WO2009147803A1 - Heat pump unit and heat pump hot-water supply device - Google Patents

Heat pump unit and heat pump hot-water supply device Download PDF

Info

Publication number
WO2009147803A1
WO2009147803A1 PCT/JP2009/002358 JP2009002358W WO2009147803A1 WO 2009147803 A1 WO2009147803 A1 WO 2009147803A1 JP 2009002358 W JP2009002358 W JP 2009002358W WO 2009147803 A1 WO2009147803 A1 WO 2009147803A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
hot water
heat pump
drain pan
Prior art date
Application number
PCT/JP2009/002358
Other languages
French (fr)
Japanese (ja)
Inventor
千頭秀雄
片岡秀彦
吉川晋司
村山崇
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009147803A1 publication Critical patent/WO2009147803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2009Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/209Sanitary water taps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/10Placed within or inside of
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a heat pump unit, and more particularly, to a heat pump unit and a heat pump water heater used in a hot water circulation heating system that heats by circulating hot water in a building.
  • the heat pump is installed outdoors, and includes a compressor, a radiator, an expansion valve, and an evaporator that are connected by refrigerant piping and constitute a refrigeration cycle, and a fan that applies outside air to the evaporator.
  • the heat pump takes heat from the outside air by the evaporator and heats the hot water flowing from the hot water storage tank by the heat released from the radiator.
  • the heat pump takes heat from the outside air by the evaporator, the water vapor in the air condenses and the condensed water adheres to the evaporator that collects heat from the outside air.
  • this condensed water is discharged out of the apparatus through a drain outlet provided in the drain pan of the evaporator.
  • the temperature of the outside air often drops to below freezing in winter when heating operation is performed, so the drain outlet may freeze and drainage failure may occur.
  • the defrosting operation of the evaporator is performed by the heat of the refrigerant discharged from the compressor and before entering the radiator, the temperature of the refrigerant entering the radiator may be lowered, and the heat efficiency of the heat pump unit may be lowered.
  • the subject of this invention is providing the heat pump unit which can prevent the freezing of the drain outlet of the drain pan provided in the evaporator.
  • the heat pump unit includes an evaporator, a compressor, a radiator, a decompression mechanism, a drain pan, a drain pan heating means, and a heat exchanger.
  • the evaporator absorbs heat in the air and evaporates the refrigerant.
  • the compressor compresses the gas-phase refrigerant from the evaporator and discharges it as a high-pressure refrigerant.
  • the radiator releases the heat of the high-temperature refrigerant supplied from the compressor.
  • the decompression mechanism expands the refrigerant from the radiator.
  • the drain pan is a tray that is provided in the lower part of the evaporator to discharge condensed water.
  • the drain pan heating means heats the drain pan using the heat of at least a part of the refrigerant flowing between the radiator and the decompression mechanism.
  • the heat exchanger causes heat exchange between the refrigerant from the evaporator toward the compressor and the refrigerant from the radiator toward the decompression mechanism.
  • the drain pan heating means is a refrigerant pipe included in the heat exchanger and brought into contact with the drain pan.
  • the refrigerant When the heat pump is activated, the refrigerant absorbs heat in the air and evaporates in the evaporator. And the gaseous-phase refrigerant
  • coolant discharged from the evaporator is compressed with a compressor, and becomes high pressure high temperature.
  • the high-temperature and high-pressure refrigerant discharged from the compressor performs heat exchange with, for example, water supplied from the outside in the radiator.
  • the refrigerant discharged from the radiator is expanded in the decompression mechanism and becomes a low-temperature and low-pressure gas-liquid two-phase (or liquid phase).
  • the drain pan heating means includes a refrigerant pipe included in the heat exchanger and brought into contact with the drain pan, and at least a part of the refrigerant in the refrigerant pipe flowing between the radiator and the pressure reducing mechanism.
  • the drain pan is heated using heat. Therefore, it is possible to prevent the drain pan and the drain outlet provided in the lower part of the evaporator from freezing. Moreover, since the remaining heat after radiating with the radiator is used, the heat efficiency of the heat pump unit does not decrease or does not decrease much.
  • the heat pump unit according to the second invention is the heat pump unit according to the first invention, and in the radiator, the refrigerant releases heat to the hot water.
  • the temperature of the hot water inlet that performs heat exchange with the refrigerant in the radiator is 20 ° C. or higher.
  • it is necessary to perform heating so as to maintain the indoor temperature in winter at 20 ° C. or higher, so the temperature of hot water supplied from the indoor radiator becomes 20 ° C. or higher. Therefore, the temperature of the refrigerant after the heat is released to the hot water by the radiator becomes 20 ° C. or more, and it is sufficiently possible to utilize this remaining heat.
  • a heat pump unit according to a third invention is the heat pump unit of the first or second invention, and the heat pump uses carbon dioxide as a refrigerant.
  • carbon dioxide is being used as a refrigerant.
  • a heat pump unit is the heat pump unit according to any one of the first to third inventions, wherein the drain pan heating means is provided between the radiator and the decompression mechanism, and is a refrigerant in contact with the drain pan. It is piping.
  • the refrigerant pipe provided between the radiator and the decompression mechanism is brought into contact with the drain pan, so that at least a part of the heat of the refrigerant flowing between the radiator and the decompression mechanism is used with a simple structure.
  • the drain pan can be heated.
  • a heat pump unit is the heat pump unit according to the fourth aspect, wherein the drain pan heating means further includes a heat transfer member provided at a contact portion between the refrigerant pipe and the drain pan.
  • the heat transfer effect between the refrigerant pipe and the drain pan can be increased by providing the heat transfer member at the contact portion between the refrigerant pipe and the drain pan.
  • a heat pump unit is the heat pump unit according to any one of the first to fifth aspects, wherein the drain pan is provided with a drain port, and the contact portion between the refrigerant pipe and the drain pan is the drain port. Is located near.
  • the drain port can be prevented from freezing.
  • a heat pump unit is the heat pump unit of the sixth aspect, wherein the outer periphery of the refrigerant pipe is wrapped in a heat insulating material, and a notch is formed in the heat insulating material of the refrigerant pipe located around the drain outlet. ing.
  • the outer periphery of the refrigerant pipe is wrapped with a heat insulating material to block heat exchange between the refrigerant pipe and the outside air.
  • the heat insulating material is cut out in the vicinity of the drain port, and the vicinity of the drain port is heated by the residual heat of the refrigerant flowing in the refrigerant pipe. In this way, by heating only the drain pan drain port that is concerned about freezing and that requires heating, unnecessary heat loss can be reduced, and the overall heat efficiency of the heat pump unit can be increased.
  • a heat pump hot water supply apparatus includes the heat pump unit according to any one of the first to seventh aspects, and a hot water storage tank that stores hot water heated by the heat pump unit.
  • the hot water heated by the heat pump unit can be stored in a hot water storage tank and used as a hot water circulation heating system or a hot water supply system.
  • the present invention it is possible to prevent the drain pan and the drain outlet provided in the lower part of the evaporator from freezing by using the residual heat after the heat is radiated by the radiator.
  • the figure which shows the cycle of a heat pump unit (Ph diagram).
  • the figure which shows a part of heating means of a drain pan The figure which shows a part of structure of the warm water circulation heating system of another Example.
  • the figure which shows a part of structure of the heating means of the drain pan of another Example The figure which shows the cycle of the heat pump unit of another Example (Ph diagram).
  • the hot water circulation heating system is a system that circulates hot water in a building to perform heating and has a hot water supply function, and includes a heat pump unit 1, a hot water storage tank 2, a hot water supply heat exchanger 3, a heating circulation circuit 4, and a heating system.
  • a circulation circuit 5, a control unit 7, and indoor radiators 8 and 8 are provided.
  • the heat pump unit 1 takes in heat from the outside air by the evaporator 11. Further, the hot water flowing from the hot water storage tank 2 through the hot water circulation circuit 5 is heated by the heat released from the radiator 13.
  • the hot water storage tank 2 stores hot water heated by the heat pump unit 1.
  • a heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2, and the heater 6 directly heats the hot water in the hot water storage tank 2.
  • the heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 again through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2.
  • Each radiator 8 directly takes out the heat of hot water flowing from the hot water storage tank 2 and discharges it into the room. Then, the hot water becomes a low temperature, exits each radiator 8 and flows toward the hot water storage tank 2.
  • the heat pump unit 1 shown in FIG. 1 has a refrigerant circuit 16 and boiles water sent from the hot water storage tank 2 to make warm water.
  • the refrigerant circuit 16 is mainly configured by sequentially connecting an evaporator 11, a compressor 12, a radiator 13, and an expansion valve 15 as a pressure reducing mechanism.
  • the refrigerant circuit 16 uses CO2 refrigerant as the refrigerant.
  • the evaporator 11 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, exchanges heat with outdoor air, and evaporates the incoming liquid refrigerant. .
  • the compressor 12 is a variable capacity compressor capable of varying the operating capacity, and is driven by a motor whose rotational speed is controlled by an inverter in this embodiment.
  • the radiator 13 is a heat exchanger that functions as a refrigerant gas cooler.
  • the radiator 13 condenses the high-temperature and high-pressure gas refrigerant compressed in the compressor 12 by exchanging heat with the low-temperature water sent from the circulation pump 51 (dissipating heat to the low-temperature water).
  • the radiator 13 has a gas side connected to the discharge side of the compressor 12 and a liquid side connected to the electric expansion valve 15.
  • the electric expansion valve 15 is connected to the liquid side of the evaporator 11 and adjusts the pressure and flow rate of the refrigerant flowing in the evaporator 11.
  • the heat pump unit 1 has an outdoor fan 17 as a blower fan for sucking outside air into the unit and exchanging heat with the refrigerant in the evaporator 11 and then discharging the air after heat exchange to the outside.
  • the outdoor fan 17 is a fan that can vary the air volume of air supplied to the evaporator 11.
  • a drain pan 19 is provided at the lower portion of the evaporator 11 as a tray for discharging condensed water. As shown in FIG. 2, the drain pan 19 is shaped like a dish having a rectangular bottom surface, and is provided with two drain ports 23.
  • the refrigerant pipe 21 from the radiator 13 is disposed along the bottom surface of the drain pan 19, and is particularly in contact with the vicinity of the drain port 23.
  • the hot water storage tank 2 stores hot water heated by the heat pump unit 1.
  • a heater 6 is disposed in a substantially central portion of the hot water storage tank 2 in the vertical direction.
  • the heater 6 can directly heat the hot water in the hot water storage tank 2.
  • the heater 6 can store hot hot water in the upper part of the hot water storage tank 2.
  • a plurality of temperature sensors are provided in the hot water storage tank 2 in order to detect the temperature of hot water in each part in the hot water storage tank 2.
  • the plurality of temperature sensors detect the temperature of hot water in each part in the hot water storage tank 2 and send a signal indicating the temperature to the control unit 7.
  • a signal indicating the temperature of the hot water in the lower region in the hot water storage tank 2 is used for ON / OFF control of the compressor 12 and the boiling circulation pump 51. That is, the control unit 7 performs ON / OFF control of the compressor 12 and the boiling circulation pump 51 based on the temperature of the hot water in the lower region in the hot water storage tank 2.
  • the heat pump unit 1 is connected to a hot water storage tank 2 via a boiling circulation circuit 5.
  • the boiling circulation circuit 5 is provided with a boiling circulation pump 51 and a boiling three-way valve 52.
  • the boiling circulation circuit 5 is connected to the second heating forward connection port 42, the heating supply port 53, and the antifreezing water return connection port 54.
  • the 2nd heating outgoing connection port 42 is an example of a 1st water intake port.
  • the supply port 53 is provided in the lower part of the hot water storage tank 2, and the relatively low temperature hot water in the lower region in the hot water storage tank 2 can be supplied to the boiling circulation pump 51 through the supply port 53.
  • region occupied in the hot water storage tank 2 by the comparatively low temperature warm water be the low temperature water area
  • the boiling circulation pump 51 sucks hot water in the low-temperature water region Zl in the hot water storage tank 2 and discharges the sucked relatively low-temperature hot water toward the condenser 13.
  • the relatively low-temperature hot water is heated by exchanging heat with the CO 2 refrigerant, and becomes high-temperature hot water.
  • the hot hot water exiting the radiator 13 goes to the boiling three-way valve 52.
  • the boiling three-way valve 52 is configured to supply high-temperature hot water heated by the water heat exchanger 13 during the hot water supply operation and the heating operation to the upper region in the hot water storage tank 2 via the second heating forward connection port 42. Shed. Therefore, the second heating / outgoing connection port 42 is a return connection port from which hot hot water flowing out from the supply port 53 of the hot water storage tank 2 and heated by the hydrothermal exchanger 13 of the heat pump unit 1 returns. For this reason, the hot water in the hot water storage tank 2 has a high temperature water region Zh as a first region occupied by high temperature hot water on the upper side, and a low temperature water region Zl as a second region occupied by relatively low temperature hot water on the lower side. A hot water layer (temperature distribution) is formed.
  • the hot water supply pipe is branched from the water supply pipe to which water is supplied, and is drawn into a hot water supply heat exchanger 3 provided in the hot water storage tank 2, and tap water supplied from the water supply pipe is converted into the hot water supply heat exchanger 3.
  • This is a pipe that exchanges heat with the hot water in the hot water storage tank 2 to supply hot water to the kitchen, bathtub, shower, etc. of the home.
  • the hot water supply heat exchanger 3 is formed of a coiled pipe, and is arranged from the low temperature water region Zl to the high temperature water region Zh in the hot water storage tank 2.
  • the tap water supplied to the hot water supply pipe (hereinafter, the tap water flowing through the hot water supply pipe is referred to as hot water supply water) is heated by flowing through the heat exchanger 3 for hot water supply.
  • hot water first enters the hot water storage tank 2 from the lower part of the hot water storage tank 2 and flows upward through the hot water supply heat exchanger 3 arranged in the low temperature water region Zl in the hot water storage tank 2. .
  • the hot water flows through the hot water heat exchanger 3 disposed in the high-temperature water region Zh in the hot water tank 2 and then flows out of the hot water tank 2 from the upper part of the hot water tank 2.
  • the heat exchanger 3 for hot water supply is arrange
  • the hot water supply heat exchanger 3 disposed above the heater 6 is referred to as an upper coil portion 3a
  • the hot water supply heat exchanger 3 disposed below the heater 6 is referred to as a lower coil portion 3b.
  • a hot water supply mixing valve 31 for adjusting the hot water supply temperature to a temperature set by the user with a remote controller or the like is branched from the water supply pipe to the hot water storage tank 2 and for hot water supply. It is provided between piping from the heat exchanger 3 to the home kitchen, bathtub, shower and the like. That is, the hot water mixed by the hot water supply valve 31 is mixed with the tap water supplied from the water supply pipe and the hot water heated by the heat exchanger 3 for hot water supply so that the mixed hot water becomes the set temperature. It is adjusted to.
  • the heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 again through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2.
  • the heating circulation circuit 4 is connected to the first and second heating forward connection ports 41 and 42 and the heating return connection port 43.
  • the 1st heating outgoing connection port 41 is an example of a 2nd water intake
  • the heating return connection port 43 is an example of a return port.
  • the first heating / outgoing connection port 41 is for taking out hot water in the hot water storage tank 2.
  • the first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2, and is positioned near and above the heater 6.
  • the hot water immediately after being heated by the heater 6 can be taken out from the first heating forward connection port 41 and sent to the plurality of radiators 8.
  • the second heating forward connection port 42 is also for taking out hot water in the hot water storage tank 2.
  • the second heating / outgoing connection port 42 is provided in the upper part of the hot water storage tank 2.
  • the hot water in the upper region in the hot water storage tank 2 can be taken out from the second heating forward connection port 42 and sent to the plurality of radiators 8.
  • the 2nd heating outgoing connection port 42 serves as a heating return connection port.
  • Each radiator 8 directly takes out the heat of hot water flowing from the hot water storage tank 2 and discharges it into the room.
  • the heating circulation circuit 4 is provided with a bypass pipe 44, a heating mixing valve 45, first and second temperature sensors 46 and 47, a heating circulation pump 48, and a heating three-way valve 49.
  • the bypass pipe 44 guides a part of the hot water flowing from the radiator 8 to the heating return connection port 43 to the heating mixing valve 45.
  • the heating mixing valve 45 has an inlet through which hot water from the hot water storage tank 2 flows and an inlet through which hot water from the bypass pipe 44 flows. Although described in detail later, the opening degree of each inlet of the heating mixing valve 45 is adjusted by the control unit 7.
  • the first temperature sensor 46 detects the temperature of the hot water from the hot water storage tank 2 toward the radiator 8 and sends a signal indicating this temperature to the control unit 7.
  • the second temperature sensor 47 detects the temperature of the hot water from the radiator 8 toward the hot water storage tank 2 and sends a signal indicating this temperature to the control unit 7.
  • the control unit 7 receives a signal indicating the outside air temperature from the outside temperature sensor 18 and also receives a signal indicating the room temperature from an indoor temperature sensor (not shown).
  • the control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and the heating circulation.
  • the rotational speed of the pump 48 is adjusted. For example, when the outside air temperature is high, the heating mixing valve 45 is adjusted to increase the amount of warm water flowing in from the bypass pipe 44 to lower the going temperature, or the heating circulation pump 48 is rotated at a lower speed to circulate. Lower the return temperature by lowering the flow rate of warm water.
  • the heating mixing valve 45 is adjusted to decrease the amount of warm water flowing from the bypass pipe 44 to increase the going temperature, or the heating circulation pump 48 is increased in the number of rotations to circulate. Increase the return temperature by increasing the flow rate of hot water.
  • FIG. 3 is a ph diagram of the refrigeration cycle of the heat pump unit 1.
  • the CO2 refrigerant is compressed to a pressure exceeding the critical pressure, and enters a high temperature and high pressure super maritime state. Transition from point A to point B shown in FIG.
  • the temperature of the CO2 refrigerant is about 120 ° C.
  • the CO 2 refrigerant is cooled by exchanging heat with the hot water sent from the hot water storage tank 2, and gradually falls in temperature to shift from the supercritical state to the liquid state. Transition from point B to point C shown in FIG.
  • the temperature of the CO2 refrigerant is about 32 ° C.
  • the CO 2 refrigerant flowing through the refrigerant pipe 21 discharged from the radiator 13 exchanges heat with the drain pan 19 provided at the lower part of the evaporator 11, and is further cooled to move from the C point to the C ′ point in FIG. To do.
  • the temperature of the CO 2 refrigerant is about 22 ° C.
  • the CO2 refrigerant is depressurized and enters a low-temperature low-pressure gas-liquid two-phase (or liquid-phase) state. Transition from the point C ′ shown in FIG. 3 to the point D is performed. At point D after decompression, the temperature of the CO 2 refrigerant is about ⁇ 10 ° C. In the evaporator 11, the CO 2 refrigerant takes in heat from the outside air and evaporates to become a low-temperature and low-pressure gas and is sucked into the compressor 12 again. Transition from point D to point A shown in FIG. In the evaporator 11, the CO2 refrigerant is only changed from gas-liquid two-phase (or liquid-phase) to gas, and the temperature remains at about -10 ° C.
  • the temperature of the refrigerant after releasing heat to the hot water by the radiator 13 becomes 20 ° C. or higher, and this residual heat can be used.
  • the heat exchange efficiency in the radiator 13 is not lowered, and thus the thermal efficiency of the entire heat pump unit 1 is not lowered.
  • the drain pan 19 and the drain port 20 are heated by the refrigerant after heat dissipation, the drain pan 19 and the drain port 20 can be prevented from freezing, and normal operation can be continued even in cold regions. It is also possible to improve.
  • the refrigerant pipe 21 provided between the radiator 13 and the expansion valve 15 is brought into contact with the drain pan 19, so that the structure between the radiator 13 and the expansion valve 15 is simplified.
  • the drain pan can be heated using the heat of the refrigerant flowing through the.
  • heat is required for the drain pan to dissipate heat, but by dissipating heat to the drain pan, the refrigerant density before the expansion valve can be increased and the refrigerant in the evaporator can be moistened. Even with the same evaporation capability, it is possible to use latent heat, and the evaporation temperature becomes slightly higher, and the efficiency is improved. This is particularly significant when the return temperature from the radiator is high and improves efficiency.
  • the configuration of the heat pump unit 100 according to another embodiment is shown in FIG. About the same structure as the heat pump unit of FIG. 1, the same drawing code
  • the heat pump unit 100 in FIG. 4 further includes a heat exchanger 14. In the heat exchanger 14, heat exchange is performed between the low-pressure low-temperature refrigerant that flows out of the evaporator 11 and flows into the compressor 12, and the high-pressure refrigerant that flows out of the radiator 13 and flows into the expansion valve 15. As shown in FIGS.
  • the heat exchanger 14 is disposed on the drain pan 19, and includes a refrigerant pipe 211 that connects the radiator 13 and the expansion valve 15, the evaporator 11, and the compressor 12. And a refrigerant pipe 212 connecting the two.
  • the refrigerant pipes 211 and 212 included in the heat exchanger 14 are in contact with the drain pan 19 in a state where they overlap each other, thereby constituting the drain pan heating means 201.
  • the drain pan 19 has a drain port 23, and a part of the drain pan heating means 201 including the refrigerant pipes 211 and 212 is disposed in the vicinity of the drain port 23.
  • FIG. 6 is a ph diagram of the refrigeration cycle of the heat pump unit 100.
  • the CO2 refrigerant is compressed to a pressure exceeding the critical pressure, and enters a high temperature and high pressure super maritime state. Transition from point A to point B shown in FIG. At point B, the temperature of the CO2 refrigerant is about 120 ° C. In the radiator 13, the CO 2 refrigerant is cooled by exchanging heat with the hot water sent from the hot water storage tank 2, and gradually falls in temperature to shift from the supercritical state to the liquid state. Transition from point B to point C shown in FIG. At point C, the temperature of the CO2 refrigerant is about 32 ° C. Here, since the heat exchanger 14 is provided, the liquid CO 2 refrigerant at about 32 ° C.
  • the CO2 refrigerant is depressurized and enters a low-temperature and low-pressure gas-liquid two-phase (or liquid-phase) state. Transition from the point C ′′ shown in FIG. 6 to the point D is performed. At point D after decompression, the temperature of the CO 2 refrigerant is about ⁇ 10 ° C. In the evaporator 11, the CO 2 refrigerant takes in heat from the outside air and evaporates to become a low-temperature and low-pressure gas and is sucked into the compressor 12 again.
  • the drain pan heating means 201 shown in FIG. 5 is in direct contact with the drain pan 19 with the refrigerant pipes 211 and 212 included in the heat exchanger 14 being overlapped, and heats the entire drain pan 19 including the drain port 23. It has a structure. However, only the drain outlet 23 of the drain pan 19 can be heated.
  • the outer periphery of the heat exchanger 14 in which the refrigerant pipes 211 and 212 are stacked is wrapped with a heat insulating material 25 to block heat exchange between the refrigerant pipes 211 and 212 and the outside air.
  • the heat insulating material 25 is cut out in the vicinity of the drain port 23, and the vicinity of the drain port 23 is heated by the residual heat of the liquid CO 2 refrigerant flowing in the refrigerant pipe 211. In this way, unnecessary heat loss can be reduced by heating only the drain port 23 of the drain pan 19 that is concerned about freezing and that requires heating.
  • a heat transfer member 24 may be provided at the contact portion between the refrigerant pipe 211 and the drain pan 19 in the vicinity of the drain port 23 to enhance heat transfer at the contact portion between the refrigerant pipe 211 and the drain pan 19. Is possible.
  • C In the drain pan heating means shown in FIG.
  • the refrigerant pipe 21 from the radiator 13 is in direct contact with the drain pan 19 as it is, and the entire drain pan 19 including the drain port 23 is heated. However, only the drain outlet 23 of the drain pan 19 can be heated.
  • the outer periphery of the refrigerant pipe 21 is wrapped with a heat insulating material 25, and the heat insulating material 25 is cut out in the vicinity of the drain port 23, and the vicinity of the drain port 23 is heated by the residual heat of the liquid CO 2 refrigerant flowing in the refrigerant pipe 21. To do.
  • the heat transfer member 23 is provided at the contact portion between the refrigerant pipe 21 and the drain pan 19 in the vicinity of the drain port 23 to enhance heat transfer at the contact portion between the refrigerant pipe 21 and the drain pan 19. Is also possible.
  • D In the heat pump unit 1 described above, all the refrigerant discharged from the radiator 13 and supplied to the expansion valve 15 heats the drain port 23 of the drain pan 19 via the refrigerant pipe 21. However, at least two piping paths are provided between the radiator 13 and the expansion valve 15, a switching valve is provided between them, and only a part of the CO 2 refrigerant discharged from the radiator 13 is used for heating the drain pan 19. However, other portions may be directly supplied to the expansion valve 15.
  • the heat pump unit 100 may adopt the same structure, and only a part of the CO 2 refrigerant discharged from the radiator 13 may be supplied to the heat exchanger 14 and the other part may be directly supplied to the expansion valve 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Disclosed is a heat pump unit able to prevent freezing of the drain opening of a drain pan provided in an evaporator. The heat pump unit (1) comprises a refrigeration circuit (16) principally configured from an evaporator (11), a compressor (12), a radiator (13), and an expansion valve (15) serving as a pressure-reducing mechanism, which are connected in sequence. A drain pan (19) provided with a drain opening (23) and serving as a receptacle from which condensate water is drained is provided in the lower part of the evaporator (11). A refrigerant pipe (21) is provided between the radiator (13) and the expansion valve (15) in contact with the drain pan (19), and the heat of the refrigerant flowing between the radiator (13) and the expansion valve (15) is utilized to heat the drain pan (19) and the drain opening (23) provided in the drain pan (19).

Description

ヒートポンプユニット及びヒートポンプ給湯装置Heat pump unit and heat pump water heater
 本発明は、ヒートポンプユニット、特に、建物において温水を循環させて暖房を行う温水循環暖房システムに使われるヒートポンプユニット及びヒートポンプ給湯装置に関する。 The present invention relates to a heat pump unit, and more particularly, to a heat pump unit and a heat pump water heater used in a hot water circulation heating system that heats by circulating hot water in a building.
 従来から、ヒートポンプと、このヒートポンプで加熱された温水を貯える貯湯タンクと、この温水を建物内の各室に設けられたラジエータに循環させて建物の暖房を行う温水循環暖房システムが存在する。ヒートポンプは、屋外に設置されており、冷媒配管により接続され冷凍サイクルを構成する圧縮機、放熱器、膨張弁および蒸発器と、蒸発器に外気を当てるためのファンとを備えている。ここで、ヒートポンプは、蒸発器により外気から熱を奪い、放熱器から放出する熱によって貯湯タンクから流れてくる温水を加熱する。
 しかし、ヒートポンプは、蒸発器により外気から熱を取り込んでいるため、空気中の水蒸気が凝縮して、外気から採熱を行う蒸発器に凝縮水が付着する。外気温度が比較的に高い状況では、この凝縮水は蒸発器のドレインパンに設けられた排水口より機外に排出される。ところが、ヨーロッパ等の寒冷地では、暖房運転を行う冬は外気温度が氷点下まで低下する場合が多いため、排水口が凍結し、排水不良が起きる場合がある。
2. Description of the Related Art Conventionally, there are heat pumps, hot water storage tanks that store hot water heated by the heat pumps, and hot water circulation heating systems that heat the buildings by circulating the hot water to radiators provided in each room in the building. The heat pump is installed outdoors, and includes a compressor, a radiator, an expansion valve, and an evaporator that are connected by refrigerant piping and constitute a refrigeration cycle, and a fan that applies outside air to the evaporator. Here, the heat pump takes heat from the outside air by the evaporator and heats the hot water flowing from the hot water storage tank by the heat released from the radiator.
However, since the heat pump takes heat from the outside air by the evaporator, the water vapor in the air condenses and the condensed water adheres to the evaporator that collects heat from the outside air. In a situation where the outside air temperature is relatively high, this condensed water is discharged out of the apparatus through a drain outlet provided in the drain pan of the evaporator. However, in cold districts such as Europe, the temperature of the outside air often drops to below freezing in winter when heating operation is performed, so the drain outlet may freeze and drainage failure may occur.
 排水不良で機外に排出されない凝縮水が蒸発器で着霜または凍結されると、蒸発器の蒸発能力が低下して暖房能力が低下し、冷媒配管や板金に損傷が発生するおそれがある。
 そこで、特許文献1に開示されているヒートポンプでは、圧縮機から吐出して放熱器に入る前の冷媒の一部の熱を利用して、蒸発器の除霜運転を行っている。
If condensed water that is not discharged to the outside due to poor drainage is frosted or frozen by the evaporator, the evaporation capacity of the evaporator decreases, the heating capacity decreases, and the refrigerant pipes and sheet metal may be damaged.
Therefore, in the heat pump disclosed in Patent Document 1, the defrosting operation of the evaporator is performed using the heat of a part of the refrigerant discharged from the compressor and before entering the radiator.
 ところが、圧縮機から吐出されて放熱器に入る前の冷媒の熱で蒸発器の除霜作業を行う場合、放熱器に入る冷媒の温度が低下し、ヒートポンプユニットの熱効率が低下するおそれがある。
 本発明の課題は、蒸発器に設けられたドレインパンの排水口の凍結を防止することができるヒートポンプユニットを提供することにある。
However, when the defrosting operation of the evaporator is performed by the heat of the refrigerant discharged from the compressor and before entering the radiator, the temperature of the refrigerant entering the radiator may be lowered, and the heat efficiency of the heat pump unit may be lowered.
The subject of this invention is providing the heat pump unit which can prevent the freezing of the drain outlet of the drain pan provided in the evaporator.
 第1発明に係るヒートポンプユニットは、蒸発器と、圧縮機と、放熱器と、減圧機構と、ドレインパンと、ドレインパン加熱手段と、熱交換器とを備えている。蒸発器は、空気中の熱を吸収して冷媒を蒸発させる。圧縮機は、蒸発器からの気相冷媒を圧縮して高圧冷媒として吐出する。放熱器は、圧縮機から供給された高温冷媒の熱を放出する。減圧機構は放熱器からの冷媒を膨張させる。ドレインパンは、蒸発器の下部に設けられて、凝縮水を排出するための受け皿である。ドレインパン加熱手段は、放熱器から減圧機構までの間を流れる冷媒の少なくとも一部の熱を利用して、ドレインパンを加熱させる。熱交換器は、蒸発器から圧縮機に向かう冷媒と放熱器から減圧機構に向かう冷媒との熱交換を行わせる。ここで、ドレインパン加熱手段は、熱交換器に含まれ且つドレインパンに接触させた冷媒配管である。 The heat pump unit according to the first invention includes an evaporator, a compressor, a radiator, a decompression mechanism, a drain pan, a drain pan heating means, and a heat exchanger. The evaporator absorbs heat in the air and evaporates the refrigerant. The compressor compresses the gas-phase refrigerant from the evaporator and discharges it as a high-pressure refrigerant. The radiator releases the heat of the high-temperature refrigerant supplied from the compressor. The decompression mechanism expands the refrigerant from the radiator. The drain pan is a tray that is provided in the lower part of the evaporator to discharge condensed water. The drain pan heating means heats the drain pan using the heat of at least a part of the refrigerant flowing between the radiator and the decompression mechanism. The heat exchanger causes heat exchange between the refrigerant from the evaporator toward the compressor and the refrigerant from the radiator toward the decompression mechanism. Here, the drain pan heating means is a refrigerant pipe included in the heat exchanger and brought into contact with the drain pan.
 ヒートポンプが作動すると、冷媒は、蒸発器において、空気中の熱を吸収して蒸発する。そして、蒸発器から吐出された気相冷媒は、圧縮機で圧縮されて高圧高温になる。圧縮機から吐出された高温高圧の冷媒は、放熱器において、例えば外部から供給された水と熱交換を行う。放熱器から吐出された冷媒は、減圧機構において膨張され、低温低圧の気液二相(あるいは液相)となる。
 ここでは、ドレインパン加熱手段は、熱交換器に含まれ且つドレインパンに接触させた冷媒配管により構成されており、放熱器から減圧機構までの間を流れる冷媒配管内の冷媒の少なくとも一部の熱を利用して、ドレインパンを加熱させる。よって、蒸発器の下部に設けられたドレインパン及び排水口が凍結するのを防ぐことができる。また、放熱器で放熱した後の余熱を利用しているため、ヒートポンプユニットの熱効率が下がらない又はあまり下がらない。
When the heat pump is activated, the refrigerant absorbs heat in the air and evaporates in the evaporator. And the gaseous-phase refrigerant | coolant discharged from the evaporator is compressed with a compressor, and becomes high pressure high temperature. The high-temperature and high-pressure refrigerant discharged from the compressor performs heat exchange with, for example, water supplied from the outside in the radiator. The refrigerant discharged from the radiator is expanded in the decompression mechanism and becomes a low-temperature and low-pressure gas-liquid two-phase (or liquid phase).
Here, the drain pan heating means includes a refrigerant pipe included in the heat exchanger and brought into contact with the drain pan, and at least a part of the refrigerant in the refrigerant pipe flowing between the radiator and the pressure reducing mechanism. The drain pan is heated using heat. Therefore, it is possible to prevent the drain pan and the drain outlet provided in the lower part of the evaporator from freezing. Moreover, since the remaining heat after radiating with the radiator is used, the heat efficiency of the heat pump unit does not decrease or does not decrease much.
 第2発明に係るヒートポンプユニットは、第1発明のヒートポンプユニットであって、放熱器において、冷媒は温水に熱を放出する。
 例えば、放熱器で冷媒と熱交換を行う温水入口の温度は20℃以上である。ヨーロッパ等の寒冷地では冬季の室内温度20℃以上に維持するように暖房を行う必要があるため、室内のラジエータから供給される温水の温度が20℃以上になる。したがって、放熱器で温水に熱を放出した後の冷媒の温度も20℃以上となり、この余熱を利用することが十分に可能である。
The heat pump unit according to the second invention is the heat pump unit according to the first invention, and in the radiator, the refrigerant releases heat to the hot water.
For example, the temperature of the hot water inlet that performs heat exchange with the refrigerant in the radiator is 20 ° C. or higher. In cold regions such as Europe, it is necessary to perform heating so as to maintain the indoor temperature in winter at 20 ° C. or higher, so the temperature of hot water supplied from the indoor radiator becomes 20 ° C. or higher. Therefore, the temperature of the refrigerant after the heat is released to the hot water by the radiator becomes 20 ° C. or more, and it is sufficiently possible to utilize this remaining heat.
 第3発明に係るヒートポンプユニットは、第1または第2発明のヒートポンプユニットであって、ヒートポンプは、二酸化炭素を冷媒とする。
 これまで、ヒートポンプ内の冷凍サイクルにおいて熱エネルギーを運ぶ媒体(冷媒)としてフルオロカーボンが広く使われているが、地球温暖化対策として、二酸化炭素を冷媒として採用する傾向が出てきている。
A heat pump unit according to a third invention is the heat pump unit of the first or second invention, and the heat pump uses carbon dioxide as a refrigerant.
Until now, fluorocarbons have been widely used as a medium (refrigerant) for transporting heat energy in the refrigeration cycle in the heat pump, but as a countermeasure against global warming, carbon dioxide is being used as a refrigerant.
 第4発明に係るヒートポンプユニットは、第1~第3発明のいずれかのヒートポンプユニットであって、ドレインパン加熱手段は、放熱器と減圧機構との間に設けられ、ドレインパンに接触された冷媒配管である。
 ここでは、放熱器と減圧機構との間に設けられた冷媒配管をドレインパンに接触させることで、簡単な構造で、放熱器から減圧機構までの間を流れる冷媒の少なくとも一部の熱を利用して、ドレインパンを加熱させることができる。
A heat pump unit according to a fourth invention is the heat pump unit according to any one of the first to third inventions, wherein the drain pan heating means is provided between the radiator and the decompression mechanism, and is a refrigerant in contact with the drain pan. It is piping.
Here, the refrigerant pipe provided between the radiator and the decompression mechanism is brought into contact with the drain pan, so that at least a part of the heat of the refrigerant flowing between the radiator and the decompression mechanism is used with a simple structure. Thus, the drain pan can be heated.
 第5発明に係るヒートポンプユニットは、第4発明のヒートポンプユニットであって、ドレインパン加熱手段は、冷媒配管とドレインパンとの接触部に設けられた伝熱部材をさらに備えている。
 ここでは、冷媒配管とドレインパンとの接触部に伝熱部材を設けることで、冷媒配管とドレインパンとの伝熱効果を上げることができる。
A heat pump unit according to a fifth aspect is the heat pump unit according to the fourth aspect, wherein the drain pan heating means further includes a heat transfer member provided at a contact portion between the refrigerant pipe and the drain pan.
Here, the heat transfer effect between the refrigerant pipe and the drain pan can be increased by providing the heat transfer member at the contact portion between the refrigerant pipe and the drain pan.
 第6発明に係るヒートポンプユニットは、第1~第5発明のいずれかのヒートポンプユニットであって、ドレインパンには、排水口が設けられており、冷媒配管とドレインパンとの接触部は排水口の近くに配置されている。
 ここでは、冷媒配管とドレインパンとの接触部を、排水口の近くに配置することにより、排水口の凍結を防止することができる。
A heat pump unit according to a sixth aspect of the present invention is the heat pump unit according to any one of the first to fifth aspects, wherein the drain pan is provided with a drain port, and the contact portion between the refrigerant pipe and the drain pan is the drain port. Is located near.
Here, by disposing the contact portion between the refrigerant pipe and the drain pan near the drain port, the drain port can be prevented from freezing.
 第7発明に係るヒートポンプユニットは、第6発明のヒートポンプユニットであって、冷媒配管の外周は断熱材に包まれており、排水口周辺に位置する冷媒配管の断熱材には切欠部が形成されている。
 ここでは、冷媒配管の外周は断熱材で包まれ、冷媒配管と外気との熱交換を遮断する。また、排水口近傍では断熱材を切り欠いて、冷媒配管内を流れる冷媒の余熱で、排水口近傍を加熱するようにする。このように、凍結が心配され、加熱が必要なドレインパンの排水口のみを加熱することで、不要な熱損失を低減することができ、ヒートポンプユニット全体の熱効率を上げることができる。
A heat pump unit according to a seventh aspect of the present invention is the heat pump unit of the sixth aspect, wherein the outer periphery of the refrigerant pipe is wrapped in a heat insulating material, and a notch is formed in the heat insulating material of the refrigerant pipe located around the drain outlet. ing.
Here, the outer periphery of the refrigerant pipe is wrapped with a heat insulating material to block heat exchange between the refrigerant pipe and the outside air. Further, the heat insulating material is cut out in the vicinity of the drain port, and the vicinity of the drain port is heated by the residual heat of the refrigerant flowing in the refrigerant pipe. In this way, by heating only the drain pan drain port that is worried about freezing and that requires heating, unnecessary heat loss can be reduced, and the overall heat efficiency of the heat pump unit can be increased.
 第8発明に係るヒートポンプ給湯装置は、第1~第7のいずれかに記載のヒートポンプユニットと、ヒートポンプユニットで加熱された温水を貯える貯湯タンクと、を備えている。
 ここでは、のヒートポンプユニットで加熱された温水を貯湯タンクに溜めて、温水循環暖房システムあるいは温水供給システムとして使用することができる。
A heat pump hot water supply apparatus according to an eighth aspect of the present invention includes the heat pump unit according to any one of the first to seventh aspects, and a hot water storage tank that stores hot water heated by the heat pump unit.
Here, the hot water heated by the heat pump unit can be stored in a hot water storage tank and used as a hot water circulation heating system or a hot water supply system.
 本発明によれば、放熱器で放熱した後の余熱を利用して、蒸発器の下部に設けられたドレインパン及び排水口が凍結するのを防ぐことができる。 According to the present invention, it is possible to prevent the drain pan and the drain outlet provided in the lower part of the evaporator from freezing by using the residual heat after the heat is radiated by the radiator.
本発明の一実施形態に係る温水循環暖房システムの構成を示す図。The figure which shows the structure of the hot water circulation heating system which concerns on one Embodiment of this invention. ヒートポンプユニットのサイクルを示す図(P-h線図)。The figure which shows the cycle of a heat pump unit (Ph diagram). ドレインパンの加熱手段の一部を示す図。The figure which shows a part of heating means of a drain pan. 他の実施例の温水循環暖房システムの構成の一部を示す図。The figure which shows a part of structure of the warm water circulation heating system of another Example. 他の実施例のドレインパンの加熱手段の構成の一部を示す図。The figure which shows a part of structure of the heating means of the drain pan of another Example. 他の実施例のヒートポンプユニットのサイクルを示す図(P-h線図)。The figure which shows the cycle of the heat pump unit of another Example (Ph diagram). 変形例のドレインパンの加熱手段の一部を示す図。The figure which shows a part of heating means of the drain pan of a modification. 加熱手段の一部拡大図。The partial enlarged view of a heating means.
 1、100  ヒートポンプユニット
 2      貯湯タンク
 11     蒸発器
 12     圧縮機
 13     放熱器
 14     熱交換器
 15     膨張弁
 19     ドレインパン
 20、201 ドレインパン加熱手段
 21、211 放熱器からの冷媒配管
 23     排水口
 24     伝熱部材
 25     断熱部材
DESCRIPTION OF SYMBOLS 1,100 Heat pump unit 2 Hot water storage tank 11 Evaporator 12 Compressor 13 Radiator 14 Heat exchanger 15 Expansion valve 19 Drain pan 20, 201 Drain pan heating means 21, 211 Refrigerant piping from radiator 23 Drain outlet 24 Heat transfer member 25 Insulation member
 <温水循環暖房システムの主要構成>
 本発明の一実施形態に係るヒートポンプユニットを含む温水循環暖房システムの構成を、図1に示す。温水循環暖房システムは、建物において温水を循環させて暖房を行うとともに給湯機能を持つシステムであって、ヒートポンプユニット1、貯湯タンク2、給湯用熱交換器3および暖房用循環回路4、沸き上げ用循環回路5、制御部7、居室内ラジエータ8,8とを備えている。
 ヒートポンプユニット1は、蒸発器11により外気から熱を取り込む。また、放熱器13から放出する熱によって、貯湯循環回路5を介して貯湯タンク2から流れてくる温水を加熱する。
 貯湯タンク2は、ヒートポンプユニット1で加熱された温水を貯える。また、貯湯タンク2内の上下方向の略中央部にはヒータ6を配置していて、このヒータ6は貯湯タンク2内の温水を直接加熱する。
 暖房用循環回路4は、貯湯タンク2内に貯められた温水を貯湯タンク2外の複数のラジエータ8を経由させた後、再び、貯湯タンク2内に戻して循環させるためのものである。
 各ラジエータ8は、貯湯タンク2から流れてきた温水の熱を直接取り出し、室内に放出する。そして、温水は低温となり、各ラジエータ8を出て、貯湯タンク2へ向かって流れる。
<Main configuration of hot water circulation heating system>
The configuration of a hot water circulation heating system including a heat pump unit according to an embodiment of the present invention is shown in FIG. The hot water circulation heating system is a system that circulates hot water in a building to perform heating and has a hot water supply function, and includes a heat pump unit 1, a hot water storage tank 2, a hot water supply heat exchanger 3, a heating circulation circuit 4, and a heating system. A circulation circuit 5, a control unit 7, and indoor radiators 8 and 8 are provided.
The heat pump unit 1 takes in heat from the outside air by the evaporator 11. Further, the hot water flowing from the hot water storage tank 2 through the hot water circulation circuit 5 is heated by the heat released from the radiator 13.
The hot water storage tank 2 stores hot water heated by the heat pump unit 1. In addition, a heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2, and the heater 6 directly heats the hot water in the hot water storage tank 2.
The heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 again through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2.
Each radiator 8 directly takes out the heat of hot water flowing from the hot water storage tank 2 and discharges it into the room. Then, the hot water becomes a low temperature, exits each radiator 8 and flows toward the hot water storage tank 2.
 <ヒートポンプユニット1の構成>
 図1に示すヒートポンプユニット1は、 冷媒回路16を有しており、貯湯タンク2から送られてくる水を沸き上げて温水にする。冷媒回路16は、主として、蒸発器11、圧縮機12、放熱器13、減圧機構としての膨張弁15と、を順に接続して構成される。なお、この冷媒回路16には、冷媒としてCO2冷媒を利用している。
 蒸発器11は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、屋外の空気と熱交換を行い、流入してくる液冷媒を蒸発させる。
 圧縮機12は、運転容量を可変することが可能な容量可変型の圧縮機であり、本実施形態において、インバータにより回転数が制御されるモータによって駆動される。
 放熱器13は、冷媒のガスクーラーとして機能する熱交換器である。放熱器13は、圧縮機12において圧縮された高温高圧のガス冷媒を、循環ポンプ51から送られてくる低温水と熱交換させる(低温水に放熱する)ことで凝縮させる。また、放熱器13は、そのガス側が圧縮機12の吐出側に接続され、その液側が電動膨張弁15に接続されている。
 電動膨張弁15は、蒸発器11の液側と接続され、蒸発器11内を流れる冷媒の圧力や流量などの調節を行う。
 また、ヒートポンプユニット1は、ユニット内に外気を吸入して、蒸発器11において冷媒と熱交換させた後に、熱交換後の空気を外部に排出するための送風ファンとしての室外ファン17を有している。この室外ファン17は、蒸発器11に供給する空気の風量を可変することが可能なファンである。
 さらに、蒸発器11の下部には、凝縮水を排出するための受け皿としてドレインパン19が設けられている。図2に示すように、ドレインパン19の形状は底面が長方形の皿状であって、排水口23が2つ設けられている。放熱器13からの冷媒配管21は、ドレインパン19の底面に沿って配置されており、特に排水口23の近傍に接している。
<Configuration of heat pump unit 1>
The heat pump unit 1 shown in FIG. 1 has a refrigerant circuit 16 and boiles water sent from the hot water storage tank 2 to make warm water. The refrigerant circuit 16 is mainly configured by sequentially connecting an evaporator 11, a compressor 12, a radiator 13, and an expansion valve 15 as a pressure reducing mechanism. The refrigerant circuit 16 uses CO2 refrigerant as the refrigerant.
The evaporator 11 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, exchanges heat with outdoor air, and evaporates the incoming liquid refrigerant. .
The compressor 12 is a variable capacity compressor capable of varying the operating capacity, and is driven by a motor whose rotational speed is controlled by an inverter in this embodiment.
The radiator 13 is a heat exchanger that functions as a refrigerant gas cooler. The radiator 13 condenses the high-temperature and high-pressure gas refrigerant compressed in the compressor 12 by exchanging heat with the low-temperature water sent from the circulation pump 51 (dissipating heat to the low-temperature water). The radiator 13 has a gas side connected to the discharge side of the compressor 12 and a liquid side connected to the electric expansion valve 15.
The electric expansion valve 15 is connected to the liquid side of the evaporator 11 and adjusts the pressure and flow rate of the refrigerant flowing in the evaporator 11.
Further, the heat pump unit 1 has an outdoor fan 17 as a blower fan for sucking outside air into the unit and exchanging heat with the refrigerant in the evaporator 11 and then discharging the air after heat exchange to the outside. ing. The outdoor fan 17 is a fan that can vary the air volume of air supplied to the evaporator 11.
Further, a drain pan 19 is provided at the lower portion of the evaporator 11 as a tray for discharging condensed water. As shown in FIG. 2, the drain pan 19 is shaped like a dish having a rectangular bottom surface, and is provided with two drain ports 23. The refrigerant pipe 21 from the radiator 13 is disposed along the bottom surface of the drain pan 19, and is particularly in contact with the vicinity of the drain port 23.
 <貯湯タンク2の構成>
 貯湯タンク2は、ヒートポンプユニット1で加熱された温水を貯える。また、貯湯タンク2内の上下方向の略中央部には、ヒータ6が配置されている。このヒータ6は貯湯タンク2内の温水を直接加熱することができる。なお、このヒータ6により、貯湯タンク2の上部により高温の温水を貯湯することができる。図示しないが、貯湯タンク2内の各部の温水の温度を検出するため、複数の温度センサを貯湯タンク2に設けている。この複数の温度センサは、貯湯タンク2内の各部の温水の温度を検出し、その温度を示す信号を制御部7に送る。
 貯湯タンク2内の下部領域の温水の温度を示す信号は、圧縮機12および沸き上げ用循環ポンプ51のON/OFF制御に使用される。つまり、制御部7は、貯湯タンク2内の下部領域の温水の温度に基づいて、圧縮機12および沸き上げ用循環ポンプ51のON/OFF制御する。
<Configuration of hot water storage tank 2>
The hot water storage tank 2 stores hot water heated by the heat pump unit 1. In addition, a heater 6 is disposed in a substantially central portion of the hot water storage tank 2 in the vertical direction. The heater 6 can directly heat the hot water in the hot water storage tank 2. The heater 6 can store hot hot water in the upper part of the hot water storage tank 2. Although not shown, a plurality of temperature sensors are provided in the hot water storage tank 2 in order to detect the temperature of hot water in each part in the hot water storage tank 2. The plurality of temperature sensors detect the temperature of hot water in each part in the hot water storage tank 2 and send a signal indicating the temperature to the control unit 7.
A signal indicating the temperature of the hot water in the lower region in the hot water storage tank 2 is used for ON / OFF control of the compressor 12 and the boiling circulation pump 51. That is, the control unit 7 performs ON / OFF control of the compressor 12 and the boiling circulation pump 51 based on the temperature of the hot water in the lower region in the hot water storage tank 2.
 <沸き上げ用循環回路5の構成>
 ヒートポンプユニット1は、沸き上げ用循環回路5を介して貯湯タンク2と接続されている。沸き上げ用循環回路5には、沸き上げ用循環ポンプ51および沸き上げ用三方弁52が設けられている。そして、沸き上げ用循環回路5は、第2暖房往き接続口42と、沸き上げ用の供給口53と、凍結防止水戻し接続口54とに接続されている。なお、第2暖房往き接続口42は第1取水口の一例である。供給口53は貯湯タンク2の下部に設けられており、貯湯タンク2内の下部領域にある比較的低温の温水を、供給口53を介して沸き上げ用循環ポンプ51に供給することができる。なお、貯湯タンク2内であって、比較的低温の温水により占められている領域を第2領域としての低温水領域Zlとする。
 沸き上げ用循環ポンプ51は、貯湯タンク2内の低温水領域Zlの温水を吸い込み、この吸い込んだ比較的低温の温水を凝縮器13へ向けて吐出する。そして、放熱器13では、比較的低温の温水が、CO2冷媒と熱交換することにより加熱され、高温の温水になる。この放熱器13を出た高温の温水は沸き上げ用三方弁52へ向かう。沸き上げ用三方弁52は、給湯運転中および暖房運転中において、水熱交換器13により加熱されてできた高温の温水を、第2暖房往き接続口42を介して貯湯タンク2内の上部領域に流す。したがって、第2暖房往き接続口42は、貯湯タンク2の供給口53から流出してヒートポンプユニット1の水熱交換器13により加熱された高温の温水が戻る戻り接続口となっている。このため、貯湯タンク2内の温水は、上側が高温の温水により占められる第1領域としての高温水領域Zh、下側が比較的低温の温水により占められる第2領域としての低温水領域Zlように湯層(温度分布)が形成されている。
<Configuration of circulating circuit 5 for boiling>
The heat pump unit 1 is connected to a hot water storage tank 2 via a boiling circulation circuit 5. The boiling circulation circuit 5 is provided with a boiling circulation pump 51 and a boiling three-way valve 52. The boiling circulation circuit 5 is connected to the second heating forward connection port 42, the heating supply port 53, and the antifreezing water return connection port 54. In addition, the 2nd heating outgoing connection port 42 is an example of a 1st water intake port. The supply port 53 is provided in the lower part of the hot water storage tank 2, and the relatively low temperature hot water in the lower region in the hot water storage tank 2 can be supplied to the boiling circulation pump 51 through the supply port 53. In addition, let the area | region occupied in the hot water storage tank 2 by the comparatively low temperature warm water be the low temperature water area | region Zl as a 2nd area | region.
The boiling circulation pump 51 sucks hot water in the low-temperature water region Zl in the hot water storage tank 2 and discharges the sucked relatively low-temperature hot water toward the condenser 13. In the radiator 13, the relatively low-temperature hot water is heated by exchanging heat with the CO 2 refrigerant, and becomes high-temperature hot water. The hot hot water exiting the radiator 13 goes to the boiling three-way valve 52. The boiling three-way valve 52 is configured to supply high-temperature hot water heated by the water heat exchanger 13 during the hot water supply operation and the heating operation to the upper region in the hot water storage tank 2 via the second heating forward connection port 42. Shed. Therefore, the second heating / outgoing connection port 42 is a return connection port from which hot hot water flowing out from the supply port 53 of the hot water storage tank 2 and heated by the hydrothermal exchanger 13 of the heat pump unit 1 returns. For this reason, the hot water in the hot water storage tank 2 has a high temperature water region Zh as a first region occupied by high temperature hot water on the upper side, and a low temperature water region Zl as a second region occupied by relatively low temperature hot water on the lower side. A hot water layer (temperature distribution) is formed.
  <給湯配管>
 給湯配管は、水が供給される給水配管から分岐され、貯湯タンク2内に設けられた給湯用熱交換器3に引き込まれており、給水配管から供給される水道水を給湯用熱交換器3により貯湯タンク2内の温水と熱交換させて、家庭のキッチン、浴槽、シャワーなどに温湯を供給する配管である。
 給湯用熱交換器3は、コイル状のパイプから成って、貯湯タンク2内の低温水領域Zlから高温水領域Zhに渡って配置されている。給湯配管に供給された水道水(以下、給湯配管を流れる水道水を給湯水とする)は、給湯用熱交換器3内を流れることによって加熱される。具体的には、給湯水は、まず、貯湯タンク2の下部から貯湯タンク2内に入って、貯湯タンク2内の低温水領域Zlに配置された給湯用熱交換器3を上方に向かって流れる。そして、給湯水は、貯湯タンク2内の高温水領域Zhに配置された給湯用熱交換器3を上方に向かって流れた後に、貯湯タンク2の上部から貯湯タンク2の外に出る。なお、給湯用熱交換器3は、貯湯タンク2内の上下方向の中央部に配置されているヒータ6を跨ぐように配置されている。ここで、ヒータ6よりも上側に配置される給湯用熱交換器3を上部コイル部3aとし、ヒータ6よりも下側に配置される給湯用熱交換器3を下部コイル部3bとする。
 なお、給湯配管には、給湯温度をリモコンなどで利用者に設定された温度に調整するための給湯用混合弁31が、給水配管から分岐されて貯湯タンク2までの間の配管と、給湯用熱交換器3から家庭のキッチン、浴槽、シャワーなどまでの間の配管との間に設けられている。すなわち、給湯用混合弁31により、給水配管から供給される水道水と、給湯用熱交換器3により熱交換されて加熱された温湯とを混合させて、混合された温水が設定温度になるように調整している。
<Hot water supply piping>
The hot water supply pipe is branched from the water supply pipe to which water is supplied, and is drawn into a hot water supply heat exchanger 3 provided in the hot water storage tank 2, and tap water supplied from the water supply pipe is converted into the hot water supply heat exchanger 3. This is a pipe that exchanges heat with the hot water in the hot water storage tank 2 to supply hot water to the kitchen, bathtub, shower, etc. of the home.
The hot water supply heat exchanger 3 is formed of a coiled pipe, and is arranged from the low temperature water region Zl to the high temperature water region Zh in the hot water storage tank 2. The tap water supplied to the hot water supply pipe (hereinafter, the tap water flowing through the hot water supply pipe is referred to as hot water supply water) is heated by flowing through the heat exchanger 3 for hot water supply. Specifically, hot water first enters the hot water storage tank 2 from the lower part of the hot water storage tank 2 and flows upward through the hot water supply heat exchanger 3 arranged in the low temperature water region Zl in the hot water storage tank 2. . The hot water flows through the hot water heat exchanger 3 disposed in the high-temperature water region Zh in the hot water tank 2 and then flows out of the hot water tank 2 from the upper part of the hot water tank 2. In addition, the heat exchanger 3 for hot water supply is arrange | positioned so that the heater 6 arrange | positioned in the center part of the up-down direction in the hot water storage tank 2 may be straddled. Here, the hot water supply heat exchanger 3 disposed above the heater 6 is referred to as an upper coil portion 3a, and the hot water supply heat exchanger 3 disposed below the heater 6 is referred to as a lower coil portion 3b.
In the hot water supply pipe, a hot water supply mixing valve 31 for adjusting the hot water supply temperature to a temperature set by the user with a remote controller or the like is branched from the water supply pipe to the hot water storage tank 2 and for hot water supply. It is provided between piping from the heat exchanger 3 to the home kitchen, bathtub, shower and the like. That is, the hot water mixed by the hot water supply valve 31 is mixed with the tap water supplied from the water supply pipe and the hot water heated by the heat exchanger 3 for hot water supply so that the mixed hot water becomes the set temperature. It is adjusted to.
 <暖房用循環回路4>
 暖房用循環回路4は、貯湯タンク2内に貯められた温水を貯湯タンク2外の複数のラジエータ8を経由させた後、再び、貯湯タンク2内に戻して循環させるためのものである。そして、暖房用循環回路4は、第1,第2暖房往き接続口41,42と暖房戻り接続口43とに接続されている。なお、第1暖房往き接続口41は第2取水口の一例であり、暖房戻り接続口43は戻し口の一例である。
 第1暖房往き接続口41は、貯湯タンク2内の温水を取り出すためのものである。この第1暖房往き接続口41は、貯湯タンク2の上下方向の略中央部に設けられて、ヒータ6近傍かつ上方に位置している。これにより、ヒータ6で加熱された直後の温水を、第1暖房往き接続口41から取り出し、複数のラジエータ8に送ることができる。
 第2暖房往き接続口42も、第1暖房往き接続口41と同様に、貯湯タンク2内の温水を取り出すためのものである。この第2暖房往き接続口42は貯湯タンク2の上部に設けられている。これにより、貯湯タンク2内の上部領域の温水を、第2暖房往き接続口42から取り出し、複数のラジエータ8へ送ることができる。また、第2暖房往き接続口42は沸き上げ戻り接続口を兼用している。
 各ラジエータ8は、貯湯タンク2から流れてきた温水の熱を直接取り出し、室内に放出する。そして、温水は、低温となり、各ラジエータ8を出て、暖房戻り接続口43へ向かって流れる。
 暖房戻り接続口43は貯湯タンク2の下部に設けられている。これにより、暖房戻り接続口43から出た温水を、貯湯タンク2内の下部領域の温水と混ぜることができる。
 また、暖房用循環回路4には、バイパス配管44、暖房用混合弁45、第1,第2温度センサ46,47、暖房用循環ポンプ48および暖房用三方弁49が設けられている。
 バイパス配管44は、ラジエータ8から暖房戻り接続口43へ流れる温水の一部を暖房用混合弁45へ案内する。
 暖房用混合弁45は、貯湯タンク2からの温水が流入する入口と、バイパス配管44からの温水が流入する入口とを有している。詳しくは後述するが、暖房用混合弁45の各入口の開度は制御部7によって調節される。
 第1温度センサ46は、貯湯タンク2からラジエータ8へ向かう温水の温度を検出し、この温度を示す信号を制御部7に送る。
 第2温度センサ47は、ラジエータ8から貯湯タンク2へ向かう温水の温度を検出し、この温度を示す信号を制御部7に送る。
<Heating circuit 4>
The heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 again through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2. The heating circulation circuit 4 is connected to the first and second heating forward connection ports 41 and 42 and the heating return connection port 43. In addition, the 1st heating outgoing connection port 41 is an example of a 2nd water intake, and the heating return connection port 43 is an example of a return port.
The first heating / outgoing connection port 41 is for taking out hot water in the hot water storage tank 2. The first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2, and is positioned near and above the heater 6. Thereby, the hot water immediately after being heated by the heater 6 can be taken out from the first heating forward connection port 41 and sent to the plurality of radiators 8.
Similarly to the first heating forward connection port 41, the second heating forward connection port 42 is also for taking out hot water in the hot water storage tank 2. The second heating / outgoing connection port 42 is provided in the upper part of the hot water storage tank 2. Thereby, the hot water in the upper region in the hot water storage tank 2 can be taken out from the second heating forward connection port 42 and sent to the plurality of radiators 8. Moreover, the 2nd heating outgoing connection port 42 serves as a heating return connection port.
Each radiator 8 directly takes out the heat of hot water flowing from the hot water storage tank 2 and discharges it into the room. Then, the hot water becomes a low temperature, flows out of each radiator 8, and flows toward the heating return connection port 43.
The heating return connection port 43 is provided in the lower part of the hot water storage tank 2. As a result, the hot water discharged from the heating return connection port 43 can be mixed with the hot water in the lower region in the hot water storage tank 2.
The heating circulation circuit 4 is provided with a bypass pipe 44, a heating mixing valve 45, first and second temperature sensors 46 and 47, a heating circulation pump 48, and a heating three-way valve 49.
The bypass pipe 44 guides a part of the hot water flowing from the radiator 8 to the heating return connection port 43 to the heating mixing valve 45.
The heating mixing valve 45 has an inlet through which hot water from the hot water storage tank 2 flows and an inlet through which hot water from the bypass pipe 44 flows. Although described in detail later, the opening degree of each inlet of the heating mixing valve 45 is adjusted by the control unit 7.
The first temperature sensor 46 detects the temperature of the hot water from the hot water storage tank 2 toward the radiator 8 and sends a signal indicating this temperature to the control unit 7.
The second temperature sensor 47 detects the temperature of the hot water from the radiator 8 toward the hot water storage tank 2 and sends a signal indicating this temperature to the control unit 7.
 <制御部7>
 制御部7は、外気温度センサ18から、外気温度を示す信号を受けると共に、室内温度センサ(図示せず)から、室内温度を示す信号を受ける。そして、制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度を調節したり、暖房用循環ポンプ48の回転数を調節したりする。例えば、外気温度が高い時は、暖房用混合弁45を調節してバイパス配管44からの温水流入量を増加させることで往き温度を下げたり、暖房用循環ポンプ48の回転数を下げて循環する温水の流速を下げることで戻り温度を下げる。一方、外気温度が低い時は、暖房用混合弁45を調節してバイパス配管44からの温水流入量を減少させることで往き温度を上げる、または暖房用循環ポンプ48の回転数を上げて循環する温水の流速を上げることで戻り温度を上げる。
<Control unit 7>
The control unit 7 receives a signal indicating the outside air temperature from the outside temperature sensor 18 and also receives a signal indicating the room temperature from an indoor temperature sensor (not shown). The control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and the heating circulation. The rotational speed of the pump 48 is adjusted. For example, when the outside air temperature is high, the heating mixing valve 45 is adjusted to increase the amount of warm water flowing in from the bypass pipe 44 to lower the going temperature, or the heating circulation pump 48 is rotated at a lower speed to circulate. Lower the return temperature by lowering the flow rate of warm water. On the other hand, when the outside air temperature is low, the heating mixing valve 45 is adjusted to decrease the amount of warm water flowing from the bypass pipe 44 to increase the going temperature, or the heating circulation pump 48 is increased in the number of rotations to circulate. Increase the return temperature by increasing the flow rate of hot water.
 <ヒートポンプユニット1の運転について>
 ヒートポンプユニット1が稼働すると、CO2冷媒は、蒸発器11において、室外ファン17から送られた空気中の熱を吸収して蒸発する。そして、蒸発器11から吐出された気相冷媒は、圧縮機12で圧縮されて高圧高温の冷媒になる。圧縮機12から吐出された高温高圧の冷媒は、放熱器13において、貯湯循環回路5を介して貯湯タンク2からの温水と熱交換を行う。熱交換により放熱された冷媒は凝縮器13に入る前に比べて低温となって、膨張弁15に向かって流れる。ここで、放熱器13から膨張弁15までの間の冷媒配管21は、ドレインパン19に接触されており、放熱器13から膨張弁15までの間を流れる冷媒の熱を利用して、ドレインパン19及びドレインパン19に設けられた排水口23を加熱させる。その後、冷媒は膨張弁15において膨張されて低温低圧の気液二相(あるいは液相)となる。
 図3は、ヒートポンプユニット1の冷凍サイクルのp-h線図である。圧縮機12において、CO2冷媒は、臨界圧力を超える圧力まで圧縮され、高温高圧の超臨海状態になる。図3に示すA点からB点へ移行する。B点において、CO2冷媒の温度は約120℃である。
 放熱器13において、CO2冷媒は、貯湯タンク2から送られてくる温水と熱交換を行って冷却され、段々と温度が下がり超臨界状態から液体状態に移行する。図3に示すB点からC点へ移行する。C点において、CO2冷媒の温度は約32℃である。
 放熱器13から吐出された冷媒配管21内を流れるCO2冷媒は、蒸発器11の下部に設けられたドレインパン19と熱交換を行い、さらに冷却され、図3のC点からC’点へ移行する。C’点において、CO2冷媒の温度は約22℃である。
 その後、膨張弁15において、CO2冷媒は、減圧され低温低圧の気液二相(あるいは液相)状態になる。図3に示すC’点からD点へ移行する。減圧後のD点において、CO2冷媒の温度は約-10℃である。
 蒸発器11において、CO2冷媒は、外部空気からの熱を取り込んで蒸発し、低温低圧の気体となって再び圧縮機12に吸入される。図3に示すD点からA点へ移行する。蒸発器11において、CO2冷媒は気液二相(あるいは液相)から気体になるだけであって、温度は約-10℃のままである。
<About operation of heat pump unit 1>
When the heat pump unit 1 operates, the CO 2 refrigerant evaporates by absorbing heat in the air sent from the outdoor fan 17 in the evaporator 11. And the gaseous-phase refrigerant | coolant discharged from the evaporator 11 is compressed with the compressor 12, and becomes a high voltage | pressure high temperature refrigerant | coolant. The high-temperature and high-pressure refrigerant discharged from the compressor 12 exchanges heat with the hot water from the hot water storage tank 2 through the hot water circulation circuit 5 in the radiator 13. The refrigerant radiated by heat exchange becomes lower in temperature than before entering the condenser 13 and flows toward the expansion valve 15. Here, the refrigerant piping 21 between the radiator 13 and the expansion valve 15 is in contact with the drain pan 19, and the heat of the refrigerant flowing between the radiator 13 and the expansion valve 15 is used to drain the drain pan 19. 19 and the drain 23 provided in the drain pan 19 are heated. Thereafter, the refrigerant is expanded in the expansion valve 15 to become a low-temperature low-pressure gas-liquid two-phase (or liquid phase).
FIG. 3 is a ph diagram of the refrigeration cycle of the heat pump unit 1. In the compressor 12, the CO2 refrigerant is compressed to a pressure exceeding the critical pressure, and enters a high temperature and high pressure super maritime state. Transition from point A to point B shown in FIG. At point B, the temperature of the CO2 refrigerant is about 120 ° C.
In the radiator 13, the CO 2 refrigerant is cooled by exchanging heat with the hot water sent from the hot water storage tank 2, and gradually falls in temperature to shift from the supercritical state to the liquid state. Transition from point B to point C shown in FIG. At point C, the temperature of the CO2 refrigerant is about 32 ° C.
The CO 2 refrigerant flowing through the refrigerant pipe 21 discharged from the radiator 13 exchanges heat with the drain pan 19 provided at the lower part of the evaporator 11, and is further cooled to move from the C point to the C ′ point in FIG. To do. At point C ′, the temperature of the CO 2 refrigerant is about 22 ° C.
Thereafter, in the expansion valve 15, the CO2 refrigerant is depressurized and enters a low-temperature low-pressure gas-liquid two-phase (or liquid-phase) state. Transition from the point C ′ shown in FIG. 3 to the point D is performed. At point D after decompression, the temperature of the CO 2 refrigerant is about −10 ° C.
In the evaporator 11, the CO 2 refrigerant takes in heat from the outside air and evaporates to become a low-temperature and low-pressure gas and is sucked into the compressor 12 again. Transition from point D to point A shown in FIG. In the evaporator 11, the CO2 refrigerant is only changed from gas-liquid two-phase (or liquid-phase) to gas, and the temperature remains at about -10 ° C.
 <ヒートポンプユニットの特徴>
 (1)
 本ヒートポンプユニット1では、放熱器13から膨張弁15までの間の冷媒配管21を蒸発器11の下部に設けられたドレインパン19の排水口20近傍に接触させ、冷媒配管21に流れる冷媒の熱を利用して、ドレインパン19及び排水口20を加熱させる。よって、寒冷地に使用される温水循環暖房システムにおいて、ドレインパン19及び排水口20が凍結するのを防ぐことができる。
 (2)
 ヨーロッパ等の寒冷地では冬季の室内温度20℃以上に維持するように暖房を行う必要があるため、室内のラジエータ8で熱交換を行った後、貯湯タンクに戻される温水の温度は20℃以上である。したがって、放熱器13で温水に熱を放出した後の冷媒の温度も20℃以上となり、この余熱を利用することが可能である。
 (3)
 また、放熱器13で放熱した後の余熱を利用しているため、放熱器13における熱交換効率を下げることはなく、よってヒートポンプユニット1全体の熱効率を下げることはない。また、放熱後の冷媒でドレインパン19及び排水口20を加熱しているため、ドレインパン19及び排水口20が凍結するのを防ぐことができ、寒冷地でも正常な運転が継続できるので、COPを向上させることも可能である。
 (4)
 また、本ヒートポンプユニット1では、放熱器13と膨張弁15との間に設けられた冷媒配管21をドレインパン19に接触させることで、簡単な構造で、放熱器13から膨張弁15までの間を流れる冷媒の熱を利用して、ドレインパンを加熱させることができる。
 (5)
 また、ドレインパンに放熱することでその分余計に熱が必要となるが、ドレインパンに放熱することで膨張弁前の冷媒密度を大きくし、蒸発器の冷媒を湿らせることができる。同じ蒸発能力でもより潜熱を利用することが可能となり蒸発温度が若干ではあるが高くなり、効率も改善される。これはラジエータからの戻り温度が高いときに特に大きく効率が改善される。
<Characteristics of heat pump unit>
(1)
In this heat pump unit 1, the refrigerant pipe 21 between the radiator 13 and the expansion valve 15 is brought into contact with the vicinity of the drain port 20 of the drain pan 19 provided at the lower part of the evaporator 11, and the heat of the refrigerant flowing through the refrigerant pipe 21. The drain pan 19 and the drain port 20 are heated using Therefore, in the hot water circulation heating system used in a cold district, it is possible to prevent the drain pan 19 and the drain outlet 20 from freezing.
(2)
In cold regions such as Europe, it is necessary to perform heating so that the indoor temperature in winter is maintained at 20 ° C or higher. Therefore, the temperature of the hot water returned to the hot water storage tank is 20 ° C or higher after heat exchange is performed by the indoor radiator 8. It is. Therefore, the temperature of the refrigerant after releasing heat to the hot water by the radiator 13 becomes 20 ° C. or higher, and this residual heat can be used.
(3)
Moreover, since the residual heat after radiating with the radiator 13 is used, the heat exchange efficiency in the radiator 13 is not lowered, and thus the thermal efficiency of the entire heat pump unit 1 is not lowered. In addition, since the drain pan 19 and the drain port 20 are heated by the refrigerant after heat dissipation, the drain pan 19 and the drain port 20 can be prevented from freezing, and normal operation can be continued even in cold regions. It is also possible to improve.
(4)
In the heat pump unit 1, the refrigerant pipe 21 provided between the radiator 13 and the expansion valve 15 is brought into contact with the drain pan 19, so that the structure between the radiator 13 and the expansion valve 15 is simplified. The drain pan can be heated using the heat of the refrigerant flowing through the.
(5)
Further, heat is required for the drain pan to dissipate heat, but by dissipating heat to the drain pan, the refrigerant density before the expansion valve can be increased and the refrigerant in the evaporator can be moistened. Even with the same evaporation capability, it is possible to use latent heat, and the evaporation temperature becomes slightly higher, and the efficiency is improved. This is particularly significant when the return temperature from the radiator is high and improves efficiency.
  <その他の実施例>
 その他の実施形態に係るヒートポンプユニット100の構成を、図4に示す。図1のヒートポンプユニットと同じ構造については、同じ図面符号を使用し、具体的構成についての説明を省略する。
 図4のヒートポンプユニット100は、熱交換器14をさらに備えている。熱交換器14では、蒸発器11から流出して圧縮機12に流入する低圧低温冷媒と、放熱器13から流出して膨張弁15に流入する高圧冷媒との熱交換を行わせる。
 図4及び図5に示すように、熱交換器14は、ドレインパン19の上に配置されており、放熱器13と膨張弁15とを結ぶ冷媒配管211と、蒸発器11と圧縮機12とを結ぶ冷媒配管212とを有している。図5に示すように、熱交換器14に含まれる冷媒配管211、212は互いに重なり合った状態でドレインパン19に接触され、ドレインパン加熱手段201を構成している。ドレインパン19は排水口23を有しており、冷媒配管211、212からなるドレインパン加熱手段201の一部は排水口23の近傍に配置されている。
 図6は、ヒートポンプユニット100の冷凍サイクルのp-h線図である。圧縮機12において、CO2冷媒は、臨界圧力を超える圧力まで圧縮され、高温高圧の超臨海状態になる。図6に示すA点からB点へ移行する。B点において、CO2冷媒の温度は約120℃である。
 放熱器13において、CO2冷媒は、貯湯タンク2から送られてくる温水と熱交換を行って冷却され、段々と温度が下がり超臨界状態から液体状態に移行する。図6に示すB点からC点へ移行する。C点において、CO2冷媒の温度は約32℃である。
 ここでは、熱交換器14が設けられているため、放熱器13から吐出され冷媒配管211内を流れる約32℃の液状CO2冷媒は、蒸発器11から流出した冷媒配管212内を流れる約-10℃の気体CO2冷媒と熱交換を行うとともに、蒸発器11の下部に設けられたドレインパン19と熱交換を行い、さらに冷却される。図3に示す熱交換器14が設けられていない場合のC’点(約22℃)を超えて、さらに冷却されC’’点へ移行する。C’’点において、CO2冷媒の温度は約12℃である。これにより、放熱器13から流出した冷媒に過冷却を付与し、また、圧縮機12に流入する冷媒を加熱して過熱状態に近づけることができる。
 その後、膨張弁15において、CO2冷媒は、減圧され低温低圧の気液二相(あるいは液相)状態になる。図6に示すC’’点からD点へ移行する。減圧後のD点において、CO2冷媒の温度は約-10℃である。
 蒸発器11において、CO2冷媒は、外部空気からの熱を取り込んで蒸発し、低温低圧の気体となって再び圧縮機12に吸入される。図6に示すD点からA’点へ移行する。
 ここでは、熱交換器14が設けられているため、蒸発器11から流出した冷媒配管212内を流れる約-10℃の気体CO2冷媒は、放熱器13から吐出され冷媒配管211内を流れる約32℃の液状CO2冷媒と熱交換を行い、A’点からA点へ移行する。この過程で、CO2冷媒の温度は約-10℃のままで気体の乾き度が大きくなる。このため、圧縮機12において湿り圧縮が起こることを防止することができ、安定した運転を可能としている。
<Other examples>
The configuration of the heat pump unit 100 according to another embodiment is shown in FIG. About the same structure as the heat pump unit of FIG. 1, the same drawing code | symbol is used and description about a specific structure is abbreviate | omitted.
The heat pump unit 100 in FIG. 4 further includes a heat exchanger 14. In the heat exchanger 14, heat exchange is performed between the low-pressure low-temperature refrigerant that flows out of the evaporator 11 and flows into the compressor 12, and the high-pressure refrigerant that flows out of the radiator 13 and flows into the expansion valve 15.
As shown in FIGS. 4 and 5, the heat exchanger 14 is disposed on the drain pan 19, and includes a refrigerant pipe 211 that connects the radiator 13 and the expansion valve 15, the evaporator 11, and the compressor 12. And a refrigerant pipe 212 connecting the two. As shown in FIG. 5, the refrigerant pipes 211 and 212 included in the heat exchanger 14 are in contact with the drain pan 19 in a state where they overlap each other, thereby constituting the drain pan heating means 201. The drain pan 19 has a drain port 23, and a part of the drain pan heating means 201 including the refrigerant pipes 211 and 212 is disposed in the vicinity of the drain port 23.
FIG. 6 is a ph diagram of the refrigeration cycle of the heat pump unit 100. In the compressor 12, the CO2 refrigerant is compressed to a pressure exceeding the critical pressure, and enters a high temperature and high pressure super maritime state. Transition from point A to point B shown in FIG. At point B, the temperature of the CO2 refrigerant is about 120 ° C.
In the radiator 13, the CO 2 refrigerant is cooled by exchanging heat with the hot water sent from the hot water storage tank 2, and gradually falls in temperature to shift from the supercritical state to the liquid state. Transition from point B to point C shown in FIG. At point C, the temperature of the CO2 refrigerant is about 32 ° C.
Here, since the heat exchanger 14 is provided, the liquid CO 2 refrigerant at about 32 ° C. discharged from the radiator 13 and flowing in the refrigerant pipe 211 is about −10 flowing in the refrigerant pipe 212 flowing out of the evaporator 11. Heat exchange is performed with a gaseous CO 2 refrigerant at 0 ° C., and heat exchange is performed with the drain pan 19 provided at the lower portion of the evaporator 11, thereby further cooling. After the point C ′ (about 22 ° C.) in the case where the heat exchanger 14 shown in FIG. 3 is not provided, the cooling is further performed and the point moves to the point C ″. At point C ″, the temperature of the CO 2 refrigerant is about 12 ° C. Thereby, supercooling can be imparted to the refrigerant that has flowed out of the radiator 13, and the refrigerant that flows into the compressor 12 can be heated to approach the overheated state.
Thereafter, in the expansion valve 15, the CO2 refrigerant is depressurized and enters a low-temperature and low-pressure gas-liquid two-phase (or liquid-phase) state. Transition from the point C ″ shown in FIG. 6 to the point D is performed. At point D after decompression, the temperature of the CO 2 refrigerant is about −10 ° C.
In the evaporator 11, the CO 2 refrigerant takes in heat from the outside air and evaporates to become a low-temperature and low-pressure gas and is sucked into the compressor 12 again. Transition from the point D shown in FIG. 6 to the point A ′.
Here, since the heat exchanger 14 is provided, about −10 ° C. gaseous CO 2 refrigerant flowing in the refrigerant pipe 212 flowing out of the evaporator 11 is discharged from the radiator 13 and about 32 flowing in the refrigerant pipe 211. Heat exchange is performed with the liquid CO 2 refrigerant at 0 ° C., and the point A ′ is shifted to the point A. In this process, the temperature of the CO 2 refrigerant remains at about −10 ° C., and the dryness of the gas increases. For this reason, it is possible to prevent wet compression from occurring in the compressor 12 and to enable stable operation.
 <変形例>
 (A)
 図5に示すドレインパン加熱手段201は、熱交換器14に含まれる冷媒配管211、212を重ねた状態で直接ドレインパン19に接触しており、排水口23を含むドレインパン19全体を加熱する構造になっている。しかし、ドレインパン19の排水口23のみを加熱することもできる。例えば、図7に示すように、冷媒配管211、212を重ねた熱交換器14の外周を断熱材25で包み、冷媒配管211、212と外気との熱交換を遮断する。また、排水口23近傍では断熱材25を切り欠いて、冷媒配管211内を流れる液状CO2冷媒の余熱で、排水口23近傍を加熱するようにする。
 このように、凍結が心配され、加熱が必要なドレインパン19の排水口23のみを加熱することで、不要な熱損失を低減することができる。
 (B)
 図8に示すように、冷媒配管211と排水口23近傍のドレインパン19との接触部に、伝熱部材24を設け、冷媒配管211とドレインパン19の接触部における熱伝達を強化することも可能である。
 (C)
 図3に示すドレインパン加熱手段では、放熱器13からの冷媒配管21をそのまま直接
ドレインパン19に接触しており、排水口23を含むドレインパン19全体を加熱する構造になっている。しかし、ドレインパン19の排水口23のみを加熱することができる。上記(A)同様、冷媒配管21の外周を断熱材25で包み、排水口23近傍では断熱材25を切り欠いて、冷媒配管21内を流れる液状CO2冷媒の余熱で、排水口23近傍を加熱するようにする。
 また、上記(B)同様、冷媒配管21と排水口23近傍のドレインパン19との接触部に、伝熱部材23を設け、冷媒配管21とドレインパン19の接触部における熱伝達を強化することも可能である。
 (D)
 上記のヒートポンプユニット1では、放熱器13吐出され膨張弁15に供給される冷媒は、全て冷媒配管21を経由してドレインパン19の排水口23を加熱するようになっている。但し、放熱器13と膨張弁15との間に少なくとも二つの配管経路を設け、その間に切替弁を設置し、放熱器13から吐出されるCO2冷媒の一部のみをドレインパン19の加熱に使用し、その他の部分は直接膨張弁15に供給してもよい。
 ヒートポンプユニット100も同様の構造を採用し、放熱器13から吐出されるCO2冷媒の一部のみを熱交換器14に供給し、その他の部分は直接膨張弁15に供給してもよい。
<Modification>
(A)
The drain pan heating means 201 shown in FIG. 5 is in direct contact with the drain pan 19 with the refrigerant pipes 211 and 212 included in the heat exchanger 14 being overlapped, and heats the entire drain pan 19 including the drain port 23. It has a structure. However, only the drain outlet 23 of the drain pan 19 can be heated. For example, as shown in FIG. 7, the outer periphery of the heat exchanger 14 in which the refrigerant pipes 211 and 212 are stacked is wrapped with a heat insulating material 25 to block heat exchange between the refrigerant pipes 211 and 212 and the outside air. Further, the heat insulating material 25 is cut out in the vicinity of the drain port 23, and the vicinity of the drain port 23 is heated by the residual heat of the liquid CO 2 refrigerant flowing in the refrigerant pipe 211.
In this way, unnecessary heat loss can be reduced by heating only the drain port 23 of the drain pan 19 that is worried about freezing and that requires heating.
(B)
As shown in FIG. 8, a heat transfer member 24 may be provided at the contact portion between the refrigerant pipe 211 and the drain pan 19 in the vicinity of the drain port 23 to enhance heat transfer at the contact portion between the refrigerant pipe 211 and the drain pan 19. Is possible.
(C)
In the drain pan heating means shown in FIG. 3, the refrigerant pipe 21 from the radiator 13 is in direct contact with the drain pan 19 as it is, and the entire drain pan 19 including the drain port 23 is heated. However, only the drain outlet 23 of the drain pan 19 can be heated. As in (A) above, the outer periphery of the refrigerant pipe 21 is wrapped with a heat insulating material 25, and the heat insulating material 25 is cut out in the vicinity of the drain port 23, and the vicinity of the drain port 23 is heated by the residual heat of the liquid CO 2 refrigerant flowing in the refrigerant pipe 21. To do.
Further, similarly to the above (B), the heat transfer member 23 is provided at the contact portion between the refrigerant pipe 21 and the drain pan 19 in the vicinity of the drain port 23 to enhance heat transfer at the contact portion between the refrigerant pipe 21 and the drain pan 19. Is also possible.
(D)
In the heat pump unit 1 described above, all the refrigerant discharged from the radiator 13 and supplied to the expansion valve 15 heats the drain port 23 of the drain pan 19 via the refrigerant pipe 21. However, at least two piping paths are provided between the radiator 13 and the expansion valve 15, a switching valve is provided between them, and only a part of the CO 2 refrigerant discharged from the radiator 13 is used for heating the drain pan 19. However, other portions may be directly supplied to the expansion valve 15.
The heat pump unit 100 may adopt the same structure, and only a part of the CO 2 refrigerant discharged from the radiator 13 may be supplied to the heat exchanger 14 and the other part may be directly supplied to the expansion valve 15.
特開2007-155296号公報JP 2007-155296 A

Claims (8)

  1.  空気中の熱を吸収して冷媒を蒸発させる蒸発器(11)と、
     前記蒸発器からの気相冷媒を圧縮して高圧冷媒として吐出する圧縮機(12)と、
     前記圧縮機から供給された高温冷媒の熱を放出する放熱器(13)と、
     前記放熱器からの冷媒を膨張させる減圧機構(15)と、
     前記蒸発器の下部に設けられたドレインパン(19)と、
     前記蒸発器から前記圧縮機に向かう冷媒と前記放熱器から前記減圧機構に向かう冷媒との熱交換を行わせる熱交換器(14)と、
     前記放熱器から前記減圧機構までの間を流れる冷媒の少なくとも一部の熱を利用して、前記ドレインパンを加熱させるドレインパン加熱手段(20)と
    を備えたヒートポンプユニットにおいて、
     前記ドレインパン加熱手段は、
     前記熱交換器に含まれ、前記ドレインパンに接触させた冷媒配管(211、212)である、ヒートポンプユニット。
    An evaporator (11) for absorbing heat in the air and evaporating the refrigerant;
    A compressor (12) for compressing the gas-phase refrigerant from the evaporator and discharging it as a high-pressure refrigerant;
    A radiator (13) for releasing the heat of the high-temperature refrigerant supplied from the compressor;
    A decompression mechanism (15) for expanding the refrigerant from the radiator;
    A drain pan (19) provided at the bottom of the evaporator;
    A heat exchanger (14) for performing heat exchange between the refrigerant from the evaporator toward the compressor and the refrigerant from the radiator toward the decompression mechanism;
    In a heat pump unit comprising drain pan heating means (20) for heating the drain pan using heat of at least a part of the refrigerant flowing between the radiator and the decompression mechanism,
    The drain pan heating means includes
    A heat pump unit which is a refrigerant pipe (211 and 212) included in the heat exchanger and brought into contact with the drain pan.
  2.  前記放熱器において、冷媒は温水に熱を放出する、
    請求項1に記載のヒートポンプユニット。
    In the radiator, the refrigerant releases heat to the hot water.
    The heat pump unit according to claim 1.
  3.  前記冷媒は、二酸化炭素である、
    請求項1または2に記載のヒートポンプユニット。
    The refrigerant is carbon dioxide;
    The heat pump unit according to claim 1 or 2.
  4.  前記ドレインパン加熱手段は、
     前記放熱器と前記減圧機構との間に設けられ、前記ドレインパンに接触された冷媒配管(21)である、
    請求項1から3のいずれかに記載のヒートポンプユニット。
    The drain pan heating means includes
    A refrigerant pipe (21) provided between the radiator and the pressure reducing mechanism and in contact with the drain pan;
    The heat pump unit according to any one of claims 1 to 3.
  5.  前記ドレインパン加熱手段は、
     前記冷媒配管と前記ドレインパンとの接触部に設けられた伝熱部材(24)をさらに備えた、
    請求項4に記載のヒートポンプユニット。
    The drain pan heating means includes
    A heat transfer member (24) provided at a contact portion between the refrigerant pipe and the drain pan;
    The heat pump unit according to claim 4.
  6.  前記ドレインパンには、排水口(23)が設けられ、
     前記冷媒配管は前記排水口の近くに配置されている、
    請求項1~5のいずれかに記載のヒートポンプユニット。
    The drain pan is provided with a drain (23),
    The refrigerant pipe is disposed near the drain;
    The heat pump unit according to any one of claims 1 to 5.
  7.   前記冷媒配管の外周は断熱材(25)に包まれており、
      前記排水口周辺に位置する前記冷媒配管の断熱材には切欠部が形成されている、
     請求項6に記載のヒートポンプユニット。
    The outer periphery of the refrigerant pipe is wrapped in a heat insulating material (25),
    A notch is formed in the heat insulating material of the refrigerant pipe located around the drain outlet,
    The heat pump unit according to claim 6.
  8.   請求項1~7のいずれかに記載のヒートポンプユニット(1)と、
      前記ヒートポンプユニット(1)で加熱された温水を貯える貯湯タンク(2)と、
     を備えたヒートポンプ給湯装置。
    A heat pump unit (1) according to any of claims 1 to 7,
    A hot water storage tank (2) for storing hot water heated by the heat pump unit (1);
    Heat pump water heater with
PCT/JP2009/002358 2008-06-02 2009-05-28 Heat pump unit and heat pump hot-water supply device WO2009147803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-145043 2008-06-02
JP2008145043A JP4661908B2 (en) 2008-06-02 2008-06-02 Heat pump unit and heat pump water heater

Publications (1)

Publication Number Publication Date
WO2009147803A1 true WO2009147803A1 (en) 2009-12-10

Family

ID=41397888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002358 WO2009147803A1 (en) 2008-06-02 2009-05-28 Heat pump unit and heat pump hot-water supply device

Country Status (2)

Country Link
JP (1) JP4661908B2 (en)
WO (1) WO2009147803A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204981A (en) * 2012-03-29 2013-10-07 Panasonic Corp Cooling unit and refrigeration device
WO2016015098A1 (en) * 2014-07-29 2016-02-04 DI, Shi Heating apparatus, system and method
US10281171B2 (en) 2016-11-14 2019-05-07 Haier Us Appliance Solutions, Inc. Water heater appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590119B1 (en) * 2014-03-26 2016-01-29 한홍규 Heat pump type hot water supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869791U (en) * 1981-11-02 1983-05-12 三洋電機株式会社 Freezer compartment drainage system
JPH05126440A (en) * 1991-11-05 1993-05-21 Sanyo Electric Co Ltd Freezer
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2005098615A (en) * 2003-09-25 2005-04-14 Hoshizaki Electric Co Ltd Cooling device
JP2005188924A (en) * 2001-07-02 2005-07-14 Sanyo Electric Co Ltd Heat pump device
JP2008070013A (en) * 2006-09-13 2008-03-27 Mitsubishi Electric Corp Heat pump device and heat-pump water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038119Y2 (en) * 1981-06-05 1985-11-14 松下電器産業株式会社 Freeze prevention piping fixing structure for air conditioners

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869791U (en) * 1981-11-02 1983-05-12 三洋電機株式会社 Freezer compartment drainage system
JPH05126440A (en) * 1991-11-05 1993-05-21 Sanyo Electric Co Ltd Freezer
JP2005188924A (en) * 2001-07-02 2005-07-14 Sanyo Electric Co Ltd Heat pump device
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2005098615A (en) * 2003-09-25 2005-04-14 Hoshizaki Electric Co Ltd Cooling device
JP2008070013A (en) * 2006-09-13 2008-03-27 Mitsubishi Electric Corp Heat pump device and heat-pump water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204981A (en) * 2012-03-29 2013-10-07 Panasonic Corp Cooling unit and refrigeration device
WO2016015098A1 (en) * 2014-07-29 2016-02-04 DI, Shi Heating apparatus, system and method
US10281171B2 (en) 2016-11-14 2019-05-07 Haier Us Appliance Solutions, Inc. Water heater appliance

Also Published As

Publication number Publication date
JP4661908B2 (en) 2011-03-30
JP2009293818A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
US8984901B2 (en) Heat pump system
JP5455521B2 (en) Air conditioning and hot water supply system
JP2006283989A (en) Cooling/heating system
JP3998024B2 (en) Heat pump floor heating air conditioner
JP5629280B2 (en) Waste heat recovery system and operation method thereof
EP2770278B1 (en) Water heater
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2007163071A (en) Heat pump type cooling/heating system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP2004003825A (en) Heat pump system, and heat pump type hot water supplying machine
JP2008082601A (en) Heat pump hot water supply device
JP4033788B2 (en) Heat pump equipment
JP2006010137A (en) Heat pump system
JP2011052850A (en) Heat pump type warm water heating device
JP2004340419A (en) Heat pump type water-heater
JP4419475B2 (en) Heating system and housing
JP2017161164A (en) Air-conditioning hot water supply system
JP2006048638A (en) Vending machine with cooling/heating system
KR101286699B1 (en) heating and cooling system and using a heat pump
JP6455752B2 (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758070

Country of ref document: EP

Kind code of ref document: A1