WO2009145474A2 - 무선통신 시스템에서 harq 수행 방법 - Google Patents

무선통신 시스템에서 harq 수행 방법 Download PDF

Info

Publication number
WO2009145474A2
WO2009145474A2 PCT/KR2009/001696 KR2009001696W WO2009145474A2 WO 2009145474 A2 WO2009145474 A2 WO 2009145474A2 KR 2009001696 W KR2009001696 W KR 2009001696W WO 2009145474 A2 WO2009145474 A2 WO 2009145474A2
Authority
WO
WIPO (PCT)
Prior art keywords
nack
receiver
ack
harq
data
Prior art date
Application number
PCT/KR2009/001696
Other languages
English (en)
French (fr)
Other versions
WO2009145474A3 (ko
Inventor
박형호
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to US12/935,563 priority Critical patent/US8667357B2/en
Publication of WO2009145474A2 publication Critical patent/WO2009145474A2/ko
Publication of WO2009145474A3 publication Critical patent/WO2009145474A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for performing a hybrid automatic repeat request (HARQ) in a wireless communication system.
  • HARQ hybrid automatic repeat request
  • Error compensation techniques for securing communication reliability include a forward error correction (FEC) scheme and an automatic repeat request (ARQ) scheme.
  • FEC forward error correction
  • ARQ automatic repeat request
  • FEC forward error correction
  • ARQ automatic repeat request
  • errors are corrected through data retransmission, and there are a stop and wait (SAW), a go-back-N (GBN), and a selective repeat (SR) scheme.
  • SAW stop and wait
  • GBN go-back-N
  • SR selective repeat
  • the SAW method is a method of transmitting the next frame after checking whether the transmitted frame is correctly received.
  • the GBN method transmits N consecutive frames and retransmits all frames transmitted after the frame in which an error occurs if transmission is not successful.
  • the SR method selectively retransmits only a frame in which an error occurs.
  • the FEC method has a short time delay and does not require information to be exchanged between the transmitter and the receiver, but has a disadvantage in that the system efficiency is poor in a good channel environment.
  • ARQ method can improve the transmission reliability, but it has the disadvantage of incurring time delay and inferior system efficiency in poor channel environment.
  • HARQ hybrid automatic repeat request
  • the HARQ-type receiver basically attempts error correction on received data and determines whether to retransmit using an error detection code.
  • the error detection code may use a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the receiver sends a non-acknowledgement (NACK) signal to the transmitter.
  • the transmitter receiving the NACK signal transmits appropriate retransmission data according to the HARQ mode.
  • the receiver receiving the retransmitted data improves the reception performance by combining and decoding the previous data and the retransmitted data.
  • the mode of HARQ may be classified into chase combining and incremental redundancy (IR).
  • Chase combining is a method of obtaining a signal-to-noise ratio (SNR) gain by combining with retransmitted data without discarding the data where an error is detected.
  • SNR signal-to-noise ratio
  • IR is a method in which additional redundant information is incrementally transmitted to retransmitted data, thereby reducing the burden of retransmission and obtaining a coding gain.
  • HARQ may be classified into adaptive HARQ and non-adaptive HARQ according to transmission attributes such as resource allocation, modulation technique, transport block size, and the like.
  • Adaptive HARQ is a method in which transmission attributes used for retransmission are changed in whole or in part compared to initial transmission according to a change in channel conditions.
  • Non-adaptive HARQ is a method of continuously using the transmission attribute used for the initial transmission regardless of the change in channel conditions.
  • the HARQ retransmission scheme can be divided into synchronous and asynchronous. Synchronous HARQ retransmits data at a time point known to both the transmitter and the receiver, thereby reducing signaling required for data transmission such as a HARQ processor number.
  • Asynchronous HARQ is a method of allocating resources at random times for retransmission, and requires overhead for data transmission.
  • TTI transmission time interval
  • one subframe constitutes one TTI.
  • an attempt is made for a plurality of subframes to constitute one TTI.
  • An object of the present invention is to provide a method of performing HARQ that can be applied when a plurality of subframes constitute one TTI.
  • a method for performing a hybrid automatic repeat request (HARQ) of a receiver in a wireless communication system includes receiving data in units of transmission time interval (TTI) configured of a plurality of consecutive subframes and receiving the data And transmitting ACK / NACK for the data, wherein the data is received in a plurality of redundancy versions respectively assigned to the plurality of subframes, and the ACK / NACK is from a transmission point of a specific redundancy version among a plurality of redundancy versions. Sent after a predetermined processing delay.
  • TTI transmission time interval
  • ACK / NACK for the data, wherein the data is received in a plurality of redundancy versions respectively assigned to the plurality of subframes, and the ACK / NACK is from a transmission point of a specific redundancy version among a plurality of redundancy versions.
  • the ACK / NACK may be based on an error detection result for the specific redundancy version.
  • the specific redundancy version may be the most recent redundancy version in the time domain among the plurality of redundancy versions.
  • a cyclic redundancy check (CRC) for ACK / NACK determination may be added to the specific redundancy version.
  • a method for performing a hybrid automatic repeat request (HARQ) of a transmitter in a wireless communication system includes transmitting data in TTI units consisting of a plurality of consecutive subframes, and the data is successfully received by a receiver. And retransmitting the data based on the result of the checking, wherein the data is transmitted in a plurality of redundancy versions respectively assigned to the plurality of subframes.
  • HARQ hybrid automatic repeat request
  • Whether the data has been successfully received by the receiver may be determined based on whether ACK / NACK is received for a specific redundancy version among the plurality of redundancy versions.
  • a cyclic redundancy check (CRC) for ACK / NACK determination may be added to the specific redundancy version.
  • the data may be retransmitted after a predetermined processing delay from the NACK transmission time point for the specific redundancy version.
  • a method of performing HARQ that can be applied when a plurality of subframes constitute one TTI can be obtained. It is possible to reduce HARQ latency and to perform ACK / NACK transmission in one frame. The overhead of the terminal can be reduced.
  • 1 shows a wireless communication system.
  • FIG. 2 shows an example of a frame structure.
  • FIG. 5 is an exemplary diagram illustrating processing of an information block for performing HARQ.
  • FIG. 6 shows an example of a redundancy version of an encoded packet.
  • FIG. 8 is a flowchart illustrating a data transmission method using HARQ according to an embodiment of the present invention.
  • 11 to 13 illustrate HARQ timing according to an embodiment of the present invention.
  • 26 to 31 illustrate HARQ timing according to another embodiment of the present invention.
  • 32 is a block diagram illustrating a transmitter and a receiver for transmitting and receiving data using a method of performing HARQ according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • IEEE 802.16m is an evolution of IEEE 802.16e.
  • 1 shows a wireless communication system.
  • a wireless communication system includes at least one base station 20 (BS).
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell).
  • the cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 10 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • FIG. 2 shows an example of a frame structure.
  • a superframe includes a superframe header and four frames (frames, F0, F1, F2, and F3).
  • the size of each superframe is 20ms and the size of each frame is illustrated as 5ms, but is not limited thereto.
  • the superframe header may be placed at the front of the superframe, and a common control channel is assigned.
  • the common control channel is a channel used for transmitting control information that can be commonly used by all terminals in a cell, such as information on frames or system information of a superframe.
  • One frame includes eight subframes (Subframe, SF0, SF1, SF2, SF3, SF4, SF5, SF6, SF7).
  • Each subframe may be used for uplink or downlink transmission.
  • the subframe may consist of 6 or 7 OFDM symbols, but this is only an example.
  • Time division duplexing (TDD) or frequency division duplexing (FDD) may be applied to the frame.
  • TDD Time division duplexing
  • FDD frequency division duplexing
  • each subframe is used in uplink or downlink at different times at the same frequency. That is, subframes in the TDD frame are divided into an uplink subframe and a downlink subframe in the time domain.
  • FDD frequency division duplexing
  • each subframe is used as uplink or downlink on a different frequency at the same time. That is, subframes in the FDD frame are divided into an uplink subframe and a downlink subframe in the frequency domain.
  • Uplink transmission and downlink transmission occupy different frequency bands and may be simultaneously
  • the subframe includes at least one frequency partition.
  • the frequency partition is composed of at least one Physical Resource Unit (PRU).
  • PRU Physical Resource Unit
  • the frequency partitions may include Localized PRUs and / or Distributed PRUs. Frequency partitioning may be used for other purposes such as Fractional Frequency Reuse (FFR) or Multicast and Broadcast Services (MBS).
  • FFR Fractional Frequency Reuse
  • MBS Multicast and Broadcast Services
  • a PRU is defined as a basic physical unit for resource allocation that includes a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers.
  • the number of OFDM symbols included in the PRU may be equal to the number of OFDM symbols included in one subframe. For example, when one subframe consists of 6 OFDM symbols, the PRU may be defined with 18 subcarriers and 6 OFDM symbols.
  • Logical Resource Units are basic logical units for distributed resource allocation and localized resource allocation. The LRU is defined by a plurality of OFDM symbols and a plurality of subcarriers and includes pilots used in a PRU. Thus, the appropriate number of subcarriers in one LRU depends on the number of pilots assigned.
  • DRUs Logical Distributed Resource Units
  • the DRU includes subcarrier groups distributed in one frequency partition.
  • the size of the DRU is equal to the size of the PRU.
  • the smallest unit that forms a DRU is one subcarrier.
  • Logical Contiguous Resource Units may be used to obtain frequency selective scheduling gains.
  • the CRU includes a local subcarrier group.
  • the size of the CRU is equal to the size of the PRU.
  • a basic unit of a subchannel is a physical resource unit (PRU).
  • PRU physical resource unit
  • the subchannel may include at least one PRU.
  • the subchannel may have a structure in which a band selection PRU and a diversity PRU are arranged to occupy different frequency domains in one subframe.
  • a plurality of subcarriers on one OFDM symbol are divided into at least one PRU.
  • Each PRU includes a pilot subcarrier and a data subcarrier.
  • outer permutation is applied to the PRU.
  • the external permutation is applied in at least one PRU unit. Direct mapping of external permutations is only supported by the CRU.
  • the rearranged PRU is distributed into frequency partitions.
  • the frequency partition is divided into CRUs and DRUs for each resource group.
  • Sector Specific Permutation can be supported, and direct mapping of resources can be supported for local resources.
  • the size of distributed / local resources can be set flexibly per sector.
  • local and distributed groups are mapped to LRUs.
  • Inner permutation defined for distributed resource allocation within one frequency partition allows the subcarrier of the DRU to spread across the entire distributed resource allocation.
  • the granularity of the internal permutation is equal to the smallest unit that forms the DRU.
  • P permutation sequences are provided.
  • Subchannelization for distributed resources spreads the subcarriers of the LRU with the total available bandwidth of the distributed resources.
  • PRUs map directly to CRUs within each frequency partition.
  • FIG. 5 is an exemplary diagram illustrating processing of an information block for performing HARQ.
  • the information block may be referred to as a Protocol Data Unit (PDU) of Medium Access Control (MAC).
  • PDU Protocol Data Unit
  • MAC Medium Access Control
  • the transport block appended with the CRC is divided into appropriate sizes for channel encoding. This is called code block segmentation.
  • the divided block is called a code block.
  • An encoder performs channel encoding on a code block and outputs an encoded packet.
  • the encoder can apply a turbo code, which is one of the error correction codes.
  • the turbo code is a structural code that includes information bits as structural bits. In the case of turbo codes with a code rate of 1/3, two parity bits are allocated to one structural bit.
  • LDPC low density parity check code
  • other convolutional codes as well as the error correction code.
  • the HARQ processor performs an HARQ mode (chase combined or IR) and an HARQ scheme (adaptive HARQ or non-adaptive HARQ) suitable for a retransmission environment in order to retransmit an errored packet.
  • HARQ mode chase combined or IR
  • HARQ scheme adaptive HARQ or non-adaptive HARQ
  • the channel interleaver disperses transmission errors according to channels by mixing encoded packets bit by bit.
  • a physical resource mapper converts interleaved encoded packets into data symbols and maps them to the data region.
  • FIG. 6 shows an example of a redundancy version of an encoded packet.
  • an entire bit string of an encoded packet is called a mother codeword
  • a mother code generated by applying a turbo code has structural bits having a bit string having the same length as a code block. And at least one parity bit associated with it.
  • the mother code rate is 1 / R m and the size of the code block into the encoder is N EP
  • the length of the mother code is Rm N EP .
  • N EP is the number of bits input to the CTC turbo encoder, which is defined as the size of the encoded packet. Is a parameter.
  • N EP 2 ⁇ N. If the mother coding rate is 1/3, the mother code includes one structural bit and two parity bits.
  • a mother code is divided into a plurality of bit string blocks and transmitted in units of bit string blocks.
  • the size of the bit string block may be determined according to the modulation technique applied, resource allocation, and the like.
  • the modulation technique may be determined in various ways, such as binary-phase shift keying (BPSK), quadrature-phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), and 64 QAM.
  • the bit string block is indicated by a redundancy version (RV).
  • RV redundancy version
  • the first bitstream block containing structural bits is RV 0
  • the second bitstream block contiguous to the first bitstream block is RV 1
  • the third bitstream block contiguous to the second bitstream block is RV.
  • the fourth bit string block subsequent to the second and third bit string blocks is indicated by RV 3. At this time, if successive bit string blocks exceed the length of the mother code, the excess portion is cyclically transmitted.
  • the size of the bit string blocks of different RVs may be determined differently. For example, in non-adaptive HARQ, the bit string blocks of each RV may be set to the same size, and in adaptive HARQ, the bit string blocks of different RVs may be set to different sizes. One bit string block may be mapped and transmitted in one subframe, and bit string blocks of different RVs may be mapped and transmitted in different subframes.
  • the transmitter Tx transmits data through a subframe, receives an ACK / NACK signal for the subframe from the receiver Rx, and retransmits the data.
  • the time from data transmission of the transmitter to immediately before data retransmission is called a round trip time (RRT).
  • the RRT includes a processing delay, which is a time required for data processing at the transmitter Tx and the receiver Rx.
  • TTI transmission time interval
  • 1 TTI is 1 subframe in IEEE 802.16e
  • data packets are transmitted using HARQ in units of 1 subframe.
  • 1 TTI is an integer multiple of a subframe in IEEE 802.16m
  • two or more subframes may configure one TTI. Accordingly, there is a need for a method of transmitting a data packet using HARQ, which can be applied when two or more subframes constitute one TTI.
  • a TTI composed of two or more subframes may be referred to as a multiple TTI.
  • FIG. 8 is a flowchart illustrating a data transmission method using HARQ according to an embodiment of the present invention. Description will be made based on downlink data transmission, but this is only an example. The technical idea of the present invention can be applied to uplink data transmission.
  • the base station transmits data to the terminal in a TTI unit composed of a plurality of subframes (S100).
  • the plurality of subframes may be contiguous.
  • the base station may transmit a plurality of redundancy versions (RV 0 to RV k-1) allocated to the plurality of consecutive subframes SF 0 to SF k-1, respectively.
  • the redundancy version (RV) may be a repetition for the same data packet in HARQ Chase Combining as well as redundancy in HARQ Incremental Redundancy (IR).
  • the redundancy version may be a variant of the same data packet obtained through constellation rearrangement.
  • the redundancy version may be referred to as HARQ Subpacket Identifier for IR (SPID).
  • SPID HARQ Subpacket Identifier for IR
  • the terminal located at the cell edge is susceptible to interference from adjacent cells. If a plurality of RVs are transmitted to the terminal, a coding gain or an SNR combined gain can be obtained.
  • the terminal transmits an ACK / NACK for the data received in S100 to the base station (S110).
  • the UE may transmit ACK / NACK after a predetermined processing delay from a transmission time of a specific RV among a plurality of RVs.
  • the predetermined processing delay may be 2 subframes or 3 subframes.
  • the ACK / NACK may be a combined error detection result of a specific RV and an RV transmitted before the specific RV, or may be an error detection result of the specific RV.
  • An additional cyclic redundancy check (CRC) for error detection that is, ACK / NACK determination may be added to a specific RV. Accordingly, the amount of data that can be loaded in the RV except for the specific RV may increase.
  • CRC cyclic redundancy check
  • the specific RV may be the most preceding RV in the time domain among the plurality of RVs. If a specific RV is the most advanced RV in the time domain, the overhead of the terminal is reduced and the HARQ delay is shortened. If an error is detected or the information block cannot be decoded, a NACK is transmitted. If an error is not detected and the information block can be decoded, an ACK is transmitted. ACK means successful data transmission, and NACK means data retransmission request.
  • the base station retransmits data to the terminal based on the result of S110 (S120).
  • the base station receives the ACK from the terminal, the base station does not need to retransmit data to the terminal.
  • the base station receives a NACK from the terminal or does not receive any signal for a predetermined time, the base station retransmits data to the terminal.
  • the base station may retransmit the data to the terminal after a predetermined processing delay from the NACK transmission time of the terminal.
  • the overhead of the UE may be reduced by detecting an error for some RVs among the plurality of RVs and transmitting ACK / NACK.
  • detecting an error with respect to the most preceding RV in the time domain among the plurality of RVs if an error occurs as a result of the detection, there is no need to detect an error with respect to the remaining RVs.
  • the HARQ delay is shortened.
  • ACK / NACK transmission and data retransmission timing during data transmission using HARQ will be described.
  • frame n is contiguous in the time domain with frame n + 1, and the ratio of downlink subframe and uplink subframe included in one frame (DL / UL) Ratio) illustrates the case of 5: 3.
  • downlink data transmission is exemplified, the present invention is not limited thereto, and the technical spirit of the present invention may be applied to uplink data transmission.
  • a transmitter In downlink data transmission, a transmitter is a base station and a receiver is a terminal.
  • uplink data transmission a transmitter is a terminal and a receiver is a base station.
  • HARQ process # 0 configures two consecutive subframes into one TTI, and HARQ processes # 2, # 3, and # 4 each constitute one subframe into one TTI.
  • the transmitter transmits RV 0 through SF 0 (subframe 0) of frame n and RV 1 through SF 1.
  • the redundancy version may be a repetition for the same data packet in HARQ Chase Combining as well as redundancy in HARQ Incremental Redundancy (IR).
  • the redundancy version may be a variant of the same data packet obtained through constellation rearrangement.
  • the transmitter transmits a data packet for HARQ process # 2 through SF 2 of frame n, transmits a data packet for HARQ process # 3 through SF 3 of frame n, and HARQ process # through SF 4 of frame n.
  • a data packet for 4 may be sent.
  • the receiver feeds back an ACK / NACK for data packet transmission in HARQ process # 0, HARQ process # 2, HARQ process # 3, and HARQ process # 4 to the transmitter.
  • the receiver detects a CRC with respect to RV 1, and a processing delay is 2 subframes. Accordingly, the receiver may feed back ACK / NACK at intervals of at least two subframes from the transmission time point of RV 1. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1.
  • the receiver may feed back an ACK / NACK for data packet transmission in HARQ processes # 2, # 3, and # 4 to the transmitter through SF 6, SF 6, and SF 7, respectively.
  • the subframe configuration in which the receiver transmits ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for HARQ processes # 2, # 3, and # 4 on SF 2, SF 3, and SF 4 of frame n + 1.
  • the receiver since the receiver detects the CRC for RV 0 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time of RV 0. can do. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of RV 0.
  • the receiver may feed back an ACK / NACK for data packet transmission in HARQ processes # 2, # 3, and # 4 to the transmitter through SF 6, SF 6, and SF 7, respectively.
  • the subframe configuration in which the receiver transmits ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for HARQ processes # 2, # 3, and # 4 on SF 2, SF 3, and SF 4 of frame n + 1.
  • 11 to 13 illustrate HARQ timing according to an embodiment of the present invention.
  • HARQ process # 0 configures three consecutive subframes into one TTI
  • HARQ processes # 3 and # 4 configure one subframe into one TTI.
  • the transmitter transmits RV 0 through SF 0 (subframe 0) of frame n, transmits RV 1 through SF 1, and transmits RV 2 through SF 2.
  • the transmitter may transmit a data packet for HARQ process # 3 on SF 3 of frame n, and transmit a data packet for HARQ process # 4 on SF 4 of frame n.
  • the receiver feeds back an ACK / NACK for data packet transmission in the HARQ process # 0, the HARQ process # 3, and the HARQ process # 4 to the transmitter.
  • the receiver since the receiver detects the CRC for RV 2 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time of RV 2. can do. That is, since the transmission time of RV 2 is SF 2, the receiver may feed back ACK / NACK after SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 2 or feedback on a transmission result of combining RV 0 to RV 2. The receiver may feed back an ACK / NACK for data packet transmission in HARQ processes # 3 and # 4 to the transmitter through SF 6 and SF 7, respectively.
  • the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, and SF 2 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ processes # 3 and # 4 on the SF 3 and the SF 4 of the frame n + 1.
  • the receiver since the receiver detects the CRC for RV 1 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time point of RV 1. can do. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1.
  • the receiver may feed back an ACK / NACK for data packet transmission in HARQ processes # 3 and # 4 to the transmitter through SF 6 and SF 7, respectively.
  • the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, and SF 2 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ processes # 3 and # 4 on the SF 3 and the SF 4 of the frame n + 1.
  • the receiver since the receiver detects the CRC for RV 0 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time point of RV 0. can do. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of RV 0. The receiver may feed back an ACK / NACK for data packet transmission in HARQ processes # 3 and # 4 to the transmitter through SF 6 and SF 7, respectively. However, the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, and SF 2 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ processes # 3 and # 4 on the SF 3 and the SF 4 of the frame n + 1.
  • HARQ process # 0 configures four consecutive subframes with one TTI
  • HARQ process # 4 configures one subframe with one TTI.
  • the transmitter transmits RV 0 through SF 0 (subframe 0) of frame n, transmits RV 1 through SF 1, transmits RV 2 through SF 2, and SF Transmit RV 3 through 3.
  • the transmitter may transmit a data packet for HARQ process # 4 on SF 4 of frame n.
  • the receiver feeds back ACK / NACK for data packet transmission in HARQ process # 0 and HARQ process # 4 to the transmitter.
  • the receiver since the receiver detects the CRC for RV 0 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time point of RV 0. can do. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of RV 0. The receiver may feed back an ACK / NACK for the data packet transmission in the HARQ process # 4 to the transmitter through SF 7. However, the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, SF 2, and SF 3 of frame n + 1.
  • the transmitter may perform retransmission for HARQ process # 4 on SF 4 of frame n + 1.
  • the receiver since the receiver detects the CRC for RV 1 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time of RV 1. can do. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1. The receiver may feed back an ACK / NACK for the data packet transmission in the HARQ process # 4 to the transmitter through SF 7. However, the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, SF 2, and SF 3 of frame n + 1.
  • the transmitter may perform retransmission for HARQ process # 4 on SF 4 of frame n + 1.
  • the receiver since a receiver detects a CRC for RV 2 and a processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from a transmission time of RV 2. can do. That is, since the transmission time of RV 2 is SF 2, the receiver may feed back ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 2 or feedback on a transmission result of combining RV 0 to RV 2. The receiver may feed back an ACK / NACK for the data packet transmission in the HARQ process # 4 to the transmitter through SF 7.
  • the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, SF 2, and SF 3 of frame n + 1.
  • the transmitter may perform retransmission for HARQ process # 4 on SF 4 of frame n + 1.
  • the receiver since the receiver detects the CRC for RV 3 and the processing delay is 2 subframes, the receiver feeds back ACK / NACK at intervals of at least 2 subframes from the transmission time of RV 3. can do. That is, since the transmission time of RV 3 is SF 3, the receiver may feed back ACK / NACK after SF 6. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 3 or feedback on a transmission result of combining RV 0 to RV 3. The receiver may feed back an ACK / NACK for the data packet transmission in the HARQ process # 4 to the transmitter through SF 7.
  • the configuration of the subframe in which the receiver transmits the ACK / NACK is not limited thereto.
  • the transmitter may perform retransmission for the HARQ process on frame n + 1.
  • the receiver transmits ACK / NACK for the transmission result of RV 3 through SF 6, and a processing delay is 2 subframes. Therefore, when the receiver transmits a NACK through SF 6, the transmitter may perform retransmission for HARQ process # 0 after SF 1 of frame n + 1. That is, when the transmitter receives the NACK from the receiver, the transmitter retransmits the RV 1 to RV 3 to the receiver through the SF 1 to SF 3 of the frame n + 1. The transmitter cannot retransmit RV 0 on SF 0 of frame n + 1.
  • HARQ process # 0 configures two consecutive subframes with one TTI
  • HARQ process # 2 configures three consecutive subframes with one TTI.
  • the transmitter transmits RV 0 through SF 0 of frame n and RV 1 through SF 1.
  • the transmitter transmits RV 20 through SF 2 of frame n, transmits RV 21 through SF 3, and transmits RV 22 through SF 4.
  • the receiver feeds back ACK / NACK for data packet transmission in HARQ process # 0 and HARQ process # 2 to the transmitter.
  • the receiver detects a CRC for RV 1, and a processing delay is 2 subframes, so that the receiver performs at least 2 subframes from the transmission time of RV 1.
  • ACK / NACK may be fed back at intervals. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1.
  • the receiver may feed back the ACK / NACK after SF 5. That is, the transmission result of the RV 20 may be fed back through SF 6 as shown in FIG. 18 or may be fed back through SF 5 as shown in FIG. 19.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • the receiver detects a CRC for RV 0, and a processing delay is 2 subframes, and thus, the receiver performs at least 2 subframes from the transmission time point of RV 0.
  • ACK / NACK may be fed back at intervals. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5.
  • the receiver since the receiver detects the CRC for the RV 20 and the processing delay is 2 subframes, the receiver may feed back the ACK / NACK after SF 5. That is, the transmission result of the RV 20 may be fed back through SF 6 as shown in FIG. 20 or may be fed back through SF 5 as shown in FIG. 21.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • the receiver detects a CRC for RV 1 and the processing delay is 2 subframes, so that the receiver has an interval of at least 2 subframes from the transmission time of RV 1.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5.
  • the receiver since the receiver detects the CRC for the RV 21 and the processing delay is 2 subframes, the receiver may feed back the ACK / NACK after SF 6.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 21 or feedback on a transmission result of combining RV 20 and RV 21.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • the receiver detects a CRC for RV 0 and the processing delay is 2 subframes, so that the receiver has an interval of at least 2 subframes from the transmission time of RV 0.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5.
  • the receiver since the receiver detects the CRC for the RV 21 and the processing delay is 2 subframes, the receiver may feed back the ACK / NACK after SF 6.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 21 or feedback on a transmission result of combining RV 20 and RV 21.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • the receiver detects a CRC for RV 1 and a processing delay is 2 subframes, so that the receiver has a space of at least 2 subframes from the transmission time of RV 1.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5.
  • the receiver detects the CRC for RV 22, and since the processing delay is 2 subframes, the receiver may feed back ACK / NACK through SF 7. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 22 or feedback on a transmission result of combining RV 20 to RV 22.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • the receiver detects a CRC for RV 0 and the processing delay is 2 subframes, so the receiver has at least 2 subframes from the RV 0 transmission time.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5.
  • the receiver detects the CRC for RV 22, and since the processing delay is 2 subframes, the receiver may feed back ACK / NACK through SF 7. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 22 or feedback on a transmission result of combining RV 20 to RV 22.
  • the transmitter may perform retransmission for the HARQ process # 0 on SF 0 and SF 1 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 2 on the SF 2, the SF 3, and the SF 4 of the frame n + 1.
  • HARQ process # 0 configures three consecutive subframes with one TTI
  • HARQ process # 2 configures two consecutive subframes with one TTI.
  • the transmitter transmits RV 0 through SF 0 of frame n, transmits RV 1 through SF 1, and transmits RV 2 through SF 2.
  • the transmitter transmits RV 30 on SF 3 of frame n and RV 31 on SF 4.
  • the receiver feeds back an ACK / NACK for data packet transmission in HARQ process # 0 and HARQ process # 3 to the transmitter.
  • the transmitter may perform retransmission for HARQ process # 0 on SF 0, SF 1, and SF 2 of frame n + 1.
  • the transmitter may perform retransmission for the HARQ process # 3 on the SF 3 and the SF 4 of the frame n + 1.
  • the receiver may feed back an ACK / NACK through SF 5.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 2 or feedback on a transmission result of combining RV 0 to RV 2.
  • the receiver detects the CRC for RV 31 and the processing delay is 2 subframes, so the receiver may feed back ACK / NACK through SF 7.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 31 or feedback on a transmission result of combining RV 30 and RV 31.
  • the receiver may feed back an ACK / NACK through SF 5.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 2 or feedback on a transmission result of combining RV 0 to RV 2.
  • the receiver detects the CRC for the RV 30, and since the processing delay is 2 subframes, the receiver may feed back ACK / NACK through SF 6. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of the RV 30.
  • the receiver since the receiver detects a CRC for RV 0 in HARQ process # 0 and the processing delay is 2 subframes, the receiver is spaced at least 2 subframes from the transmission time of RV 0.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of RV 0.
  • the receiver detects the CRC for the RV 30, and since the processing delay is 2 subframes, the receiver may feed back ACK / NACK through SF 6. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of the RV 30.
  • the receiver since the receiver performs CRC detection for RV 0 in HARQ process # 0 and the processing delay is 2 subframes, the receiver is spaced at least 2 subframes from the transmission time of RV 0.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 0 is SF 0, the receiver may feed back ACK / NACK after SF 3. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of RV 0.
  • the receiver detects the CRC for RV 31 and the processing delay is 2 subframes, so the receiver may feed back ACK / NACK through SF 7.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 31 or feedback on a transmission result of combining RV 30 and RV 31.
  • a receiver since a receiver detects a CRC for RV 1 and a processing delay is 2 subframes in HARQ process # 0, the receiver has an interval of at least 2 subframes from a transmission time of RV 1.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1.
  • the receiver detects the CRC for RV 31 and the processing delay is 2 subframes, so the receiver may feed back ACK / NACK through SF 7.
  • the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 31 or feedback on a transmission result of combining RV 30 and RV 31.
  • a receiver since a receiver detects a CRC for RV 1 and a processing delay is 2 subframes in HARQ process # 0, the receiver has an interval of at least 2 subframes from a transmission time point of RV 1.
  • ACK / NACK may be fed back. That is, since the transmission time of RV 1 is SF 1, the receiver may feed back ACK / NACK after SF 4. However, since the uplink subframes are SF 5, SF 6, and SF 7, the receiver may transmit ACK / NACK to the transmitter through SF 5. In this case, the ACK / NACK transmitted by the receiver may be feedback on a transmission result of RV 1 or feedback on a transmission result of combining RV 0 and RV 1.
  • the receiver detects the CRC for the RV 30, and since the processing delay is 2 subframes, the receiver may feed back ACK / NACK through SF 6. In this case, the ACK / NACK transmitted by the receiver is feedback on the transmission result of the RV 30.
  • 32 is a block diagram illustrating a transmitter and a receiver for transmitting and receiving data using a method of performing HARQ according to an embodiment of the present invention.
  • the transmitter 100 includes a HARQ processor 110 and a radio frequency (RF) unit 120
  • the receiver 200 includes a HARQ processor 210 and a radio frequency (RF) unit 220. It includes.
  • the RF units 120 and 220 are connected to the HARQ processors 110 and 210, respectively, to transmit and receive radio signals.
  • the HARQ processor 110 of the transmitter 100 transmits data in TTI units consisting of a plurality of consecutive subframes, and the HARQ processor 210 of the receiver 200 determines an ACK / NACK for the received data. .
  • the invention can be implemented in hardware, software or a combination thereof.
  • an application specific integrated circuit ASIC
  • DSP digital signal processing
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the module may be implemented as a module that performs the above-described function.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.

Abstract

무선통신 시스템에서 수신기의 HARQ (hybrid automatic repeat request) 수행방법을 제공한다. HARQ 수행 방법은 연속하는 복수의 서브프레임들로 구성된 TTI(Transmission Time Interval) 단위로 데이터를 수신하는 단계 및 상기 데이터의 수신에 대한 ACK/NACK을 전송하는 단계를 포함하되, 상기 데이터는 상기 복수의 서브프레임에 각각 할당된 복수의 리던던시 버전으로 수신되고, 상기 ACK/NACK은 복수의 리던던시 버전 가운데 특정 리던던시 버전의 전송 시점으로부터 미리 결정된 처리지연 이후에 전송된다.

Description

무선통신 시스템에서 HARQ 수행 방법
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 HARQ(hybrid automatic repeat request) 수행 방법에 관한 것이다.
통신의 신뢰성을 확보하기 위한 에러 보상 기법으로는 FEC(forward error correction) 방식(scheme)과 ARQ(automatic repeat request) 방식이 있다. FEC 방식에서는 정보 비트들에 여분의 에러 정정 코드를 추가시킴으로써, 수신기에서의 에러를 정정한다. ARQ 방식에서는 데이터 재전송을 통해 에러를 정정하며, SAW(stop and wait), GBN(Go-back-N), SR(selective repeat) 방식 등이 있다. SAW 방식은 전송한 프레임의 정확한 수신여부를 확인한 후 다음 프레임을 전송하는 방식이다. GBN 방식은 연속적인 N개의 프레임을 전송하고, 성공적으로 전송이 이루어지지 않으면 에러가 발생한 프레임 이후로 전송된 모든 프레임을 재전송하는 방식이다. SR 방식은 에러가 발생한 프레임만을 선택적으로 재전송하는 방식이다.
FEC 방식은 시간 지연이 적고 송수신단 사이에 별도로 주고받는 정보가 필요 없다는 장점이 있지만, 양호한 채널 환경에서 시스템 효율이 떨어지는 단점이 있다. ARQ 방식은 전송 신뢰성을 높일 수 있지만, 시간 지연이 생기게 되고 열악한 채널 환경에서 시스템 효율이 떨어지는 단점이 있다. 이러한 단점들을 해결하기 위해 제안된 것이 FEC와 ARQ를 결합한 복합 자동 재전송(hybrid automatic repeat request, 이하 HARQ) 방식이다. HARQ 방식에 의하면 물리계층이 수신한 데이터가 복호할 수 없는 오류를 포함하는지 여부를 확인하고, 오류가 발생하면 재전송을 요구함으로써 성능을 높인다.
HARQ 방식의 수신기는 기본적으로 수신 데이터에 대해 오류정정을 시도하고, 오류 검출 부호(error detection code)를 사용하여 재전송 여부를 결정한다. 오류 검출 부호는 CRC(Cyclic Redundancy Check)를 사용할 수 있다. CRC 검출 과정을 통해 수신 데이터의 오류를 검출하게 되면 수신기는 송신기로 NACK(Non-acknowledgement) 신호를 보낸다. NACK 신호를 수신한 송신기는 HARQ 모드에 따라 적절한 재전송 데이터를 전송한다. 재전송 데이터를 받은 수신기는 이전 데이터와 재전송 데이터를 결합하여 디코딩함으로써 수신 성능을 향상시킨다.
HARQ의 모드는 체이스 결합(Chase combining)과 IR(incremental redundancy)로 구분할 수 있다. 체이스 결합은 에러가 검출된 데이터를 버리지 않고 재전송된 데이터와 결합시켜 SNR(signal-to-noise ratio) 이득을 얻는 방법이다. IR은 재전송되는 데이터에 추가적인 부가 정보(additional redundant information)가 증분적으로(incrementally) 전송되어 재전송에 따른 부담을 줄이고 코딩 이득(coding gain)을 얻는 방법이다.
HARQ는 자원할당, 변조기법, 전송 블록(transport block) 크기 등의 전송속성(transmission attribute)에 따라 적응적(adaptive) HARQ와 비적응적(non-adaptive) HARQ로 구분할 수 있다. 적응적 HARQ는 채널 상황의 변화에 따라 재전송에 사용하는 전송속성들을 초기 전송과 비교하여 전체 또는 부분적으로 바꾸어 전송하는 방식이다. 비적응적 HARQ는 초기 전송에 사용한 전송속성을 채널 상황의 변화에 상관없이 지속적으로 사용하는 방식이다.
HARQ의 재전송 방식은 동기식(synchronous)과 비동기식(Asynchronous)으로 구분할 수 있다. 동기식 HARQ는 송신기와 수신기 모두 알고 있는 시점에 데이터를 재전송하는 방식으로, HARQ 프로세서 넘버와 같은 데이터 전송에 필요한 시그널링을 줄일 수 있다. 비동기식 HARQ는 재전송을 위하여 임의의 시간에 자원을 할당하는 방식으로, 데이터 전송에 필요한 시그널링을 필요로 하므로 오버헤드가 발생한다.
데이터 전송은 TTI(Transmission Time Interval) 단위로 이루어진다. 일반적으로 하나의 서브프레임이 하나의 TTI를 구성한다. 다만, 복수의 서브프레임이 하나의 TTI를 구성하도록 하는 시도가 있다.
복수의 서브프레임이 하나의 TTI를 구성하는 경우에 적용할 수 있는 HARQ 수행 방법이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 복수의 서브프레임이 하나의 TTI를 구성하는 경우에 적용할 수 있는 HARQ 수행 방법을 제공하는데 있다.
본 발명의 일 양태에서, 무선통신 시스템에서 수신기의 HARQ(hybrid automatic repeat request) 수행방법은 연속하는 복수의 서브프레임들로 구성된 TTI(Transmission Time Interval) 단위로 데이터를 수신하는 단계 및 상기 데이터의 수신에 대한 ACK/NACK을 전송하는 단계를 포함하되, 상기 데이터는 상기 복수의 서브프레임에 각각 할당된 복수의 리던던시 버전으로 수신되고, 상기 ACK/NACK은 복수의 리던던시 버전 가운데 특정 리던던시 버전의 전송 시점으로부터 미리 결정된 처리지연 이후에 전송된다.
상기 ACK/NACK은 상기 특정 리던던시 버전에 대한 오류 검출 결과에 기초할 수 있다.
상기 특정 리던던시 버전은 상기 복수의 리던던시 버전 가운데 시간 영역에서 가장 선행하는 리던던시 버전일 수 있다.
상기 특정 리던던시 버전에는 ACK/NACK 판별을 위한 CRC(Cyclic Redundancy Check)가 부가될 수 있다.
본 발명의 다른 양태에서, 무선통신 시스템에서 송신기의 HARQ(hybrid automatic repeat request) 수행 방법은 연속하는 복수의 서브프레임들로 구성된 TTI 단위로 데이터를 전송하는 단계, 상기 데이터가 수신기에 의하여 성공적으로 수신되었는지 여부를 확인하는 단계 및 상기 확인 결과에 기초하여 데이터를 재전송하는 단계를 포함하되, 상기 데이터는 상기 복수의 서브프레임에 각각 할당된 복수의 리던던시 버전으로 전송된다.
상기 데이터가 수신기에 의하여 성공적으로 수신되었는지 여부는 상기 복수의 리던던시 버전 가운데 특정 리던던시 버전에 대한 ACK/NACK 수신 여부에 기초하여 확인할 수 있다.
상기 특정 리던던시 버전에는 ACK/NACK 판별을 위한 CRC(Cyclic Redundancy Check)가 부가되어 있을 수 있다.
상기 데이터는 상기 특정 리던던시 버전에 대한 NACK 전송 시점으로부터 미리 결정된 처리지연 이후 재전송될 수 있다.
복수의 서브프레임이 하나의 TTI를 구성하는 경우에 적용할 수 있는 HARQ 수행 방법을 얻을 수 있다. HARQ 지연(latency)을 줄이고, 하나의 프레임 내에서 ACK/NACK 전송을 할 수 있다. 단말의 오버헤드를 줄일 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 프레임 구조의 일 예를 나타낸다.
도 3은 서브채널 구조의 일 예이다.
도 4는 자원유닛 맵핑의 일예를 나타낸다.
도 5는 HARQ를 수행하기 위한 정보 블록의 처리를 나타낸 예시도이다.
도 6은 인코딩된 패킷의 리던던시 버전(redundancy version)의 일예를 나타낸다.
도 7은 HARQ를 이용한 데이터 전송을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 HARQ를 이용한 데이터 전송 방법을 나타내는 흐름도이다.
도 9 및 도 10은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
도 11 내지 도 13은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
도 14 내지 도 17은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
도 18 내지 도 25는 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
도 26 내지 도 31은 본 발명의 다른 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
도 32는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 이용하여 데이터를 송수신하는 송신기 및 수신기를 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. IEEE 802.16m은 IEEE 802.16e의 진화이다.
설명을 명확하게 하기 위해, IEEE 802.16m을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선통신 시스템을 나타낸다.
도 1을 참조하면, 무선통신 시스템은 적어도 하나의 기지국(20; Base Station, BS)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(10; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
도 2는 프레임 구조의 일 예를 나타낸다.
도 2를 참조하면, 슈퍼프레임(Superframe)은 슈퍼프레임 헤더(Superframe Header)와 4개의 프레임(frame, F0, F1, F2, F3)을 포함한다. 각 슈퍼프레임의 크기는 20ms이고, 각 프레임의 크기는 5ms인 것으로 예시하고 있으나, 이에 한정되는 것은 아니다. 슈퍼프레임 헤더는 슈퍼프레임의 가장 앞서 배치될 수 있으며, 공용 제어 채널(Common Control Channel)이 할당된다. 공용 제어채널은 슈퍼프레임을 구성하는 프레임들에 대한 정보 또는 시스템 정보와 같이 셀 내의 모든 단말들이 공통적으로 활용할 수 있는 제어정보를 전송하기 위하여 사용되는 채널이다.
하나의 프레임은 8개의 서브프레임(Subframe, SF0, SF1, SF2, SF3, SF4, SF5, SF6, SF7)을 포함한다. 각 서브프레임은 상향링크 또는 하향링크 전송을 위하여 사용될 수 있다. 서브프레임은 6 또는 7개의 OFDM 심볼로 구성될 수 있으나, 이는 예시에 불과하다. 프레임에는 TDD(Time Division Duplexing) 또는 FDD(Frequency Division Duplexing)가 적용될 수 있다. TDD에서, 각 서브프레임이 동일한 주파수에서 서로 다른 시간에 상향링크 또는 하향링크로 사용된다. 즉, TDD 프레임내의 서브프레임들은 시간영역에서 상향링크 서브프레임과 하향링크 서브프레임으로 구분된다. FDD에서, 각 서브프레임이 동일한 시간에서 서로 다른 주파수에 상향링크 또는 하향링크로 사용된다. 즉, FDD 프레임내의 서브프레임들은 주파수 영역에서 상향링크 서브프레임과 하향링크 서브프레임으로 구분된다. 상향링크 전송과 하향링크 전송은 서로 다른 주파수 대역을 차지하고, 동시에 이루어질 수 있다.
서브프레임은 적어도 하나의 주파수 구획(Frequency Partition)을 포함한다. 주파수 구획은 적어도 하나의 물리적 자원유닛(Physical Resource Unit, PRU)으로 구성된다. 주파수 구획은 국부적(Localized) PRU 및/또는 분산적(Distributed) PRU를 포함할 수 있다. 주파수 구획은 부분적 주파수 재사용(Fractional Frequency Reuse, FFR) 또는 멀티캐스트 및 브로드캐스트 서비스(Multicast and Broadcast Services, MBS)와 같은 다른 목적을 위하여 사용될 수 있다.
PRU는 복수개의 연속적인 OFDM 심볼과 복수개의 연속적인 부반송파를 포함하는 자원할당을 위한 기본적인 물리적 유닛으로 정의된다. PRU에 포함되는 OFDM 심볼의 수는 하나의 서브프레임에 포함되는 OFDM 심볼의 갯수와 동일할 수 있다. 예를 들어, 하나의 서프프레임이 6 OFDM 심볼로 구성될 때, PRU는 18 부반송파 및 6 OFDM 심볼로 정의될 수 있다. 논리적 자원유닛(Logical Resource Unit, LRU)은 분산적(distributed) 자원할당 및 국부적(localized) 자원할당을 위한 기본적인 논리 단위이다. LRU는 복수개의 OFDM 심볼과 복수개의 부반송파로 정의되고, PRU에서 사용되는 파일럿들을 포함한다. 따라서, 하나의 LRU에서의 적절한 부반송파의 개수는 할당된 파일럿의 수에 의존한다.
논리적 분산 자원유닛(Logical Distributed Resource Unit, DRU)은 주파수 다이버시티 이득을 얻기 위하여 사용될 수 있다. DRU는 하나의 주파수 구획 내에 분산된 부반송파 그룹을 포함한다. DRU의 크기는 PRU의 크기와 같다. DRU를 형성하는 최소 단위는 하나의 부반송파이다.
논리적 국부 자원유닛(Logical Contiguous Resource Unit, CRU)는 주파수 선택적 스케줄링 이득을 얻기 위하여 사용될 수 있다. CRU는 국부적 부반송파 그룹을 포함한다. CRU의 크기는 PRU의 크기와 같다.
도 3은 서브채널 구조의 일 예이다.
도 3을 참조하면, 서브채널의 기본 단위는 물리적 자원유닛(Physical Resource Unit, PRU)이다. 예를 들어, 하나의 PRU는 18 부반송파 × 6 OFDM 심볼로 구성된다. 서브채널은 적어도 하나 이상의 PRU를 포함할 수 있다. 서브채널은 밴드 셀력션(band selection) PRU와 다이버시티 PRU가 하나의 서브프레임 내에서 서로 다른 주파수 영역을 차지하도록 배열되는 구조를 가질 수 있다.
도 4는 자원유닛 맵핑의 일예를 나타낸다. 하나의 OFDM 심볼 상에 있는 복수의 부반송파는 적어도 하나의 PRU로 나누어진다. 각 PRU는 파일럿 부반송파 및 데이터 부반송파를 포함한다.
도 4를 참조하면, 외부 순열(Outer Permutation)이 PRU에 적용된다. 외부 순열은 적어도 하나 이상의 PRU 단위로 적용된다. 외부 순열의 직접 맵핑은 오직 CRU에 의해 지원된다.
그리고, 재배열된 PRU를 주파수 구획들로 분산시킨다. 상기 주파수 구획은 각 자원 그룹에 대한 CRU 및 DRU로 나누어진다. 섹터 특정 순열(Sector Specific Permutation)이 지원될 수 있고, 자원의 직접 맵핑이 국부적 자원에 대하여 지원될 수 있다. 분산적/국부적 자원의 크기는 섹터 당 유연하게 설정될 수 있다. 다음으로, 국부적 그룹 및 분산적 그룹들은 LRU로 맵핑된다.
하나의 주파수 구획 내에서 분산적 자원할당에 대하여 정의된 내부 순열(Inner Permutation)은 전체 분산적 자원할당에 걸쳐 DRU의 부반송파를 퍼지게 한다. 내부 순열의 크기(granularity)는 DRU를 형성하는 최소 단위와 동일하다. 하나의 분산적 그룹 내에 N개의 LRU가 있다고 가정하면, P개의 순열 시퀀스가 제공된다. 분산적 자원을 위한 서브채널화는 분산적 자원의 전체 이용 가능한 대역폭으로 LRU의 부반송파를 퍼지게 한다. 국부적 자원할당에 대한 내부 순열은 없다. PRU는 각 주파수 구획 내에서 CRU로 직접 맵핑된다.
도 5는 HARQ를 수행하기 위한 정보 블록의 처리를 나타낸 예시도이다.
도 5를 참조하면, 정보 블록(information block)의 전부 또는 일부는 물리 계층으로 전송하기 위한 전송 블록(transport block)으로 보내어지고, 하나의 전송 블록에는 오류 검출 부호인 CRC가 부가된다. 이를 CRC 부가(CRC attachment)라 한다. 정보 블록은 MAC(Medium Access Control)의 PDU(Protocol Data Unit) 라고 할 수 있다. HARQ를 수행하는 계층(layer)을 물리 계층이라 할 때, MAC PDU는 그 상위 계층인 MAC 계층에서 물리 계층으로 전송되는 데이터 단위이다.
CRC가 부가된 전송 블록은 채널 인코딩을 위해 적절한 크기로 분할된다. 이를 코드 블록 분할(Code block segmentation)이라 한다. 분할된 블록을 코드 블록(code block)이라 한다. 인코더(encoder)는 코드 블록에 채널 인코딩을 수행하여 인코딩된 패킷(encoded packet)을 출력한다. 인코더는 에러 정정 코드 중 하나인 터보 부호(turbo code)를 적용할 수 있다. 터보 부호는 정보 비트들을 구조적 비트(systematic bits)로써 포함시키는 구조적 코드이다. 부호률(code rate)이 1/3인 터보 코드의 경우, 2개의 패리티 비트(parity bits)들이 하나의 구조적 비트에 할당된다. 다만, 에러 정정 코드는 터보 부호에 한하지 않고 LDPC(low density parity check code)나 기타 길쌈(convolution) 부호 등에도 본 발명의 기술적 사상은 그대로 적용할 수 있다.
전송 블록 단위로 하나의 HARQ 기능(function)이 수행된다. HARQ 프로세서는 에러가 발생한 패킷을 재전송하기 위하여 인코딩된 패킷을 재전송 환경에 맞는 HARQ 모드(체이스 결합 또는 IR) 및 HARQ 방식(적응적 HARQ 또는 비적응적 HARQ)을 수행한다.
채널 인터리버(channel interleaver)는 인코딩된 패킷을 비트 단위로 섞어 채널에 따른 전송 에러를 분산시킨다. 물리 자원 맵퍼(physical resource mapper)는 인터리빙된 인코딩된 패킷들을 데이터 심볼로 변환하여 데이터 영역에 맵핑시킨다.
도 6은 인코딩된 패킷의 리던던시 버전(redundancy version)의 일예를 나타낸다.
도 6을 참조하면, 인코딩된 패킷의 전체 비트열을 모부호어(mother codeword)라 하며, 터보 부호를 적용하여 생성된 모부호어는 코드 블록과 동일한 길이의 비트열을 가지는 구조적 비트(Systematic bits) 및 이에 관련되는 적어도 하나의 패리티 비트(parity bits)로 구성된다. 모부호화율(mother code rate)을 1/Rm, 인코더에 들어가는 코드 블록의 크기를 NEP라 할 때, 모부호어의 길이는 Rm·NEP가 된다. 인코더가 이중이진(double binary(duo-binary)) 구조의 컨벌루션 터보 코드(Convolutional Turbo Code; CTC)를 사용하는 경우, NEP는 CTC 터보 인코더로 입력되는 비트수이며, 인코딩된 패킷의 크기로 정의되는 파라미터이다. CTC 터보 인코더의 내부 인터리버의 크기가 N일 때, NEP=2×N 이다. 모부호화율이 1/3이라고 하면 모부호어는 하나의 구조적 비트 및 2개의 패리티 비트를 포함한다.
IR(incremental redundancy) 모드의 HARQ에서 모부호어는 복수의 비트열 블록으로 구분되어 비트열 블록 단위로 전송된다. 비트열 블록의 크기는 적용되는 변조기법, 자원할당 등에 따라 정해질 수 있다. 변조기법은 BPSK(Binary-Phase Shift Keying), QPSK(Quadrature-Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation) 및 64 QAM 등 다양하게 정해질 수 있다. 비트열 블록은 리던던시 버전(redundancy version, RV)으로 지시된다. 예를 들어, 구조적 비트를 포함하는 첫 번째 비트열 블록은 RV 0, 첫 번째 비트열 블록에 연속하는 두 번째 비트열 블록은 RV 1, 두 번째 비트열 블록에 연속하는 세 번째 비트열 블록은 RV 2, 세 번째 비트열 블록에 연속하는 네 번째 비트열 블록은 RV 3으로 지시된다. 이때, 연속하는 비트열 블록들이 모부호어의 길이를 초과하면 초과하는 부분은 순환적으로 전송된다.
여기서는 서로 다른 RV의 비트열 블록의 크기가 동일한 것으로 나타내었으나, 각 RV의 비트열 블록의 크기는 서로 다르게 정해질 수 있다. 예를 들어, 비적응적 HARQ에서 각 RV의 비트열 블록은 동일한 크기로 정해지고, 적응적 HARQ에서 서로 다른 RV의 비트열 블록은 서로 다른 크기로 정해질 수 있다. 하나의 비트열 블록은 하나의 서브프레임에 맵핑되어 전송되고, 서로 다른 RV의 비트열 블록은 서로 다른 서브프레임에 맵핑되어 전송될 수 있다.
이하, HARQ를 이용한 데이터 전송에 대하여 설명한다.
도 7은 HARQ를 이용한 데이터 전송을 나타낸다.
도 7을 참조하면, 송신기(Tx)는 서브프레임을 통하여 데이터를 전송하고, 수신기(Rx)로부터 상기 서브프레임에 대한 ACK/NACK 신호를 수신한 후, 데이터를 재전송(retransmission) 한다. 송신기의 데이터 전송으로부터 데이터 재전송 직전까지의 시간을 RRT(round trip time)라 한다. RRT에는 송신기(Tx) 및 수신기(Rx)에서의 데이터 처리에 필요한 시간인 처리지연(processing delay)이 포함된다.
데이터 전송은 TTI(Transmission Time Interval) 단위로 이루어진다. TTI는 무선 인터페이스를 통하여 부호화된 패킷(encoded packet)의 전송 시간으로, 상기 부호화된 패킷은 물리 계층에서 생성된다. IEEE 802.16e에서 1 TTI는 1 서브프레임이므로, 1 서브프레임 단위로 HARQ를 이용한 데이터 패킷의 전송이 이루어진다. IEEE 802.16m에서 1 TTI는 정수 배의 서브프레임이므로, 2 이상의 서브프레임이 하나의 TTI를 구성할 수 있다. 따라서, 2 이상의 서브프레임이 하나의 TTI를 구성하는 경우에 적용할 수 있는 HARQ를 이용한 데이터 패킷의 전송 방법이 필요하다. 2 이상의 서브프레임으로 구성된 TTI는 다중 TTI(Multiple TTI)라 할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 HARQ를 이용한 데이터 전송 방법을 나타내는 흐름도이다. 하향링크 데이터 전송에 기초하여 설명하나, 이는 예시에 불과하다. 본 발명의 기술적 사상은 상향링크 데이터 전송에도 적용할 수 있다.
도 8을 참조하면, 기지국은 복수의 서브프레임들로 구성된 TTI 단위로 단말로 데이터를 전송한다(S100). 복수의 서브프레임들은 연속할 수 있다. 기지국은 연속하는 복수의 서브프레임들(SF 0 내지 SF k-1)에 각각 할당된 복수의 리던던시 버전(RV 0 내지 RV k-1)을 전송할 수 있다. 이하, 리던던시 버전(Redundancy Version, RV)은 HARQ IR(Incremental Redundancy)에서의 리던던시 뿐만 아니라 HARQ 체이스 결합(Chase Combining)에서의 동일 데이터 패킷에 대한 반복(Repitition)일 수도 있다. 또한, 리던던시 버전은 성상 재배열(Constellation Rearrangement)을 통하여 얻어진 동일 데이터 패킷의 변형 형태일 수도 있다. 리던던시 버전은 SPID(HARQ Subpacket Identifier for IR)이라 할 수도 있다. 셀 가장자리에 위치하는 단말은 인접한 셀로부터 간섭을 영향을 받기 쉬운데, 이러한 단말에게 복수의 RV를 전송하면 코딩 이득 또는 SNR 결합 이득을 얻을 수 있다.
단말은 S100에서 수신한 데이터에 대한 ACK/NACK을 기지국으로 전송한다(S110). 단말은 복수의 RV 가운데 특정 RV의 전송 시점으로부터 미리 결정된 처리지연(Processing Delay)을 거친 후 ACK/NACK을 전송할 수 있다. 미리 결정된 처리지연은 2 서브프레임 또는 3 서브프레임일 수 있다. ACK/NACK은 특정 RV와 상기 특정 RV 이전에 전송된 RV의 결합된 오류 검출 결과이거나, 상기 특정 RV의 오류 검출 결과일 수 있다. 특정 RV에는 오류 검출, 즉 ACK/NACK 판별을 위한 추가적인 CRC(Cyclic Redundancy Check)가 부가될 수 있다. 이에 따라, 특정 RV를 제외한 RV에 실을 수 있는 데이터 양이 증가할 수 있다. 특정 RV는 복수의 RV 가운데 시간 영역에서 가장 선행하는 RV일 수 있다. 특정 RV가 시간 영역에서 가장 선행하는 RV인 경우, 단말의 오버헤드가 줄어들고, HARQ 지연이 짧아진다. 오류가 검출되거나 정보 블록을 디코딩할 수 없는 경우 NACK을 전송하고, 오류가 검출되지 않고 정보 블록을 디코딩할 수 있으면 ACK을 전송한다. ACK은 데이터 전송의 성공을 의미하고, NACK은 데이터 재전송 요청을 의미한다.
기지국은 S110의 결과에 기초하여 단말로 데이터를 재전송한다(S120). 기지국이 단말로부터 ACK을 수신한 경우, 기지국은 단말로 데이터를 재전송할 필요가 없다. 기지국이 단말로부터 NACK을 수신하거나, 일정 시간 동안 어떠한 신호도 수신하지 못한 경우, 기지국은 단말로 데이터를 재전송한다. 기지국은 단말의 NACK 전송 시점으로부터 미리 결정된 처리지연을 거친 후 단말로 데이터를 재전송할 수 있다.
복수의 RV 가운데 일부 RV에 대한 오류를 검출하고, 이에 대한 ACK/NACK을 전송하면 단말의 오버헤드가 줄어들 수 있다. 특히, 복수의 RV 가운데 시간 영역에서 가장 선행하는 RV에 대한 오류를 검출하는 경우, 검출 결과 오류가 발생하면 나머지 RV에 대한 오류를 검출할 필요가 없다. 또한, TDD 시스템의 경우 데이터 전송과 ACK/NACK 전송이 하나의 프레임 내에서 일어날 수 있으므로, HARQ 지연이 짧아진다.
이하, 본 발명의 일 실시예에 따른 HARQ를 이용한 데이터 전송 시, ACK/NACK 전송 및 데이터 재전송 타이밍에 대하여 설명한다. 본 명세서 내에서는 TDD(Time Division Duplexing) 시스템을 기초로 하여 프레임 n은 프레임 n+1과 시간 영역에서 연속되고, 하나의 프레임에 포함된 하향링크 서브프레임과 상향링크 서브프레임의 비율(DL/UL Ratio)은 5:3인 경우를 예시하고 있다. 다만, 본 발명의 기술적 사상은 이에 한정되지 않고, DL/UL Ratio = 4:4, 6:2 등의 다양한 구성에 적용될 수 있다. 또한, 하향링크 데이터 전송 예시하고 있으나 이에 한정되지 않고, 본 발명의 기술적 사상을 상향링크 데이터 전송에도 적용할 수 있다. 하향링크 데이터 전송에 있어서 송신기는 기지국이고, 수신기는 단말이다. 상향링크 데이터 전송에 있어서 송신기는 단말이고, 수신기는 기지국이다.
도 9 및 도 10은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
HARQ 프로세스 #0은 연속하는 2 서브프레임을 하나의 TTI로 구성하고, HARQ 프로세스 #2, #3 및 #4는 각각 1 서브프레임을 하나의 TTI로 구성한다. HARQ 프로세스 #0을 수행하기 위하여, 송신기는 프레임 n의 SF 0(서브프레임 0)을 통하여 RV 0을 전송하고, SF 1을 통하여 RV 1을 전송한다. 이하, 리던던시 버전(Redundancy Version, RV)은 HARQ IR(Incremental Redundancy)에서의 리던던시 뿐만 아니라 HARQ 체이스 결합(Chase Combining)에서의 동일 데이터 패킷에 대한 반복(Repitition)일 수도 있다. 또한, 리던던시 버전은 성상 재배열(Constellation Rearrangement)을 통하여 얻어진 동일 데이터 패킷의 변형 형태일 수도 있다. 송신기는 프레임 n의 SF 2를 통하여 HARQ 프로세스 #2에 대한 데이터 패킷을 전송하고, 프레임 n의 SF 3를 통하여 HARQ 프로세스 #3에 대한 데이터 패킷을 전송하며, 프레임 n의 SF 4를 통하여 HARQ 프로세스 #4에 대한 데이터 패킷을 전송할 수 있다.
수신기는 HARQ 프로세스 #0, HARQ 프로세스 #2, HARQ 프로세스 #3 및 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 송신기로 피드백한다.
도 9를 참조하면, 수신기는 RV 1에 대하여 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이다. 따라서, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0와 RV 1을 결합(combine)한 전송 결과에 대한 피드백이다. 수신기는 HARQ 프로세스 #2, #3 및 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 각각 SF 6, SF 6 및 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2, #3 및 #4에 대한 재전송을 수행할 수 있다.
도 10을 참조하면, 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 0의 전송 결과에 대한 피드백이다. 수신기는 HARQ 프로세스 #2, #3 및 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 각각 SF 6, SF 6 및 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2, #3 및 #4에 대한 재전송을 수행할 수 있다.
도 11 내지 도 13은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
HARQ 프로세스 #0은 연속하는 3 서브프레임을 하나의 TTI로 구성하고, HARQ 프로세스 #3 및 #4는 각각 1 서브프레임을 하나의 TTI로 구성한다. HARQ 프로세스 #0을 수행하기 위하여, 송신기는 프레임 n의 SF 0(서브프레임 0)을 통하여 RV 0을 전송하고, SF 1을 통하여 RV 1을 전송하며, SF 2를 통하여 RV 2를 전송한다. 송신기는 프레임 n의 SF 3을 통하여 HARQ 프로세스 #3에 대한 데이터 패킷을 전송하고, 프레임 n의 SF 4를 통하여 HARQ 프로세스 #4에 대한 데이터 패킷을 전송할 수 있다.
수신기는 HARQ 프로세스 #0, HARQ 프로세스 #3 및 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 송신기로 피드백한다.
도 11을 참조하면, 수신기는 RV 2에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 2의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 2의 전송 시점은 SF 2이므로, 수신기는 SF 5 이후에 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 2의 전송 결과에 대한 피드백이거나, RV 0 내지 RV 2를 결합(combine)한 전송 결과에 대한 피드백일 수 있다. 수신기는 HARQ 프로세스 #3 및 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 각각 SF 6 및 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1 및 SF 2를 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 3 및 SF 4를 통하여 HARQ 프로세스 #3 및 #4에 대한 재전송을 수행할 수 있다.
도 12를 참조하면, 수신기는 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0 및 RV 1을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. 수신기는 HARQ 프로세스 #3 및 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 각각 SF 6 및 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1 및 SF 2를 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 3 및 SF 4를 통하여 HARQ 프로세스 #3 및 #4에 대한 재전송을 수행할 수 있다.
도 13을 참조하면, 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 0의 전송 결과에 대한 피드백이다. 수신기는 HARQ 프로세스 #3 및 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 각각 SF 6 및 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1 및 SF 2를 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 3 및 SF 4를 통하여 HARQ 프로세스 #3 및 #4에 대한 재전송을 수행할 수 있다.
도 14 내지 도 17은 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
HARQ 프로세스 #0은 연속하는 4 서브프레임을 하나의 TTI로 구성하고, HARQ 프로세스 #4는 1 서브프레임을 하나의 TTI로 구성한다. HARQ 프로세스 #0을 수행하기 위하여, 송신기는 프레임 n의 SF 0(서브프레임 0)을 통하여 RV 0을 전송하고, SF 1을 통하여 RV 1을 전송하며, SF 2를 통하여 RV 2를 전송하며, SF 3을 통하여 RV 3을 전송한다. 송신기는 프레임 n의 SF 4를 통하여 HARQ 프로세스 #4에 대한 데이터 패킷을 전송할 수 있다.
수신기는 HARQ 프로세스 #0 및 HARQ 프로세스 # 4에서의 데이터 패킷 전송에 대한 ACK/NACK을 송신기로 피드백한다.
도 14를 참조하면, 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 0의 전송 결과에 대한 피드백이다. 수신기는 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1, SF 2 및 SF 3을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 4를 통하여 HARQ 프로세스 #4에 대한 재전송을 수행할 수 있다.
도 15를 참조하면, 수신기는 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0 및 RV 1을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. 수신기는 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1, SF 2 및 SF 3을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 4를 통하여 HARQ 프로세스 #4에 대한 재전송을 수행할 수 있다.
도 16을 참조하면, 수신기는 RV 2에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 2의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 2의 전송 시점은 SF 2이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 2의 전송 결과에 대한 피드백이거나, RV 0 내지 RV 2를 결합(combine)한 전송 결과에 대한 피드백일 수 있다. 수신기는 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1, SF 2 및 SF 3을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 4를 통하여 HARQ 프로세스 #4에 대한 재전송을 수행할 수 있다.
도 17을 참조하면, 수신기는 RV 3에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 3의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 3의 전송 시점은 SF 3이므로, 수신기는 SF 6 이후에 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 3의 전송 결과에 대한 피드백이거나, RV 0 내지 RV 3을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. 수신기는 HARQ 프로세스 #4에서의 데이터 패킷 전송에 대한 ACK/NACK을 SF 7을 통하여 송신기로 피드백할 수 있다. 다만, 수신기가 ACK/NACK을 전송하는 서브프레임의 구성이 이에 한정되는 것은 아니다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1을 통하여 HARQ 프로세스에 대한 재전송(Retransmission)을 수행할 수 있다. 여기서, 수신기는 RV 3의 전송 결과에 대한 ACK/NACK을 SF 6을 통하여 전송하고, 처리지연은 2 서브프레임이다. 따라서, 수신기가 SF 6을 통하여 NACK을 전송한 경우, 송신기는 프레임 n+1의 SF 1 이후에 HARQ 프로세스 #0에 대한 재전송을 수행할 수 있다. 즉, 송신기가 수신기로부터 NACK을 수신한 경우, 송신기는 RV 1 내지 RV 3을 프레임 n+1의 SF 1 내지 SF 3을 통하여 수신기로 재전송한다. 송신기는 프레임 n+1의 SF 0을 통하여 RV 0을 재전송할 수 없다.
도 18 내지 도 25는 본 발명의 일 실시예에 따른 HARQ 타이밍을 나타내는 도면이다.
HARQ 프로세스 #0은 연속하는 2 서브프레임을 하나의 TTI로 구성하고, HARQ 프로세스 #2는 연속하는 3 서브프레임을 하나의 TTI로 구성한다. HARQ 프로세스 #0을 수행하기 위하여, 송신기는 프레임 n의 SF 0을 통하여 RV 0을 전송하고, SF 1을 통하여 RV 1을 전송한다. HARQ 프로세스 #2를 수행하기 위하여, 송신기는 프레임 n의 SF 2를 통하여 RV 20을 전송하고, SF 3을 통하여 RV 21을 전송하며, SF 4를 통하여 RV 22를 전송한다.
수신기는 HARQ 프로세스 #0 및 HARQ 프로세스 #2에서의 데이터 패킷 전송에 대한 ACK/NACK을 송신기로 피드백한다.
도 18 및 도 19를 참조하면, HARQ 프로세스 #0에서 수신기는 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0 및 RV 1을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. HARQ 프로세스 #2에서 수신기는 RV 20에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 5 이후에 ACK/NACK을 피드백할 수 있다. 즉, RV 20의 전송 결과를 도 18과 같이 SF 6을 통하여 피드백하거나, 도 19와 같이 SF 5를 통하여 피드백할 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 20 및 도 21을 참조하면, HARQ 프로세스 #0에서 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. HARQ 프로세스 #2에서 수신기는 RV 20에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 5 이후에 ACK/NACK을 피드백할 수 있다. 즉, RV 20의 전송 결과를 도 20과 같이 SF 6을 통하여 피드백하거나, 도 21와 같이 SF 5를 통하여 피드백할 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 22를 참조하면, HARQ 프로세스 #0에서 수신기는 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. HARQ 프로세스 #2에서 수신기는 RV 21에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 6 이후에 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 21의 전송 결과에 대한 피드백이거나, RV 20 및 RV 21을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 23을 참조하면, HARQ 프로세스 #0에서 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. HARQ 프로세스 #2에서 수신기는 RV 21에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 6 이후에 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 21의 전송 결과에 대한 피드백이거나, RV 20 및 RV 21을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 24를 참조하면, HARQ 프로세스 #0에서 수신기는 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. HARQ 프로세스 #2에서 수신기는 RV 22에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 7을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 22의 전송 결과에 대한 피드백이거나, RV 20 내지 RV 22을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 25를 참조하면, HARQ 프로세스 #0에서 수신기는 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. HARQ 프로세스 #2에서 수신기는 RV 22에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 7을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 22의 전송 결과에 대한 피드백이거나, RV 20 내지 RV 22을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0 및 SF 1을 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 2, SF 3 및 SF 4를 통하여 HARQ 프로세스 #2에 대한 재전송을 수행할 수 있다.
도 26 내지 도 31은 본 발명의 다른 실시예에 따른 HARQ 타이밍을 나타내는 도면이다. HARQ 프로세스 #0은 연속하는 3 서브프레임을 하나의 TTI로 구성하고, HARQ 프로세스 #2는 연속하는 2 서브프레임을 하나의 TTI로 구성한다. HARQ 프로세스 #0을 수행하기 위하여, 송신기는 프레임 n의 SF 0을 통하여 RV 0을 전송하고, SF 1을 통하여 RV 1을 전송하며, SF 2를 통하여 RV 2를 전송한다. HARQ 프로세스 #3을 수행하기 위하여, 송신기는 프레임 n의 SF 3을 통하여 RV 30을 전송하고, SF 4를 통하여 RV 31을 전송한다. 수신기는 HARQ 프로세스 #0 및 HARQ 프로세스 #3에서의 데이터 패킷 전송에 대한 ACK/NACK을 송신기로 피드백한다. 수신기로부터의 ACK/NACK 수신 결과에 기초하여, 송신기는 프레임 n+1의 SF 0, SF 1 및 SF 2를 통하여 HARQ 프로세스 #0에 대한 재전송(Retransmission)을 수행할 수 있다. 송신기는 프레임 n+1의 SF 3 및 SF 4를 통하여 HARQ 프로세스 #3에 대한 재전송을 수행할 수 있다.
도 26을 참조하면, HARQ 프로세스 #0에서 수신기가 RV 2에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 SF 5를 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 2의 전송 결과에 대한 피드백이거나, RV 0 내지 RV 2을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. HARQ 프로세스 #3에서 수신기는 RV 31에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 7을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 31의 전송 결과에 대한 피드백이거나, RV 30 및 RV 31을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
도 27을 참조하면, HARQ 프로세스 #0에서 수신기가 RV 2에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 SF 5를 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 2의 전송 결과에 대한 피드백이거나, RV 0 내지 RV 2을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. HARQ 프로세스 #3에서 수신기는 RV 30에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 6을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 30의 전송 결과에 대한 피드백이다.
도 28을 참조하면, HARQ 프로세스 #0에서 수신기가 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 0의 전송 결과에 대한 피드백이다. HARQ 프로세스 #3에서 수신기는 RV 30에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 6을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 30의 전송 결과에 대한 피드백이다.
도 29를 참조하면, HARQ 프로세스 #0에서 수신기가 RV 0에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 0의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 0의 전송 시점은 SF 0이므로, 수신기는 SF 3 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 0의 전송 결과에 대한 피드백이다. HARQ 프로세스 #3에서 수신기는 RV 31에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 7을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 31의 전송 결과에 대한 피드백이거나, RV 30 및 RV 31을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
도 30을 참조하면, HARQ 프로세스 #0에서 수신기가 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0 및 RV 1을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. HARQ 프로세스 #3에서 수신기는 RV 31에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 7을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 31의 전송 결과에 대한 피드백이거나, RV 30 및 RV 31을 결합(combine)한 전송 결과에 대한 피드백일 수 있다.
도 31을 참조하면, HARQ 프로세스 #0에서 수신기가 RV 1에 대한 CRC 검출을 하고, 처리지연(Processing Delay)은 2 서브프레임이므로, 수신기는 RV 1의 전송 시점으로부터 적어도 2 서브프레임의 간격을 두고 ACK/NACK을 피드백할 수 있다. 즉, RV 1의 전송 시점은 SF 1이므로, 수신기는 SF 4 이후에 ACK/NACK을 피드백할 수 있다. 다만, 상향링크 서브프레임은 SF 5, SF 6 및 SF 7이므로, 수신기는 SF 5를 통하여 송신기로 ACK/NACK을 전송할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 1의 전송 결과에 대한 피드백이거나, RV 0 및 RV 1을 결합(combine)한 전송 결과에 대한 피드백일 수 있다. HARQ 프로세스 #3에서 수신기는 RV 30에 대한 CRC 검출을 하고, 처리지연은 2 서브프레임이므로, 수신기는 SF 6을 통하여 ACK/NACK을 피드백할 수 있다. 이때, 수신기가 전송하는 ACK/NACK은 RV 30의 전송 결과에 대한 피드백이다.
도 32는 본 발명의 일 실시예에 따른 HARQ 수행 방법을 이용하여 데이터를 송수신하는 송신기 및 수신기를 나타내는 블록도이다.
도 32를 참조하면, 송신기(100)는 HARQ 프로세서(110) 및 RF(Radio Frequency) 유닛(120)을 포함하고, 수신기(200)는 HARQ 프로세서(210) 및 RF(Radio Frequency) 유닛(220)을 포함한다. RF 유닛(120, 220)은 HARQ 프로세서(110, 210)와 각각 연결되어 무선 신호를 송수신한다. 송신기(100)의 HARQ 프로세서(110)는 연속하는 복수의 서브프레임들로 구성된 TTI 단위로 데이터를 전송하고, 수신기(200)의 HARQ 프로세서(210)는 수신한 데이터에 대한 ACK/NACK을 판별한다.
본 발명은 하드웨어, 소프트웨어 또는 이들의 조합으로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로 프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
이상, 본 발명의 바람직한 실시예에 대해 상세히 기술하였지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는, 변경하여 실시할 수 있음을 알 수 있을 것이다. 따라서, 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.

Claims (8)

  1. 무선통신 시스템에서 수신기의 HARQ(hybrid automatic repeat request) 수행방법에 있어서,
    연속하는 복수의 서브프레임들로 구성된 TTI(Transmission Time Interval) 단위로 데이터를 수신하는 단계; 및
    상기 데이터의 수신에 대한 ACK/NACK을 전송하는 단계를 포함하되,
    상기 데이터는 상기 복수의 서브프레임에 각각 할당된 복수의 리던던시 버전으로 수신되고, 상기 ACK/NACK은 복수의 리던던시 버전 가운데 특정 리던던시 버전의 전송 시점으로부터 미리 결정된 처리지연 이후에 전송되는 HARQ 수행 방법.
  2. 제 1 항에 있어서,
    상기 ACK/NACK은 상기 특정 리던던시 버전에 대한 오류 검출 결과에 기초한 것을 특징으로 하는 HARQ 수행 방법.
  3. 제 2 항에 있어서,
    상기 특정 리던던시 버전은 상기 복수의 리던던시 버전 가운데 시간 영역에서 가장 선행하는 리던던시 버전인 것을 특징으로 하는 HARQ 수행 방법.
  4. 제 1 항에 있어서,
    상기 특정 리던던시 버전에는 ACK/NACK 판별을 위한 CRC(Cyclic Redundancy Check)가 부가되는 것을 특징으로 하는 HARQ 수행 방법.
  5. 무선통신 시스템에서 송신기의 HARQ(hybrid automatic repeat request) 수행 방법에 있어서,
    연속하는 복수의 서브프레임들로 구성된 TTI 단위로 데이터를 전송하는 단계;
    상기 데이터가 수신기에 의하여 성공적으로 수신되었는지 여부를 확인하는 단계; 및
    상기 확인 결과에 기초하여 데이터를 재전송하는 단계를 포함하되,
    상기 데이터는 상기 복수의 서브프레임에 각각 할당된 복수의 리던던시 버전으로 전송되는 HARQ 수행방법.
  6. 제 5 항에 있어서,
    상기 데이터가 수신기에 의하여 성공적으로 수신되었는지 여부는 상기 복수의 리던던시 버전 가운데 특정 리던던시 버전에 대한 ACK/NACK 수신 여부에 기초하여 확인하는 것을 특징으로 하는 HARQ 수행 방법.
  7. 제 6 항에 있어서,
    상기 특정 리던던시 버전에는 ACK/NACK 판별을 위한 CRC(Cyclic Redundancy Check)가 부가되어 있는 것을 특징으로 하는 HARQ 수행 방법.
  8. 제 6 항에 있어서,
    상기 데이터는 상기 특정 리던던시 버전에 대한 NACK 전송 시점으로부터 미리 결정된 처리지연 이후 재전송되는 것을 특징으로 하는 HARQ를 이용한 데이터 전송 방법.
PCT/KR2009/001696 2008-04-02 2009-04-02 무선통신 시스템에서 harq 수행 방법 WO2009145474A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/935,563 US8667357B2 (en) 2008-04-02 2009-04-02 Method for conducting HARQ with a wireless communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4189008P 2008-04-02 2008-04-02
US61/041,890 2008-04-02

Publications (2)

Publication Number Publication Date
WO2009145474A2 true WO2009145474A2 (ko) 2009-12-03
WO2009145474A3 WO2009145474A3 (ko) 2010-01-21

Family

ID=41377721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001696 WO2009145474A2 (ko) 2008-04-02 2009-04-02 무선통신 시스템에서 harq 수행 방법

Country Status (2)

Country Link
US (1) US8667357B2 (ko)
WO (1) WO2009145474A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112098A (ko) * 2014-10-31 2018-10-11 퀄컴 인코포레이티드 통합된 프레임 구조
WO2021246845A1 (ko) * 2020-06-05 2021-12-09 삼성전자 주식회사 무선 통신 시스템에서 상향링크 채널의 반복 전송 방법 및 장치

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002641A1 (en) * 2008-07-04 2010-01-07 Nokia Siemens Networks Oy Support for broadcast control header for wireless networks
US8279813B2 (en) * 2008-09-25 2012-10-02 Intel Corporation Method and apparatus of subchannelization of wireless communication system
US8279957B2 (en) * 2008-10-31 2012-10-02 Industrial Technology Research Institute Communication methods and systems having permutation schemes
US8239710B2 (en) * 2008-10-31 2012-08-07 Industrial Technology Research Institute Communication methods and systems having permutation schemes
EP2515463B1 (en) 2011-04-19 2020-04-29 Samsung Electronics Co., Ltd. Apparatus and method for transmitting acknowledgement information in a tdd communication system
CN104115497A (zh) * 2012-02-21 2014-10-22 索尼公司 图像传输设备、图像传输方法和程序
US9787438B2 (en) * 2012-04-27 2017-10-10 Lg Electronics Inc. TTI bundling method in wireless access systems and apparatus for same
KR101941996B1 (ko) * 2012-10-31 2019-01-24 한국전자통신연구원 단말간 직접 통신 방법 및 이를 이용하는 모바일 디바이스
US9363621B2 (en) * 2012-11-12 2016-06-07 Huawei Technologies Co., Ltd. System and method adopting a reliable stop-and-wait hybrid automatic repeat request protocol
CN110337149B (zh) * 2013-01-16 2023-06-16 日本电气株式会社 用于在tdd系统中执行tti绑定的方法和设备
US20170126363A1 (en) * 2014-03-17 2017-05-04 Interdigital Patent Holdings, Inc. Methods for reception failure identification and remediation for wifi
US9992004B2 (en) * 2015-02-03 2018-06-05 Qualcomm Incorporated Code block cluster level HARQ
CN106160931A (zh) * 2015-04-09 2016-11-23 电信科学技术研究院 一种信息传输的方法及装置
CN108141316A (zh) 2015-09-24 2018-06-08 Idac控股公司 用于无线系统中的增强复用的系统
US10433277B2 (en) * 2015-11-02 2019-10-01 Qualcomm Incorporated Enhanced multicast broadcast multimedia service in enhanced component carriers over variable transmission bandwidth
CN106685620B (zh) * 2015-11-06 2021-02-12 中兴通讯股份有限公司 信道状态测量导频的配置方法及装置、解析方法及装置
JP6920307B2 (ja) * 2015-12-31 2021-08-18 アイディーエーシー ホールディングス インコーポレイテッド 波形ベースのデータインテグリティチェックおよびエラー訂正
US10367530B2 (en) * 2016-01-14 2019-07-30 Qualcomm Incorporated Unified code block segmentation providing a cyclic redundancy check for low density parity check code codewords
CN107154837B (zh) * 2016-03-03 2018-03-23 上海朗帛通信技术有限公司 一种降低无线通信中的延迟的方法和装置
US10721044B2 (en) * 2016-03-15 2020-07-21 Qualcomm Incorporated Downlink control and retransmission indicator channel for relaxing ACK processing time constraints
CN107204837A (zh) * 2016-03-17 2017-09-26 上海朗帛通信技术有限公司 一种基于蜂窝网的低延迟通信的方法和装置
US20170279464A1 (en) * 2016-03-22 2017-09-28 Lg Electronics Inc. Method of ldpc code encoding for reducing signal overhead and apparatus therefor
US10389487B2 (en) 2017-01-17 2019-08-20 At&T Intellectual Property I, L.P. Adaptive downlink control channel structure for 5G or other next generation networks
CN108513363B (zh) * 2017-02-24 2022-02-11 中国移动通信有限公司研究院 一种信息传输方法、用户设备及基站
KR102448533B1 (ko) * 2017-03-23 2022-09-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 모바일 통신 네트워크의 무선 액세스 네트워크의 엔티티들 간의 신뢰할 수 있는 데이터 패킷 송신
CN108631960B (zh) 2017-03-24 2021-08-20 华为技术有限公司 一种数据传输方法和相关设备
US10721027B2 (en) * 2017-07-27 2020-07-21 Qualcomm Incorporated Radio vehicle-to-anything negative acknowledgement based multicast
US10877842B2 (en) * 2017-09-08 2020-12-29 Intel Corporation Detecting silent data corruption for mass storage devices
US11411672B2 (en) * 2019-09-03 2022-08-09 Electronics And Telecommunication Research Institute Method and apparatus for data transmission in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085934A1 (en) * 2002-11-01 2004-05-06 Krishna Balachandran Flexible transmission method for wireless communications
US20060282740A1 (en) * 2005-05-06 2006-12-14 Nokia Corporation Method, apparatus and computer program providing multi-carrier acknowledgment channel
US20070058595A1 (en) * 2005-03-30 2007-03-15 Motorola, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
EP1838029A2 (en) * 2006-03-24 2007-09-26 Samsung Electronics Co., Ltd. Apparatus and method for asynchronous and adaptive hybrid ARQ scheme in a wireless network

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301929B2 (en) * 2002-08-09 2007-11-27 Spyder Navigations, L.L.C. Method and system for transport block size signaling based on modulation type for HSDPA
US8009752B2 (en) * 2004-10-01 2011-08-30 Qualcomm Incorporated Multi-carrier incremental redundancy for packet-based wireless communications
US8031583B2 (en) * 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US8625601B2 (en) * 2005-10-31 2014-01-07 Qualcomm Incorporated Method and apparatus for low-overhead packet data transmission and control of reception mode
ES2331526T3 (es) * 2005-11-28 2010-01-07 Telecom Italia S.P.A. Procedimiento y sistema para transmitir contenido a una pluralidad de usuarios de una red de comunicacion movil.
JP2009525699A (ja) * 2006-02-03 2009-07-09 インターデイジタル テクノロジー コーポレーション 送信時間間隔ごとに複数のハイブリッド自動再送要求プロセスをサポートする方法およびシステム
PL2827520T5 (pl) * 2007-06-19 2024-02-05 Beijing Xiaomi Mobile Software Co., Ltd. Adaptacyjne sygnalizowanie na łączu wysyłania formatu przesyłowego dla sygnałów zwrotnych sterowania niepowiązanych z danymi
US9172509B2 (en) * 2008-04-11 2015-10-27 Interdigital Patent Holdings, Inc. Method for transmission time interval bundling in the uplink
ES2402621T3 (es) * 2008-09-22 2013-05-07 Nokia Siemens Networks Oy Método y aparato para proporcionar señalización de versiones de redundancia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085934A1 (en) * 2002-11-01 2004-05-06 Krishna Balachandran Flexible transmission method for wireless communications
US20070058595A1 (en) * 2005-03-30 2007-03-15 Motorola, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US20060282740A1 (en) * 2005-05-06 2006-12-14 Nokia Corporation Method, apparatus and computer program providing multi-carrier acknowledgment channel
EP1838029A2 (en) * 2006-03-24 2007-09-26 Samsung Electronics Co., Ltd. Apparatus and method for asynchronous and adaptive hybrid ARQ scheme in a wireless network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112098A (ko) * 2014-10-31 2018-10-11 퀄컴 인코포레이티드 통합된 프레임 구조
WO2021246845A1 (ko) * 2020-06-05 2021-12-09 삼성전자 주식회사 무선 통신 시스템에서 상향링크 채널의 반복 전송 방법 및 장치

Also Published As

Publication number Publication date
US8667357B2 (en) 2014-03-04
US20110055652A1 (en) 2011-03-03
WO2009145474A3 (ko) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2009145474A2 (ko) 무선통신 시스템에서 harq 수행 방법
WO2018084488A1 (ko) 무선 통신 시스템에서 동적 가변 사이즈의 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치
KR101615231B1 (ko) 그룹 ack/nack 전송방법
WO2010114340A2 (ko) 무선 통신 시스템에서 상향링크 harq를 수행하는 장치 및 방법
WO2009116760A2 (en) Method for effectively transmitting control signal in wireless communication system
WO2009125994A2 (ko) 무선통신 시스템에서 harq 수행 방법
KR101668699B1 (ko) 다중 안테나 무선 통신 시스템에서 재전송 수행 방법 및 이를 위한 장치
WO2016003229A1 (ko) 무선 통신 시스템에서 비면허 대역을 통한 신호 송수신 방법 및 이를 위한 장치
WO2011062459A2 (ko) Ack/nack 전송 방법 및 이를 위한 장치
WO2010110607A2 (ko) 다중 반송파 시스템에서 harq 수행 장치 및 방법
WO2009145514A2 (en) Apparatus and method for transmitting data using turbo code
WO2009096752A1 (en) Method and apparatus for supporting harq
WO2010044564A2 (ko) 다중 반송파 시스템에서 harq 수행 방법
WO2010074498A2 (en) Method of transmitting control information for performing harq process in wireless communication system supporting plurality of transmission bands
KR20110036073A (ko) 확인응답 번들링을 제공하기 위한 방법 및 장치
WO2017119771A1 (ko) 무선 통신 시스템에서 다중 채널을 이용한 에러 복구 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2015050417A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2019216588A1 (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
US11451346B2 (en) Communication device, infrastructure equipment and methods
US20110032897A1 (en) Method of allocating acknowledgement channel
WO2011074836A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2019194535A1 (ko) 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말
WO2017155321A1 (ko) 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017026783A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754939

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12935563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754939

Country of ref document: EP

Kind code of ref document: A2