WO2009147797A1 - Testing device, transmission circuit, testing device control method and transmission circuit control method - Google Patents

Testing device, transmission circuit, testing device control method and transmission circuit control method Download PDF

Info

Publication number
WO2009147797A1
WO2009147797A1 PCT/JP2009/002301 JP2009002301W WO2009147797A1 WO 2009147797 A1 WO2009147797 A1 WO 2009147797A1 JP 2009002301 W JP2009002301 W JP 2009002301W WO 2009147797 A1 WO2009147797 A1 WO 2009147797A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
timing
unit
test cycle
test
Prior art date
Application number
PCT/JP2009/002301
Other languages
French (fr)
Japanese (ja)
Inventor
純一 松本
慶紀 川梅
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2010515748A priority Critical patent/JP5202628B2/en
Priority to KR1020107025468A priority patent/KR101239121B1/en
Publication of WO2009147797A1 publication Critical patent/WO2009147797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31725Timing aspects, e.g. clock distribution, skew, propagation delay
    • G01R31/31726Synchronization, e.g. of test, clock or strobe signals; Signals in different clock domains; Generation of Vernier signals; Comparison and adjustment of the signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31703Comparison aspects, e.g. signature analysis, comparators

Definitions

  • the present invention relates to a test apparatus, a transmission circuit, a test apparatus control method, and a transmission circuit control method.
  • the present invention relates to a test apparatus for testing a device under test, a control method for the test apparatus, a transmission circuit for transmitting data and a data enable signal indicating whether the data is valid from the transmission circuit to the reception circuit, and transmission
  • the present invention relates to a circuit control method.
  • a test apparatus that tests a semiconductor or the like includes a timing generator that generates a timing signal that specifies a change point of a test signal to be applied to a device under test (for example, see Patent Document 1).
  • the timing generator is given test cycle data indicating a delay time from the timing of the reference clock to the start timing of the test cycle, and timing data indicating a delay time from the start timing of the test cycle to the change point. Then, the timing generator uses the delay circuit to generate a timing signal by delaying the reference clock by the delay time indicated in the test cycle data and the timing data.
  • the test apparatus propagates the test cycle data generated by the cycle generator through a plurality of continuously connected flip-flops, and gives it to the subsequent timing generator.
  • the number of bits of test cycle data has increased as the device under test has been improved in performance and increased in the number of pins.
  • the number of flip-flop stages that propagate test cycle data from the cycle generator to the timing generator is increasing.
  • the test apparatus may generate a plurality of timing signals within the range of one test cycle.
  • the timing generator selects and operates a plurality of delay circuits connected in parallel one by one every time the test cycle data is given, thereby operating a plurality of delay circuits within the range of one test cycle. This timing signal can be generated.
  • a test apparatus for testing a device under test which is a test indicating a timing that is a reference of a start timing of a test cycle in synchronization with a reference clock
  • a test cycle generator that generates a cycle signal and a test cycle data representing a delay amount from the test cycle signal to a test cycle start timing, and the test cycle start timing specified by the test cycle data as a reference.
  • a timing generator for generating a timing for transmitting / receiving a signal to / from a test device, and the test cycle generator includes a cycle generator for generating the test cycle data and the test cycle signal, and a reference clock.
  • test device Synchronously acquiring the test cycle data and outputting it to the timing generator, and the test cycle signal In the case of occurrence that are not cycle, the test device having a clock gate unit stopping the supply of the reference clock to the data acquisition unit, and a control method of such a test device.
  • a transmission circuit for transmitting data and a data enable signal indicating whether or not the data is valid from a transmission circuit to a reception circuit, wherein the transmission is performed in synchronization with a reference clock.
  • a data acquisition unit that acquires the data from the circuit and outputs the data to the reception circuit; and the reference clock for the data acquisition unit when the data enable signal indicating that the data is invalid is received from the transmission circuit.
  • a control method for such a transmission circuit is provided.
  • a test apparatus for testing a device under test, wherein the timing data designates the generation timing of a timing signal indicating the timing of transmitting / receiving a signal to / from the device under test, and the timing A timing data generation unit that generates a timing enable signal indicating whether or not data is valid, and operates in synchronization with a reference clock, and is included in the timing data after receiving the valid timing data from the timing data generation unit
  • the timing enable signal indicating the validity of the timing data and the lower side data other than the upper side data of the timing data after counting the reference clocks by the number of higher side data representing the time in units equal to or greater than the cycle of the reference clock
  • the count section that outputs
  • a test device comprising: a clock gate unit that stops supplying the reference clock to the count unit when the count unit does not count the number of higher-order data included in the valid timing data; and Provided is a method for controlling a simple test apparatus.
  • FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 200.
  • FIG. 2 shows an example of the bit configuration of the test cycle data output from the test cycle generator 22.
  • FIG. 3 shows a reference clock, test cycle data output from the test cycle generator 22, and a test cycle signal.
  • FIG. 4 shows a configuration of the test cycle generator 22 according to the present embodiment.
  • FIG. 5 shows a configuration of the transmission circuit 40 according to the present embodiment.
  • FIG. 6 shows an example of the configuration of the data acquisition unit 48 and the data switching unit 56.
  • FIG. 7 shows an exemplary configuration of the detection unit 50, the clock enable signal transmission circuit 52, the first clock gate unit 54, and the test cycle signal transmission circuit 58.
  • FIG. 8 shows an example of a timing chart of each signal in the transmission circuit 40.
  • FIG. 9 shows a configuration of the timing generator 24 according to the present embodiment.
  • FIG. 10 shows an example of a timing chart of the timing enable signal input to the plurality of counter delay units 114.
  • FIG. 11 shows an example of a timing chart of timing enable signals and lower-order data output from the plurality of counter delay units 114.
  • FIG. 12 shows the configuration of the counter delay unit 114.
  • FIG. 13 shows an example of a timing chart of each signal in the counter delay unit 114.
  • FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 200.
  • the test apparatus 10 tests the device under test 200 by applying a test signal to the device under test 200 and comparing the response signal output from the device under test 200 with an expected value in accordance with the test signal.
  • the test apparatus 10 includes a pattern generator 20, a test cycle generator 22, a timing generator 24, a waveform shaping unit 26, a driver 28, a level comparator 30, a timing comparator 32, and a determination unit 34. .
  • the pattern generator 20 designates a test pattern for designating the waveform of the test signal to be applied to the device under test 200 and a logical value of the response signal to be output from the device under test 200 in response to the provision of the test signal. Generate an expected value pattern.
  • the pattern generator 20 also generates data specifying a test cycle that serves as a reference for specifying the timing of the waveform change (edge) of the test signal and the comparison timing between the response signal and the expected value.
  • the pattern generation unit 20 delays from the start timing of the test cycle to the timing of waveform change of the test signal or the delay from the start timing of the test cycle to the comparison timing of the response signal and the expected value for each test cycle. Generate delay data representing time.
  • the test cycle generator 22 generates test cycle data representing the test cycle start timing and a delay amount from the test cycle signal to the test cycle start timing in synchronization with the reference clock.
  • the test cycle generator 22 may receive data designating a test cycle from the pattern generator 20 and generate test cycle data according to the received data.
  • the test cycle generator 22 generates the generated test cycle data and test cycle signal in synchronization with the reference clock.
  • the timing generator 24 generates a timing for transmitting / receiving a signal to / from the device under test 200 based on the start timing of the test cycle specified by the test cycle data.
  • the cycle of the reference clock in which the test cycle signal is generated is referred to as a cycle in which the test cycle signal is valid
  • the cycle of the reference clock in which the test cycle signal is not generated is referred to as a cycle in which the reference cycle signal is invalid.
  • the cycle of the reference clock in which the test cycle signal is valid indicates test cycle data acquired at a timing when the test cycle signal is valid, and in the case of invalid test cycle data, at a timing where the test cycle signal is valid. The acquired test cycle data is shown.
  • the test cycle signal functions as a signal indicating whether the test cycle data is valid or invalid.
  • the timing generator 24 generates a timing signal that is a pulse at a timing delayed by a delay time specified by delay data corresponding to the test cycle from a timing specified by valid test cycle data. Good.
  • the waveform shaping unit 26 generates a test signal obtained by shaping a test pattern based on the timing signal given from the timing generator 24. That is, the waveform shaping unit 26 generates a test signal having a waveform designated by the test pattern and having a waveform whose level changes at the timing of the timing signal.
  • the driver 28 supplies the test signal generated by the waveform shaping unit 26 to the device under test 200.
  • the level comparator 30 receives the response signal output from the device under test 200 according to the test signal, and outputs a logic value signal representing a logic value according to the level of the received response signal.
  • the timing comparator 32 takes in the logical value represented by the logical value signal output from the level comparator 30 at the timing of the timing signal given from the timing generator 24.
  • the determination unit 34 compares the logical value captured by the timing comparator 32 with the expected value specified by the expected value pattern generated by the pattern generation unit 20 and outputs a comparison result. For example, when the logical value captured by the timing comparator 32 matches the expected value, the determination unit 34 outputs a comparison result representing a path, and the logical value captured by the timing comparator 32 matches the expected value. If not, a comparison result indicating failure may be output.
  • FIG. 2 shows an example of the bit configuration of the test cycle data output from the test cycle generator 22.
  • the test cycle data includes the test cycle data from the timing at which the test cycle data is synchronized with the reference clock of the test apparatus 10 given to the timing generator 24, that is, the timing at which the timing generator 24 receives the test cycle data. Represents the delay time until the start timing of the test cycle specified by.
  • Test cycle data includes a plurality of bits.
  • the test cycle data includes (J + K) bits (J and K are natural numbers).
  • the test cycle data represents a delay time corresponding to one cycle (T time) of the reference clock when the bit at the reference position (for example, the bit at the position n in FIG. 2).
  • T time time
  • each bit is delayed by 2 times, 4 times, 8 times, ... 2 K times (K is a natural number) of one cycle of the reference clock.
  • K is a natural number
  • every time the test cycle data advances from the bit at the reference position to one lower bit each bit is 1/2, 1/4, 1/8,..., 2- J of one cycle of the reference clock.
  • the delay time is doubled (J is a natural number).
  • a portion representing a delay time of one cycle (T) or less of the reference clock in the test cycle data is referred to as a lower bit of the test cycle data.
  • a portion representing a delay time of two cycles (2 ⁇ T) or more of the reference clock in the test cycle data is referred to as an upper bit of the test cycle data.
  • the test cycle data includes upper bits indicating a unit time larger than the cycle of the reference clock in the delay time from the timing when the timing generator 24 receives the test cycle data to the start timing of the test cycle. It includes lower bits that indicate time in units that are less than the period of the reference clock.
  • FIG. 3 shows the reference clock, the test cycle data output from the test cycle generator 22, and the test cycle signal.
  • the test cycle generator 22 outputs the test cycle data and the test cycle signal as a pair in synchronization with the reference clock. Further, the test cycle generator 22 sequentially outputs test cycle data and a test cycle signal indicating validity for each test cycle. In this case, the test cycle generator 22 does not simultaneously output two or more test cycle data in one cycle of the reference clock.
  • test cycle generator 22 continuously outputs the two test cycle data at intervals of the reference clock cycle (T). That is, when the upper bit of the test cycle data is 0, the test cycle data and the next test cycle data are continuously output at the interval of the reference clock cycle.
  • FIG. 4 shows a configuration of the test cycle generator 22 according to the present embodiment.
  • the test cycle generator 22 includes a cycle generator 38 and a transmission circuit 40.
  • the cycle generator 38 receives data designating a test cycle from the pattern generator 20, and generates test cycle data and a test cycle signal in synchronization with the reference clock according to the received data.
  • the transmission circuit 40 acquires test cycle data and a test cycle signal from the cycle generator 38 and transmits them to the timing generator 24 in synchronization with the reference clock.
  • FIG. 5 shows a configuration of the transmission circuit 40 according to the present embodiment.
  • the transmission circuit 40 includes a lower bit acquisition flip-flop 42, an upper bit acquisition flip-flop 44, a test cycle signal acquisition flip-flop 46, a data acquisition unit 48, a detection unit 50, and a clock enable signal transmission circuit 52.
  • the lower bit acquisition flip-flop 42 acquires lower bits of the test cycle data generated by the cycle generator 38 at the timing of the reference clock.
  • the upper bit acquisition flip-flop 44 acquires the upper bits of the test cycle data generated by the cycle generator 38 at the timing of the reference clock.
  • the test cycle signal acquisition flip-flop 46 acquires the test cycle signal generated by the cycle generator 38 at the timing of the reference clock.
  • the data acquisition unit 48 acquires test cycle data in synchronization with the reference clock and outputs it to the timing generator 24.
  • the data acquisition unit 48 may include a lower bit transmission circuit 60 and an upper bit transmission circuit 62.
  • the lower bit transmission circuit 60 acquires the lower bits of the test cycle data in synchronization with the reference clock and outputs it with the timing generator 24.
  • the lower bit transmission circuit 60 acquires the upper bits of the test cycle data in synchronization with the reference clock and outputs it with the timing generator 24.
  • the detecting unit 50 detects whether or not the upper bits of the test cycle data generated by the cycle generating unit 38 match a predetermined value. In the present embodiment, 0 is set as a predetermined value of the upper bits. That is, in the present embodiment, the detection unit 50 detects whether or not the upper bit of the test cycle data generated by the cycle generation unit 38 is 0. Thereby, the detection unit 50 can detect the case where the test cycle data and the next test cycle data are continuously output in the cycle of the reference clock. Further, the detection unit 50 detects whether or not the cycle generation unit 38 has generated a test cycle signal indicating that the test cycle data is invalid, that is, whether or not the cycle has not been generated.
  • the detection unit 50 generates a clock enable signal indicating whether or not to supply the reference clock used for acquiring the upper bits to the data acquisition unit 48. More specifically, the detection unit 50 generates a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which the test cycle signal is not generated) or the cycle generation unit 38. A clock enable signal indicating invalidity is generated when the upper bits of the test cycle data in which the error occurs coincides with a predetermined value (0 in this embodiment). The detection unit 50 also generates a test cycle signal indicating that the test cycle data is valid (that is, in a cycle in which the test cycle signal is generated) and the test generated by the cycle generation unit 38. When the upper bits of the cycle data do not match a predetermined value (0 in this embodiment), a clock enable signal indicating validity is generated.
  • the clock enable signal transmission circuit 52 acquires and propagates the clock enable signal output from the detection unit 50 in synchronization with the reference clock. For example, the clock enable signal transmission circuit 52 propagates the clock enable signal output from the detection unit 50 through a plurality of flip-flops that are continuously connected in synchronization with the test cycle data propagated by the data acquisition unit 48. Good.
  • the first clock gate unit 54 receives the reference clock, and supplies the received reference clock to the data acquisition unit 48 as a reference clock used for acquiring the upper bits of the test cycle data. For example, the first clock gate unit 54 supplies the received reference clock to the upper bit transmission circuit 62.
  • the first clock gate unit 54 generates a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which no test cycle signal is generated) or a test cycle.
  • the data acquisition unit 48 supplies the reference clock used to acquire the upper bits of the test cycle data. Stop. If the data acquisition unit 48 sequentially propagates the upper bits of the test cycle data by a plurality of flip-flops that are continuously connected, the first clock gate unit 54, for example, The supply of the reference clock to the flip-flop that propagates the periodic data may be stopped.
  • the first clock gate unit 54 stops the supply of the reference clock by a clock enable signal acquired by a flip-flop at a certain stage, which is propagated synchronously by the clock enable signal transmission circuit 52. In this case, the supply of the reference clock to the next flip-flop in the upper bit transmission circuit 62 may be stopped.
  • the first clock gate unit 54 for example, when the cycle generator 38 generates a test cycle signal indicating invalidity of the test cycle data (that is, in a cycle in which no test cycle signal is generated).
  • the data acquisition unit 48 may be configured to stop the supply of the reference clock used for acquiring the upper bits and the bits other than the upper bits of the test cycle data.
  • the first clock gate unit 54 is configured to stop the reference clock used to acquire all the bits of the test cycle data. It may be.
  • the data switching unit 56 When the data switching unit 56 detects that the upper bits of the test cycle data match a predetermined value (0 in the present embodiment), the data switching unit 56 outputs the upper cycle of the test cycle data output from the data acquisition unit 48. Instead of bits, a predetermined value is supplied to the timing generator 24. In the present embodiment, the data switching unit 56 supplies 0 to the timing generator 24 instead of the upper bits from the data acquisition unit 48 when the upper bits of the test cycle data are detected as 0.
  • the test cycle signal transmission circuit 58 acquires and propagates the test cycle signal output from the cycle generator 38 in synchronization with the reference clock. For example, the test cycle signal transmission circuit 58 propagates the clock enable signal output from the cycle generator 38 through a plurality of stages of flip-flops continuously connected in synchronization with the test cycle data propagated by the data acquisition unit 48. It's okay.
  • FIG. 6 and 7 show an example of a specific circuit configuration of the transmission circuit 40.
  • FIG. FIG. 6 shows an example of the configuration of the data acquisition unit 48 and the data switching unit 56.
  • FIG. 7 shows an exemplary configuration of the detection unit 50, the clock enable signal transmission circuit 52, the first clock gate unit 54, and the test cycle signal transmission circuit 58.
  • the low-order bit transmission circuit 60 has n (n is an integer of 2 or more) continuously connected flip-flops 64-1 to 64 that operate in synchronization with a reference clock as shown in FIG. -N may be included.
  • n is an integer of 2 or more
  • Such a lower bit transmission circuit 60 obtains the lower bits of the test cycle data in synchronization with the reference clock by the flip-flop 64-1 at the first stage, and sequentially propagates it to the flip-flop 64 at the subsequent stage, Output from the flip-flop 64-n to the timing generator 24.
  • the upper bit transmission circuit 62 has the same number (ie, n) of flip-flops 66-1 to 66- as the number of flip-flops 64 included in the lower bit transmission circuit 60 as shown in FIG. n may be included.
  • Such an upper bit transmission circuit 62 acquires the upper bits of the test cycle data in synchronization with the reference clock by the flip-flop 66-1 at the first stage, and sequentially propagates it to the flip-flop 66 at the subsequent stage, Output from the flip-flop 66-n to the timing generator 24.
  • Each of the n flip-flops 66 included in the lower bit transmission circuit 60 operates in synchronization with a reference clock provided via a first clock gate unit 54 described later.
  • the detection unit 50 may include a detection unit OR circuit 72 and a detection unit AND circuit 74, as shown in FIG.
  • the in-detector OR circuit 72 receives each of the upper bits of the test cycle data and outputs the result of OR operation of the value of each bit. Such an in-detector OR circuit 72 outputs a signal indicating invalidity when the upper bit of the test cycle data is 0, and valid when it is not 0.
  • the detection unit AND circuit 74 outputs a result obtained by ANDing the output signal of the detection unit OR circuit 72 and the test cycle signal generated by the cycle generation unit 38. And such a detection part 50 outputs the output signal of the AND circuit 74 in a detection part as a clock enable signal.
  • the detection unit 50 causes the cycle generator 38 to generate a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which the test cycle signal is not generated) or the cycle generator 38 When the upper bit of the generated test cycle data is 0, a clock enable signal indicating invalidity can be generated.
  • the detection unit 50 is enabled when the cycle generation unit 38 generates a test cycle signal indicating the validity of the test cycle data, and the upper bits of the test cycle data generated by the cycle generation unit 38 are other than 0. A clock enable signal can be generated.
  • the clock enable signal transmission circuit 52 has the same number of flip-flops 76-1 to 76 as the number of flip-flops 66 included in the upper bit transmission circuit 62 (that is, n) as shown in FIG. -N may be included.
  • Such a clock enable signal transmission circuit 52 acquires the clock enable signal output from the detection unit 50 in synchronization with the reference clock by the first flip-flop 76-1, and sequentially propagates it to the subsequent flip-flop 76. .
  • the first clock gate unit 54 includes the same number (ie, n) of gate circuits 78-1 to 78-n as the flip-flops 66 included in the upper bit transmission circuit 62. It's okay.
  • Each of the n gate circuits 78-1 to 78-n corresponds to each of the n flip-flops 66-1 to 66-n included in the upper bit transmission circuit 62.
  • Each of the n gate circuits 78-1 to 78-n receives the reference clock and supplies it to the corresponding flip-flop 66 included in the upper bit transmission circuit 62.
  • each of the n gate circuits 78-1 to 78-n receives the clock enable signal input to the corresponding flip-flop 76 in the clock enable signal transmission circuit 52.
  • Each of the n gate circuits 78-1 to 78-n supplies the reference clock to the corresponding flip-flop 66 included in the upper bit transmission circuit 62 and receives the received clock enable signal if the received clock enable signal is valid. If the clock enable signal is invalid, the supply of the reference clock to the corresponding flip-flop 66 included in the upper bit transmission circuit 62 is stopped.
  • the first clock gate unit 54 has a plurality of bits when the upper bit transmission circuit 62 sequentially propagates the upper bits of the test cycle data through the n flip-flops 66-1 to 66-n that are continuously connected.
  • the supply of the reference clock to the flip-flop 66 that propagates the test cycle data among the flip-flops 66-1 to 66-n can be stopped.
  • the data switching unit 56 may include one or a plurality of data switching unit AND circuits 68 corresponding to the value of each bit of the test cycle data, as shown in FIG.
  • Each of the AND circuit 68 in the one or more data switching units outputs the value of the corresponding bit of the test cycle data output from the upper bit transmission circuit 62 and the flip-flop 76-n at the final stage of the clock enable signal transmission circuit 52.
  • a signal obtained by ANDing the clock enable signal is output.
  • such a data switching unit 56 outputs the output signal of the AND circuit 68 in the data switching unit to the timing generator 24 as the upper bits of the test cycle data.
  • the data switching unit 56 is when the test cycle data output from the upper bit transmission circuit 62 is valid and the upper bit of the test cycle data is not detected as 0 (that is, when the clock enable signal is valid).
  • the value output by the upper bit transmission circuit 62 can be output to the timing generator 24 as it is as the upper bits of the test cycle data.
  • such a data switching unit 56 is configured such that when the test cycle data output from the upper bit transmission circuit 62 is invalid or when the upper bit of the test cycle data is detected as 0 (that is, the clock enable signal is invalid). ), 0 can be output to the timing generator 24 as the upper bits of the test cycle data. As a result, the data switching unit 56 can prohibit the timing generator 24 from outputting unnecessary data when the test cycle data output from the upper bit transmission circuit 62 is invalid. Further, the data switching unit 56 can output correct data to the timing generator 24 when the upper bit of the test cycle data is detected as 0.
  • the test cycle signal transmission circuit 58 has the same number (ie, n) of flip-flops 80-1 to 80 as the flip-flops 66 included in the upper bit transmission circuit 62 as shown in FIG. -N may be included.
  • Such a test cycle signal transmission circuit 58 acquires the test cycle signal output from the cycle generator 38 by the first flip-flop 80-1 in synchronization with the reference clock, and sequentially propagates it to the subsequent flip-flop 80. Then, the data is output from the flip-flop 80-n at the final stage to the timing generator 24.
  • FIG. 8 shows an example of a timing chart of each signal in the transmission circuit 40.
  • This example is an example of a timing chart in the case where 8-bit test cycle data and test cycle signals output from the cycle generator 38 are transmitted to the timing generator 24 by continuously connected three-stage flip-flops. Indicates. Further, the test cycle data of this example includes 4 bits of upper bits and 4 bits of lower bits.
  • FIG. 8 shows a reference clock.
  • RATE_IN in FIG. 8B indicates a test cycle signal generated by the cycle generator 38.
  • RATEDT [7: 0] _IN in (C) of FIG. 8 indicates test cycle data generated by the cycle generator 38.
  • RATEDT_1 [3: 0] in FIG. 8E indicates the value of the lower bit of the test cycle data acquired by the first-stage flip-flop 64 of the lower bit transmission circuit 60.
  • RATEDT_1 [7: 4] in (F) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the first-stage flip-flop 66 of the upper bit transmission circuit 62.
  • RATEDT_2 [3: 0] in FIG. 8H indicates the value of the lower bit of the test cycle data acquired by the second-stage flip-flop 64 of the lower bit transmission circuit 60.
  • RATEDT_2 [7: 4] in (I) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the second-stage flip-flop 66 of the upper bit transmission circuit 62.
  • gckl_3 indicates a reference clock that the first clock gate unit 54 supplies to the third-stage flip-flop 66 of the upper bit transmission circuit 62.
  • RATEDT_3 [3: 0] in FIG. 8K indicates the value of the lower bit of the test cycle data acquired by the third-stage flip-flop 64 of the lower bit transmission circuit 60.
  • RATEDT — 3 [7: 4] in (L) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the third-stage flip-flop 66 of the upper bit transmission circuit 62.
  • RATE_OUT in (M) of FIG. 8 indicates a test cycle signal output from the transmission circuit 40 to the timing generator 24.
  • RATEDT [7: 0] _OUT in (N) of FIG. 8 indicates test cycle data output from the transmission circuit 40 to the timing generator 24.
  • the cycle generator 38 has the test cycle data (RATE1) with the value “0x0C”, the test cycle data (RATE2) with the value “0x23”, and the value “0x37”.
  • Test cycle data (RATE3), test cycle data (RATE4) having a value of “0x05”, and test cycle data (RATE5) having a value of “0xF1” are sequentially generated.
  • test cycle data (RATE2) whose value is “0x23”, the test cycle data (RATE3) whose value is “0x37”, and the test cycle data (RATE5) whose value is “0xF1” are not 0.
  • the first clock gate unit 54 corresponds to these test cycle data (RATE1, RATE3, RATE5) as shown in (D), (G), and (J) of FIG.
  • the reference clock is supplied to the upper bit transmission circuit 62.
  • test cycle data (RATE1) having a value of “0x0C” and the test cycle data (RATE4) having a value of “0x05” have a high-order bit of 0. Therefore, other test cycle data (RATE2, RATE5) are generated in the cycle of the reference clock next to these test cycle data.
  • the first clock gate unit 54 has the upper rank of each reference clock corresponding to these test cycle data (RATE1, RATE4). The supply to the bit transmission circuit 62 is stopped. Thereby, the first clock gate unit 54 can reduce the power consumed in the upper bit transmission circuit 62 when the upper bit of the test cycle data is 0.
  • the data switching unit 56 receives test cycle data (RATE1) having a value of “0x0C” and test cycle data (RATE4) having a value of “0x05”.
  • test cycle data RATE1
  • test cycle data RATE4
  • the value of the upper bit is replaced with "0" and output.
  • the data switching unit 56 replaces the test period with the correct value in the final stage. Data can be output to the timing generator 24.
  • the test cycle signal from the test cycle data (RATE2) having a value “0x23” to the test cycle data (RATE3) having a value “0x37” indicates invalidity.
  • the test cycle signal from the test cycle data (RATE3) having a value of “0x37” to the test cycle data (RATE4) having a value of “0x05” also indicates invalidity.
  • the first clock gate unit 54 is configured to output each reference clock during the period in which the test cycle signal is invalid. Supply to the upper bit transmission circuit 62 is stopped. Thus, the first clock gate unit 54 can reduce the power consumed in the upper bit transmission circuit 62 when the test cycle data indicates invalidity.
  • the transmission circuit 40 As described above, the transmission circuit 40 according to the present embodiment generates a test cycle signal indicating that the test cycle data output from the cycle generator 38 is invalid, or the value of the upper bit of the test cycle data is set in advance. When it is detected that the value matches the predetermined value, the supply of the reference clock for acquiring and propagating the upper bits of the test cycle data to the data acquisition unit 48 is stopped. Then, when it is detected that the value of the upper bit of the test cycle data matches a predetermined value, the transmission circuit 40 replaces the value of the upper bit of the test cycle data output from the data acquisition unit 48. The predetermined value is output to the timing generator 24.
  • the valid test cycle data can be propagated from the cycle generator 38 to the timing generator 24, and the reference clock used for the propagation of the invalid test cycle data is stopped to consume power. Can be reduced. Further, according to the transmission circuit 40, when the high-order bits of the valid test cycle data have a predetermined value, the reference clock used for the propagation of the high-order bits of the valid test cycle data is stopped and the power consumption is reduced. Can be reduced.
  • the high-order bit transmission circuit 62 of the data acquisition unit 48 replaces the high-order bits of the test cycle data (that is, the bit portion indicating the unit time larger than the cycle of the reference clock) with the test
  • a configuration may be adopted in which at least one predetermined bit (hereinafter referred to as a target bit) of the periodic data is propagated to the timing generator 24.
  • the lower bit transmission circuit 60 propagates bits other than the target bit in the test cycle data to the timing generator 24.
  • the detection unit 50 detects whether the target bit matches a predetermined value.
  • the first clock gate unit 54 is configured such that the cycle generator 38 generates a test cycle signal indicating that the test cycle data is invalid, or the target bit in the test cycle data matches a predetermined value.
  • the data acquisition unit 48 stops supplying the reference clock used for acquiring the target bit.
  • the data switching unit 56 replaces the target bit from the data acquisition unit 48 with a predetermined value. The value is supplied to the timing generator 24. Even with such a configuration, the transmission circuit 40 can reduce the power consumption by stopping the reference clock used for propagation of the target bit of the valid test cycle data.
  • such a transmission circuit 40 may be provided in a device other than the test device 10. That is, the transmission circuit 40 may transmit data and a data enable signal indicating whether or not the data is valid from the transmission circuit to the reception circuit.
  • the transmission circuit 40 receives data and a data enable signal from the transmission circuit instead of receiving the test period data and the test period signal from the period generator 38. Then, the transmission circuit 40 outputs data and a data enable signal to the receiving circuit instead of outputting the test cycle data and the test cycle signal to the timing generator 24. Thereby, according to the transmission circuit 40, power consumption can be reduced even when data and a data enable signal are transmitted from the transmission circuit to the reception circuit.
  • FIG. 9 shows a configuration of the timing generator 24 according to the present embodiment.
  • the timing generator 24 includes a timing data generation unit 110, a distribution unit 112, a plurality of counter delay units 114 (114-1 to 114-m), a first synthesis unit 116, a second synthesis unit 118, Delay unit 120.
  • the timing data generation unit 110 generates timing data that specifies the generation timing of a timing signal that indicates the timing for transmitting and receiving signals to and from the device under test 200, and a timing enable signal that indicates whether the timing data is valid. .
  • the timing data represents the delay time from the timing at which the timing data is received to the timing signal generation timing with an accuracy smaller than the cycle of the reference clock.
  • the timing data generation unit 110 may include an addition unit 132 that adds the test cycle data received from the test cycle generator 22 and the delay data provided from the pattern generation unit 20.
  • the timing data generation unit 110 may output the addition result by the addition unit 132 as timing data.
  • the timing data generation unit 110 may delay the test cycle signal received from the test cycle generator 22 by the time consumed by the addition processing of the test cycle data and the delay data, and output the delayed signal as a timing enable signal.
  • the distributing unit 112 distributes valid timing data and timing enable signals sequentially output from the timing data generating unit 110 to any one of the plurality of counter delay units 114.
  • the distribution unit 112 cyclically selects any one of the plurality of counter delay units 114 each time valid timing data and a timing enable signal are output from the timing data generation unit 110, and selects the selected counter delay. Valid timing data and a timing enable signal are supplied to the unit 114.
  • Each of the plurality of counter delay units 114 receives the timing data and timing enable signal distributed by the distribution unit 112.
  • Each of the plurality of counter delay units 114 converts the received timing data into higher-order data that is a data portion representing a delay time in units equal to or greater than the period of the reference clock included in the timing data, and the higher-order data included in the timing data.
  • the data is separated into lower data, which is another data portion other than the side data.
  • the higher-order data may be data that represents the delay time from the timing at which the timing data is received to the timing at which the timing signal is generated, with accuracy in units of the reference clock.
  • the lower-order data may be data representing a component that is less than the period of the reference clock in the delay time.
  • Each of the plurality of counter delay units 114 counts the reference clock for the higher-order data included in a part of the timing data from the timing when the valid timing data is received. Then, each of the plurality of counter delay units 114 outputs a timing enable signal after counting the upper data reference clocks from the timing at which the timing data is received. Further, each of the plurality of counter delay units 114 outputs lower-order data included in the timing data in synchronization with the timing enable signal.
  • the first synthesizing unit 116 multiplex-synthesizes the timing enable signals output from each of the plurality of counter delay units 114 and supplies the resultant signals to the micro delay unit 120 as one signal.
  • the first synthesizing unit 116 synthesizes the timing enable signals output from each of the plurality of counter delay units 114 into one signal by OR operation and supplies the synthesized signal to the micro delay unit 120.
  • the second synthesizing unit 118 multiplex-synthesizes the lower side data included in the timing data output from each of the plurality of counter delay units 114, and supplies the result to the micro delay unit 120 as one signal.
  • the second synthesizing unit 118 multiplex-synthesizes the lower-order data output from each of the plurality of counter delay units 114 by OR operation and supplies the result to the micro delay unit 120 as one signal.
  • Each of the plurality of counter delay units 114 outputs 0 as lower side data when the other distribution unit 112 outputs valid lower side data.
  • the minute delay unit 120 delays the timing enable signal received from the first synthesis unit 116 by a time corresponding to the lower-order data included in the timing data received from the second synthesis unit 118.
  • the minute delay unit 120 may be a variable delay element that delays the received signal by a time corresponding to a given set value.
  • the minute delay unit 120 supplies the delayed timing enable signal to the subsequent waveform shaping unit 26 or the timing comparator 32 as a timing signal indicating the timing at which signals are transmitted to and received from the device under test 200.
  • the timing enable signal can be delayed with the period accuracy of the reference clock by the plurality of counter delay units 114. Furthermore, according to such a timing generator 24, the timing enable signal delayed by each of the plurality of counter delay units 114 can be further delayed by the minute delay unit 120 with an accuracy less than the period of the reference clock.
  • FIG. 10 shows an example of a timing chart of the timing enable signal input to the plurality of counter delay units 114.
  • FIG. 10A shows a reference clock.
  • FIG. 10B shows a timing enable signal received by the distribution unit 112.
  • FIG. 10C shows a timing enable signal that the first counter delay unit 114-1 receives from the distribution unit 112.
  • FIG. 10D shows a timing enable signal that the second counter delay unit 114-2 receives from the distribution unit 112.
  • FIG. 10E shows a timing enable signal that the third counter delay unit 114-3 receives from the distribution unit 112.
  • the distribution unit 112 selects the plurality of counter delay units 114 one by one in order and distributes the received timing enable signal. For example, as shown in FIG. 10C, the distribution unit 112 distributes the timing enable signal received at time t21 to the first counter delay unit 114-1. Further, as shown in FIG. 10D, the distribution unit 112 distributes the timing enable signal received at time t22 next to time t21 to the second counter delay unit 114-2. Further, as shown in FIG. 10E, the distribution unit 112 distributes the timing enable signal received at time t23 next to time t22 to the third counter delay unit 114-3.
  • FIG. 11 shows an example of a timing chart of timing enable signals and lower-order data output from a plurality of counter delay units 114.
  • FIG. 11 shows a timing enable signal output from the first counter delay unit 114-1.
  • FIG. 11B shows lower-order data output from the first counter delay unit 114-1.
  • FIG. 11C shows a timing enable signal output from the second counter delay unit 114-2.
  • D shows lower-order data output from the second counter delay unit 114-2.
  • FIG. 11E shows a timing enable signal output from the third counter delay unit 114-3.
  • F shows lower-order data output from the third counter delay unit 114-3.
  • FIG. 11 shows a timing enable signal output from the first synthesis unit 116.
  • (F) of FIG. 11 shows the lower-order data output from the second synthesis unit 118.
  • the first synthesizing unit 116 multiplex-synthesizes the timing enable signals output from each of the plurality of counter delay units 114 and supplies them to the micro delay unit 120 as one signal.
  • the second synthesizing unit 118 multiplex-synthesizes the lower-order data included in the timing data separately output from each of the plurality of counter delay units 114 and supplies the result to the micro delay unit 120 as one signal.
  • the distribution unit 112 cyclically selects the plurality of counter delay units 114 one by one, and interleaves and executes the delay processing in units of the reference clock.
  • the timing generator 24 as a result of the timing signal specified in a certain test cycle being generated within the range of the next test cycle beyond the test cycle, a plurality of signals are generated in the range of the next test cycle. Even when the timing signal is generated, the timing signal can be continuously generated without causing the operation to fail.
  • FIG. 12 shows the configuration of the counter delay unit 114.
  • Each of the plurality of counter delay units 114 has the same configuration.
  • the counter delay unit 114 includes a count unit 140, a state holding unit 142, and a second clock gate unit 144.
  • the count unit 140 operates in synchronization with the reference clock provided from the second clock gate unit 144. After receiving valid timing data from the timing data generating unit 110, the counting unit 140 counts the reference clocks by the number of higher-order data representing the time in units equal to or more than the cycle of the reference clock included in the timing data, Lower-order data other than the higher-order data of the timing data and a timing enable signal indicating the validity of the timing data are output. For example, the count unit 140 holds a state signal indicating that the state holding unit 142 is counting, and the count value becomes a value after counting the number of higher-order data. A timing enable signal indicating the validity of the timing data may be output.
  • the count unit 140 may include a zero detection unit 150, an inverting circuit 152, a counter 154, a first AND circuit 156, a first flip-flop 158, and a second AND circuit 160.
  • the zero detection unit 150 outputs a signal indicating validity when the count value of the counter 154 is zero, and outputs a signal indicating invalidity when the count value of the counter 154 is other than zero.
  • the inverting circuit 152 inverts the logic of the output signal of the zero detection unit 150 and supplies the inverted signal to the DEC terminal of the counter 154.
  • the counter 154 acquires the higher-order data of the timing data output from the timing data generating unit 110 as a count value when the timing enable signal given from the distributing unit 112 is valid.
  • the counter 154 sets the acquired count value one by one in synchronization with the supplied reference clock. Decrease.
  • the first AND circuit 156 outputs a timing enable signal indicating validity when the output signal of the zero detection unit 150 indicates validity and the state signal output by the state holding unit 142 indicates validity.
  • the first flip-flop 158 obtains lower-order data of the timing data output from the timing data generation unit 110 when the timing enable signal provided from the distribution unit 112 is valid.
  • the second AND circuit 160 outputs the lower-order data acquired by the first flip-flop 158 when the output signal of the zero detection unit 150 is valid and the status signal output by the status holding unit 142 is valid.
  • the counting unit 140 After receiving valid timing data, the counting unit 140 having such a configuration counts the reference clock for the value indicated in the upper data included in the timing data, and after counting, the lower data and the timing data A timing enable signal indicating validity can be output.
  • the state holding unit 142 holds a state signal indicating whether or not the counting unit 140 is counting the number of higher-order data included in valid timing data.
  • the state holding unit 142 may output a status signal indicating that the count unit 140 is valid when the count unit 140 is counting, and invalid when the count unit 140 is not counting.
  • the state holding unit 142 may include a first OR circuit 162 and a second flip-flop 164.
  • the first OR circuit 162 when the output signal of the zero detection unit 150 of the count unit 140 indicates validity (that is, when the count value of the counter 154 is 0), or the timing enable signal provided from the distribution unit 112 is valid. Is output, a signal indicating validity is output.
  • the second flip-flop 164 operates in synchronization with the reference clock, and acquires the timing enable signal provided from the distribution unit 112 when the output signal of the first OR circuit 162 indicates valid.
  • the timing enable signal indicating validity is given from the distribution unit 112
  • the first OR circuit 162 starts to hold a value indicating validity.
  • the first OR circuit 162 starts holding a value indicating invalidity in response to the count value of the counter 154 becoming zero. Thereafter, the first OR circuit 162 continues to hold the value indicating invalidity until the next timing enable signal indicating validity is provided.
  • the second clock gate unit 144 stops supplying the reference clock to the counting unit 140 when the counting unit 140 does not count the number of higher-order data included in the valid timing data. More specifically, the second clock gate unit 144 starts supplying the reference clock to the count unit 140 in response to receiving the timing enable signal indicating the validity of the timing data. Then, the second clock gate unit 144 stops the supply of the reference clock to the count unit 140 when the count value of the count unit 140 becomes a value after counting the number of higher-order data.
  • the second clock gate unit 144 may include a second OR circuit 166 and a gate circuit 168 as an example.
  • the second OR circuit 166 receives the timing enable signal given from the distribution unit 112 when the output signal of the zero detection unit 150 of the count unit 140 indicates invalidity (that is, when the count value of the counter 154 is other than 0). When it indicates valid, a clock enable signal indicating valid is output.
  • the gate circuit 168 receives the clock enable signal from the second OR circuit 166.
  • the clock enable signal indicates validity (that is, when the count value of the counter 154 is other than 0 or when the timing enable signal provided from the distribution unit 112 indicates validity)
  • the gate circuit 168 The reference clock is supplied to the counter 154 and the first flip-flop 158.
  • the gate circuit 168 stops supplying the reference clock to the counter 154 and the first flip-flop 158 in the count unit 140.
  • the second clock gate unit 144 starts supplying the reference clock to the counter 154 and the first flip-flop 158 in response to receiving the timing enable signal indicating the validity of the timing data. Then, the second clock gate unit 144 stops supplying the reference clock to the counter 154 and the first flip-flop 158 in response to the count value of the counter 154 becoming zero.
  • Such a counter delay unit 114 supplies a reference clock to the count unit 140 during a period when the count unit 140 operates effectively, and a reference clock for the count unit 140 during a period when the count unit 140 does not operate effectively. Stop supplying. Thereby, the counter delay unit 114 can reduce the current consumption of the count unit 140.
  • FIG. 13 shows an example of a timing chart of each signal in the counter delay unit 114.
  • FIG. 13A shows a reference clock.
  • FIG. 13B shows a timing enable signal received by the counter delay unit 114.
  • FIG. 13C shows a timing enable signal received by the counter delay unit 114.
  • FIG. 13D shows the count value of the counter 154.
  • FIG. 13 shows a state signal output from the second flip-flop 164.
  • FIG. 13F shows lower-order data held by the first flip-flop 158.
  • FIG. 13G shows a reference clock given to the counter 154 and the first flip-flop 158.
  • H in FIG. 13 shows a timing enable signal output from the counter delay unit 114.
  • I in FIG. 13 shows lower-order data output from the counter delay unit 114.
  • the counter delay unit 114 receives a timing enable signal indicating validity from the distribution unit 112 at time t41.
  • the second flip-flop 164 starts holding the value indicating validity from the timing of the next reference clock, as shown in FIG. 13E. .
  • the gate circuit 168 When receiving a timing enable signal indicating validity from the distribution unit 112, the gate circuit 168, as shown in FIG. 13G, at the timing of the next reference clock (time t42), the counter 154 and the first Supply of the reference clock (gclk) to the flip-flop 158 is started. As a result, as shown in FIG. 13D, the counter 154 fetches the higher-order data (for example, 0x8) of the timing data at the timing when the timing enable signal is received as the count value, and thereafter the count value is set to 1. Decrement by one. Further, as shown in FIG. 13F, the first flip-flop 158 takes in lower-order data (for example, 0xC) of the timing data at the timing when the timing enable signal is received.
  • the higher-order data for example, 0x8
  • the first AND circuit 156 outputs a timing enable signal at time t43 when the count value of the counter 154 reaches 0, as shown in FIG. Further, as shown in FIG. 13I, the second AND circuit 160 outputs the lower-order data held by the first flip-flop 158 in synchronization with the output of the timing enable signal from the first AND circuit 156. To do.
  • the gate circuit 168 receives the counter 154 and the first flip-flop 158 at the next reference clock timing (time t44). The supply of the reference clock (gclk) to is stopped. Further, as shown in FIG. 13E, when the count value of the counter 154 reaches 0, the second flip-flop 164 starts holding a value indicating invalidity from the timing of the next reference clock.
  • the counter delay unit 114 supplies the reference clock to the count unit 140 during a period in which the count unit 140 operates effectively, and the reference clock for the count unit 140 in a period during which the count unit 140 does not operate effectively. Supply can be stopped. Thereby, the counter delay unit 114 can reduce the current consumption of the count unit 140.
  • such a counter delay unit 114 may be provided as a counter circuit in a device other than the test apparatus 10. That is, the counter delay unit 114 may function as a counter circuit that counts data supplied from the transmission circuit.
  • the counter delay unit 114 receives data and a data enable signal from the transmission circuit instead of receiving timing data and a timing enable signal from the timing data generation unit 110.
  • the counter delay unit 114 outputs a data enable signal instead of outputting a timing enable signal.
  • the counter delay unit 114 can reduce power consumption even when the number of data represented by the data given from the transmission circuit is counted.
  • test devices 20 pattern generators, 22 test cycle generators, 24 timing generators, 26 waveform shaping units, 28 drivers, 30 level comparators, 32 timing comparators, 34 determination units, 38 cycle generators, 40 transmission circuits, 42 Lower bit acquisition flip-flop, 44 upper bit acquisition flip-flop, 46 test cycle signal acquisition flip-flop, 48 data acquisition unit, 50 detection unit, 52 clock enable signal transmission circuit, 54 first clock gate unit, 56 data switching Unit, 58 test cycle signal transmission circuit, 60 lower bit transmission circuit, 62 upper bit transmission circuit, 64 flip-flops, 66 flip-flops, 68 data switching unit AND circuit, 72 detection unit OR circuit, 74 detection unit AN Circuit, 76 flip-flop, 78 gate circuit, 80 flip-flop, 110 timing data generation unit, 112 distribution unit, 114 counter delay unit, 116 first synthesis unit, 118 second synthesis unit, 120 minute delay unit, 132 addition unit, 140 count unit, 142 state holding unit, 144 second clock gate unit, 150 zero detection unit, 152 inversion circuit, 154 counter, 156 first AND circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Disclosed is a testing device used for testing a device to be tested. The testing device is equipped with a test period generator, which generates a test period signal that indicates timing based on the start timing of the test period and test period data that indicates the amount of delay from the test period signal until the start timing of the test period, and a timing generator, which generates the timing for exchanging a signal with the tested device based on the start timing of the test period designated by the test period data. The test period generator has a period generation unit that generates the test period data and the test period signal, a data acquisition unit that acquires the test period data and outputs them to the timing generator synchronized to a reference clock, and a clock gate unit that stops supplying the reference clock to the data acquisition unit in a cycle in which no test period signal is generated.

Description

試験装置、伝送回路、試験装置の制御方法および伝送回路の制御方法Test apparatus, transmission circuit, test apparatus control method, and transmission circuit control method
 本発明は、試験装置、伝送回路、試験装置の制御方法および伝送回路の制御方法に関する。特に本発明は、被試験デバイスを試験する試験装置および試験装置の制御方法、並びに、データおよび当該データが有効か否かを示すデータイネーブル信号を送信回路から受信回路へと伝送する伝送回路および伝送回路の制御方法に関する。本出願は、下記の日本出願に関連し、下記の日本出願からの優先権を主張する出願である。文献の参照による組み込みが認められる指定国については、下記の出願に記載された内容を参照により本出願に組み込み、本出願の一部とする。
 1.特願2008-144581  出願日 2008年6月2日
The present invention relates to a test apparatus, a transmission circuit, a test apparatus control method, and a transmission circuit control method. In particular, the present invention relates to a test apparatus for testing a device under test, a control method for the test apparatus, a transmission circuit for transmitting data and a data enable signal indicating whether the data is valid from the transmission circuit to the reception circuit, and transmission The present invention relates to a circuit control method. This application is related to the following Japanese application and claims priority from the following Japanese application. For designated countries where incorporation by reference of documents is permitted, the contents described in the following application are incorporated into this application by reference and made a part of this application.
1. Japanese Patent Application No. 2008-144581 Application date June 2, 2008
 半導体等を試験する試験装置は、被試験デバイスに与える試験信号の変化点を指定するタイミング信号を発生するタイミング発生器を備える(例えば、特許文献1参照。)。タイミング発生器は、基準クロックのタイミングから試験周期の開始タイミングまでの遅延時間を表わす試験周期データ、および、試験周期の開始タイミングから変化点までの遅延時間を示すタイミングデータが与えられる。そして、タイミング発生器は、遅延回路を用いて、試験周期データおよびタイミングデータに示された遅延時間分、基準クロックを遅延してタイミング信号を発生する。 2. Description of the Related Art A test apparatus that tests a semiconductor or the like includes a timing generator that generates a timing signal that specifies a change point of a test signal to be applied to a device under test (for example, see Patent Document 1). The timing generator is given test cycle data indicating a delay time from the timing of the reference clock to the start timing of the test cycle, and timing data indicating a delay time from the start timing of the test cycle to the change point. Then, the timing generator uses the delay circuit to generate a timing signal by delaying the reference clock by the delay time indicated in the test cycle data and the timing data.
特開2004-361343号公報JP 2004-361343 A
 ところで、試験装置は、周期発生器により発生された試験周期データを、継続接続された複数のフリップフロップにより伝播して、後段のタイミング発生器に与える。しかし、近年、被試験デバイスの高性能化および多ピン化に伴って、試験周期データのビット数は、増加している。また、周期発生器からタイミング発生器へ試験周期データを伝播するフリップフロップの段数も増加している。 By the way, the test apparatus propagates the test cycle data generated by the cycle generator through a plurality of continuously connected flip-flops, and gives it to the subsequent timing generator. However, in recent years, the number of bits of test cycle data has increased as the device under test has been improved in performance and increased in the number of pins. Also, the number of flip-flop stages that propagate test cycle data from the cycle generator to the timing generator is increasing.
 また、試験装置は、1試験周期の範囲内において、複数のタイミング信号を発生する場合がある。このような場合、タイミング発生器は、並列に接続された複数の遅延回路を、試験周期データが与えられる毎に巡回的に1ずつ選択して動作させることにより、1試験周期の範囲内において複数のタイミング信号を発生可能としている。 Also, the test apparatus may generate a plurality of timing signals within the range of one test cycle. In such a case, the timing generator selects and operates a plurality of delay circuits connected in parallel one by one every time the test cycle data is given, thereby operating a plurality of delay circuits within the range of one test cycle. This timing signal can be generated.
 しかし、近年、試験装置は、被試験デバイスの高性能化に伴って、1試験周期の範囲内において発生すべきタイミング信号の数が増加して、並列に接続するべき複数の遅延回路の数が増加している。上記の点は、試験装置の消費電力が増加する原因となっていた。 However, in recent years, the number of timing signals to be generated within the range of one test cycle has increased with the increase in performance of devices under test, and the number of delay circuits to be connected in parallel has increased. It has increased. The above points have caused the power consumption of the test apparatus to increase.
 上記課題を解決するために、本発明の第1の態様においては、被試験デバイスを試験する試験装置であって、基準クロックに同期して、試験周期の開始タイミングの基準となるタイミングを示す試験周期信号および前記試験周期信号から試験周期の開始タイミングまでの遅延量を表わす試験周期データを発生する試験周期発生器と、前記試験周期データにより指定された試験周期の開始タイミングを基準として、前記被試験デバイスとの間で信号を授受するタイミングを発生するタイミング発生器と、を備え、前記試験周期発生器は、前記試験周期データおよび前記試験周期信号を発生する周期発生部と、前記基準クロックに同期して、前記試験周期データを取得して前記タイミング発生器へと出力するデータ取得部と、前記試験周期信号が発生されていないサイクルの場合に、前記データ取得部に対する前記基準クロックの供給を停止するクロックゲート部と、を有する試験装置、および、このような試験装置の制御方法を提供する。 In order to solve the above problems, in the first aspect of the present invention, a test apparatus for testing a device under test, which is a test indicating a timing that is a reference of a start timing of a test cycle in synchronization with a reference clock A test cycle generator that generates a cycle signal and a test cycle data representing a delay amount from the test cycle signal to a test cycle start timing, and the test cycle start timing specified by the test cycle data as a reference. A timing generator for generating a timing for transmitting / receiving a signal to / from a test device, and the test cycle generator includes a cycle generator for generating the test cycle data and the test cycle signal, and a reference clock. Synchronously acquiring the test cycle data and outputting it to the timing generator, and the test cycle signal In the case of occurrence that are not cycle, the test device having a clock gate unit stopping the supply of the reference clock to the data acquisition unit, and a control method of such a test device.
 本発明の第2の形態においては、データおよび前記データが有効か否かを示すデータイネーブル信号を、送信回路から受信回路へと伝送する伝送回路であって、基準クロックに同期して、前記送信回路から前記データを取得して前記受信回路へと出力するデータ取得部と、前記データが無効である旨の前記データイネーブル信号を前記送信回路から受け取った場合に、前記データ取得部に対する前記基準クロックの供給を停止するクロックゲート部と、を備える伝送回路、および、このような伝送回路の制御方法を提供する。 According to a second aspect of the present invention, there is provided a transmission circuit for transmitting data and a data enable signal indicating whether or not the data is valid from a transmission circuit to a reception circuit, wherein the transmission is performed in synchronization with a reference clock. A data acquisition unit that acquires the data from the circuit and outputs the data to the reception circuit; and the reference clock for the data acquisition unit when the data enable signal indicating that the data is invalid is received from the transmission circuit. And a control method for such a transmission circuit.
 本発明の第3の形態においては、被試験デバイスを試験する試験装置であって、前記被試験デバイスとの間で信号を授受するタイミングを示すタイミング信号の発生タイミングを指定するタイミングデータおよび前記タイミングデータが有効か否かを示すタイミングイネーブル信号を発生するタイミングデータ発生部と、基準クロックに同期して動作し、前記タイミングデータ発生部から有効な前記タイミングデータを受け取ってから、当該タイミングデータに含まれる前記基準クロックの周期以上の単位で時間を表わす上位側データ数分基準クロックをカウントした後に、当該タイミングデータの前記上位側データ以外の下位側データおよび当該タイミングデータの有効を示す前記タイミングイネーブル信号を出力するカウント部と、前記カウント部が有効な前記タイミングデータに含まれる前記上位側データ数をカウントしていない場合に、前記カウント部に対する前記基準クロックの供給を停止するクロックゲート部と、を備える試験装置、および、このような試験装置の制御方法を提供する。 According to a third aspect of the present invention, there is provided a test apparatus for testing a device under test, wherein the timing data designates the generation timing of a timing signal indicating the timing of transmitting / receiving a signal to / from the device under test, and the timing A timing data generation unit that generates a timing enable signal indicating whether or not data is valid, and operates in synchronization with a reference clock, and is included in the timing data after receiving the valid timing data from the timing data generation unit The timing enable signal indicating the validity of the timing data and the lower side data other than the upper side data of the timing data after counting the reference clocks by the number of higher side data representing the time in units equal to or greater than the cycle of the reference clock And the count section that outputs A test device comprising: a clock gate unit that stops supplying the reference clock to the count unit when the count unit does not count the number of higher-order data included in the valid timing data; and Provided is a method for controlling a simple test apparatus.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
図1は、本実施形態に係る試験装置10の構成を被試験デバイス200とともに示す。FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 200. 図2は、試験周期発生器22が出力する試験周期データのビット構成の一例を示す。FIG. 2 shows an example of the bit configuration of the test cycle data output from the test cycle generator 22. 図3は、基準クロック、試験周期発生器22が出力する試験周期データおよび試験周期信号を示す。FIG. 3 shows a reference clock, test cycle data output from the test cycle generator 22, and a test cycle signal. 図4は、本実施形態に係る試験周期発生器22の構成を示す。FIG. 4 shows a configuration of the test cycle generator 22 according to the present embodiment. 図5は、本実施形態に係る伝送回路40の構成を示す。FIG. 5 shows a configuration of the transmission circuit 40 according to the present embodiment. 図6は、データ取得部48およびデータ切替部56の構成の一例を示す。FIG. 6 shows an example of the configuration of the data acquisition unit 48 and the data switching unit 56. 図7は、検出部50、クロックイネーブル信号伝送回路52、第1クロックゲート部54および試験周期信号伝送回路58の構成の一例を示す。FIG. 7 shows an exemplary configuration of the detection unit 50, the clock enable signal transmission circuit 52, the first clock gate unit 54, and the test cycle signal transmission circuit 58. 図8は、伝送回路40内の各信号のタイミングチャートの一例を示す。FIG. 8 shows an example of a timing chart of each signal in the transmission circuit 40. 図9は、本実施形態に係るタイミング発生器24の構成を示す。FIG. 9 shows a configuration of the timing generator 24 according to the present embodiment. 図10は、複数のカウンタ遅延部114に入力されるタイミングイネーブル信号のタイミングチャートの一例を示す。FIG. 10 shows an example of a timing chart of the timing enable signal input to the plurality of counter delay units 114. 図11は、複数のカウンタ遅延部114から出力されるタイミングイネーブル信号および下位側データのタイミングチャートの一例を示す。FIG. 11 shows an example of a timing chart of timing enable signals and lower-order data output from the plurality of counter delay units 114. 図12は、カウンタ遅延部114の構成を示す。FIG. 12 shows the configuration of the counter delay unit 114. 図13は、カウンタ遅延部114内の各信号のタイミングチャートの一例を示す。FIG. 13 shows an example of a timing chart of each signal in the counter delay unit 114.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all combinations of features described in the embodiments are invented. It is not always essential to the solution.
 図1は、本実施形態に係る試験装置10の構成を被試験デバイス200とともに示す。試験装置10は、試験信号を被試験デバイス200に与え、当該試験信号に応じて被試験デバイス200から出力された応答信号と期待値とを比較することにより、被試験デバイス200を試験する。試験装置10は、パターン発生部20と、試験周期発生器22と、タイミング発生器24と、波形成形部26と、ドライバ28と、レベルコンパレータ30と、タイミングコンパレータ32と、判定部34とを備える。 FIG. 1 shows a configuration of a test apparatus 10 according to this embodiment together with a device under test 200. The test apparatus 10 tests the device under test 200 by applying a test signal to the device under test 200 and comparing the response signal output from the device under test 200 with an expected value in accordance with the test signal. The test apparatus 10 includes a pattern generator 20, a test cycle generator 22, a timing generator 24, a waveform shaping unit 26, a driver 28, a level comparator 30, a timing comparator 32, and a determination unit 34. .
 パターン発生部20は、被試験デバイス200に与える試験信号の波形を指定する試験パターン、および、試験信号を与えたことに応じて被試験デバイス200から出力されるべき応答信号の論理値を指定する期待値パターンを発生する。また、パターン発生部20は、試験信号の波形変化(エッジ)のタイミングおよび応答信号と期待値との比較タイミングを指定するための基準となる試験周期を指定するデータを発生する。また、パターン発生部20は、試験周期毎に、当該試験周期の開始タイミングから試験信号の波形変化のタイミングまでの遅延時間または試験周期の開始タイミングから応答信号と期待値との比較タイミングまでの遅延時間を表す遅延データを発生する。 The pattern generator 20 designates a test pattern for designating the waveform of the test signal to be applied to the device under test 200 and a logical value of the response signal to be output from the device under test 200 in response to the provision of the test signal. Generate an expected value pattern. The pattern generator 20 also generates data specifying a test cycle that serves as a reference for specifying the timing of the waveform change (edge) of the test signal and the comparison timing between the response signal and the expected value. In addition, the pattern generation unit 20 delays from the start timing of the test cycle to the timing of waveform change of the test signal or the delay from the start timing of the test cycle to the comparison timing of the response signal and the expected value for each test cycle. Generate delay data representing time.
 試験周期発生器22は、基準クロックに同期して、試験周期の開始タイミングの基準となる試験周期信号および試験周期信号から試験周期の開始タイミングまでの遅延量を表わす試験周期データを発生する。試験周期発生器22は、一例として、パターン発生部20から試験周期を指定するデータを受け取り、受け取ったデータに応じて試験周期データを生成してよい。そして、試験周期発生器22は、生成した試験周期データおよび試験周期信号を基準クロックに同期して発生する。 The test cycle generator 22 generates test cycle data representing the test cycle start timing and a delay amount from the test cycle signal to the test cycle start timing in synchronization with the reference clock. As an example, the test cycle generator 22 may receive data designating a test cycle from the pattern generator 20 and generate test cycle data according to the received data. The test cycle generator 22 generates the generated test cycle data and test cycle signal in synchronization with the reference clock.
 タイミング発生器24は、試験周期データにより指定された試験周期の開始タイミングを基準として、被試験デバイス200との間で信号を授受するタイミングを発生する。ここで、試験周期信号が発生された基準クロックのサイクルを、試験周期信号が有効を示すサイクルといい、試験周期信号が発生されていない基準クロックのサイクルを、基準周期信号が無効を示すサイクルという。また、本実施形態において、有効な試験周期データといった場合、試験周期信号が有効を示すタイミングにおいて取得された試験周期データを示し、無効な試験周期データといった場合、試験周期信号が有効を示すタイミングにおいて取得された試験周期データを示す。すなわち、本実施形態において、試験周期信号は、試験周期データの有効または無効を示す信号として機能する。タイミング発生器24は、一例として、有効な試験周期データにより指定されたタイミングから、当該試験周期に対応する遅延データにより指定された遅延時間分遅延したタイミングにおいて、パルスであるタイミング信号を発生してよい。 The timing generator 24 generates a timing for transmitting / receiving a signal to / from the device under test 200 based on the start timing of the test cycle specified by the test cycle data. Here, the cycle of the reference clock in which the test cycle signal is generated is referred to as a cycle in which the test cycle signal is valid, and the cycle of the reference clock in which the test cycle signal is not generated is referred to as a cycle in which the reference cycle signal is invalid. . In the present embodiment, in the case of valid test cycle data, it indicates test cycle data acquired at a timing when the test cycle signal is valid, and in the case of invalid test cycle data, at a timing where the test cycle signal is valid. The acquired test cycle data is shown. That is, in the present embodiment, the test cycle signal functions as a signal indicating whether the test cycle data is valid or invalid. For example, the timing generator 24 generates a timing signal that is a pulse at a timing delayed by a delay time specified by delay data corresponding to the test cycle from a timing specified by valid test cycle data. Good.
 波形成形部26は、タイミング発生器24から与えられたタイミング信号を基準として、試験パターンを成形した試験信号を生成する。すなわち、波形成形部26は、試験パターンにより指定された波形であって、タイミング信号のタイミングにおいてレベルが変化する波形を有する試験信号を生成する。 The waveform shaping unit 26 generates a test signal obtained by shaping a test pattern based on the timing signal given from the timing generator 24. That is, the waveform shaping unit 26 generates a test signal having a waveform designated by the test pattern and having a waveform whose level changes at the timing of the timing signal.
 ドライバ28は、波形成形部26により生成された試験信号を被試験デバイス200に供給する。レベルコンパレータ30は、試験信号に応じて被試験デバイス200から出力された応答信号を受け取り、受け取った応答信号のレベルに応じた論理値を表す論理値信号を出力する。 The driver 28 supplies the test signal generated by the waveform shaping unit 26 to the device under test 200. The level comparator 30 receives the response signal output from the device under test 200 according to the test signal, and outputs a logic value signal representing a logic value according to the level of the received response signal.
 タイミングコンパレータ32は、レベルコンパレータ30が出力した論理値信号により表された論理値を、タイミング発生器24から与えられたタイミング信号のタイミングで取り込む。判定部34は、タイミングコンパレータ32が取り込んだ論理値と、パターン発生部20により発生された期待値パターンにより指定された期待値とを比較して、比較結果を出力する。判定部34は、一例として、タイミングコンパレータ32が取り込んだ論理値と期待値とが一致する場合には、パスを表わす比較結果を出力し、タイミングコンパレータ32が取り込んだ論理値と期待値とが一致しない場合には、フェイルを表わす比較結果を出力してよい。 The timing comparator 32 takes in the logical value represented by the logical value signal output from the level comparator 30 at the timing of the timing signal given from the timing generator 24. The determination unit 34 compares the logical value captured by the timing comparator 32 with the expected value specified by the expected value pattern generated by the pattern generation unit 20 and outputs a comparison result. For example, when the logical value captured by the timing comparator 32 matches the expected value, the determination unit 34 outputs a comparison result representing a path, and the logical value captured by the timing comparator 32 matches the expected value. If not, a comparison result indicating failure may be output.
 図2は、試験周期発生器22が出力する試験周期データのビット構成の一例を示す。試験周期データは、当該試験周期データがタイミング発生器24に与えられた当該試験装置10の基準クロックに同期したタイミング、すなわち、タイミング発生器24が試験周期データを受け取ったタイミングから、当該試験周期データにより指定される試験周期の開始タイミングまでの遅延時間を表わす。 FIG. 2 shows an example of the bit configuration of the test cycle data output from the test cycle generator 22. The test cycle data includes the test cycle data from the timing at which the test cycle data is synchronized with the reference clock of the test apparatus 10 given to the timing generator 24, that is, the timing at which the timing generator 24 receives the test cycle data. Represents the delay time until the start timing of the test cycle specified by.
 試験周期データは、複数のビットを含む。例えば図2の例においては、試験周期データは、(J+K)ビット(J、Kは自然数)を含む。 Test cycle data includes a plurality of bits. For example, in the example of FIG. 2, the test cycle data includes (J + K) bits (J and K are natural numbers).
 試験周期データは、一例として、基準位置のビット(例えば図2のnの位置のビット)が基準クロックの1周期(T時間)分の遅延時間を表す。そして、試験周期データは、基準位置のビットから上位に1ビットに進む毎に、各ビットが基準クロックの1周期の2倍、4倍、8倍、…2倍(Kは自然数)の遅延時間を表す。また、試験周期データは、基準位置のビットから下位に1ビットに進む毎に、各ビットが基準クロックの1周期の1/2倍、1/4倍、1/8倍、…、2-J倍(Jは自然数)の遅延時間を表す。 As an example, the test cycle data represents a delay time corresponding to one cycle (T time) of the reference clock when the bit at the reference position (for example, the bit at the position n in FIG. 2). Each time the test cycle data advances from the bit at the reference position to one higher bit, each bit is delayed by 2 times, 4 times, 8 times, ... 2 K times (K is a natural number) of one cycle of the reference clock. Represents time. In addition, every time the test cycle data advances from the bit at the reference position to one lower bit, each bit is 1/2, 1/4, 1/8,..., 2- J of one cycle of the reference clock. The delay time is doubled (J is a natural number).
 以下、本実施形態において、試験周期データにおける基準クロックの1周期(T)以下の遅延時間を表す部分を、試験周期データの下位ビットと称する。また、本実施形態において、試験周期データにおける基準クロックの2周期(2×T)以上の遅延時間を表す部分を、試験周期データの上位ビットと称する。即ち、本実施形態において、試験周期データは、タイミング発生器24が試験周期データを受け取ったタイミングから試験周期の開始タイミングまでの遅延時間における、基準クロックの周期より大きい単位の時間を示す上位ビットおよび基準クロックの周期以下の単位の時間を示す下位ビットを含む。 Hereinafter, in the present embodiment, a portion representing a delay time of one cycle (T) or less of the reference clock in the test cycle data is referred to as a lower bit of the test cycle data. In the present embodiment, a portion representing a delay time of two cycles (2 × T) or more of the reference clock in the test cycle data is referred to as an upper bit of the test cycle data. In other words, in the present embodiment, the test cycle data includes upper bits indicating a unit time larger than the cycle of the reference clock in the delay time from the timing when the timing generator 24 receives the test cycle data to the start timing of the test cycle. It includes lower bits that indicate time in units that are less than the period of the reference clock.
 図3は、基準クロック、試験周期発生器22が出力する試験周期データおよび試験周期信号を示す。試験周期発生器22は、試験周期データおよび試験周期信号を、基準クロックに同期させて一対として出力する。さらに、試験周期発生器22は、試験周期データおよび有効を示す試験周期信号を、試験周期毎に順次に出力する。この場合において、試験周期発生器22は、基準クロックの1周期に、2以上の試験周期データを同時に出力しない。 FIG. 3 shows the reference clock, the test cycle data output from the test cycle generator 22, and the test cycle signal. The test cycle generator 22 outputs the test cycle data and the test cycle signal as a pair in synchronization with the reference clock. Further, the test cycle generator 22 sequentially outputs test cycle data and a test cycle signal indicating validity for each test cycle. In this case, the test cycle generator 22 does not simultaneously output two or more test cycle data in one cycle of the reference clock.
 従って、ある試験周期が基準クロックの2周期未満(2×T)の場合、即ち、ある試験周期データにより指定された試験周期の開始タイミングから、次の試験周期データにより指定された試験周期の開始タイミングまでの間隔が2周期未満の場合、試験周期発生器22は、この2つの試験周期データを基準クロックの周期(T)の間隔で連続して出力する。すなわち、試験周期データの上位ビットが0である場合、当該試験周期データと次の試験周期データとを、基準クロックの周期の間隔で連続して出力する。 Therefore, when a certain test cycle is less than 2 cycles (2 × T) of the reference clock, that is, from the start timing of the test cycle specified by a certain test cycle data, the start of the test cycle specified by the next test cycle data When the interval up to the timing is less than two cycles, the test cycle generator 22 continuously outputs the two test cycle data at intervals of the reference clock cycle (T). That is, when the upper bit of the test cycle data is 0, the test cycle data and the next test cycle data are continuously output at the interval of the reference clock cycle.
 図4は、本実施形態に係る試験周期発生器22の構成を示す。試験周期発生器22は、周期発生部38と、伝送回路40とを有する。 FIG. 4 shows a configuration of the test cycle generator 22 according to the present embodiment. The test cycle generator 22 includes a cycle generator 38 and a transmission circuit 40.
 周期発生部38は、パターン発生部20から試験周期を指定するデータを受け取り、受け取ったデータに応じて試験周期データおよび試験周期信号を、基準クロックに同期して発生する。伝送回路40は、基準クロックに同期して、周期発生部38から試験周期データおよび試験周期信号を取得してタイミング発生器24へと伝送する。 The cycle generator 38 receives data designating a test cycle from the pattern generator 20, and generates test cycle data and a test cycle signal in synchronization with the reference clock according to the received data. The transmission circuit 40 acquires test cycle data and a test cycle signal from the cycle generator 38 and transmits them to the timing generator 24 in synchronization with the reference clock.
 図5は、本実施形態に係る伝送回路40の構成を示す。伝送回路40は、下位ビット取得用フリップフロップ42と、上位ビット取得用フリップフロップ44と、試験周期信号取得用フリップフロップ46と、データ取得部48と、検出部50と、クロックイネーブル信号伝送回路52と、第1クロックゲート部54と、データ切替部56と、試験周期信号伝送回路58とを含む。 FIG. 5 shows a configuration of the transmission circuit 40 according to the present embodiment. The transmission circuit 40 includes a lower bit acquisition flip-flop 42, an upper bit acquisition flip-flop 44, a test cycle signal acquisition flip-flop 46, a data acquisition unit 48, a detection unit 50, and a clock enable signal transmission circuit 52. A first clock gate unit 54, a data switching unit 56, and a test cycle signal transmission circuit 58.
 下位ビット取得用フリップフロップ42は、周期発生部38により発生された試験周期データの下位ビットを、基準クロックのタイミングで取得する。上位ビット取得用フリップフロップ44は、周期発生部38により発生された試験周期データの上位ビットを、基準クロックのタイミングで取得する。試験周期信号取得用フリップフロップ46は、周期発生部38により発生された試験周期信号を、基準クロックのタイミングで取得する。 The lower bit acquisition flip-flop 42 acquires lower bits of the test cycle data generated by the cycle generator 38 at the timing of the reference clock. The upper bit acquisition flip-flop 44 acquires the upper bits of the test cycle data generated by the cycle generator 38 at the timing of the reference clock. The test cycle signal acquisition flip-flop 46 acquires the test cycle signal generated by the cycle generator 38 at the timing of the reference clock.
 データ取得部48は、基準クロックに同期して、試験周期データを取得してタイミング発生器24へと出力する。データ取得部48は、一例として、下位ビット伝送回路60と、上位ビット伝送回路62とを含んでよい。下位ビット伝送回路60は、基準クロックに同期して、試験周期データの下位ビットを取得してタイミング発生器24と出力する。下位ビット伝送回路60は、基準クロックに同期して、試験周期データの上位ビットを取得してタイミング発生器24と出力する。 The data acquisition unit 48 acquires test cycle data in synchronization with the reference clock and outputs it to the timing generator 24. As an example, the data acquisition unit 48 may include a lower bit transmission circuit 60 and an upper bit transmission circuit 62. The lower bit transmission circuit 60 acquires the lower bits of the test cycle data in synchronization with the reference clock and outputs it with the timing generator 24. The lower bit transmission circuit 60 acquires the upper bits of the test cycle data in synchronization with the reference clock and outputs it with the timing generator 24.
 検出部50は、周期発生部38が発生した試験周期データの上位ビットが予め定められた値と一致するか否かを検出する。本実施形態においては、上位ビットの予め定められた値として、0が設定される。すなわち、本実施形態においては、検出部50は、周期発生部38が発生した試験周期データの上位ビットが0か否かを検出する。これにより、検出部50は、当該試験周期データと次の試験周期データとが、基準クロックの周期で連続して出力される場合を、検出することができる。さらに、検出部50は、周期発生部38が試験周期データの無効を示す試験周期信号を発生したか否か、即ち、試験周期信号が発生されていないサイクルか否かを検出する。 The detecting unit 50 detects whether or not the upper bits of the test cycle data generated by the cycle generating unit 38 match a predetermined value. In the present embodiment, 0 is set as a predetermined value of the upper bits. That is, in the present embodiment, the detection unit 50 detects whether or not the upper bit of the test cycle data generated by the cycle generation unit 38 is 0. Thereby, the detection unit 50 can detect the case where the test cycle data and the next test cycle data are continuously output in the cycle of the reference clock. Further, the detection unit 50 detects whether or not the cycle generation unit 38 has generated a test cycle signal indicating that the test cycle data is invalid, that is, whether or not the cycle has not been generated.
 そして、検出部50は、上位ビットの取得に用いる基準クロックをデータ取得部48へ供給するか否かを示すクロックイネーブル信号を発生する。より詳しくは、検出部50は、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合(即ち、試験周期信号が発生されていないサイクルの場合)、または、周期発生部38が発生した試験周期データの上位ビットが予め定められた値(本実施形態においては0)と一致する場合に、無効を示すクロックイネーブル信号を発生する。また、検出部50は、周期発生部38が試験周期データの有効を示す試験周期信号を発生し(即ち、試験周期信号が発生されたサイクルの場合)、且つ、周期発生部38が発生した試験周期データの上位ビットが予め定められた値(本実施形態においては0)と一致しない場合に、有効を示すクロックイネーブル信号を発生する。 Then, the detection unit 50 generates a clock enable signal indicating whether or not to supply the reference clock used for acquiring the upper bits to the data acquisition unit 48. More specifically, the detection unit 50 generates a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which the test cycle signal is not generated) or the cycle generation unit 38. A clock enable signal indicating invalidity is generated when the upper bits of the test cycle data in which the error occurs coincides with a predetermined value (0 in this embodiment). The detection unit 50 also generates a test cycle signal indicating that the test cycle data is valid (that is, in a cycle in which the test cycle signal is generated) and the test generated by the cycle generation unit 38. When the upper bits of the cycle data do not match a predetermined value (0 in this embodiment), a clock enable signal indicating validity is generated.
 クロックイネーブル信号伝送回路52は、基準クロックに同期して、検出部50が出力したクロックイネーブル信号を取得して伝播する。クロックイネーブル信号伝送回路52は、一例として、データ取得部48により伝播される試験周期データに同期して、検出部50が出力したクロックイネーブル信号を継続接続された複数段のフリップフロップにより伝播してよい。 The clock enable signal transmission circuit 52 acquires and propagates the clock enable signal output from the detection unit 50 in synchronization with the reference clock. For example, the clock enable signal transmission circuit 52 propagates the clock enable signal output from the detection unit 50 through a plurality of flip-flops that are continuously connected in synchronization with the test cycle data propagated by the data acquisition unit 48. Good.
 第1クロックゲート部54は、基準クロックを受け取り、受け取った基準クロックを、試験周期データの上位ビットの取得に用いる基準クロックとしてデータ取得部48に供給する。第1クロックゲート部54は、一例として、受け取った基準クロックを上位ビット伝送回路62に供給する。 The first clock gate unit 54 receives the reference clock, and supplies the received reference clock to the data acquisition unit 48 as a reference clock used for acquiring the upper bits of the test cycle data. For example, the first clock gate unit 54 supplies the received reference clock to the upper bit transmission circuit 62.
 ここで、第1クロックゲート部54は、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合(即ち、試験周期信号が発生されていないサイクルの場合)、または、試験周期データの上位ビットが予め定められた値(本実施形態においては0)と一致することが検出された場合に、データ取得部48が当該試験周期データの上位ビットの取得に用いる基準クロックの供給を停止する。データ取得部48が試験周期データの上位ビットを継続接続された複数のフリップフロップにより順次に伝播する場合であれば、第1クロックゲート部54は、一例として、複数のフリップフロップのうちの当該試験周期データを伝播するフリップフロップに対する基準クロックの供給を停止してよい。より詳しくは、第1クロックゲート部54は、一例として、クロックイネーブル信号伝送回路52により同期して伝播される、ある段のフリップフロップにより取得されたクロックイネーブル信号が基準クロックの供給を停止することを示す場合に、上位ビット伝送回路62における次段のフリップフロップに対する基準クロックの供給を停止してよい。 Here, the first clock gate unit 54 generates a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which no test cycle signal is generated) or a test cycle. When it is detected that the upper bits of the data match a predetermined value (0 in this embodiment), the data acquisition unit 48 supplies the reference clock used to acquire the upper bits of the test cycle data. Stop. If the data acquisition unit 48 sequentially propagates the upper bits of the test cycle data by a plurality of flip-flops that are continuously connected, the first clock gate unit 54, for example, The supply of the reference clock to the flip-flop that propagates the periodic data may be stopped. More specifically, as an example, the first clock gate unit 54 stops the supply of the reference clock by a clock enable signal acquired by a flip-flop at a certain stage, which is propagated synchronously by the clock enable signal transmission circuit 52. In this case, the supply of the reference clock to the next flip-flop in the upper bit transmission circuit 62 may be stopped.
 以上に加えて、第1クロックゲート部54は、一例として、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合に(即ち、試験周期信号が発生されていないサイクルの場合に)、データ取得部48が当該試験周期データの上位ビットおよび上位ビット以外のビットの取得に用いる基準クロックの供給を停止する構成であってもよい。第1クロックゲート部54は、一例として、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合、当該試験周期データの全てのビットの取得に用いる基準クロックを停止する構成であってよい。 In addition to the above, the first clock gate unit 54, for example, when the cycle generator 38 generates a test cycle signal indicating invalidity of the test cycle data (that is, in a cycle in which no test cycle signal is generated). In addition, the data acquisition unit 48 may be configured to stop the supply of the reference clock used for acquiring the upper bits and the bits other than the upper bits of the test cycle data. For example, when the cycle generator 38 generates a test cycle signal indicating that the test cycle data is invalid, the first clock gate unit 54 is configured to stop the reference clock used to acquire all the bits of the test cycle data. It may be.
 データ切替部56は、試験周期データの上位ビットが予め定められた値(本実施形態においては0)と一致することが検出された場合に、データ取得部48から出力される試験周期データの上位ビットに代えて、予め定められた値をタイミング発生器24へと供給する。本実施形態においては、データ切替部56は、試験周期データの上位ビットが0と検出された場合に、データ取得部48からの上位ビットに代えて、0をタイミング発生器24へと供給する。 When the data switching unit 56 detects that the upper bits of the test cycle data match a predetermined value (0 in the present embodiment), the data switching unit 56 outputs the upper cycle of the test cycle data output from the data acquisition unit 48. Instead of bits, a predetermined value is supplied to the timing generator 24. In the present embodiment, the data switching unit 56 supplies 0 to the timing generator 24 instead of the upper bits from the data acquisition unit 48 when the upper bits of the test cycle data are detected as 0.
 試験周期信号伝送回路58は、基準クロックに同期して、周期発生部38が出力した試験周期信号を取得して伝播する。試験周期信号伝送回路58は、一例として、データ取得部48により伝播される試験周期データに同期して、周期発生部38が出力したクロックイネーブル信号を継続接続された複数段のフリップフロップにより伝播してよい。 The test cycle signal transmission circuit 58 acquires and propagates the test cycle signal output from the cycle generator 38 in synchronization with the reference clock. For example, the test cycle signal transmission circuit 58 propagates the clock enable signal output from the cycle generator 38 through a plurality of stages of flip-flops continuously connected in synchronization with the test cycle data propagated by the data acquisition unit 48. It's okay.
 図6および図7は、伝送回路40の具体的な回路構成の一例を示す。図6は、データ取得部48およびデータ切替部56の構成の一例を示す。図7は、検出部50、クロックイネーブル信号伝送回路52、第1クロックゲート部54および試験周期信号伝送回路58の構成の一例を示す。 6 and 7 show an example of a specific circuit configuration of the transmission circuit 40. FIG. FIG. 6 shows an example of the configuration of the data acquisition unit 48 and the data switching unit 56. FIG. 7 shows an exemplary configuration of the detection unit 50, the clock enable signal transmission circuit 52, the first clock gate unit 54, and the test cycle signal transmission circuit 58.
 下位ビット伝送回路60は、一例として、図6に示されるような、基準クロックに同期して動作する、n個(nは2以上の整数。)の継続接続されたフリップフロップ64-1~64-nを含んでよい。このような下位ビット伝送回路60は、基準クロックに同期して、試験周期データの下位ビットを先頭段のフリップフロップ64-1により取得し、順次後段のフリップフロップ64へと伝播し、最終段のフリップフロップ64-nからタイミング発生器24へと出力する。 For example, the low-order bit transmission circuit 60 has n (n is an integer of 2 or more) continuously connected flip-flops 64-1 to 64 that operate in synchronization with a reference clock as shown in FIG. -N may be included. Such a lower bit transmission circuit 60 obtains the lower bits of the test cycle data in synchronization with the reference clock by the flip-flop 64-1 at the first stage, and sequentially propagates it to the flip-flop 64 at the subsequent stage, Output from the flip-flop 64-n to the timing generator 24.
 上位ビット伝送回路62は、一例として、図6に示されるような、下位ビット伝送回路60に含まれるフリップフロップ64と同数(即ち、n個)の継続接続されたフリップフロップ66-1~66-nを含んでよい。このような上位ビット伝送回路62は、基準クロックに同期して、試験周期データの上位ビットを先頭段のフリップフロップ66-1により取得し、順次後段のフリップフロップ66へと伝播し、最終段のフリップフロップ66-nからタイミング発生器24へと出力する。なお、下位ビット伝送回路60に含まれるn個のフリップフロップ66のそれぞれは、後述する第1クロックゲート部54を介して与えられた基準クロックに同期して動作する。 As an example, the upper bit transmission circuit 62 has the same number (ie, n) of flip-flops 66-1 to 66- as the number of flip-flops 64 included in the lower bit transmission circuit 60 as shown in FIG. n may be included. Such an upper bit transmission circuit 62 acquires the upper bits of the test cycle data in synchronization with the reference clock by the flip-flop 66-1 at the first stage, and sequentially propagates it to the flip-flop 66 at the subsequent stage, Output from the flip-flop 66-n to the timing generator 24. Each of the n flip-flops 66 included in the lower bit transmission circuit 60 operates in synchronization with a reference clock provided via a first clock gate unit 54 described later.
 検出部50は、一例として、図7に示されるように、検出部内OR回路72と、検出部内AND回路74とを含んでよい。検出部内OR回路72は、試験周期データの上位ビットのそれぞれを受け取り、各ビットの値をOR演算した結果を出力する。このような検出部内OR回路72は、試験周期データの上位ビットが0の場合に無効、0以外の場合に有効を表わす信号を出力する。 As an example, the detection unit 50 may include a detection unit OR circuit 72 and a detection unit AND circuit 74, as shown in FIG. The in-detector OR circuit 72 receives each of the upper bits of the test cycle data and outputs the result of OR operation of the value of each bit. Such an in-detector OR circuit 72 outputs a signal indicating invalidity when the upper bit of the test cycle data is 0, and valid when it is not 0.
 検出部内AND回路74は、検出部内OR回路72の出力信号と、周期発生部38が発生した試験周期信号とをAND演算した結果を出力する。そして、このような検出部50は、検出部内AND回路74の出力信号を、クロックイネーブル信号として出力する。これにより、検出部50は、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合(即ち、試験周期信号が発生されていないサイクルの場合)、または、周期発生部38が発生した試験周期データの上位ビットが0である場合に、無効を示すクロックイネーブル信号を発生することができる。また、検出部50は、周期発生部38が試験周期データの有効を示す試験周期信号を発生し、且つ、周期発生部38が発生した試験周期データの上位ビットが0以外の場合に、有効を示すクロックイネーブル信号を発生することができる。 The detection unit AND circuit 74 outputs a result obtained by ANDing the output signal of the detection unit OR circuit 72 and the test cycle signal generated by the cycle generation unit 38. And such a detection part 50 outputs the output signal of the AND circuit 74 in a detection part as a clock enable signal. As a result, the detection unit 50 causes the cycle generator 38 to generate a test cycle signal indicating that the test cycle data is invalid (that is, a cycle in which the test cycle signal is not generated) or the cycle generator 38 When the upper bit of the generated test cycle data is 0, a clock enable signal indicating invalidity can be generated. The detection unit 50 is enabled when the cycle generation unit 38 generates a test cycle signal indicating the validity of the test cycle data, and the upper bits of the test cycle data generated by the cycle generation unit 38 are other than 0. A clock enable signal can be generated.
 クロックイネーブル信号伝送回路52は、一例として、図7に示されるような、上位ビット伝送回路62に含まれるフリップフロップ66と同数(即ち、n個)の継続接続されたフリップフロップ76-1~76-nを含んでよい。このようなクロックイネーブル信号伝送回路52は、基準クロックに同期して、検出部50が出力したクロックイネーブル信号を先頭段のフリップフロップ76-1により取得し、順次後段のフリップフロップ76へと伝播する。 As an example, the clock enable signal transmission circuit 52 has the same number of flip-flops 76-1 to 76 as the number of flip-flops 66 included in the upper bit transmission circuit 62 (that is, n) as shown in FIG. -N may be included. Such a clock enable signal transmission circuit 52 acquires the clock enable signal output from the detection unit 50 in synchronization with the reference clock by the first flip-flop 76-1, and sequentially propagates it to the subsequent flip-flop 76. .
 第1クロックゲート部54は、一例として、図7に示されるように、上位ビット伝送回路62に含まれるフリップフロップ66と同数(即ち、n個)のゲート回路78-1~78-nを含んでよい。n個のゲート回路78-1~78-nのそれぞれは、上位ビット伝送回路62に含まれるn個のフリップフロップ66-1~66-nのそれぞれに対応する。n個のゲート回路78-1~78-nのそれぞれは、基準クロックを受け取り、上位ビット伝送回路62に含まれる対応するフリップフロップ66に供給する。 As an example, as shown in FIG. 7, the first clock gate unit 54 includes the same number (ie, n) of gate circuits 78-1 to 78-n as the flip-flops 66 included in the upper bit transmission circuit 62. It's okay. Each of the n gate circuits 78-1 to 78-n corresponds to each of the n flip-flops 66-1 to 66-n included in the upper bit transmission circuit 62. Each of the n gate circuits 78-1 to 78-n receives the reference clock and supplies it to the corresponding flip-flop 66 included in the upper bit transmission circuit 62.
 さらに、n個のゲート回路78-1~78-nのそれぞれは、クロックイネーブル信号伝送回路52内の対応するフリップフロップ76に対して入力されるクロックイネーブル信号を受け取る。そして、n個のゲート回路78-1~78-nのそれぞれは、受け取ったクロックイネーブル信号が有効であれば、上位ビット伝送回路62に含まれる対応するフリップフロップ66に基準クロックを供給し、受け取ったクロックイネーブル信号が無効であれば、上位ビット伝送回路62に含まれる対応するフリップフロップ66への基準クロックの供給を停止する。これにより、第1クロックゲート部54は、上位ビット伝送回路62が試験周期データの上位ビットを継続接続されたn個のフリップフロップ66-1~66-nにより順次に伝播する場合において、複数のフリップフロップ66-1~66-nのうちの当該試験周期データを伝播するフリップフロップ66に対する基準クロックの供給を停止することができる。 Further, each of the n gate circuits 78-1 to 78-n receives the clock enable signal input to the corresponding flip-flop 76 in the clock enable signal transmission circuit 52. Each of the n gate circuits 78-1 to 78-n supplies the reference clock to the corresponding flip-flop 66 included in the upper bit transmission circuit 62 and receives the received clock enable signal if the received clock enable signal is valid. If the clock enable signal is invalid, the supply of the reference clock to the corresponding flip-flop 66 included in the upper bit transmission circuit 62 is stopped. As a result, the first clock gate unit 54 has a plurality of bits when the upper bit transmission circuit 62 sequentially propagates the upper bits of the test cycle data through the n flip-flops 66-1 to 66-n that are continuously connected. The supply of the reference clock to the flip-flop 66 that propagates the test cycle data among the flip-flops 66-1 to 66-n can be stopped.
 データ切替部56は、一例として、図6に示されるように、試験周期データのそれぞれのビットの値に対応した1又は複数のデータ切替部内AND回路68を含んでよい。1又は複数のデータ切替部内AND回路68のそれぞれは、上位ビット伝送回路62が出力した試験周期データの対応するビットの値と、クロックイネーブル信号伝送回路52の最終段のフリップフロップ76-nが出力したクロックイネーブル信号とをAND演算した信号を出力する。 As an example, the data switching unit 56 may include one or a plurality of data switching unit AND circuits 68 corresponding to the value of each bit of the test cycle data, as shown in FIG. Each of the AND circuit 68 in the one or more data switching units outputs the value of the corresponding bit of the test cycle data output from the upper bit transmission circuit 62 and the flip-flop 76-n at the final stage of the clock enable signal transmission circuit 52. A signal obtained by ANDing the clock enable signal is output.
 そして、このようなデータ切替部56は、データ切替部内AND回路68の出力信号を試験周期データの上位ビットとしてタイミング発生器24へ出力する。これにより、データ切替部56は、上位ビット伝送回路62が出力した試験周期データが有効であり且つ試験周期データの上位ビットが0と検出されなかった場合(即ち、クロックイネーブル信号が有効の場合)、上位ビット伝送回路62が出力した値をそのまま試験周期データの上位ビットとしてタイミング発生器24へと出力することができる。 Then, such a data switching unit 56 outputs the output signal of the AND circuit 68 in the data switching unit to the timing generator 24 as the upper bits of the test cycle data. Thereby, the data switching unit 56 is when the test cycle data output from the upper bit transmission circuit 62 is valid and the upper bit of the test cycle data is not detected as 0 (that is, when the clock enable signal is valid). The value output by the upper bit transmission circuit 62 can be output to the timing generator 24 as it is as the upper bits of the test cycle data.
 また、このようなデータ切替部56は、上位ビット伝送回路62が出力した試験周期データが無効である場合または試験周期データの上位ビットが0と検出された場合(即ち、クロックイネーブル信号が無効の場合)、0を試験周期データの上位ビットとしてタイミング発生器24への出力することができる。これにより、データ切替部56は、上位ビット伝送回路62が出力した試験周期データが無効である場合には、タイミング発生器24に対して不要なデータの出力を禁止することができる。さらに、データ切替部56は、試験周期データの上位ビットが0と検出された場合には、タイミング発生器24に対して正しいデータを出力することができる。 Further, such a data switching unit 56 is configured such that when the test cycle data output from the upper bit transmission circuit 62 is invalid or when the upper bit of the test cycle data is detected as 0 (that is, the clock enable signal is invalid). ), 0 can be output to the timing generator 24 as the upper bits of the test cycle data. As a result, the data switching unit 56 can prohibit the timing generator 24 from outputting unnecessary data when the test cycle data output from the upper bit transmission circuit 62 is invalid. Further, the data switching unit 56 can output correct data to the timing generator 24 when the upper bit of the test cycle data is detected as 0.
 試験周期信号伝送回路58は、一例として、図7に示されるような、上位ビット伝送回路62に含まれるフリップフロップ66と同数(即ち、n個)の継続接続されたフリップフロップ80-1~80-nを含んでよい。このような試験周期信号伝送回路58は、基準クロックに同期して、周期発生部38が出力した試験周期信号を先頭段のフリップフロップ80-1により取得し、順次後段のフリップフロップ80へと伝播し、最終段のフリップフロップ80-nからタイミング発生器24へと出力する。 As an example, the test cycle signal transmission circuit 58 has the same number (ie, n) of flip-flops 80-1 to 80 as the flip-flops 66 included in the upper bit transmission circuit 62 as shown in FIG. -N may be included. Such a test cycle signal transmission circuit 58 acquires the test cycle signal output from the cycle generator 38 by the first flip-flop 80-1 in synchronization with the reference clock, and sequentially propagates it to the subsequent flip-flop 80. Then, the data is output from the flip-flop 80-n at the final stage to the timing generator 24.
 図8は、伝送回路40内の各信号のタイミングチャートの一例を示す。なお、本例は、周期発生部38から出力された8ビットの試験周期データおよび試験周期信号を、継続接続された3段のフリップフロップにより、タイミング発生器24へ伝送する場合のタイミングチャートの一例を示す。また、本例の試験周期データは、4ビットの上位ビットと、4ビットの下位ビットを含む。 FIG. 8 shows an example of a timing chart of each signal in the transmission circuit 40. This example is an example of a timing chart in the case where 8-bit test cycle data and test cycle signals output from the cycle generator 38 are transmitted to the timing generator 24 by continuously connected three-stage flip-flops. Indicates. Further, the test cycle data of this example includes 4 bits of upper bits and 4 bits of lower bits.
 図8の(A)は、基準クロックを示す。図8の(B)のRATE_INは、周期発生部38が発生した試験周期信号を示す。図8の(C)のRATEDT[7:0]_INは、周期発生部38が発生した試験周期データを示す。 (A) in FIG. 8 shows a reference clock. RATE_IN in FIG. 8B indicates a test cycle signal generated by the cycle generator 38. RATEDT [7: 0] _IN in (C) of FIG. 8 indicates test cycle data generated by the cycle generator 38.
 図8の(D)のgckl_1は、第1クロックゲート部54が上位ビット伝送回路62の1段目のフリップフロップ66に与える基準クロックを示す。図8の(E)のRATEDT_1[3:0]は、下位ビット伝送回路60の1段目のフリップフロップ64が取得する試験周期データの下位ビットの値を示す。図8の(F)のRATEDT_1[7:4]は、上位ビット伝送回路62の1段目のフリップフロップ66が取得する試験周期データの下位ビットの値を示す。 8D is a reference clock that the first clock gate unit 54 supplies to the first-stage flip-flop 66 of the upper bit transmission circuit 62. RATEDT_1 [3: 0] in FIG. 8E indicates the value of the lower bit of the test cycle data acquired by the first-stage flip-flop 64 of the lower bit transmission circuit 60. RATEDT_1 [7: 4] in (F) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the first-stage flip-flop 66 of the upper bit transmission circuit 62.
 図8の(G)のgckl_2は、第1クロックゲート部54が上位ビット伝送回路62の2段目のフリップフロップ66に与える基準クロックを示す。図8の(H)のRATEDT_2[3:0]は、下位ビット伝送回路60の2段目のフリップフロップ64が取得する試験周期データの下位ビットの値を示す。図8の(I)のRATEDT_2[7:4]は、上位ビット伝送回路62の2段目のフリップフロップ66が取得する試験周期データの下位ビットの値を示す。 8 indicates a reference clock that the first clock gate unit 54 supplies to the second-stage flip-flop 66 of the upper bit transmission circuit 62. RATEDT_2 [3: 0] in FIG. 8H indicates the value of the lower bit of the test cycle data acquired by the second-stage flip-flop 64 of the lower bit transmission circuit 60. RATEDT_2 [7: 4] in (I) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the second-stage flip-flop 66 of the upper bit transmission circuit 62.
 図8の(J)のgckl_3は、第1クロックゲート部54が上位ビット伝送回路62の3段目のフリップフロップ66に与える基準クロックを示す。図8の(K)のRATEDT_3[3:0]は、下位ビット伝送回路60の3段目のフリップフロップ64が取得する試験周期データの下位ビットの値を示す。図8の(L)のRATEDT_3[7:4]は、上位ビット伝送回路62の3段目のフリップフロップ66が取得する試験周期データの下位ビットの値を示す。 8 (J), gckl_3 indicates a reference clock that the first clock gate unit 54 supplies to the third-stage flip-flop 66 of the upper bit transmission circuit 62. RATEDT_3 [3: 0] in FIG. 8K indicates the value of the lower bit of the test cycle data acquired by the third-stage flip-flop 64 of the lower bit transmission circuit 60. RATEDT — 3 [7: 4] in (L) of FIG. 8 indicates the value of the lower bit of the test cycle data acquired by the third-stage flip-flop 66 of the upper bit transmission circuit 62.
 図8の(M)のRATE_OUTは、伝送回路40がタイミング発生器24へと出力する試験周期信号を示す。図8の(N)のRATEDT[7:0]_OUTは、伝送回路40がタイミング発生器24へと出力する試験周期データを示す。 RATE_OUT in (M) of FIG. 8 indicates a test cycle signal output from the transmission circuit 40 to the timing generator 24. RATEDT [7: 0] _OUT in (N) of FIG. 8 indicates test cycle data output from the transmission circuit 40 to the timing generator 24.
 図8の(C)に示されるように、周期発生部38は、値が"0x0C"の試験周期データ(RATE1)、値が"0x23"の試験周期データ(RATE2)、値が"0x37"の試験周期データ(RATE3)、値が"0x05"の試験周期データ(RATE4)、値が"0xF1"の試験周期データ(RATE5)を順次に発生する。 As shown in FIG. 8C, the cycle generator 38 has the test cycle data (RATE1) with the value “0x0C”, the test cycle data (RATE2) with the value “0x23”, and the value “0x37”. Test cycle data (RATE3), test cycle data (RATE4) having a value of “0x05”, and test cycle data (RATE5) having a value of “0xF1” are sequentially generated.
 ここで、値が"0x23"の試験周期データ(RATE2)、値が"0x37"の試験周期データ(RATE3)および値が"0xF1"の試験周期データ(RATE5)は、上位ビットが0ではない。このような場合、第1クロックゲート部54は、図8の(D)、(G)、(J)に示されるように、これら試験周期データ(RATE1、RATE3、RATE5)に対応して、各基準クロックを上位ビット伝送回路62へ供給する。 Here, the test cycle data (RATE2) whose value is “0x23”, the test cycle data (RATE3) whose value is “0x37”, and the test cycle data (RATE5) whose value is “0xF1” are not 0. In such a case, the first clock gate unit 54 corresponds to these test cycle data (RATE1, RATE3, RATE5) as shown in (D), (G), and (J) of FIG. The reference clock is supplied to the upper bit transmission circuit 62.
 これに対して、値が"0x0C"の試験周期データ(RATE1)および値が"0x05"の試験周期データ(RATE4)は、上位ビットが0である。従って、これらの試験周期データの次の基準クロックの周期において、他の試験周期データ(RATE2、RATE5)が発生される。このような場合、第1クロックゲート部54は、図8の(D)、(G)、(J)に示されるように、これら試験周期データ(RATE1、RATE4)に対応する各基準クロックの上位ビット伝送回路62への供給を停止する。これにより、第1クロックゲート部54は、試験周期データの上位ビットが0である場合において、上位ビット伝送回路62において消費される電力を低減することができる。 On the other hand, the test cycle data (RATE1) having a value of “0x0C” and the test cycle data (RATE4) having a value of “0x05” have a high-order bit of 0. Therefore, other test cycle data (RATE2, RATE5) are generated in the cycle of the reference clock next to these test cycle data. In such a case, as shown in FIGS. 8D, 8G, and 8J, the first clock gate unit 54 has the upper rank of each reference clock corresponding to these test cycle data (RATE1, RATE4). The supply to the bit transmission circuit 62 is stopped. Thereby, the first clock gate unit 54 can reduce the power consumed in the upper bit transmission circuit 62 when the upper bit of the test cycle data is 0.
 また、図8の(L)、(M)に示されるように、データ切替部56は、値が"0x0C"の試験周期データ(RATE1)および値が"0x05"の試験周期データ(RATE4)をタイミング発生器24へと出力する場合、上位ビットの値を"0"に置き換えて出力する。これにより、データ切替部56は、上位ビット伝送回路62に対する基準クロックの供給が停止されて、上位ビット伝送回路62が正しい値を伝送していない場合において、最終段において正しい値に置き換えた試験周期データをタイミング発生器24に出力することができる。 Further, as shown in (L) and (M) of FIG. 8, the data switching unit 56 receives test cycle data (RATE1) having a value of “0x0C” and test cycle data (RATE4) having a value of “0x05”. When outputting to the timing generator 24, the value of the upper bit is replaced with "0" and output. Thereby, when the supply of the reference clock to the upper bit transmission circuit 62 is stopped and the upper bit transmission circuit 62 does not transmit a correct value, the data switching unit 56 replaces the test period with the correct value in the final stage. Data can be output to the timing generator 24.
 また、図8の(B)に示されるように、値が"0x23"の試験周期データ(RATE2)から、値が"0x37"の試験周期データ(RATE3)までの試験周期信号は、無効を示している。また、値が"0x37"の試験周期データ(RATE3)から、値が"0x05"の試験周期データ(RATE4)までの試験周期信号も、無効を示している。このような場合、第1クロックゲート部54は、図8の(D)、(G)、(J)に示されるように、試験周期信号が無効を示している期間においては、各基準クロックの上位ビット伝送回路62への供給を停止する。これにより、第1クロックゲート部54は、試験周期データが無効を示している場合において、上位ビット伝送回路62において消費される電力を低減することができる。 Further, as shown in FIG. 8B, the test cycle signal from the test cycle data (RATE2) having a value “0x23” to the test cycle data (RATE3) having a value “0x37” indicates invalidity. ing. Also, the test cycle signal from the test cycle data (RATE3) having a value of “0x37” to the test cycle data (RATE4) having a value of “0x05” also indicates invalidity. In such a case, as shown in (D), (G), and (J) of FIG. 8, the first clock gate unit 54 is configured to output each reference clock during the period in which the test cycle signal is invalid. Supply to the upper bit transmission circuit 62 is stopped. Thus, the first clock gate unit 54 can reduce the power consumed in the upper bit transmission circuit 62 when the test cycle data indicates invalidity.
 以上のように、本実施形態に係る伝送回路40は、周期発生部38から出力される試験周期データが無効を示す試験周期信号を発生した場合、または、試験周期データの上位ビットの値が予め定められた値と一致することが検出された場合に、データ取得部48に対する、当該試験周期データの上位ビットを取得および伝播するための基準クロックの供給を停止する。そして、伝送回路40は、試験周期データの上位ビットの値が予め定められた値と一致することが検出された場合に、データ取得部48が出力した当該試験周期データの上位ビットの値に代えて、予め定められた値をタイミング発生器24に出力する。 As described above, the transmission circuit 40 according to the present embodiment generates a test cycle signal indicating that the test cycle data output from the cycle generator 38 is invalid, or the value of the upper bit of the test cycle data is set in advance. When it is detected that the value matches the predetermined value, the supply of the reference clock for acquiring and propagating the upper bits of the test cycle data to the data acquisition unit 48 is stopped. Then, when it is detected that the value of the upper bit of the test cycle data matches a predetermined value, the transmission circuit 40 replaces the value of the upper bit of the test cycle data output from the data acquisition unit 48. The predetermined value is output to the timing generator 24.
 これにより、伝送回路40によれば、周期発生部38からタイミング発生器24へ有効な試験周期データを伝播させることができるとともに、無効な試験周期データの伝播に用いる基準クロックを停止して消費電力を低減することができる。さらに、伝送回路40によれば、有効な試験周期データの上位ビットが予め定められた値の場合においては、当該有効な試験周期データの上位ビットの伝播に用いる基準クロックを停止して、消費電力を低減することができる。 Thereby, according to the transmission circuit 40, the valid test cycle data can be propagated from the cycle generator 38 to the timing generator 24, and the reference clock used for the propagation of the invalid test cycle data is stopped to consume power. Can be reduced. Further, according to the transmission circuit 40, when the high-order bits of the valid test cycle data have a predetermined value, the reference clock used for the propagation of the high-order bits of the valid test cycle data is stopped and the power consumption is reduced. Can be reduced.
 特に、試験周期データの上位ビットが0の場合、有効な試験周期データが基準クロックの間隔で連続して伝播されるので、消費電力が大きくなる。従って、試験周期データの上位ビットが0の場合に、当該有効な試験周期データの上位ビットの伝播に用いる基準クロックを停止することにより、消費電力を効率良く低減することができる。 In particular, when the upper bit of the test cycle data is 0, effective test cycle data is continuously propagated at intervals of the reference clock, so that power consumption increases. Therefore, when the upper bit of the test cycle data is 0, the power consumption can be efficiently reduced by stopping the reference clock used for propagation of the higher bit of the effective test cycle data.
 なお、このような伝送回路40において、データ取得部48の上位ビット伝送回路62は、試験周期データの上位ビット(即ち、基準クロックの周期より大きい単位の時間を示すビット部分)に代えて、試験周期データのうちの予め定められた少なくとも1つのビット(以下、対象ビットと称する。)を、タイミング発生器24へと伝播する構成であってよい。この場合、下位ビット伝送回路60は、試験周期データのうちの対象ビット以外のビットを、タイミング発生器24へと伝播する。 In such a transmission circuit 40, the high-order bit transmission circuit 62 of the data acquisition unit 48 replaces the high-order bits of the test cycle data (that is, the bit portion indicating the unit time larger than the cycle of the reference clock) with the test A configuration may be adopted in which at least one predetermined bit (hereinafter referred to as a target bit) of the periodic data is propagated to the timing generator 24. In this case, the lower bit transmission circuit 60 propagates bits other than the target bit in the test cycle data to the timing generator 24.
 また、この場合、検出部50は、対象ビットが予め定められた値と一致するか否かを検出する。また、この場合、第1クロックゲート部54は、周期発生部38が試験周期データの無効を示す試験周期信号を発生した場合、または、試験周期データにおける対象ビットが予め定められた値と一致することが検出された場合に、データ取得部48が対象ビットの取得に用いる基準クロックの供給を停止する。そして、この場合、データ切替部56は、試験周期データにおける対象ビットが予め定められた値と一致することが検出された場合に、データ取得部48からの対象ビットに代えて、予め定められた値をタイミング発生器24へと供給する。このような構成であっても、伝送回路40は、当該有効な試験周期データの対象ビットの伝播に用いる基準クロックを停止して、消費電力を低減することができる。 In this case, the detection unit 50 detects whether the target bit matches a predetermined value. Further, in this case, the first clock gate unit 54 is configured such that the cycle generator 38 generates a test cycle signal indicating that the test cycle data is invalid, or the target bit in the test cycle data matches a predetermined value. When this is detected, the data acquisition unit 48 stops supplying the reference clock used for acquiring the target bit. In this case, when it is detected that the target bit in the test cycle data matches a predetermined value, the data switching unit 56 replaces the target bit from the data acquisition unit 48 with a predetermined value. The value is supplied to the timing generator 24. Even with such a configuration, the transmission circuit 40 can reduce the power consumption by stopping the reference clock used for propagation of the target bit of the valid test cycle data.
 さらに、また、このような伝送回路40は、試験装置10以外の他の装置に備えられてよい。すなわち、伝送回路40は、データ、および、当該データが有効か否かを示すデータイネーブル信号を、送信回路から受信回路へと伝送するものであってよい。 Furthermore, such a transmission circuit 40 may be provided in a device other than the test device 10. That is, the transmission circuit 40 may transmit data and a data enable signal indicating whether or not the data is valid from the transmission circuit to the reception circuit.
この場合、伝送回路40は、周期発生部38から試験周期データおよび試験周期信号を受け取ることに代えて、送信回路からデータおよびデータイネーブル信号を受け取る。そして、伝送回路40は、タイミング発生器24へ試験周期データおよび試験周期信号を出力することに代えて、受信回路へデータおよびデータイネーブル信号を出力する。これにより、伝送回路40によれば、送信回路から受信回路へとデータおよびデータイネーブル信号を伝送する場合においても、消費電力を低減することができる。 In this case, the transmission circuit 40 receives data and a data enable signal from the transmission circuit instead of receiving the test period data and the test period signal from the period generator 38. Then, the transmission circuit 40 outputs data and a data enable signal to the receiving circuit instead of outputting the test cycle data and the test cycle signal to the timing generator 24. Thereby, according to the transmission circuit 40, power consumption can be reduced even when data and a data enable signal are transmitted from the transmission circuit to the reception circuit.
 図9は、本実施形態に係るタイミング発生器24の構成を示す。タイミング発生器24は、タイミングデータ発生部110と、分配部112と、複数のカウンタ遅延部114(114-1~114-m)と、第1合成部116と、第2合成部118と、微小遅延部120とを有する。 FIG. 9 shows a configuration of the timing generator 24 according to the present embodiment. The timing generator 24 includes a timing data generation unit 110, a distribution unit 112, a plurality of counter delay units 114 (114-1 to 114-m), a first synthesis unit 116, a second synthesis unit 118, Delay unit 120.
 タイミングデータ発生部110は、被試験デバイス200との間で信号を授受するタイミングを示すタイミング信号の発生タイミングを指定するタイミングデータ、および、タイミングデータが有効か否かを示すタイミングイネーブル信号を発生する。タイミングデータは、当該タイミングデータが受け取られたタイミングからタイミング信号の発生タイミングまでの遅延時間を、基準クロックの周期より小さい精度で表わす。 The timing data generation unit 110 generates timing data that specifies the generation timing of a timing signal that indicates the timing for transmitting and receiving signals to and from the device under test 200, and a timing enable signal that indicates whether the timing data is valid. . The timing data represents the delay time from the timing at which the timing data is received to the timing signal generation timing with an accuracy smaller than the cycle of the reference clock.
 タイミングデータ発生部110は、一例として、試験周期発生器22から受け取った試験周期データと、パターン発生部20から与えられた遅延データとを加算する加算部132を含んでよい。タイミングデータ発生部110は、加算部132による加算結果をタイミングデータとして出力してよい。また、タイミングデータ発生部110は、試験周期発生器22から受け取った試験周期信号を、試験周期データと遅延データとの加算処理により費やされる時間分遅延させて、タイミングイネーブル信号として出力してよい。 As an example, the timing data generation unit 110 may include an addition unit 132 that adds the test cycle data received from the test cycle generator 22 and the delay data provided from the pattern generation unit 20. The timing data generation unit 110 may output the addition result by the addition unit 132 as timing data. Further, the timing data generation unit 110 may delay the test cycle signal received from the test cycle generator 22 by the time consumed by the addition processing of the test cycle data and the delay data, and output the delayed signal as a timing enable signal.
 分配部112は、タイミングデータ発生部110から順次出力される有効なタイミングデータおよびタイミングイネーブル信号を、複数のカウンタ遅延部114のいずれか一つに分配する。分配部112は、タイミングデータ発生部110から有効なタイミングデータおよびタイミングイネーブル信号が出力される毎に、複数のカウンタ遅延部114のいずれか一つを巡回的に選択し、選択した一のカウンタ遅延部114に有効なタイミングデータおよびタイミングイネーブル信号を供給する。 The distributing unit 112 distributes valid timing data and timing enable signals sequentially output from the timing data generating unit 110 to any one of the plurality of counter delay units 114. The distribution unit 112 cyclically selects any one of the plurality of counter delay units 114 each time valid timing data and a timing enable signal are output from the timing data generation unit 110, and selects the selected counter delay. Valid timing data and a timing enable signal are supplied to the unit 114.
 複数のカウンタ遅延部114のそれぞれは、分配部112により分配されたタイミングデータおよびタイミングイネーブル信号を受け取る。複数のカウンタ遅延部114のそれぞれは、受け取ったタイミングデータを、当該タイミングデータに含まれる基準クロックの周期以上の単位で遅延時間を表わすデータ部分である上位側データと、当該タイミングデータに含まれる上位側データ以外の他のデータ部分である下位側データとに分離する。上位側データは、一例として、当該タイミングデータが受け取られたタイミングからタイミング信号の発生タイミングまでの遅延時間を基準クロックの周期単位の精度で表わしたデータであってよい。下位側データは、遅延時間における基準クロックの周期未満の成分を表わしたデータであってよい。 Each of the plurality of counter delay units 114 receives the timing data and timing enable signal distributed by the distribution unit 112. Each of the plurality of counter delay units 114 converts the received timing data into higher-order data that is a data portion representing a delay time in units equal to or greater than the period of the reference clock included in the timing data, and the higher-order data included in the timing data. The data is separated into lower data, which is another data portion other than the side data. For example, the higher-order data may be data that represents the delay time from the timing at which the timing data is received to the timing at which the timing signal is generated, with accuracy in units of the reference clock. The lower-order data may be data representing a component that is less than the period of the reference clock in the delay time.
 複数のカウンタ遅延部114のそれぞれは、有効なタイミングデータを受け取ったタイミングから、当該タイミングデータの一部に含まれる上位側データ分、基準クロックをカウントする。そして、複数のカウンタ遅延部114のそれぞれは、タイミングデータを受け取ったタイミングから、上位側データ分基準クロックをカウントした後にタイミングイネーブル信号を出力する。さらに、複数のカウンタ遅延部114のそれぞれは、当該タイミングデータに含まれる下位側データをタイミングイネーブル信号に同期させて出力する。 Each of the plurality of counter delay units 114 counts the reference clock for the higher-order data included in a part of the timing data from the timing when the valid timing data is received. Then, each of the plurality of counter delay units 114 outputs a timing enable signal after counting the upper data reference clocks from the timing at which the timing data is received. Further, each of the plurality of counter delay units 114 outputs lower-order data included in the timing data in synchronization with the timing enable signal.
 第1合成部116は、複数のカウンタ遅延部114のそれぞれから出力されたタイミングイネーブル信号を多重合成して一の信号として微小遅延部120に供給する。第1合成部116は、一例として、複数のカウンタ遅延部114のそれぞれから出力されたタイミングイネーブル信号をOR演算により一の信号に合成して微小遅延部120に供給する。 The first synthesizing unit 116 multiplex-synthesizes the timing enable signals output from each of the plurality of counter delay units 114 and supplies the resultant signals to the micro delay unit 120 as one signal. As an example, the first synthesizing unit 116 synthesizes the timing enable signals output from each of the plurality of counter delay units 114 into one signal by OR operation and supplies the synthesized signal to the micro delay unit 120.
 第2合成部118は、複数のカウンタ遅延部114のそれぞれから出力されたタイミングデータに含まれる下位側データを多重合成して一の信号として微小遅延部120に供給する。第2合成部118は、一例として、複数のカウンタ遅延部114のそれぞれから出力された下位側データをOR演算により多重合成して一の信号として微小遅延部120に供給する。なお、複数のカウンタ遅延部114のそれぞれは、他の分配部112が有効な下位側データを出力している場合、下位側データとして0を出力する。 The second synthesizing unit 118 multiplex-synthesizes the lower side data included in the timing data output from each of the plurality of counter delay units 114, and supplies the result to the micro delay unit 120 as one signal. For example, the second synthesizing unit 118 multiplex-synthesizes the lower-order data output from each of the plurality of counter delay units 114 by OR operation and supplies the result to the micro delay unit 120 as one signal. Each of the plurality of counter delay units 114 outputs 0 as lower side data when the other distribution unit 112 outputs valid lower side data.
 微小遅延部120は、第1合成部116から受け取ったタイミングイネーブル信号を、第2合成部118から受け取ったタイミングデータに含まれる下位側データに応じた時間分、遅延させる。微小遅延部120は、受け取った信号を与えられた設定値に応じた時間分遅延させる可変遅延素子であってよい。微小遅延部120は、遅延したタイミングイネーブル信号を、被試験デバイス200との間で信号を授受するタイミングを示すタイミング信号として後段の波形成形部26またはタイミングコンパレータ32に供給する。 The minute delay unit 120 delays the timing enable signal received from the first synthesis unit 116 by a time corresponding to the lower-order data included in the timing data received from the second synthesis unit 118. The minute delay unit 120 may be a variable delay element that delays the received signal by a time corresponding to a given set value. The minute delay unit 120 supplies the delayed timing enable signal to the subsequent waveform shaping unit 26 or the timing comparator 32 as a timing signal indicating the timing at which signals are transmitted to and received from the device under test 200.
 このような構成のタイミング発生器24によれば、複数のカウンタ遅延部114によりタイミングイネーブル信号を基準クロックの周期精度で遅延させることができる。さらに、このようなタイミング発生器24によれば、複数のカウンタ遅延部114のそれぞれにより遅延されたタイミングイネーブル信号を、微小遅延部120により更に基準クロックの周期未満の精度で遅延させることができる。 According to the timing generator 24 having such a configuration, the timing enable signal can be delayed with the period accuracy of the reference clock by the plurality of counter delay units 114. Furthermore, according to such a timing generator 24, the timing enable signal delayed by each of the plurality of counter delay units 114 can be further delayed by the minute delay unit 120 with an accuracy less than the period of the reference clock.
 図10は、複数のカウンタ遅延部114に入力されるタイミングイネーブル信号のタイミングチャートの一例を示す。図10の(A)は、基準クロックを示す。図10の(B)は、分配部112が受け取るタイミングイネーブル信号を示す。 FIG. 10 shows an example of a timing chart of the timing enable signal input to the plurality of counter delay units 114. FIG. 10A shows a reference clock. FIG. 10B shows a timing enable signal received by the distribution unit 112.
 図10の(C)は、第1のカウンタ遅延部114-1が分配部112から受け取るタイミングイネーブル信号を示す。図10の(D)は、第2のカウンタ遅延部114-2が分配部112から受け取るタイミングイネーブル信号を示す。図10の(E)は、第3のカウンタ遅延部114-3が分配部112から受け取るタイミングイネーブル信号を示す。 FIG. 10C shows a timing enable signal that the first counter delay unit 114-1 receives from the distribution unit 112. FIG. 10D shows a timing enable signal that the second counter delay unit 114-2 receives from the distribution unit 112. FIG. 10E shows a timing enable signal that the third counter delay unit 114-3 receives from the distribution unit 112.
 分配部112は、タイミングデータ発生部110からタイミングイネーブル信号を受け取る毎に、複数のカウンタ遅延部114を1ずつ順番に選択して受け取ったタイミングイネーブル信号を分配する。例えば、分配部112は、図10の(C)に示されるように、時刻t21において受け取ったタイミングイネーブル信号を第1のカウンタ遅延部114-1に分配する。また、分配部112は、図10の(D)に示されるように、時刻t21の次の時刻t22において受け取ったタイミングイネーブル信号を第2のカウンタ遅延部114-2に分配する。また、分配部112は、図10の(E)に示されるように、時刻t22の次の時刻t23において受け取ったタイミングイネーブル信号を第3のカウンタ遅延部114-3に分配する。 Each time the distribution unit 112 receives the timing enable signal from the timing data generation unit 110, the distribution unit 112 selects the plurality of counter delay units 114 one by one in order and distributes the received timing enable signal. For example, as shown in FIG. 10C, the distribution unit 112 distributes the timing enable signal received at time t21 to the first counter delay unit 114-1. Further, as shown in FIG. 10D, the distribution unit 112 distributes the timing enable signal received at time t22 next to time t21 to the second counter delay unit 114-2. Further, as shown in FIG. 10E, the distribution unit 112 distributes the timing enable signal received at time t23 next to time t22 to the third counter delay unit 114-3.
 図11は、複数のカウンタ遅延部114から出力されるタイミングイネーブル信号および下位側データのタイミングチャートの一例を示す。 FIG. 11 shows an example of a timing chart of timing enable signals and lower-order data output from a plurality of counter delay units 114.
 図11の(A)は、第1のカウンタ遅延部114-1から出力されるタイミングイネーブル信号を示す。図11の(B)は、第1のカウンタ遅延部114-1から出力される下位側データを示す。図11の(C)は、第2のカウンタ遅延部114-2から出力されるタイミングイネーブル信号を示す。図11の(D)は、第2のカウンタ遅延部114-2から出力される下位側データを示す。図11の(E)は、第3のカウンタ遅延部114-3から出力されるタイミングイネーブル信号を示す。図11の(F)は、第3のカウンタ遅延部114-3から出力される下位側データを示す。 (A) of FIG. 11 shows a timing enable signal output from the first counter delay unit 114-1. FIG. 11B shows lower-order data output from the first counter delay unit 114-1. FIG. 11C shows a timing enable signal output from the second counter delay unit 114-2. (D) of FIG. 11 shows lower-order data output from the second counter delay unit 114-2. FIG. 11E shows a timing enable signal output from the third counter delay unit 114-3. (F) of FIG. 11 shows lower-order data output from the third counter delay unit 114-3.
 図11の(E)は、第1合成部116から出力されるタイミングイネーブル信号を示す。図11の(F)は、第2合成部118から出力される下位側データを示す。 (E) of FIG. 11 shows a timing enable signal output from the first synthesis unit 116. (F) of FIG. 11 shows the lower-order data output from the second synthesis unit 118.
 第1合成部116は、複数のカウンタ遅延部114のそれぞれから別個に出力されたタイミングイネーブル信号を多重合成して一の信号として微小遅延部120に供給する。同様に、第2合成部118は、複数のカウンタ遅延部114のそれぞれから別個に出力されたタイミングデータに含まれる下位側データを多重合成して一の信号として微小遅延部120に供給する。 The first synthesizing unit 116 multiplex-synthesizes the timing enable signals output from each of the plurality of counter delay units 114 and supplies them to the micro delay unit 120 as one signal. Similarly, the second synthesizing unit 118 multiplex-synthesizes the lower-order data included in the timing data separately output from each of the plurality of counter delay units 114 and supplies the result to the micro delay unit 120 as one signal.
 このように、分配部112は、複数のカウンタ遅延部114を1ずつ巡回的に選択して、基準クロックの周期単位の遅延処理をインターリーブして実行させる。これにより、タイミング発生器24によれば、ある試験周期において指定されるタイミング信号が、当該試験周期を超えて次の試験周期の範囲内において発生される結果、次の試験周期の範囲において複数のタイミング信号が発生される場合であっても、動作を破綻させずに、タイミング信号を発生させ続けることができる。 Thus, the distribution unit 112 cyclically selects the plurality of counter delay units 114 one by one, and interleaves and executes the delay processing in units of the reference clock. Thereby, according to the timing generator 24, as a result of the timing signal specified in a certain test cycle being generated within the range of the next test cycle beyond the test cycle, a plurality of signals are generated in the range of the next test cycle. Even when the timing signal is generated, the timing signal can be continuously generated without causing the operation to fail.
 図12は、カウンタ遅延部114の構成を示す。複数のカウンタ遅延部114のそれぞれは、同一の構成を有する。カウンタ遅延部114は、カウント部140と、状態保持部142と、第2クロックゲート部144とを含む。 FIG. 12 shows the configuration of the counter delay unit 114. Each of the plurality of counter delay units 114 has the same configuration. The counter delay unit 114 includes a count unit 140, a state holding unit 142, and a second clock gate unit 144.
 カウント部140は、第2クロックゲート部144から与えられる基準クロックに同期して動作する。カウント部140は、タイミングデータ発生部110から有効なタイミングデータを受け取ってから、当該タイミングデータに含まれる基準クロックの周期以上の単位で時間を表わす上位側データ数分基準クロックをカウントした後に、当該タイミングデータの上位側データ以外の下位側データおよび当該タイミングデータの有効を示すタイミングイネーブル信号を出力する。カウント部140は、一例として、状態保持部142がカウント中であることを示す状態信号を保持しており、かつ、カウント値が、上位側データ数をカウントした後の値となった場合に、タイミングデータの有効を示すタイミングイネーブル信号を出力してよい。 The count unit 140 operates in synchronization with the reference clock provided from the second clock gate unit 144. After receiving valid timing data from the timing data generating unit 110, the counting unit 140 counts the reference clocks by the number of higher-order data representing the time in units equal to or more than the cycle of the reference clock included in the timing data, Lower-order data other than the higher-order data of the timing data and a timing enable signal indicating the validity of the timing data are output. For example, the count unit 140 holds a state signal indicating that the state holding unit 142 is counting, and the count value becomes a value after counting the number of higher-order data. A timing enable signal indicating the validity of the timing data may be output.
 カウント部140は、一例として、ゼロ検出部150と、反転回路152と、カウンタ154と、第1AND回路156と、第1フリップフロップ158と、第2AND回路160とを含んでよい。ゼロ検出部150は、カウンタ154のカウント値が0の場合に有効を示す信号を出力し、カウンタ154のカウント値が0以外の場合に無効を示す信号を出力する。反転回路152は、ゼロ検出部150の出力信号の論理を反転してカウンタ154のDEC端子に与える。 As an example, the count unit 140 may include a zero detection unit 150, an inverting circuit 152, a counter 154, a first AND circuit 156, a first flip-flop 158, and a second AND circuit 160. The zero detection unit 150 outputs a signal indicating validity when the count value of the counter 154 is zero, and outputs a signal indicating invalidity when the count value of the counter 154 is other than zero. The inverting circuit 152 inverts the logic of the output signal of the zero detection unit 150 and supplies the inverted signal to the DEC terminal of the counter 154.
 カウンタ154は、分配部112から与えられたタイミングイネーブル信号が有効を示す場合に、タイミングデータ発生部110から出力されたタイミングデータの上位側データをカウント値として取得する。そして、カウンタ154は、DEC端子に与えられた信号が有効を示す場合(すなわち、カウンタ154のカウント値が0以外の場合)、取得したカウント値を、与えられた基準クロックに同期して1ずつ減少させる。 The counter 154 acquires the higher-order data of the timing data output from the timing data generating unit 110 as a count value when the timing enable signal given from the distributing unit 112 is valid. When the signal supplied to the DEC terminal indicates validity (that is, when the count value of the counter 154 is other than 0), the counter 154 sets the acquired count value one by one in synchronization with the supplied reference clock. Decrease.
 第1AND回路156は、ゼロ検出部150の出力信号が有効を示し且つ状態保持部142が出力する状態信号が有効を示す場合、有効を示すタイミングイネーブル信号を出力する。第1フリップフロップ158は、分配部112から与えられたタイミングイネーブル信号が有効を示す場合に、タイミングデータ発生部110から出力されたタイミングデータの下位側データを取得する。第2AND回路160は、ゼロ検出部150の出力信号が有効を示し且つ状態保持部142が出力する状態信号が有効を示す場合、第1フリップフロップ158が取得した下位側データを出力する。 The first AND circuit 156 outputs a timing enable signal indicating validity when the output signal of the zero detection unit 150 indicates validity and the state signal output by the state holding unit 142 indicates validity. The first flip-flop 158 obtains lower-order data of the timing data output from the timing data generation unit 110 when the timing enable signal provided from the distribution unit 112 is valid. The second AND circuit 160 outputs the lower-order data acquired by the first flip-flop 158 when the output signal of the zero detection unit 150 is valid and the status signal output by the status holding unit 142 is valid.
 このような構成のカウント部140は、有効なタイミングデータを受け取ってから、当該タイミングデータに含まれる上位側データに示される値分基準クロックをカウントし、カウントした後に、下位側データおよびタイミングデータの有効を示すタイミングイネーブル信号を出力することができる。 After receiving valid timing data, the counting unit 140 having such a configuration counts the reference clock for the value indicated in the upper data included in the timing data, and after counting, the lower data and the timing data A timing enable signal indicating validity can be output.
 状態保持部142は、カウント部140が有効なタイミングデータに含まれる上位側データ数のカウント中であるか否かを示す状態信号を保持する。状態保持部142は、一例として、カウント部140がカウント中である場合には有効、カウント部140がカウント中でない場合には無効を示す状態信号を出力してよい。 The state holding unit 142 holds a state signal indicating whether or not the counting unit 140 is counting the number of higher-order data included in valid timing data. For example, the state holding unit 142 may output a status signal indicating that the count unit 140 is valid when the count unit 140 is counting, and invalid when the count unit 140 is not counting.
 状態保持部142は、一例として、第1OR回路162と、第2フリップフロップ164とを含んでよい。第1OR回路162は、カウント部140のゼロ検出部150の出力信号が有効を示す場合(すなわち、カウンタ154のカウント値が0の場合)、または、分配部112から与えられたタイミングイネーブル信号が有効を示す場合、有効を示す信号を出力する。第2フリップフロップ164は、基準クロックに同期して動作し、第1OR回路162の出力信号が有効を示す場合、分配部112から与えられたタイミングイネーブル信号を取得する。このような第1OR回路162は、分配部112から有効を示すタイミングイネーブル信号が与えられると、有効を示す値の保持を開始する。そして、第1OR回路162は、カウンタ154のカウント値が0となったことに応じて無効を示す値の保持を開始する。以後、第1OR回路162は、次に有効を示すタイミングイネーブル信号が与えられるまで、無効を示す値を保持し続ける。 As an example, the state holding unit 142 may include a first OR circuit 162 and a second flip-flop 164. In the first OR circuit 162, when the output signal of the zero detection unit 150 of the count unit 140 indicates validity (that is, when the count value of the counter 154 is 0), or the timing enable signal provided from the distribution unit 112 is valid. Is output, a signal indicating validity is output. The second flip-flop 164 operates in synchronization with the reference clock, and acquires the timing enable signal provided from the distribution unit 112 when the output signal of the first OR circuit 162 indicates valid. When the timing enable signal indicating validity is given from the distribution unit 112, the first OR circuit 162 starts to hold a value indicating validity. Then, the first OR circuit 162 starts holding a value indicating invalidity in response to the count value of the counter 154 becoming zero. Thereafter, the first OR circuit 162 continues to hold the value indicating invalidity until the next timing enable signal indicating validity is provided.
 第2クロックゲート部144は、カウント部140が有効なタイミングデータに含まれる上位側データ数をカウントしていない場合に、カウント部140に対する基準クロックの供給を停止する。より詳しくは、第2クロックゲート部144は、タイミングデータの有効を示すタイミングイネーブル信号を受け取ったことに応じてカウント部140に対する基準クロックの供給を開始する。そして、第2クロックゲート部144は、カウント部140のカウント値が、上位側データ数をカウントした後の値となったことに応じてカウント部140に対する基準クロックの供給を停止する。 The second clock gate unit 144 stops supplying the reference clock to the counting unit 140 when the counting unit 140 does not count the number of higher-order data included in the valid timing data. More specifically, the second clock gate unit 144 starts supplying the reference clock to the count unit 140 in response to receiving the timing enable signal indicating the validity of the timing data. Then, the second clock gate unit 144 stops the supply of the reference clock to the count unit 140 when the count value of the count unit 140 becomes a value after counting the number of higher-order data.
 第2クロックゲート部144は、一例として、第2OR回路166と、ゲート回路168とを含んでよい。第2OR回路166は、カウント部140のゼロ検出部150の出力信号が無効を示す場合(すなわち、カウンタ154のカウント値が0以外の場合)、または、分配部112から与えられたタイミングイネーブル信号が有効を示す場合、有効を示すクロックイネーブル信号を出力する。 The second clock gate unit 144 may include a second OR circuit 166 and a gate circuit 168 as an example. The second OR circuit 166 receives the timing enable signal given from the distribution unit 112 when the output signal of the zero detection unit 150 of the count unit 140 indicates invalidity (that is, when the count value of the counter 154 is other than 0). When it indicates valid, a clock enable signal indicating valid is output.
 ゲート回路168は、第2OR回路166からクロックイネーブル信号を受け取る。そして、ゲート回路168は、クロックイネーブル信号が有効を示す場合(即ち、カウンタ154のカウント値が0以外の場合または分配部112から与えられたタイミングイネーブル信号が有効を示す場合)、カウント部140内のカウンタ154および第1フリップフロップ158に基準クロックを供給する。ゲート回路168は、クロックイネーブル信号が無効を示す場合、カウント部140内のカウンタ154および第1フリップフロップ158への基準クロックの供給を停止する。 The gate circuit 168 receives the clock enable signal from the second OR circuit 166. When the clock enable signal indicates validity (that is, when the count value of the counter 154 is other than 0 or when the timing enable signal provided from the distribution unit 112 indicates validity), the gate circuit 168 The reference clock is supplied to the counter 154 and the first flip-flop 158. When the clock enable signal indicates invalidity, the gate circuit 168 stops supplying the reference clock to the counter 154 and the first flip-flop 158 in the count unit 140.
 より詳しくは、第2クロックゲート部144は、タイミングデータの有効を示すタイミングイネーブル信号を受け取ったことに応じてカウンタ154および第1フリップフロップ158に対する基準クロックの供給を開始する。そして、第2クロックゲート部144は、カウンタ154のカウント値が、0となったことに応じてカウンタ154および第1フリップフロップ158に対する基準クロックの供給を停止する。 More specifically, the second clock gate unit 144 starts supplying the reference clock to the counter 154 and the first flip-flop 158 in response to receiving the timing enable signal indicating the validity of the timing data. Then, the second clock gate unit 144 stops supplying the reference clock to the counter 154 and the first flip-flop 158 in response to the count value of the counter 154 becoming zero.
 このようなカウンタ遅延部114は、カウント部140が有効に動作する期間において当該カウント部140に対して基準クロックを供給し、カウント部140が有効に動作しない期間において当該カウント部140に対する基準クロックの供給を停止する。これにより、カウンタ遅延部114は、カウント部140の消費電流を低減することができる。 Such a counter delay unit 114 supplies a reference clock to the count unit 140 during a period when the count unit 140 operates effectively, and a reference clock for the count unit 140 during a period when the count unit 140 does not operate effectively. Stop supplying. Thereby, the counter delay unit 114 can reduce the current consumption of the count unit 140.
 図13は、カウンタ遅延部114内の各信号のタイミングチャートの一例を示す。図13の(A)は、基準クロックを示す。図13の(B)は、カウンタ遅延部114が受け取るタイミングイネーブル信号を示す。図13の(C)は、カウンタ遅延部114が受け取るタイミングイネーブル信号を示す。図13の(D)は、カウンタ154のカウント値を示す。 FIG. 13 shows an example of a timing chart of each signal in the counter delay unit 114. FIG. 13A shows a reference clock. FIG. 13B shows a timing enable signal received by the counter delay unit 114. FIG. 13C shows a timing enable signal received by the counter delay unit 114. FIG. 13D shows the count value of the counter 154.
 図13の(E)は、第2フリップフロップ164が出力する状態信号を示す。図13の(F)は、第1フリップフロップ158が保持する下位側データを示す。図13の(G)は、カウンタ154および第1フリップフロップ158に与えられる基準クロックを示す。図13の(H)は、カウンタ遅延部114が出力するタイミングイネーブル信号を示す。図13の(I)は、カウンタ遅延部114が出力する下位側データを示す。 (E) in FIG. 13 shows a state signal output from the second flip-flop 164. FIG. 13F shows lower-order data held by the first flip-flop 158. FIG. 13G shows a reference clock given to the counter 154 and the first flip-flop 158. (H) in FIG. 13 shows a timing enable signal output from the counter delay unit 114. (I) in FIG. 13 shows lower-order data output from the counter delay unit 114.
 カウンタ遅延部114は、図13の(B)に示されるように、時刻t41において、分配部112から有効を示すタイミングイネーブル信号を受け取る。分配部112から有効を示すタイミングイネーブル信号を受け取ると、第2フリップフロップ164は、図13の(E)に示されるように、次の基準クロックのタイミングから、有効を示す値の保持を開始する。 As shown in FIG. 13B, the counter delay unit 114 receives a timing enable signal indicating validity from the distribution unit 112 at time t41. When receiving the timing enable signal indicating validity from the distribution unit 112, the second flip-flop 164 starts holding the value indicating validity from the timing of the next reference clock, as shown in FIG. 13E. .
 また、分配部112から有効を示すタイミングイネーブル信号を受け取ると、ゲート回路168は、図13の(G)に示されるように、次の基準クロックのタイミングにおいて(時刻t42)、カウンタ154および第1フリップフロップ158に対して、基準クロック(gclk)の供給を開始する。この結果、カウンタ154は、図13の(D)に示されるように、タイミングイネーブル信号を受け取ったタイミングにおけるタイミングデータの上位側データ(例えば、0x8)をカウント値として取り込み、以後、カウント値を1ずつデクリメントする。また、第1フリップフロップ158は、図13の(F)に示されるように、タイミングイネーブル信号を受け取ったタイミングにおけるタイミングデータの下位側データ(例えば、0xC)を取り込む。 When receiving a timing enable signal indicating validity from the distribution unit 112, the gate circuit 168, as shown in FIG. 13G, at the timing of the next reference clock (time t42), the counter 154 and the first Supply of the reference clock (gclk) to the flip-flop 158 is started. As a result, as shown in FIG. 13D, the counter 154 fetches the higher-order data (for example, 0x8) of the timing data at the timing when the timing enable signal is received as the count value, and thereafter the count value is set to 1. Decrement by one. Further, as shown in FIG. 13F, the first flip-flop 158 takes in lower-order data (for example, 0xC) of the timing data at the timing when the timing enable signal is received.
 第1AND回路156は、図13の(H)に示されるように、カウンタ154のカウント値が0に達した時刻t43において、タイミングイネーブル信号を出力する。また、第2AND回路160は、図13の(I)に示されるように、第1AND回路156によるタイミングイネーブル信号の出力に同期して、第1フリップフロップ158が保持している下位側データを出力する。 The first AND circuit 156 outputs a timing enable signal at time t43 when the count value of the counter 154 reaches 0, as shown in FIG. Further, as shown in FIG. 13I, the second AND circuit 160 outputs the lower-order data held by the first flip-flop 158 in synchronization with the output of the timing enable signal from the first AND circuit 156. To do.
 そして、ゲート回路168は、図13の(G)に示されるように、カウンタ154のカウント値が0に達すると、次の基準クロックのタイミングにおいて(時刻t44)、カウンタ154および第1フリップフロップ158に対する基準クロック(gclk)の供給を停止する。また、第2フリップフロップ164は、図13の(E)に示されるように、カウンタ154のカウント値が0に達すると、次の基準クロックのタイミングから、無効を示す値の保持を開始する。 Then, as shown in FIG. 13G, when the count value of the counter 154 reaches 0, the gate circuit 168 receives the counter 154 and the first flip-flop 158 at the next reference clock timing (time t44). The supply of the reference clock (gclk) to is stopped. Further, as shown in FIG. 13E, when the count value of the counter 154 reaches 0, the second flip-flop 164 starts holding a value indicating invalidity from the timing of the next reference clock.
 このようにカウンタ遅延部114は、カウント部140が有効に動作する期間において当該カウント部140に対して基準クロックを供給し、カウント部140が有効に動作しない期間において当該カウント部140に対する基準クロックの供給を停止することができる。これにより、カウンタ遅延部114は、カウント部140の消費電流を低減することができる。 As described above, the counter delay unit 114 supplies the reference clock to the count unit 140 during a period in which the count unit 140 operates effectively, and the reference clock for the count unit 140 in a period during which the count unit 140 does not operate effectively. Supply can be stopped. Thereby, the counter delay unit 114 can reduce the current consumption of the count unit 140.
 さらに、また、このようなカウンタ遅延部114は、試験装置10以外の他の装置にカウンタ回路として備えられてよい。すなわち、カウンタ遅延部114は、送信回路から与えられたデータをカウントするカウンタ回路として機能するものであってよい。 Furthermore, such a counter delay unit 114 may be provided as a counter circuit in a device other than the test apparatus 10. That is, the counter delay unit 114 may function as a counter circuit that counts data supplied from the transmission circuit.
 この場合、カウンタ遅延部114は、タイミングデータ発生部110からタイミングデータおよびタイミングイネーブル信号を受けることに代えて、送信回路からデータおよびデータイネーブル信号を受け取る。そして、カウンタ遅延部114は、タイミングイネーブル信号を出力することに代えて、データイネーブル信号を出力する。これにより、カウンタ遅延部114によれば、送信回路から与えられたデータにより表されるデータ数をカウントする場合においても、消費電力を低減することができる。 In this case, the counter delay unit 114 receives data and a data enable signal from the transmission circuit instead of receiving timing data and a timing enable signal from the timing data generation unit 110. The counter delay unit 114 outputs a data enable signal instead of outputting a timing enable signal. Thereby, the counter delay unit 114 can reduce power consumption even when the number of data represented by the data given from the transmission circuit is counted.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 試験装置、20 パターン発生部、22 試験周期発生器、24 タイミング発生器、26 波形成形部、28 ドライバ、30 レベルコンパレータ、32 タイミングコンパレータ、34 判定部、38 周期発生部、40 伝送回路、42 下位ビット取得用フリップフロップ、44 上位ビット取得用フリップフロップ、46 試験周期信号取得用フリップフロップ、48 データ取得部、50 検出部、52 クロックイネーブル信号伝送回路、54 第1クロックゲート部、56 データ切替部、58 試験周期信号伝送回路、60 下位ビット伝送回路、62 上位ビット伝送回路、64 フリップフロップ、66 フリップフロップ、68 データ切替部内AND回路、72 検出部内OR回路、74 検出部内AND回路、76 フリップフロップ、78 ゲート回路、80 フリップフロップ、110 タイミングデータ発生部、112 分配部、114 カウンタ遅延部、116 第1合成部、118 第2合成部、120 微小遅延部、132 加算部、140 カウント部、142 状態保持部、144 第2クロックゲート部、150 ゼロ検出部、152 反転回路、154 カウンタ、156 第1AND回路、158 第1フリップフロップ、160 第2AND回路、162 第1OR回路、164 第2フリップフロップ、166 第2OR回路、168 ゲート回路、200 被試験デバイス 10 test devices, 20 pattern generators, 22 test cycle generators, 24 timing generators, 26 waveform shaping units, 28 drivers, 30 level comparators, 32 timing comparators, 34 determination units, 38 cycle generators, 40 transmission circuits, 42 Lower bit acquisition flip-flop, 44 upper bit acquisition flip-flop, 46 test cycle signal acquisition flip-flop, 48 data acquisition unit, 50 detection unit, 52 clock enable signal transmission circuit, 54 first clock gate unit, 56 data switching Unit, 58 test cycle signal transmission circuit, 60 lower bit transmission circuit, 62 upper bit transmission circuit, 64 flip-flops, 66 flip-flops, 68 data switching unit AND circuit, 72 detection unit OR circuit, 74 detection unit AN Circuit, 76 flip-flop, 78 gate circuit, 80 flip-flop, 110 timing data generation unit, 112 distribution unit, 114 counter delay unit, 116 first synthesis unit, 118 second synthesis unit, 120 minute delay unit, 132 addition unit, 140 count unit, 142 state holding unit, 144 second clock gate unit, 150 zero detection unit, 152 inversion circuit, 154 counter, 156 first AND circuit, 158 first flip-flop, 160 second AND circuit, 162 first OR circuit, 164 2nd flip-flop, 166 2nd OR circuit, 168 gate circuit, 200 device under test

Claims (15)

  1.  被試験デバイスを試験する試験装置であって、
     基準クロックに同期して、試験周期の開始タイミングの基準となるタイミングを示す試験周期信号および前記試験周期信号から試験周期の開始タイミングまでの遅延量を表わす試験周期データを発生する試験周期発生器と、
     前記試験周期データにより指定された試験周期の開始タイミングを基準として、前記被試験デバイスとの間で信号を授受するタイミングを発生するタイミング発生器と、
     を備え、
     前記試験周期発生器は、
     前記試験周期データおよび前記試験周期信号を発生する周期発生部と、
     前記基準クロックに同期して、前記試験周期データを取得して前記タイミング発生器へと出力するデータ取得部と、
     前記試験周期信号が発生されていないサイクルの場合に、前記データ取得部に対する前記基準クロックの供給を停止するクロックゲート部と、
     を有する試験装置。
    A test apparatus for testing a device under test,
    A test cycle generator for generating a test cycle signal indicating a timing that is a reference for a test cycle start timing and test cycle data representing a delay amount from the test cycle signal to the start timing of the test cycle in synchronization with a reference clock; ,
    A timing generator for generating a timing for transmitting / receiving a signal to / from the device under test with reference to a start timing of a test cycle specified by the test cycle data;
    With
    The test cycle generator is
    A cycle generator for generating the test cycle data and the test cycle signal;
    A data acquisition unit that acquires the test cycle data in synchronization with the reference clock and outputs the data to the timing generator;
    A clock gate unit for stopping supply of the reference clock to the data acquisition unit in a cycle in which the test cycle signal is not generated;
    A test apparatus having
  2.  前記試験周期発生器は、前記周期発生部が発生した前記試験周期データにおける予め定められた少なくとも1つのビットが予め定められた値と一致するか否かを検出する検出部を更に有し、
     前記クロックゲート部は、前記試験周期信号が発生されていないサイクルの場合、または、前記試験周期データにおける前記少なくとも1つのビットが前記予め定められた値と一致することが検出された場合に、前記データ取得部が前記少なくとも1つのビットの取得に用いる前記基準クロックの供給を停止し、
     前記試験周期発生器は、前記試験周期データにおける前記少なくとも1つのビットが前記予め定められた値と一致することが検出された場合に、前記データ取得部からの前記少なくとも1つのビットに代えて、前記予め定められた値を前記タイミング発生器へと供給するデータ切替部を更に有する
     請求項1に記載の試験装置。
    The test cycle generator further includes a detection unit that detects whether or not at least one predetermined bit in the test cycle data generated by the cycle generation unit matches a predetermined value,
    When the clock gate unit detects a cycle in which the test cycle signal is not generated, or when it is detected that the at least one bit in the test cycle data matches the predetermined value, Stopping the supply of the reference clock used by the data acquisition unit to acquire the at least one bit;
    The test cycle generator, when it is detected that the at least one bit in the test cycle data matches the predetermined value, instead of the at least one bit from the data acquisition unit, The test apparatus according to claim 1, further comprising a data switching unit that supplies the predetermined value to the timing generator.
  3.  前記検出部は、前記周期発生部が発生した前記試験周期データにおける前記少なくとも1つのビットとして、予め定められたビット数の上位ビットが前記予め定められた値と一致するか否かを検出する請求項2に記載の試験装置。 The detection unit detects whether or not a high-order bit having a predetermined number of bits matches the predetermined value as the at least one bit in the test cycle data generated by the cycle generation unit. Item 3. The test apparatus according to Item 2.
  4.  前記周期発生部は、試験周期の開始タイミングまでの時間における、前記基準クロックの周期より大きい単位の時間を示す前記上位ビットおよび前記基準クロックの周期以下の単位の時間を示す下位ビットを含む前記試験周期データ、および、前記試験周期信号を発生し、
     前記検出部は、前記上位ビットが0か否かを検出し、
     前記クロックゲート部は、前記試験周期信号が発生されていないサイクルの場合、または、前記試験周期データの前記上位ビットが0と検出された場合に、前記データ取得部が前記上位ビットの取得に用いる前記基準クロックの供給を停止し、
     前記データ切替部は、前記試験周期データの前記上位ビットが0と検出された場合に、前記データ取得部からの前記上位ビットに代えて、0を前記タイミング発生器へと供給する
     請求項3に記載の試験装置。
    The cycle generator includes the upper bit indicating a unit time larger than the reference clock cycle and a lower bit indicating a unit time less than the reference clock cycle in the time until the start timing of the test cycle. Generating periodic data and the test periodic signal;
    The detection unit detects whether the upper bit is 0;
    The clock gate unit is used by the data acquisition unit to acquire the upper bit in a cycle in which the test cycle signal is not generated or when the upper bit of the test cycle data is detected as 0. Stop supplying the reference clock;
    The data switching unit supplies 0 to the timing generator instead of the upper bit from the data acquisition unit when the upper bit of the test cycle data is detected as 0. The test apparatus described.
  5.  前記データ取得部は、
     前記基準クロックに同期して、前記試験周期データの前記下位ビットを先頭段のフリップフロップにより取得し、順次後段のフリップフロップへと伝播し、最終段のフリップフロップから前記タイミング発生器へと出力する下位ビット伝送回路と、
     前記基準クロックに同期して、前記試験周期データの前記上位ビットを先頭段のフリップフロップにより取得し、順次後段のフリップフロップへと伝播し、最終段のフリップフロップから前記タイミング発生器へと出力する上位ビット伝送回路と、
     を含み、
     前記試験周期発生器は、
     前記基準クロックに同期して、前記上位ビットの取得に用いる前記基準クロックを供給するか否かを示すクロックイネーブル信号を先頭段のフリップフロップにより取得し、順次後段のフリップフロップへと伝播するクロックイネーブル信号伝送回路と、
     前記基準クロックに同期して、前記試験周期信号を先頭段のフリップフロップにより取得し、順次後段のフリップフロップへと伝播し、最終段のフリップフロップから前記タイミング発生器へと出力する試験周期信号伝送回路と、
     を有し、
     前記クロックゲート部は、前記クロックイネーブル信号伝送回路により伝播される、ある段の前記クロックイネーブル信号が前記基準クロックの供給を停止することを示す場合に、前記上位ビット伝送回路における次段のフリップフロップに対する前記基準クロックの供給を停止する
     請求項4に記載の試験装置。
    The data acquisition unit
    In synchronization with the reference clock, the lower bits of the test cycle data are acquired by the first flip-flop, sequentially propagated to the subsequent flip-flop, and output from the final flip-flop to the timing generator. A lower bit transmission circuit;
    In synchronization with the reference clock, the upper bits of the test cycle data are acquired by the first flip-flop, sequentially propagated to the subsequent flip-flop, and output from the final flip-flop to the timing generator. An upper bit transmission circuit;
    Including
    The test cycle generator is
    A clock enable that obtains a clock enable signal indicating whether or not to supply the reference clock used for obtaining the upper bits in synchronization with the reference clock by a first flip-flop and sequentially propagates it to a subsequent flip-flop A signal transmission circuit;
    Synchronized with the reference clock, the test cycle signal is acquired by the first flip-flop, sequentially propagated to the subsequent flip-flop, and output from the final flip-flop to the timing generator. Circuit,
    Have
    When the clock enable signal propagated by the clock enable signal transmission circuit indicates that the clock enable signal at a certain stage stops the supply of the reference clock, The test apparatus according to claim 4, wherein the supply of the reference clock to is stopped.
  6.  前記データ切替部は、前記クロックイネーブル信号伝送回路の最終段から前記基準クロックの供給を停止することを示す前記クロックイネーブル信号を受け取った場合に、前記上位ビット伝送回路の最終段から出力される前記試験周期データの前記上位ビットに代えて、0を前記タイミング発生器へと出力する請求項5に記載の試験装置。 The data switching unit is output from the final stage of the upper bit transmission circuit when receiving the clock enable signal indicating that the supply of the reference clock is stopped from the final stage of the clock enable signal transmission circuit. The test apparatus according to claim 5, wherein 0 is output to the timing generator instead of the upper bits of the test cycle data.
  7.  データおよび前記データが有効か否かを示すデータイネーブル信号を、送信回路から受信回路へと伝送する伝送回路であって、
     基準クロックに同期して、前記送信回路から前記データを取得して前記受信回路へと出力するデータ取得部と、
     前記データが無効である旨の前記データイネーブル信号を前記送信回路から受け取った場合に、前記データ取得部に対する前記基準クロックの供給を停止するクロックゲート部と、
     を備える伝送回路。
    A transmission circuit for transmitting data and a data enable signal indicating whether the data is valid from a transmission circuit to a reception circuit,
    A data acquisition unit that acquires the data from the transmission circuit and outputs the data to the reception circuit in synchronization with a reference clock;
    A clock gate unit for stopping supply of the reference clock to the data acquisition unit when the data enable signal indicating that the data is invalid is received from the transmission circuit;
    A transmission circuit comprising:
  8.  前記データにおける予め定められた少なくとも1つのビットが予め定められた値と一致するか否かを検出する検出部を更に備え、
     前記クロックゲート部は、前記データが無効である旨の前記データイネーブル信号を前記送信回路から受け取った場合、または、前記データにおける前記少なくとも1つのビットが前記予め定められた値と一致することが検出された場合に、前記データ取得部が前記少なくとも1つのビットの取得に用いる前記基準クロックの供給を停止し、
     更に、前記データにおける前記少なくとも1つのビットが前記予め定められた値と一致することが検出された場合に、前記データ取得部からの前記少なくとも1つのビットに代えて、前記予め定められた値を前記受信回路へと供給するデータ切替部を更に備える
     請求項7に記載の伝送回路。
    A detector for detecting whether or not at least one predetermined bit in the data matches a predetermined value;
    The clock gate unit detects when the data enable signal indicating that the data is invalid is received from the transmission circuit, or when the at least one bit in the data matches the predetermined value. The data acquisition unit stops supplying the reference clock used to acquire the at least one bit,
    Further, when it is detected that the at least one bit in the data matches the predetermined value, the predetermined value is replaced with the at least one bit from the data acquisition unit. The transmission circuit according to claim 7, further comprising a data switching unit that supplies the reception circuit.
  9.  被試験デバイスを試験する試験装置であって、
     前記被試験デバイスとの間で信号を授受するタイミングを示すタイミング信号の発生タイミングを指定するタイミングデータおよび前記タイミングデータが有効か否かを示すタイミングイネーブル信号を発生するタイミングデータ発生部と、
     基準クロックに同期して動作し、前記タイミングデータ発生部から有効な前記タイミングデータを受け取ってから、当該タイミングデータに含まれる前記基準クロックの周期以上の単位で時間を表わす上位側データ数分基準クロックをカウントした後に、当該タイミングデータの前記上位側データ以外の下位側データおよび当該タイミングデータの有効を示す前記タイミングイネーブル信号を出力するカウント部と、
     前記カウント部が有効な前記タイミングデータに含まれる前記上位側データ数をカウントしていない場合に、前記カウント部に対する前記基準クロックの供給を停止するクロックゲート部と、
     を備える試験装置。
    A test apparatus for testing a device under test,
    A timing data generation unit for generating timing data for specifying timing generation of a timing signal indicating timing for transmitting / receiving a signal to / from the device under test and a timing enable signal indicating whether the timing data is valid;
    Reference clocks corresponding to the number of higher-order data that operate in synchronization with a reference clock and represent time in units equal to or greater than the period of the reference clock included in the timing data after receiving the valid timing data from the timing data generator A counting unit that outputs the timing enable signal indicating the validity of the timing data and lower-order data other than the higher-order data of the timing data,
    A clock gate unit that stops supply of the reference clock to the count unit when the count unit does not count the number of higher-order data included in the valid timing data;
    A test apparatus comprising:
  10.  前記クロックゲート部は、
     前記タイミングデータの有効を示す前記タイミングイネーブル信号を受け取ったことに応じて前記カウント部に対する前記基準クロックの供給を開始し、
     前記カウント部のカウント値が、前記上位側データ数をカウントした後の値となったことに応じて前記カウント部に対する前記基準クロックの供給を停止する
     請求項9に記載の試験装置。
    The clock gate unit is
    In response to receiving the timing enable signal indicating the validity of the timing data, the supply of the reference clock to the count unit is started,
    The test apparatus according to claim 9, wherein the supply of the reference clock to the count unit is stopped in response to the count value of the count unit becoming a value after counting the number of higher-order data.
  11.  前記カウント部が有効な前記タイミングデータに含まれる前記上位側データ数のカウント中であるか否かを示す状態信号を保持する状態保持部を更に備え、
     前記カウント部は、前記状態保持部がカウント中であることを示す前記状態信号を保持しており、かつ、カウント値が、前記上位側データ数をカウントした後の値となった場合に、前記タイミングデータの有効を示す前記タイミングイネーブル信号を出力する
     請求項10に記載の試験装置。
    A state holding unit for holding a state signal indicating whether the count unit is counting the number of higher-order data included in the valid timing data;
    The counting unit holds the state signal indicating that the state holding unit is counting, and when the count value becomes a value after counting the number of higher-order data, The test apparatus according to claim 10, wherein the timing enable signal indicating validity of timing data is output.
  12.  前記カウント部、前記クロックゲート部、および、前記状態保持部の組を複数と、
     前記タイミングデータ発生部から順次出力される有効な前記タイミングデータおよび前記タイミングデータの有効を示す前記タイミングイネーブル信号を、複数の前記組のそれぞれに分配する分配部と、
     を更に備える請求項11に記載の試験装置。
    A plurality of sets of the count unit, the clock gate unit, and the state holding unit,
    A distribution unit that distributes the effective timing data sequentially output from the timing data generation unit and the timing enable signal indicating the validity of the timing data to each of the plurality of sets;
    The test apparatus according to claim 11, further comprising:
  13.  被試験デバイスを試験する試験装置の制御方法であって、
     前記試験装置は、
     基準クロックに同期して、試験周期の開始タイミングの基準となるタイミングを示す試験周期信号および前記試験周期信号からの試験周期の開始タイミングまで遅延量を表わす試験周期データを発生する試験周期発生器と、
     前記試験周期データにより指定された試験周期の開始タイミングを基準として、前記被試験デバイスとの間で信号を授受するタイミングを発生するタイミング発生器と、
     を備え、
     前記試験周期発生器は、
     前記試験周期データおよび前記試験周期信号を発生する周期発生部と、
     前記基準クロックに同期して、前記試験周期データを取得して前記タイミング発生器へと出力するデータ取得部と
     を有し、
     前記試験周期信号が発生されていないサイクルの場合に、前記データ取得部に対する前記基準クロックの供給を停止する
     試験装置の制御方法。
    A control method of a test apparatus for testing a device under test,
    The test apparatus comprises:
    A test cycle signal for generating a test cycle signal representing a delay amount from the test cycle signal to the start timing of the test cycle in synchronism with the reference clock; ,
    A timing generator for generating a timing for transmitting / receiving a signal to / from the device under test with reference to a start timing of a test cycle specified by the test cycle data;
    With
    The test cycle generator is
    A cycle generator for generating the test cycle data and the test cycle signal;
    A data acquisition unit for acquiring the test cycle data in synchronization with the reference clock and outputting the data to the timing generator;
    A test apparatus control method for stopping supply of the reference clock to the data acquisition unit in a cycle in which the test cycle signal is not generated.
  14.  データおよび前記データが有効か否かを示すデータイネーブル信号を、送信回路から受信回路へと伝送する伝送回路の制御方法であって、
     前記伝送回路は、基準クロックに同期して、前記送信回路から前記データを取得して前記受信回路へと出力するデータ取得部を備え、
     前記データが無効である旨の前記データイネーブル信号を前記送信回路から受け取った場合に、前記データ取得部に対する前記基準クロックの供給を停止する
     伝送回路の制御方法。
    A transmission circuit control method for transmitting data and a data enable signal indicating whether the data is valid from a transmission circuit to a reception circuit,
    The transmission circuit includes a data acquisition unit that acquires the data from the transmission circuit and outputs the data to the reception circuit in synchronization with a reference clock,
    A method for controlling a transmission circuit, wherein when the data enable signal indicating that the data is invalid is received from the transmission circuit, the supply of the reference clock to the data acquisition unit is stopped.
  15.  被試験デバイスを試験する試験装置の制御方法であって、
     前記試験装置は、
     前記被試験デバイスとの間で信号を授受するタイミングを示すタイミング信号の発生タイミングを指定するタイミングデータおよび前記タイミングデータが有効か否かを示すタイミングイネーブル信号を発生するタイミングデータ発生部と、
     基準クロックに同期して動作し、前記タイミングデータ発生部から有効な前記タイミングデータを受け取ってから、当該タイミングデータに含まれる前記基準クロックの周期以上の単位で時間を表わす上位側データ数分基準クロックをカウントした後に、当該タイミングデータの前記上位側データ以外の下位側データおよび当該タイミングデータの有効を示す前記タイミングイネーブル信号を出力するカウント部と
     を備え、
     前記カウント部が有効な前記タイミングデータに含まれる前記上位側データ数をカウントしていない場合に、前記カウント部に対する前記基準クロックの供給を停止する
     試験装置の制御方法。
    A control method of a test apparatus for testing a device under test,
    The test apparatus comprises:
    A timing data generation unit for generating timing data for specifying timing generation of a timing signal indicating timing for transmitting / receiving a signal to / from the device under test and a timing enable signal indicating whether the timing data is valid;
    Reference clocks corresponding to the number of higher-order data that operate in synchronization with a reference clock and represent time in units equal to or greater than the period of the reference clock included in the timing data after receiving the valid timing data from the timing data generator And counting unit for outputting the lower side data other than the upper side data of the timing data and the timing enable signal indicating the validity of the timing data,
    A control method of a test apparatus that stops supply of the reference clock to the count unit when the count unit does not count the number of higher-order data included in the valid timing data.
PCT/JP2009/002301 2008-06-02 2009-05-25 Testing device, transmission circuit, testing device control method and transmission circuit control method WO2009147797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010515748A JP5202628B2 (en) 2008-06-02 2009-05-25 Test apparatus, transmission circuit, test apparatus control method, and transmission circuit control method
KR1020107025468A KR101239121B1 (en) 2008-06-02 2009-05-25 Testing device, transmission circuit, testing device control method and transmission circuit control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008144581 2008-06-02
JP2008-144581 2008-06-02

Publications (1)

Publication Number Publication Date
WO2009147797A1 true WO2009147797A1 (en) 2009-12-10

Family

ID=41397883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002301 WO2009147797A1 (en) 2008-06-02 2009-05-25 Testing device, transmission circuit, testing device control method and transmission circuit control method

Country Status (4)

Country Link
JP (1) JP5202628B2 (en)
KR (1) KR101239121B1 (en)
TW (1) TWI388863B (en)
WO (1) WO2009147797A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185853A (en) 2013-03-21 2014-10-02 Advantest Corp Current compensation circuit, semiconductor device, timing generator, test device
CN113466675B (en) * 2021-05-26 2022-06-21 中国电子科技集团公司第五十四研究所 Test vector generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242992A (en) * 1997-02-28 1998-09-11 Oki Electric Ind Co Ltd Clock signal supplying device
JP2004361343A (en) * 2003-06-06 2004-12-24 Advantest Corp Testing arrangement
JP2005038187A (en) * 2003-07-15 2005-02-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2006038831A (en) * 2004-06-23 2006-02-09 Fujitsu Ltd Semiconductor integrated circuit having scan test circuit
JP2006054731A (en) * 2004-08-12 2006-02-23 Advantest Corp Timing generator, testing device, and skew adjustment method
JP2007183860A (en) * 2006-01-10 2007-07-19 Nec Electronics Corp Clock control circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242992A (en) * 1997-02-28 1998-09-11 Oki Electric Ind Co Ltd Clock signal supplying device
JP2004361343A (en) * 2003-06-06 2004-12-24 Advantest Corp Testing arrangement
JP2005038187A (en) * 2003-07-15 2005-02-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2006038831A (en) * 2004-06-23 2006-02-09 Fujitsu Ltd Semiconductor integrated circuit having scan test circuit
JP2006054731A (en) * 2004-08-12 2006-02-23 Advantest Corp Timing generator, testing device, and skew adjustment method
JP2007183860A (en) * 2006-01-10 2007-07-19 Nec Electronics Corp Clock control circuit

Also Published As

Publication number Publication date
KR101239121B1 (en) 2013-03-11
JPWO2009147797A1 (en) 2011-10-20
KR20110005264A (en) 2011-01-17
JP5202628B2 (en) 2013-06-05
TWI388863B (en) 2013-03-11
TW201000928A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP4649480B2 (en) Test apparatus, clock generator, and electronic device
JP4998699B2 (en) Semiconductor device and communication control method
US20120005517A1 (en) Synchronisation and timing method and apparatus
JP6814145B2 (en) High-speed data transfer using a calibrated single clock source synchronous serializer / deserializer protocol
JP2009503436A (en) Circuit card synchronization in standardized test instrument chassis
JP2009503435A (en) Circuit card synchronization in standardized test instrument chassis
US20200110682A1 (en) Microcontroller and method for modifying a transmission signal
JP5202628B2 (en) Test apparatus, transmission circuit, test apparatus control method, and transmission circuit control method
CN107797046B (en) Integrated circuit and method for testing input/output interface of integrated circuit
JP5235705B2 (en) Measuring system
CN104412220B (en) The system and method for transmission data signal between clock domain
US11552777B2 (en) Time domains synchronization in a system on chip
WO2010021131A1 (en) Test device and testing method
TWI400461B (en) Test device and synchronization method between domains
US7855561B2 (en) Test circuit
KR101912905B1 (en) Cas latency setting circuit and semiconductor memory apparatus including the same
CN114326925A (en) Signal synchronous output method, device, equipment and medium
US7603541B2 (en) Array synchronization with counters
KR100917391B1 (en) Apparatus for estimating frequency of receiving signal in serial commnication
CN117728911A (en) Clock calibration method of dTOF system and dTOF system
JP3738736B2 (en) Utopia bus cell counter circuit
GB2444745A (en) Data transfer between a master and a slave
US8576967B2 (en) Semiconductor device and communication method
WO2007091322A1 (en) Signal generating apparatus, periodic signal observing system, integrated circuit, periodic signal observing method, and integrated circuit testing method
JP2010060349A (en) Ic tester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107025468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010515748

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09758064

Country of ref document: EP

Kind code of ref document: A1