WO2009145325A1 - 移動体相対位置検出システム及び相対位置検出を行う移動体 - Google Patents

移動体相対位置検出システム及び相対位置検出を行う移動体 Download PDF

Info

Publication number
WO2009145325A1
WO2009145325A1 PCT/JP2009/059917 JP2009059917W WO2009145325A1 WO 2009145325 A1 WO2009145325 A1 WO 2009145325A1 JP 2009059917 W JP2009059917 W JP 2009059917W WO 2009145325 A1 WO2009145325 A1 WO 2009145325A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
signal
radio station
transmitter
relative position
Prior art date
Application number
PCT/JP2009/059917
Other languages
English (en)
French (fr)
Inventor
藤原亮介
宮崎祐行
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010514564A priority Critical patent/JPWO2009145325A1/ja
Publication of WO2009145325A1 publication Critical patent/WO2009145325A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector

Definitions

  • Mobile body relative position detection system and mobile body performing relative position detection are Mobile body relative position detection system and mobile body performing relative position detection
  • the present invention relates to a technique for detecting the position of a moving body, and more particularly to a technique for detecting a relative position between moving bodies using a wireless communication function.
  • a method for measuring the position of a moving body As a method for measuring the position of a moving body, a method using GPS (G lob io ti io ign sy s s te em) and a method using a radio radar (particularly millimeter wave band) are known.
  • a time difference when signals transmitted from the terminal are received by a plurality of base stations is calculated, and the time difference is multiplied by the speed of light, so that the node to each base station can be calculated.
  • a system that calculates the propagation distance of a signal and detects the position of the node based on it has been proposed (for example, Satoshi Sugano and five others, “Wireless LAN integrated access system (1) Study of position detection system” , 2003 General Conference Proceedings, The Institute of Electronics, Information and Communication Engineers, B-5-203, p.
  • Japanese Unexamined Patent Application Publication No. 2005-140617 discloses a terminal positioning system having a plurality of base stations.
  • This terminal positioning system includes a position calculation server, an end access point (base station), a reference station, and a node (terminal).
  • base station an end access point
  • reference station a reference station
  • node node
  • Each base station and the location calculation server are connected by a wired network. Disclosure of the invention
  • the TOA method is a method for determining the position I by measuring the propagation time of a radio signal to obtain the distance I between a terminal whose position is to be measured and a plurality of base stations.
  • the TOA method since it is necessary to synchronize the time between the terminal and the base station, normally, the terminal and each base station exchange exchange signals. For this reason, there is a problem that the processing on the terminal side increases.
  • the TDOA method is a method for determining the position of a terminal by obtaining a distance difference between the terminal and each base station. Unlike the TO A method, the TDOA method does not require synchronization between the terminal and the base station, reducing the load on the terminal. However, the TDO A method requires synchronization between base stations, so it is usually necessary to provide an extra reference station called a reference station, which complicates the system. There was a problem.
  • An object of the present invention is to realize relative position detection between moving objects with a simple configuration and simple processing.
  • the representative invention disclosed in this application detects the relative positions of the first radio station and the second radio station.
  • the first wireless station includes a first transmitter / receiver for transmitting / receiving a radio signal, a first receiver for receiving a radio signal, the first transmitter / receiver, and a tine first receiver.
  • a first computing device to be connected wherein the second radio station comprises a second transceiver for transmitting and receiving a radio signal, the first transceiver for measuring a ranging signal, and the second transceiver
  • the selfish ranging signal is received, a reply signal is transmitted after a predetermined time, the selfish first transmitter / receiver receives the selfish reply signal, and the gf!
  • FIG. 1 is a block diagram showing the configuration of the relative position detection system according to the first embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing a procedure of relative position detection processing executed in the relative position detection system according to the first embodiment of the present invention.
  • FIG. 3 is a time chart for explaining the calculation principle of the relative position in the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the calculation principle of the corresponding position in the first embodiment of the present invention.
  • FIG. 5 is a sequence diagram showing a first example of relative position detection processing executed in the relative position detection system according to the first embodiment of the present invention.
  • FIG. 6 is executed in the relative position detection system according to the first embodiment of the present invention.
  • FIG. 10 is a sequence diagram showing a second example of relative position detection processing.
  • FIG. 7 is a block diagram showing a configuration example of a transmission / reception device and a reception device according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the relative position detection system according to the second embodiment of the present invention.
  • FIG. 9 is a sequence diagram showing a first example of relative position detection processing executed in the relative position detection system according to the second embodiment of the present invention.
  • FIG. 10 is a sequence diagram showing a second example of the relative position detection process executed in the relative position detection system according to the second embodiment of the present invention.
  • FIG. 11 is a time chart for explaining the calculation principle of the relative position in the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the relative position detection system according to the first embodiment of the present invention.
  • the relative position detection system includes a first moving body 101 and a second moving body 102.
  • the first mobile unit 101 is a mobile radio station that includes a server (Server) 103, a transceiver (Transceiver) 104, and one or more receivers (Receiver) 105.
  • the first mobile unit 101 includes a receiving device (Receiverl) 105 a and a receiving device (Receiver 2) 105 b as one or more receiving devices 105.
  • the present invention can be applied to both the receiving device 105a and the receiving device 105b.
  • the second mobile unit 102 is a mobile radio station that includes a transceiver 106.
  • the server 103 is a calculation device that is connected to the transmission / reception device 104, the reception device 105a, and the reception device 105b, and calculates a relative position based on information received from these devices.
  • the server 103 may include, for example, a memory (not shown) that stores received information, and a processor (not shown) that calculates a relative position based on the information stored in the memory.
  • the configurations of the transmission / reception device 104, the transmission / reception device 106, the reception device 105a, and the reception device 105b will be described later (see FIG. 7).
  • FIG. 2 is an explanatory diagram showing a procedure of relative position detection processing executed in the relative position detection system according to the first embodiment of the present invention.
  • the transmission / reception device 104 of the first moving body 101 outputs a ranging signal (Ragin g s i gna 1) 201.
  • the knitted ranging signal 201 is received by the receiving device 105 of the first moving body 101 and the receiving device 106 of the second moving body 102.
  • the distance measurement signal 201 received by the receiving device 105 of the first moving body 101 is the distance measurement signal 201a
  • the distance measurement signal 201 received by the transmission / reception device 106 of the second moving body 102 is the distance measurement signal 201.
  • the transmission / reception device 106 of the second moving body 102 When the transmission / reception device 106 of the second moving body 102 receives the distance measurement signal 201 b, the transmission / reception device 106 says a reply signal (Reply i ng s i gn a l) 202.
  • the said reply signal 202 is received by the transmission / reception device 104 and the reception device 105.
  • the reply signal 202 received by the transmitting / receiving device 104 of the first mobile unit 101 is described as a reply signal 202 a
  • the reply signal 202 received by the receiver 105 of the first mobile unit 101 is described as a reply signal 202 b.
  • the transmission / reception device 104 of the first moving body 101 measures the time (T resu 1 t 1) from the time when the ranging signal 201 is said to the time when the reply signal 202 a is received.
  • the receiving device 105 of the first moving body 101 receives the distance measurement signal 201 a and the return signal 2 02 b, and measures the reception time difference (T—resu 1 t 2) between them.
  • the server 103 of the first moving body 101 receives the measurement results 203 and 204 from the transmission / reception device 104 and the reception device 105, respectively.
  • the measurement result 203 from the communication device 104 includes at least T—re s u 1 t 1.
  • the measurement result 204 from the receiving device 105 includes at least T—re s 1 t 2.
  • the server 103 calculates the relative position of the second moving body 102 with respect to the first moving body 101 based on the measurement results (step 205).
  • FIG. 3 is a time chart for explaining the calculation principle of the relative position in the first embodiment of the present invention.
  • FIG. 3 shows transmission / reception timings of the ranging signal 201 and the return signal 202 shown in FIG.
  • the distance measurement signal 201 and the return signal 202 described in FIG. 2 may be any signal.
  • these signals are transmitted and received as packets shown in FIG.
  • Packet configuration examples transmitted and received in the present embodiment include a preamble part (P), a star frame delimiter (S FD) unit (S), and a data unit.
  • P preamble part
  • S FD star frame delimiter
  • S data unit
  • the speech time and reception time can be measured based on any part of the packet. In this embodiment, an example in which measurement is performed with the start point of the data portion as a reference is shown.
  • the data portion may include a mobile unit that maintains a packet (or a mobile unit that transmits a packet).
  • FIG. 3 shows, as an example, the timing for transmitting the packet 301 and the packet 302 for 5 3 ⁇ 4 times.
  • the packet 301 corresponds to the ranging signal 201 stated by the communication device 104 of the first moving body 101.
  • the receiving device 105 of the first moving body 101 receives the signal.
  • the resulting bucket 301 is illustrated as bucket 301a.
  • a bucket 301 received by the transmission / reception device 106 of the second moving body 102 is illustrated as a bucket 301b. That is, the packets 301a and 301b correspond to the ranging signals 201a and 201b in Fig. 2, respectively.
  • the packet 302 corresponds to the reply signal 202 transmitted by the transmission / reception device 106 of the second mobile unit 102.
  • the bucket 302 received by the receiving device 105 of the first moving body 101 is shown as a bucket 302b.
  • a packet 302 received by the transmission / reception device 104 of the first mobile unit 101 is shown as a packet 302a. That is, the buckets 302 a and 302 b correspond to the reply signals 20 2 a and 202 b in FIG. 2, respectively.
  • the shaded bucket is a male bucket, and the bucket indicated by «is a received bucket.
  • the communication device 104 of the first mobile unit 101 measures a time T ⁇ r e su 1 t 1 from when the packet 301 is said to when the packet 302 a is received. This corresponds to T ⁇ r e s u 1 t 1 shown in FIG. T r rr in FIG. 3 indicates the propagation time of the bucket ⁇ from the transmitting device 104 of the first moving body 101 to the transmitting / receiving device 106 of the second moving body 102 (and vice versa).
  • Ta r r can be obtained by subtracting Tb from T—r e s u 1 t 1 and dividing by 2 (see Equation (1)).
  • T b is a processing time from when the transmitting / receiving device 106 of the second mobile unit 102 receives the packet 301 b until it transmits the bucket 302, and is a signal such as a circuit delay amount, reception 'transmission processing, etc. Includes processing time. Further, this Tb may be determined in any way as long as it is accurately known by the entity that calculates Ta rr (in this embodiment, the server 103). For example, an arbitrary waiting time may be inserted. May be determined by the entity that calculates Ta rr (in this embodiment, the server 103). For example, an arbitrary waiting time may be inserted. May be determined by
  • the receiving device 105 of the first mobile unit 101 receives the reception time of the packet 301a.
  • Time T—resu 1 t 2 from the reception time of bucket 3 0 2 b is measured. This corresponds to T-resu 1 t 2 shown in Fig. 2.
  • Ta shown in FIG. 3 indicates the propagation time of the bucket up to the transmitting / receiving device 1 0 4 force of the first mobile body 1 0 1 to the receiving device 1 0 5. If the transmission / reception device 10 4 and the reception device 10 5 are relatively fixed and their other points are known, Ta is also known.
  • T a r rr By multiplying T a r rr by the speed of light, the following example is calculated from the transmitting / receiving device 10 04 of the first mobile unit 10 1 to the transmitting device 1 0 6 of the second mobile unit 1 0 2. For this reason, it is possible to draw a circle centered on the communication device 104 and centering on the calculated height.
  • the transmission / reception device 1 0 4 force of the first mobile unit 10 1, the distance from the second mobile unit 1 0 2 to the transmission / reception device 1 0 6, and the reception
  • the difference between the device 1 0 5 and the transmission / reception device 1 0 6 is calculated. Therefore, based on the calculated difference, it is possible to draw a hyperbola with the transmission / reception device 104 and the reception device 105 as focal points.
  • the intersection of these two curves is the transmission / reception device 10 4 calculated based on T arr, the other »and the transmission / reception device 10 4 calculated based on T diff and the reception device 10. This is a point that satisfies both «difference from 5 and. Therefore, by calculating the intersection of these two curves, the relative position of the transmitting / receiving device 1 06 of the second moving body 1 0 2 with respect to the transmitting / receiving device 1 0 4 of the first moving body 1 0 1 is calculated. Can. That is, the intersection of these two curves is the relative position of the transmitting / receiving device 1 0 6 of the second moving body 1 0 2 with respect to the transmitting / receiving device 1 0 4 of the first moving body 1 0 1. It corresponds to.
  • FIG. 4 is an explanatory diagram of the calculation principle of the relative position in the first embodiment of the present invention.
  • the above is for explaining the calculation principle of the relative position, and the specific calculation method for realizing the calculation based on the above principle is not limited.
  • the most probable relative position may be estimated using the least squares method.
  • Fig. 4 shows only one intersection between a circle and a hyperbola, but in reality, it passes through the transmitting / receiving device 10 4 and the receiving device 1 0 5 with the axis of symmetry as the position of the indicated intersection and line. There is another intersection. For this reason, out of the entire range that can be seen from the first moving body 1001 (ie, 360 degrees), a predetermined 180 degree range (specifically, it is divided into two by the above-mentioned symmetry axis). In one of the ranges, the relative position of the second moving body 102 can be uniquely detected. Such a relative position detection system can be used, for example, at a construction site, for safety purposes behind the machine.
  • the first moving body 1 0 1 needs to include at least two receiving devices 1 0 5 (for example, receiving devices 1 0 5 a and 1 0 5 b shown in FIG. 1).
  • the two receiving devices 1 0 5 are connected to each other in FIG.
  • the difference between the distance from the transmission / reception device 10 04 to the transmission / reception device 10 6 and the distance from the reception device 1 0 5 b force to the transmission / reception device 10 6 can be calculated.
  • intersection of these two hyperbola and the circle drawn by the method shown in Figs. 2-4 is the position where the calculated distance and the difference between the two calculated differences are satisfied, That is, this corresponds to the relative position of the transmitting / receiving device 10 06 of the second moving body 10 02 relative to the transmitting / receiving device 10 04 of the first moving body 10 01.
  • the least square method may be used to estimate the intersection and the intersection.
  • T-resu 1 t 1 and T-resu 1 t 2 shown in Fig. 3 are defined by the speech time and reception time at the antenna end to simplify the explanation. Circuit delay time.
  • the actual measurement results include the circuit delay time of each transceiver circuit, etc., but the circuit delay time of each transceiver circuit is known, so
  • T b shown in FIG. 3 is described as including the delay time of the transmission / reception device 106.
  • each of the transmission / reception device 1 0 4, the reception device 1 0 5 a and the reception device 1 0 5 b includes an antenna 7 0 1 for transmitting / receiving (or receiving) a radio signal (see FIG. 7 described later). See)
  • the antenna 7 0 1 of the transmission / reception device 10 0 4, the antenna 7 0 1 of the reception device 1 0 5 a and the antenna 7 0 1 of the reception device 1 0 5 b need to be arranged at different positions.
  • the above three antennas 7 0 1 need not be positioned on one straight line. There is. In general, as the distance between the three antennas 701 is larger and the distance from each antenna 701 to the straight line including the other two antennas is larger, the relative position can be detected with higher accuracy.
  • a request for ranging and a request for ranging are executed to confirm the existence of the moving chest.
  • FIG. 5 is a sequence diagram showing a first example of relative position detection processing executed in the relative position detection system according to the first embodiment of the present invention.
  • the transmitting / receiving device 104 of the first moving body 101 includes the translation information of the force itself! 3 ⁇ 43 ⁇ 4IJ signal (I dentify signal si gn al) 501 is transmitted at a predetermined timing (for example, periodically) ) Send.
  • the transmission / reception device 106 of the second moving body 102 says a ranging request signal (Range ng que que s t) 502.
  • the transmission / reception device 104 of the first moving body 101 When the transmission / reception device 104 of the first moving body 101 receives the distance measurement request signal 502, it transmits a distance measurement signal 201.
  • The! Re-signals 501a and 501b shown in FIG. For example, if the first mobile unit 101 and the second mobile unit 102 are sufficiently separated from each other, the communication device 106 of the second mobile unit 102 cannot receive the IJ signal 501. However, when the first moving body 101 and the second moving body 102 gradually approach each other, the transmission / reception device 106 can receive the! H IH code 501 before long.
  • the transmitting / receiving device 106 of the second moving body 102 could not receive the IJ signal 5 01 a but could receive the identification signal 501 b. In this case, the transmission / reception device 106 of the second moving body 102 says the ranging request signal 502 in response to the signal 501b.
  • Hand j jet from transmission of ranging signal 201 to calculation of relative position is This is the same as described in FIG.
  • FIG. 6 is a sequence diagram showing a second example of the relative position detection process executed in the relative position detection system according to the first embodiment of the present invention.
  • the second mobile unit 10 2 says the identification signal 6 0 1 including its own identification information.
  • the transmission / reception device 1 0 4 of the first moving body 1 0 1 transmits a ranging signal 2 0 1.
  • the identification signals 6 0 1 a and 6 0 1 b shown in FIG. 6 are identification signals 6 0 1 transmitted periodically.
  • the transmission / reception device 1 0 4 of the first mobile body 1 0 1 was not able to receive the identification signal 6 0 1 a, but was able to receive the identification signal 6 0 1 b.
  • the transmission / reception device 10 4 of the first moving body 10 1 says the “j-distance signal 2 0 1” in response to the identification signal 6 0 1 b.
  • step 2 0 5 The procedure from the distance signal 2 0 1 to the calculation of the relative position (step 2 0 5) is the same as that described in FIG.
  • the detection of the relative position is based on the fact that the detection of the relative position is triggered by the reception of the identification signal. Realized. This also applies to FIGS. 9 and 10 described later.
  • FIG. 7 is a block diagram showing a configuration example of the transmission / reception device 104, the transmission / reception device 106, and the reception device 105 in the first embodiment of the present invention.
  • the equipment shown in Fig. 7 includes an antenna 701, a switch (SW) 702, a receiving analog unit (An a 1 ogpartofreceiver) 703, an i3 ⁇ 4f analog unit (An a 1 ogpartoftran smitter) 704, and a synchronization acquisition unit (Acquisition).
  • T racking synchronization tracking unit
  • S FD detection unit SFD detection
  • Counter Counter
  • F rame frame configuration unit
  • U ⁇ MA C control unit MAC control
  • the frame construction unit 710 constructs a bucket that should be male, modulates it, and creates baseband data.
  • the word analog unit 704 performs frequency conversion, noise removal and amplification of the above-mentioned word baseband data, converts the amplified data into a high-frequency analog signal, and converts the high-frequency analog signal into switches 702 and 702. Send to space via antenna 701.
  • the radio signal received by the antenna 701 is input to the reception analog unit 703 via the switch 702.
  • the reception analog unit 703 performs amplification, frequency conversion, noise removal and analog-digital conversion of the received signal, and generates reception baseband data.
  • the received baseband data is synchronized with the received signal in the synchronization acquisition unit 705 and the synchronization tracking unit 706, and the word data is restored in the demodulation unit 707.
  • the SFD detection unit 708 detects SFD in the packet.
  • the counter 709 measures the packet reception time and speech time.
  • the counter 709 of the transmission / reception device 104 in the first mobile unit measures the time from the time when the bucket is said to the time when the bucket is received, and the reception device 1 in the first mobile unit 1
  • the counter 709 of 05 measures the difference between the reception times of the two buckets.
  • a MAC (Media Acces Control) control unit 711 controls the procedures shown in FIG. 2, FIG. 5, FIG.
  • the distance from the transmission / reception device 104 to the transmission / reception device 106, the distance from the transmission device 104 to the reception device 105, and the power from the transmission / reception device 106 to the reception device 105 are more accurately: Each is the distance between the antennas 701 they have.
  • FIG. 8 is a block diagram showing the configuration of the relative position detection system according to the second embodiment of the present invention.
  • the relative position detection system shown in FIG. 8 is realized by two or more moving bodies having the same configuration as the first moving body 101 in FIG. That is, the configuration of the relative position detection system shown in FIG. 8 is replaced by a second moving body 801 having the same configuration as the first moving body 101 and the second moving body 102 force. The same as shown in FIG.
  • the first mobile unit 101 in FIG. 8 includes a server (Server) 103, a transceiver (Transceiver) 104, a receiver (Receiverl, Receiver 2) 105a and a receiver.
  • Device 105 b is provided.
  • the second mobile unit 801 in FIG. 8 includes a server (Server) 803, a transmitter / receiver (Transceiver) 804, and one or more receivers (Receiver) 805.
  • the second mobile unit 801 includes, as one or more receiving devices 805, a receiving device (Receiver) 805a and a receiving device.
  • “receiving device 805” is referred to ⁇ , and the description of receiving device 805a and receiving device 805b / Can also be applied to misalignment.
  • the server 803, the transmission apparatus 804, the reception apparatus 805a, and the reception apparatus 805b have the same functions as the server 103, the transmission / reception apparatus 104, the reception apparatus 105a, and the reception apparatus 105b in the first moving body 101, respectively. .
  • the transmission / reception device 104 of the first mobile unit 101 and the transmission / reception device 804 of the second mobile unit 801 have the same functions as the transmission / reception device 106 of the second mobile unit 102 in FIG.
  • FIG. 9 is a sequence diagram showing a first example of relative position detection processing executed in the relative position detection system according to the second embodiment of the present invention.
  • the transmission / reception device 804 of the second mobile unit 801 transmits / receives the same ranging signal and reply signal as the transmission / reception device 106 of the second mobile unit 102 of the first embodiment (see FIG. 1 and the like). For this reason, in FIG. 9, the same reference numerals as those transmitted / received by the transmitting / receiving device 106 are assigned to the ranging signals and the like transmitted / received by the transmitting / receiving device 804 in the same manner as in the first embodiment.
  • the first moving body 101 After performing ij and a ranging request (Id nge ng & Rang ing que s est), the first moving body 101 transmits a ranging signal 201. Details of the above identification and ranging request functions will be described later.
  • the transmission / reception device 804 of the second mobile unit 801 transmits the reply signal 202, and the first transfer
  • the procedure until the transmitter / receiver 1 0 4 of the moving body 1 0 1 receives the reply signal 2 0 2 a and measures its round trip time T—result 1 is the same as the procedure of FIG. 2 in the first embodiment. is there.
  • the receiving device 8 0 5 of the second moving body 8 0 1 receives the ranging signal 2 0 1 and the transmitting / receiving device 8 0 4 of the second moving body 8 0 1 and the reply signal 2 0 2 expressed as force. Measure the difference in reception time (T—resu 1 t 3).
  • T reception time
  • the ranging signal 2 0 1 received by the receiving device 8 0 5 of the second moving body 8 0 1 is used as the ranging signal 2 0 1 c and the receiving device 8 of the second moving body 8 0 1 is used.
  • Reply signal 2 0 2 received by 0 5 is described as reply signal 2 0 2 c.
  • the transmission / reception device 1 0 4 of the first mobile unit 10 1 1 adds the distance measurement result with the transmission / reception device 8 0 4 of the second mobile unit 8 0 1 to the second notification 9 0 4 To the transmitting / receiving device 8 0 4 of the mobile unit 8 0 1.
  • the measured SQ3 ⁇ 4result indicates information indicating T—resu 1 t 1 (more specifically, T—resu 1 t 1 itself, or a distance calculated based on T—resuit 1). Information).
  • the server 8 03 of the second moving body 8 0 1 receives the measurement results 9 0 5 and 9 0 6 from the transmission / reception device 8 0 4 and the reception device 8 0 5, respectively.
  • the measurement result 9 0 5 includes at least the measurement result received by the transmission device 80 4 from the transmission / reception device 10 4.
  • the measurement result 9 0 6 includes at least T—r e s u 1 t 3.
  • the server 80 3 uses the same method as that performed by the server 10 3 in the first embodiment, and uses the first mobile unit 100 1
  • the relative position is calculated (step 9 0 7). Specifically, the server 80 3 replaces the circle based on the measurement received from the first mobile body 1 0 1 force and T-resu 1 t 2 in equation (2) with T-resu 1 t 3
  • the relative position of the first moving body 10 0 1 with respect to the second moving body 8 0 1 is calculated based on the hyperbola thus calculated.
  • the server 103 and the receiving device 105 of the first moving body 101 are not shown. However, the server 103 and the receiving device 105 of the second embodiment are the same as in the first embodiment.
  • the first moving body 101 and the second moving body 102 are based on one distance measurement signal 201 and a reply signal 202 corresponding to the distance measurement signal 201, and are relative to each other. You can know the position.
  • FIG. 10 is a sequence diagram showing a second example of the relative position detection process executed in the relative position detection system according to the second embodiment of the present invention.
  • FIG. 10 shows that the server 103 and the receiving device 105 of the first moving body 101 are not shown.
  • the server 103 and the receiving device 105 of the second embodiment are the same as those in the first embodiment.
  • the transmitting / receiving device 804 of the second mobile unit 801 transmits the reply signal 202
  • the transmitting / receiving device 104 of the first mobile unit 101 receives the reply signal 202
  • the round trip time is measured.
  • the two receiving devices 805 of the second moving body 801 measure the difference between the reception time of the distance measurement signal 201 and the reception time of the return signal 202.
  • the distance measurement signal 201 received by the reception device 805a of the second mobile unit 801 is the distance measurement signal 201c
  • the distance measurement signal 201 received by the reception device 805b is the distance measurement signal 201d
  • the reply signal 202 received by a is referred to as a reply signal 202 c
  • the reply signal 202 received by the receiving device 805 b is referred to as a reply signal 202 d.
  • the difference between the reception time of the distance measurement signal 201 c and the reception time of the return signal 202 c is T—resu 1 t 3
  • the difference between the reception time of the distance measurement signal 201 d and the reception time of the return signal 202 d is T — Write resu 1 t 4.
  • the server 803 of the second mobile unit 801 receives the measurement results 1004 and 1005, respectively, of the receiving device 805a and the receiving device 805b.
  • the measurement result 100 4 includes at least T result 3.
  • Measurement result 1005 includes At least T—resu 1 t 4 is included.
  • the server 8 0 3 calculates the relative position of the first moving body 1 0 1 based on the above two measurement results (ie, T—resu 1 t 3 and T—resu 1 t 4) (step 1 0 0 6).
  • FIG. 11 is a time chart for explaining the calculation principle of the relative position in the second embodiment of the present invention.
  • FIG. 11 shows the transmission / reception timing of the distance measurement signal 2 0 1 and the return signal 2 0 2 shown in FIG.
  • the ranging signal 2 0 1 and the return signal 2 0 2 described in FIG. 10 may be any signal, but in the present embodiment, these signals are the buckets shown in FIG. Sent and received.
  • the packet configuration example transmitted and received in the present embodiment is composed of a preamble part (P), an SFD part (S), and a data part (D) force.
  • P preamble part
  • S SFD part
  • D data part
  • speech time and reception time are measured based on the start point of the data part.
  • the receiving power 1 0 5 of the first mobile body 1 0 1 is indicated by the power of the packet S is omitted.
  • the receiving device 1 0 5 is shown in FIG. Packets are sent and received at the same timing.
  • the packet 3 0 1 corresponds to the ranging signal 2 0 1 transmitted by the transmission / reception device 1 0 4 of the first moving body 1 0 1.
  • the bucket 3 0 1 received by the transmitting / receiving device 8 0 4 of the second moving body 8 0 1 is shown as a bucket 3 0 1 b.
  • the bucket 3 0 1 received by the receiving device 8 0 5 a is illustrated as a bucket 3 0 1 c.
  • the bucket 3 0 1 received by the receiving device 8 0 5 b is illustrated as a bucket 3 0 1 d.
  • Packet 302 corresponds to reply signal 202 transmitted by transmission / reception device 804 of second mobile unit 801.
  • the bucket 302 received by the transmission / reception device 104 of the first moving body 101 is shown as a bucket 302a.
  • the bucket 302 received by the receiving device 805a of the second moving body 801 is shown as a bucket 302c.
  • the bucket 302 received by the receiving device 805 b is shown as a bucket 302 d. That is, the buckets 302a, 302c, and 302d correspond to the reply signals 202a, 202c, and 202d in FIG. 10, respectively.
  • the time from the reception time of the distance measurement signal 201 c to the reception time of the return signal 202 c measured by the reception device 805 a of the second mobile unit 801 corresponds to T ⁇ re s u 1 t 3 in FIG.
  • the time from the reception time of the distance measurement signal 2 O l d to the reception time of the return signal 202 d measured by the receiving device 805 b corresponds to T—re su 1 t 4 in FIG.
  • T diff 2 in FIG. 11 indicates the time when the second mobile transceiver 804 received the ranging signal 201 b (i.e., bucket 301 b) and the receiving device 805 a received the ranging signal 201 c (i.e., the bucket 301).
  • 301 c) is the difference in reception time from the time of reception.
  • Td i f f 2 is calculated by subtracting Tb and Tc from T—re s u 1 t 3 (see Equation (3)).
  • Td iff 2 (Tb + Tc-T_resu 1 t 3) (3)
  • Tb is the packet 302 after the transceiver 804 of the second mobile unit 801 receives the packet 301 b.
  • This T b is a known value like Tb in Eq. (1).
  • Tc is the time from when the transmitting / receiving device 804 of the second mobile unit 801 says the reply signal 202 (that is, the packet 302) until the receiving device 805a receives the reply signal 202. Since the distance from the transmitting / receiving device 8004 to the receiving device 805a is known, the value of Tc is also known.
  • T diff 3 indicates the time when the second mobile transceiver 804 received the ranging signal 201 b (ie, bucket 301 b) and the receiving device 805 b received the ranging signal. This is the reception time difference from the time at which the number 201 d (ie, bucket 301 d) is received.
  • Td iff 3 is calculated by subtracting Tb and Td from T—resu 1 t 4 (see equation (4)).
  • Td iff 3 (Tb + Td-T_re esu 1 t 4) (4) where T d is the response after the transmitting / receiving device 804 of the second mobile unit 801 transmits the reply signal 202. This is the time until the receiving device 805 b receives the signal 202. Since the distance from the transmitter / receiver 804 to the receiver 805b is known, the value of Td is also known.
  • the transmission / reception device 804 of the second mobile unit 801 By multiplying Td iff 2 by the speed of light, the transmission / reception device 804 of the second mobile unit 801, the power of the first mobile unit 101 to the transmission device 104, and the reception device 8 05a to the transmission device 104 The difference between and is calculated.
  • the difference between the distance from the transmission device 804 to the transmission device 104 and the distance from the reception device 805 b to the transmission device 104 is calculated. So, based on the calculated difference, we can draw two hyperbolas.
  • the relative position of the transmitting / receiving device 104 of the first moving body 101 with respect to the transmitting / receiving device 804 of the second moving body 801 can be calculated. That is, the intersection of these two curves corresponds to the relative position of the transmitting / receiving device 104 of the first moving body 101 with respect to the transmitting / receiving device 804 of the second moving body 801.
  • the above is for explaining the calculation principle of the relative position, and the specific calculation method for realizing the calculation based on the above principle is not limited.
  • the most probable relative position may be estimated using the least squares method.
  • the second mobile unit 801 has only two receivers 805. For this reason, The relative position can be uniquely detected within a predetermined range of 180 degrees out of the entire range (that is, 360 degrees) that can be seen from the second moving body 801.
  • the second mobile body 801 includes at least three receiving devices. It is necessary to have 805.
  • the actual measurement results include circuit delay times for each transceiver circuit. For this reason, as in the first embodiment, it is necessary to calculate T-r e s u 1 t 3 and T- r e s u 1 t 4 that do not include the circuit delay time.
  • both the first moving body 101 and the second moving body 801 can know the relative positions of each other.
  • the transmission / reception procedure of the inverted IJ signal (I dentifying signal) and the ranging request (I dentifying signal & Ranging request) in Fig. 9 is a procedure that can be used to send a ranging signal from either mobile object.
  • the first moving body 101 and the second moving body 801 periodically say identification signals (eg,
  • a mobile body that has received one of them in FIG. 9, the second mobile body 801 that has received the It ⁇ signal 901b) says a ranging request signal (Range ring que s t) 903.
  • the mobile unit (first mobile unit 101 in FIG. 9) that has received the ranging request signal 903 transmits the ranging signal 201. Thereafter, the relative position is detected by the method described in FIG.
  • the procedure for sending and receiving the IJ signal and ranging request in Fig. 10 shows another example of the procedure that can transmit the ranging signal from either mobile unit.
  • the first moving body 101 and the second moving body 801 periodically say identification signals (for example, identification signals 1001a, 1001b, 1002a and 1002b in FIG. 10).
  • the mobile body side that has received one of them (in FIG. 10, the first mobile body 1011 that has received the identification signal 1002b) transmits the distance measurement signal 201. After that, it will be explained in FIG.
  • the relative position is detected by this method.
  • the identification and ranging request in FIGS. 9 and 10 may simultaneously realize both functions. That is, when the first moving body 101 receives the identification signal, it immediately says the ranging signal 2 01 and starts the relative position detection. When the second mobile unit 80 1 receives the identification signal, it says the ranging request signal 90 3 5 ⁇ . The first moving body 1 0 1 that has received the distance measurement request signal 103 sends the distance measurement signal 2 0 1 and performs relative position detection. As a result, the first moving body 100 1 can always say the distance measurement signal and start the relative position detection.
  • signals that are actually transmitted and received are the transmission / reception devices (that is, the transmission / reception devices 10 4 and 8 0 4) included in the respective mobile units.
  • moving objects such as automobiles, airplanes, and bicycles are assumed.
  • the relative position between the automobiles can be detected without requiring either a base station or a satellite.
  • mobile bodies that have detected relative positions can identify each other.
  • the relative position between the person and the automobile can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

第1無線局は、無線信号を送受信する第1送受信機と、無線信号を受信する第1受信機と、前記第1送受信機及び前記第1受信機に接続される計算装置と、を備え、前記第2無線局は、無線信号を送受信する第2送受信機を備え、前記第1送受信機は、測距信号を送信し、前記第2送受信機は、前記測距信号を受信すると、所定の時間後に、返信信号を送信し、前記第1送受信機は、前記返信信号を受信し、前記第1受信機は、前記測距信号及び前記返信信号を受信し、前記計算装置は、前記第1送受信機が前記測距信号を送信してから前記返信信号を受信するまでの第1時間、及び、前記第1受信機が前記測距信号を受信してから前記返信信号を受信するまでの第2時間に基づいて、前記第1無線局に対する前記第2無線局の相対位置を計算する。

Description

明 細 書
発明の名称
移動体相対位置検出システム及び相対位置検出を行う移動体
技術分野
本発明は、 移動体の位置を検出する技術に関し、 特に、 無線通信機能を用いて 移動体同士の相対位置を検出する技術に関する。
背景技術
移動体の位置を測定する方法として、 GPS (G l o b a l Po s i t i o n i n g Sy s t em) を利用する方法、 及び、 無線レーダ (特にミリ波帯) を用いる方法が知られている。
また、 移動端末の位置を測定するシステムとして、 端末から 言される信号を 複数の基地局で受信した時間差を計算して、 その時間差に光速を乗算することに よって、 ノードから各基地局までの信号の伝搬距離を算出し、 それによつてノー ドの位置を検出するシステムが提案されている (例えば、 荻野敦、 他 5名, 「無 線 LAN統合アクセスシステム (1) 位置検出システムの検討」 , 2003年 総合大会講演論文集, 電子情報通信学会, B-5-203, p. 662、 及び、 水垣健一、 他 9名, .「 3 n W b p s超低消費電力 U WB無線システム ( 6 ) : 30 c m高精度測位システムの検討」, 2005年ソサイエティ大会講演論文集, 電子情報通信学会, A-5-15, p. 139参照) 。
例えば、 特開 2005— 140617号公報には、 複数の基地局を備えた端末 測位システムが開示されている。 この端末測位システムは、 位置計算サーバ、 了 クセスポイント (基地局) 、 基準局及びノード (端末) を備える。 各基地局と位 置計算サーバは、 有線のネットワークによって接続される。 発明の開示
自動車又は飛行機などのお互レ、が自由に動く移動体同士の相対位置を検出する システムにおいて、 前述の従来技術を用いる場合、 次にあげる問題がある。 まず G P Sを用いる^^、 高レ、位置検出精度と短い検出時間とを両立すること が困難であり、 位置検出精度を上げるためには装置が複雑になるという問題があ る。 さらに、 G P S衛星が見通せないトンネル内などでは位置を検出できないと いう問題がある。
—方、 無線レーダを用いれば、 対象物との距離及び方向を検知することが可能 であるが、 その対象物が何である力 別できないという 題がある。
衛星を用いず、 無線信号の伝達時間を測定することによって位置を特定するシ ステムは、 TOA (T i me o f A r r i v a 1 ) 方式と TDO A (T i m e D i f f e r e n t i a l o f A r r i v a 1 ) 方式とに大別される。 TOA方式は、 無線信号の伝搬時間を測定することによって、 位置を測定される 端末と複数の基地局との間の «Iを求めて、 それによつて位置を特定する方式で ある。 この方式では、 端末と基地局との間で時刻の同期がなされている必要があ るため、 通常、 端末と各基地局とでそれぞ½復信号のやり取りが行われる。 こ のため、 端末側での処理が多くなるという問題がある。
TDOA方式は、 端末と各基地局との間の距離差を求めることによって、 端末 の位置を特定する方式である。 TDOA方式では、 TO A方式と異なり端末と基 地局との間の同期が不要であるため、 端末の負荷が軽減される。 し力し、 TDO A方式では、 各基地局間での同期が必要となるため、 通常、 基準局という基準と なる局を一つ余分に設ける必要があり、 それによつてシステムが複雑になるとい う問題があった。
本発明の目的は、 移動体同士の相対位置検出を、 簡易な構成で、 簡単な処理で 実現することにある。
本願で開示する代表的な発明は、 第 1無線局及び第 2無線局の相対位置を検出 する相対位置検出システムであって、 前記第 1無線局は、 無線信号を送受信する 第 1送受信機と、 無線信号を受信する第 1受信機と、 前記第 1送受信機及び tine 第 1受信機に接続される第 1計算装置と、 を備え、 前記第 2無線局は、 無線信号 を送受信する第 2送受信機を備え、 前記第 1送受信機は、 測距信号を し、 前 記第 2送受信機は、 嫌己測距信号を受信すると、 所定の時間後に、 返信信号を送 信し、 嫌己第 1送受信機は、 肅己返信信号を受信し、 gf!E第 1受信機は、 前記測 距信号及び tirt己返信信号を受信し、 嫌己第 1計算装置は、 frlE第 1送受信機が前 記測距信号を 言してから肅己返信信号を受信するまでの第 1時間、 及び、 前記 第 1受信機が前記測距信号を受信してから前記返信信号を受信するまでの第 2時 間に基づいて、 前記第 1無線局に対する前記第 2無線局の相対位置を計算するこ とを特徴とする。
本発明の一形態によると、 簡易な構成かつ簡易な処理によって移動体同士の相 対位置の計算が可能となる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施形態の相対位置検出システムの構成を示すプロ ック図である。
第 2図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の手順を示すシーケンス図である。
第 3図は、 本発明の第 1の実施形態における相対位置の計算原理を説明するた めのタイムチャートである。
第 4図は、 本発明の第 1の実施形態における相对位置の計算原理の説明図であ る。
第 5図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の第 1の例を示すシーケンス図である。
第 6図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の第 2の例を示すシーケンス図である。
第 7図は、 本発明の第 1の実施形態における送受信装置及び受信装置の構成例 を示すブロック図である。
第 8図は、 本発明の第 2の実施形態の相対位置検出システムの構成を示すプロ ック図である。
第 9図は、 本発明の第 2の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の第 1の例を示すシーケンス図である。
第 10図は、 本発明の第 2の実施形態の相対位置検出システムにおいて実行さ れる相対位置検出処理の第 2の例を示すシーケンス図である。
第 11図は、 本発明の第 2の実施形態における相対位置の計算原理を説明する ためのタイムチヤ一トである。 発明を実施するための最良の形態
以下、 本発明の実施形態を、 図面を参照して説明する。
(実施形態 1)
本発明の相対位置検出システムの第 1の実施形態及び本発明の原理を第 1図〜 第 4図を用いて説明する。
第 1図は、 本発明の第 1の実施形態の相対位置検出システムの構成を示すプロ ック図である。
第 1の実施形態の相対位置検出システムは、 第 1の移動体 101及び第 2の移 動体 102によって構成される。 第 1の移動体 101は、 サーバ (S e r v e r) 103、 送受信装置 (Tr a n s c e i v e r) 104及び一つ以上の受信装置 (Re c e i v e r) 105を備える、 移動可能な無線局である。 第 1図の例に おいて、第 1の移動体 101は、一つ以上の受信装置 105として、受信装置 (R e c e i v e r l) 105 a及び受信装置 (R e c e i v e r 2) 105 bを備 える。 以下の説明において 「受信装置 105」 が参照される場合、 その説明は、 受信装置 105 a及び受信装置 105 bのいずれにも適用することができる。 第 2の移動体 102は、 信装置 (Tr a n s c e i v e r) 106を備え る、 移動可能な無線局である。
サーバ 103は、 送受信装置 104、 受信装置 105 a及び受信装置 105 b に接続され、 それらの装置から受信した情報に基づいて相対位置を計算する計算 装置である。 サーバ 103は、 例えば、 受信した情報を格納するメモリ (図示省 略) 、 及び、 メモリに格納された情報に基づいて相対位置を計算するプロセッサ (図示省略) を備えてもよい。
送受信装置 104、 送受信装置 106、 受信装置 105 a及び受信装置 105 bの構成については後述する (第 7図参照) 。
第 2図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の手順を示す説明図である。
第 1の移動体 101の送受信装置 104は、 測距信号 (Ra n g i n g s i gna 1) 201を ί ^言する。 編された測距信号 201は、 第 1の移動体 10 1の受信装置 105及び第 2の移動体 102の 信装置 106によつて受信さ れる。 説明の便宜上、 第 1の移動体 101の受信装置 105が受信した測距信号 201を測距信号 201 a、 第 2の移動体 102の送受信装置 106が受信した 測距信号 201を測距信号 201 bと記載する。
第 2の移動体 102の送受信装置 106は、 測距信号 201 bを受信すると、 返信信号 (Re p l y i n g s i gn a l) 202を 言する。 言された返 信信号 202は、 送受信装置 104及び受信装置 105によって受信される。 説 明の便宜上、 第 1の移動体 101の送受信装置 104が受信した返信信号 202 を返信信号 202 a、 第 1の移動体 101の受信装置 105が受信した返信信号 202を返信信号 202 bと記載する。
第 1の移動体 101の送受信装置 104は、 測距信号 201を 言した時刻か ら返信信号 202 aを受信した時刻までの時間 (T r e s u 1 t 1) を計測す る。 第 1の移動体 101の受信装置 105は、 測距信号 201 a及び返信信号 2 02 bを受信し、 両者の受信時間差 (T— r e s u 1 t 2) を計測する。
第 1の移動体 101のサーバ 103は、 送受信装置 104及び受信装置 105 からそれぞれ計測結果 203及び 204を受信する。 信装置 104からの計 測結果 203は、 少なくとも T— r e s u 1 t 1を含む。 受信装置 105からの 計測結果 204は、 少なくとも T— r e s 1 t 2を含む。 サーバ 103は、 そ れらの計測結果に基づいて、 第 1の移動体 101に対する第 2の移動体 102の 相対位置を計算する (ステップ 205)。
ステップ 205においてサーバ 103によって実行される相対位置の計算の原 理を、 第 3図及び第 4図を用いて説明する。
第 3図は、 本発明の第 1の実施形態における相対位置の計算原理を説明するた めのタイムチヤ一トである。
具体的には、 第 3図は、 第 2図に示す測距信号 201及び返信信号 202の送 受信のタイミングを示す。 第 2図において説明した測距信号 201及び返信信号 202はどのようなものであってもよいが、 本実施形態では、 これらの信号は、 第 3図に示すパケットとして送受信される。
本実施形態において送受信されるパケット構成例は、 プリアンブル部 (P) 、 S t a r t F r ame De l imi t e r (S FD) 部 (S) 及びデータ部
(D) 力 らなる。 言時刻及び受信時刻は、 パケットのどの部分を基準に計測さ れてもよレ、。 本実施形態では、 データ部の始点を基準として計測する例を示す。 なお、 データ部には、 パケットを維した移動体の! ¾¾IJ子 (又はパケットを送 信した送受信装置の! ¾¾IJ子) が含まれてもよレ、。
第 3図は、 例として、 バケツト 301及びパケット 302を 5¾¾信するタイミ ングを示す。
パケット 301は、 第 1の移動体 101の 信装置 104が 言した測距信 号 201に相当する。 第 3図では、 第 1の移動体 101の受信装置 105が受信 したバケツト 301をバケツト 301 aとして図示する。 第 2の移動体 102の 送受信装置 106が受信したバケツト 301をバケツト 301 bとして図示する。 すなわち、 パケット 301 a及び 301 bは、 それぞれ、 第 2図の測距信号 20 1 a及び 201 bに相当する。
パケット 302は、 第 2の移動体 102の送受信装置 106が送信した返信信 号 202に相当する。 第 3図では、 第 1の移動体 101の受信装置 105が受信 したバケツト 302をバケツト 302 bとして図示する。 第 1の移動体 101の 送受信装置 104が受信したパケット 302をパケット 302 aとして図示する。 すなわち、 バケツト 302 a及び 302 bは、 それぞれ、 第 2図の返信信号 20 2 a及び 202 bに相当する。
なお、第 3図において、網掛け表示されたバケツトは雄したバケツトであり、 «で表示されたバケツトは受信したバケツトである。
第 1の移動体 101の 信装置 104は、 パケット 301を 言してからパ ケット 302 aを受信するまでの時間 T—r e s u 1 t 1を計測する。 これは、 第 2図に示した T—r e s u 1 t 1に相当する。 第 3図の T a r rは、 第 1の移 動体 101の 信装置 104力ら第 2の移動体 102の送受信装置 106まで (及びその逆) のバケツ卜の伝搬時間を示す。 Ta r rは、 T—r e s u 1 t 1 から Tbを引いて 2で割ることによって求めることができる (式 (1) 参照) 。
T a r r = (T_r e s u l t l-Tb) /2 · · · (1)
ここで、 T bは、 第 2の移動体 102の送受信装置 106がパケット 301 b を受信してからバケツト 302を送信するまでの処理時間であり、回路の遅延量、 受信'送信処理などの信号処理時間を含む。 またこの Tbは、 Ta r rを計算す る主体 (本実施形態では、 サーバ 103) によって正確に知られている限り、 ど のように定められてもよく、 例えば、 任意の待ち時間を挿入することによって定 められてもよい。
一方、 第 1の移動体 101の受信装置 105は、 パケット 301 aの受信時刻 からバケツト 3 0 2 bの受信時刻までの時間 T—r e s u 1 t 2を計測する。 こ れは、 第 2図に示した T— r e s u 1 t 2に相当する。 第 3図に示す T aは、 第 1の移動体 1 0 1の送受信装置 1 0 4力 ^受信装置 1 0 5までのバケツトの伝搬 時間を示す。 送受信装置 1 0 4及び受信装置 1 0 5が相対的に固定され、 かつ、 それらの «が既知であれば、 T aも既知である。 したがって、 図の関係から、 T— r e s u l t 2と T aとの和から T— r e s u 1 t 1を引くことによって、 第 1の移動体 1 0 1の送受信装置 1 0 4及び受信装置 1 0 5における返信信号の 到達時間差 (T d i f f ) を求めることができる (式 (2 ) 参照) 。
T d i f f = (T_ r e s u 1 t 2 + T a— T一 r e s u 1 t 1 ) · · · ( 2 )
T a r rに光速を乗算することによって、 第 1の移動体 1 0 1の送受信装置 1 0 4から第 2の移動体 1 0 2の 信装置 1 0 6までの ¾¾|が算出される。 この ため、 信装置 1 0 4を中心とし、 算出された «を雜とする円を描くこと ができる。
一方、 T d i f f に光速を乗算することによって、 第 1の移動体 1 0 1の送受 信装置 1 0 4力、ら第 2の移動体 1 0 2の送受信装置 1 0 6までの距離と、 受信装 置 1 0 5から送受信装置 1 0 6までの «との差が算出される。 このため、 算出 された差に基づいて、 送受信装置 1 0 4及び受信装置 1 0 5を焦点とする双曲線 を描くことができる。
これらの二つの曲線の交点は、 T a r rに基づいて算出された送受信装置 1 0 4力、らの »と、 T d i f f に基づいて算出された送受信装置 1 0 4からの « 及び受信装置 1 0 5からの «の差と、 をいずれも満たす点である。 このため、 これらの二つの曲線の交点を求めることによって、 第 1の移動体 1 0 1の送受信 装置 1 0 4に対する第 2の移動体 1 0 2の送受信装置 1 0 6の相対位置を計算す ることができる。 すなわち、 これらの二つの曲線の交点が、 第 1の移動体 1 0 1 の送受信装置 1 0 4に対する第 2の移動体 1 0 2の送受信装置 1 0 6の相対位置 に相当する。
第 4図は、 本発明の第 1の実施形態における相対位置の計算原理の説明図であ る。
ただし、 上記は相対位置の計算原理を説明するものであって、 上記の原理に基 づく計算を実現するための具体的計算方法は限定されない。 例えば、 実際に上記 の円及び双曲線を描画する代わりに、 最小 2乗法を用いて最も確からしい相対位 置が推定されてもよい。
第 1の移動体 1 0 1が備える受信装置 1 0 5がーつのみである場合、 T a r r 及び T d i f f に基づく円及び双曲線の交点が二つ存在する。 例えば、 第 4図に は円と双曲線の交点を一つのみ示したが、 実際には、 送受信装置 1 0 4及び受信 装置 1 0 5を通る を対称軸として、 図示した交点と線 の位置にもう一つ の交点が存在する。 このため、 第 1の移動体 1 0 1から見渡せる全範囲 (すなわ ち 3 6 0度) のうち、 所定の 1 8 0度の範囲 (具体的には上記の対称軸によって 二つに分割された範囲の一方) で、 第 2の移動体 1 0 2の相対位置を一意に検出 することができる。 このような相対位置検出システムは、 例えば、 工事現場にお レ、て、 ェ«械の後方の安全 ¾¾、のために使用することができる。
一方、 第 1の移動体 1 0 1から見渡せる全範囲 (すなわち 3 6 0度の範囲) で 第 2の移動体 1 0 2の相対位置を一意に検出するためには、 第 1の移動体 1 0 1 は、 少なくとも二つの受信装置 1 0 5 (例えば、 第 1図に示す受信装置 1 0 5 a 及び 1 0 5 b ) を備える必要がある。
第 1の移動体 1 0 1が二つの受信装置 1 0 5 (例えば受信装置 1 0 5 a及ぴ 1 0 5 b ) を備える場合、 それらの二つの受信装置 1 0 5に、 第 2図〜第 4図を参 照して説明した方法を適用することによって、 送受信装置 1 0 4から送受信装置 1 0 6までの «と受信装置 1 0 5 aから送受信装置 1 0 6までの距離との差、 及び、 送受信装置 1 0 4から送受信装置 1 0 6までの距離と受信装置 1 0 5 b力、 ら送受信装置 1 0 6までの距離との差を算出することができる。 これらの二つの 差に基づいて、 二つの双曲線を描くことができる。
それらの二つの双曲線と、 第 2図〜第 4図に示す方法によつて描かれた円との 交点が、 算出された距離及び算出された二つの差のレ、ずれもが満たされる位置、 すなわち、 第 1の移動体 1 0 1の送受信装置 1 0 4に対する第 2の移動体 1 0 2 の送受信装置 1 0 6の相対位置に相当する。
ただし、 実際には、 測定誤差等のため、 一つの円及び二つの双曲線が厳密に一 点において交差する可能性はほとんどない。 このため、 例えば、 最小 2乗法を用 いて最も確からしレ、交点が推定されてもよい。
なお、 第 3図に示す T— r e s u 1 t 1及び T—r e s u 1 t 2は、 説明を簡 略化するためアンテナ端での 言時刻と受信時刻で定義されたものであり、 各送 受信回路の回路遅延時間を含んでいる。 実際の測定結果は、 各送受信回路等の回 路遅延時間を含むが、 各送受信回路の回路遅延時間は既知であるため、 実際の測
^^果から既知の回路遅延時間を差し引くことによって、 第 3図に該当する回路 遅延時間を含まない T—r e s u 1 t 1及び T—r e s u 1 t 2を算出する必要 がある。 ただし、 第 3図に示す T bは、 送受信装置 1 0 6の遅延時間を含むもの として説明してある。
なお、 上記のような相対位置の検出を可能にするために、 送受信装置 1 0 4、 受信装置 1 0 5 a及び受信装置 1 0 5 b力 第 1の移動体 1 0 1内のそれぞれ異 なる位置に設置される必要がある。 より詳細には、 送受信装置 1 0 4、 受信装置 1 0 5 a及び受信装置 1 0 5 bは、 それぞれ、 無線信号を送受信 (又は受信) す るアンテナ 7 0 1を備える (後述する第 7図参照) 。 送受信装置 1 0 4のアンテ ナ 7 0 1、 受信装置 1 0 5 aのアンテナ 7 0 1及び受信装置 1 0 5 bのアンテナ 7 0 1は、 それぞれ、 互いに異なる位置に配置される必要がある。
さらに、 上記のように一つの円及び二つの双曲線に基づいて、 相対位置を一意 に検出するためには、 上記の三つのアンテナ 7 0 1がーつの直線上に位置しない ように配置される必要がある。 一般に、 上記の三つのアンテナ 701の間の距離が大きく、 かつ、 各アンテナ 701から他の二つのアンテナを含む直線までの距離が大きいほど、 高精度な相 対位置の検出が可能になる。
次に、 上記の相対位置検出の前後の手順を含めた処理の例を、 第 5図及び第 6 図を参照して説明する。 具体的には、 第 2図に示した手順を実行する前に、 移動 胸互の存在を リするための、 及び測距要求が実行される。
第 5図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の第 1の例を示すシーケンス図である。
第 5図に示された手順では、 第 1の移動体 101の送受信装置 104力 自身 の翻リ情報を含む! ¾¾IJ信号 (I d e n t i f y i ng s i gn a l) 501を 所定のタイミングで (例えば定期的に) 送信する。 第 2の移動体 102の送受信 装置 106は、 識別信号 501を受信した場合、 測距要求信号 (Ra ng i n g r e que s t) 502を 言する。
第 1の移動体 101の送受信装置 104は、 上記測距要求信号 502を受信し た場合、 測距信号 201を送信する。
第 5図に示す!^リ信号 501 a及び 501 bは、 それぞれ、 的に 言され た!^リ信号 501である。 例えば、 第 1の移動体 101と第 2の移動体 102と が十分に離れている^^、 第 2の移動体 102の 信装置 106は、 IJ信号 501を受信することができない。 し力 し、 第 1の移動体 101と第 2の移動体 102とが次第に接近すると、 送受信装置 106は、 やがて!^ IH言号 501を受 信できるようになる。
第 5図の例において、 第 2の移動体 102の送受信装置 106は、 IJ信号 5 01 aを受信できなかったが、 識別信号 501 bを受信できた。 この場合、 第 2 の移動体 102の送受信装置 106は、 信号 501 bに応じて測距要求信号 502を 言する。
測距信号 201の送信から相対位置の計算 (ステップ 205) までの手 j噴は、 第 2図にぉレ、て説明したものと同じである。
相対位置の計算 (ステップ 2 0 5 ) が終了すると、 サーバ 1 0 3は、 終了の通 知 5 0 3を送受信装置 1 0 4に送信する。 この通知を受信した送受信装置 1 0 4 は、 終了信号 5 0 4を第 2の移動体 1 0 2の送受信装置 1 0 6に送信する。 第 6図は、 本発明の第 1の実施形態の相対位置検出システムにおいて実行され る相対位置検出処理の第 2の例を示すシーケンス図である。
第 6図で示された手順では、 第 2の移動体 1 0 2が、 自身の識別情報を含む識 別信号 6 0 1を 言する。 第 1の移動体 1 0 1の送受信装置 1 0 4は、 識別信号 6 0 1を受信した場合、 測距信号 2 0 1を送信する。
第 6図に示す識別信号 6 0 1 a及び 6 0 1 bは、 それぞれ、 定期的に送信され た識別信号 6 0 1である。 第 6図の例において、 第 1の移動体 1 0 1の送受信装 置 1 0 4は、 識別信号 6 0 1 aを受信できなかったが、 識別信号 6 0 1 bを受信 できた。 この場合、 第 1の移動体 1 0 1の送受信装置 1 0 4は、 識別信号 6 0 1 bに応じて彻 j距信号 2 0 1を 言する。
測距信号 2 0 1の 言から相対位置の計算 (ステップ 2 0 5 ) までの手順は、 第 2図にぉレ、て説明したものと同じである。
終了の通知 5 0 3及び終了信号 5 0 4の送信の手順は、 第 5図にお V、て説明し たものと同じである。
第 5図及び第 6図に示すように、 識別信号の受信を契機として相対位置の検出 を開始することによって、 二つの移動体が所定の基準より接近したことを,と する相対位置の検出が実現される。 このことは、 後述する第 9図及び第 1 0図に も当てはまる。
なお、 二つの移動体の間で送受信されるパケットに、 ¾j言元の移動体の識別子 が含まれる場合、 その識別子に基づいて、 移動体を特定することができる。 すな わち、 第 5図又は第 6図の処理によって、 移動体の相対位置が検出されるだけで なく、 その相対位置が検出された移動体が何であるかを特定することができる。 第 7図は、 本発明の第 1の実施形態における送受信装置 104、 送受信装置 1 06及び受信装置 105の構成例を示すプロック図である。
本実施形態では、 送受信装置 104、 106及び受信装置 105がすべて同じ 構造のハードウェアによって構成される例を示す。 第 7図に示す装置は、 アンテ ナ 701、 スィッチ (SW) 702、 受信アナログ部 (An a 1 o g p a r t o f r e c e i v e r ) 703、 i¾f言アナログ部(An a 1 o g p a r t o f t r a n sm i t t e r) 704、 同期捕捉部 (A c q u i s i t i o n) 705、 同期追跡部 (T r a c k i n g) 706、 復調部 (Demo d u l a t i o n) 707、 S FD検知部 (SFD d e t e c t i o n) 708、 カウン タ (Co un t e r) 709、 フレーム構成部 (F r ame) 710、 及 U^MA C制御部 (MAC c o n t r o l) 71 1を備える。
フレーム構成部 710は、 雄すべきバケツトを構築し、 変調し、 ベース バンドデータを作成する。
言アナ口グ部 704は、 上記の 言ベースバンドデータの周波数変換、 ノィ ズ除去及び増幅を行い、 増幅されたデータを高周波アナログ信号に変換し、 その 高周波アナ口グ信号を、 スィツチ 702及ぴアンテナ 701を経由して空間に送 信する。
アンテナ 701で受信された電波信号は、 スィッチ 702を経由して、 受信ァ ナログ部 703に入力される。 受信アナ口グ部 703は、 受信した信号の増幅、 周波数変換、 ノイズ除去及びアナログディジタル変換を行レ、、 受信ベースバンド データを生成する。 受信ベースバンドデータは、 同期捕捉部 705及び同期追跡 部 706において受信信号との同期が確立され、 復調部 707において 言デ一 タが復元される。 SFD検出部708では、 パケット内の SFDを検出する。 カウンタ 709は、 パケットの受信時刻及び 言時刻を計測する。 第 1の移動 体における送受信装置 104のカウンタ 709は、 バケツトを 言した時刻から バケツトを受信した時刻までの時間を計測し、 第 1の移動体における受信装置 1 05のカウンタ 709は、 二つのバケツトの受信時刻差を計測する。 それによつ て、 本実施形態が実現される。
MAC (Me d i a Ac c e s s Con t r o l) 制御部 711は、 第 2 図、 第 5図及び第 6図などで示される手順を制御する。
以上の構成によって、 移動体同士の簡易な相対位置検出が可能となる。
なお、 以上の説明において、 送受信装置 104から送受信装置 106までの距 離、 信装置 104から受信装置 105までの赚、 及び、 送受信装置 106 力ら受信装置 105までの »は、 より正確には、 それぞれ、 それらが備えるァ ンテナ 701の間の距離である。
(実施形態 2)
次に、 本発明の第 2の実施形態を説明する。
第 8図は、 本発明の第 2の実施形態の相対位置検出システムの構成を示すプロ ック図である。
第 8図に示す相対位置検出システムは、 第 1図における第 1の移動体 101と 同様の構成を有する二つ以上の移動体によって実現される。 すなわち、 第 8図に 示す相対位置検出システムの構成は、 第 2の移動体 102力 第 1の移動体 10 1と同様の構成を有する第 2の移動体 801によって置き換えられていることを 除いて、 第 1図に示すものと同様である。
第 8図における第 1の移動体 101は、 第 1図に示すものと同様、 サーバ (S e r v e r) 103、 送受信装置 (Tr a n s c e i v e r) 104、 受信装置 (Re c e i v e r l、 Re c e i v e r 2) 105 a及び受信装置 105 bを 備える。
第 8図における第 2の移動体 801は、 サーバ (S e r v e r) 803、 送受 信装置 (Tr a n s c e i v e r) 804及び一つ以上の受信装置 (R e c e i v e r) 805を備える。 第 8図の例において、 第 2の移動体 801は、 一つ以 上の受信装置 805として、 受信装置 (Re c e i v e r l) 805 a及び受信 装置 (Re c e i v e r 2) 805 bを備える。 以下の説明において 「受信装置 805」 が参照される^、 その説明は、 受信装置 805 a及び受信装置 805 bの!/、ずれにも適用することができる。
サーバ 803、¾¾信装置 804、受信装置 805 a及び受信装置 805 bは、 それぞれ、 第 1の移動体 101におけるサーバ 103、 送受信装置 104、 受信 装置 105 a及び受信装置 105 bと同様の機能を有する。
さらに、 第 1の移動体 101の送受信装置 104及び第 2の移動体 801の送 受信装置 804は、 第 1図における第 2の移動体 102の送受信装置 106と同 様の機能を有する。
以上の構成によって実現される相対位置検出の手順は第 2図、 第 3図及び第 4 図で説明したものと同様である。 ただし、 本実施形態では、 双方の移動体が同じ 構成を持っため、 どちらの移動体側から測距信号 201を 言してもよレ、。 さらに、 第 2の実施形態では、 第 1の移動体 101の送受信装置 104が測距 信号を送信した場合、 第 2の移動体 801におレ、ても第 1の移動体 101の相対 位置を検出することができる。 その手順例を第 9図に示す。
第 9図は、 本発明の第 2の実施形態の相対位置検出システムにおレ、て実行され る相対位置検出処理の第 1の例を示すシーケンス図である。
第 2の移動体 801の送受信装置 804は、 第 1の実施形態の第 2の移動体 1 02の送受信装置 106と同様の測距信号及び返信信号を送受信する (第 1図等 参照) 。 このため、 第 9図において、 送受信装置 804が送受信する測距信号等 には、 第 1の実施形態にぉレ、て送受信装置 106が送受信するものと同じ符号が 付与される。
第 9図では、 ij及び測距要求 (I d e n t i f y i n g & Ra n g i n g Re qu e s t) を行った後、 第 1の移動体 101が測距信号 201を送信 する。 上記の識別及び測距要求の機能についての詳細は後述する。
第 2の移動体 801の送受信装置 804が返信信号 202を送信し、 第 1の移 動体 1 0 1の送受信装置 1 0 4が返信信号 2 0 2 aを受信し、 その往復時間 T— r e s u l t 1を計測するまでの手順は、 第 1の実施例における第 2図の手順と 同様である。
第 2の移動体 8 0 1の受信装置 8 0 5は、 測距信号 2 0 1及び第 2の移動体 8 0 1の送受信装置 8 0 4力ら 言された返信信号 2 0 2を受信し、 両者の受信時 間差 (T— r e s u 1 t 3 ) を計測する。 なお、 説明の便宜上、 第 2の移動体 8 0 1の受信装置 8 0 5が受信した測距信号 2 0 1を測距信号 2 0 1 c、 第 2の移 動体 8 0 1の受信装置 8 0 5が受信した返信信号 2 0 2を返信信号 2 0 2 cと記 載する。
第 1の移動体 1 0 1の送受信装置 1 0 4は、 第 2の移動体 8 0 1の送受信装置 8 0 4との間の測距結果を、 終了の通知 9 0 4に加えて第 2の移動体 8 0 1の送 受信装置 8 0 4に 言する。 ここで、 言される測 SQ¾果は、 T— r e s u 1 t 1を示す情報 (より具体的には、 T— r e s u 1 t 1そのもの、 又は、 T— r e s u i t 1に基づいて算出された距離を示す情報等) を含む。
第 2の移動体 8 0 1のサーバ 8 0 3は、 送受信装置 8 0 4及ぴ受信装置 8 0 5 から、 それぞれ、 計測結果 9 0 5及び 9 0 6を受信する。 計測結果 9 0 5には、 少なくとも、 信装置 8 0 4が送受信装置 1 0 4から受信した測 果が含ま れる。 計測結果 9 0 6には、 少なくとも、 T— r e s u 1 t 3が含まれる。
サーバ 8 0 3は、 受信した計測結果及び測距結果に基づいて、 第 1の実施形態 におレ、てサーバ 1 0 3が行つたものと同様の方法によって、 第 1の移動体 1 0 1 の相対位置を計算する (ステップ 9 0 7 ) 。 具体的には、 サーバ 8 0 3は、 第 1 の移動体 1 0 1力ら受信した測 果に基づく円と、 式 (2 ) の T— r e s u 1 t 2を T— r e s u 1 t 3に置き換えることによって算出された双曲線と、 に基 づいて、第 2の移動体 8 0 1に対する第 1の移動体 1 0 1の相対位置を計算する。 上記の手順によって、 第 1の移動体 1 0 1及び第 2の移動体 8 0 1の両者が互 いの相対位置を知ることができる。 なお、 第 9図では第 1の移動体 101のサーバ 103及び受信装置 105の図 示が省略されているが、 第 2の実施形態のサーバ 103及び受信装置 105は、 第 1の実施形態と同様の手順を実行する。 このため、 第 1の移動体 101及び第 2の移動体 102は、 一つの測距信号 201、 及び、 その測距信号 201に応じ た返信信号 202に基づレ、て、 互レ、の相対位置を知ることができる。
第 10図は、 本発明の第 2の実施形態の相対位置検出システムにおいて実行さ れる相対位置検出処理の第 2の例を示すシーケンス図である。
第 10図にぉレ、ても、 第 1の移動体 101のサーバ 103及び受信装置 105 の図示が省略されている力 第 2の実施形態のサーバ 103及び受信装置 105 は、 第 1の実施形態と同様の手順を実行する。
第 10図の例では、 第 9図と同様に第 2の移動体 801の送受信装置 804が 返信信号 202を送信し、 第 1の移動体 101の送受信装置 104が返信信号 2 02を受信し、 その往復時間を計測する。 これらの処理は、 第 1の実施形態にお ける第 2図の手 1頃と同様である。
第 10図では、 第 2の移動体 801の二つの受信装置 805が測距信号 201 の受信時刻と返信信号 202の受信時刻との差を計測する。 説明の便宜上、 第 2 の移動体 801の受信装置 805 aが受信した測距信号 201を測距信号 201 c、 受信装置 805 bが受信した測距信号 201を測距信号 201 d、 受信装置 805 aが受信した返信信号 202を返信信号 202 c、 受信装置 805 bが受 信した返信信号 202を返信信号 202 dと記載する。 さらに、 測距信号 201 cの受信時刻と返信信号 202 cの受信時刻との差を T— r e s u 1 t 3、 測距 信号 201 dの受信時刻と返信信号 202 dの受信時刻との差を T— r e s u 1 t 4と記載する。
第 2の移動体 801のサーバ 803は、 受信装置 805 a及び受信装置 805 b力、ら、 それぞれ、 計測結果 1004及ぴ 1005を受信する。 計測結果 100 4には、 少なくとも、 T r e s u l t 3が含まれる。 計測結果 1005には、 少なくとも、 T— r e s u 1 t 4が含まれる。
サーバ 8 0 3は、 上記二つの計測結果 (すなわち T— r e s u 1 t 3及び T— r e s u 1 t 4 ) に基づいて第 1の移動体 1 0 1の相対位置を計算する (ステツ プ 1 0 0 6 )。
ステップ 1 0 0 6においてサーバ 8 0 3によって実行される相対位置の計算の 原理について、 第 1 1図を用いて説明する。
第 1 1図は、 本発明の第 2の実施形態における相対位置の計算原理を説明する ためのタイムチヤ一トである。
具体的には、 第 1 1図は、 第 1 0図に示す測距信号 2 0 1及び返信信号 2 0 2 の送受信のタイミングを示す。 第 1 0図において説明した測距信号 2 0 1及び返 信信号 2 0 2はどのようなものであってもよいが、 本実施形態では、 これらの信 号は、 第 1 1図に示すバケツトとして送受信される。
第 3図と同様、 本実施形態において送受信されるパケット構成例は、 プリアン ブル部 (P) 、 S F D部 (S ) 及びデータ部 (D) 力 らなる。 第 3図を参照して 説明したように、 言時間及び受信時間は、 データ部の始点を基準として計測さ れる。
第 1 1図では、 第 1の移動体 1 0 1の受信装置 1 0 5が受信したパケットの図 示力 S省略されている力 実際には、 受信装置 1 0 5は、 第 3図に示したものと同 様のタイミングでパケットを送受信する。
パケット 3 0 1は、 第 1の移動体 1 0 1の送受信装置 1 0 4が送信した測距信 号 2 0 1に相当する。 第 1 1図では、 第 2の移動体 8 0 1の送受信装置 8 0 4が 受信したバケツト 3 0 1をバケツト 3 0 1 bとして図示する。 受信装置 8 0 5 a が受信したバケツト 3 0 1をバケツト 3 0 1 cとして図示する。 受信装置 8 0 5 bが受信したバケツト 3 0 1をバケツト 3 0 1 dとして図示する。 すなわち、 パ ケット 3 0 1 b、 3 0 1 c及び 3 0 1 dは、 それぞれ、 第 1 0図の測距信号 2 0 l b、 2 0 1 c及び 2 0 1 dに相当する。 パケット 302は、 第 2の移動体 801の送受信装置 804が送信した返信信 号 202に相当する。 第 11図では、 第 1の移動体 101の送受信装置 104が 受信したバケツト 302をバケツト 302 aとして図示する。 第 2の移動体 80 1の受信装置 805 aが受信したバケツト 302をバケツト 302 cとして図示 する。 受信装置 805 bが受信したバケツト 302をバケツト 302 dとして図 示する。 すなわち、 バケツト 302 a、 302 c及び 302 dは、 それぞれ、 第 10図の返信信号 202 a, 202 c及び 202 dに相当する。
第 2の移動体 801の受信装置 805 aが計測した、 測距信号 201 cの受信 時刻から返信信号 202 cの受信時刻までの時間が、 第 11図の T— r e s u 1 t 3に相当する。 受信装置 805 bが計測した、 測距信号 2 O l dの受信時刻か ら返信信号 202 dの受信時刻までの時間が、 第 11図の T— r e s u 1 t 4に 相当する。
第 11図の T d i f f 2は、 第 2の移動体の送受信装置 804が測距信号 20 1 b (すなわちバケツト 301 b) を受信した時刻と、 受信装置 805 aが測距 信号 201 c (すなわちバケツト 301 c) を受信した時刻との受信時刻差であ る。 Td i f f 2は、 T— r e s u 1 t 3から Tb及び Tcを引くことによって 算出される (式 (3) 参照) 。
Td i f f 2= (Tb+Tc-T_r e s u 1 t 3) · · · (3) ここで、 Tbは、 第 2の移動体 801の送受信装置 804がパケット 301 b を受信してからバケツト 302を ¾|言するまでの処理時間である。 この T bは、 式 (1) の Tbと同様、 既知の値である。 Tcは、 第 2の移動体 801の送受信 装置 804が返信信号 202 (すなわちパケット 302) を 言してから、 その 返信信号 202を受信装置 805 aが受信するまでの時間である。 送受信装置 8 04から受信装置 805 aまでの距離が既知であるため、 T cの値も既知である。 同様に、 T d i f f 3は、 第 2の移動体の送受信装置 804が測距信号 201 b (すなわちバケツト 301 b) を受信した時刻と、 受信装置 805 bが測距信 号 201 d (すなわちバケツト 301 d) を受信した時刻とのの受信時刻差であ る。 Td i f f 3は、 T— r e s u 1 t 4から Tb及び Tdを引くことによって 算出される (式 (4) 参照) 。
Td i f f 3= (Tb+Td-T_r e s u 1 t 4) · · · (4) ここで、 T dは、 第 2の移動体 801の送受信装置 804が返信信号 202を 送信してから、 その返信信号 202を受信装置 805 bが受信するまでの時間で ある。 送受信装置 804力ら受信装置 805 bまでの赚が既知であるため、 T dの値も既知である。
Td i f f 2に光速を乗算することによって、 第 2の移動体 801の送受信装 置 804力、ら第 1の移動体 101の 信装置 104までの謹と、 受信装置 8 05 aから 信装置 104までの との差が算出される。
同様に、 Td i f f 3に光速を乗算することによって、 ^信装置 804から 信装置 104までの «と、 受信装置 805 bから 信装置 104までの 距離との差が算出される。 このため、 算出された差に基づいて、 二つの双曲線を 描くことができる。
これらの二つの曲線の交点を求めることによって、 第 2の移動体 801の送受 信装置 804に対する第 1の移動体 101の送受信装置 104の相対位置を計算 することができる。 すなわち、 これらの二つの曲線の交点が、 第 2の移動体 80 1の送受信装置 804に対する第 1の移動体 101の送受信装置 104の相対位 置に相当する。
ただし、 上記は相対位置の計算原理を説明するものであって、 上記の原理に基 づく計算を実現するための具体的計算方法は限定されない。 例えば、 二つの双曲 線を描く代わりに、 最小 2乗法を用いて最も確からしい相対位置が推定されても よい。
第 2の移動体 801が備える受信装置 805が二つのみである^ \ T d i f f 2及び Td i f f 3に基づく二つの双曲線の交点が二つ存在する。 このため、 第 2の移動体 801から見渡せる全範囲 (すなわち 360度) のうち、 所定の 1 80度の範囲で相対位置を一意に検出することができる。 第 2の移動体 801か ら見渡せる全範囲 (すなわち 360度の範囲) で第 1の移動体 101の相対位置 を一意に検出するためには、 第 2の移動体 801は、 少なくとも三つの受信装置 805を備える必要がある。
なお、 実際の測定結果は、 各送受信回路等の回路遅延時間を含む。 このため、 第 1の実施形態と同様、 回路遅延時間を含まない T—r e s u 1 t 3及び T— r e s u 1 t 4を算出する必要がある。
上記の手順によって、 第 1の移動体 101及び第 2の移動体 801の両者がお 互いの相对位置を知ることができる。
第 9図における翻 IJ信号 (I d e n t i f y i n g s i gna l) 及び測距 要求 (I d e n t i f y i ng & Ra ng i ng Re qu e s t) の送受 信手順は、 どちらの移動体からでも測距信号を 言できる手順の例を示す。 第 1 の移動体 101及び第 2の移動体 801は定期的に識別信号 (例えば、 第 9図の |¾¾Ι言号 901 a、 90 l b及び 902) を 言する。 それらのうちいずれかを 受信した移動体(第 9図では、 It ^信号 901 bを受信した第 2の移動体 801) が測距要求信号 (Ra n g i ng r e que s t) 903を 言する。 測距要 求信号 903を受信した移動体 (第 9図では、 第 1の移動体 101) が測距信号 201を送信する。 その後、 第 3図において説明した方法によって相対位置が検 出される。
第 10図における IJ信号及び測距要求の送受信手順は、 どちらの移動体から でも測距信号を送信できる手順の別の例を示す。 第 1の移動体 101及び第 2の 移動体 801は定期的に識別信号 (例えば、 第 10図の識別信号 1001 a、 1 001 b, 1002 a及ぴ 1002 b) を 言する。 それらのうちいずれかを受 信した移動体側 (第 10図では、 識別信号 1002 bを受信した第 1の移動体 1 01) が測距信号 201を送信する。 その後、 第 3図及び第 11図において説明 した方法によつて相対位置が検出される。
第 9図及び第 1 0図における識別及び測距要求は、 両者の機能を同時に実現し てもよい。 すなわち、 第 1の移動体 1 0 1は、 識別信号を受信した場合、 ただち に測距信号 2 0 1を 言し、 相対位置検出を開始する。 第 2の移動体 8 0 1は、 識リ信号を受信した 、 測距要求信号 9 0 3を 5 ^言する。 その測距要求信号 9 0 3を受信した第 1の移動体 1 0 1が測距信号 2 0 1を 言し、 相対位置検出を 行う。 これによつて、 つねに第 1の移動体 1 0 1が測距信号を 言し、 相対位置 検出を開始することができる。
なお第 9図及び第 1 0図の上記の説明で実際に信号を送受信するのは、 それぞ れの移動体が備える送受信装置 (すなわち送受信装置 1 0 4及び送受信装置 8 0 4 ) である。
第 1の実施形態及び第 2の実施形態における移動体 1 0 1、 1 0 2及び 8 0 1 としては、 例えば自動車、 飛行機、 自転車などの移動物体が想定される。 例えば 本実施形態に示したシステムを自動車に搭載することによって、 基地局又は衛星 のいずれも必要とせずに、 自動車同士の相対位置を検出することができる。 さら に、相対位置を検出した移動体同士が、相手を識別することができる。あるいは、 第 1の実施形態における第 2の移動体 1 0 2を人が持つことによって、 人と自動 車等との相対位置を検出することが可能となる。

Claims

請 求 の 範 囲 請求項 1. 第 1無線局及び第 2無線局の相対位置を検出する相対位置検出システ ムであって、
Stit己第 1無線局は、 無線信号を殺信する第 1送受信機と、 無線信号を受信す る第 1受信機と、 tin己第 1送受信機及び sfrtE第 1受信機に接続される第 1計算装 置と、 を備え、
前記第 2無線局は、 無線信号を殺信する第 2送受信機を備え、
fit己第 1送受信機は、 測距信号を 言し、
lift己第 2 信機は、 測距信号を受信すると、 所定の時間後に、 返信信号 を^言し、
StilE第 1送受信機は、 ΙίΐΙΕ返信信号を受信し、
編己第 1受信機は、 Ιίί Ε測距信号及び Ι ΙΒ返信信号を受信し、
m ι計算装置は、 編己第 ι送受信機が I&IB測距信号を 言してから ΙΞ返 信信号を受信するまでの第 1時間、 及び、 廳己第 1受信機が ΙΒ測距信号を受信 してから前記返信信号を受信するまでの第 2時間に基づレ、て、 前記第 1無線局に 対する ΙΞ第 2無線局の相対位置を計算することを特徴とする相対位置検出シス テム。 請求項 2. 前記第 1計算装置は、
fflt己第 1時間及び ¾ίΠ己所定の時間に基づいて、 tiff己第 1 信機から前記第 2 送受信機までの距離を計算し、
編己第 1時間、 IB第 2時間、 及び、 嫌己第 1送受信機から^ IB第 1受信機ま での距離に基づいて、 前記第 1送受信機から前記第 2送受信機までの距離と、 前 記第 1受信機から Mt己第 2送受信機までの »と、 の差を計算し、
計算された薩及び前記計算された差をいずれも満足する位置を、 嫌己第 1無線局に対する前記第 2無線局の相対位置として計算することを特徴とする請 求項 1に記載の相対位置検出システム。 請求項 3 · tfrt己第 1 信機は、 無線信号を送受信する第 1アンテナを備え、 tillH第 1受信機は、 無線信号を受信する第 2アンテナを備え、
前記第 1ァンテナ及び前記第 2ァンテナは、 前記第 1無線局内の互 V、に異なる 位置に設置されることを «とする請求項 1に記載の相対位置検出システム。 請求項 4 . tin己第 1無線局は、 さらに、 嫌己第 1計算装置に接続される第 2受信 機を備え、
前記第 2受信機は、 前記測距信号及び前記返信信号を受信し、
IE第 1計算装置は、 ¾ϋΙΞ第 1時間、 前記第 2時間、 及び、 前記第 2受信機が flit己測距信号を受信してから前記返信信号を受信するまでの第 3時間に基づいて、 編己第 1無線局に対する前記第 2無線局の相対位置を計算することを特徴とする 請求項 1に記載の相対位置検出システム。 請求項 5 . 前記第 1計算装置は、
前記第 1時間及び IB所定の時間に基づいて、 前記第 1送受信機から前記第 2 送受信機までの距離を計算し、
前記第 1時間、 前記第 2時間、 及び、 前記第 1送受信機から前記第 1受信機ま での «に基づいて、 前記第 1送受信機から前記第 2送受信機までの «と、 前 記第 1受信機から Sirt己第 2送受信機までの «と、 の差を計算し、
編己第 1時間、 ΙΞ第 3時間、 及び、 ΙίίΙΕ第 1送受信機から前記第 2受信機ま での距離に基づいて、 tiif己第 1送受信機から 第 2送受信機までの距離と、 前 記第 2受信機から lift己第 2送受信機までの «と、 の差を計算し、
前記計算された距離及び肅己計算された差に基づいて、 前記第 1無線局に対す る lift己第 2無線局の相対位置を計算することを特徴とする請求項 4に記載の相対 位置検出システム。 請求項 6. 編己第 1殺信機は、 無線信号を送受信する第 1アンテナを備え、 前記第 1受信機は、 無線信号を受信する第 2アンテナを備え、
前記第 2受信機は、 無線信号を受信する第 3ァンテナを備え、
前記第 1アンテナ、 前記第 2アンテナ及び前記第 3アンテナは、 前記第 1無線 局内の互いに異なる位置に、 一つの 上に位置しないように設置されることを 特徴とする請求項 4に記載の相対位置検出システム。 請求項 7. 前記測距信号は、 ΙίίΙΕ第 1無線局を ijする情報を含み、
前記返信信号は、 肅己第 2無線局を リする情報を含むことを特徴とする請求 項 1に記載の相対位置検出システム。 請求項 8. 前記第 1送受信機は、 所定のタイミングで、 前記第 1無線局を識別す る情報を含む第 1 1』信号を 言し、
己第 2送受信機は、歸己第 1 信号を受信すると、測距要求信号を難し、 IB第 1送受信機は、 l己測距要求信号を受信すると、 前記測距信号を 言す ることを特徴とする請求項 1に記載の相対位置検出システム。 請求項 9. fiilE第 2送受信機は、 所定のタイミングで、 tfHE第 2無線局を リす る情報を含む第 2識別信号を送信し、
第 1送受信機は、 ΙίίΐΕ第 2 IJ信号を受信すると、 前記測距信号を縮す ることを特徴とする請求項 1に記載の相対位置検出システム。 請求項 1 0. 前記第 2無線局は、 さらに、 第 3受信機と、 前記第 2送受信機及び 前記第 3受信機に接続される第 2計算装置と、 を備え、
第 3受信機は、 編己測距信号及び ill己返信信号を受信し、
前記第 1送受信機は、 前記第 1時間を示す情報を送信し、
前記第 2計算装置は、 rn ι送受信機から受信した前記第 ι時間を示す情報、 及び、 ΙίίΙΞ第 3受信機が ff!lB測距信号を受信してから編己返信信号を受信するま での第 4時間に基づいて、 前記第 2無線局に対する前記第 1無線局の相対位置を 計算することを,とする請求項 1に記載の相対位置検出システム。 請求項 1 1. 觸己第 2無線局は、 さらに、 第 3受信機と、 第 4受信機と、 前記第 2送受信機、 ffllB第 3受信機及び編己第 4受信機に接続される第 2計算装置と、 を備え、
前記第 3受信機及び前記第 4受信機は、 前記測距信号及び前記返信信号を受信 し、
l己第 2計算装置は、 ΙίίΙ己第 3受信機が fiilS測距信号を受信してから前記返信 信号を受信するまでの第 4時間、 及び、 ήίίΙΞ第 4受信機が 測距信号を受信し てから前記返信信号を受信するまでの第 5時間に基づレ、て、 前記第 2無線局に対 する l己第 1無線局の相対位置を計算することを特徴とする請求項 1に記載の相 対位置検出システム。 請求項 1 2. 前記第 2計算装置は、
嫌己所定の時間、 lift己第 4時間、 及び、 前記第 2送受信機から前記第 3受信機 までの距離に基づレ、て、 m 2送受信機から前記第 ι送受信機までの薩と、 前記第 3受信機から ΙίίΙΕ第 1送受信機までの satと、 の差を計算し、
肅己所定の時間、 嫌己第 5時間、 及び、 ΙίίΐΕ第 2送受信機から編己第 4受信機 までの距離に基づレ、て、 肅己第 2送受信機から前記第 1送受信機までの距離と、 前記第 4受信機から藤己第 1送受信機までの距離と、 の差を計算し、 前記計算された二つの差をいずれも満足する位置を、 前記第 2無線局に対する 編己第 1無線局の相対位置として計算することを特徴とする請求項 1 1に記載の 相対位置検出システム。 請求項 1 3. 無線信号を送受信する送受信機と、 無線信号を受信する第 1受信機 と、 前記送受信機及び前記第 1受信機に接続される計算装置と、 を備える無線局 であって、
Ιϋ Β送受信機は、
測距信号を送信し、
測距信号を受信した他の無線局から 言された返信信号を受信し、 肅己第 1受信機は、 前記測距信号及び前記返信信号を受信し、
ΙίίΙ己計算装置は、 ΙίίΙΞ¾¾信機が lift己測距信号を 言してから SiilE返信信号を 受信するまでの第 1時間、 及び、 前記第 1受信機が前記測距信号を受信してから ΙίΐΙ己返信信号を受信するまでの第 2時間に基づ V、て、 前記他の無線局の相対位置 を計算することを赚とする無線局。 請求項 1 4. 前記 信機は、 無線信号を 信する第 1アンテナを備え、 ΙίίΙΞ第 1受信機は、 無線信号を受信する第 2アンテナを備え、
ΙίίίΒ第 1ァンテナ及び前記第 2了ンテナは、 前記無線局内の互レ、に異なる位置 に設置されることを |¾とする請求項 1 3に記載の無線局。 請求項 1 5 . 前記無線局は、 さらに、 前記計算装置に接続される第 2受信機を備 え、
前記第 2受信機は、 前記測距信号及び碰己返信信号を受信し、
前記計算装置は、 第 1時間、 編己第 2時間、 及び、 gflE第 2受信機が前記 測距信号を受信してから前記返信信号を受信するまでの第 3時間に基づレ、て、 前 記他の無線局の相対位置を計算することを特徴とする請求項 1 3に記載の無線局。 請求項 1 6. tiifB殺信機は、 無線信号を殺信する第 1アンテナを備え、 、前記第 1受信機は、 無線信号を受信する第 2ァンテナを備え、
前記第 2受信機は、 無線信号を受信する第 3アンテナを備え、
前記第 1アンテナ、 前記第 2アンテナ及び前記第 3アンテナは、 前記無線局内 の互いに異なる位置に、 一つの 上に位置しないように設置されることを特徴 とする請求項 1 5に記載の無線局。 請求項 1 7. 觸己送受信機は、 所定のタイミングで、 無線局を! ¾¾リする情報 を含む第 1識別信号を送信し、
前記送受信機は、 tilt己第 1 f su信号を受信した ttiia他の無線局から 言された 測距要求信号を受信すると、 ttif己測距信号を 言することを特徴とする請求項 1
3に記載の無線局。 請求項 1 8. |B¾¾信機は、 編己他の無線局を 1』する情報を含む第 2 ij信 号を受信すると、 if己測距信号を 言することを特徴とする請求項 1 3に記載の 無線局。 請求項 1 9. ^ίίΐΒ無線局は、 さらに、 t&lB計算装置に接続される第 2受信機を備 え、
読送受信機は、前記他の無線局から測距信号を受信すると、所定の時間後に、 返信信号を 言し、
前記第 1受信機及び前記第 2受信機は、 Silt己他の無線局から ¾1言された測距信 号及び前記送受信機から 言された返信信号を受信し、
前記計算装置は、 前記第 1受信機が前記他の無線局から 言された測距信号を 受信してから frt己送受信機から ¾ί言された返信信号を受信するまでの第 4時間、 及び、 m 2受信機が前記他の無線局から ¾f言された測距信号を受信してから MIS送受信機から 言された返信信号を受信するまでの第 5時間に基づレ、て、 前 記他の無線局の相対位置を計算することを特徴とする請求項 1 3に記載の無線局。 請求項 2 0 . 無線信号を送受信する^¾¾信機と、 無線信号を受信する第 1受信機 と、 送受信機及び前記第 1受信機に接続される計算装置と、 を備える無線局 であって、
嫌己送受信機は、
他の無線局から測距信号を受信すると、 所定の時間後に、 返信信号を 言し、 tilt己他の無線局から、 tillE他の無線局が tiff己測距信号を ¾1言してから 返信 信号を受信するまでの第 1時間を示す情報を受信し、
前記第 1受信機は、 前記測距信号及び前記返信信号を受信し、
SiilS計算装置は、 IE第 1時間、 及び、 前記第 1受信機が IB測距信号を受信 してから前記返信信号を受信するまでの第 2時間に基づいて、 前記他の無線局の 相対位置を計算することを特徴とする無線局。
PCT/JP2009/059917 2008-05-29 2009-05-25 移動体相対位置検出システム及び相対位置検出を行う移動体 WO2009145325A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514564A JPWO2009145325A1 (ja) 2008-05-29 2009-05-25 移動体相対位置検出システム及び相対位置検出を行う移動体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008141076 2008-05-29
JP2008-141076 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009145325A1 true WO2009145325A1 (ja) 2009-12-03

Family

ID=41377193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059917 WO2009145325A1 (ja) 2008-05-29 2009-05-25 移動体相対位置検出システム及び相対位置検出を行う移動体

Country Status (2)

Country Link
JP (1) JPWO2009145325A1 (ja)
WO (1) WO2009145325A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495450C1 (ru) * 2012-03-27 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Субгармонический параметрический рассеиватель
EP2703832A2 (en) * 2011-04-29 2014-03-05 Orthotron Co., Ltd. Method and apparatus for measuring distances, and method for determining positions
JP2015514202A (ja) * 2012-04-26 2015-05-18 インテル コーポレイション 相対位置決め情報の決定
JP2016529471A (ja) * 2013-06-04 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 信号の飛行時間を用いる改善された距離の測定
WO2018105225A1 (ja) * 2016-12-05 2018-06-14 株式会社デンソー 携帯機位置推定システム
CN109040222A (zh) * 2018-07-26 2018-12-18 济南浪潮高新科技投资发展有限公司 一种定位寻物系统及方法
WO2020031550A1 (ja) * 2018-08-10 2020-02-13 株式会社デンソー 携帯機位置推定システム
WO2021029617A1 (ko) * 2019-08-13 2021-02-18 주식회사 아모센스 Uwb 안테나를 이용한 위치 측정 장치
JP2022502667A (ja) * 2018-10-12 2022-01-11 デンソー インターナショナル アメリカ インコーポレーテッド 双方向トーン交換を用いるパッシブエントリー/パッシブスタートアクセスシステム
WO2022225791A1 (en) 2021-04-19 2022-10-27 Oshkosh Corporation Implement position tracking for a lift device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159755A (ja) * 1995-12-06 1997-06-20 Toyo Commun Equip Co Ltd 2次レーダシステム
JPH09297175A (ja) * 1996-05-08 1997-11-18 Mitsubishi Electric Corp 追尾レーダ装置
JPH11271418A (ja) * 1998-03-20 1999-10-08 Fujitsu Ltd 電波位置標定システム、装置及びその方法
JP2002296335A (ja) * 2001-03-30 2002-10-09 Locus Corp 移動端末機の位置特定システム
JP2007502414A (ja) * 2003-08-14 2007-02-08 センシス コーポレーション Tdoa分散アンテナを使用したターゲットの位置特定方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159755A (ja) * 1995-12-06 1997-06-20 Toyo Commun Equip Co Ltd 2次レーダシステム
JPH09297175A (ja) * 1996-05-08 1997-11-18 Mitsubishi Electric Corp 追尾レーダ装置
JPH11271418A (ja) * 1998-03-20 1999-10-08 Fujitsu Ltd 電波位置標定システム、装置及びその方法
JP2002296335A (ja) * 2001-03-30 2002-10-09 Locus Corp 移動端末機の位置特定システム
JP2007502414A (ja) * 2003-08-14 2007-02-08 センシス コーポレーション Tdoa分散アンテナを使用したターゲットの位置特定方法及び装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703832A2 (en) * 2011-04-29 2014-03-05 Orthotron Co., Ltd. Method and apparatus for measuring distances, and method for determining positions
CN103703386A (zh) * 2011-04-29 2014-04-02 Orthotron株式会社 距离测量方法、距离测量装置及定位方法
JP2014515112A (ja) * 2011-04-29 2014-06-26 オアソトロン カンパニー リミテッド 距離測定方法及び装置と、測位方法
EP2703832A4 (en) * 2011-04-29 2014-10-15 Orthotron Co Ltd METHOD AND DEVICE FOR DISTANCE MEASUREMENT AND POSITIONING PROCESSING METHOD
US9201140B2 (en) 2011-04-29 2015-12-01 Orthotron Co., Ltd. Method and apparatus for measuring distances, and method for determining positions
RU2495450C1 (ru) * 2012-03-27 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Субгармонический параметрический рассеиватель
JP2015514202A (ja) * 2012-04-26 2015-05-18 インテル コーポレイション 相対位置決め情報の決定
JP2016529471A (ja) * 2013-06-04 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 信号の飛行時間を用いる改善された距離の測定
WO2018105225A1 (ja) * 2016-12-05 2018-06-14 株式会社デンソー 携帯機位置推定システム
JP2018091071A (ja) * 2016-12-05 2018-06-14 株式会社Soken 携帯機位置推定システム
CN109040222A (zh) * 2018-07-26 2018-12-18 济南浪潮高新科技投资发展有限公司 一种定位寻物系统及方法
JP2020026996A (ja) * 2018-08-10 2020-02-20 株式会社Soken 携帯機位置推定システム
US11320513B2 (en) * 2018-08-10 2022-05-03 Denso Corporation Portable device position estimation system
CN112567258B (zh) * 2018-08-10 2024-08-23 株式会社电装 便携机位置推定系统
CN112567258A (zh) * 2018-08-10 2021-03-26 株式会社电装 便携机位置推定系统
WO2020031550A1 (ja) * 2018-08-10 2020-02-13 株式会社デンソー 携帯機位置推定システム
JP7099161B2 (ja) 2018-08-10 2022-07-12 株式会社Soken 携帯機位置推定システム
JP2022502667A (ja) * 2018-10-12 2022-01-11 デンソー インターナショナル アメリカ インコーポレーテッド 双方向トーン交換を用いるパッシブエントリー/パッシブスタートアクセスシステム
JP2022504783A (ja) * 2018-10-12 2022-01-13 デンソー インターナショナル アメリカ インコーポレーテッド 往復時間スニッフィングを含むパッシブエントリー/パッシブスタートアクセスシステム
JP7088412B2 (ja) 2018-10-12 2022-06-21 デンソー インターナショナル アメリカ インコーポレーテッド トーン交換スニフィングを用いるパッシブエントリー/パッシブスタートアクセスシステム
JP2022504754A (ja) * 2018-10-12 2022-01-13 デンソー インターナショナル アメリカ インコーポレーテッド トーン交換スニフィングを用いるパッシブエントリー/パッシブスタートアクセスシステム
JP7265695B2 (ja) 2018-10-12 2023-04-27 デンソー インターナショナル アメリカ インコーポレーテッド 双方向トーン交換を用いるパッシブエントリー/パッシブスタートアクセスシステム
JP7428185B2 (ja) 2018-10-12 2024-02-06 デンソー インターナショナル アメリカ インコーポレーテッド 往復時間スニッフィングを含むパッシブエントリー/パッシブスタートアクセスシステム
CN114208220A (zh) * 2019-08-13 2022-03-18 阿莫善斯有限公司 使用uwb天线的位置测量装置
US20220291374A1 (en) * 2019-08-13 2022-09-15 AMOSENSE Co.,Ltd Position-measuring device using uwb antenna
WO2021029617A1 (ko) * 2019-08-13 2021-02-18 주식회사 아모센스 Uwb 안테나를 이용한 위치 측정 장치
WO2022225791A1 (en) 2021-04-19 2022-10-27 Oshkosh Corporation Implement position tracking for a lift device

Also Published As

Publication number Publication date
JPWO2009145325A1 (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2009145325A1 (ja) 移動体相対位置検出システム及び相対位置検出を行う移動体
US10649061B2 (en) Method and system for determining the position of a user device in relation to a vehicle
KR102009791B1 (ko) Uwb를 이용한 3차원 측위 시스템
CN207835830U (zh) 定位系统
CN107454670B (zh) 定位系统
US7345630B2 (en) System and method for position detection of a terminal in a network
EP2564230B1 (en) Device for round trip time measurements
KR100691397B1 (ko) 낮은 정확도의 클록을 사용하여 이동 통신 장치의 위치를결정하기 위한 방법 및 장치
US6731242B1 (en) Method of calculating the position of a mobile radio station based on shortest propagation time
CN103344942B (zh) 控制节点、异步定位方法与系统
KR101206873B1 (ko) 클록 펄스 장치를 동기화하기 위한 방법
JP2005536944A (ja) 無線ローカルエリアネットワークにおける所在位置の検知方法およびシステム
EP1496370A1 (en) Position Acquisition
JP5025675B2 (ja) 移動体検知システム
KR100704793B1 (ko) 전파도달 시간차를 이용한 위치측정시스템 및 위치측정방법
US10397894B2 (en) Autonomous positioning systems
KR20120127779A (ko) 도착시간차를 이용한 실시간 위치추적 시스템
US9258797B2 (en) Method and apparatus for a local positioning system
JP2006080681A (ja) 位置検出システムおよび位置検出方法
CN103069778A (zh) 用于定位的方法
US20100136999A1 (en) Apparatus and method for determining position of terminal
WO2007083889A1 (en) Method and apparatus for transmitter locating using a single receiver
US7532858B2 (en) Method for determining existence of repeater using portable internet signal and method for measuring position of mobile station using the same
KR101635422B1 (ko) 위치 추정 방법 및 측위 서버
US20160183045A1 (en) Positioning device and positioning method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514564

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754833

Country of ref document: EP

Kind code of ref document: A1