WO2019194535A1 - 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말 - Google Patents

무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말 Download PDF

Info

Publication number
WO2019194535A1
WO2019194535A1 PCT/KR2019/003870 KR2019003870W WO2019194535A1 WO 2019194535 A1 WO2019194535 A1 WO 2019194535A1 KR 2019003870 W KR2019003870 W KR 2019003870W WO 2019194535 A1 WO2019194535 A1 WO 2019194535A1
Authority
WO
WIPO (PCT)
Prior art keywords
received
terminal
transmission time
combining
data
Prior art date
Application number
PCT/KR2019/003870
Other languages
English (en)
French (fr)
Inventor
곽규환
이승민
이현호
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019194535A1 publication Critical patent/WO2019194535A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to a method for receiving a transport block in a wireless communication system and a terminal for the same, and more particularly, a base station receives a transport block repeatedly transmitted for higher reliability and lower latency to the terminal. It relates to a method and a terminal for the same.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required in order to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the present invention provides a method for a terminal to receive a transport block in a wireless communication system.
  • the present invention provides a method for a terminal to receive a transport block repeatedly transmitted by the base station for higher reliability and lower latency.
  • a method of receiving a transport block (TB) by a terminal in a wireless communication system includes receiving the TB at each of a plurality of transmission time intervals, and combining the TB from a base station. Receiving information regarding the C-subject, and decoding the received TBs. In particular, if the information indicates non-combining, the terminal can decode the received TBs without combining.
  • the terminal can combine and decode the received TBs.
  • the terminal can decode the received TBs without combining them only within a window configured with a specific number of transmission time intervals.
  • the first TB received at the first transmission time interval and the second TB received at the second transmission time interval may be associated with the same hybrid automatic repeat and request (HARQ) process number.
  • the terminal may store the first TB and the second TB in a soft buffer separated from each other.
  • a first TB received at a first transmission time interval among the received TBs is associated with a first HARQ process number and a second TB received at a second transmission time interval is different from the first HARQ process number.
  • 2 may be associated with the HARQ process number.
  • the terminal may flush the soft buffer in which the first TB is stored and the soft buffer in which the second TB is stored.
  • the received TBs may be sequentially decoded based on the received order.
  • the terminal does not attempt to decode the TB n + i received at the transmission time interval n + i, where i> 0 may be an integer. .
  • the method may further include receiving Downlink Control Information (DCI) for scheduling the TB.
  • DCI Downlink Control Information
  • the DCI includes a HARQ process number field for the TB, the maximum number N1 of HARQ processes for the TB repeatedly transmitted is less than the maximum number N2 of HARQ processes supported in the wireless communication system, and the HARQ process The size of the number field may be determined based on N1.
  • a terminal may be provided that operates to satisfy various target Quality of Service (QoS) requirements related to latency and reliability.
  • QoS Quality of Service
  • a terminal for more efficiently performing a HARQ process for TBs corresponding to data repeatedly transmitted from a base station may be provided.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 7 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIGS. 8 to 9 are diagrams for describing a method for repeatedly transmitting downlink control information and data according to an example or implementation example of the present invention.
  • FIG. 10 is a flowchart illustrating a method for receiving a transport block by a terminal according to an example or implementation of the present invention.
  • FIG. 11 illustrates a system for implementing the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5ms (15360 ⁇ T s).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers ⁇ 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R0 to R3 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier and one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group. The number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 6 shows a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two
  • FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the downlink control channel is a resource element group (REG).
  • the REG consists of four neighboring resource elements (REs) with the exception of the RS.
  • REG is shown in bold in the figures.
  • PCFICH and PHICH include 4 REGs and 3 REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • UE checks whether PDCCH composed of L CCEs is transmitted to UE It is set to check the CCEs arranged in consecutive or specific rules. There may be a plurality of L values to be considered by the UE for PDCCH reception.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space. For example, the LTE system defines a search area as shown in Table 1.
  • the CCE aggregation level L represents the number of CCEs constituting the PDCCH
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • the CCE may be distributed in a system band. More specifically, a plurality of logically continuous CCEs may be input to an interleaver, and the interleaver performs a function of mixing the input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • FIG. 7 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes: ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, Scheduling Request (SR), which is an uplink resource allocation request, etc. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • a base station may transmit a downlink control information (DCI) to a terminal through a physical downlink control channel (PDCCH) to indicate a series of operations for data transmission and reception.
  • DCI downlink control information
  • the base station may adjust the reliability (reliability) of the DCI based on the channel environment, etc. feedback from the terminal, and transmit the DCI to the terminal based on the adjusted reliability.
  • the base station can increase the reliability of the DCI transmission by transmitting a DCI based on a lower code rate by utilizing more control channel regions for a terminal having a poor channel environment.
  • the terminal defines a plurality of assumptions for the candidate region of the PDCCH to which the DCI can be transmitted, and attempts blind decoding according to each of the defined assumptions.
  • this ratio is used when the resource is used for data transmission while increasing the efficiency of resource use (throughput) ) Can be increased.
  • This operation may be particularly useful when the resource area for data transmission in the TTI is not large, especially in a system configured with a short TTI.
  • the present invention proposes a method in which a terminal uses a portion of a resource region for DCI transmission in a communication system for data transmission.
  • the inventions and / or embodiments in the present invention may be regarded as one proposed method, but the combinations between the inventions and / or embodiments may also be regarded as new ways.
  • the parameter set by the base station to the terminal may be set differently for each RB set (Resource Block Set; RB set), and the mapping scheme of DCI, that is, whether it is distributed mapping or localized mapping. Can be set differently.
  • the parameter to be set may be set differently according to whether it is a CRS based operation or a DMRS based operation, and may be set differently according to whether it is a time-first mapping method or a frequency-first mapping method. .
  • one or more symbols arranged in front of a subframe composed of 1 ms length are set to PDCCH, and the base station transmits DCI to the terminal through the configured PDCCH.
  • a plurality of aggregation levels (ALs) are set and blind decoding (BD) is performed to aggregate one or more control channel elements (CCEs) according to the channel state in which the DCI is transmitted. Attempt to decode the DCI.
  • As aggregation levels
  • CCEs control channel elements
  • This operation may be equally applied to an environment operating in a different TTI unit than the legacy LTE system.
  • the same may be applied to a communication system that operates based on a shorter TTI (sTTI) than a Lesser LTE system.
  • sTTI shorter TTI
  • a system having a short TTI unit will be described as an example, but the present invention is not limited to the system.
  • sREG, sCCE sDCI, etc. described in the present invention are not limited to a system having a short TTI unit and may be applied corresponding to general REG, CCE, DCI. That is, terms such as sREG, sCCE sDCI, etc. used in the present invention may be used interchangeably with general REG, CCE, DCI.
  • sREG short Resource Element Group
  • sREG may be set to 1 symbol per time unit and 1 RB (frequency block).
  • a plurality of sREGs may be collected to form an sCCE (short CCE), and sDCI may be transmitted using one or more sCCEs according to an AL.
  • the DCI may be transmitted through a control RB set set by the base station.
  • the control RB set may be configured with various numbers of RBs and symbols according to the setting of the base station.
  • the base station may set a control RB set to the terminal, and rate-match data to the RB through which the sDCI is transmitted among the control RB sets. That is, the sREG of an adjacent symbol located in the same RB as the sREG for the sDCI is transmitted empty, and the empty sREG area is used for the base station to transmit the sDCI of another terminal, or higher layer signaling and / or Alternatively, the specific indicator may indicate whether to transmit data to the empty sREG region through physical layer signaling. Meanwhile, the specific indicator may be included in the sDCI and transmitted, but may be transmitted separately from the sDCI and may be configured as 1 bit.
  • next-generation communication systems can provide various services to establish various target quality of service (QoS) requirements related to delay and reliability and to operate to meet each target QoS requirement.
  • QoS quality of service
  • An example or implementation of the present invention proposes a method for transmitting and receiving downlink data in a communication system designed to reduce delay time and increase reliability.
  • Inventions and / or embodiments in the present invention may be regarded as one proposed method, but combinations between the inventions and / or embodiments may also be regarded as new ways.
  • the invention is not limited to the embodiments presented in the present invention, of course, it is not limited to a specific system.
  • the base station instructs the terminal through higher layer signaling and / or physical layer signaling or may be previously defined in the system.
  • a method of repeatedly transmitting each channel may be considered.
  • the same transport block (TB) may be repeatedly transmitted over a plurality of TTIs.
  • various scenarios can be considered as shown in FIG. 9.
  • control channels scheduling the same TB may not be combined with each other. In this case, time diversity gain and / or interference diversity gain may be obtained for the control channel information instead of combining gain.
  • the terminal when decoding a scheduled data channel, the terminal may obtain a combining gain by combining and repeatedly decoding a plurality of repeatedly transmitted data channels or may obtain a diversity gain by decoding each data channel without combining. You can also get Whether to apply such combining may be determined according to the capability of the terminal, and the base station may set the terminal to higher layer signaling and / or physical layer signaling.
  • a UE reports to a base station that a combining operation is possible through capability signaling.
  • the same TB may be additionally received while the terminal receives the control channel and decodes the data channel scheduled by the control channel.
  • the terminal may stop the decoding operation of the data channel in progress, combine the received data with the same TB already stored in the soft buffer, and then perform decoding again.
  • a UE supporting such an operation has a maximum repetition number of N and a maximum transport block size (maximum TBS) supported when there is no repetition, the repetition is performed. It can be assumed that the maximum transport block size that can be transmitted through does not exceed T / N. Therefore, when a terminal can operate a decoder in small TBS in parallel, that is, when the terminal can decode a plurality of identical small TBs in parallel, combining is performed without additional decoding capability.
  • the terminal supporting the combining repeatedly receives the TB
  • the terminal starts decoding on the initially transmitted TB (conventionally referred to as initial TB) at t0.
  • the UE starts decoding the encoded bit obtained by soft combining initial TB + first repetition at t1 when the first repeated TB (referred to as first repetition) is received.
  • the UE performs parallel decoding on the encoded bit soft-combined initial TB + first repetition + second repetition at t2 when the second repeated TB (for convenience, referred to as second repetition) is received.
  • second repetition for convenience, referred to as second repetition
  • the above-described operation of the terminal may be applied according to the terminal implementation, but in the case of the terminal reporting the capability to the base station, the TB that can be repeatedly transmitted is linearly based on the number of repetitions compared to the maximum number of repetitions. It can be assumed to be reduced. That is, when the corresponding condition is not satisfied, the terminal may perform decoding on only one or some TBs of TBs repeatedly transmitted without attempting combining.
  • the above-described combining may be performed by chase combining as well as incremental redundancy (IR) combining.
  • IR incremental redundancy
  • the network needs to transmit data according to a predetermined rule. Accordingly, it is assumed that the terminal not only reports the capability but also sets a repetition mode in which the network performs transmission considering chase combining.
  • the UE may decode each data without combining the data received in each TTI.
  • this operation may proceed to the terminal implementation regardless of the capability of the terminal. That is, whether to perform soft combining on continuous retransmission may be determined by the UE implementation, and HARQ-ACK operation on the PDSCH of the UE may vary according to each UE implementation.
  • the UE reports HARQ-ACK or NACK according to the decoding result for each repetition.
  • the UE may report the ACK even if the NACK occurs for the k-th repeated PDSCH, or may transmit the NACK again in consideration of an error case.
  • processing for each ACK and NACK may be a network implementation.
  • the terminal may attempt to decode one or several PDSCHs among the repeatedly received PDSCHs.
  • the UE transmits (i) HARQ-ACK for each PDSCH (in this case, NACK for PDSCH not attempting decoding), or (ii) for the PDSCH previously decoded for PDSCH not attempting decoding. You can report the results repeatedly.
  • the base station allocates (i) the same HARQ ID when scheduling the repeated transmitted data channel, and (ii) NDI (New Data). By transmitting a plurality of data without toggling (indicator), the UE can recognize that the corresponding repeated data is the same TB.
  • the terminal may be configured not to perform combining even when data is transmitted in the same HARQ ID and non-toggled NDI in the corresponding window by setting a specific time window in order to distinguish it from the legacy legacy operation.
  • the time window may be set by the base station through higher layer signaling and / or physical layer signaling to the terminal or predefined in the system.
  • the base station may transmit a fixed RV (Redundancy Version) value applied to the same TB to be repeatedly transmitted to a specific value (for example, RV 0).
  • RV Redundancy Version
  • Whether or not the data is combined may be determined by the base station through higher layer signaling and / or physical layer signaling or by a capability report of the terminal.
  • the data is set to be repeatedly transmitted in a non-combining manner, and the base station fixedly transmits an RV value applied to the same TB to a specific value (for example, RV 0).
  • RV field in the DCI is transmitted in advance or transmitted from the base station to a known bit or zero padding indicated through higher layer and / or physical layer signaling. It can also be used as a virtual CRC (Cyclic Redundancy Check).
  • the RV value applied to the same TB information repeatedly transmitted may be fixed and transmitted in a specific pattern, and a cyclic shifted RV pattern may be applied when repeatedly transmitting retransmission for the same TB.
  • each RV is set to 0-2-3-1 and transmitted.
  • the base station decodes all of the NACKs, the base station retransmits the corresponding data. Can be.
  • the base station may transmit by setting the RV to 2-3-0-1 by cyclic shifting the RV in the initial pattern.
  • the base station indicates not only through each DCI but also when a control channel of a specific TTI as shown in FIG. 9 schedules data repeatedly transmitted over multiple TTIs. Applicable to
  • the terminal succeeds in decoding the control channel and decodes the data scheduled by the control channel, if a DCI scheduling the same TB is received in the above-described control channel in the above manner, the data scheduled by the DCI is not decoded. You may not. However, if false detection is detected in the first control channel scheduling the same TB, there may be a problem that the corresponding data is not received because decoding is not performed on the second TB. Therefore, when the terminal succeeds in decoding the control channel and decodes the data scheduled by the control channel, when a DCI scheduling the same TB is received in the subsequent control channel in the above manner, the terminal also schedules the data scheduled by the DCI. Decoding can be performed. However, when the same HARQ process ID (eg, HARQ process number) is used to indicate repetitive transmission for the same TB, a method for properly managing a soft buffer by the terminal is required.
  • the same HARQ process ID eg, HARQ process number
  • the base station may allocate the same HARQ process ID to the repeatedly transmitted data in order to repeatedly transmit the same TB and inform the terminal.
  • the terminal operates in a non-combining manner, it is possible to receive repeatedly transmitted data while storing and decoding the first received data in a specific soft buffer corresponding to the HARQ process ID allocated to the corresponding data.
  • the terminal may store the corresponding data in a soft buffer which is distinguished from the soft buffer in which the previously received data is stored. This operation is distinguished from the operation in which TBs allocated with different HARQ process IDs are stored in soft buffers separated from each other in the existing system.
  • the terminal In the case of repeatedly transmitted data, even if the same HARQ process ID as the previously transmitted data is allocated, the terminal needs to process it like other HARQ process IDs. For example, the terminal may reserve the HARQ process ID corresponding to the first transmitted data and another HARQ process ID by interworking. That is, the terminal may reserve not to use the interworking HARQ process ID for data transmission.
  • the UE may store another reserved HARQ process ID in a soft buffer (if not reserved). That is, the terminal may reserve a soft buffer according to the number of repetitive transmissions of data, and reserve HARQ process IDs as many as HARQ process IDs corresponding to the reserved soft buffer size.
  • the number of HARQ process IDs to be reserved may be set to be equal to or less than the number of repetitive transmissions of data.
  • the other HARQ process ID reserved at this time is a value obtained by applying a specific offset and / or offset pair to a reference HARQ process ID (for example, HARQ process ID allocated to data in the above example). Can be determined.
  • the offset and / or offset pair may be previously defined by the base station to the terminal through higher layer signaling and / or physical layer signaling or may be predefined in the system. Alternatively, the base station informs the terminal of information on a pair of reserved HARQ process IDs along with the reference HARQ process ID through higher layer signaling and / or physical layer signaling or the system. Can be defined in advance.
  • the UE may know that it is a new transmission and may flush the soft buffer for the corresponding HARQ process ID.
  • the soft buffer for the corresponding HARQ process ID may be flushed.
  • the terminal may also flush other soft buffers in which repeatedly transmitted data corresponding to HARQ process ID reserved for repeated transmission of data is stored.
  • the terminal may flush when new data is scheduled with the corresponding HARQ process ID.
  • the terminal may include a soft buffer in which the data is stored (for example, a soft buffer corresponding to a HARQ process ID allocated to the data and a HARQ process ID reserved in conjunction with the data). ) Can be flushed.
  • the UE when the UE receives data scheduled with the same HARQ process ID and the same (that is, not toggled) NDI value for a predetermined number of repetitions, the UE sequentially decodes the data and then determines that the ACK first occurs. Thereafter, no attempt may be made to decode the transmitted data (within the preset number of iterations). This may be understood as an operation in which the UE has no capability for combining, but emulates combining using a HARQ process.
  • the operation may be performed when the HARQ process supported by the UE is M. If the maximum repetition) is N, it may be assumed that the entire HARQ process is supported only up to M / N to perform repetition for each HARQ process. In this case, the HARQ-ACK transmission may be applied in the same manner as in the case of reducing TBS to support combining or decoding for each repetition.
  • the terminal operation for processing for back-to-back retransmission is (1) to use the decoder capability for one HARQ process by dividing it into multiple repetitions (limitation of maximum TBS) (2) It may be to process each back-to-back repetition using multiple HARQ processes.
  • the UE signals to the network which of the two operations is performed, and accordingly, the network may limit scheduling or determine one of the two methods.
  • HARQ-ACK timing is defined when HARQ-ACK timing is defined. This can be considered. That is, in consideration of the time taken by the terminal to decode the control channel and store the data scheduled by the control channel in the soft buffer for each TTI, the terminal performs the combining after waiting for the corresponding time even if the terminal repeatedly receives data transmitted in the middle. can do. Therefore, the required time is accumulated according to the number of repetitions of data transmission, and HARQ timing may be defined differently for each TTI. In consideration of such an environment, HARQ timing may be defined by reflecting processing time based on the number of data repetitions or the maximum number of repetitions of data.
  • the base station may inform the terminal of information such as start point, end point and / or number of repetitions of repeatedly transmitting data through higher layer signaling and / or physical layer signaling. It may even implicitly indicate the RV value of the data.
  • the base station may define a pattern (for example, RV 0-2-3-1) in advance in the system so that the terminal can implicitly know the information through the RV value of the corresponding data.
  • the RV value itself may be utilized.
  • the base station informs the terminal of the repetition number, it may inform a fixed number of repetitions, or may inform the maximum number of repeatable times.
  • the maximum HARQ process ID number / the number of data repetitive transmissions) defined in FIG. 1 may be assumed to be the maximum number of HARQ process IDs when data repetitive transmission is applied.
  • the DCI bit can be reduced.
  • the size of the DCI itself may be assumed to be a small size or may be assumed to be the same size as before. In the latter case, it is preconfigured or indicated through higher layer and / or physical layer signaling from the base station through the remaining bits (previously MSB or LSB of bits assumed in the corresponding DCI field). The known bit or zero padding may be transmitted, and the remaining bits may be used as a virtual CRC.
  • the maximum number of HARQ process IDs to be assumed when repeatedly transmitting data is max (8, (the maximum number of HARQ process IDs / number of data repeated transmissions defined in the system).
  • max (the maximum number of HARQ process IDs / number of data repeated transmissions defined in the system).
  • the limit that is, the minimum number of HARQ process IDs, may be instructed by the base station to a user equipment through higher layer and / or physical layer signaling or may be predefined in the system.
  • the maximum HARQ process ID number defined in the system may be applied as it is.
  • an equation for determining a bit size of a soft buffer may be defined in relation to the number of maximum HARQ process IDs.
  • the bit size of the soft buffer of data transmitted in a TTI shorter than the legacy TTI eg, sTTI
  • the bit size of the soft buffer of data transmitted in a TTI shorter than the legacy TTI may be defined as shown in Equation 1 below for (i) slot length TTI, and (ii) sub TTI of -slot length may be defined as shown in [Equation 2].
  • [Equation 1] and [Equation 2] is to determine the bit size of the soft buffer in consideration of the transmission unit of the data, the bit size of the soft buffer can be maintained the same even if the maximum number of HARQ process ID is assumed . For this purpose instead This can be applied.
  • [Equation 1] and [Equation 2] May be the maximum number of HARQ process IDs defined in the system or the maximum number of HARQ process IDs assumed when repeated transmission of data is performed. In other words, it may be assumed that the maximum HARQ process ID number is different from the maximum HARQ process ID number defined in the system by applying the above scheme according to the number of times of data transmission.
  • the maximum number of HARQ process IDs may be set by the base station to the terminal through higher layer signaling and / or physical layer signaling. In this case, it may be assumed differently according to the number of repetitive transmissions of data.
  • circular buffer rate-matching may be applied when the TB is repeatedly transmitted with different lengths of TTI lengths.
  • circular buffer rate-matching may be performed based on the TTI length of the first data of the repeatedly transmitted data or based on the short TTI length or the long TTI length of the repeatedly transmitted data.
  • FIG. 10 is a flowchart illustrating a method of receiving a transport block (TB) by a terminal in a wireless communication system according to an example or implementation example of the present invention.
  • the method includes receiving the TB at each of a plurality of transmission time intervals (s1010) and receiving information about the combining of the TB from a base station (s1020) and receiving the received TBs. Decoding (s1030).
  • the terminal decodes the received TBs without combining them.
  • the terminal when the information indicates combining, the terminal combines and decodes the received TBs.
  • the terminal decodes the received TBs without combining the received TBs only within a window configured with a specific number of transmission time intervals.
  • the terminal stores the first TB and the second TB in a soft buffer separated from each other.
  • a first TB received at a first transmission time interval among the received TBs is associated with a first HARQ process number and a second TB received at a second transmission time interval is different from the first HARQ process number.
  • 2 is associated with a HARQ process number.
  • the terminal may flush the soft buffer in which the first TB is stored and the soft buffer in which the second TB is stored.
  • the received TBs are sequentially decoded based on the received order.
  • the terminal does not attempt to decode the TB n + i received at the transmission time interval n + i, where i> 0 is an integer. It is done.
  • the method may further include receiving Downlink Control Information (DCI) for scheduling the TB.
  • DCI Downlink Control Information
  • the DCI includes a HARQ process number field for the TB, the maximum number N1 of HARQ processes for the TB repeatedly transmitted is less than the maximum number N2 of HARQ processes supported in the wireless communication system, and the HARQ process The size of the number field is determined based on N1.
  • FIG. 11 illustrates a system for implementing the present invention.
  • a wireless communication system includes a base station (BS) 10 and one or more terminals (UE) 20.
  • the transmitter may be part of BS 10 and the receiver may be part of UE 20.
  • BS 10 may include a processor 11, a memory 12, and a transceiver 13.
  • Processor 11 may be configured to implement the proposed procedures and / or methods described in this application.
  • the memory 12 is coupled with the processor 11 to store various information for operating the processor 11.
  • the transceiver 13 is coupled to the processor 11 to transmit and / or receive radio signals.
  • UE 20 may include a processor 21, a memory 22, and a transceiver 23.
  • Processor 21 may be configured to implement the proposed procedures and / or methods described in this application.
  • the memory 22 is coupled with the processor 21 to store various information for operating the processor 21.
  • the transceiver 23 is coupled to the processor 21 to transmit and / or receive radio signals.
  • BS 10 and / or UE 20 may have a single antenna and multiple antennas. If at least one of the BS 10 and the UE 20 has multiple antennas, the wireless communication system may be referred to as a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the processor 21 of the terminal and the processor 11 of the base station process signals and data except for a function of receiving or transmitting a signal and a storage function of the terminal 20 and the base station 10, respectively.
  • the following description does not specifically refer to the processors 11 and 21.
  • the processors 11 and 21 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • the present invention proposes a new and various frame structure for the fifth generation (5G) communication system.
  • 5G fifth generation
  • scenarios can be categorized into Enhanced Mobile BroadBand (eMBB), Ultra-reliable Machine-Type Communications (uMTC), and Mass Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • uMTC Ultra-reliable Machine-Type Communications
  • mMTC Mass Machine-Type Communications
  • Enhanced mobile broadband is a next generation mobile communication scenario with high spectral efficiency, high user experience data rate, and high peak data rate.
  • High reliability machine type communication is a next generation mobile communication scenario with characteristics such as ultra reliable, ultra low latency, ultra high availability, and the like (eg, V2X, emergency service, Remote Control, large-scale machine type communication, is a next-generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity (e.g. IoT ).
  • a terminal receiving a transport block (TB) may include a transceiver and a processor.
  • the transceiver may receive a radio signal including a PDCCH and a PDSCH and transmit a radio signal including a PUCCH and a PUSCH. Meanwhile, the transceiver may include a radio frequency (RF) unit.
  • RF radio frequency
  • Examples or implementations described above are those in which the elements and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to constitute an example or implementation of the invention. The order of the operations described in the examples or implementations of the invention may be changed. Some configurations or features of any example or implementation may be included in other examples or implementations, or may be replaced with corresponding configurations or features of the other examples or implementations. It is obvious that the claims or combinations which do not have an explicit citation in the claims can be combined to form examples or embodiments or to incorporate new claims by post-application correction.

Abstract

본 발명은 무선 통신 시스템에서 단말이 전송 블록 (Transport Block, TB)을 수신하는 방법에 대해 개시한다. 구체적으로 상기 방법은 상기 TB를 복수의 전송시간간격들 각각에서 수신하고, 기지국으로부터 상기 TB의 컴바이닝 (combining)에 관한 정보를 수신하고, 상기 수신된 TB들을 디코딩하는 것을 포함한다. 특히, 상기 정보가 비-컴바이닝 (non-combining)을 나타내면 상기 단말은 상기 수신된 TB들을 컴바이닝 하지 않고 디코딩한다.

Description

무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말
본 발명은 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말에 관한 것으로서, 더욱 상세하게는 기지국이 단말에게 보다 높은 신뢰도 (reliability)와 낮은 지연 (latency)을 위해 반복 전송하는 전송 블록을 수신하는 방법 및 이를 위한 단말에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위하여는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
본 발명은 무선 통신 시스템에서 단말이 전송 블록을 수신하는 방법을 제공하는 데 있다. 구체적으로, 본 발명은 기지국이 단말에게 보다 높은 신뢰도 (reliability)와 낮은 지연 (latency)을 위해 반복 전송하는 전송 블록을 단말이 수신하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한, 무선 통신 시스템에서 단말이 전송 블록 (Transport Block, TB)을 수신하는 방법은 상기 TB를 복수의 전송시간간격들 각각에서 수신하고, 기지국으로부터 상기 TB의 컴바이닝 (combining)에 관한 정보를 수신하고, 상기 수신된 TB들을 디코딩하는 것을 포함할 수 있다. 특히, 상기 정보가 비-컴바이닝 (non-combining)을 나타내면 상기 단말은 상기 수신된 TB들을 컴바이닝 하지 않고 디코딩할 수 있다.
한편, 상기 정보가 컴바이닝을 나타내면, 상기 단말은 상기 수신된 TB들을 컴바이닝하여 디코딩할 수 있다.
한편, 상기 단말은 특정 개수의 전송시간간격으로 구성되는 윈도우 (window) 내에서만 상기 수신된 TB들을 컴바이닝하지 않고 디코딩할 수 있다.
한편, 상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB 및 제 2 전송시간간격에서 수신된 제 2 TB는 동일한 HARQ (Hybrid Automatic Repeat and Request) 프로세스 번호와 연관될 수 있다. 특히, 상기 단말은 상기 제 1 TB 및 상기 제 2 TB를 서로 구분되는 소프트 버퍼(soft buffer)에 저장할 수 있다.
한편, 상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB는 제1 HARQ 프로세스 번호와 연관되고 제 2 전송시간간격에서 수신된 제 2 TB는 상기 제1 HARQ 프로세스 번호와는 다른 제2 HARQ 프로세스 번호와 연관될 수 있다. 특히, 상기 제 1 TB와 상기 제 2 TB 중 어느 하나에 대해 ACK이 결정되면, 상기 단말은 상기 제 1 TB가 저장된 소프트 버퍼와 상기 제 2 TB가 저장된 소프트 버퍼를 플러쉬할 수 있다.
한편, 상기 수신된 TB들은 수신된 순서에 기초하여 순차적으로 디코딩될 수 있다. 특히, 상기 단말은 전송시간간격 n에서 수신된 TB n에 대한 ACK이 결정되면, 전송시간간격 n+i 에서 수신된 TB n+i에 대한 디코딩을 시도하지 않으며, 여기서 i>0인 정수일 수 있다.
한편, 상기 방법은 상기 TB를 스케쥴링하는 DCI (Downlink Control Information)를 수신하는 것을 더 포함할 수 있다. 특히, 상기 DCI는 상기 TB를 위한 HARQ 프로세스 번호 필드를 포함하고, 반복 전송되는 상기 TB를 위한 HARQ 프로세스의 최대 개수 N1은 상기 무선 통신 시스템에서 지원되는 HARQ 프로세스의 최대 개수 N2보다 작고, 상기 HARQ 프로세스 번호 필드의 크기는 N1을 기반으로 결정될 수 있다.
본 발명의 예 또는 구현 예에 따르면, 지연 (latency) 및 신뢰도 (reliability)와 관련된 다양한 타겟 QoS (Quality of Service) 요구사항 (requirement)을 만족하도록 동작 (operation) 하는 단말이 제공될 수 있다.
본 발명의 예 또는 구현 예에 따르면, 기지국으로부터 반복하여 전송되는 데이터에 대응하는 TB들에 대한 HARQ process를 보다 효율적으로 수행하는 단말이 제공될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
도 7은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 8 내지 도 9는 본 발명의 예 또는 구현 예에 따른 하향링크 제어정보 및 데이터를 반복 전송하는 방법을 설명하기 위한 도면이다.
도 10은 본 발명의 예 또는 구현 예에 따른 단말이 전송 블록을 수신하는 방법을 설명하기 위한 순서도이다.
도 11은 본 발명을 구현하기 위한 시스템을 예시한 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 보다 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200·T s)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360· T s)의 길이를 가진다. 여기에서, T s 는 샘플링 시간을 나타내고, Ts=1/(15kHzХ2048)=3.2552Х10 -8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파Х7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R0 내지 R3은 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파Х하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다. 특히, 도 6의 (a)는 기지국의 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 도 6의 (b)는 기지국의 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다.
도 6을 참조하면, 하향링크 제어 채널의 기본 자원 단위는 REG(Resource Element Group)이다. REG는 RS를 제외한 상태에서 4개의 이웃한 자원 요소(RE)로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.
단말은 자신에게 L 개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여
Figure PCTKR2019003870-appb-img-000001
개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 단말이 PDCCH 수신을 위해 고려해야 하는 L 값은 복수가 될 수 있다. 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다. 일 예로, LTE 시스템은 검색 영역을 표 1과 같이 정의하고 있다.
[표 1]
Figure PCTKR2019003870-appb-img-000002
여기에서, CCE 집성 레벨 L 은 PDCCH를 구성하는 CCE 개수를 나타내고,
Figure PCTKR2019003870-appb-img-000003
은 CCE 집성 레벨 L 의 검색 영역을 나타내며,
Figure PCTKR2019003870-appb-img-000004
은 집성 레벨 L 의 검색 영역에서 모니터링해야 하는 PDCCH 후보의 개수이다.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.
상기 CCE는 시스템 대역에 분산될 수 있다. 보다 구체적으로, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력될 수 있으며, 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.
도 7은 LTE 시스템에서 사용되는 상향 링크 서브프레임의 구조를 도시하는 도면이다.
도 7을 참조하면, 상향 링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향 링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향 링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하, 본격적으로 본 발명의 실시 예에 따른 하향링크 제어 정보를 전송하기 위한 RB 집합 (Resource Block Set; RB set)을 이용하여 하향링크 데이터를 송수신하는 방법에 대해 설명한다.
통신 시스템에서는 기지국이 PDCCH(Physical Downlink Control Channel)를 통해 단말에게 DCI(Downlink Control Information)를 전송하여 데이터 송수신을 위한 일련의 동작들을 지시할 수 있다. 이 때, 기지국은 단말로부터 피드백 받은 채널환경 등을 기반으로 DCI의 신뢰도(reliability)를 조정하고, 상기 조정된 신뢰도를 기반으로 DCI를 단말에게 전송할 수 있다.
예를 들어, 기지국은 채널환경이 좋지 않은 단말을 위해 보다 많은 제어 채널 영역을 활용하여 낮은 코드 레이트(code rate)를 기반으로 DCI를 전송함으로써 DCI 전송의 신뢰도(reliability)를 높일 수 있다. 이 때, 단말은 DCI가 전송될 수 있는 PDCCH의 후보 영역에 대한 다수 개의 가정들을 정의하고, 상기 정의된 가정들 각각에 따라 블라인드 디코딩(blind decoding)을 시도한다.
그리고, 상기 정의된 가정들 각각에 대하여 블라인드 디코딩을 수행하는 중에, 상기 DCI의 디코딩에 성공한 경우, 상기 디코딩된 DCI에 따라 특정 동작을 수행하게 된다.
한편, 이러한 경우, PDCCH를 위해 할당된 자원들 중 DCI를 전송하는 자원을 제외한 나머지 자원이 비게 되는데, 이렇게 비는 자원을 데이터 전송에 사용하게 되면 자원 사용의 효율을 높이면서 데이터 전송의 처리량(throughput)을 높일 수 있다. 이러한 동작은 특히 짧은 TTI로 구성된 시스템에서 TTI 내 데이터 전송을 위한 자원 영역이 크지 않은 경우 유용하게 작용할 수 있다.
따라서, 본 발명에서는 통신 시스템에서 단말이 DCI 전송을 위한 자원 영역의 일부를 데이터 전송에 사용하는 방법을 제안한다. 본 발명에서의 발명사항 및/또는 실시 예는 하나의 제안 방식으로 간주될 수도 있지만, 각 발명사항 및/또는 실시 예 간의 조합 또한 새로운 방식으로 간주될 수 있다.
또한, 본 발명에서 기지국이 단말에게 설정하는 파라미터는 RB 집합 (Resource Block Set; RB set) 별로 다르게 설정할 수 있고, DCI의 맵핑 방식, 즉, 분산적(distributed) 맵핑인지 국부적(localized) 맵핑인지 여부에 다르게 설정할 수 있다. 또한, 상기 설정하는 파라미터는 CRS 기반 동작인지 DMRS 기반 동작인지 여부에 따라 다르게 설정할 수 있고, 시간 우선(time-first) 맵핑 방식인지 주파수 우선(frequency-first) 맵핑 방식인지 여부에 따라 다르게 설정할 수 있다.
레거시 (Legacy) LTE 시스템을 예로 들면, 1 ms 길이로 구성된 서브프레임의 앞 쪽에 배치된 하나 이상의 심볼을 PDCCH로 설정하여, 상기 설정된 PDCCH를 통해 기지국이 단말로 DCI를 전송한다. 이 때, DCI가 전송되는 채널 상태에 따라 하나 이상의 CCE (Control Channel Element)를 집성(aggregation)할 수 있도록, 다수 개의 집성 레벨(Aggregation Level; AL)을 설정하고 블라인드 디코딩(Blind Decoding; BD)를 통해 DCI의 디코딩을 시도한다.
이러한 동작은 레거시 LTE 시스템과 다른 TTI 단위로 동작하는 환경에서도 동일하게 적용될 수 있다. 예를 들어, 레서기 LTE 시스템보다 짧은 TTI(sTTI)를 기반으로 동작하는 통신 시스템에서도 동일하게 적용될 수 있다.
아울러, 본 발명의 설명에서는 짧은 TTI 단위를 갖는 시스템을 예시로 설명하나, 본 발명의 사항은 해당 시스템에만 한정되는 것은 아니다. 또한, 본 발명에서 설명하는 sREG, sCCE sDCI 등은 짧은 TTI 단위를 갖는 시스템에 한정되어 적용되는 것은 아니며, 일반적인 REG, CCE, DCI에 대응되어 적용될 수 있다. 즉, 본 발명에서 사용되는 sREG, sCCE sDCI 등의 용어는 일반적인 REG, CCE, DCI와 혼용되어 사용될 수 있다.
한편, 짧은 TTI 환경에서 DCI를 전송하기 위한 기본 단위로 sREG (short Resource Element Group) 가 사용되고, sREG는 시간단위 1 심볼, 주파수단위 1 RB (Resource Block)로 설정될 수 있다.
또한, 복수 개의 sREG를 모아 sCCE(short CCE)를 구성할 수 있고, AL에 따라 하나 이상의 sCCE를 활용하여 sDCI를 전송할 수 있다. 또한 DCI는 기지국이 설정한 제어 RB 집합(control RB set)을 통해 전송될 수 있는데, 제어 RB 집합은 기지국의 설정에 따라 다양한 개수의 RB와 심볼로 구성될 수 있다. 그리고 AL에 대응하는 하나 이상의 sCCE를 통해 DCI를 전송할 때 국부적(Localized) 방식으로 sCCE들을 연속하여 제어 RB 집합에 포함된 물리 자원(physical resource) 상에 맵핑할 수도 있고, 분산적(Distributed) 방식으로 sCCE들을 불연속적으로 제어 블록 집합에 포함된 물리 자원 상에 맵핑할 수도 있다.
한편, 기지국은 단말에게 제어 RB 집합을 설정하고, 해당 제어 RB 집합 중, sDCI가 전송되는 RB에 대해서 데이터를 레이트 매칭(rate matching)하여 전송할 수 있다. 즉, sDCI를 위한 sREG와 동일 RB에 위치하는 인접 심볼의 sREG 는 비어서 전송되는데, 상기 빈 sREG 영역을 기지국이 다른 단말의 sDCI를 전송하는 데에 사용하거나, 상위 계층 시그널링(higher layer signaling) 및/또는 물리 계층 시그널링(physical layer signaling)을 통해 빈 sREG 영역에 데이터를 전송할지 여부를 특정 지시자 등을 통해 알려줄 수 있다. 한편, 여기서 상기 특정 지시자는 sDCI내에 포함되어 전송될 수도 있으나, sDCI와 개별적으로 전송될 수 있으며, 1비트로 구성될 수 있다.
차세대 통신 시스템에서는 신호 송수신에 대해 매우 짧은 지연 (latency) 시간 및 매우 높은 신뢰도 (reliability)를 적용하는 서비스가 고려되고 있다. 나아가, 차세대 통신 시스템은 지연 및 신뢰도와 관련된 다양한 타겟 QoS (Quality of Service) 요구사항 (requirement)을 설정하고 각 타겟 QoS 요구사항을 만족하도록 동작 (operation) 하는 서비스들을 제공할 수 있다.
본 발명의 예 또는 구현 예는 지연 시간을 줄이고 신뢰도를 높이기 위해 디자인 된 통신 시스템에서 하향링크 데이터를 전송하고 수신하는 방법을 제안한다. 본 발명에서의 발명사항 그리고/혹은 실시 예는 하나의 제안 방식으로 간주될 수도 있지만, 각 발명사항 그리고/혹은 실시 예 간의 조합 또한 새로운 방식으로 간주될 수 있다. 또한 발명 사항이 본 발명에서 제시되는 실시 예에 한정되지 않고, 특정 시스템에 한정되지 않음은 물론이다. 본 발명의 모든 파라미터 (parameter) 그리고/혹은 동작의 경우 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 지시하거나 사전에 시스템에 정의될 수 있다.
PDCCH 및/또는 PDSCH의 반복 전송
PDCCH 전송 그리고/혹은 PDSCH 전송의 신뢰도 를 높일 수 있는 방법으로 각 채널을 반복하여 전송하는 방법이 고려될 수 있다. 예를 들어 도 8을 참조하면, 각 TTI 내에서 전송되는 PDSCH가 해당 TTI 내의 PDCCH를 통해 스케쥴링되는 경우, 다수 개의 TTI에 걸쳐 동일 전송 블록 (Transport Block, TB)이 반복하여 전송될 수 있다. 또는, 도 9에 도시된 것과 같이 다양한 시나리오가 고려될 수 있다. 도 9에 도시된 다양한 스케쥴링 방법에 따르면, 동일 TB를 스케쥴링하는 제어 채널들은 서로 간에 컴바이닝 (combining)되지 않을 수 있다. 이 경우, 제어 채널 정보에 대해서 컴바이닝 이득 (combining gain) 대신 시간 다이버시티 이득 (time diversity gain) 및/또는 간섭 다이버시티 이득 (interference diversity gain)을 얻을 수 있다.
한편, 단말은 스케쥴링되는 데이터 채널을 디코딩할 때, 반복 전송된 다수 개의 데이터 채널을 컴바이닝하여 디코딩을 시도함으로써 컴바이닝 이득을 얻을 수도 있고, 컴바이닝하지 않고 각각의 데이터 채널을 디코딩 함으로써 다이버시티 이득을 얻을 수도 있다. 이러한 컴바이닝 적용 여부는 단말의 능력 (capability)에 따라 결정될 수도 있고, 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)으로 설정할 수 있다.
단말은 컴바이닝 동작을 수행할 때 소요되는 시간에 기반하여 컴바이닝 동작이 가능한지 여부를 기지국에 보고할 수 있다. 예를 들어, 상기 보고되는 단말의 능력은 (i) 제어 채널을 수신하고 디코딩하는 시간, (ii) 해당 제어 채널이 스케쥴링하는 데이터 채널을 수신하고 소프트 버퍼 (soft buffer)에 저장하는 시간 그리고/혹은 (iii) 해당 데이터를 디코딩하는 시간 등을 포함할 수 있다.
단말이 능력 시그널링 (capability signaling)을 통해 컴바이닝 동작이 가능하다고 기지국에 보고한 경우를 가정하자. 단말이 제어 채널을 수신하고 해당 제어 채널이 스케쥴링하는 데이터 채널을 디코딩하는 중에 동일 TB가 추가적으로 수신될 수 있다. 이 경우, 단말은 진행 중이던 데이터 채널의 디코딩 동작을 중단하고 추가적으로 수신되는 데이터와 소프트 버퍼에 이미 저장되어 있는 동일 TB를 컴바이닝한 후 다시 디코딩을 수행할 수 있다. 이러한 동작을 지원하는 단말은, 최대 반복 횟수 (maximum repetition number)가 N이고, 반복 (repetition) 이 없는 경우 지원하는 최대 전송 블록 크기 (maximum Transport Block Size, maximum TBS)가 T라고할 때, 반복을 통해서 전송 가능한 최대 전송 블록 크기는 T/N을 넘지 않는다고 가정할 수 있다. 따라서, 단말이 병렬적(parallel)으로 디코더 (decoder)를 small TBS에 동작시킬 수 있는 경우, 즉, 복수의 동일 small TB들을 단말이 병렬적으로 디코딩할 수 있는 경우, additional decoding capability 없이 컴바이닝을 지원할 수 있다.
구체적으로, 컴바이닝을 지원하는 단말이 TB를 반복하여 수신한다면, 단말은 최초 전송된 TB (편의상 이를 initial TB라 하자)에 대한 디코딩을 t0에 시작한다. 단말은 첫 번째 반복 전송된 TB (편의상 이를 first repetition이라 하자)를 수신한 시점인 t1에서 initial TB + first repetition 을 소프트 컴바이닝 (soft combining) 한 encoded bit에 대한 디코딩을 시작하다. 단말은 두 번째 반복 전송된 TB (편의상 이를 second repetition이라 하자)를 수신한 시점인 t2에서 initial TB + first repetition + second repetition을 소프트 컴바이닝 한 encoded bit에 대한 디코딩을 병렬적 (parallel)으로 동작시킬 수 있다.
한편, 전술한 단말의 동작은 단말 구현에 따라 적용될 수 있으나, 기지국에 능력을 보고한 단말의 경우, 반복적으로 전송될 수 있는 TB가 최대 반복 횟수에 비해서 반복 횟수에 기초하여 선형적 (linear)으로 줄어드는 것이라고 가정할 수 있다. 즉, 해당 조건이 만족하지 않는 경우, 단말은 컴바이닝을 시도하지 않고 반복 전송되는 TB들 중 하나 또는 일부 TB에 대한 디코딩만 수행할 수도 있다.
전술한 컴바이닝은 IR (Incremental Redundancy) 컴바이닝뿐만 아니라 chase 컴바이닝으로 수행될 수 있다. 한편, chase 컴바이닝을 단말이 수행하기 위해서는 네트워크가 일정한 규칙 (rule)에 따라 데이터를 전송하는 약속이 필요하다. 따라서, 단말이 능력을 보고하는 것뿐만 아니라, 네트워크가 chase 컴바이닝을 고려한 전송을 하는 반복 모드 (repetition mode)를 설정하는 것을 가정한다.
한편, 단말이 능력 시그널링 (capability signaling)을 통해 컴바이닝 동작이 불가능하다고 기지국에 보고한 경우, 단말은 각 TTI에서 수신된 데이터를 컴바이닝하지 않고 각각의 데이터를 디코딩할 수 있다. 또한, 이러한 동작은 단말의 능력에 상관없이 단말 구현으로 진행하는 것일 수 있다. 즉, 연속적인 재전송 (retransmission) 에 대해서 소프트 컴바이닝 (soft combining) 을 수행할지 여부는 단말 구현으로 결정될 수 있으며, 각 단말 구현에 따라 단말의 PDSCH에 대한 HARQ-ACK 동작이 달라질 수 있다.
첫 째로, 단말이 TBS 제약 (restriction)을 제외하면 IR combining 을 기존 디코더 능력을 이용하여 수행할 수 있는 경우, 단말은 각 반복 (repetition) 에 대한 디코딩 결과에 따라 HARQ-ACK 또는 NACK을 보고한다. 이전 k-1 개의 반복 중 ACK이 발생한 경우, 단말은 k 번째 반복 수신된 PDSCH에 대해서 NACK이 발생하더라도 ACK을 보고하거나, 에러 케이스라고 고려하여 NACK을 다시 전송할 수 있다. 또는, 각 ACK과 NACK에 대한 처리는 네트워크 구현일 수 있다.
둘 째로, 단말이 IR combining 능력은 있으나 TBS 제약으로 인해 컴바이닝 을 하지 못한 경우, 단말은 반복 수신된 PDSCH 중 하나 혹은 여러 개의 PDSCH에 대한 디코딩을 시도할 수 있다. 이러한 경우, 단말은 (i) 각 PDSCH에 대한 HARQ-ACK을 전송하거나 (이 경우 디코딩을 시도하지 않은 PDSCH의 경우 NACK전송), (ii) 디코딩을 시도하지 않은 PDSCH에 대해 이전에 디코딩한 PDSCH의 결과를 반복해서 보고할 수 있다.
Non-combining 방식에 따른 데이터 반복 수신
단말이 반복 전송되는 데이터를 컴바이닝 하지 않는 (Non-combining) 방식으로 디코딩하는 경우, 기지국은 반복 전송되는 데이터 채널을 스케쥴링할 때 (i) 동일 HARQ ID 를 할당하고, (ii) NDI (New Data Indicator)를 토글링 (toggling)하지 않고 다수 개의 데이터를 전송함으로써 단말이 해당 반복 데이터가 동일 TB임을 인식하도록 할 수 있다.
한편, 기존 legacy 시스템의 경우 HARQ RTT (Round Trip Time) 단위로 데이터가 재전송되기 때문에 기지국은 동일 HARQ ID 및 non-toggled NDI로 재전송을 하게 되고 단말은 데이터를 컴바이닝하여 디코딩을 시도하게 된다. 따라서 기존 legacy 동작과의 구별을 위해 상기 동작의 경우 특정 time window를 설정하여 해당 window 내에서는 동일 HARQ ID 및 non-toggled NDI로 데이터가 전송되는 경우에도 단말은 컴바이닝을 수행하지 않도록 구성될 수 있다. 상기 time window는 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 설정하거나 시스템에 사전에 정의될 수 있다.
상기 non-combining 방식으로 데이터를 반복 전송하는 경우, 기지국은 반복 전송하는 동일 TB에 적용되는 RV (Redundancy Version) 값을 특정 값으로 (예를 들면, RV 0) 고정하여 전송할 수 있다.
데이터의 컴바이닝 여부는 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 알려주거나 상기 단말의 능력 보고 (capability report) 에 의해 결정될 수 있다. non-combining 방식으로 데이터를 반복 전송하도록 설정되고, 기지국이 동일 TB에 적용되는 RV 값을 특정 값 (예를 들면, RV 0)으로 고정하여 전송한다고 가정하자. 이 경우, DCI 내 RV field가 사전에 설정되거나 기지국으로부터 상위 계층 (higher layer) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 지시된 알려진 비트 (known bit) 혹은 제로 패딩 (zero padding)을 전송할 수 있으며 이를 virtual CRC (Cyclic Redundancy Check)로 활용할 수도 있다.
또는, 반복 전송되는 동일 TB 정보에 적용되는 RV 값을 특정 패턴으로 고정되어 전송될 수 있고, 동일 TB에 대한 재전송을 반복 전송할 때에는 cyclic shift 된 RV 패턴이 적용될 수 있다. 예를 들어, 기지국은 데이터를 4 번 반복 전송하는 경우 각각의 RV를 0-2-3-1 패턴으로 설정하여 전송하고, 단말이 디코딩한 결과 모두 NACK으로 판정된 경우 해당 데이터를 기지국이 재전송할 수 있다. 만약 재전송되는 횟수도 4로 설정되는 경우 기지국은 RV를 초기 패턴에서 cyclic shift하여 2-3-0-1 으로 설정하여 전송할 수 있다. 전술한 동작은 도 8과 같이 매 TTI에서 각 데이터를 스케쥴링하는 경우 기지국이 각 DCI를 통해 지시하는 경우 뿐만 아니라 도 9와 같이 특정 TTI의 제어 채널이 여러 TTI에 걸쳐 반복 전송되는 데이터를 스케쥴링하는 경우에도 적용될 수 있다.
한편, 단말이 제어 채널 디코딩에 성공하여 해당 제어 채널이 스케쥴링하는 데이터를 디코딩하고 있을 때, 이 후의 제어 채널에서 상기 방식으로 동일 TB를 스케쥴링하는 DCI가 수신되면, 해당 DCI가 스케쥴링하는 데이터는 디코딩하지 않을 수 있다. 다만 동일 TB를 스케쥴링하는 첫 번째 제어 채널에서 false detection하게 되면, 두 번째 TB에 대해 디코딩을 수행하지 않아 해당 데이터를 수신하지 못하는 문제가 있을 수 있다. 따라서, 단말이 제어 채널 디코딩에 성공하여 해당 제어 채널이 스케쥴링하는 데이터를 디코딩하고 있을 때, 이 후의 제어 채널에서 상기 방식 등으로 동일 TB를 스케쥴링하는 DCI가 수신되는 경우 해당 DCI가 스케쥴링하는 데이터에 대해서도 디코딩을 수행할 수 있다. 다만, 동일 TB에 대한 반복 전송임을 나타내기 위한 동일 HARQ process ID (예를 들면, HARQ 프로세스 번호)가 사용되는 경우, 단말이 소프트 버퍼 (soft buffer)를 적절히 관리하는 방법이 필요하다.
전술한 바와 같이 기지국은 동일 TB를 반복 전송하고 이를 단말에게 알려주기 위해 반복 전송되는 데이터에 동일한 HARQ process ID를 할당할 수 있다. 단말이 non-combining 방식으로 동작하게 되면, 먼저 수신한 데이터를 해당 데이터에 할당된 HARQ process ID에 대응되는 특정 소프트 버퍼에 저장하고 디코딩하는 도중에, 반복 전송되는 데이터를 수신할 수 있다. 이 경우 단말은, 반복 전송되는 데이터에 앞서 전송된 데이터와 동일한 HARQ process ID가 할당되었더라도 해당 데이터를 앞서 수신한 데이터가 저장된 소프트 버퍼와 구분되는 소프트 버퍼에 저장할 수 있다. 이는 기존 시스템에서 서로 다른 HARQ process ID를 할당 받은 TB가 서로 구분된 소프트 버퍼에 저장되는 동작과 구분되는 동작이다.
반복 전송되는 데이터의 경우 앞서 전송된 데이터와 동일한 HARQ process ID를 할당 받았더라도, 단말이 이를 다른 HARQ process ID처럼 처리할 필요가 있다. 예를 들면, 단말은 처음 전송된 데이터에 해당되는 HARQ process ID와 다른 HARQ process ID를 연동시켜서 예약 (reserve)해둘 수 있다. 즉, 단말은 연동시킨 HARQ process ID를 데이터 전송에 사용하지 않도록 예약할 수 있다.
반복 전송되는 데이터가 동일 HARQ process ID를 할당 받아 전송되는 경우, 단말은 예약된 다른 HARQ process ID가 (만일 reserve되지 않았더라면) 저장되었을 soft buffer에 저장할 수 있다. 즉, 단말은 데이터의 반복전송 횟수에 맞게 soft buffer를 예약하고, 예약한 soft buffer 크기에 대응되는 HARQ process ID 개수만큼 HARQ process ID를 예약할 수 있다. 여기서 예약하는 HARQ process ID의 개수는 데이터의 반복 전송 횟수보다 작거나 같도록 설정될 수 있다.
이 때 예약되는 다른 HARQ process ID는 기준이 되는 HARQ process ID (예를 들면, 상기 예시에서 데이터에 할당된 HARQ process ID)에 특정 오프셋 (offset) 그리고/혹은 오프셋 페어 (offset pair)를 적용한 값으로 결정될 수 있다. 상기 오프셋 그리고/혹은 오프셋 페어는 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 알려주거나 시스템에 사전에 정의될 수 있다. 또는, 기준이 되는 HARQ process ID와 함께, 예약되는 HARQ process ID들의 pair에 대한 정보를 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 알려주거나 시스템에 사전에 정의될 수 있다.
한편, 기준이 되는 HARQ process ID에 대해 토글 (toggle)된 NDI로 데이터가 스케쥴링되는 경우, 단말은 새로운 전송임을 알 수 있고, 해당되는 HARQ process ID에 대한 소프트 버퍼를 플러쉬 (flush)할 수 있다. 또는, 해당 HARQ process ID 및 토글 되기 전의 NDI값으로 전송된 데이터의 디코딩 결과가 ACK으로 판정될 때 해당 HARQ process ID에 대한 소프트 버퍼를 플러쉬 할 수 있다. 이 때, 단말은 데이터의 반복 전송을 위해 예약된 HARQ process ID에 해당하는 반복 전송된 데이터가 저장된 다른 소프트 버퍼도 함께 플러쉬 할 수 있다. 또는, 단말은 함께 예약된 HARQ process ID에 대응되는 소프트 버퍼의 경우 해당 HARQ process ID로 새로운 데이터가 스케쥴링 될 때 플러쉬할 수 있다. 보다 일반적으로, 단말은 데이터에 대한 디코딩 결과가 ACK으로 판정된 경우 해당 데이터가 저장된 소프트 버퍼 (예를 들면, 해당 데이터에 할당된 HARQ process ID 및 이와 연동하여 예약된 HARQ process ID에 대응 되는 소프트 버퍼)를 모두 플러쉬 할 수 있다.
나아가, 단말은 동일한 HARQ process ID 및 동일한 (즉, toggle 되지 않은) NDI 값으로 스케쥴링된 데이터를 사전에 설정된 반복 횟수만큼 수신할 때, 데이터를 순차적으로 디코딩 하다가 ACK으로 판정되는 경우가 먼저 발생하면 그 이후 전송된 (사전에 설정된 반복 횟수 범위 내의) 데이터에 대해 디코딩을 시도하지 않을 수 있다. 이는 단말이 컴바이닝에 대한 능력은 없으나, HARQ process를 이용하여 컴바이닝을 에뮬레이션 (emulation) 하는 동작으로 이해될 수 있다.
전술한 바와 같이 디코딩 능력의 추가 없이 TBS를 줄여서 반복 전송에 대한 컴바이닝 혹은 각 반복 전송에 대한 디코딩을 지원할 수 있는 것과 유사하게, 해당 동작은 단말이 지원하는 HARQ process를 M이라고 할 때 최대 반복 (maximum repetition) 이 N인 경우, 전체 HARQ process가 M/N까지만 지원된다고 가정하고 각 HARQ process에 대한 반복을 수행하는 것일 수 있다. 이러한 경우, HARQ-ACK 전송은 TBS를 줄여서 컴바이닝 혹은 각 반복에 대한 디코딩을 지원할 수 있는 경우와 동일한 방식이 적용될 수 있다.
정리하자면, 현재 단말의 디코딩 능력을 추가하지 않고, back-to-back retransmission 에 대한 처리를 위한 단말 동작은 (1) 하나의 HARQ process에 대한 디코더 능력을 복수의 반복에 나누어 사용 (maximum TBS의 제약) (2) 여러 개의 HARQ process를 이용하여 각 back-to-back repetition 을 처리하는 것일 수 있다. 나아가, 두 동작 중 어떤 동작을 수행하는지 단말이 네트워크에 시그널링 하고, 그에 따라 네트워크는 스케쥴링을 제한하거나 둘 중 하나의 방식을 결정할 수 있다.
HARQ - ACK timing의 정의
만일 도 8과 같이 각 TTI의 제어채널에서 해당 TTI의 데이터 채널을 독립적으로 스케쥴링하는 환경에서 단말이 반복 전송된 데이터를 컴바이닝하는 경우 HARQ-ACK timing을 정의할 때 단말의 처리 시간 (processing time)이 고려될 수 있다. 즉, 매 TTI마다 단말이 제어채널을 디코딩하고 해당 제어채널이 스케쥴링하는 데이터를 소프트 버퍼에 저장하는데 걸리는 시간을 고려하여, 단말은 도중에 반복 전송된 데이터를 수신하더라도 해당 시간만큼 기다린 후에 컴바이닝을 수행할 수 있다. 따라서, 데이터 전송의 반복 횟수에 따라 상기 소요 시간이 누적되어 각 TTI 별로 HARQ timing이 다르게 정의될 수 있다. 이러한 환경을 고려하여, 데이터의 반복 횟수 혹은 최대 반복 가능한 횟수를 기준으로 처리 시간을 반영하여 HARQ timing을 정의할 수 있다.
상기 동작을 위해 기지국은 단말에게 데이터를 반복 전송하는 시작지점, 끝지점 그리고/혹은 반복횟수 등의 정보를 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)으로 알려줄 수 있고, 더 나아가 데이터의 RV값으로 암시적으로 (implicit) 알려줄 수도 있다. 예를 들면, 기지국은 시스템에 사전에 패턴 (예를 들면, RV 0-2-3-1)을 정의함으로써 해당 데이터의 RV 값을 통해 단말이 암시적으로 상기 정보를 알 수 있도록 할 수 있다. 또는, RV 값 자체가 활용될 수도 있다. 예를 들어 RV 0이면 반복 전송의 시작, RV 1이면 반복 전송의 끝에 사용하도록 사전에 정의될 수 있다. 한편, 기지국은 상기 반복횟수를 단말에게 알려주는 경우, 고정된 반복횟수를 알려줄 수도 있고, 최대 반복 가능한 횟수를 알려줄 수도 있다.
HARQ process ID의 최대 개수의 변형
본 발명의 예 또는 구현 예에 따르면, 데이터를 반복 전송에 있어서, HARQ process ID의 최대 개수가 시스템에 정의된 최대 HARQ process ID 개수와 다르게 정의될 수 있다. 예를 들면, 시스템에 정의된 최대 HARQ process ID 개수가 16 개, 데이터의 반복 전송횟수가 4 회인 경우, 서로 다른 TB의 반복 전송 간 전송 시점이 겹치지 않는다는 가정 하에 16/4 = 4 (즉, 시스템에 정의된 maximum HARQ process ID 개수/데이터 반복 전송 횟수)를 데이터 반복 전송을 적용하는 경우의 최대 HARQ process ID 개수로 가정할 수 있다. 이러한 본 발명의 예 또는 구현 예에 따르면, 4 bits로 할당된 DCI의 HARQ process number 영역에서 2 bits만 사용해도 되므로 DCI bit을 줄일 수 있다. 이 경우 DCI의 사이즈 자체를 작은 크기로 가정할 수도 있고, 기존과 동일한 사이즈로 가정할 수도 있다. 후자의 경우, 나머지 bit (기존에 해당 DCI field에 가정된 bits의 MSB 혹은 LSB)을 통해, 사전에 설정되거나 기지국으로부터 상위 계층 (higher layer) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 지시된 알려진 비트 (known bit) 혹은 제로 패딩 (zero padding)이 전송될 수 있으며, 상기 나머지 bit이 virtual CRC로 활용될 수도 있다.
한편, 전술한 바와 같이 최대 HARQ process ID 개수를 시스템에 정의된 최대 HARQ process ID 개수와 다르게 가정하게 되면 (i) 반복전송이 적용된 데이터와 그렇지 않은 데이터 간, 혹은 (ii) legacy TTI 길이로 전송되는 데이터와 반복전송이 적용된 더 짧은 TTI로 전송되는 데이터 간 동적으로 스케쥴링되는 HARQ process ID 개수가 부족하게 되는 문제가 발생할 수 있다. 따라서 legacy TTI 길이로 전송되는 데이터 혹은 반복전송이 적용되지 않는 데이터를 위해서 필요한 최소한의 개수 (예컨대, 8개)를 보장하는 방법도 고려될 수 있다.
예를 들면, 최소 8개의 HARQ process ID 개수를 보장하기 위해서, 데이터를 반복 전송할 때 가정하는 maximum HARQ process ID의 개수는 max (8, (시스템에 정의된 maximum HARQ process ID 개수/데이터 반복 전송 횟수)) 로 정의될 수 있다. 상기 제한 즉, 최소 HARQ process ID 개수는 기지국이 단말에게 상위 계층 (higher layer) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 지시하거나 시스템에 사전에 정의될 수 있다. 한편, 데이터를 반복 전송할 때 서로 다른 TB의 반복 전송 간 전송 시점이 겹치는 경우에는 시스템에 정의된 maximum HARQ process ID 개수가 그대로 적용될 수 있다.
본 발명의 예 또는 구현 예에 따르면, 상기 maximum HARQ process ID의 개수와 관련하여 소프트 버퍼의 비트 사이즈 (bit size)를 결정하는 수학식이 정의될 수 있다. 예를 들면, legacy TTI보다 짧은 TTI (예컨대, sTTI)로 전송되는 데이터의 소프트 버퍼의 비트 사이즈는 (i) slot 길이의 TTI의 경우 [수학식 1]과 같이 정의될 수 있고, (ii) sub-slot 길이의 TTI의 경우 [수학식 2]와 같이 정의될 수 있다.
Figure PCTKR2019003870-appb-img-000005
Figure PCTKR2019003870-appb-img-000006
[수학식 1] 및 [수학식 2]는 데이터의 전송단위를 고려하여 소프트 버퍼의 비트 사이즈를 결정하는 것이므로, maximum HARQ process ID 개수가 다르게 가정되더라도 소프트 버퍼의 비트 사이즈는 동일하게 유지될 수 있다. 이를 위해 상기 수식에서
Figure PCTKR2019003870-appb-img-000007
대신
Figure PCTKR2019003870-appb-img-000008
이 적용될 수 있다. 다만, [수학식 1] 및 [수학식 2]에서
Figure PCTKR2019003870-appb-img-000009
은 시스템에 정의된 maximum HARQ process ID 개수일 수도 있고, 데이터의 반복 전송이 수행되는 경우 가정되는 maximum HARQ process ID 개수일 수도 있다. 다시 말해, 데이터의 전송횟수에 따라 상기 방식을 적용하여 시스템에서 정의된 maximum HARQ process ID 개수와 다르게 maximum HARQ process ID 개수를 가정할 수 있고, 이 값을 상기
Figure PCTKR2019003870-appb-img-000010
파라미터에 대입하여 소프트 버퍼의 비트 사이즈를 결정할 수 있다. 여기서 maximum HARQ process ID의 개수는 기지국이 단말에게 상위 계층 시그널링 (higher layer signaling) 그리고/혹은 물리 계층 시그널링 (physical layer signaling)을 통해 설정할 수 있으며, 상기
Figure PCTKR2019003870-appb-img-000011
의 경우 데이터의 반복 전송 횟수에 따라 다르게 가정될 수 있다.
또한, 본 발명의 예 또는 구현 예에 따르면, TB를 반복 전송할 때 서로 다른 길이의 TTI length로 전송되는 경우 circular buffer rate-matching 이 적용될 수 있다. 이 때, circular buffer rate-matching은 반복 전송된 데이터 중 첫 번째 데이터의 TTI length에 기반하여 수행되거나 반복 전송된 데이터 중 짧은 TTI length 혹은 긴 TTI length에 기반하여 수행될 수 있다.
도 10은 본 발명의 예 또는 구현 예에 따른 무선 통신 시스템에서 단말이 전송 블록 (Transport Block, TB)을 수신하는 방법을 설명하기 위한 순서도이다. 구체적으로, 상기 방법은 상기 TB 를 복수의 전송시간간격들 각각에서 수신하는 것 (s1010)과 기지국으로부터 상기 TB의 컴바이닝 (combining)에 관한 정보를 수신하는 것 (s1020)과 상기 수신된 TB들을 디코딩하는 것 (s1030)을 포함한다. 특히, 상기 정보가 비-컴바이닝 (non-combining)을 나타내면 상기 단말은 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는 것을 특징으로 한다.
한편, 상기 정보가 컴바이닝을 나타내면, 상기 단말은 상기 수신된 TB들을 컴바이닝하여 디코딩하는 것을 특징으로 한다.
한편, 상기 단말은 특정 개수의 전송시간간격으로 구성되는 윈도우 (window) 내에서만 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는 것을 특징으로 한다.
한편, 상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB 및 제 2 전송시간간격에서 수신된 제 2 TB는 동일한 HARQ (Hybrid Automatic Repeat and Request) 프로세스 번호와 연관되는 것을 특징으로 한다. 특히, 상기 단말은 상기 제 1 TB 및 상기 제 2 TB를 서로 구분되는 소프트 버퍼(soft buffer)에 저장하는 것을 특징으로 한다.
한편, 상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB는 제1 HARQ 프로세스 번호와 연관되고 제 2 전송시간간격에서 수신된 제 2 TB는 상기 제1 HARQ 프로세스 번호와는 다른 제2 HARQ 프로세스 번호와 연관되는 것을 특징으로 한다. 특히, 상기 제 1 TB와 상기 제 2 TB 중 어느 하나에 대해 ACK이 결정되면, 상기 단말은 상기 제 1 TB가 저장된 소프트 버퍼와 상기 제 2 TB가 저장된 소프트 버퍼를 플러쉬하는 것을 특징으로 한다.
한편, 상기 수신된 TB들은 수신된 순서에 기초하여 순차적으로 디코딩되는 것을 특징으로 한다. 특히, 상기 단말은 전송시간간격 n에서 수신된 TB n에 대한 ACK이 결정되면, 전송시간간격 n+i 에서 수신된 TB n+i에 대한 디코딩을 시도하지 않으며, 여기서 i>0인 정수인 것을 특징으로 한다.
한편, 상기 방법은 상기 TB를 스케쥴링하는 DCI (Downlink Control Information)를 수신하는 것을 더 포함하는 것을 특징으로 한다. 특히, 상기 DCI는 상기 TB를 위한 HARQ 프로세스 번호 필드를 포함하고, 반복 전송되는 상기 TB를 위한 HARQ 프로세스의 최대 개수 N1은 상기 무선 통신 시스템에서 지원되는 HARQ 프로세스의 최대 개수 N2보다 작고, 상기 HARQ 프로세스 번호 필드의 크기는 N1을 기반으로 결정되는 것을 특징으로 한다.
도 11은 본 발명을 구현하기 위한 시스템을 예시한 도면이다.
도 11을 참조하면, 무선 통신 시스템은 기지국(BS) (10) 및 하나 이상의 단말(UE) (20)를 포함한다. 하향링크에서, 송신기는 BS (10)의 일부일 수 있고, 수신기는 UE (20)의 일부일 수 있다. 상향링크에서, BS (10)는 프로세서 (11), 메모리 (12), 및 송수신기 (13)를 포함 할 수 있다. 프로세서 (11)는 본 출원에 기재된 제안된 절차들 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리 (12)는 프로세서 (11)와 결합되어 프로세서 (11)를 동작시키기 위한 다양한 정보를 저장한다. 송수신기 (13)는 프로세서 (11)와 결합되어 무선 신호를 송신 및/또는 수신한다. UE (20)는 프로세서 (21), 메모리 (22) 및 송수신기 (23)를 포함 할 수 있다. 프로세서 (21)는 본 출원에서 설명된 제안된 절차 및/또는 방법을 구현하도록 구성 될 수 있다. 메모리 (22)는 프로세서 (21)와 결합되어 프로세서 (21)를 동작시키기 위한 다양한 정보를 저장한다. 송수신기 (23)는 프로세서 (21)와 결합되어 무선 신호를 송신 및/또는 수신한다. BS (10) 및/또는 UE (20)는 단일 안테나 및 다중 안테나를 가질 수 있다. BS (10) 및 UE (20) 중 적어도 하나가 다중 안테나를 갖는 경우, 무선 통신 시스템은 MIMO (multiple input multiple output) 시스템으로 불릴 수 있다.
본 명세서에서 단말의 프로세서(21)와 기지국의 프로세서(11)는 각각 단말(20) 및 기지국(10)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(11, 21)를 언급하지 않는다. 특별히 프로세서(11, 21)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명에서는 5세대(5G) 통신 시스템을 위한 새롭고 다양한 프레임 구조를 제안한다. 차세대 5G 시스템에서는 향상된 모바일 브로드밴드 (Enhanced Mobile BroadBand, eMBB), 고 신뢰도 기계 타입 통신 (Ultra-reliable Machine-Type Communications, uMTC), 대규모 기계 타입 통신 (Massive Machine-Type Communications, mMTC) 등으로 시나리오를 구분할 수 있다. 향상된 모바일 브로드밴드는 높은 스펙트럼 효율 (High Spectrum Efficiency), 높은 사용자 경험의 데이터 전송률 (High User Experienced Data Rate), 높은 피크 데이터 속도 (High Peak Data Rate) 등의 특성을 갖는 차세대 이동통신 시나리오다. 고 신뢰도 기계 타입 통신은 고 신뢰도 (Ultra Reliable), 초 저 지연 (Ultra Low Latency), 초 고 가용성 (Ultra High Availability) 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), 대규모 기계 타입 통신은 저 비용 (Low Cost), 저 에너지 (Low Energy), 짧은 패킷 (Short Packet), 대규모 연결성 (Massive Connectivity) 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).
본 발명의 예 또는 구현 예에 따른 전송 블록 (Transport Block, TB)을 수신하는 단말은 송수신기 (Transceiver) 및 프로세서를 포함할 수 있다. 상기 송수신기는 PDCCH 및 PDSCH를 포함하는 무선 신호를 수신하고, PUCCH 및 PUSCH를 포함하는 무선신호를 전송할 수 있다. 한편, 상기 송수신기는 RF (Radio Frequency) 유닛을 포함할 수 있다.
이상에서 설명된 예 또는 구현 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 예 또는 구현 예를 구성하는 것도 가능하다. 본 발명의 예 또는 구현 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 예 또는 구현 예의 일부 구성이나 특징은 다른 예 또는 구현 예에 포함될 수 있고, 또는 다른 예 또는 구현 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 예 또는 구현 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말은 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 전송 블록 (Transport Block, TB)을 수신하는 방법에 있어서,
    상기 TB를 복수의 전송시간간격들 각각에서 수신;
    기지국으로부터 상기 TB의 컴바이닝 (combining)에 관한 정보를 수신; 및
    상기 수신된 TB들을 디코딩하는 것을 포함하고,
    상기 정보가 비-컴바이닝 (non-combining)을 나타내면 상기 단말은 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는, 방법.
  2. 제 1 항에 있어서,
    상기 정보가 컴바이닝을 나타내면, 상기 단말은 상기 수신된 TB들을 컴바이닝하여 디코딩하는, 방법.
  3. 제 1 항에 있어서,
    상기 단말은 특정 개수의 전송시간간격으로 구성되는 윈도우 (window) 내에서만 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는, 방법.
  4. 제 1 항에 있어서,
    상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB 및 제 2 전송시간간격에서 수신된 제 2 TB는 동일한 HARQ (Hybrid Automatic Repeat and Request) 프로세스 번호와 연관되고,
    상기 단말은 상기 제 1 TB 및 상기 제 2 TB를 서로 구분되는 소프트 버퍼(soft buffer)에 저장하는, 방법.
  5. 제 1 항에 있어서,
    상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB는 제1 HARQ 프로세스 번호와 연관되고 제 2 전송시간간격에서 수신된 제 2 TB는 상기 제1 HARQ 프로세스 번호와는 다른 제2 HARQ 프로세스 번호와 연관되며,
    상기 제 1 TB와 상기 제 2 TB 중 어느 하나에 대해 ACK이 결정되면, 상기 단말은 상기 제 1 TB가 저장된 소프트 버퍼와 상기 제 2 TB가 저장된 소프트 버퍼를 플러쉬하는 것을 포함하는, 방법.
  6. 제 1 항에 있어서,
    상기 수신된 TB들은 수신된 순서에 기초하여 순차적으로 디코딩되며,
    상기 단말은 전송시간간격 n에서 수신된 TB n에 대한 ACK 이 결정되면, 전송시간간격 n+i 에서 수신된 TB n+i에 대한 디코딩을 시도하지 않으며, 여기서 i>0인 정수인, 방법.
  7. 제 1 항에 있어서,
    상기 TB를 스케쥴링하는 DCI (Downlink Control Information)를 수신하는 것을 더 포함하고,
    상기 DCI는 상기 TB를 위한 HARQ 프로세스 번호 필드를 포함하고,
    반복 전송되는 상기 TB를 위한 HARQ 프로세스의 최대 개수 N1은 상기 무선 통신 시스템에서 지원되는 HARQ 프로세스의 최대 개수 N2보다 작고,
    상기 HARQ 프로세스 번호 필드의 크기는 N1을 기반으로 결정되는, 방법.
  8. 무선 통신 시스템에서 전송 블록 (Transport Block, TB)을 수신하는 단말에 있어서,
    송수신기 (transceiver); 및
    프로세서를 포함하고,
    상기 프로세서는,
    상기 송수신기를 제어하여 상기 TB를 복수의 전송시간간격들 각각에서 수신하고,
    상기 송수신기를 제어하여 기지국으로부터 상기 TB의 컴바이닝 (combining)에 관한 정보를 수신하고,
    상기 수신된 TB들을 디코딩하며,
    상기 프로세서는 상기 정보가 비-컴바이닝 (non-combining)을 나타내면 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는, 단말.
  9. 제 8 항에 있어서,
    상기 정보가 컴바이닝을 나타내면, 상기 프로세서는 상기 수신된 TB들을 컴바이닝하여 디코딩하는, 단말.
  10. 제 8 항에 있어서,
    상기 프로세서는 특정 개수의 전송시간간격으로 구성되는 윈도우 (window) 내에서만 상기 수신된 TB들을 컴바이닝하지 않고 디코딩하는, 단말.
  11. 제 8 항에 있어서,
    상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB 및 제 2 전송시간간격에서 수신된 제 2 TB는 동일한 HARQ (Hybrid Automatic Repeat and Request) 프로세스 번호와 연관되고,
    상기 프로세서는 상기 제 1 TB 및 상기 제 2 TB를 서로 구분되는 소프트 버퍼 (soft buffer)에 저장하는, 단말.
  12. 제 8 항에 있어서,
    상기 수신된 TB들 중 제 1 전송시간간격에서 수신된 제 1 TB는 제1 HARQ 프로세스 번호와 연관되고 제 2 전송시간간격에서 수신된 제 2 TB는 상기 제1 HARQ 프로세스 번호와는 다른 제2 HARQ 프로세스 번호와 연관되며,
    상기 제 1 TB와 상기 제 2 TB 중 어느 하나에 대해 ACK이 결정되면, 상기 프로세서는 상기 제 1 TB가 저장된 소프트 버퍼와 상기 제 2 TB가 저장된 소프트 버퍼를 플러쉬하는 것을 포함하는, 단말.
  13. 제 7 항에 있어서,
    상기 프로세서는,
    상기 수신된 TB들을 수신된 순서에 기초하여 순차적으로 디코딩하며,
    전송시간간격 n에서 수신된 TB n에 대한 ACK 이 결정되면, 전송시간간격 n+i 에서 수신된 TB n+i에 대한 디코딩을 시도하지 않으며, 여기서 i>0인 정수인, 단말.
  14. 제 6 항에 있어서,
    상기 프로세서는,
    상기 송수신기를 제어하여 상기 TB를 스케쥴링하는 DCI (Downlink Control Information)을 더 수신하며,
    상기 DCI는 상기 TB를 위한 HARQ 프로세스 번호 필드를 포함하고,
    반복 전송되는 상기 TB를 위한 HARQ 프로세스의 최대 개수 N1은 상기 무선통신 시스템에서 지원되는 HARQ 프로세스의 최대 개수 N2보다 작고,
    상기 HARQ 프로세스 번호 필드의 크기는 N1을 기반으로 결정되는, 단말.
PCT/KR2019/003870 2018-04-06 2019-04-02 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말 WO2019194535A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862653670P 2018-04-06 2018-04-06
US62/653,670 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019194535A1 true WO2019194535A1 (ko) 2019-10-10

Family

ID=68101095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003870 WO2019194535A1 (ko) 2018-04-06 2019-04-02 무선 통신 시스템에서 전송 블록을 수신하는 방법 및 이를 위한 단말

Country Status (1)

Country Link
WO (1) WO2019194535A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151389A1 (zh) * 2020-01-30 2021-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113225167A (zh) * 2020-02-04 2021-08-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259066A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126367A1 (en) * 2014-09-02 2017-05-04 Panasonic Intellectual Property Corporation Of America Wireless communication method and wireless communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126367A1 (en) * 2014-09-02 2017-05-04 Panasonic Intellectual Property Corporation Of America Wireless communication method and wireless communication device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Techniques for downlink control in URLLC.", 3GPP TSG RAN WG1 MEETING #92 RL-1802878, 16 February 2018 (2018-02-16), Athens, Greece, XP051397363 *
HUAWEI ET AL.: "Blind/HARQ-less Repetition for Scheduled DL-SCH Operation", R1-1803711. 3GPP TSG RAN WG1 MEETING #92BIS, 5 April 2018 (2018-04-05), Sanya, China, XP051412887 *
HUAWEI ET AL.: "Compact DCI for LTE URLLC.", 3GPP TSG RAN W GI MEETING #92 R1-1801873, 16 February 2018 (2018-02-16), Athens, Greece, XP051397440 *
LG ELECTRONICS: "Candidate techniques for DL control for LIE URLLC.", 3GPP T SG RAN WG1 MEETING #92 R1-1802180, 16 February 2018 (2018-02-16), Athens, Greece, XP051397185 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021151389A1 (zh) * 2020-01-30 2021-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113225167A (zh) * 2020-02-04 2021-08-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113225167B (zh) * 2020-02-04 2022-07-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259066A (zh) * 2020-02-08 2021-08-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259066B (zh) * 2020-02-08 2022-07-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Similar Documents

Publication Publication Date Title
WO2018084488A1 (ko) 무선 통신 시스템에서 동적 가변 사이즈의 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2017213421A1 (ko) 무선 통신 시스템에서 레이턴시 감소를 위한 신호 송수신 방법 및 이를 위한 장치
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2013191518A1 (ko) 기기-대-기기 통신을 위한 스케줄링 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2013147490A1 (ko) 무선 통신 시스템에서 무선 자원의 동적 자원 변경을 위한 harq 수행 방법 및 이를 위한 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2012144842A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2017119771A1 (ko) 무선 통신 시스템에서 다중 채널을 이용한 에러 복구 방법 및 이를 위한 장치
WO2013055159A2 (ko) 데이터 송수신 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2011002173A2 (ko) 다중 안테나 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2013115519A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2017043947A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780672

Country of ref document: EP

Kind code of ref document: A1