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram showing a push-pull mechanism in a first embodiment of the present invention. It is a perspective view which shows schematic structure of the board
  • FIG. 1 is a schematic cross-sectional view of a thin film solar cell 100 manufactured by the thin film solar cell manufacturing apparatus of the present invention.
  • a thin film solar cell 100 comprises a substrate W made of glass; a top electrode 101 made of a transparent conductive film provided on the substrate W; and a top cell made of amorphous silicon. 102; intermediate electrode 103 made of a transparent conductive film provided between top cell 102 and bottom cell 104 described later; bottom cell 104 made of microcrystalline silicon; buffer layer 105 made of transparent conductive film; metal film
  • the back electrode 106 which consists of is laminated
  • the thin film solar cell 100 is an a-Si / microcrystal Si tandem solar cell.
  • power generation efficiency can be improved by absorbing short wavelength light by the top cell 102 and absorbing long wavelength light by the bottom cell 104.
  • the three-layer structure of the p layer (102p), i layer (102i), and n layer (102n) of the top cell 102 is formed of amorphous silicon.
  • the three-layer structure of the p layer (104p), i layer (104i), and n layer (104n) of the bottom cell 104 is made of microcrystalline silicon.
  • the thin film solar cell 100 having such a configuration, when energetic particles called photons contained in sunlight hit the i layer, electrons and holes are generated by the photovoltaic effect, and the electrons are in the n layer. The holes move toward the p layer while moving toward the p layer. By extracting electrons / holes generated by the photovoltaic effect by the upper electrode 101 and the back electrode 106, light energy can be converted into electric energy.
  • the intermediate electrode 103 between the top cell 102 and the bottom cell 104, a part of the light that passes through the top cell 102 and reaches the bottom cell 104 is reflected by the intermediate electrode 103 and is incident on the top cell 102 again. Therefore, the sensitivity characteristic of the cell is improved, which contributes to the improvement of power generation efficiency.
  • Sunlight incident on the substrate W is reflected by the back electrode 106 after passing through each layer.
  • FIG. 2 is a schematic configuration diagram of a thin-film solar cell manufacturing apparatus.
  • the thin-film solar cell manufacturing apparatus 10 includes a film formation chamber 11, a preparation / removal chamber 13, a substrate removal chamber 15, a substrate removal robot 17, and a substrate storage cassette 19.
  • the film forming chamber 11 forms a bottom cell 104 (semiconductor layer) made of microcrystalline silicon on a plurality of substrates W at the same time.
  • the preparation / removal chamber 13 simultaneously accommodates the unprocessed substrate W ⁇ b> 1 carried into the film forming chamber 11 and the post-processed substrate W ⁇ b> 2 unloaded from the film forming chamber 11.
  • pre-treatment substrate means a substrate before film formation
  • post-treatment substrate means a substrate after film formation.
  • the unprocessed substrate W ⁇ b> 1 is attached to the carrier 21 (see FIG. 10), and the processed substrate W ⁇ b> 2 is removed from the carrier 21.
  • the substrate removal robot 17 attaches or removes the substrate W to / from the carrier 21.
  • the substrate accommodation cassette 19 is used when the substrate W is transported to a different processing chamber different from the thin film solar cell manufacturing apparatus 10 and accommodates the substrate W.
  • the substrate film forming lines 16 each including a film forming chamber 11, a preparation / removal chamber 13, and a substrate desorption chamber 15 are provided. Further, the substrate removal robot 17 can move on the rail 18 laid on the floor surface, and the transfer process of the substrate W to all the substrate deposition lines 16 is performed by one substrate removal robot 17. Further, the substrate film forming module 14 is formed by integrating the film forming chamber 11 and the loading / unloading chamber 13 and has a size that can be loaded on a transporting truck.
  • FIGS. 3A to 3C are schematic configuration diagrams of the film forming chamber 11, in which FIG. 3A is a perspective view, FIG. 3B is a perspective view seen from an angle different from FIG. 3A, and FIG. 3C is a side view.
  • the film forming chamber 11 is formed in a box shape.
  • the carrier loading / unloading port 24 is provided with a shutter 25 that opens and closes the carrier loading / unloading port 24.
  • the carrier carry-in / out port 24 is closed while ensuring airtightness.
  • Three electrode units 31 for forming a film on the substrate W are attached to the side surface 27 facing the side surface 23.
  • the electrode unit 31 is configured to be detachable from the film forming chamber 11. Further, an exhaust pipe 29 for reducing the pressure so that the inside of the film forming chamber 11 becomes a vacuum atmosphere is connected to the lower side surface 28 of the film forming chamber 11, and a vacuum pump 30 is connected to the exhaust pipe 29. .
  • FIG. 4A to 4D are schematic configuration diagrams of the electrode unit 31, FIG. 4A is a perspective view, FIG. 4B is a perspective view from a different angle from FIG. 4A, and FIG. 4C is a perspective view showing a modification of the electrode unit 31.
  • FIG. 4D is a sectional view partially showing the cathode unit and the anode (counter electrode).
  • FIG. 5 is a plan view of the cathode.
  • the electrode unit 31 can be attached to and detached from three openings 26 formed on the side surface 27 of the film forming chamber 11 (see FIG. 3B).
  • the electrode unit 31 is provided with one wheel 61 at each of the lower four corners, and is movable on the floor surface.
  • the bottom plate portion 62 with the wheels 61 may be a carriage 62A that can be separated from and connected to the electrode unit 31.
  • the carriage 62 ⁇ / b> A can be separated from the electrode unit 31 after the electrode unit 31 is connected to the film forming chamber 11.
  • each of the electrode units 31 can be moved using the carriage 62A in common without using a plurality of carriages.
  • the side plate portion 63 forms a part of the wall surface of the film forming chamber 11.
  • An anode 67 and a cathode unit 68 positioned on both surfaces of the substrate W are provided on one surface (surface facing the inside of the film forming chamber 11, the first surface) 65 of the side plate portion 63 when performing the film forming process.
  • the electrode unit 31 of the first embodiment includes a pair of anodes 67 that are spaced apart on both sides of the cathode unit 68 with the cathode unit 68 interposed therebetween. In this electrode unit 31, two substrates W can be formed simultaneously using one electrode unit 31.
  • each substrate W during the film forming process is disposed on both sides of the cathode unit 68 so as to be substantially parallel to the gravity direction (vertical direction) and to face the cathode unit 68.
  • the two anodes 67 are arranged on the outer side in the thickness direction of each substrate W in a state of facing each substrate W.
  • the anode 67 incorporates a heater H as a temperature control unit that adjusts the temperature of the substrate W. Further, the two anodes 67 and 67 can be moved in a direction (horizontal direction) approaching and separating from each other by a drive mechanism 71 provided on the side plate portion 63, and the distance between each substrate W and the cathode unit 68 can be set. It can be controlled. Specifically, when the film formation of the substrate W is performed, the two anodes 67 and 67 move in the direction of the cathode unit 68 and come into contact with the substrate W, and further move in the direction close to the cathode unit 68. Thus, the distance between the substrate W and the cathode unit 68 is adjusted as desired.
  • the anodes 67 and 67 are moved away from each other.
  • the drive mechanism 71 since the drive mechanism 71 is provided, the substrate W can be easily taken out from the electrode unit 31.
  • the anode 67 is attached to the drive mechanism 71 via a hinge (not shown), and a surface 67A of the anode 67 facing the cathode unit 68 is a side plate in a state where the electrode unit 31 is pulled out from the film forming chamber 11. It can be rotated (opened) until it is substantially parallel to one surface 65 of the part 63. That is, the anode 67 is configured to be able to rotate by approximately 90 ° when viewed from the vertical direction of the bottom plate portion 62 (see FIG. 4A).
  • shower plates 75 are disposed on the cathode unit 68 on the opposite side of the cathode 67 and on both sides of the cathode unit 68.
  • a plurality of small holes are formed in the shower plate 75, and a film forming gas is ejected toward the substrate W.
  • the shower plates 75 and 75 are cathodes (high frequency electrodes) connected to the matching box.
  • a cathode intermediate member 76 connected to the matching box is provided between the two shower plates 75 and 75.
  • the shower plate 75 is arranged on both sides of the cathode intermediate member 76 in contact with the cathode intermediate member 76.
  • the cathode intermediate member 76 and the shower plate (cathode) 75 are formed of a conductor, and the high frequency is applied to the shower plate (cathode) 75 via the cathode intermediate member 76. For this reason, a voltage having the same potential and the same phase for generating plasma is applied to the two shower plates 75 and 75.
  • the cathode intermediate member 76 is formed of a single flat plate and is connected to a high-frequency power source (not shown) via a matching box 72.
  • the matching box 72 is a device used to obtain impedance matching between the cathode intermediate member 76 and the high frequency power source, and is provided on the other surface 69 (second surface) of the side plate portion 63 of the electrode unit 31.
  • a total of two feeding points 88 are disposed, one on each of the upper and lower side surfaces (upper side surface and lower side surface or upper and lower sides) in the height direction of the cathode intermediate member 76 (longitudinal direction of the side plate portion 63). ing.
  • the voltage supplied from the high-frequency power source via the matching box 72 is applied to the cathode intermediate member 76 through the feeding point 88. Between these feed point 88 and the matching box 72, a wiring 87 for electrically connecting the two 88 and 72 is routed.
  • the wiring 87 extends from the matching box 72 and is routed along the outer periphery of the cathode intermediate member 76 to the power feeding points 88 and 88.
  • the outer periphery of the cathode intermediate member 76, the power feeding point 88, and the wiring 87 are surrounded by an insulating member 89 made of alumina or quartz, for example.
  • the cathode intermediate member 76 and the shower plate (cathode) 75 are formed of a conductor, and the high frequency is applied to the shower plate (cathode) 75 via the cathode intermediate member 76. For this reason, a voltage having the same potential and the same phase for generating plasma is applied to the two shower plates 75 and 75.
  • a space 77 is formed between the cathode intermediate member 76 and the shower plate 75.
  • the space 77 is separated by the cathode intermediate member 76 and formed separately corresponding to each shower plate 75, 75. That is, the cathode unit 68 is formed with a pair of space portions 77.
  • a film forming gas is introduced into each of the spaces 77 from a gas supply device (not shown), the gas is released from the shower plates 75 and 75. That is, the space 77 has a role of a gas supply path.
  • the cathode unit 68 has two gas supply paths. Accordingly, the type of gas, the gas flow rate, the gas mixing ratio, and the like are controlled independently for each system.
  • a hollow exhaust duct 79 is provided on the peripheral edge of the cathode unit 68 over substantially the entire circumference.
  • the exhaust duct 79 is formed with an exhaust port 80 for sucking and removing (exhausting) the film forming gas or the reaction product (powder) in the film forming space 81.
  • an exhaust port 80 is formed so as to communicate with a film formation space 81 formed between the substrate W and the shower plate 75 when performing film formation.
  • a plurality of the exhaust ports 80 are formed along the peripheral edge of the cathode unit 68, and are configured so that the film forming gas or the reaction product (powder) can be sucked and removed almost uniformly over the entire periphery. .
  • an opening (not shown) is formed in a surface of the exhaust duct 79 facing the inside of the film forming chamber 11 at the lower part of the cathode unit 68.
  • the film forming gas and the like removed through the exhaust port 80 can be discharged into the film forming chamber 11 through this opening.
  • the gas discharged into the film forming chamber 11 is exhausted to the outside through an exhaust pipe 29 provided at the lower side surface 28 of the film forming chamber 11.
  • a stray capacitance body 82 having a dielectric and / or a laminated space is provided between the exhaust duct 79 and the cathode intermediate member 76.
  • the exhaust duct 79 is connected to the ground potential.
  • the exhaust duct 79 also functions as a shield frame for preventing abnormal discharge from the cathode 75 and the cathode intermediate member 76.
  • a mask 78 is provided on the peripheral portion of the cathode unit 68 so as to cover a portion from the outer peripheral portion of the exhaust duct 79 to the outer peripheral portion of the shower plate 75.
  • the mask 78 covers a clamping piece 59A (see FIGS. 10 and 22) of a clamping part 59 (described later) provided on the carrier 21, and is integrated with the clamping piece 59A when film formation is performed.
  • a gas flow path R for guiding the film forming gas or reaction product (powder) to the exhaust duct 79 is formed. That is, the gas flow path R is formed between the mask 78 covering the carrier 21 (the sandwiching piece 59 ⁇ / b> A), the shower plate 75, and the exhaust duct 79.
  • the movable rail 37 is formed in the film forming chamber so that the carrier 21 can move between the film forming chamber 11 and the preparation / removal chamber 13 and between the preparation / removal chamber 13 and the substrate desorption chamber 15. 11 and the substrate removal chamber 15.
  • the moving rail 37 is separated between the film forming chamber 11 and the loading / unloading chamber 13, and the carrier carry-in / out port 24 can be sealed by closing the shutter 25.
  • FIGS. 6A and 6B are schematic configuration diagrams of the preparation / removal chamber 13, FIG. 6A is a perspective view, and FIG. 6B is a perspective view from a different angle from FIG. 6A.
  • the preparation / removal chamber 13 is formed in a box shape.
  • the side surface 33 is connected to the side surface 23 of the film forming chamber 11 while ensuring airtightness.
  • An opening 32 through which three carriers 21 can be inserted is formed on the side surface 33.
  • a side surface 34 facing the side surface 33 is connected to the substrate desorption chamber 15.
  • three carrier carry-in / out ports 35 through which the carrier 21 on which the substrate W is mounted can pass are formed.
  • the carrier carry-in / out port 35 is provided with a shutter 36 that can ensure airtightness.
  • the moving rail 37 is separated between the loading / unloading chamber 13 and the substrate detaching chamber 15, and the carrier carry-in / out port 35 can be sealed by closing the shutter 36.
  • the preparation / removal chamber 13 is provided with a push-pull mechanism 38 for moving the carrier 21 between the film formation chamber 11 and the preparation / removal chamber 13 along the moving rail 37.
  • the push-pull mechanism 38 includes a locking portion 48 for locking the carrier 21; a pair provided at both ends of the locking portion 48 and disposed substantially parallel to the moving rail 37.
  • the carrier 21 is viewed in plan view (the surface on which the preparation / removal chamber 13 is installed is viewed from the vertical direction) in order to simultaneously accommodate the pre-processing substrate W 1 and the post-processing substrate W 2.
  • a moving mechanism (not shown) for moving a predetermined distance in a direction substantially orthogonal to the laying direction of the moving rail 37 is provided.
  • An exhaust pipe 42 is connected to the lower side surface 41 of the preparation / removal chamber 13 for reducing the pressure so that the inside of the preparation / removal chamber 13 becomes a vacuum atmosphere.
  • a vacuum pump 43 is connected to the exhaust pipe 42. Has been.
  • FIGS. 8A and 8B are schematic configuration diagrams of the substrate desorption chamber, FIG. 8A is a perspective view, and FIG. 8B is a front view.
  • the substrate removal chamber 15 is formed in a frame shape and connected to the side surface 34 of the preparation / removal chamber 13.
  • the unprocessed substrate W ⁇ b> 1 can be attached to the carrier 21 disposed on the moving rail 37, and the processed substrate W ⁇ b> 2 can be detached from the carrier 21.
  • the substrate removal chamber 15 is configured so that three carriers 21 can be arranged in parallel.
  • the substrate removal robot 17 has a drive arm 45 (see FIG. 2), and has a suction unit that sucks the substrate W at the tip of the drive arm 45.
  • the drive arm 45 drives between the carrier 21 disposed in the substrate removal chamber 15 and the substrate storage cassette 19. Specifically, the drive arm 45 can take out the unprocessed substrate W1 from the substrate storage cassette 19 and attach the unprocessed substrate W1 to the carrier 21 disposed in the substrate removal chamber 15, and remove the processed substrate W2 from the substrate. It can be removed from the carrier 21 returned to the chamber 15 and transported to the substrate storage cassette 19.
  • FIG. 9 is a perspective view of the substrate storage cassette.
  • the substrate storage cassette 19 is formed in a box shape and has a size capable of storing a plurality of substrates W.
  • a plurality of substrates W are stacked and stored in the vertical direction with the film formation surface of the substrate W being horizontal.
  • a caster 47 is provided at the lower part of the substrate housing cassette 19 and can be moved to another processing apparatus different from the thin film solar cell manufacturing apparatus 10.
  • FIG. 10 is a perspective view of the carrier 21.
  • the carrier 21 is used for transporting the substrate W, and has two frame-like frames 51 to which the substrate W can be attached. That is, two substrates W can be attached to one carrier 21.
  • the two frames 51 and 51 are integrated by a connecting member 52 at the upper part thereof.
  • a wheel 53 placed on the moving rail 37 is provided above the connecting member 52.
  • a frame holder 54 is provided below the frame 51 in order to suppress the shaking of the substrate W when the carrier 21 moves.
  • the front end of the frame holder 54 is fitted to a rail member 55 (see FIG.
  • the rail member 55 is arranged in a direction along the moving rail 37 in a plan view (when the surface on which the rail member 55 is installed is viewed from the vertical direction). Further, if the frame holder 54 is composed of a plurality of rollers, the carrier 21 can be transported more stably.
  • Each of the frames 51 has an opening 56, a peripheral edge 57, and a clamping part 59.
  • the film formation surface of the substrate W is exposed at the opening 56.
  • both surfaces of the substrate W are sandwiched between the peripheral portion 57 of the opening 56 and the sandwiching portion 59, and the substrate W is fixed to the frame 51.
  • An urging force by a spring or the like is applied to the clamping part 59 that clamps the substrate W.
  • the clamping unit 59 has clamping pieces 59A and 59B that come into contact with the front surface WO (film formation surface) and the back surface WU (back surface) of the substrate W (see FIG. 22).
  • the separation distance of the sandwiching pieces 59A and 59B can be changed via a spring or the like, that is, the sandwiching piece 59A can move along the direction of approaching / separating from the sandwiching piece 59B according to the movement of the anode 67. (Details will be described later).
  • one carrier 21 is mounted on one moving rail 37. That is, one carrier 21 that can hold a pair (two) of substrates is mounted on one moving rail 37. That is, in one set of thin film solar cell manufacturing apparatus 10, three carriers 21 are attached, that is, three pairs (six) of substrates are held.
  • the thin-film solar cell manufacturing apparatus 10 In the thin-film solar cell manufacturing apparatus 10 according to the first embodiment, four substrate film forming lines 16 each including the film forming chamber 11, the loading / unloading chamber 13, and the substrate desorbing chamber 15 are arranged (see FIG. 2). ) Since three carriers 21 are accommodated in one film formation chamber (see FIGS. 3A and 3B), 24 substrates W can be formed almost simultaneously.
  • a method for forming a film on the substrate W using the thin-film solar cell manufacturing apparatus 10 of the first embodiment will be described.
  • the description will be made with reference to the drawing of one substrate film forming line 16, but the other three substrate film forming lines 16 are also formed on the substrate by a substantially similar method.
  • a substrate storage cassette 19 that stores a plurality of pre-processed substrates W1 is disposed at a predetermined position.
  • the drive arm 45 of the substrate removal robot 17 is moved to take out one pre-treatment substrate W1 from the substrate accommodation cassette 19, and the pre-treatment substrate W1 is placed in the substrate removal chamber 15. Attach to the carrier 21.
  • the arrangement direction of the pre-processing substrate W1 arranged in the horizontal direction in the substrate accommodating cassette 19 changes to the vertical direction, and the pre-processing substrate W1 is attached to the carrier 21.
  • This operation is repeated once, and two pre-processing substrates W1 are attached to one carrier 21. Further, this operation is repeated to attach the unprocessed substrates W1 to the remaining two carriers 21 installed in the substrate removal chamber 15 respectively. That is, six pre-treatment substrates W1 are attached at this stage.
  • the three carriers 21 to which the unprocessed substrate W ⁇ b> 1 is attached move substantially simultaneously along the moving rail 37 and are accommodated in the preparation / removal chamber 13.
  • the shutter 36 of the carrier carry-in / out port 35 of the preparation / removal chamber 13 is closed.
  • the inside of the preparation / removal chamber 13 is kept in a vacuum state using the vacuum pump 43.
  • the three carriers 21 are arranged in a direction orthogonal to the direction in which the moving rail 37 is laid in a plan view (when the surface on which the preparation / removal chamber 13 is installed is viewed from the vertical direction). Each is moved by a predetermined distance using a moving mechanism.
  • the shutter 25 of the film forming chamber 11 is opened, and the carrier 21A attached with the processed substrate W2 after the film formation is completed in the film forming chamber 11 is pushed into the loading / unloading chamber 13.
  • the pull mechanism 38 is used for movement.
  • the carrier 21 to which the pre-processing substrate W1 is attached and the carrier 21A to which the post-processing substrate W2 is attached are arranged in parallel in a plan view. Then, by maintaining this state for a predetermined time, the heat stored in the post-processing substrate W2 is transferred to the pre-processing substrate W1. That is, the pre-deposition substrate W1 is heated.
  • the movement of the push-pull mechanism 38 will be described.
  • the movement when the carrier 21A located in the film formation chamber 11 is moved to the preparation / removal chamber 13 will be described.
  • the carrier 21A to which the processed substrate W2 is attached is locked to the locking portion 48 of the push-pull mechanism 38.
  • the moving arm 58 of the moving device 50 attached to the locking portion 48 is swung.
  • the length of the moving arm 58 is variable.
  • the locking portion 48 with which the carrier 21A is locked moves while being guided by the guide member 49, and moves into the preparation / removal chamber 13 as shown in FIG. 16B.
  • the carrier 21 ⁇ / b> A is moved from the film formation chamber 11 to the preparation / removal chamber 13. According to such a configuration, it is not necessary to provide a driving source (driving mechanism) for driving the carrier 21 ⁇ / b> A in the film forming chamber 11.
  • the carrier 21 and the carrier 21 ⁇ / b> A are moved in a direction orthogonal to the moving rail 37 by the moving mechanism, and each carrier 21 holding the pre-processing substrate W ⁇ b> 1 is moved to the position of each moving rail 37.
  • the carrier 21 holding the unprocessed substrate W1 is moved to the film forming chamber 11 using the push-pull mechanism 38, and the shutter 25 is closed after the movement is completed.
  • the inside of the film forming chamber 11 is maintained in a vacuum state.
  • the unprocessed substrate W1 attached to the carrier 21 moves along a direction parallel to the surface, and the surface WO is in the direction of gravity between the anode 67 and the cathode unit 68 in the film forming chamber 11. And is inserted in a state along the vertical direction so as to be substantially parallel to (see FIG. 19).
  • the drive mechanism 71 moves the anode 67 in the direction in which the two anodes 67 of the electrode unit 31 are close to each other, so that the anode 67 and the back surface of the pre-treatment substrate W ⁇ b> 1. Contact the WU.
  • the unprocessed substrate W ⁇ b> 1 moves toward the cathode unit 68 so as to be pushed by the anode 67. Further, the unprocessed substrate W1 is moved until the gap between the unprocessed substrate W1 and the shower plate 75 of the cathode unit 68 reaches a predetermined distance (film formation distance).
  • the gap (film formation distance) between the pre-process substrate W1 and the shower plate 75 of the cathode unit 68 is 5 to 15 mm, for example, about 5 mm.
  • the holding piece 59A of the holding part 59 of the carrier 21 that is in contact with the surface WO of the pre-processing substrate W1 moves away from the holding piece 59B in accordance with the movement of the pre-processing substrate W1 (movement of the anode 67). Displace.
  • the pre-deposition substrate W1 is sandwiched between the anode 67 and the sandwiching piece 59A.
  • a restoring force such as a spring acts on the sandwiching piece 59A, so that the sandwiching piece 59A is displaced toward the sandwiching piece 59B.
  • the mask 78 covers the surface of the sandwiching piece 59 ⁇ / b> A and the outer edge portion of the substrate W, and is formed so as to be in close contact with the sandwiching piece 59 ⁇ / b> A or the outer edge portion of the substrate W.
  • the film formation space 81 is formed by the mask 78, the shower plate 75 of the cathode unit 68, and the pre-processing substrate W1 (substrate W).
  • the mask 78 covers the exposed surface 85 exposed to the film forming space 81 among the holding pieces 59 ⁇ / b> A of the carrier 21, thereby shielding the holding piece 59 ⁇ / b> A so as not to be exposed to the film forming space 81.
  • the mating surface (contact surface) between the mask 78 and the sandwiching piece 59 ⁇ / b> A and the mating surface (contact surface) between the mask 78 and the outer edge portion of the substrate W function as the seal portion 86. This prevents the deposition gas from leaking between the mask 78 and the sandwiching piece 59A or between the mask 78 and the outer edge of the substrate W.
  • the movement of the pre-processing substrate W1 is stopped when the holding piece 59A or the outer edge of the substrate W comes into contact with the mask 78, so that the gap between the mask 78 and the shower plate 75, and the mask 78 and the exhaust duct 79 are moved.
  • the gap that is, the height of the gas flow path R in the thickness direction (perpendicular to the plane of the shower plate 75) is set so that the gap between the pre-treatment substrate W1 and the cathode unit 68 is a predetermined distance. Is set.
  • the mask 78 and the substrate W are in contact with each other has been described.
  • the mask 78 and the substrate W may be arranged with a minute interval that restricts the passage of the deposition gas. .
  • the phases of the voltages at the two feeding points 88 are matched by the matching box 72. By matching the phase of the voltage at each feeding point 88, the potential of the entire shower plate (cathode) 75 can be set uniformly.
  • a voltage is applied to the shower plate (cathode) 75 of the cathode unit 68 to form a film on the surface WO of the unprocessed substrate W1.
  • the pre-processing substrate W1 is heated to a desired temperature by the heater H built in the anode 67.
  • the anode 67 stops heating when the pre-treatment substrate W1 reaches a desired temperature.
  • the pre-treatment substrate W1 When a voltage is applied to the shower plate 75, plasma is generated in the film formation space 81. Due to heat input from the plasma over time, the temperature of the pre-treatment substrate W1 may rise above a desired temperature even if heating of the anode 67 is stopped. In this case, the anode 67 can also function as a heat radiating plate for cooling the unprocessed substrate W1 whose temperature has increased excessively. Therefore, the pre-processing substrate W1 is adjusted to a desired temperature regardless of the elapsed time of the film forming processing time. Note that a plurality of layers can be deposited on the substrate W in a single deposition process step by switching the deposition gas material supplied from the shower plate 75 at predetermined intervals.
  • the gas or reaction product (powder) in the film formation space 81 is sucked and removed (exhaust) through the exhaust port 80 formed in the peripheral portion of the cathode unit 68.
  • the gas or reaction product in the film formation space 81 is exhausted to the exhaust duct 79 at the peripheral edge of the cathode unit 68 via the gas flow path R and the exhaust port 80.
  • the gas or the reaction product passes through an opening formed on a surface of the exhaust duct 79 in the lower portion of the cathode unit 68 facing the film forming chamber 11.
  • the gas or the reaction product is exhausted to the outside of the film forming chamber 11 through an exhaust pipe 29 provided at the lower side surface 28 of the film forming chamber 11.
  • the reaction product (powder) generated during film formation is deposited and deposited on the inner wall surface of the exhaust duct 79, whereby the reaction product is recovered and disposed of. Since all the electrode units 31 in the film forming chamber 11 perform the same process as described above, it is possible to form films on six substrates simultaneously.
  • the drive mechanism 71 moves the anode 67 in the direction in which the two anodes 67 are separated from each other, and returns the processed substrate W2 and the frame 51 (holding piece 59A) to their original positions (FIG. 20, (See FIG. 22). That is, when the film formation is completed and the carrier 21 is moved, the mask 78 is detached from the exposed surface 85 of the sandwiching piece 59A. Further, by moving the anode 67 in the direction in which the two anodes 67 are separated from each other, the processed substrate W2 is separated from the anode 67 (see FIG. 19).
  • the shutter 25 of the film formation chamber 11 is opened, and the carrier 21 is moved to the preparation / removal chamber 13 using a push-pull mechanism 38.
  • the inside of the preparation / removal chamber 13 is maintained in a vacuum state, and the carrier 21B to which the unprocessed substrate W1 to be formed next is attached.
  • the heat stored in the processed substrate W2 in the preparation / removal chamber 13 is transferred to the unprocessed substrate W1, and the temperature of the processed substrate W2 is lowered.
  • each carrier 21 ⁇ / b> B is moved into the film forming chamber 11
  • each carrier 21 is returned to the position of the moving rail 37 by the above moving mechanism.
  • the processed substrate W ⁇ b> 2 is removed from the carrier 21 by the substrate removal robot 17 and transferred to the substrate storage cassette 19.
  • the film forming process is completed by moving the substrate storage cassette 19 to a place (apparatus) where the next process is performed.
  • the film on the processed substrate W2 is not uniformly formed as a whole, that is, for example, because the plasma in the two film formation spaces is non-uniform or unstable.
  • the use condition of the matching box 72 provided in the cathode unit 68 is adjusted, so that one feeding point 88 in the cathode intermediate member 76 is adjusted.
  • the phase of the input voltage may be shifted from the phase of the voltage input to the other feeding point 88.
  • the number of matching boxes 72 provided in the electrode unit 31 may be set to two or more according to the usage status of the matching box 72.
  • the cathode intermediate member 76 has been described in which two feeding points 88 are disposed, one on each of the upper and lower side surfaces in the height direction. For this reason, for example, when a film having a non-uniform quality is formed on the processed substrate W2 so as to correspond to the position of the power supply point 88 disposed on the cathode intermediate member 76, one power supply point 88 is By shifting the phase of the input voltage and the phase of the voltage input to the other feeding point 88, the quality of the film formed on the processed substrate W2 can be adjusted separately.
  • the use condition of the matching box 72 is provided by providing two or more feeding points 88 on the cathode intermediate member 76.
  • the potential of the entire shower plate (cathode 75) can be set uniformly by adjusting the phase of the voltage at the plurality of feeding points 88.
  • disposing the anodes 67 on both sides of the cathode intermediate member 76 so as to face each other a film can be formed on two substrates W at the same time in a space where space saving is realized.
  • the thin film solar cell manufacturing apparatus 10 can form a bottom cell 104 (semiconductor layer) made of microcrystalline silicon simultaneously on a plurality of substrates W; 11 is a loading / unloading chamber 13 that can simultaneously store the unprocessed substrate W1 carried into the film 11 and the processed substrate W2 unloaded from the film forming chamber 11; the unprocessed substrate W1 and the processed substrate W2 as carriers 21; A substrate detaching chamber 15 for detaching; a substrate detaching robot 17 for detaching the substrate W from the carrier 21; and a substrate accommodation cassette 19 for accommodating the substrate W for transport to another processing chamber.
  • a substrate detaching chamber 15 for detaching
  • a substrate detaching robot 17 for detaching the substrate W from the carrier 21
  • a substrate accommodation cassette 19 for accommodating the substrate W for transport to another processing chamber.
  • the electrode unit 31 is detachably provided in the film forming chamber 11; the heater H is built in the anode 67 of the electrode unit 31; A drive mechanism 71 for driving the de 67, the basic configuration of such a point where the matching box 72 is attached, (same in the following embodiments) which is the same as the first embodiment described above.
  • the cathode unit 118 of the second embodiment is disposed between two anodes 67 and 67 (anode units 90 and 90), and the thickness direction of the cathode unit 118 (perpendicular to the plane of the shower plate 75).
  • the insulating member 120 is installed between the pair of shower plates 75.
  • a pair of RF application members 119 are disposed substantially in parallel with each other with the insulating member 120 interposed therebetween.
  • the insulating member 120 is made of alumina or quartz, for example.
  • the pair of RF application members 119 are members formed in a flat plate shape.
  • a shower plate 75 is arranged to face each RF applying member 119.
  • Each shower plate 75 is disposed between the RF application member 119 and the anode 67 and is in contact with the surface of the RF application member 119.
  • Each shower plate 75 and the RF application member 119 are connected on the outer periphery of the RF application member 119.
  • a space 77 for introducing a film forming gas is formed between each shower plate 75 and each RF applying member 119.
  • Each RF application member 119 has a feeding point 88 to which a voltage of a high frequency power supply is applied via the matching box 72, and upper and lower side surfaces (upper side surface and lower side surface or upper and lower sides) in the height direction of the RF application member 119. A total of two are arranged one by one. Between these feed point 88 and the matching box 72, a wiring 87 for electrically connecting the two 88 and 72 is routed. The periphery of the feeding point 88 and the wiring 87 is surrounded by an insulating member 121 made of alumina or quartz, for example (see FIG. 5). In addition, as shown in FIG. 27, the feeding point 88 of each of the two RF application members 119 is covered with an insulating member 121. The potential of the power feeding unit 88 is the same on the upper side surface and the lower side surface of the RF application member 119 (the same potential).
  • the stray capacitance is provided by inserting the dielectric (insulating member 120) between the two cathodes. Therefore, the mutual interference between the two electrodes (cathodes) can be suppressed by this stray capacitance.
  • a third embodiment of the present invention will be described with reference to FIG.
  • the differences between the cathode unit 128 of the third embodiment and the cathode unit 118 of the second embodiment described above are as follows. That is, in the cathode unit 118 of the second embodiment described above, the pair of RF applying members 119 are arranged substantially in parallel with the insulating member 120 interposed therebetween, whereas the cathode unit of the third embodiment is arranged. In 128, a pair of cathode RF application members 119 are arranged substantially parallel to each other with an intervening mechanism 130 interposed between them.
  • the inhibition mechanism 130 includes a flat ground plate 131 and a pair of shield portions 132 and 132.
  • the ground plate 131 is disposed substantially at the center in the thickness direction of the inhibition mechanism 130 (perpendicular to the plane of the shower plate 75).
  • the shield parts 132 and 132 are arranged on both sides of the ground plate 131.
  • the ground plate 131 is interposed between the RF applying members 119 and 119.
  • the RF applying members 119 and 119 and the shield portions 132 and 132 are separated on the left side and the right side by the ground plate 131. That is, the cathode unit 128 is electrically divided into both sides in the thickness direction by the ground plate 131.
  • the pair of shield portions 132 and 132 are interposed between the ground plate 131 and the RF applying member 119, respectively.
  • To do. As a method of forming a stray capacitance between each of the two RF applying members 119 and 119 and the ground plate, (A) a method of sandwiching a dielectric or (B) a method of forming a space of about 1 to 29 mm can be given. It is done. Examples of the method for forming the space include (1) a method of stacking electrically floating metal plates with a space provided, and (2) a method of stacking insulating plates with a space provided.
  • the inhibition mechanism 130 that inhibits electrical conduction is provided between the pair of RF application members 119. Therefore, the voltage applied to the pair of RF applying members 119 can be applied without interfering with each other. For this reason, plasma can be generated in the two film formation spaces 81 without the discharges interfering with each other.
  • the film formation conditions in the film formation spaces 81 and 81 formed between the shower plate (cathode) 75 and the substrate W can be set separately, and the two substrates W can be individually set. The substrate W can be formed under the film formation conditions tuned to the above. Therefore, uniform and stable film formation is performed.
  • the technical scope of the present invention is not limited to the above-described embodiments, and includes those in which various modifications are made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiments are merely examples, and can be changed as appropriate. Further, in the above-described embodiment, the cathode intermediate member 76 and the RF applying member 119 have one feeding point 88 to which a voltage from a high-frequency power source is applied via the matching box 72 on the upper and lower side surfaces in the height direction. The case where two are arranged in total has been described.
  • the present invention is not limited to this, and two or more feeding points 88 may be provided according to the size of the cathode intermediate member 76 and the RF applying member 119 and the conditions for performing film formation.
  • the configurations of the cathode intermediate member 76 and the RF applying member 119 in which two feeding points 88 are arranged have been described, but the number of feeding points 88 is not limited.
  • Three or more feeding points 88 may be provided.
  • power supply points 88 may be provided at four locations of the cathode intermediate member 76 and the RF application member 119 so as to correspond to the four sides of the substrate W.
  • power supply points 88 may be provided at four locations of the cathode intermediate member 76 and the RF application member 119 so as to correspond to the four corners of the substrate W.
  • the number of the power feeding points 88 and the position where the power feeding points 88 are installed are appropriately adjusted according to the quality of the film formed on the processed substrate W2.
  • the shower plate (cathode) 75 and the cathode intermediate member 76 are independent members, and the configuration in which these members are incorporated in the cathode unit 68 has been described.
  • the configuration is not limited to this, and a configuration in which the shower plate (cathode) 75 and the cathode intermediate member 76 are integrally formed may be employed.
  • the shower plate (cathode) 75 and the RF application member 119 are independent members, and the configuration in which these members are incorporated in the cathode unit 68 has been described.
  • the present invention is not limited to this configuration, and a configuration in which the shower plate (cathode) 75 and the RF application member 119 are integrally formed may be employed.
  • the present invention is a thin film solar that can form a uniform film on the film formation surface of the substrate even if the high-frequency electrode is enlarged or the conditions for film formation are changed. Useful for battery manufacturing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 この薄膜太陽電池製造装置は、基板(W)の成膜面と重力方向とが略並行となるように前記基板(W)が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間(81)と;電圧が印加されるカソード(75)と、2つ以上の給電ポイント(88)とを有し、前記カソード(75)が両側に配置されたカソードユニット(68,118,128)と;前記カソードユニット(68,118,128)の両側に配置された前記カソード(75)と離間して対向するように配置されるアノード(67)と;を含む。

Description

薄膜太陽電池製造装置
 本発明は、薄膜太陽電池製造装置に関する。
 本願は、2008年6月6日に出願された特願2008-149937号に基づき優先権を主張し、その内容をここに援用する。
 現在の太陽電池に用いられている材料においては、単結晶Si型および多結晶Si型の材料により大半が占められており、Siの材料不足などが懸念されている。
 そこで、近年では、製造コストが低く、材料不足のリスクが小さい薄膜Si層が形成された薄膜太陽電池の需要が高まっている。
 さらに、従来型のa-Si(アモルファスシリコン)層のみを有する従来の薄膜太陽電池に加えて、最近ではa-Si層とμc-Si(マイクロクリスタルシリコン)層とを積層することにより変換効率の向上を図るタンデム型薄膜太陽電池の需要が高まっている。
 この薄膜太陽電池の薄膜Si層(半導体層)を成膜する装置としては、プラズマCVD装置が用いられることが多い。
 プラズマCVD装置は、成膜室を有しており、膜が形成される基板をこの成膜室内に収容し、成膜室内を真空に減圧した後、成膜ガスを成膜室内に供給するように構成されている。
 また、成膜室内には、成膜ガスのプラズマを発生する高周波電極(カソード)が設置されている。
 そして、プラズマによって分解された成膜ガス(ラジカル)が基板の成膜面(膜が形成される面)に到達することにより、加熱された基板の成膜面に所望の膜が形成される。
 高周波電極は、高周波電源にマッチング回路を介して接続されている。
 高周波電源は、発振回路又は増幅回路を有しており、交流又は直流の入力を受けて高周波電力を出力する。
 マッチング回路は、高周波電源と高周波電極とのマッチングを図る回路であって、このマッチング回路によって高周波電極に所望の高周波電力が入力される(例えば、特許文献1参照)。
特開2005-158980号公報
 ところで、上述のCVD装置の高周波電極においては、高周波電力を入力するための給電ポイントを高周波電極の平面の略中央に1箇所設ける場合が多い。
 給電ポイントを高周波電極の中央に配置することで、高周波電極全体に同電位の電力を供給しやすくなり、これにより、基板の成膜面全体に均一な膜を形成することができる。
 しかしながら、高周波電極が大型化すると、この高周波電極における平面の略中央に給電ポイントを1箇所設けただけでは、高周波電極の中央部と側面部(外周部)との間で電位差が生じてしまい、基板の成膜面全体に均一な膜が形成され難いという課題がある。
 また、たとえ高周波電極全体を均一に同電位にできたとしても、基板の温度が全ての箇所で均一にならない場合など、成膜を施す際の条件によって基板の成膜面全体に均一に膜が形成され難いという課題がある。
 そこで、本発明は、上述の事情に鑑みてなされたものであり、高周波電極が大型化したり、成膜を施す際の条件が変化したりしても、基板の成膜面に均一な膜を形成することが可能な薄膜太陽電池製造装置を提供する。
 本件の発明者らにより、高品質の膜質を得つつ高い生産性を実現するため両面に放電面(カソード)を持つカソードユニットを中央に設けて、カソードユニットの両面にアノードを離間して配置する薄膜太陽電池製造装置が検討されている。
 このような平行平板型プラズマCVD装置において、カソードユニットの両側に放電空間が形成される。
 この2つの放電空間のインピーダンスのバランスが崩れたとき、放電がどちらかに偏り、プラズマが不均一に発生する恐れがある。
 これを回避するためには電極間隔などのシビアな調整が必要であるという課題がある。
 本発明の第1態様の薄膜太陽電池製造装置は、基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;電圧が印加されるカソードと、2つ以上の給電ポイントとを有し、前記カソードが両側に配置されたカソードユニットと;前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;を含む。
 本発明の第1態様の薄膜太陽電池製造装置においては、カソードに給電ポイントを2つ以上設けることによって、カソードが大型化した場合であっても、カソード全体の電位を均一に設定することができる。
 また、基板に形成される膜の品質を確認しながら各給電ポイントに印加される電位を調整することが可能になる。
 このため、例えば、基板の温度が全ての箇所で均一にならない場合などがあっても、基板の成膜面に均一な膜を形成することができる。
 さらに、カソードの各々の両面に対向するように、アノードが配置されているので、省スペースが実現された空間で、同時に2枚の基板に膜を形成することが可能になる。
 本発明の第2態様の薄膜太陽電池製造装置は、基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;同電位が印加される2つ以上の給電ポイントを有して電圧が印加されるカソードと、一対の前記カソードの間に設置される絶縁部材とを有し、前記カソードが両側に配置されたカソードユニットと;前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;を含む。
 本発明の第2態様の薄膜太陽電池製造装置においては、2つのカソードの間に誘電体(絶縁部材)を挿入することにより浮遊容量が設けられているので、この浮遊容量によって2つの電極(カソード)間の相互干渉を抑えることができる。
 本発明の第3態様の薄膜太陽電池製造装置は、基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;互いに異なる電位が印加される2つ以上の給電ポイントを有して電圧が印加されるカソードと、一対の前記カソードの間に設置される接地電位のシールド部材とを有し、前記カソードが両側に配置されたカソードユニットと;前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;を含む。
 本発明の第3態様の薄膜太陽電池製造装置においては、一対のカソードに印加される電圧が互いに干渉することなく、電圧を一対のカソードに印加することが可能になる。
 このため、2つの成膜空間の放電が相互に干渉することなく行われ、均一で安定した成膜することができる。
 本発明の第4態様の薄膜太陽電池製造装置は、基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;電圧が印加されるカソードと、前記カソードがその両側に設置され、かつ、その側面に2つ以上の給電ポイントが配置されたカソード中間部材とを有し、前記カソードが両側に配置されたカソードユニットと;前記カソードユニットの両側に配置された前記カソードと離間して対向するアノードと;を含む。
 本発明の第4態様の薄膜太陽電池製造装置においては、カソードが両面に設置されるカソード中間部材が給電ポイントを有し、かつ、2つ以上の給電ポイントを有しているので、カソード毎に給電ポイントを設ける必要がなく、かつ、同電位・同位相の電圧が印加することが可能となる。
 本発明によれば、カソードに給電ポイントを2つ以上設けることによって、カソードが大型化した場合であっても、カソード全体の電位を均一に設定することができる。
 また、本発明では、基板に形成される膜の品質を確認しながら各給電ポイントに印加される電位を調整することが可能になる。
 このため、例えば、両電極のインピーダンスが異なる場合であっても、安定な放電を発生することが可能となり、基板の成膜面に均一な膜を形成することができる。
本発明の第一実施形態における薄膜太陽電池を示す概略断面図である。 本発明の第一実施形態における薄膜太陽電池製造装置を示す概略構成図である。 本発明の第一実施形態における成膜室を示す斜視図である。 本発明の第一実施形態における成膜室を別の角度から見た斜視図である。 本発明の第一実施形態における成膜室を示す側面図である。 本発明の第一実施形態における電極ユニットを示す斜視図である。 本発明の第一実施形態における電極ユニットを別の角度から見た斜視図である。 本発明の第一実施形態における電極ユニットを示す分解斜視図である。 本発明の第一実施形態における電極ユニットのカソードユニットおよびアノードユニットの一部分を示す断面図である。 本発明の第一実施形態におけるカソードを示す平面図である。 本発明の第一実施形態における仕込・取出室を示す斜視図である。 本発明の第一実施形態における仕込・取出室を別の角度から見た斜視図である。 本発明の第一実施形態におけるプッシュ-プル機構を示す概略構成図である。 本発明の第一実施形態における基板脱着室の概略構成を示す斜視図である。 本発明の第一実施形態における基板脱着室の概略構成を示す正面図である。 本発明の第一実施形態における基板収容カセットを示す斜視図である。 本発明の第一実施形態におけるキャリアを示す斜視図である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(1)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(2)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(3)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(4)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(5)である。 本発明の第一実施形態におけるプッシュ-プル機構の動きを示す説明図である。 本発明の第一実施形態におけるプッシュ-プル機構の動きを示す説明図である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(6)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(7)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(8)であり、基板が電極ユニットに挿入されたときの概略構成を示す断面図である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(9)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(10)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(11)であり、基板が電極ユニットにセットされた構成を部分的に示す断面図である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(12)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(13)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(14)である。 本発明の第一実施形態における薄膜太陽電池の製造方法の過程を示す説明図(15)である。 本発明の第二実施形態におけるカソードユニットおよびアノードの一部を示す断面図である。 本発明の第三実施形態におけるカソードユニットおよびアノードの一部を示す断面図である。
 本発明の実施形態に係る薄膜太陽電池製造装置について、図1~図28に基づいて説明する。
(薄膜太陽電池)
 図1は、本発明の薄膜太陽電池製造装置によって製造される薄膜太陽電池100の概略断面図である。
 図1に示すように、薄膜太陽電池100は、その表面を構成し、ガラスからなる基板Wと;この基板W上に設けられた透明導電膜からなる上部電極101と;アモルファスシリコンからなるトップセル102と;このトップセル102と後述するボトムセル104との間に設けられた透明導電膜からなる中間電極103と;マイクロクリスタルシリコンからなるボトムセル104と;透明導電膜からなるバッファ層105と;金属膜からなる裏面電極106とが積層されている。
 つまり、薄膜太陽電池100は、a-Si/マイクロクリスタルSiタンデム型太陽電池である。
 このようなタンデム構造を有する薄膜太陽電池100では、短波長光をトップセル102で吸収するとともに、長波長光をボトムセル104で吸収することで発電効率の向上を図ることができる。
 トップセル102のp層(102p)、i層(102i)、n層(102n)の3層構造は、アモルファスシリコンで形成されている。
 また、ボトムセル104のp層(104p)、i層(104i)、n層(104n)の3層構造は、マイクロクリスタルシリコンで構成されている。
 このような構成を有する薄膜太陽電池100においては、太陽光に含まれる光子というエネルギー粒子がi層に当たると、光起電力効果により、電子と正孔(hole)が発生し、電子はn層に向かって移動するとともに、正孔はp層に向かって移動する。
 この光起電力効果により発生した電子/正孔を上部電極101と裏面電極106とにより取り出すことで、光エネルギーを電気エネルギーに変換することができる。
 また、トップセル102とボトムセル104との間に中間電極103を設けることにより、トップセル102を通過してボトムセル104に到達する光の一部が中間電極103で反射して再びトップセル102に入射するため、セルの感度特性が向上し、発電効率の向上に寄与する。
 また、基板Wに入射した太陽光は、各層を通過した後、裏面電極106によって反射される。
 薄膜太陽電池100においては、光エネルギーの変換効率を向上させるために、また、上部電極101に入射した太陽光の光路を伸ばすプリズム効果と、光の閉じ込め効果を得るために形成されたテクスチャ構造を採用している。
(第一実施形態)
 次に、本発明の薄膜太陽電池製造装置について説明する。
(薄膜太陽電池製造装置)
 図2は薄膜太陽電池製造装置の概略構成図である。
 図2に示すように、薄膜太陽電池製造装置10は、成膜室11と、仕込・取出室13と、基板脱着室15と、基板脱着ロボット17と、基板収容カセット19と、を含む。
 成膜室11は、複数の基板Wに対して同時にマイクロクリスタルシリコンで構成されたボトムセル104(半導体層)を成膜する。
 仕込・取出室13は、成膜室11に搬入される処理前基板W1と、成膜室11から搬出された処理後基板W2とを同時に収容する。
 以下の説明において「処理前基板」とは、成膜処理が施される前の基板を意味し、「処理後基板」とは、成膜処理が施された後の基板を意味する。
 基板脱着室15おいては、処理前基板W1がキャリア21(図10参照)に取り付けられたり、処理後基板W2がキャリア21から取り外されたりする。
 基板脱着ロボット17は、基板Wをキャリア21に取り付けたり、キャリア21から取り外したりする。
 基板収容カセット19は、薄膜太陽電池製造装置10とは異なる別の処理室に基板Wを搬送する際に用いられ、基板Wを収容する。
 なお、第一実施形態の薄膜太陽電池製造装置10においては、成膜室11、仕込・取出室13および基板脱着室15によって構成される基板成膜ライン16が4つ設けられている。
 また、基板脱着ロボット17は床面に敷設されたレール18上を移動可能であり、全ての基板成膜ライン16への基板Wの受け渡し工程を1台の基板脱着ロボット17によって行なう。
 さらに、基板成膜モジュール14は、成膜室11と仕込・取出室13とが一体化して構成されており、運搬用のトラックに積載可能な大きさを有する。
 図3A~図3Cは、成膜室11の概略構成図であり、図3Aは斜視図、図3Bは図3Aとは別の角度から見た斜視図、図3Cは側面図である。
 図3A~図3Cに示すように、成膜室11は箱型に形成されている。成膜室11の仕込・取出室13に接続される側面23には、基板Wが搭載されたキャリア21が通過可能なキャリア搬出入口24が3箇所形成されている。キャリア搬出入口24にはキャリア搬出入口24を開閉するシャッタ25が設けられている。シャッタ25を閉止した時には、キャリア搬出入口24は気密性を確保して閉止される。側面23と対向する側面27には、基板Wに成膜を施すための電極ユニット31が3基取り付けられている。電極ユニット31は、成膜室11から着脱可能に構成されている。また、成膜室11の側面下部28には成膜室11内が真空雰囲気となるように減圧するための排気管29が接続されており、排気管29には真空ポンプ30が接続されている。
 図4A~図4Dは、電極ユニット31の概略構成図であり、図4Aは斜視図、図4Bは図4Aとは別の角度からの斜視図、図4Cは電極ユニット31の変形例を示す斜視図、図4Dはカソードユニットおよびアノード(対向電極)を部分的に示した断面図である。また、図5はカソードの平面図である。電極ユニット31は、成膜室11の側面27に形成された3箇所の開口部26に着脱可能である(図3B参照)。電極ユニット31は、下部の四隅に車輪61が1つずつ設けられており、床面上を移動可能である。車輪61が取り付けられた底板部62上には、側板部63が鉛直方向に立設されている。この側板部63は、成膜室11の側面27の開口部26を閉塞する大きさを有している。図4Cの変形例に示すように、車輪61付の底板部62は、電極ユニット31と分離・接続可能な台車62Aであってもよい。この場合、電極ユニット31を成膜室11に接続した後に、電極ユニット31から台車62Aを分離することができる。これにより、複数の台車を用いずに、台車62Aを共通に用いて、電極ユニット31の各々を移動することができる。
 側板部63は、成膜室11の壁面の一部を成している。
 側板部63の一方の面(成膜室11の内部に向く面、第1面)65には、成膜処理時に施す際に基板Wの両面に位置するアノード67とカソードユニット68とが設けられている。第一実施形態の電極ユニット31は、カソードユニット68を間に挟み、カソードユニット68の両側に離間して配置された一対のアノード67を含む。この電極ユニット31においては、一つの電極ユニット31を用いて2枚の基板Wを同時に成膜できる。したがって、成膜処理時の各基板Wは、重力方向(鉛直方向)と略並行となるように、かつ、カソードユニット68と対向するように、カソードユニット68の両側に配置されている。2枚のアノード67は、各基板Wに対向した状態で、各基板Wの厚さ方向外側に配置されている。
 また、側板部63の他方の面69(第2面)には、アノード67を駆動させるための駆動機構71と、成膜を施す際にカソードユニット68に給電するためのマッチングボックス72と、が取り付けられている。さらに、側板部63には、カソードユニット68に成膜ガスを供給する配管用の接続部(不図示)が形成されている。
 アノード67には、基板Wの温度を調整する温度制御部として、ヒータHが内蔵されている。また、2枚のアノード67,67は、側板部63に設けられた駆動機構71により、互いに近接・離間する方向(水平方向)に移動可能であり、各基板Wとカソードユニット68との距離を制御可能である。具体的には、基板Wの成膜を施す際には2枚のアノード67,67がカソードユニット68の方向に移動して基板Wと当接し、さらに、カソードユニット68に近接する方向に移動して基板Wとカソードユニット68との距離を所望に調節する。その後、成膜を行い、成膜終了後にアノード67,67が、互いに離間する方向に移動する。このように、駆動機構71が設けられているので、基板Wを電極ユニット31から容易に取り出すことができる。さらに、アノード67は、駆動機構71にヒンジ(不図示)を介して取りつけられており、電極ユニット31を成膜室11から引き抜いた状態で、アノード67のカソードユニット68に対向する面67Aが側板部63の一方の面65と略平行になるまで回動できる(開く)。
 つまり、アノード67は、底板部62の鉛直方向から見て略90°回動できるように構成されている(図4A参照)。
 カソードユニット68は、シャワープレート75(=カソード)、カソード中間部材76、排気ダクト79、浮遊容量体82、及び給電ポイント88を有している。カソードユニット68には、アノード67と対向する面であって、カソードユニット68の両側に、シャワープレート75が配置されている。シャワープレート75には、小孔(不図示)が複数形成されており、成膜ガスを基板Wに向かって噴出する。さらに、シャワープレート75,75は、マッチングボックスと接続されたカソード(高周波電極)である。2枚のシャワープレート75,75の間には、マッチングボックスと接続されたカソード中間部材76が設けられている。すなわち、シャワープレート75は、カソード中間部材76の両側に、このカソード中間部材76と接した状態で配置されている。カソード中間部材76とシャワープレート(カソード)75とは導電体で形成され、高周波はカソード中間部材76を介してシャワープレート(カソード)75に印加される。このため、2枚のシャワープレート75,75には、プラズマを発生するための同電位・同位相の電圧が印加される。
 ここで、図4D、図5に示すように、カソード中間部材76は1枚の平板からなり、不図示の高周波電源にマッチングボックス72を介して接続されている。
 マッチングボックス72は、カソード中間部材76と高周波電源とのインピーダンス・マッチングを得るために用いられる装置であって、電極ユニット31の側板部63の他方の面69(第2面)に1つ設けられている。
 また、給電ポイント88は、カソード中間部材76の高さ方向(側板部63の長手方向)における上下の側面(上側面及び下側面或いは上部及び下部)に各1つずつ、合計2つ配設されている。これにより、マッチングボックス72を介して高周波電源から供給された電圧は、給電ポイント88を通じて、カソード中間部材76に印加される。
 これら給電ポイント88とマッチングボックス72との間には、両者88,72を電気的に接続するための配線87が配索されている。
 配線87は、マッチングボックス72から延出し、カソード中間部材76の外周に沿って、各給電ポイント88,88に至るまで配索されている。
 なお、カソード中間部材76の外周および、給電ポイント88および配線87は、例えばアルミナ又は石英などで構成される絶縁部材89によって周囲が取り囲まれている。
 カソード中間部材76とシャワープレート(カソード)75は導電体で形成され、高周波はカソード中間部材76を介してシャワープレート(カソード)75に印加される。
 このため、2枚のシャワープレート75,75には、プラズマを発生するための同電位・同位相の電圧が印加される。
 また、カソード中間部材76とシャワープレート75との間には空間部77が形成されている。空間部77は、カソード中間部材76で分離され、それぞれのシャワープレート75、75毎に対応して別々に形成されている。即ち、カソードユニット68には、一対の空間部77が形成されている。 
 ガス供給装置(不図示)から空間部77の各々に成膜ガスが導入されると、各シャワープレート75、75からガスが放出される。すなわち、空間部77は、ガス供給路の役割を有している。
 この第一実施形態においては、空間部77がそれぞれのシャワープレート75、75毎に対応して別々に形成されているので、カソードユニット68は、2系統のガス供給路を有している。これによって、ガスの種類、ガスの流量、ガスの混合比等が系統毎に独立して制御される。
 さらに、カソードユニット68の周縁部には略全周に亘って中空状の排気ダクト79が設けられている。
 排気ダクト79には、成膜空間81の成膜ガス又は反応生成物(パウダー)を吸引して除去する(排気する)ための排気口80が形成されている。
 具体的には、成膜を施す際の基板Wとシャワープレート75との間に形成される成膜空間81に連通するように排気口80が形成されている。
 排気口80は、カソードユニット68の周縁部に沿って複数形成されており、全周に亘って略均等に成膜ガス又は反応生成物(パウダー)を吸引して除去できるように構成されている。
 また、カソードユニット68の下部における排気ダクト79の成膜室11内へ向いた面には開口部(不図示)が形成されている。排気口80を通じて除去された成膜ガス等は、この開口部を介して成膜室11内へ排出することができる。
 成膜室11内へ排出されたガスは、成膜室11の側面下部28に設けられた排気管29より外部へ排気される。
 また、排気ダクト79とカソード中間部材76の間には、誘電体および/もしくは積層空間を有する浮遊容量体82が設けられている。排気ダクト79は、接地電位に接続されている。排気ダクト79は、カソード75およびカソード中間部材76からの異常放電を防止するためのシールド枠としても機能する。
 さらに、カソードユニット68の周縁部には、排気ダクト79の外周部からシャワープレート75の外周部に至る部位を覆うようにマスク78が設けられている。
 このマスク78は、キャリア21に設けられた後述する挟持部59の挟持片59A(図10、図22参照)を被覆すると共に、成膜を施す際に挟持片59Aと一体となって空間部77の成膜ガス又は反応生成物(パウダー)を排気ダクト79に導くためのガス流路Rを形成している。
 すなわち、キャリア21(挟持片59A)を被覆するマスク78とシャワープレート75との間、および排気ダクト79との間にガス流路Rが形成されている。
 図2に戻り、成膜室11と仕込・取出室13との間、および、仕込・取出室13と基板脱着室15との間をキャリア21が移動できるように、移動レール37が成膜室11と基板脱着室15との間に敷設されている。
 なお、移動レール37は、成膜室11と仕込・取出室13との間で分離され、キャリア搬出入口24はシャッタ25を閉じることで密閉可能である。
 図6A及び図6Bは、仕込・取出室13の概略構成図であり、図6Aは斜視図、図6Bは図6Aとは別の角度からの斜視図である。
 図6A及び図6Bに示すように、仕込・取出室13は、箱型に形成されている。
 側面33は成膜室11の側面23と気密性を確保して接続されている。
 側面33には3つのキャリア21が挿通可能な開口部32が形成されている。
 側面33と対向する側面34は基板脱着室15に接続されている。
 側面34には基板Wが搭載されたキャリア21が通過可能なキャリア搬出入口35が3箇所形成されている。
 キャリア搬出入口35には気密性を確保できるシャッタ36が設けられている。なお、移動レール37は仕込・取出室13と基板脱着室15の間で分離され、キャリア搬出入口35はシャッタ36を閉じることで密閉可能である。
 また、仕込・取出室13には、移動レール37に沿って成膜室11と仕込・取出室13との間でキャリア21を移動させるためのプッシュ-プル機構38が設けられている。
 図7に示すように、このプッシュ-プル機構38は、キャリア21を係止するための係止部48と;係止部48の両端に設けられ、移動レール37と略平行に配された一対のガイド部材49と;係止部48を両ガイド部材49に沿って移動させるための移動装置50と;を含む。
 さらに、仕込・取出室13内においては、処理前基板W1および処理後基板W2を同時に収容するために、キャリア21を平面視(仕込・取出室13が設置される面を鉛直方向から見て)において移動レール37の敷設方向と略直交する方向に所定距離移動させるための移動機構(不図示)が設けられている。
 そして、仕込・取出室13の側面下部41には、仕込・取出室13内が真空雰囲気となるように減圧するための排気管42が接続されており、排気管42には真空ポンプ43が接続されている。
 図8A及び図8Bは基板脱着室の概略構成図であり、図8Aは斜視図、図8Bは正面図である。
 図8A及び図8Bに示すように、基板脱着室15は、枠状に形成されており、仕込・取出室13の側面34に接続されている。
 基板脱着室15においては、移動レール37に配されているキャリア21に対して処理前基板W1を取り付けることができ、処理後基板W2をキャリア21から取り外すことができる。
 基板脱着室15には、3体のキャリア21が並列して配置できるように構成されている。
 基板脱着ロボット17は、駆動アーム45を有しており(図2参照)、駆動アーム45の先端に基板Wを吸着する吸着部を有する。
 また、駆動アーム45は、基板脱着室15に配されたキャリア21と基板収容カセット19との間を駆動する。具体的に、駆動アーム45は、基板収容カセット19から処理前基板W1を取り出して、基板脱着室15に配されたキャリア21に処理前基板W1を取り付けることができ、処理後基板W2を基板脱着室15に戻ってきたキャリア21から取り外し、基板収容カセット19へ搬送することができる。
 図9は基板収容カセットの斜視図である。
 図9に示すように、基板収容カセット19は、箱型に形成されており、基板Wを複数枚収容可能な大きさを有している。
 基板収容カセット19内においては、基板Wの成膜面を水平にした状態で、上下方向に基板Wが複数枚積層して収容される。
 また、基板収容カセット19の下部にはキャスター47が設けられており、薄膜太陽電池製造装置10とは異なる別の処理装置へと移動することができる。
 図10は、キャリア21の斜視図である。図10に示すように、キャリア21は、基板Wを搬送するために用いられ、基板Wを取り付けることができる額縁状のフレーム51を2つ有する。つまり、一つのキャリア21において、基板Wを2枚取り付けることができる。2つのフレーム51,51は、その上部において連結部材52により一体化されている。
 また、連結部材52の上方には、移動レール37に載置される車輪53が設けられている。移動レール37上を車輪53が転がることにより、キャリア21が移動レール37に沿って移動可能である。
 また、フレーム51の下部には、キャリア21が移動する際に基板Wの揺れを抑制するためにフレームホルダ54が設けられている。フレームホルダ54の先端は各室の底面上に設けられた断面凹状のレール部材55(図19参照)に嵌合されている。なお、レール部材55は平面視(レール部材55が設置される面を鉛直方向から見て)において移動レール37に沿う方向に配されている。
 また、フレームホルダ54が複数のローラで構成されていれば、更に安定してキャリア21を搬送することが可能となる。
 フレーム51はそれぞれ、開口部56と、周縁部57と、挟持部59とを有している。フレーム51に基板Wが搭載された場合に、開口部56においては基板Wの成膜面が露出される。また、開口部56の周縁部57と、挟持部59とによって、基板Wの両面が挟持され、基板Wはフレーム51に固定される。そして、基板Wを挟持している挟持部59には、バネなどによる付勢力が働いている。
 また、挟持部59は、基板Wの表面WO(成膜面)および裏面WU(背面)に当接する挟持片59A,59Bを有している(図22参照)。この挟持片59A,59Bの離隔距離は、バネなどを介して可変可能、つまり、アノード67の移動に応じて挟持片59Aが挟持片59Bに対して近接・離間する方向に沿って移動可能に構成されている(詳細は後述する)。
 ここで、一つの移動レール37上には、1体のキャリア21が取り付けられている。即ち、一対(2枚)の基板を保持できる1体のキャリア21が、一つの移動レール37上に取り付けられている。つまり、一組の薄膜太陽電池製造装置10においては、3体のキャリア21が取り付けられ、即ち、3対(6枚)の基板が保持される。
 第一実施形態の薄膜太陽電池製造装置10では、上述した成膜室11,仕込・取出室13,及び基板脱着室15によって構成される基板成膜ライン16が4つ配置構成され(図2参照)、一つの成膜室に3つのキャリア21が収容されるため(図3A及び図3B参照)、24枚の基板Wを略同時に成膜することができる。
(薄膜太陽電池の製造方法)
 次に、第一実施形態の薄膜太陽電池製造装置10を用いて、基板Wに成膜する方法を説明する。なお、この説明においては、一つの基板成膜ライン16の図面を用いて説明するが、他の三つの基板成膜ライン16においても略同様に方法により基板に成膜する。
 まず、図11に示すように、処理前基板W1を複数枚収容した基板収容カセット19を所定の位置に配置する。
 次に、図12に示すように、基板脱着ロボット17の駆動アーム45を動かして、基板収容カセット19から処理前基板W1を一枚取り出し、処理前基板W1を基板脱着室15内に設置されていたキャリア21に取り付ける。この時、基板収容カセット19において水平方向に配置された処理前基板W1の配置方向は、鉛直方向に変わり、処理前基板W1がキャリア21に取り付けられる。この動作をもう一度繰り返し、一つのキャリア21に2枚の処理前基板W1を取り付ける。
 さらに、この動作を繰り返して、基板脱着室15に設置されている残り二つのキャリア21にも処理前基板W1をそれぞれ取り付ける。つまり、この段階で処理前基板W1が6枚取り付けられる。
 続いて、図13に示すように、処理前基板W1が取り付けられた3個のキャリア21は、移動レール37に沿って略同時に移動し、仕込・取出室13内に収容される。仕込・取出室13にキャリア21が収容された後、仕込・取出室13のキャリア搬出入口35のシャッタ36が閉じる。
 その後、仕込・取出室13の内部を、真空ポンプ43を用いて真空状態に保持する。
 その後、図14に示すように、平面視(仕込・取出室13が設置される面を鉛直方向から見て)において、3個のキャリア21を移動レール37が敷設された方向と直交する方向に移動機構を用いてそれぞれ所定距離移動させる。
 次に、図15に示すように、成膜室11のシャッタ25を開き、成膜室11で成膜が終了した処理後基板W2が取り付けられたキャリア21Aを仕込・取出室13内にプッシュ-プル機構38を用いて移動させる。
 この時、処理前基板W1が取り付けられたキャリア21と、処理後基板W2が取り付けられたキャリア21Aとが平面視において並列して配置される。
 そして、この状態を所定時間保持することで、処理後基板W2に蓄熱されている熱が処理前基板W1に伝熱される。つまり、成膜前基板W1が加熱される。
 ここで、プッシュ-プル機構38の動きを説明する。なお、ここでは成膜室11内に位置しているキャリア21Aを仕込・取出室13へ移動させる際の動きを説明する。
 図16Aに示すように、プッシュ-プル機構38の係止部48に、処理後基板W2が取り付けられたキャリア21Aを係止する。そして、係止部48に取り付けられている移動装置50の移動アーム58を揺動させる。この時、移動アーム58の長さは可変する。すると、キャリア21Aが係止された係止部48は、ガイド部材49に案内されながら移動し、図16Bに示すように、仕込・取出室13内へと移動する。つまり、キャリア21Aは、成膜室11から仕込・取出室13へと移動される。
 このような構成によれば、キャリア21Aを駆動させるための駆動源(駆動機構)を成膜室11内に設けることが不要になる。
 次に、図17に示すように、キャリア21およびキャリア21Aを移動機構により移動レール37と直交する方向に移動させ、処理前基板W1を保持した各キャリア21を各々の移動レール37の位置まで移動させる。
 続いて、図18に示すように、プッシュ-プル機構38を用いて処理前基板W1を保持したキャリア21を成膜室11に移動させ、移動完了後に、シャッタ25を閉める。なお、成膜室11内は、真空状態に保持されている。
 この時、キャリア21に取り付けられた処理前基板W1は、その面に平行な方向に沿って移動し、成膜室11内において、アノード67とカソードユニット68との間に、表面WOが重力方向と略並行となるように鉛直方向に沿った状態で挿入される(図19参照)。
 次に、図19から図20に示すように、駆動機構71により、電極ユニット31の2枚のアノード67が互いに近接する方向に、アノード67を移動させて、アノード67と処理前基板W1の裏面WUとを当接させる。
 更に、図21に示すように、駆動機構71を駆動させると、アノード67に押されるように処理前基板W1がカソードユニット68に向かって移動する。
 更に、処理前基板W1とカソードユニット68のシャワープレート75との隙間が所定距離(成膜距離)になるまで、処理前基板W1を移動させる。
 なお、この処理前基板W1とカソードユニット68のシャワープレート75との隙間(成膜距離)は5~15mmで、例えば5mm程度である。
 この時、処理前基板W1の表面WOに当接しているキャリア21の挟持部59の挟持片59Aは、処理前基板W1の移動(アノード67の移動)に伴って、挟持片59Bから離れる方向に変位する。この時、成膜前基板W1は、アノード67と挟持片59Aとによって挟持される。なお、アノード67がカソードユニット68から離れる方向に移動した際に、挟持片59Aにはバネなどの復元力が作用するため、挟持片59Aは、挟持片59Bに向かって変位する。
 処理前基板W1がカソードユニット68に向かって移動すると、挟持片59Aがマスク78に当接し、この時点でアノード67の移動が停止する(図22参照)。
 図22に示すように、マスク78は、挟持片59Aの表面と基板Wの外縁部とを覆うと共に、挟持片59Aもしくは基板Wの外縁部と密接するように形成されている。成膜空間81は、マスク78と、カソードユニット68のシャワープレート75と、処理前基板W1(基板W)とにより形成される。
 すなわち、マスク78は、キャリア21の挟持片59Aのうち、成膜空間81に露呈する露出面85を被覆することで、成膜空間81に対して露出しないように挟持片59Aを遮蔽する。
 さらに、マスク78と挟持片59Aとの合わせ面(当接面)及びマスク78と基板Wの外縁部との合わせ面(当接面)は、シール部86として機能する。これにより、マスク78と挟持片59Aとの間又はマスク78と基板Wの外縁部との間から成膜ガスが漏れることが防止されている。
 また、処理前基板W1の移動は、挟持片59Aもしくは基板Wの外縁部がマスク78に当接することによって停止するので、マスク78とシャワープレート75との間隙、及びマスク78と排気ダクト79との間隙、つまり、ガス流路Rの厚さ方向(シャワープレート75の平面に対して鉛直方向)の流路高さは、処理前基板W1とカソードユニット68との隙間が所定の距離となるように設定されている。
 また、第一実施形態の変形例として、マスクを排気ダクト79に弾性体を介して取り付けることによって、基板とシャワープレート75(=カソード)との距離を駆動機構71のストロークによって任意に変更する構造を採用することができる。
 上記の実施形態では、マスク78と基板Wとが当接する場合を述べたが、成膜ガス通過の通過を制限するような微少な間隔を空けてマスク78と基板Wとが配置されてもよい。
 続いて、カソードユニット68のシャワープレート75から成膜ガスを噴出させるとともに、マッチングボックス72を起動させて高周波電源からの電圧をマッチングボックス72とカソードユニット68のカソード中間部材76を介してシャワープレート(=カソード)75に印加する。この時、マッチングボックス72によって、2つの給電ポイント88における各々の電圧の位相を合わせる。
 各給電ポイント88における電圧の位相が合うことによって、シャワープレート(カソード)75全体の電位を均一に設定することができる。
 そして、カソードユニット68のシャワープレート(カソード)75に電圧を印加することで処理前基板W1の表面WOに成膜を施す。
 なお、アノード67に内蔵されているヒータHにより、処理前基板W1が所望の温度に加熱される。
 アノード67は、処理前基板W1が所望の温度に達すると加熱を停止する。
 シャワープレート75に電圧が印加されることによって、成膜空間81内にプラズマが発生する。時間の経過に伴うプラズマからの入熱により、アノード67の加熱を停止しても処理前基板W1の温度が所望の温度よりも上昇してしまうおそれがある。この場合、アノード67は、温度上昇しすぎた処理前基板W1を冷却するための放熱板として機能させることもできる。したがって、処理前基板W1は、成膜処理時間の時間経過に関わらず所望の温度に調整される。
 なお、シャワープレート75から供給される成膜ガス材料を所定時間毎に切り替えることにより、一度の成膜処理工程において複数の層を基板W上に成膜することができる。
 また、成膜中および成膜後に、カソードユニット68の周縁部に形成された排気口80を通じて、成膜空間81内のガス又は反応生成物(パウダー)は吸引され除去される(排気)。具体的には、成膜空間81内のガス又は反応生成物は、ガス流路Rと排気口80とを介して、カソードユニット68の周縁部の排気ダクト79に排気される。その後、ガス又は反応生成物は、カソードユニット68の下部における排気ダクト79の成膜室11内へ向いた面に形成された開口部を通過する。更に、ガス又は反応生成物は、成膜室11の側面下部28に設けられた排気管29から成膜室11の外部へと排気される。
 なお、成膜を施す際に発生した反応生成物(パウダー)を排気ダクト79の内壁面に付着・堆積させることにより、この反応生成物は、回収及び処分される。
 成膜室11内の全ての電極ユニット31において、上述した処理と同じ処理が実行されるため、6枚の基板に対して同時に成膜することができる。
 そして、成膜が終了したら、駆動機構71により2枚のアノード67が互いに離れる方向にアノード67を移動させ、処理後基板W2およびフレーム51(挟持片59A)を元の位置に戻す(図20、図22参照)。即ち、成膜が終了し、キャリア21を移動する段階になると、挟持片59Aの露出面85からマスク78が外れる。更に、2枚のアノード67が互いに離れる方向にアノード67を移動させることで、処理後基板W2がアノード67から離れる(図19参照)。
 次に、図23に示すように、成膜室11のシャッタ25を開き、キャリア21を仕込・取出室13へプッシュ-プル機構38を用いて移動させる。
 このとき仕込・取出室13内は、真空状態に維持されており、次に成膜される処理前基板W1を取り付けたキャリア21Bが既に配置されている。
 そして、仕込・取出室13内で処理後基板W2に蓄熱されている熱を処理前基板W1へ伝熱し、処理後基板W2の温度を下げる。
 続いて、図24に示すように、各キャリア21Bが成膜室11内に移動された後、上記の移動機構により、各キャリア21を移動レール37の位置に戻す。
 次に、図25に示すように、シャッタ25を閉じた後、シャッタ36を開いて、キャリア21を基板脱着室15へと移動させる。
 次に、図26に示すように、基板脱着室15において、処理後基板W2を基板脱着ロボット17によりキャリア21から取り外し、基板収容カセット19へと搬送する。
 全ての処理後基板W2の取り外しが完了したら、基板収容カセット19を次工程が行なわれる場所(装置)まで移動させることで、成膜処理が終了する。
 上記の成膜処理において、処理後基板W2上の膜が全体で均一に形成されていなかった場合、つまり、例えば、2つの成膜空間のプラズマが不均一または不安定であったことに起因して、処理後基板W2に膜が不均一に形成されてしまった場合、カソードユニット68に設けられているマッチングボックス72の使用条件を調整することによって、カソード中間部材76における一方の給電ポイント88に入力される電圧の位相と、他方の給電ポイント88に入力される電圧の位相とをずらしてもよい。この場合、マッチングボックス72の使用状況に応じて、電極ユニット31に設けられているマッチングボックス72の設置個数を2個以上にしてもよい。
 上記の第一実施形態においては、カソード中間部材76に、給電ポイント88が高さ方向における上下の側面に各1つずつ、合計2つ配設されている構成について述べた。
 このため、例えば、カソード中間部材76に配設された給電ポイント88の位置に対応するように不均一な品質を有する膜が処理後基板W2に形成される場合には、一方の給電ポイント88に入力される電圧の位相と、他方の給電ポイント88に入力される電圧の位相とをずらすことによって、処理後基板W2に形成される膜の品質を別々に調整することができる。
 したがって、上述の第一実施形態によれば、シャワープレート(カソード75)が大型化した場合であっても、カソード中間部材76に給電ポイント88を2つ以上設けることによって、マッチングボックス72の使用条件を調整することによって、複数の給電ポイント88における電圧の位相を調整することによって、シャワープレート(カソード75)全体の電位を均一に設定することができる。
 また、処理後基板W2に形成される膜の品質を確認しながら、各給電ポイント88,88に印加される電圧の位相を調整することが可能になる。
 さらに、カソード中間部材76の両側に、アノード67の各々が対向するように配置させることにより、省スペースが実現された空間で、同時に2枚の基板Wに膜を形成することが可能になる。
(第二実施形態)
 次に、上記の図5を援用し、かつ、図27に基づいて、本発明の第二実施形態を説明する。なお、第一実施形態と同一部材には、同一符号を付して説明する(以下の実施形態でも同様)。
 この第二実施形態において、薄膜太陽電池製造装置10が、複数の基板Wに対して同時にマイクロクリスタルシリコンで構成されたボトムセル104(半導体層)を成膜可能な成膜室11と;成膜室11に搬入される処理前基板W1と、成膜室11から搬出された処理後基板W2と、を同時に収容可能な仕込・取出室13と;処理前基板W1および処理後基板W2をキャリア21に脱着する基板脱着室15と;基板Wをキャリア21から脱着するための基板脱着ロボット17と;基板Wを別の処理室との搬送のために収容する基板収容カセット19と;を備えている点、成膜室11に電極ユニット31が着脱可能に設けられている点;電極ユニット31のアノード67にヒータHが内蔵されている点;電極ユニット31の側板部63に、アノード67を駆動させるための駆動機構71と、マッチングボックス72とが取り付けられている点等の基本的構成は、前述の第一実施形態と同様である(以下の実施形態でも同様)。
 第二実施形態のカソードユニット118は、2枚のアノード67,67(アノードユニット90,90)の間に配置されており、カソードユニット118の厚さ方向(シャワープレート75の平面に対して鉛直方向)において略中央に配された平板状の絶縁部材120を有する。絶縁部材120は、一対のシャワープレート75の間に設置されている。カソードユニット118においては、この絶縁部材120を間に介在させて1対のRF印加部材119が互いに略並行に配置されている。絶縁部材120は、例えば、アルミナ又は石英などで形成されている。
 1対のRF印加部材119は、それぞれ平板状に形成された部材である。各RF印加部材119と対向するように、シャワープレート75が配置されている。
 各シャワープレート75は、RF印加部材119とアノード67との間に配置され、RF印加部材119の面と接触している。各シャワープレート75と、RF印加部材119とは、RF印加部材119の外周において接続されている。各シャワープレート75と各RF印加部材119との間には、成膜ガスを導入するための空間部77が形成されている。
 各RF印加部材119には、マッチングボックス72を介して高周波電源の電圧が印加される給電ポイント88が、RF印加部材119の高さ方向における上下の側面(上側面及び下側面或いは上部及び下部)に各1つずつ、合計2つ配設されている。これら給電ポイント88とマッチングボックス72との間には、両者88,72を電気的に接続するための配線87が配索されている。
 給電ポイント88及び配線87の周囲は、例えばアルミナ又は石英などで構成される絶縁部材121によって取り囲まれている(図5参照)。また、図27に示されているように、2つのRF印加部材119の各々の給電ポイント88は、絶縁部材121によって覆われている。給電部88の電位は、RF印加部材119の上側面及び下側面において同じである(同電位)。
 したがって、上述の第二実施形態によれば、前述の第一実施形態と同様の効果に加え、2つのカソードの間に誘電体(絶縁部材120)を挿入することにより浮遊容量が設けられているので、この浮遊容量によって2つの電極(カソード)間の相互干渉を抑えることができる。
(第三実施形態)
 次に、本発明の第三実施形態を図28に基づいて説明する。
 第三実施形態のカソードユニット128と、前述の第二実施形態のカソードユニット118との相違点は、次の通りである。即ち、前述の第二実施形態のカソードユニット118においては1対のRF印加部材119が絶縁部材120をその間に介在させて互いに略並行に配置されているのに対し、第三実施形態のカソードユニット128においては、1対のカソードRF印加部材119が電気的な導通を阻害する阻害機構130をその間に介在させて互いに略並行に配置されている。
 阻害機構130は、平板状のアース板131と、1対のシールド部132,132とにより構成されている。アース板131は、阻害機構130の厚さ方向(シャワープレート75の平面に対して鉛直方向)において略中央に配されている。シールド部132,132は、アース板131の両側に配置されている。アース板131は、各RF印加部材119,119の間に介在している。アース板131により、RF印加部材119,119とシールド部132、132とが左側及び右側に分離されている。すなわち、カソードユニット128は、アース板131によって厚さ方向において両側に電気的に区分けされている。1対のシールド部132,132は、それぞれアース板131とRF印加部材119との間に介在している。2つのRF印加部材119,119各々とこのアース板との間に設置されるシールド部132,132にある一定の浮遊容量を設けることにより、2つのRF印加部材119,119間の相互干渉を防止する。
 2つのRF印加部材119,119の各々とアース板との間に浮遊容量を形成する方法として、(A)誘電体を挟む方法、又は(B)1~29mm程度の空間を形成する方法が挙げられる。また、空間を形成する方法としては、(1)電気的にフローティングな金属板を間隔を設けて重ねる方法、又は(2)絶縁板を間隔を設けて重ねる方法が挙げられる。
 したがって、上述の第三実施形態によれば、前述の第一実施形態と同様の効果に加え、1対のRF印加部材119の間に電気的な導通を阻害する阻害機構130が設けられているので、1対のRF印加部材119に印加される電圧が互いに干渉することなく印加することが可能になる。このため、2つの成膜空間81においては、放電が相互に干渉することなく、プラズマを発生することができる。
 また、シャワープレート(カソード)75と基板Wとの間に形成される成膜空間81,81における成膜条件をそれぞれ別個に設定することが可能になり、2枚の基板Wに対してそれぞれ個別にチューニングされた成膜条件で基板Wを成膜することができる。よって、均一で安定な成膜が行われる。
 なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 また、上述の実施形態では、カソード中間部材76、RF印加部材119には、マッチングボックス72を介して高周波電源からの電圧が印加される給電ポイント88が高さ方向の上下の側面に各1つずつ、合計2つ配設されている場合について説明した。
 しかしながら、これに限られるものではなく、カソード中間部材76、RF印加部材119の大きさや成膜を施す際の条件に応じて給電ポイント88を2つ以上設けてもよい。
 上記の実施形態においては、給電ポイント88が2つ配設されているカソード中間部材76及びRF印加部材119の構成について述べたが、給電ポイント88の個数は限定されない。3つ以上の給電ポイント88を設けてもよい。例えば、基板Wの4辺に対応するように、カソード中間部材76及びRF印加部材119の4箇所に給電ポイント88を設けてもよい。また、基板Wの4隅に対応するように、カソード中間部材76及びRF印加部材119の4箇所に給電ポイント88を設けてもよい。給電ポイント88の個数及び給電ポイント88が設置される位置は、処理後基板W2に形成される膜の品質に応じて適宜調整される。
 さらに、上述の第一実施形態においては、シャワープレート(カソード)75及びカソード中間部材76が独立した部材であり、これらの部材がカソードユニット68に組み込まれた構成について説明した。しかしながら、この構成に限らず、シャワープレート(カソード)75とカソード中間部材76とが一体に形成された構成を採用してもよい。
 上述の第二実施形態及び第三実施形態では、シャワープレート(カソード)75及びRF印加部材119が独立した部材であり、これらの部材がカソードユニット68に組み込まれた構成について説明した。しかしながら、この構成に限らず、シャワープレート(カソード)75とRF印加部材119とが一体に形成された構成を採用してもよい。
 以上詳述したように、本発明は、高周波電極が大型化したり、成膜を施す際の条件が変化したりしても、基板の成膜面に均一な膜を形成することができる薄膜太陽電池製造装置に有用である。
 10…薄膜太陽電池製造装置 11…成膜室 67…アノード 68,118,128…カソードユニット 75…シャワープレート(カソード)76…カソード中間部材 119…RF印加部材 81…成膜空間 88…給電ポイント 90…アノードユニット 102…トップセル(膜) 104…ボトムセル(膜) 120…絶縁部材 130…阻害機構(機構) 131…アース板 132…シールド部(シールド部材) H…ヒータ(温度制御部)R…ガス流路 W…基板 W1…処理前基板 W2…処理後基板 WO…表面(成膜面) WU…裏面(背面)

Claims (4)

  1.  薄膜太陽電池製造装置であって、
     基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;
     電圧が印加されるカソードと、2つ以上の給電ポイントとを有し、前記カソードが両側に配置されたカソードユニットと;
     前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;
     を含むことを特徴とする薄膜太陽電池製造装置。
  2.  薄膜太陽電池製造装置であって、
     基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;
     同電位が印加される2つ以上の給電ポイントを有して電圧が印加されるカソードと、一対の前記カソードの間に設置される絶縁部材とを有し、前記カソードが両側に配置されたカソードユニットと;
     前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;
     を含むことを特徴とする薄膜太陽電池製造装置。
  3.  薄膜太陽電池製造装置であって、
     基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;
     互いに異なる電位が印加される2つ以上の給電ポイントを有して電圧が印加されるカソードと、一対の前記カソードの間に設置される接地電位のシールド部材とを有し、前記カソードが両側に配置されたカソードユニットと;
     前記カソードユニットの両側に配置された前記カソードと離間して対向するように配置されるアノードと;
     を含むことを特徴とする薄膜太陽電池製造装置。
  4.  薄膜太陽電池製造装置であって、
     基板の成膜面と重力方向とが略並行となるように前記基板が配置され、前記成膜面にCVD法により所望の膜を形成する成膜空間と;
     電圧が印加されるカソードと、前記カソードがその両側に設置され、かつ、その側面に2つ以上の給電ポイントが配置されたカソード中間部材とを有し、前記カソードが両側に配置されたカソードユニットと;
     前記カソードユニットの両側に配置された前記カソードと離間して対向するアノードと; 
     を含むことを特徴とする薄膜太陽電池製造装置。
PCT/JP2009/060356 2008-06-06 2009-06-05 薄膜太陽電池製造装置 WO2009148155A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09758422A EP2293343A4 (en) 2008-06-06 2009-06-05 DEVICE FOR PRODUCING A THIN FILM SOLAR CELL
CN2009801127543A CN102017169B (zh) 2008-06-06 2009-06-05 薄膜太阳能电池制造装置
JP2010515938A JP5535906B2 (ja) 2008-06-06 2009-06-05 薄膜太陽電池製造装置
US12/995,794 US20110094446A1 (en) 2008-06-06 2009-06-05 Thin-film solar cell manufacturing apparatus
KR1020107022724A KR101221954B1 (ko) 2008-06-06 2009-06-05 박막 태양전지 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-149937 2008-06-06
JP2008149937 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009148155A1 true WO2009148155A1 (ja) 2009-12-10

Family

ID=41398228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060356 WO2009148155A1 (ja) 2008-06-06 2009-06-05 薄膜太陽電池製造装置

Country Status (7)

Country Link
US (1) US20110094446A1 (ja)
EP (1) EP2293343A4 (ja)
JP (1) JP5535906B2 (ja)
KR (1) KR101221954B1 (ja)
CN (1) CN102017169B (ja)
TW (1) TWI429098B (ja)
WO (1) WO2009148155A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP1100438A2 (en) * 2011-08-15 2013-02-28 Ecosolifer Ag Electrode structure for using in reaction chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325759A (ja) * 1995-05-30 1996-12-10 Anelva Corp 表面処理装置
JPH11340150A (ja) * 1998-05-29 1999-12-10 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JP2004335601A (ja) * 2003-05-02 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd 薄膜形成装置の基板搬送装置
JP2005158980A (ja) 2003-11-26 2005-06-16 Kaneka Corp Cvd装置
JP2006261363A (ja) * 2005-03-17 2006-09-28 Fuji Electric Holdings Co Ltd プラズマ処理装置
JP2007329071A (ja) * 2006-06-09 2007-12-20 Fuji Electric Holdings Co Ltd プラズマ処理装置
JP2008149937A (ja) 2006-12-19 2008-07-03 Komatsu Ltd ホイールローダ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719751B2 (ja) * 1984-07-02 1995-03-06 鐘淵化学工業株式会社 成膜方法
CA1269950A (en) * 1984-06-22 1990-06-05 Yoshihisa Tawada Glow-discharge decomposition apparatus
JP3006029B2 (ja) * 1990-05-16 2000-02-07 株式会社島津製作所 真空成膜装置
JPH08172054A (ja) * 1994-12-19 1996-07-02 Mitsubishi Electric Corp プラズマcvd方法、その装置およびそれを用いた半導体装置の製法
AU726151B2 (en) * 1998-04-08 2000-11-02 Mitsubishi Heavy Industries, Ltd. Plasma CVD apparatus
AU725612B2 (en) * 1998-05-29 2000-10-12 Mitsubishi Heavy Industries, Ltd. Plasma CVD apparatus
JP4679051B2 (ja) * 2003-11-26 2011-04-27 株式会社カネカ Cvd装置
JP4026181B2 (ja) * 2004-11-02 2007-12-26 村田 正義 高周波プラズマ発生用電極と、該電極により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP4584722B2 (ja) * 2005-01-13 2010-11-24 シャープ株式会社 プラズマ処理装置および同装置により製造された半導体素子
CN102203317A (zh) * 2008-11-12 2011-09-28 株式会社爱发科 电极电路、成膜装置、电极单元以及成膜方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325759A (ja) * 1995-05-30 1996-12-10 Anelva Corp 表面処理装置
JPH11340150A (ja) * 1998-05-29 1999-12-10 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JP2004335601A (ja) * 2003-05-02 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd 薄膜形成装置の基板搬送装置
JP2005158980A (ja) 2003-11-26 2005-06-16 Kaneka Corp Cvd装置
JP2006261363A (ja) * 2005-03-17 2006-09-28 Fuji Electric Holdings Co Ltd プラズマ処理装置
JP2007329071A (ja) * 2006-06-09 2007-12-20 Fuji Electric Holdings Co Ltd プラズマ処理装置
JP2008149937A (ja) 2006-12-19 2008-07-03 Komatsu Ltd ホイールローダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293343A4

Also Published As

Publication number Publication date
CN102017169B (zh) 2013-12-25
TWI429098B (zh) 2014-03-01
EP2293343A1 (en) 2011-03-09
CN102017169A (zh) 2011-04-13
TW201005983A (en) 2010-02-01
KR101221954B1 (ko) 2013-01-15
EP2293343A4 (en) 2012-05-02
JPWO2009148155A1 (ja) 2011-11-04
KR20110016866A (ko) 2011-02-18
US20110094446A1 (en) 2011-04-28
JP5535906B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2010055669A1 (ja) 電極回路、成膜装置、電極ユニットおよび成膜方法
JP5328786B2 (ja) 薄膜太陽電池製造装置
JP5302960B2 (ja) 薄膜太陽電池製造装置
JP5280441B2 (ja) 成膜装置
JP5427779B2 (ja) 薄膜太陽電池製造装置
JP5186563B2 (ja) 薄膜太陽電池製造装置
JP5535906B2 (ja) 薄膜太陽電池製造装置
JP5417326B2 (ja) 薄膜太陽電池製造装置
WO2011013697A1 (ja) 成膜装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112754.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515938

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022724

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8618/DELNP/2010

Country of ref document: IN

Ref document number: 2009758422

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12995794

Country of ref document: US