WO2009145180A1 - 新規選択マーカー遺伝子およびその利用 - Google Patents

新規選択マーカー遺伝子およびその利用 Download PDF

Info

Publication number
WO2009145180A1
WO2009145180A1 PCT/JP2009/059592 JP2009059592W WO2009145180A1 WO 2009145180 A1 WO2009145180 A1 WO 2009145180A1 JP 2009059592 W JP2009059592 W JP 2009059592W WO 2009145180 A1 WO2009145180 A1 WO 2009145180A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
seed
fluorescent protein
promoter
plant
Prior art date
Application number
PCT/JP2009/059592
Other languages
English (en)
French (fr)
Inventor
いくこ 西村
知生 嶋田
貴士 島田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to EP09754688.1A priority Critical patent/EP2298883B1/en
Priority to CA2725674A priority patent/CA2725674A1/en
Priority to US12/994,615 priority patent/US20110126315A1/en
Priority to JP2010514488A priority patent/JP5499408B2/ja
Priority to AU2009252377A priority patent/AU2009252377B2/en
Publication of WO2009145180A1 publication Critical patent/WO2009145180A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]

Definitions

  • the present invention relates to a novel selectable marker gene and use thereof, and more particularly to a gene encoding a fusion protein of a seed protein and a fluorescent protein and use thereof.
  • a drug resistance gene is generally used as a selection marker.
  • the technique for producing a transformant using a drug resistance gene has the following drawbacks. [1] Since there is a possibility that a gene is horizontally transmitted in the growing stage of a plant, there is a limit in growing a plant having a drug resistance gene in the field. [2] Since it is necessary to perform drug treatment when selecting a desired transformant, it is necessary to separately prepare a drug-containing medium for selection. [3] Even a plant having a drug resistance gene is damaged by the drug treatment. [4] It is difficult to obtain a transformant at a level that cannot survive in a drug-containing medium.
  • Non-Patent Documents 1 and 2 In order to solve these problems, attempts have been made to produce transformant plants that do not have a drug resistance gene (see, for example, Non-Patent Documents 1 and 2).
  • a method called co-transformation two plasmids (one containing a drug resistance gene marker and the other containing the target transforming gene) are introduced into the plant at the same time, and then passed through several generations. Individuals that do not have a drug resistance gene but have the target transforming gene can be selected (see, for example, Non-Patent Document 3).
  • a technique site-specific recombination method
  • excludes drug resistance gene markers from transformed plants using a site-specific recombination mechanism see, for example, Non-Patent Documents 4 to 7).
  • a transformant plant having no drug resistance gene marker can be produced.
  • these methods require complicated steps, and furthermore, in these methods, it takes time to produce transformed plants.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to produce a transformant plant without requiring a complicated process and to obtain the target transformant in a relatively short time. It is to provide a technique for obtaining.
  • Green fluorescent protein one of the fluorescent proteins utilized as a visual selectable marker, is a protein that is non-toxic to living organisms and can be easily visualized without the use of a substrate (for example, non-fluorescent protein).
  • a substrate for example, non-fluorescent protein.
  • transgenic seed selection markers using fluorescent proteins other than GFP are also known (see, for example, Non-Patent Documents 10 to 11).
  • a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter is excellent as a visual selection marker.
  • the present inventors have found that it can be used as a codominant marker and have completed the present invention.
  • the DNA construct according to the present invention is a DNA construct containing a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter. It is a feature.
  • the present invention individuals that have been successfully transformed can be easily selected as seeds that emit detectable fluorescence.
  • the fluorescence detected from the seed using the present invention is very strong compared to the fluorescence from the seed obtained when only the gene encoding the fluorescent protein is operably linked to the seed-specific promoter.
  • a transformant plant in which the fluorescent protein is expressed only in the seed and the fluorescent protein is not expressed in the seedling (root, leaf, stem, etc.) on which the seed is grown can be obtained.
  • all of the fluorescent proteins are expressed in all tissues because their expression is controlled by a strong promoter (CaMV 35S promoter or pCVMV promoter).
  • the seed-specific promoter may be operably linked with a second gene encoding a target protein and a gene encoding a second fluorescent protein.
  • the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
  • the fluorescence emitted by the second fluorescent protein can be visually distinguished from the fluorescence emitted by the fluorescent protein constituting the fusion protein, the expression of the fusion protein and the expression of the target protein are expressed in the seed. Can be detected visually.
  • the DNA construct according to the present invention may further include a second promoter for expressing the target protein in the target tissue.
  • the gene encoding the target protein operates on the second promoter. Connected as possible.
  • Non-Patent Documents 10 to 11 are techniques for accumulating a target protein in seeds, and a gene encoding the target protein is operably linked to a seed-specific promoter.
  • a target gene can be expressed in a target tissue without being limited to seeds, and a target protein can be accumulated in the target tissue.
  • the fluorescent protein is expressed only in the seed, and the fluorescent protein is not expressed in the seedling (root, leaf, stem, etc.) on which the seed is grown.
  • the second promoter may be operably linked with a second gene encoding a target protein and a gene encoding a second fluorescent protein.
  • the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
  • the fluorescent protein expressed in the seed and the fluorescent protein expressed in the target tissue emit fluorescence of different colors, and the fluorescent protein expressed in the seed and the second There is no interference with the expression of the fluorescent protein. Therefore, not only can a transformed individual be easily selected as a seed emitting detectable fluorescence, but also the expression of the target protein in the target tissue can be easily confirmed.
  • the seed protein is preferably an oil body-localized protein, and the oil body-localized protein is more preferably a protein selected from the group consisting of oleosin, caleosin and steroleosin.
  • the seed-specific promoter is preferably a native promoter of a gene encoding an oil body localized protein. When this promoter is used, detection of fluorescence from the seed is much easier than when a promoter having directivity for other organelles in the seed is used, and it is very excellent as a visual selection marker at the seed stage.
  • the promoter of the gene encoding the oil body localized protein is more preferably a promoter of a gene encoding a protein selected from the group consisting of oleosin, caleosin and steroleosin.
  • the fusion protein is preferably configured by fusing a fluorescent protein to the C-terminus of the seed protein.
  • the selection marker according to the present invention is characterized in that it contains the above DNA construct.
  • the selection marker kit according to the present invention is characterized by comprising the above-described DNA construct.
  • the transformant plant according to the present invention is characterized in that a gene encoding a fusion protein of a seed protein and a fluorescent protein, which is operably linked to a seed-specific promoter, is introduced.
  • the transformant plant according to the present invention is preferably a grown individual plant, a plant cell, a plant tissue, a callus, or a seed.
  • the method for selecting a transformant plant detects the presence of a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in the seed. It includes the process of performing.
  • the detecting step includes detecting the fluorescence due to the fluorescent protein from the seed, but detecting the gene encoding the fusion protein or the gene encoding the fluorescent protein from the seed extract. But you can.
  • the method may further include a step of detecting the presence of a gene encoding the second fluorescent protein operably linked to a seed-specific promoter in the seed.
  • the method may further include a step of detecting the presence of a gene encoding the second fluorescent protein operably linked to the second promoter in the target tissue.
  • the protein production method includes (1) a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in order to produce the protein in the plant body.
  • the DNA construct preferably further includes a second promoter for expressing the target protein in the target tissue.
  • the inserting step includes the steps of: Two genes are operably linked to a second promoter.
  • the introducing step includes performing a floral-dip method or a vacuum-infiltration method.
  • a transformant plant can be selected more easily and efficiently than when a drug resistance marker is used.
  • the present invention can be used as a codominant marker that can easily differentiate between homo and hetero lines.
  • FIG. 1 is a diagram showing the structure of a DNA construct according to the present invention.
  • FIG. 2 is a diagram showing the results of observing seeds of a plant line introduced with a vector for overexpressing CLO3 according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of GFP, (B) shows a bright-field image.
  • FIG. 3 is a diagram showing the segregation ratio of T2 seed population and T3 homoline seed population of a plant body (35SCLO3 (OLE1GFP)) according to an embodiment, and the number of seeds having resistance to a drug (Glufosinate-ammonium). .
  • FIG. 1 is a diagram showing the structure of a DNA construct according to the present invention.
  • FIG. 2 is a diagram showing the results of observing seeds of a plant line introduced with a vector for overexpressing CLO3 according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of GFP, (B) shows a bright-field image.
  • FIG. 4 is a view showing the results of confirming the expression of CLO3 in seeds in which GFP fluorescence was observed in the seed population of the plant body (35SCLO3 (OLE1GFP)) according to one embodiment, and (a) shows the expression of CLO3. (B) shows the number of individuals in which the expression of CLO3 was confirmed.
  • FIG. 5 is a diagram showing the transition of fluorescence in OLE1GFP after germination.
  • FIG. 6 is a graph showing the relationship between the GFP fluorescence intensity in the T2 seed of a 35SCLO3 (OLE1GFP) plant and the genotype of the transformed gene.
  • FIG. 7 is a diagram showing the structure of a DNA construct according to the present invention.
  • FIG. 8 is a diagram showing the structure of a DNA construct according to the present invention.
  • FIG. 9 is a diagram showing a result of observing a T1 seed population of a plant line introduced with a 35S overexpression vector according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of RFP; (B) shows a bright-field image.
  • FIG. 10 shows the results of observation of a T3 homozygous seed population obtained from 35S :: GFP-CLO3 (FAST-R06) under a fluorescence microscope.
  • A shows the fluorescence of TagRFP
  • (b) shows a bright field image.
  • Plant seed cells have organelles for storing storage substances, and one of the oil seed plants, Arabidopsis thaliana, is an oil body that stores large quantities of organelles for storing storage substances. Stores fat (mainly triacylglycerol).
  • Membrane proteins such as oleosin, caleosin, and stereosin are localized in the oil body. Particularly, oleosin has the largest accumulation amount among the oil body localized proteins.
  • Seed type oleosin is a protein that accumulates in large quantities only in the oil body of seeds, and the major isoforms of oleosins (OLE1 to OLE4) exist in Arabidopsis seeds.
  • OLE1GFP fusion gene was induced using the OLE1 promoter, and observed under a fluorescence microscope that GFP fluorescence was observed only in the seeds. That is, it was found that OLE1GFP is not only usable as a transformation marker for Arabidopsis but also more useful than conventional drug resistance markers.
  • the T1 seed population of transformants into which the OLE1GFP fusion gene was introduced by the floral-dip method using Agrobacterium it was possible to select transformants using GFP fluorescence in the seeds as an index.
  • the T2 homozygous seeds could be efficiently selected as seeds with strong GFP fluorescence.
  • the OLE1GFP fusion gene can be used as a codominant marker that can easily differentiate between homo and hetero lines.
  • conventional selection methods using drug resistance markers there are serious problems such as the possibility of horizontal transmission of drug resistance genes, preparation of selective media containing drugs, and adverse effects of drugs on plants.
  • selection method using the OLE1GFP marker selection was possible only by GFP observation under a fluorescence microscope, and it was shown that transformant plants can be selected more easily and efficiently than when a drug resistance marker is used.
  • DNA construct and selectable marker The present invention provides a DNA construct that can be used as a novel selectable marker gene.
  • the DNA construct according to the present invention includes a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter.
  • Fluorescent protein has already been used as a selection marker instead of a drug resistance marker.
  • the present invention can provide a technique that is exceptionally superior to conventional selection methods using only a fluorescent protein.
  • operably linked means that a gene encoding a protein of interest is under the control of a regulatory region such as a promoter and the protein (or mRNA) is It is intended to be in a form that can be expressed.
  • a procedure for constructing a desired vector by “operably linking” a gene encoding a peptide of interest to a control region such as a promoter is well known in the art.
  • a method for introducing an expression vector into a host is also well known in the art. Therefore, those skilled in the art can easily produce a desired protein (or mRNA) in a host.
  • seed protein that can be used in the present invention may be a protein that is specifically expressed in the seed, and may be a protein that is specifically expressed in each organelle in the seed.
  • seed protein is intended to include not only seed storage proteins but also oil body localized proteins.
  • Preferred seed storage proteins include, for example, 12S globulin, cucurbitine, glutelin, glycinin, legumin, aratin, conglycinin, 7S globulin, phaseolin, bicilin, concaratin, 2S globulin, amangine, prolamin, zein, gliadin, edestine, glutenin, lysine, Examples include, but are not limited to, hemagglutinin, 2S albumin, canavalin, concanavalin, trypsin inhibitor, cystatin and the like.
  • the oil body-localized protein is preferably oleosin (eg, OLE1 (at4g25140)), caleosin (eg, CLO3 (at2g33380)), stereosin ((eg, STE1 (at5g50600)), etc., and oleosin (OLE1 to 4).
  • OLE1 to 4 The amino acid sequences of OLE1 to 4 are shown in SEQ ID NOs: 1 to 4, and the amino acid sequence of CLO3 is shown in SEQ ID NO: 5.
  • oleosin, caleosin, and stereocin have various isoforms and orthologs in plants. However, it is considered that the effect of the present invention is exhibited regardless of which is used.
  • the seed protein may preferably be a seed storage protein and an oil body localized protein, and more preferably an oil body localized protein.
  • a seed storage protein when used, it is very difficult to observe fluorescence with a general fluorescence microscope, and it is necessary to use a modified fluorescent protein with high fluorescence intensity or a confocal laser microscope. is there.
  • the oil body localized protein by using the oil body localized protein, the fluorescence from the seed can be easily observed even using a general fluorescence microscope.
  • the fluorescent protein that can be used in the present invention may be any fluorescent protein known in the art, but GFP, RFP, and the like are preferable from the viewpoint of ease of operation and availability.
  • OLE1 consists of the amino acid sequence shown in SEQ ID NO: 1, those skilled in the art who read this specification will easily understand that variants that retain their functions are also included in the category of OLE1.
  • a “variant” of OLE1 is a protein consisting of an amino acid sequence in which one or several amino acids are deleted, added or substituted in the amino acid sequence shown in SEQ ID NO: 1. It is intended to be. That is, those skilled in the art readily understand that even if one or several amino acids are deleted, added or substituted, they can be regarded as the protein as long as the function of the original protein is maintained. A person skilled in the art can easily understand the function of the original protein from the name of the protein.
  • the fluorescent protein may be fused to either the N-terminal side or the C-terminal side of the seed protein, but when the functional site of the seed protein is present on the N-terminal side, it is fused to the C-terminal side of the seed protein. It is preferable.
  • the seed-specific promoter that can be used in the present invention may be a promoter that natively controls a gene encoding a protein that is specifically expressed in the seed.
  • Preferred seed-specific promoters include, but are not limited to, promoters that natively control genes encoding seed storage proteins, oil body localization proteins and the like as described above.
  • the seed-specific promoter is preferably a promoter that natively controls a gene that encodes a seed storage protein, and a promoter that natively controls a gene that encodes an oil body localized protein.
  • the promoter controlling the gene encoding the seed storage protein include 2S albumin 3 promoter (SEQ ID NO: 7), 12S globulin promoter (SEQ ID NO: 8), ⁇ -conglycinin promoter (SEQ ID NO: 9) and the like. It is not limited to. More preferably, the seed-specific promoter may be a promoter that natively controls a gene encoding an oil body localized protein.
  • an oil body localized protein as a seed protein shows a much better effect than a seed storage protein. It is more preferable to use a regulated promoter (for example, oleosin promoter (proOLE1): SEQ ID NO: 6) as a seed-specific promoter.
  • a regulated promoter for example, oleosin promoter (proOLE1): SEQ ID NO: 6
  • proOLE1 oleosin promoter
  • some of the promoters that natively control the genes encoding the seed proteins (seed storage protein and oil body localization protein) described above have not been proven in their base sequences. However, those skilled in the art can easily prove it.
  • the DNA construct according to the present invention is a DNA construct comprising a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter.
  • a second gene that encodes the target protein and a gene that encodes the second fluorescent protein are operably linked to a seed-specific promoter, and the second fluorescent protein includes the seed protein and the fluorescent protein. It is a protein that emits fluorescence of a different color from the fluorescent protein that constitutes the fusion protein with the protein.
  • the second fluorescent protein is not particularly limited as long as it emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein, and a conventionally known fluorescent protein can be used.
  • a fluorescent protein such as GFP, YFP, CFP, and RFP that emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein can be selected.
  • the second fluorescent protein may be linked to either the N-terminal side or the C-terminal side of the target protein.
  • to emit fluorescence of different colors means that fluorescence having a wavelength in the visible light region (380 nm to 780 nm) gives a different color sensation depending on the wavelength.
  • green-blue (480 nm to 490 nm) fluorescence and blue-green (490 to 500 nm) fluorescence are recognized as different colors, and blue-green fluorescence and green fluorescence (500 to 560 nm) are different colors. It is recognized that there is.
  • the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein that constitutes the fusion protein, whereby the presence of a gene encoding the second fluorescent protein in the seed is determined to be a gene encoding the fusion protein. Can be detected separately from the presence in the seed. That is, the expression of the target protein in the seed can be clearly detected separately from the selection marker, and the seed in which the target protein is expressed can be selected more easily.
  • the fluorescent protein constituting the fusion protein is RFP that emits red fluorescence
  • GFP that emits green fluorescence is used as the second fluorescent protein
  • the target protein is detected using green fluorescence as an index, thereby .
  • the expression of the target protein can be clearly detected separately from the selection marker.
  • the fluorescence can be confirmed by a conventionally known method, for example, using a fluorescence microscope.
  • the procedure itself for constructing a desired vector by operably linking the gene encoding the second gene and the second fluorescent protein to the seed-specific promoter is well known in the art.
  • a method for introducing an expression vector into a host is also well known in the art.
  • a person skilled in the art who has contacted the present specification constructs an expression vector as appropriate, and distinguishes between fluorescence emitted from the fluorescent protein constituting the fusion protein and fluorescence emitted from the second fluorescent protein in the seed. Can do.
  • the above observation can be performed by constructing a vector such as pFAST-R07, which is a modified destination vector constructed in Examples described later.
  • the DNA construct according to the present invention further includes a second promoter capable of operably linking a gene encoding the target protein in order to express the target protein in the target tissue.
  • a second promoter capable of operably linking a gene encoding the target protein in order to express the target protein in the target tissue.
  • any promoter known in the art can be used.
  • Known promoters in the art include 35S promoter (SEQ ID NO: 10), dexamethasone-inducible promoter, estrogen-dependent promoter, CHS-A promoter, heat shock promoter, RuBisCO promoter, stress-responsive promoter, and the like. It is not limited to.
  • the expression of the fluorescent protein and the expression of the target protein do not interfere at all.
  • the fluorescent protein when a promoter other than a seed-specific promoter is used as the second promoter, in the obtained transformant, the fluorescent protein is expressed only in the seed, and seedlings (roots, leaves, stems, etc.) on which the seed is grown In, the fluorescent protein is not expressed.
  • a second gene encoding a target protein and a gene encoding a second fluorescent protein are operably linked to the second promoter, and the second fluorescent protein Is a protein that emits fluorescence of a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
  • the second fluorescent protein may be linked to either the N-terminal side or the C-terminal side of the target protein.
  • the expression of the target protein in the target tissue can be clearly detected separately from the expression of the selection marker in the seed.
  • a procedure for constructing a desired vector by operably linking a gene encoding a target protein and a second fluorescent protein to the second promoter is well known in the art.
  • a method for introducing an expression vector into a host is also well known in the art.
  • an expression vector as appropriate, observe the fluorescence emitted from the fluorescent protein constituting the fusion protein in the seed, and observe the fluorescence emitted from the second fluorescent protein in the target tissue.
  • the above observation can be performed by constructing vectors such as pFAST-R05 and pFAST-R06, which are modified destination vectors constructed in Examples described later.
  • the DNA construct according to the present invention is useful as a selection marker and a codominant marker.
  • a selectable marker kit comprising the DNA construct according to the present invention is also within the scope of the present invention.
  • kit is intended to package a plurality of articles and have a single aspect. That is, the selection marker kit according to the present invention only needs to include reagents other than the DNA construct according to the present invention. Those skilled in the art can easily understand the reagents required when the DNA construct according to the present invention is used as a selection marker.
  • the present invention also provides a transformant plant into which the DNA construct is introduced.
  • the transformant plant according to the present invention is characterized in that a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter is introduced.
  • transformant is intended not only to a cell, tissue or organ, but also to an individual organism.
  • the transformant according to the present invention has only to be introduced with at least a gene encoding a polypeptide constituting the fusion protein according to the present invention and express this fusion protein. That is, it should be noted that transformants generated by means other than expression vectors are also included in the technical scope of the present invention.
  • gene introduced or “gene introduced” is expressed in a target cell (host cell) by a known genetic engineering technique (gene manipulation technique). It is intended to be introduced (ie, transformant).
  • a target cell host cell
  • genetic engineering technique gene manipulation technique
  • transformant ie, transformant
  • various crops plants and crops produced in the agriculture, forestry and fisheries industry
  • Specific examples include cereals (rice, wheat, corn, etc.), timbers (pine, cedar, cypress, etc.), various vegetables, and flower buds.
  • Plants to be transformed in the present invention include whole plants, plant organs (eg leaves, petals, stems, roots, seeds, etc.), plant tissues (eg epidermis, phloem, soft tissue, xylem, vascular bundle, It means any of a palisade tissue, a spongy tissue, etc.) or a plant culture cell, or various forms of plant cells (eg, suspension culture cells), protoplasts, leaf sections, callus, and the like.
  • the plant used for transformation is not particularly limited, and may be any plant belonging to the monocotyledonous plant class or the dicotyledonous plant class.
  • the transformant plant according to the present invention may be a grown plant individual, a plant cell, a plant tissue, a callus, or a seed.
  • transformation methods known to those skilled in the art for example, the Agrobacterium method
  • the constructed plant expression vector is introduced into an appropriate Agrobacterium, and this strain is infected with a sterile cultured leaf piece according to a method well known in the art (for example, the leaf disc method). Good.
  • the DNA construct according to the present invention When the DNA construct according to the present invention is introduced via callus using the above vector, it is possible to select heterozygous individuals and homozygous individuals from the seed population of the transformant using fluorescence as an index. Homo individuals can be obtained.
  • the Agrobacterium containing the DNA construct according to the present invention introduces the DNA construct into an infected plant body only by using the floral-dip method or vacuum-infiltration method (applying to flower buds or shoot apical meristems). It is only necessary to collect the seed from the infected plant.
  • the target seed can be obtained by a very simple method without going through callus.
  • the method via callus is complicated such as requiring a sterilization operation, and has the disadvantage that culture mutation is likely to occur. However, such a drawback can be avoided by using the above method.
  • the present invention has an advantage that any tissue or organ can be transformed by properly using the second promoter.
  • Whether or not a gene has been introduced into a plant may be confirmed using a PCR method, Southern hybridization method, Northern hybridization method, or the like.
  • the present invention also includes a plant body into which the fusion protein is introduced so that it can be expressed, or a progeny of the plant body having the same properties as the plant body, or a tissue derived therefrom.
  • the method for producing a transformant plant according to the present invention comprises a step of transforming a plant using a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter; It includes the step of selecting a plant that expresses the fusion protein in the transformed plant.
  • the method for producing a transformant plant according to the present invention may be as follows: (1) producing a DNA construct comprising a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter; (2) A plant expression vector into which the above gene cut out from the DNA construct prepared in step (1) is inserted is introduced into each Agrobacterium; (3) Infecting the plant body by applying each Agrobacterium obtained in step (2) to the flower bud (floral-dip method); (4) T1 seeds are collected from each individual plant body infected with Agrobacterium obtained in step (3); (5) Fluorescence derived from the fluorescent protein is detected in each T1 seed collected in step (4), and a plant in which fluorescence is observed is selected as a transformed plant; (6) grow each transformant selected in step (5), collect T2 seeds and construct a seed library; (7) The fluorescence derived from the fluorescent protein is detected in each T2 seed collected in the step (6), and the seed in which fluorescence is observed is
  • the gene encoding the fusion protein is extracted from an extract of each T1 seed (or T2 seed) or an extract from a plant that has grown each T1 seed (or T2 seed).
  • it may be a step of detecting a gene encoding the fluorescent protein.
  • the method for producing a transformant according to this embodiment may include a step of applying Agrobacterium containing a DNA construct to flower buds or shoot apical meristems.
  • the present invention also provides a method for selecting a transformant plant.
  • the method for selecting a transformant plant according to the present invention detects the presence of a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in the seed. It includes the process of performing.
  • a method for selecting a transformant plant according to the present invention can be included as a step of a method for producing a transformant plant, for example, step (5) in the method for producing the transformant plant. It can be (7). That is, in the present method, the detecting step includes detecting the fluorescence due to the fluorescent protein from the seed, and detecting the gene encoding the fusion protein or the gene encoding the fluorescent protein from the seed extract. May be included.
  • the method for selecting a transformant plant according to the present invention further comprises a step of detecting the presence of a gene encoding a second fluorescent protein operably linked to a seed-specific promoter in the seed. May be included.
  • the vector can be introduced into a host and the resulting seeds can be observed using a fluorescence microscope or the like.
  • the method for selecting a transformant plant according to the present invention further comprises that a gene encoding the second fluorescent protein operably linked to the second promoter is present in the target tissue.
  • a step of detecting may be included.
  • the vector is introduced into a host, It can be performed by observing the tissue in which the target protein is to be expressed using a fluorescence microscope or the like.
  • the present invention further provides a protein production method.
  • the protein production method according to the present invention is a method for producing a protein in a transformed plant, which encodes a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter.
  • the second gene is operable to the second promoter for expressing the protein encoded by the second gene in the target tissue. It may be connected to.
  • the protein production method according to the present invention preferably further includes a step of purifying the protein from the extract of the transformant plant (eg, cell or tissue).
  • the protein purification step is performed by preparing a cell extract from cells or tissues by a well-known method (for example, by centrifuging cells or tissues and then collecting a soluble fraction by centrifugation), and then using this cell extract.
  • HPLC high performance liquid chromatography
  • the protein production method according to the present invention is the use of the above-described transformant. Therefore, a protein production method including the steps shown in the embodiment of the method for producing a transformant described above is also included in the technical scope of the present invention.
  • the protein production method according to the present invention includes: In order to introduce a target gene into a plant body, a floral-dip method or a vacuum-infiltration method is used.
  • the synthesized peptide sequence is as follows.
  • CLO3 CVTSQRKVRNDLEETL (SEQ ID NO: 11)
  • the peptide synthesized with 3-maleimidobenzoic acid N-hydroxysuccinimide ester (Sigma-Aldrich) was cross-linked with BSA.
  • Peptides cross-linked with BSA were injected subcutaneously into rabbits with complete Freund's adjuvant, an immune aid. From 3 weeks after the start of immunization, booster inoculation was performed 4 times every other week with incomplete Freund's adjuvant.
  • Antibodies were purified from blood collected from rabbits one week after the last boost.
  • SDS-PAGE and CBB staining SDS-PAGE was performed according to the method of Laemmli et al. J. Mol. Biol. 47, 69-85 (1970).
  • the protein sample is subjected to SDS sample buffer (4 wt% SDS, 100 mM Tris-HCl, 10 wt% 2-mercaptoethanol, 20 wt% glycerol, 0.1% BPB (each indicating the final concentration in the sample lysate)). And heated at 95 ° C. for 5 minutes. The heated protein sample was then applied to a 7.5-15% acrylamide gradient gel (BIO CRAFT).
  • the gel after electrophoresis was stained with CBB staining solution (0.25 wt% Coomassie blue R250, 45% methanol, 10% acetic acid) for 1 hour. Subsequently, the gel was destained in destaining solution A (45% methanol, 10% acetic acid) for 1 hour and in destaining solution B (5% methanol, 7% acetic acid) for 12 hours to detect protein bands. did.
  • the nylon membrane on which the protein was transferred was shaken in TBS-T (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.05 wt% Tween 20) containing 5 wt% skim milk for 30 minutes to perform blocking treatment. went.
  • the nylon membrane after blocking was shaken in TBS-T containing appropriately diluted antibodies (1/2000 for OLE1 antibody, 1/5000 for OLE2 antibody, 1/5000 for CLO3 antibody) for 1 hour. The membrane was then washed 3 times with TBS-T for 5 minutes.
  • the destination vector pBGWFS7 (Plant System Biology) has a GFP-GUS fusion protein coding region downstream of the gateway multicloning site.
  • a modified destination vector pBGWF7 from which the GUS coding region in the vector was removed was prepared by treating pBGFS7 with the restriction enzyme Nru1.
  • OLE1GFP In order to express a protein in which GFP was fused to the C-terminus of OLE1 (OLE1GFP), about 2 kb upstream of the coding region of the protein was used as a promoter region for the OLE1 gene. In order to fuse GFP to the C-terminal side of the OLE1 protein, one base guanine was added to the reverse primer in order to remove the stop codon of the OLE1 coding region and prevent frame shift. Using the Col-0 genome as a template, the OLE1 gene was amplified by TOYOBO KOD-plus- Polymerase and subcloned into pENTER / D-TOPO (Invitrogen) to prepare an entry vector pOLE1. The base sequence of the entry vector pOLE1 was confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
  • the primers used are as follows: OLE1_Fwd, 5′-CACCCTACTTAGATACAACACATAAA-3 ′ (SEQ ID NO: 12) OLE1_Rev, 5′-GAGTAGTGTGCTGGCCACCACCG-3 ′ (SEQ ID NO: 13).
  • modified destination vector pB-OLE1GFP-2GW7 A 3 kDa DNA fragment containing 35S promoter, gateway multicloning site, and 35S terminator by treating destination vector pH2GW7 (Plant System Biology) with restriction enzyme Aat2. Got.
  • the expression vector pB-OLE1GFP was similarly treated with Aat2, and a DNA fragment treated with alkaline phosphatase to prevent intramolecular binding was obtained.
  • a modified destination vector pB-OLE1GFP-2GW7 was prepared (upper figure in FIG. 1).
  • CLO3 mRNA is induced in trophic organs by treatment with drought stress, salt stress and abscisic acid (Takahashi et al. Plant Cell Physiol. 41, 898-903 (2000)). When the accumulation of CLO3 protein was examined, no accumulation was observed in the seedlings on the seventh day (FIG. 4 (a)).
  • the region from the start codon to the stop codon of the CLO3 gene was amplified with TOYOBO KOD-plus- Polymerase and subcloned into pENTER / D-TOPO (Invitrogen) to prepare the entry vector pCLO3.
  • the base sequence of the entry vector pCLO3 was confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
  • the primers used are as follows: CLO3_Fwd; 5′-CACCCATGGCAGGAGAGGCAGAGGCTG-3 ′ (SEQ ID NO: 14) CLO3_Rev; 5′-TTAGTCTTGTTTGCGAGAATTGGCCCC-3 ′ (SEQ ID NO: 15).
  • a 3.5 kb region containing the OLE1GFP fusion gene and terminator 35S was amplified by PCR using pB-OLE1GFP-2GW7 as a template and TOYOBO KOD-plus-polymerase.
  • a recognition sequence of restriction enzyme Apa1 or Spe1 was added to the primer, and a recognition sequence of Apa1 or Spe1 was added before and after the DNA fragment containing the OLE1GFP fusion gene and terminator 35S.
  • Each of the obtained fragments was subcloned into pENTER / D-TOPO (Invitrogen) to prepare entry vectors pOLE1GFP-Apa1 and pOLE1GFP-Spe1.
  • the base sequences of the entry vectors pOLE1GFP-Apa1 and pOLE1GFP-Spe1 were confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
  • the primers used are as follows: OLE1GFP-Apa1_Fwd; 5′-CACCGGGGCCCTACTTAGATACAACACATAAA-3 ′ (SEQ ID NO: 16), OLE1GFP-Apa1_Rev; OLE1GFP-Spe1_Rev; 5′-ACTAGTCCGCATGCCTGCAGGTCACTGGAT-3 ′ (SEQ ID NO: 19).
  • Destination vector pHGW Plant System Biology
  • Apa1 restriction enzyme
  • the entry vector pOLE1GFP-Apa1 was digested with the restriction enzyme Apa1, and a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and the terminator 35S was purified. These two fragments were ligated to prepare a modified destination vector pH-OLE1GFP-GW as a general-purpose vector.
  • Destination vector pH7GWIWG2 (Plant System Biology) was digested with restriction enzyme Apa1, and the resulting DNA fragment was treated with alkaline phosphatase to prevent intramolecular binding.
  • the entry vector pOLE1GFP-Apa1 was similarly digested with the restriction enzyme Apa1 to purify a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and terminator 35S. These two fragments were ligated to produce a modified destination vector pH-OLE1GFP-7GWIWG2 (I) as an RNAi vector.
  • Destination vector pKGFS7 Plant System Biology
  • restriction enzyme Spe1 restriction enzyme to prevent intramolecular binding
  • entry vector pOLE1GFP-Spe1 was digested with the restriction enzyme Spe1 to purify a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and the terminator 35S. These two fragments were ligated to produce a modified destination vector pK-OLE1GFP-GWFS7 as a promoter analysis vector.
  • OLE1_Fwd2,5′-CACCACTAGGTTATGTAGGTATATAGATACAT-3 ′ (SEQ ID NO: 20)
  • TagRFP_Fwd 5'-CAGCACACTACTATGAGCGAGCTGATTAAG-3 '(SEQ ID NO: 22)
  • TagRFP_Rev 5′-TGTTTTGAACGATTCACTTGTGCCCCAGTT-3 ′ (SEQ ID NO: 23)
  • NOST_Fwd 5'-GGGGCACAAGTGAATCGTTCAAACATTTGGC-3 '(SEQ ID NO: 24)
  • NOST_Rev, 5′-ACTAGTGATTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 25) [3-2]
  • Preparation of OLE1 TagRFP marker Using the OLE1 gene fragment, TagRFP fragment and NOS terminator fragment
  • nucleotide sequences of the entry vectors pOLE1TagRFP-Spe1, pOLE1TagRFP-Hind3 and pOLE1TagRFP-Apa1 were confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
  • the primers used are as follows: FAST-R_Spe1Fwd, 5′-CACCACTAGTGTATGTAGGTTAGTAACAT-3 ′ (SEQ ID NO: 26) FAST-R_Spe1Rev, 5′-ACTAGTGATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 27) FAST-R_Hind3Fwd, 5′-CACCCAAGCTTCAAGGTTATGTAGGTATAGT-3 ′ (SEQ ID NO: 28) FAST-R_Hind3Rev, 5′-AAGCTTGATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 29) FAST-R_Apa1Fwd, 5′-CACCGGGGCCCTCAAGTGTATGTAGGTATA-3 ′ (SEQ ID NO: 30) FAST-R_Apa1Rev, 5′-GGGGCCCATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 31) [3-3] Preparation
  • modified destination vector pFAST-R01 The destination vector pHGW was treated with the restriction enzyme Spe1 and the resulting DNA fragment was treated with alkaline phosphatase to prevent intramolecular binding.
  • the entry vector pOLE1TagRFP-Spe1 was similarly treated with the restriction enzyme Spe1 to purify a 3.5 kDa DNA fragment containing the OLE1-TagRFP fusion gene and NOS terminator. These two fragments were ligated to produce a modified destination vector pFAST-R01, which is a general-purpose vector (FIG. 8).
  • pB-OLE1TagRFP-35S-GFPCLO3 construct having OLE1TagRFP marker According to the method of Gateway Technology, LR reaction is performed between entry vector pCLO3 and pFAST-R06, and expression vector pB-OLE1TagRFP- A 35S-GFPCLO3 construct was made.
  • pFAST-R06 has a GFP gene and a cloning site downstream of the 35S promoter, and the GFP gene and the fusion protein derived from the target gene can be overexpressed by the 35S promoter by LR reaction.
  • the leaves of 35S :: GFP-CLO3 (FAST-R06) were observed under a confocal laser microscope (LSM510 META; Carl Zeiss, Jena, Germany), and intracellular GFP fluorescence was photographed.
  • the laser used was a 488-nm line of a 40-mV Ar / Kr laser.
  • Differential interference contrast (DIC) images were taken at the same time.
  • the structure of the DNA construct according to the present invention is shown in FIG.
  • the upper diagram in FIG. 1 is a vector (pB-OLEGFP-2GW7) for producing a plant body overexpressing the target gene using the CaMV35S promoter, and the lower diagram in FIG.
  • CLO3 overexpresses CLO3 as one embodiment. Shows a vector (pB-OLE1GFP-35S :: CLO3).
  • LB represents Left Border
  • RB represents Right Border
  • Bar represents Basta gene
  • p35s represents CaMV35S promoter
  • t35s represents CaMV35S terminator
  • CmR represents chloramphenicol resistance gene
  • ccdB Indicates E. coli gyrase inhibitor protein.
  • FIG. 2 shows the results of observing the seeds of a plant line introduced with a vector for overexpression of CLO3 (pB-OLE1GFP-35S :: CLO3) under a fluorescence microscope.
  • a plant body 35SCLO3 (OLE1GFP) transformed with wild-type Col-0 (T0 plant) using pB-OLE1GFP-35S :: CLO3 was obtained.
  • T1 seed population, T2 seed population, and T3 homozygous seed population obtained from this plant were observed under a fluorescence microscope.
  • (A) shows fluorescence of GFP
  • (b) shows a bright field image. In the T1 seed population, several seeds having GFP fluorescence were observed (arrowheads in the figure).
  • the selected 35S: CLO3 (OLE1GFP) T1 seeds were grown, and the obtained T2 seed population was observed with a fluorescence microscope. As a result, seeds having GFP fluorescence (GFP +) and seeds having no GFP (GFP-) were observed. Were mixed (FIG. 2, T2 seeds). Furthermore, in the next generation T3 homozygous seed population obtained by growing T2 seeds, all seeds had GFP fluorescence (FIG. 2, T3 seeds).
  • FIG. 3 shows the separation ratio of the T2 seed population and the T3 homoline seed population of 35 SCLO3 (OLE1GFP) plants.
  • T2 seed population and 35 TLO homoline seed population of 35SCLO3 OLO3
  • seeds having GFP fluorescence (GFP +) and seeds having no GFP fluorescence (GFP ⁇ ) were counted.
  • the separation ratio of GFP +: GFP ⁇ was about 3: 1 in the # 1, # 5, and # 6 lines of the T2 seed population.
  • the separation ratio of GFP +: GFP ⁇ was approximately 15: 1. From this, it is presumed that the pB-OLE1GFP-35s :: CLO3 construct was inserted into the 1 locus while the separation ratio of 15: 1 was inserted into the 2 locus when the separation ratio was 3: 1. It was.
  • OLE1GFP fusion gene can be used not only as a visual selection marker but also has a selection ability equivalent to that of a drug selection marker.
  • OLE1GFP fusion gene is referred to as an OLE1GFP marker.
  • FIG. 4 shows the results of confirming the expression of CLO3 in seeds in which GFP fluorescence was observed in the seed population of 35SCLO3 (OLE1GFP) plants.
  • A grows seeds in which GFP fluorescence was observed, seeds in which GFP fluorescence was not observed, and T2 homozygous lines in T2 lines of wild type plant Col-0, OLE1GFP plant, and 35SCLO3 (OLE1GFP) plant, The result of having investigated the expression of CLO3 in the seedling of the 7th day by the immunoblot is shown.
  • FIG. 5 is a diagram showing the transition of fluorescence in OLE1GFP after germination.
  • FIG. 6 shows the relationship between the GFP fluorescence intensity in the T2 seeds of 35SCLO3 (OLE1GFP) plant and the genotype of the transformed gene.
  • T2 seed (# 1 line) of 35SCLO3 (OLE1GFP) plant the GFP fluorescence intensity of one seed was measured, and the genotype of the transformed gene of the seed was examined. The genotype was determined from the separation ratio of the GFP fluorescence of the seeds obtained by growing the plant body.
  • a histogram was prepared with the number of seeds on the vertical axis and the GFP fluorescence intensity on the horizontal axis. Histograms for GFP fluorescence intensity were created for each of the homo line, hetero line, and non-transformant. The GFP fluorescence intensity was higher in the hetero line seed population than in the non-transformed seed group, and the hetero line seeds.
  • homoseed seed population tended to be higher than the population. Similar results were obtained for the # 5 and # 6 lines (results not shown). This suggests that homozygous seeds can be selected by selecting those having a very strong fluorescence intensity in the T2 seed population.
  • the probability that all four individuals are not homozygous is 19.8%, which indicates that the possibility that a homozygous line cannot be selected is very high compared to when the OLE1GFP marker is used. From these results, it was shown that the OLE1GFP marker is useful as a codominant marker capable of distinguishing between homo and hetero lines.
  • FIG. 9 shows the result of observing the seeds of the plant line into which the expression vector pB-35S-CLO3-OLE1TagRFP was introduced under a fluorescence microscope.
  • a plant body obtained by transforming wild-type Col-0 (T0 plant) with pB-35S-CLO3-OLE1TagRFP was obtained.
  • the T1 seed population obtained from this plant was observed under a fluorescence microscope.
  • (A) shows the fluorescence of TagRFP
  • (b) shows a bright field image.
  • FIG. 9 several seeds having TagRFP red fluorescence were observed in the T1 seed population.
  • the OLE1TagRFP fusion gene can also be used as a visual selection marker, like the OLE1GFP fusion gene.
  • FIG. 10 shows the results of observation of a T3 homozygous seed population obtained from 35S :: GFP-CLO3 (FAST-R06) under a fluorescence microscope.
  • (A) shows the fluorescence of TagRFP
  • (b) shows a bright field image.
  • T3 homoline seed population obtained by growing T1 seed of 35S :: GFP-CLO3 (FAST-R06) and growing the obtained T2 seed population all seeds had TagRFP fluorescence. (FIG. 10 (a)).
  • FIG. 11 shows the results of observing the expression of CLO3 in the leaves of 35S :: GFP-CLO3 (FAST-R06) using GFP fluorescence as an index.
  • A is an image showing a result of observing the leaf under a differential interference microscope
  • (b) is an image showing a result of observing the leaf under a confocal laser microscope and detecting GFP fluorescence.
  • C is an image obtained by superimposing (a) and (b).
  • PFAST-R06 contains the OLE1TagRFP fusion gene as shown in FIG. Therefore, in 35S :: GFP-CLO3 (FAST-R06), the expression of the selection marker in the seed can be confirmed by the red fluorescence of TagRFP.
  • pFAST-R06 a gene encoding GFP as a second fluorescent protein and a gene encoding CLO3 as a target protein are operably linked to a 35S promoter as a second promoter. Therefore, as shown in FIGS. 11 (b) and 11 (c), the expression of CLO3 in the leaves of 35S :: GFP-CLO3 (FAST-R06) is detected by distinguishing it from the expression of the selection marker in seeds by green fluorescence. Can do.
  • the DNA construct according to the present invention is a novel selection marker for selecting transformed plants, and the expressed protein is a fusion protein of a plant-derived seed protein and a fluorescent protein that is non-toxic to living organisms. From this, it can be said that the DNA construct according to the present invention is a safe selection marker that is harmless to organisms and the environment.
  • the DNA construct according to the present invention is a simpler and more useful selection marker than general drug resistance markers.
  • a drug resistance marker it is necessary to prepare a selective medium containing an appropriate concentration of a drug and sow seeds in order to examine the selection and isolation ratio of transformed plants.
  • the DNA construct according to the present invention which is a visual selection marker
  • preparation of a medium having a special composition and seed sowing are not required.
  • the transformation is not successful, it can be determined from the fluorescence observation, so that it is not necessary to sow the seed in the selective medium. From these facts, the use of the DNA construct according to the present invention makes it possible to reduce extra drugs and culture media.
  • T1 plant using a drug resistance marker When selecting a T1 plant using a drug resistance marker, it is necessary to sow a large amount of T1 seed population in a selective medium, which is very laborious.
  • the DNA construct according to the present invention when used, it is possible to visually select in the dry seed state, so that the seed to be seeded is only a reliable T1 transformant, and the seed required for sowing Is small and very efficient.
  • direct soil planting is possible. Therefore, in the case of a transformant that also shows a phenotype in a hetero line, such as RNAi or overexpressor, T1 Comparison with control plants is possible at the transformant stage, and analysis can be performed quickly. It is also possible to select weak transformants that cannot grow in a selective medium.
  • the DNA construct according to the present invention can be used as a codominant marker, it is possible to isolate a homo line with high probability by selecting seeds with strong fluorescence intensity. Can be reduced by one generation.
  • a transformant plant can be produced by the Agrobacterium-based floral-dip method or the vacuum-infiltration method.
  • the plant to be applied may be any plant that accumulates seed proteins (especially oil body localized proteins) in the seeds, and thus can be applied to various plants.
  • Japanese radish (Raphanus sativus) has been reported as a plant species that can use the above-mentioned floral-dip method or vacuum-infiltration method (Curtis, IS and Nam, amHG Transgenic Res. 10, 363-371 (2001) ).
  • cruciferous plants that are oil seeds and accumulate oil body localized protein (oleosin) are plants to which the floral-dip method or vacuum-infiltration method can be applied. It is considered that the DNA construct according to the above can be widely used as long as it is a plant of the Brassicaceae family.
  • a target transformant can be obtained in a relatively short time without requiring a complicated process in order to produce a transformant plant, so that it can be effectively used for breeding.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物を用いる。これにより、形質転換体植物を作出するために、複雑な工程を必要とせずかつ比較的短時間に目的の形質転換体を得るための技術を提供する。

Description

新規選択マーカー遺伝子およびその利用
 本発明は、新規選択マーカー遺伝子およびその利用に関するものであり、より詳細には、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子およびその利用に関するものである。
 形質転換体を作製する場合、薬剤耐性遺伝子が選択マーカーとして一般的に使用されている。しかし、薬剤耐性遺伝子を用いて形質転換体を作製する技術には以下のような欠点がある。
〔1〕植物は育成段階で遺伝子が水平伝播する可能性があるので、薬剤耐性遺伝子を有する植物を野外にて育成するには制限がある。
〔2〕所望の形質転換体を選抜する際に薬剤処理を行う必要があるので、選抜用の薬剤含有培地を別途調製する必要がある。
〔3〕薬剤耐性遺伝子を有している植物であっても、薬剤処理によりダメージを受ける。
〔4〕薬剤含有培地において生存し得ないレベルの形質転換体を得ることが困難である。
 これらの問題を解決するために、薬剤耐性遺伝子を有していない形質転換体植物の作出が試みられている(例えば、非特許文献1および2参照)。また、同時形質転換法と呼ばれる手法では、2つのプラスミド(一方が薬剤耐性遺伝子マーカーを含み、他方が目的の形質転換遺伝子を含む。)を同時に植物体に導入し、その後数世代を経ることによって、薬剤耐性遺伝子を有していないが目的の形質転換遺伝子を有している個体を選抜することができる(例えば、非特許文献3参照)。さらに、部位特異的組換え機構を利用して薬剤耐性遺伝子マーカーを形質転換体植物から排除する手法(部位特異的組換え法)も知られている(例えば、非特許文献4~7参照)。
John I. Yoder, A.P.G. Nature Biotechnology 12, 263 - 267 (1994) Darbani et al., Biotechnol. J. 2, 83-90 (2007) Parkhi, V. et al., Mol. Genet. Genomics 274, 325-336 (2005) Zuo, J. et al., Nat. Biotechnol. 19, 157-161 (2001) Li, Z. et al., Plant Mol. Biol. 65, 329-341 (2007) Hu, Q. et al., Biotechnol. Lett. 28, 1793-1804 (2006) Sugita, K. et al., Plant J. 22, 461-469 (2000) Baranski, R. et al., Plant Cell Rep 25, 190-197 (2006) Halfhill, M.D. et al., Plant Cell Rep. 26, 303-311 (2007) Lu, C. et al., Plant J. 45, 847-856 (2006) Lu, C. and Kang, J. Plant Cell Rep. 27, 273-278 (2008)
 同時形質転換法または部位特異的組換え法を用いれば、薬剤耐性遺伝子マーカーを有していない形質転換体植物を作出し得る。しかし、これらの方法は複雑な工程を必須とし、さらに、これらの方法では、形質転換体植物の作出に時間を要する。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、形質転換体植物を作出するために、複雑な工程を必要とせずかつ比較的短時間に目的の形質転換体を得るための技術を提供することにある。
 形質転換体植物の選抜に薬剤耐性遺伝子以外の選択マーカーを用いる手法もまた知られている。視覚的選択マーカーとして利用されている蛍光タンパク質の1つである緑色蛍光タンパク質(GFP)は、生物に対して無毒であり、かつ基質を用いることなく容易に視覚化し得るタンパク質である(例えば、非特許文献8~9参照)。また、GFP以外の蛍光タンパク質を用いたトランスジェニック種子選択マーカーも知られている(例えば、非特許文献10~11参照)。
 本発明者らは、種子タンパク質の研究を進める中で、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が、視覚的選択マーカーとして優れているだけでなく、共優性マーカーとして使用可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るDNA構築物は、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物であって、該遺伝子が種子特異的プロモータに作動可能に連結されていることを特徴としている。
 本発明を用いれば、首尾よく形質転換した個体を、検出可能な蛍光を発する種子として容易に選抜し得る。本発明を用いて種子から検出される蛍光は、蛍光タンパク質をコードする遺伝子のみを種子特異的プロモータに作動可能に連結した場合に得られる種子からの蛍光と比較して非常に強い。また、本発明を用いれば、蛍光タンパク質が種子においてのみ発現し、種子を生育させた実生(根、葉、茎など)においては蛍光タンパク質が発現していない形質転換体植物を得ることができる。非特許文献8-11に記載の技術では、蛍光タンパク質はいずれも、強力なプロモータ(CaMV 35SプロモータまたはpCVMVプロモータ)によってその発現が制御されているため、あらゆる組織にて発現される。
 本発明に係るDNA構築物では、上記種子特異的プロモータには、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが作動可能に連結されていてもよく、この場合、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発する。
 上記構成によれば、第2の蛍光タンパク質が発する蛍光を、上記融合タンパク質を構成する蛍光タンパク質が発する蛍光と視覚的に区別できるため、種子において、上記融合タンパク質の発現と、目的タンパク質の発現とを視覚的に区別して検出することができる。
 それゆえ、形質転換した個体を、検出可能な蛍光を発する種子として容易に選抜できるだけでなく、種子における目的のタンパク質の発現を、選択マーカーと区別して検出することができる。
 本発明に係るDNA構築物は、目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでいてもよく、この場合、目的のタンパク質をコードする遺伝子が第2のプロモータに作動可能に連結される。
 非特許文献10~11に記載の技術は目的のタンパク質を種子に蓄積させる技術であり、目的のタンパク質をコードする遺伝子は種子特異的プロモータに作動可能に連結されている。上記構成を有している本発明を用いれば、種子に限定されることなく目的の組織に目的の遺伝子を発現させて、目的のタンパク質を目的の組織に蓄積させることができる。この場合においても、得られた形質転換体では、蛍光タンパク質が種子においてのみ発現し、種子を生育させた実生(根、葉、茎など)においては蛍光タンパク質が発現していない。また、蛍光タンパク質の発現と目的のタンパク質の発現とは全く干渉しない。
 本発明に係るDNA構築物では、上記第2のプロモータには、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが作動可能に連結されていてもよく、この場合、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発する。
 上記構成によれば、種子において発現する蛍光タンパク質と、目的の組織において発現する蛍光タンパク質(第2の蛍光タンパク質)とが異なる色の蛍光を発する上、種子において発現する蛍光タンパク質の発現と第2の蛍光タンパク質の発現とは全く干渉しない。それゆえ、形質転換した個体を、検出可能な蛍光を発する種子として容易に選抜できるだけでなく、目的のタンパク質の、目的の組織における発現をも容易に確認することができる。
 本発明に係るDNA構築物において、上記種子タンパク質はオイルボディ局在性タンパク質であることが好ましく、オイルボディ局在性タンパク質としては、オレオシン、カレオシンおよびステロレオシンからなる群より選択されるタンパク質がより好ましい。また、本発明に係るDNA構築物において、上記種子特異的プロモータはオイルボディ局在性タンパク質をコードする遺伝子のネイティブなプロモータであることが好ましい。本プロモータを用いれば、種子からの蛍光の検出が種子における他のオルガネラに指向性を有するプロモータを用いる場合よりも極めて容易であり、種子段階での視覚的選択マーカーとして非常に優れている。オイルボディ局在性タンパク質をコードする遺伝子のプロモータとしては、オレオシン、カレオシンおよびステロレオシンからなる群より選択されるタンパク質をコードする遺伝子のプロモータがより好ましい。
 また、本発明に係るDNA構築物において、上記融合タンパク質は、種子タンパク質のC末端に蛍光タンパク質が融合して構成されていることが好ましい。
 本発明に係る選択マーカーは、上記のDNA構築物を含んでいることを特徴としている。また、本発明に係る選択マーカーキットは、上記のDNA構築物を備えていることを特徴としている。
 本発明に係る形質転換体植物は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が導入されていることを特徴としている。本発明に係る形質転換体植物は、好ましくは成育した植物個体、植物細胞、植物組織、カルス、種子の少なくとも何れかであり得る。
 本発明に係る形質転換体植物を選抜する方法は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含することを特徴としている。本方法において、上記検出する工程は、上記蛍光タンパク質による蛍光を種子から検出することを含んでも、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を種子抽出物から検出することを含んでもよい。
 本方法は、さらに、種子特異的プロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含していてもよい。
 また、本方法は、さらに、第2のプロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が目的の組織に存在していることを検出する工程を含んでいてもよい。
 本発明に係るタンパク質生産方法は、植物体内でタンパク質を生産するために、(1)種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物に、目的のタンパク質をコードする第2の遺伝子を挿入する工程;および、(2) 得られたDNA構築物を植物体に導入する工程、を包含することを特徴としている。本発明に係るタンパク質生産方法において、上記DNA構築物は、目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでいることが好ましく、この場合、上記挿入する工程は、第2の遺伝子が第2のプロモータに作動可能に連結することを含んでいる。また、本発明に係るタンパク質生産方法において、上記導入する工程は、floral-dip法またはvacuum-infiltration法を行うことを含んでいることが好ましい。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
 本発明を用いれば、薬剤耐性マーカーを用いた場合より簡便かつ効率的に形質転換体植物を選抜し得る。また、本発明は、ホモ系統とヘテロ系統とを容易に差別化し得る共優性マーカーとして利用可能である。
図1は、本発明に係るDNA構築物の構造を示す図である。 図2は、一実施形態に係るCLO3を過剰発現させるためのベクターが導入された植物体系統の種子を蛍光顕微鏡下で観察した結果を示す図であり、(a)はGFPの蛍光を示し、(b)は明視野像を示す。 図3は、一実施形態に係る植物体(35SCLO3(OLE1GFP))のT2種子集団およびT3ホモ系統種子集団の分離比、ならびに薬剤(Glufosinate-ammonium)に対する耐性を有する種子の数を示す図である。 図4は、一実施形態に係る植物体(35SCLO3(OLE1GFP))の種子集団においてGFP蛍光が観察された種子でのCLO3の発現を確認した結果を示す図であり、(a)はCLO3の発現をイムノブロットによって調べた結果を示し、(b)はCLO3の発現が確認された個体数を示す。 図5は、発芽後のOLE1GFPにおける蛍光の推移を示す図である。 図6は、35SCLO3(OLE1GFP)植物のT2種子におけるGFP蛍光強度と形質転換遺伝子の遺伝子型との関連を示す図である。 図7は、本発明に係るDNA構築物の構造を示す図である。 図8は、本発明に係るDNA構築物の構造を示す図である。 図9は、一実施形態に係る、35S過剰発現用ベクターが導入された植物体系統のT1種子集団を蛍光顕微鏡下で観察した結果を示す図であり、(a)はRFPの蛍光を示し、(b)は明視野像を示す。 図10は、35S::GFP-CLO3(FAST-R06)から得られたT3ホモ系統種子集団を蛍光顕微鏡下にて観察した結果を示すものである。(a)はTagRFPの蛍光を示し、(b)は明視野像を示す。 35S::GFP-CLO3(FAST-R06)の葉におけるCLO3の発現を、GFP蛍光を指標として観察した結果を示すものである。(a)は35S::GFP-CLO3(FAST-R06)の葉を微分干渉顕微鏡下で観察した結果を示す画像であり、(b)は35S::GFP-CLO3(FAST-R06)の葉を共焦点レーザー顕微鏡下で観察し、GFP蛍光を検出した結果を示す画像である。(c)は、(a)と(b)とを重ね合わせた画像である。
 植物の種子細胞は、貯蔵物質を蓄えるためのオルガネラを有しており、油糧種子植物の1つであるシロイヌナズナ(Arabidopsis thaliana)は、オイルボディという、貯蔵物質を蓄えるためのオルガネラに大量の貯蔵脂肪(主にトリアシルグリセロール)を蓄えている。オイルボディには、オレオシン、カレオシン、ステロレオシンなどの膜タンパク質が局在し、特に、オレオシンは、オイルボディ局在性タンパク質の中で最も蓄積量が多い。
 種子型オレオシンは種子のオイルボディにのみ大量に蓄積されるタンパク質であり、シロイヌナズナの種子にはオレオシンの主要なアイソフォーム(OLE1~4)が存在する。本発明者らは、OLE1プロモータを用いてOLE1GFP融合遺伝子を誘導した形質転換体を作製し、GFPの蛍光が種子のみにて観察されることを蛍光顕微鏡下で観察した。すなわち、OLE1GFPがシロイヌナズナの形質転換マーカーとして使用可能であるだけでなく、従来の薬剤耐性マーカーよりも有用であることを見出した。また、OLE1GFP融合遺伝子を、アグロバクテリウムを用いるfloral-dip法によって導入した形質転換体のT1種子集団では、種子におけるGFPの蛍光を指標とした形質転換体の選抜が可能であった。さらに、T2種子集団において、T2ホモ系統の種子が、GFPの蛍光の強い種子として効率よく選抜され得た。このことは、OLE1GFP融合遺伝子が、ホモ系統とヘテロ系統とを容易に差別化し得る共優性マーカーとして利用可能であることを示している。従来の薬剤耐性マーカーを用いた選抜法では、薬剤耐性遺伝子の水平伝播の可能性、薬剤入りの選択培地の準備、薬剤が植物体に与える悪影響など、重大な問題が存在している。OLE1GFPマーカーを用いた選抜法では蛍光顕微鏡下でのGFP観察のみで選抜が可能であり、薬剤耐性マーカーを用いた場合より簡便かつ効率的に形質転換体植物を選抜し得ることが示された。
 〔1〕DNA構築物および選択マーカー
 本発明は、新規選択マーカー遺伝子として利用可能なDNA構築物を提供する。本発明に係るDNA構築物は、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでおり、該遺伝子が種子特異的プロモータに作動可能に連結されていることを特徴としている。
 蛍光タンパク質は、薬剤耐性マーカーに代わる選択マーカーとしてすでに利用されている。本発明は、種子タンパク質と蛍光タンパク質との融合タンパク質を用いることにより、これまでの蛍光タンパク質のみを用いる選抜法よりも格別優れた技術を提供し得る。
 本明細書中で使用される場合、用語「作動可能に連結」は、目的のタンパク質をコードする遺伝子が、プロモータなどの制御領域の制御下にあって、このタンパク質(またはmRNA)を宿主中で発現し得る形態にあることが意図される。目的のペプチドをコードする遺伝子をプロモータなどの制御領域に「作動可能に連結」して所望のベクターを構築する手順は当該分野において周知である。また、発現ベクターを宿主に導入する方法もまた、当該分野において周知である。よって、当業者は、容易に所望のタンパク質(またはmRNA)を宿主中にて生成することができる。
 本発明に利用可能な種子タンパク質は、種子に特異的に発現するタンパク質であればよく、種子における各オルガネラに特異的に発現するタンパク質であってもよい。このように、本明細書中で使用される場合、用語「種子タンパク質」は種子貯蔵タンパク質だけでなくオイルボディ局在性タンパク質も含むことが意図される。好ましい種子貯蔵タンパク質としては、例えば、12Sグロブリン、ククルビチン、グルテリン、グリシニン、レグミン、アラチン、コングリシニン、7Sグロブリン、ファゼオリン、ビシリン、コンアラチン、2Sグロブリン、アマンジン、プロラミン、ゼイン、グリアジン、エデスチン、グルテニン、リシン、ヘマグルチニン、2Sアルブミン、カナバリン、コンカナバリン、トリプシンインヒビター、シスタチンなどが挙げられるがこれらに限定されない。また、オイルボディ局在性タンパク質としては、オレオシン(例えばOLE1(at4g25140))、カレオシン(例えば、CLO3(at2g33380))、ステロレオシン((例えばSTE1(at5g50600))などが好ましく、オレオシン(OLE1~4)が最も好ましい。OLE1~4のアミノ酸配列をそれぞれ配列番号1~4、CLO3のアミノ酸配列を配列番号5に示す。なお、オレオシン、カレオシン、ステレオシンは、植物において多種にわたってそのアイソフォームやオルソログが存在するが、いずれを用いても本発明の効果を奏すると考えられる。
 本発明において、種子タンパク質は、好ましくは種子貯蔵タンパク質およびオイルボディ局在性タンパク質であり得、より好ましくは、オイルボディ局在性タンパク質であり得る。本発明において、種子貯蔵タンパク質を用いた場合では、一般的な蛍光顕微鏡によって蛍光を観察することが非常に困難であり、蛍光強度の高い改変型蛍光タンパク質を用いるか共焦点レーザー顕微鏡を用いる必要がある。しかし、オイルボディ局在性タンパク質を用いることによって、一般的な蛍光顕微鏡を用いても種子からの蛍光を容易に観察することができる。また、本発明に利用可能な蛍光タンパク質は、当該分野において公知の蛍光タンパク質であればよいが、操作の簡便さおよび入手容易性の観点からGFP、RFPなどが好ましい。
 なお、本明細書中に記載したタンパク質について、いずれのタンパク質も単一のアミノ酸配列によって規定されるべきではない。例えば、OLE1は配列番号1に示されるアミノ酸配列からなるが、その機能を保持した変異体もまた、OLE1の範疇に含まれることを、本明細書を読んだ当業者は容易に理解する。本明細書中で使用される場合、OLE1の「変異体」は、配列番号1に示されるアミノ酸配列において、1または数個のアミノ酸が欠失、付加または置換されているアミノ酸配列からなるタンパク質であることが意図される。すなわち、1または数個のアミノ酸が欠失、付加または置換されていても、元々のタンパク質の機能が保持されている限りそのタンパク質としてみなし得ることを、当業者は容易に理解する。なお、当業者は、元々のタンパク質の機能をそのタンパク質の名称から容易に理解し得る。
 蛍光タンパク質は、種子タンパク質のN末端側またはC末端側のいずれに融合していてもよいが、種子タンパク質の機能部位がN末端側に存在する場合は、種子タンパク質のC末端側に融合していていることが好ましい。
 本発明に利用可能な種子特異的プロモータは、種子に特異的に発現するタンパク質をコードする遺伝子をネイティブに制御しているプロモータであればよい。好ましい種子特異的プロモータとしては、例えば、上述したような種子貯蔵タンパク質、オイルボディ局在性タンパク質などをコードする遺伝子をネイティブに制御しているプロモータが挙げられるがこれらに限定されない。
 本発明において、種子特異的プロモータは、好ましくは種子貯蔵タンパク質をコードする遺伝子をネイティブに制御しているプロモータ、およびオイルボディ局在性タンパク質をコードする遺伝子をネイティブに制御しているプロモータであり得る。種子貯蔵タンパク質をコードする遺伝子を制御しているプロモータとしては、2Sアルブミン3プロモーター(配列番号7)、12Sグロブリンプロモーター(配列番号8)、β-コングリシニンプロモーター(配列番号9)などが挙げられるがこれらに限定されない。より好ましくは、種子特異的プロモータは、オイルボディ局在性タンパク質をコードする遺伝子をネイティブに制御しているプロモータであり得る。上述したように、本発明において、種子タンパク質として種子貯蔵タンパク質よりもオイルボディ局在性タンパク質を用いた方が格段優れた効果を示すことより、オイルボディ局在性タンパク質をコードする遺伝子を(ネイティブに)制御しているプロモータ(例えば、オレオシンプロモーター(proOLE1):配列番号6)を種子特異的プロモータとして用いることがより好ましい。なお、上述した種子タンパク質(種子貯蔵タンパク質およびオイルボディ局在性タンパク質)をコードする遺伝子をネイティブに制御しているプロモータについて、その塩基配列が証明されていないものもあるが、証明されていないものであっても当業者であれば容易に証明し得る。
 一実施形態において、本発明に係るDNA構築物は、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物であって、該遺伝子が種子特異的プロモータに作動可能に連結されるとともに、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが種子特異的プロモータに作動可能に連結されており、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質となっている。
 上記第2の蛍光タンパク質としては、上記融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するものであれば、特に限定されるものではなく、従来公知の蛍光タンパク質を用いることができる。例えば、GFP,YFP,CFP,RFP等の蛍光タンパク質から、上記融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するものを選択することができる。なお、上記第2の蛍光タンパク質は、目的タンパク質のN末端側またはC末端側のいずれに連結されていてもよい。
 ここで、「異なる色の蛍光を発する」とは、可視光の領域内(380nm~780nm)の波長を有する蛍光が、波長によって異なる色感覚を与えることをいう。例えば、緑青色(480nm~490nm)の蛍光と、青緑色(490~500nm)の蛍光とは異なる色であると認められ、青緑色の蛍光と緑色の蛍光(500~560nm)とは異なる色であると認められる。
 上記第2の蛍光タンパク質が、上記融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発することにより、第2の蛍光タンパク質をコードする遺伝子の種子中における存在を、上記融合タンパク質をコードする遺伝子の種子中における存在とは区別して検出することができる。すなわち、種子における目的のタンパク質の発現を、選択マーカーと区別して明りょうに検出することができ、目的のタンパク質が発現している種子をより容易に選抜し得る。
 例えば、上記融合タンパク質を構成する蛍光タンパク質が赤色蛍光を発するRFPである場合に、第2の蛍光タンパク質として緑色蛍光を発するGFPを用い、目的のタンパク質を緑色蛍光を指標として検出することにより、種子において、目的タンパク質の発現を選択マーカーと区別して明りょうに検出することができる。なお、上記蛍光の確認は、従来公知の方法、例えば、蛍光顕微鏡を用いることなどによって行うことができる。
 ここで、上記第2の遺伝子および第2の蛍光タンパク質をコードする遺伝子を上記種子特異的プロモータに作動可能に連結して所望のベクターを構築する手順自体は、当該分野において周知である。また、発現ベクターを宿主に導入する方法もまた、当該分野において周知である。
 よって、本明細書に接した当業者は、適宜発現ベクターを構築し、種子において、上記融合タンパク質を構成する蛍光タンパク質が発する蛍光と、第2の蛍光タンパク質が発する蛍光とを区別して観察することができる。例えば、後述する実施例で構築した改変デスティネーションベクターである、pFAST-R07等のベクターを構築することによって、上記観察を行うことができる。
 一実施形態において、本発明に係るDNA構築物は、目的のタンパク質を目的の組織にて発現させるために、目的のタンパク質をコードする遺伝子を作動可能に連結し得る第2のプロモータをさらに含んでいる。第2のプロモータは、目的のタンパク質を目的の組織にて発現させることを目的としているので、当該分野において公知の任意のプロモータが利用可能である。当該分野において公知のプロモータとしては、35Sプロモータ(配列番号10)や、デキサメタゾン誘導性プロモータ、エストロゲン依存性プロモータ、CHS-Aプロモータ、熱ショックプロモータ、RuBisCOプロモータ、ストレス応答性プロモータなどが挙げられるがこれらに限定されない。本実施形態に係るDNA構築物を用いた場合、驚くことに、蛍光タンパク質の発現と目的のタンパク質の発現とは全く干渉しない。例えば、種子特異的プロモータ以外のプロモータを第2のプロモータとして用いた場合、得られた形質転換体では、蛍光タンパク質が種子においてのみ発現し、種子を生育させた実生(根、葉、茎など)においては蛍光タンパク質が発現していない。
 一実施形態において、上記第2のプロモータには、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが作動可能に連結されており、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質である。上記第2の蛍光タンパク質は、目的タンパク質のN末端側またはC末端側のいずれに連結されていてもよい。
 本実施形態に係るDNA構築物を用いることにより、目的の組織における目的のタンパク質の発現を、種子における選択マーカーの発現と区別して明りょうに検出することができる。
 また、上記第2のプロモータに対し、第2の蛍光タンパク質をコードする遺伝子の代わりに、上記融合タンパク質を構成する蛍光タンパク質と同じ蛍光タンパク質をコードする遺伝子を作動可能に連結すると、目的タンパク質の発現が抑制される傾向が見られることが報告されている(C. B. Taylor, Comprehending Cosuppression, Plant Cell 9: 1245-1249.,1997)。これに対し、本実施形態では、上記融合タンパク質を構成する蛍光タンパク質とは異なる第2の蛍光タンパク質をコードする遺伝子を用いているため、目的タンパク質の発現抑制を回避することができる。よって、目的タンパク質の発現をより明確に検出することが可能である。
 なお、目的のタンパク質をコードする遺伝子および第2の蛍光タンパク質を上記第2のプロモータに作動可能に連結して所望のベクターを構築する手順自体は当該分野において周知である。また、発現ベクターを宿主に導入する方法もまた、当該分野において周知である。
 よって、本明細書に接した当業者は、適宜発現ベクターを構築し、種子において上記融合タンパク質を構成する蛍光タンパク質が発する蛍光を観察し、目的の組織において第2の蛍光タンパク質が発する蛍光を観察することができる。例えば、後述する実施例で構築した改変デスティネーションベクターである、pFAST-R05、pFAST-R06等のベクターを構築することによって、上記観察を行うことができる。
 本発明に係るDNA構築物は、選択マーカーとしても共優性マーカーとしても有用である。また、本発明に係るDNA構築物を備えている選択マーカーキットもまた、本発明の範囲内である。本明細書中で使用される場合、用語「キット」は複数の物品をパッケージングして単一物の態様を有しているものが意図される。すなわち、本発明に係る選択マーカーキットは、本発明に係るDNA構築物以外の試薬類を備えていればよい。本発明に係るDNA構築物を選択マーカーとして用いる際に必要とされる試薬類を当業者は容易に理解し得る。
 〔2〕形質転換体植物
 本発明はまた、上記DNA構築物が導入された形質転換体植物を提供する。本発明に係る形質転換体植物は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が導入されていることを特徴としている。
 本明細書中で使用される場合、用語「形質転換体」は、細胞、組織または器官だけでなく、生物個体もまた意図される。なお、本発明に係る形質転換体は、少なくとも、本発明に係る融合タンパク質を構成するポリペプチドをコードする遺伝子が導入されており、この融合タンパク質を発現していればよいといえる。すなわち、発現ベクター以外の手段によって生成された形質転換体も、本発明の技術的範囲に含まれる点に留意すべきである。
 本明細書中で使用される場合、「遺伝子が導入された」または「遺伝子が導入されている」は、公知の遺伝子工学的手法(遺伝子操作技術)により、対象細胞(宿主細胞)内に発現可能に導入されていること(すなわち、形質転換体)が意図される。植物を用いた産業分野に本発明を適用する場合は、各種作物(農林水産業で生産される植物、農作物)が適用対象として挙げられる。具体的には、例えば、穀物(イネ、コムギ、トウモロコシ等)、材木類(マツ、スギ、ヒノキ等)、各種野菜類、花卉類が挙げられる。
 本発明において形質転換の対象となる植物は、植物体全体、植物器官(例えば葉、花弁、茎、根、種子など)、植物組織(例えば表皮、師部、柔組織、木部、維管束、柵状組織、海綿状組織など)または植物培養細胞、あるいは種々の形態の植物細胞(例えば、懸濁培養細胞)、プロトプラスト、葉の切片、カルスなどのいずれをも意味する。形質転換に用いられる植物としては、特に限定されず、単子葉植物綱または双子葉植物綱に属する植物のいずれでもよい。一実施形態において、本発明に係る形質転換体植物は、成育した植物個体、植物細胞、植物組織、カルス、種子の少なくとも何れかであり得る。
 植物への遺伝子の導入には、当業者に公知の形質転換方法(例えば、アグロバクテリウム法など)が用いられる。アグロバクテリウム法を用いる場合は、構築した植物用発現ベクターを適当なアグロバクテリウムに導入し、この株を当該分野において周知の方法(例えばリーフディスク法など)に従って無菌培養葉片に感染させればよい。
 上記ベクターを用いてカルス経由にて本発明に係るDNA構築物を導入した場合は、その形質転換体の種子集団から、蛍光を指標としてヘテロ個体とホモ個体とを選別することが可能であり、効率的にホモ個体を取得することができる。なお、本発明に係るDNA構築物を含むアグロバクテリウムは、floral-dip法またはvacuum-infiltration法を用いる(花芽または茎頂分裂組織に塗布する)だけで、感染した植物体にDNA構築物を導入することができるので、感染した植物体から種子を採取するだけでよい。このように本発明を用いれば、カルスを経由することなく非常に簡便な手法にて目的の種子を得ることができる。カルスを経由する方法は,滅菌操作を必要とするなど煩雑であり、しかも培養変異が生じやすいという欠点があるが、上記手法を用いることによりこのような欠点を回避することができる。さらに、本発明は、第2のプロモータを使い分けることにより、あらゆる組織または器官を形質転換し得るという利点を有している。
 遺伝子が植物に導入されたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法などを用いて行ってもよい。
 本発明に係るポリヌクレオチドがゲノム内に組み込まれた形質転換植物体が一旦取得されれば、当該植物体の有性生殖または無性生殖によって子孫を得ることができる。また、当該植物体またはその子孫、あるいはこれらのクローンから、例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラストなどを得て、それらを基に当該植物体を量産することができる。したがって、本発明には、上記融合タンパク質が発現可能に導入された植物体、もしくは、当該植物体と同一の性質を有する当該植物体の子孫、またはこれら由来の組織も含まれる。
 本発明に係る形質転換体植物を作製する方法は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を用いて植物を形質転換する工程;形質転換された該植物において上記融合タンパク質を発現する植物を選抜する工程を包含することを特徴としている。
 一実施形態において、本発明に係る形質転換体植物を作製する方法は以下であり得る:
(1)種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含むDNA構築物を作製する;
(2)工程(1)において作製したDNA構築物から切り出した上記遺伝子を挿入した植物発現ベクターを、各々アグロバクテリウムに導入する;
(3)工程(2)で得られた各アグロバクテリウムを花芽に塗布すること(floral-dip法)により、植物体に感染させる;
(4)工程(3)で得られたアグロバクロテリウムに感染した植物体の各個体より、T1種子を回収する;
(5)工程(4)において回収した各T1種子において上記蛍光タンパク質由来の蛍光を検出し、蛍光が観察された植物を形質転換植物として選抜する;
(6)工程(5)において選抜した各形質転換体を生育し、T2種子を回収して種子ライブラリーを構築する;
(7)工程(6)において回収した各T2種子において上記蛍光タンパク質由来の蛍光を検出し、蛍光が観察された種子を選抜する。なお、工程(5)および(7)は、各T1種子(またはT2種子)の抽出物または各T1種子(またはT2種子)を成育した植物体からの抽出物から、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を検出する工程であってもよい。このように、本実施形態に係る形質転換体の作製方法は、DNA構築物を含むアグロバクテリウムを花芽または茎頂分裂組織に塗布する工程を包含すればよいともいえる。
 〔3〕形質転換体植物の選抜方法
 本発明に係るDNA構築物を用いれば、目的のタンパク質が発現している種子を容易に選抜し得る。すなわち、本発明はまた、形質転換体植物を選抜する方法を提供する。本発明に係る形質転換体植物を選抜する方法は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含することを特徴としている。1つの局面において、本発明に係る形質転換体植物を選抜する方法は、形質転換体植物を作製する方法の工程として包含され得、例えば、上記形質転換体植物を作製する方法における工程(5)~(7)であり得る。すなわち、本方法において、上記検出する工程は、上記蛍光タンパク質による蛍光を種子から検出することを含んでも、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を種子抽出物から検出することを含んでもよい。
 本発明に係る形質転換体植物を選抜する方法は、さらに、種子特異的プロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含していてもよい。当該工程は、例えば、目的のタンパク質をコードする第2の遺伝子および上記第2の蛍光タンパク質をコードする遺伝子を上記種子特異的プロモータに作動可能に連結して所望のベクターを構築した後、該ベクターを宿主に導入し、得られた種子を、蛍光顕微鏡等を用いて観察することにより行うことができる。
 また、本発明に係る形質転換体植物を選抜する方法は、さらに、第2のプロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が目的の組織に存在していることを検出する工程を包含していてもよい。
 当該工程は、例えば、上記第2の遺伝子および上記第2の蛍光タンパク質をコードする遺伝子を第2のプロモータに作動可能に連結して所望のベクターを構築した後、該ベクターを宿主に導入し、目的のタンパク質が発現すべき組織を、蛍光顕微鏡等を用いて観察することにより行うことができる。
 〔4〕タンパク質生産方法
 本発明はさらに、タンパク質生産方法を提供する。本発明に係るタンパク質生産方法は、形質転換体植物内にてタンパク質を生産する方法であって、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする第1の遺伝子を含んでいるDNA構築物に、目的のタンパク質をコードする第2の遺伝子を挿入する工程;および得られたDNA構築物を植物体に導入する工程を包含することを特徴としている。本方法において、第2の遺伝子は、種子特異的プロモータに作動可能に連結されていても、第2の遺伝子によってコードされるタンパク質を目的の組織にて発現させるための第2のプロモータに作動可能に連結されていてもよい。
 本発明に係るタンパク質生産方法は、形質転換体植物(例えば、細胞または組織)の抽出液からタンパク質を精製する工程をさらに包含していることが好ましい。タンパク質を精製する工程は、周知の方法(例えば、細胞または組織を破壊した後に遠心分離して可溶性画分を回収する方法)で細胞や組織から細胞抽出液を調製した後、この細胞抽出液から周知の方法(例えば、目的のタンパク質に対する抗体を用いたアフィニティー精製、硫安沈殿またはエタノール沈殿、酸抽出、陰イオンまたは陽イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー、およびレクチンクロマトグラフィー)によって精製する工程が好ましいが、これらに限定されない。最も好ましくは、高速液体クロマトグラフィー(「HPLC」)が精製のために用いられる。
 なお、本発明に係るタンパク質生産方法は上述した形質転換体の利用である。よって、上述した形質転換体の作製方法の実施形態に示された工程を包含するタンパク質生産方法もまた、本発明の技術的範囲に含まれ、一実施形態において、本発明に係るタンパク質生産方法は、目的遺伝子を植物体に導入する際にfloral-dip法またはvacuum-infiltration法が用いられる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 また、本明細書中に列挙された学術論文および特許文献は、その全てが本明細書中に参考として援用される。
 〔1〕材料および方法
 試薬は特に記述しない場合は、ナカライテスクもしくは和光純薬工業から購入したものを用いた。
 〔1-1〕植物材料および育成条件
 植物材料としてシロイヌナズナ(Arabidopsis thaliana)のエコタイプCol-0を用いた。Murashige and Skoog Plant Salt Mixtureを、アガロースと混合して調整した固形培地(MS培地)を用いた。アガロースは最終濃度が0.9%(w/w)になるように用いた。また、ショ糖を最終濃度0-1%になるように適宜加えた。種子表面を滅菌するために、70%エタノールで10分間処理した後、99%エタノールで1回洗浄した。培地上に種子を無菌的に播種し、3日間4℃で暗所にて低温吸水処理を適宜行った。その後、22℃で連続明条件下にて育成した。育成には人工気象機(サンヨーグロースチャンバーMLR-350)および白色蛍光灯(FL40SS・W/37、40形、37ワット)を使用した。
 バーミキュライト(GLサイズ、ニッタイ株式会社)を入れたプラントポット(大和プラスチック、兼弥産業)の上に、固形培地上で育てた植物体を移植した後、22℃、長日条件下(明期16時間、暗期8時間)で育成した。1週間に1度程度水遣りを行い、またハイポネックス(ハイポネックス ジャパン)の原液を約1000倍に希釈したものを同時に与えた。
 〔1-2〕CLO3に対する特異抗体の作製
 CLO3について、他のタンパク質と相同性の低い、特異的なアミノ酸配列を有している部分を、Peptide Synthesizer model 431 A (Applied Biosystems)を用いて化学合成した。
 合成したペプチド配列は以下の通りである。
CLO3:CVTSQRKVRNDLEETL(配列番号11)
 3-maleimidobenzoic acid N-hydroxysuccinimide ester (Sigma-Aldrich)により、合成したペプチドを、BSAと架橋した。BSAと架橋したペプチドを、免疫助成剤である完全フロイントアジュバントとともにウサギに皮下注射した。免疫開始の3週間後から1週間おきに4回、不完全フロイントアジュバントとともに追加接種を行った。最後の追加接種から1週間後にウサギより採取した血液から抗体を精製した。
 〔1-3〕SDS-PAGEおよびCBB染色
 SDS-PAGEを、Laemmli et al. J. Mol. Biol. 47, 69-85 (1970)の方法に準じて行った。タンパク質試料をSDSサンプル緩衝液(4重量%SDS、100mM Tris-HCl、10重量% 2-メルカプトエタノール、20重量% グリセロール、0.1% BPB(それぞれ試料溶解液中の最終濃度を示す。))に懸濁し、95℃で5分間加熱した。その後、7.5-15% アクリルアミドグラディエントゲル(BIO CRAFT)に、加熱したタンパク質試料をアプライした。電気泳動後のゲルを、CBB染色液(0.25重量% Coomassie blue R250,45%メタノール、10%酢酸)を用いて1時間染色した。その後、脱染色液A(45%メタノール、10%酢酸)中で1時間、脱染色液B(5%メタノール、7%酢酸)中で12時間、ゲルの脱染色を行い、タンパク質のバンドを検出した。
 〔1-4〕イムノブロット
 15%アクリルアミドゲルを用いて、上記の方法と同様にSDS-PAGEを行った。電気泳動後、ゲルを転写用液(100mM Tris-glycine(pH6.8)、20%メタノール)に浸し、5分間振盪した後、同じ溶液を用いて前処理したナイロン膜とろ紙との間に配置した。セミドライブロッター装置(Bio Craft)を用いて、2mA/cmの条件下で、ゲル内のタンパク質をナイロン膜 (Immunobilon-P,MILLIPORE) に電気的に転写した。
 タンパク質が転写されたナイロン膜を、5重量%スキムミルクを含むTBS-T(50mM Tris-HCl(pH7.5)、150mM NaCl、0.05重量% Tween20)中で30分間振盪して、ブロッキング処理を行った。ブロッキング後のナイロン膜を、適宜希釈した抗体(OLE1抗体は1/2000、OLE2抗体は1/5000、CLO3抗体は1/5000)を含むTBS-T中で1時間振盪した。次いで、この膜をTBS-Tで5分間3回洗浄した。その後、1/2000に希釈した西洋ワサビペルオキシダーゼ(HRP)結合体化ヤギ抗ウサギIgG(ImmunoPure Goat Anti-Rabbit IgG [F(ab’)2], Peroxidase Conjugated, PIERCE)を含むTBS-T中でナイロン膜を30分間振盪した。次いで、ナイロン膜を15分間1回、5分間3回洗浄した後、ECL kit (GE Healthcare)を用いて発色させて、LAS-3000 (FUJIFILM)によって検出した。
〔2〕OLE1GFPマーカーを有しているCLO3過剰発現形質転換植物の作出
 カリフラワーモザイクウィルス35Sプロモータ(35Sプロモータと略す。)の制御下にてCLO3を過剰発現する形質転換植物の作出を試みた。植物用の形質転換選択マーカーとしてOLE1およびGFPの融合遺伝子マーカー(OLE1GFPマーカー)を用いた。コンストラクトの作製にはGateway Technology (Invitrogen) の方法を用いた。
 〔2-1〕改変デスティネーションベクターpBGWF7の作製
 デスティネーションベクターpBGWFS7(Plant System Biology)は、ゲートウェイ・マルチクローニングサイトの下流にGFP-GUS融合タンパク質のコード領域を有している。pBGWFS7を制限酵素Nru1で処理することにより、ベクター内のGUSコード領域を取り除いた改変デスティネーションベクターpBGWF7を作製した。
 〔2-2〕OLE1遺伝子のクローニング
 OLE1のC末端にGFPを融合させたタンパク質(OLE1GFP)を発現させるために、OLE1遺伝子について、タンパク質のコード領域の上流約2kbをプロモータ領域として用いた。GFPをOLE1タンパク質のC末端側に融合させるため、OLE1コード領域の終止コドンを除去し、フレームシフトを防ぐために、リバース側のプライマーに1塩基グアニンを付加した。Col-0のゲノムを鋳型にしてTOYOBO KOD-plus- PolymeraseによってOLE1遺伝子を増幅し、pENTER/D-TOPO (Invitrogen) にサブクローニングし、エントリーベクターpOLE1を作製した。エントリーベクターpOLE1についてABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。
 使用したプライマーは下記の通りである:
OLE1_Fwd,5’-CACCCTACTTAGATCAACACATAAA-3’(配列番号12)
OLE1_Rev,5’-GAGTAGTGTGCTGGCCACCACG-3’(配列番号13)。
 〔2-3〕OLE1GFPコンストラクトの作製
 Gateway Technologyの方法に従い、改変デスティネーションベクターpBGWD7とエントリーベクターpOLE1との間でLR反応を行い、発現ベクターpB-OLE1GFPコンストラクトを作製した。
 〔2-4〕改変デスティネーションベクターpB-OLE1GFP-2GW7の作製
 デスティネーションベクターpH2GW7(Plant System Biology)を制限酵素Aat2で処理し、35Sプロモータ、ゲートウェイ・マルチクローニングサイト、35Sターミネータを含む3kDaのDNA断片を得た。発現ベクターpB-OLE1GFPについても同じくAat2で処理し、さらに分子内結合を防ぐためにアルカリフォスファターゼで処理したDNA断片を得た。2つの断片をライゲーションすることで、改変デスティネーションベクターpB-OLE1GFP-2GW7を作製した(図1上図)。
 〔2-5〕CLO3遺伝子のクローニング
 改変デスティネーションベクターpB-OLE1GFP-2GW7に組み込む遺伝子として、オイルボディタンパク質の一つであるカレオシンのアイソフォームの一つであるCLO3を用いた(Chen et al. Plant Cell Physiol. 40, 1079-1086 (1999), Naested et al. Plant Mol. Biol. 44, 463-476 (2000), Frandsen et al. Physiol. Plant 112, 301-307 (2001), Hanano et al. J. Biol. Chem. 281, 33140-33151 (2006))。CLO3 mRNAは乾燥ストレス、塩ストレス、アブシジン酸処理を行うことによって栄養器官にて誘導される(Takahashi et al. Plant Cell Physiol. 41, 898-903 (2000))。CLO3タンパク質の蓄積を調べたところ、7日目の実生では蓄積が見られない(図4(a))。
 Col-0のゲノムを鋳型にしてTOYOBO KOD-plus- PolymeraseによってCLO3遺伝子の開始コドンから終止コドンまでの領域を増幅し、pENTER/D-TOPO (Invitrogen) にサブクローニングし、エントリーベクターpCLO3を作製した。エントリーベクターpCLO3についてABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。
 使用したプライマーは下記の通りである:
CLO3_Fwd;5’-CACCATGGCAGGAGAGGCAGAGGCTT-3’(配列番号14)
CLO3_Rev;5’-TTAGTCTTGTTTGCGAGAATTGGCCC-3’(配列番号15)。
 〔2-6〕OLE1GFPマーカーを有しているpB-OLE1GFP-35S-CLO3コンストラクトの作製
 Gateway Technologyの方法に従い、エントリーベクターpCLO3とpB-OLE1GFP-2GW7の間でLR反応を行い、発現ベクターpB-OLE1GFP-35S-CLO3コンストラクトを作製した(図1下図)。pB-OLE1GFP-2GW7は35Sプロモータの下流にクローニングサイトが存在し、LR反応により目的遺伝子を35Sプロモータにより過剰発現させることができる。
 〔2-7〕さらなる改変デスティネーションベクターの構築
 作製したOLE1GFP融合遺伝子を含む改変デスティネーションベクターとして、35S過剰発現用ベクター(pB-OLE1GFP-2GW7)以外に、汎用ベクター(pH-OLE1GFP-GW)、RNAi用ベクター(pH-OLE1GFP-7GWIWG2(I))、およびプロモータ解析用ベクター(pK-OLE1GFP-GWFS7)をさらに作製した(図7)。
 pB-OLE1GFP-2GW7を鋳型にしてTOYOBO KOD-plus- Polymeraseを用いたPCRによって、OLE1GFP融合遺伝子とターミネーター35Sとを含む3.5kbの領域を増幅した。この際、プライマーに制限酵素Apa1またはSpe1の認識配列を付加し、OLE1GFP融合遺伝子とターミネーター35Sを含むDNA断片の前後に,Apa1またはSpe1の認識配列を付加した。得られた断片のそれぞれを、pENTER/D-TOPO (Invitrogen)にサブクローニングし、エントリーベクターpOLE1GFP-Apa1およびpOLE1GFP-Spe1を作製した。エントリーベクターpOLE1GFP-Apa1およびpOLE1GFP-Spe1について、ABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。用いたプライマーは下記の通りである:
OLE1GFP-Apa1_Fwd;5’-CACCGGGCCCTACTTAGATCAACACATAAA-3’(配列番号16)、OLE1GFP-Apa1_Rev;5’-GGGCCCTCGCATGCCTGCAGGTCACTGGAT-3’(配列番号17)、OLE1GFP-Spe1_Fwd;5’-CACCACTAGTTAGTAAGTGAAGAACCACAA-3’(配列番号18)、OLE1GFP-Spe1_Rev;5’-ACTAGTCGCATGCCTGCAGGTCACTGGAT-3’(配列番号19)。
 デスティネーションベクターpHGW(Plant System Biology)を制限酵素Apa1で消化し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1GFP-Apa1についても同様に制限酵素Apa1で消化し、OLE1GFP融合遺伝子とターミネーター35Sを含む3.5kbのDNA断片を精製した。これら2つの断片をライゲーションして、汎用ベクターとしての改変デスティネーションベクターpH-OLE1GFP-GWを作製した。
 デスティネーションベクターpH7GWIWG2(I)(Plant System Biology)を制限酵素Apa1で消化し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1GFP-Apa1についても同様に制限酵素Apa1で消化し、OLE1GFP融合遺伝子とターミネーター35Sを含む3.5 kbのDNA断片を精製した。これら2つの断片をライゲーションして、RNAi用ベクターとしての改変デスティネーションベクターpH-OLE1GFP-7GWIWG2(I)を作製した。
 デスティネーションベクターpKGWFS7(Plant System Biology)を制限酵素Spe1で消化し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1GFP-Spe1についても同様に制限酵素Spe1で消化し、OLE1GFP融合遺伝子とターミネーター35Sを含む3.5 kbのDNA断片を精製した。これら2つの断片をライゲーションして、プロモータ解析用ベクターとしての改変デスティネーションベクターpK-OLE1GFP-GWFS7を作製した。
 〔2-8〕pB-OLE1GFP-35S-CLO3を発現するシロイヌナズナの作出
 作製した発現ベクターpB-OLE1GFP-35S-CLO3をエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1GFPマーカーを指標にして、形質転換体を選抜した。この形質転換体植物を35S:CLO3(OLE1GFP)と称する。
 また、導入遺伝子に対して1遺伝子座として分離する系統を単離し、導入遺伝子をホモに有している系統を得た。それぞれのホモ系統の種子に対して、イムノブロットによりそれぞれのタンパク質の発現を確認した。
 〔2-9〕OLE1GFPを発現する形質転換植物の作出
 前述の発現ベクターpB-OLE1GFPコンストラクトをエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法によって野生型Col-0を形質転換した。OLE1GFPマーカーを指標にして、形質転換体を選抜した。導入遺伝子に対して1遺伝子座として分離する系統を単離し、導入遺伝子をホモに有している系統を得た。それぞれのホモ系統の種子に対して、イムノブロットによりそれぞれのタンパク質の発現を確認した。
 〔2-10〕OLE1GFP発現種子の観察および選抜
 種子集団を蛍光顕微鏡下で観察し、GFP蛍光を示す種子の存在や、その分離比を確認した。GFP蛍光を示す種子を選抜するときは、先を少し湿らせた爪楊枝を用いて種子を集団から選抜した。蛍光強度を測定する場合は、写真撮影し、画像をPhotoshop Elements 5.0を用いて蛍光の強さを測定した。種子はMS培地に播種した。また、必要に応じて、Glufosinate-ammonium (10mg/L)を含む培地に播種した。
 〔3〕改変デスティネーションベクターpFAST-Rベクターの作製
 植物用の形質転換選択マーカーとして、OLE1とTagRFP(Evrogen JSC, Moscow, Russia) (Merzlyak et al., Bright monomeric red fluorescent protein with an extended fluorescence lifetime, Nat. Methods, vol.4, 555-7, 2007)との融合遺伝子マーカー(OLE1TagRFPマーカー)を持つ改変デスティネーションベクターを作製した。OLE1TagRFPマーカーは、OLE1プロモータ、OLE1-TagRFP融合遺伝子およびNOSターミネーターから構成される。
 〔3-1〕OLE1遺伝子、TagRFP、NOSターミネーターのクローニング
 OLE1のC末端にTagRFPを融合させたタンパク質(OLE1TagRFP)を発現させるために、OLE1遺伝子について、タンパク質のコード領域の上流約2kbをプロモータ領域として用いた。TagRFPをOLE1タンパク質のC末端側に融合させるため、OLE1コード領域の終止コドンを除去した。pB-OLE1GFPを鋳型にしてTOYOBO KOD-plus- Polymeraseによって約2.2kbのOLE1遺伝子を増幅した.またTOYOBO KOD-plus- Polymeraseによって約0.7kbのTagRFPの断片と,約0.2kbのNOSターミネーターの断片を増幅した。
 使用したプライマーは以下のとおりである:
OLE1_Fwd2,5´-CACCACTAGTGTATGTAGGTATAGTAACAT-3´(配列番号20)
OLE1_Rev2,5´-CAGCTCGCTCATAGTAGTGTGCTGGCCACC-3´(配列番号21)
TagRFP_Fwd,5´-CAGCACACTACTATGAGCGAGCTGATTAAG-3´(配列番号22)
TagRFP_Rev,5´-TGTTTGAACGATTCACTTGTGCCCCAGTTT-3’(配列番号23)
NOST_Fwd,5´-GGGCACAAGTGAATCGTTCAAACATTTGGC-3’(配列番号24)
NOST_Rev,5´-ACTAGTGATCTAGTAACATAGATGACACC-3’(配列番号25)
 〔3-2〕OLE1TagRFPマーカーの作製
 〔3-1〕で増幅したOLE1遺伝子の断片、TagRFPの断片およびNOSターミネーターの断片を用い、TOYOBO KOD-plus- Polymeraseによって、OLE1プロモータ、OLE1-TagRFP融合遺伝子およびNOSターミネーターからなる約3.5kbのOLE1TagRFPマーカー断片を増幅した。この際、プライマーに制限酵素Spe1、Hind3またはApa1の認識配列を付加し、OLE1TagRFPマーカー断片の前後に,Spe1、Hind3またはApa1の認識配列を付加した。得られた断片のそれぞれを、pENTER/D-TOPO(Invitrogen)にサブクローニングし、エントリーベクターpOLE1TagRFP-Spe1、pOLE1TagRFP-Hind3およびpOLE1TagRFP-Apa1を作製した。エントリーベクターpOLE1TagRFP-Spe1、pOLE1TagRFP-Hind3およびpOLE1TagRFP-Apa1について、ABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。
 使用したプライマーは以下のとおりである:
FAST-R_Spe1Fwd,5’-CACCACTAGTGTATGTAGGTATAGTAACAT-3’(配列番号26)
FAST-R_Spe1Rev,5’-ACTAGTGATCTAGTAACATAGATGACACC-3’(配列番号27)
FAST-R_Hind3Fwd,5’-CACCAAGCTTCAAGTGTATGTAGGTATAGT-3’(配列番号28)
FAST-R_Hind3Rev,5’-AAGCTTGATCTAGTAACATAGATGACACC-3’(配列番号29)
FAST-R_Apa1Fwd,5’-CACCGGGCCCTTCAAGTGTATGTAGGTATA-3’(配列番号30)
FAST-R_Apa1Rev,5’-GGGCCCATCTAGTAACATAGATGACACC-3’(配列番号31)
 〔3-3〕改変デスティネーションベクターpHGWF7の作製
 デスティネーションベクターpHGWFS7(Plant System Biology)は、ゲートウェイ・マルチクローニングサイトの下流にGFP-GUS融合タンパク質のコード領域を有している。pHGWFS7を制限酵素Nru1で処理することにより、ベクター内のGUSコード領域を取り除いた改変デスティネーションベクターpHGWF7を作製した。
 〔3-4〕改変デスティネーションベクターpFAST-R01の作製
 デスティネーションベクターpHGWを制限酵素Spe1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Spe1についても同様に制限酵素Spe1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、汎用ベクターである改変デスティネーションベクターpFAST-R01を作製した(図8)。
 〔3-5〕改変デスティネーションベクターpFAST-R02の作製
 デスティネーションベクターpBGWFS7(Plant System Biology)を制限酵素Apa1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Apa1についても同様に制限酵素Apa1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、35S過剰発現用ベクターである改変デスティネーションベクターpFAST-R02を作製した(図8)。
 〔3-6〕改変デスティネーションベクターpFAST-R03の作製
 デスティネーションベクターpH7GWIWG2(I)を制限酵素Apa1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Apa1についても同様に制限酵素Apa1で処理し、OLE1-TagRFP融合遺伝子とNOSターミネーターとを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、RNAi(ノックダウン)用ベクターである改変デスティネーションベクターpFAST-R03を作製した(図8)。
 〔3-7〕改変デスティネーションベクターpFAST-R05の作製
 デスティネーションベクターpGWB405 (Nakagawa et al.,Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng., 2007, vol. 104, 34-41)を制限酵素Hind3で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Hind3についても同様に制限酵素Hind3で処理し、OLE1-TagRFP融合遺伝子とNOSターミネーターとを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、C末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R05を作製した(図8)。
 〔3-8〕改変デスティネーションベクターpFAST-R06の作製
 デスティネーションベクターpGWB406 (Nakagawa et al., J. Biosci. Bioeng., 2007, vol. 104, 34-41)を制限酵素Hind3で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Hind3についても同様に制限酵素Hind3で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、N末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R06を作製した(図8)。
 〔3-9〕改変デスティネーションベクターpFAST-R07の作製
 デスティネーションベクターpHGWF7を制限酵素Spe1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Spe1についても同様に制限酵素Spe1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、C末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R07を作製した(図8)。
 〔3-10〕OLE1TagRFPマーカーを有しているpB-35S-CLO3-OLE1TagRFPコンストラクトの作製
 Gateway Technologyの方法に従い、エントリーベクターpCLO3とpFAST-R02の間でLR反応を行い、発現ベクターpB-35S-CLO3-OLE1TagRFPコンストラクトを作製した。pFAST-R02は、35Sプロモータの下流にクローニングサイトが存在し、LR反応により目的遺伝子を35Sプロモータにより過剰発現させることができる。
 〔3-11〕pB-35S-CLO3-OLE1TagRFPを発現するシロイヌナズナの作出
 作製した発現ベクターpB-35S-CLO3-OLE1TagRFPをエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1TagRFPマーカーを指標にして、形質転換体を選抜した。結果は図9に示した。
 〔3-12〕OLE1TagRFPマーカーを有しているpB-OLE1TagRFP-35S-GFPCLO3コンストラクトの作製
 Gateway Technologyの方法に従い、エントリーベクターpCLO3とpFAST-R06との間でLR反応を行い、発現ベクターpB-OLE1TagRFP-35S-GFPCLO3コンストラクトを作製した。pFAST-R06は35Sプロモータの下流にGFP遺伝子とクローニングサイトが存在し、LR反応により、GFP遺伝子および目的遺伝子由来の融合タンパク質を35Sプロモータにより過剰発現させることができる。
 〔3-13〕pB-OLE1TagRFP-35S-GFPCLO3を発現するシロイヌナズナの作出
 作製した発現ベクターpB-OLE1TagRFP-35S-GFPCLO3をエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1TagRFPマーカーを指標にして、形質転換体を選抜した。この形質転換体植物を35S::GFP-CLO3(FAST-R06)と称する。導入遺伝子に対して1遺伝子座として分離する系統を単離し、導入遺伝子をホモに有している系統を得た。
 35S::GFP-CLO3(FAST-R06)の葉を共焦点レーザー顕微鏡(LSM510 META; Carl Zeiss, Jena, Germany)下で観察し、細胞内のGFP蛍光を撮影した。レーザーは488-nm line of a 40-mV Ar/Kr laserを用いた。微分干渉コントラスト(Differential interference contrast, DIC)画像も同時に撮影した。結果は図10,11に示す。
〔4〕結果および考察
 本発明に係るDNA構築物の構造を、図1に示す。図1の上図は、CaMV35Sプロモータによる、目的遺伝子が過剰発現する植物体を作製するためのベクター(pB-OLEGFP-2GW7)であり、図1の下図は、一実施形態としてCLO3を過剰発現させるためのベクター(pB-OLE1GFP-35S::CLO3)を示す。図中、LBはLeft Borderを示し、RBはRight Borderを示し、BarはBasta遺伝子を示し、p35sはCaMV35Sプロモータを示し、t35sはCaMV35Sターミネータを示し、CmRはクロラムフェニコール耐性遺伝子を示し、ccdBは大腸菌ジャイレース阻害タンパク質を示す。
 CLO3を過剰発現させるためのベクター(pB-OLE1GFP-35S::CLO3)が導入された植物体系統の種子を蛍光顕微鏡下で観察した結果を、図2に示す。先ず、pB-OLE1GFP-35S::CLO3を用いて野生型Col-0(T0植物)を形質転換した植物体(35SCLO3(OLE1GFP))を得た。この植物体から得られたT1種子集団、T2種子集団、およびT3ホモ系統種子集団をそれぞれ蛍光顕微鏡下にて観察した。(a)はGFPの蛍光を示し、(b)は明視野像を示す。T1種子集団ではGFP蛍光を有している種子がいくつか観察された(図中、矢尻)。選抜した35S:CLO3(OLE1GFP)のT1種子を育成し、得られたT2種子集団を蛍光顕微鏡で観察したところ、GFP蛍光を有している種子(GFP+)と有していない種子(GFP-)が混在していた(図2、T2種子)。さらに、T2種子を育成して得られた次世代のT3ホモ接合種子集団では、すべての種子がGFP蛍光を有していた(図2、T3種子)。
 35SCLO3(OLE1GFP)植物のT2種子集団およびT3ホモ系統種子集団の分離比を、図3に示す。35SCLO3(OLE1GFP)のT2種子集団およびT3ホモ系統種子集団について、GFP蛍光を有している種子(GFP+)およびGFP蛍光を有していない種子(GFP-)を計数した。示すように、T2種子集団の#1系統、#5系統、#6系統では、GFP+:GFP-の分離比がおよそ3:1になった。また、T2種子集団の#2系統では、GFP+:GFP-の分離比がおよそ15:1になった。このことから、分離比が3:1となったものはpB-OLE1GFP-35s::CLO3コンストラクトが1座位に、分離比が15:1となったものは2座位に挿入されていると推測された。
 OLE1GFP融合遺伝子が薬剤選択マーカーと同等の選抜能力を有しているか否かを調べるために、薬剤(Glufosinate-ammonium)に耐性を有する種子(barR)を計数し、GFP蛍光の有無と薬剤耐性の有無とが一致するか否かを調べた。35S:CLO3(OLE1GFP)の4系統のT2種子集団(~300粒)において、GFP蛍光を有している全ての種子(GFP+)が薬剤耐性を有しており(barR)、逆にGFP蛍光を有していない種子(GFP-)は薬剤耐性を有していなかった(図3)。T3ホモ接合種子集団では、すべての種子がGFP蛍光を有しており、また薬剤耐性を示した(図3)。このことから、OLE1GFP融合遺伝子は、視覚的選択マーカーとして使用可能であるだけでなく、薬剤選択マーカーと同等の選抜能力を有していることがわかった。以後、OLE1GFP融合遺伝子をOLE1GFPマーカーと称する。
 得られた形質転換体におけるCLO3タンパク質の蓄積を調べた。35SCLO3(OLE1GFP)植物の種子集団においてGFP蛍光が観察された種子でのCLO3の発現を確認した結果を、図4に示す。(a)は、野生型植物Col-0、OLE1GFP植物、35SCLO3(OLE1GFP)植物のT2系統において、GFP蛍光が観察された種子、GFP蛍光が観察されなかった種子、T2ホモ系統をそれぞれ育成し、7日目の実生におけるCLO3の発現をイムノブロットによって調べた結果を示す。(b)は、35SCLO3(OLE1GFP)植物のT2系統において、GFP蛍光が観察された種子16個、GFP蛍光が観察されなかった種子17個をそれぞれ育成し、7日目の実生にてCLO3の発現が確認された個体数を示す。野生型植物Col-0では、7日目の実生にてCLO3の発現が確認されなかった。また、35SCLO3(OLE1GFP)植物では、GFP蛍光が観察されなかった種子から生育された植物体の7日目の実生にてCLO3の発現が確認されなかった。一方、GFP蛍光が観察された種子から生育された植物体では、7日目の実生にてCLO3の発現が確認されなかった。これらのことは、35SプロモータによりCLO3の発現が誘導されていることを示すとともに、OLE1GFPマーカーを利用することにより、形質転換体を正しく選抜し得ることを示す。
 図5は、発芽後のOLE1GFPにおける蛍光の推移を示す図である。OLE1GFP植物、35SCLO3(OLE1GFP)植物のT3ホモ系統の種子、実生におけるGFP蛍光を、蛍光顕微鏡下で観察した。22℃に移した後の0日目、3日目、5日目に観察を行った。22℃に移した3日後の実生では、0日後と比較してGFP蛍光が減衰しており、5日後の実生では、GFP蛍光が観察されなかった。このように、OLE1GFP蛍光は乾燥種子で一番強く見られ、発芽後は徐々に減衰していき、5日目にはほぼ完全に消失した。これはOLE1の発現が種子登熟期のみで見られるためであると考えられる(Kim et al. J. Biol. Chem. 277, 22677-22684 (2002))。細胞内部の蛍光を共焦点レーザースキャン顕微鏡で観察したところ、根、葉、茎ではGFP蛍光は観察されなかった(結果は示さず)。一方、未熟種子と乾燥種子の細胞では、PSVを除く他の部分でGFP蛍光が見られた(結果は示さず)。これはOLE1GFP蛍光がオイルボディ上に存在するためと考えられた。このように、OLE1GFP融合遺伝子は目的の種子を選抜するための視覚的選択マーカーとして非常に有用であることがわかった。
 35S:CLO3(OLE1GFP)のT2種子集団(挿入が1座位のもの)において、GFP蛍光を有している種子の中でも、蛍光強度の強い種子と弱い種子が存在した(図2)。このことから、蛍光強度の強い種子がホモ系統であり、弱い種子がヘテロ系統であることが考えられた。このことを確かめるために、それぞれのT2種子1粒のGFP蛍光強度を測定した。さらに、それぞれの種子を育て、次世代の分離比を見ることで、GFP蛍光強度を測定した種子の接合型を調べた(各ラインにつき150粒前後)。35SCLO3(OLE1GFP)植物のT2種子におけるGFP蛍光強度と形質転換遺伝子の遺伝子型との関連を、図6に示す。35SCLO3(OLE1GFP)植物のT2種子(#1系統)に対して、種子1個のGFP蛍光強度を測定し、その種子の形質転換遺伝子の遺伝子型を調べた。遺伝子型については、植物体を生育し、得られた種子のGFP蛍光の分離比から判定した。非形質転換体、ヘテロ系統、ホモ系統のそれぞれに対して、縦軸を種子の数、横軸をGFP蛍光強度としてヒストグラムを作成した。ホモ系統、ヘテロ系統、非形質転換体それぞれで、GFP蛍光強度に対するヒストグラムを作成したところ、GFP蛍光強度は、非形質転換体の種子集団よりもヘテロ系統の種子集団のほうが高く、ヘテロ系統の種子集団よりもホモ系統の種子集団のほうが高いという傾向にあることがわかった。また、#5系統および#6系統においても同様の結果が得られた(結果は示さず)。このことから、T2種子集団の中で蛍光強度が非常に強いものを選択することによって、ホモ系統の種子を選抜し得ることが示唆された。
 効率よくホモ系統の種子を得るために、T2種子集団の中で蛍光強度が強いものの上位どのくらいの種子を取ればよいのかを計算したところ、#1、#5、#6系統では、GFP蛍光強度が強い種子の上位およそ5~10%を取れば、その種子はほとんどがホモ系統であると予測できた(結果は示さず)。一方、薬剤選択マーカーを使った場合では、T2ホモ系統とT2ヘテロ系統を区別し得ない。そのため、形質転換遺伝子が1座位の場合(T2ホモ系統:T2ヘテロ系統:非形質転換体=1:2:1)、薬剤で選抜できた個体がホモ系統である確率は33.3%となる。4個体選抜した時、4個体すべてホモ系統でない確率は19.8%となり、OLE1GFPマーカーを使用した時に比べてホモ系統が選抜できない可能性が非常に高いことがわかる。これらの結果から、OLE1GFPマーカーはホモ系統とヘテロ系統を区別できる共優性マーカーとして有用であることが示された。
 発現ベクターpB-35S-CLO3-OLE1TagRFPが導入された植物体系統の種子を蛍光顕微鏡下で観察した結果を、図9に示す。先ず、pB-35S-CLO3-OLE1TagRFPを用いて野生型Col-0(T0植物)を形質転換した植物体を得た。この植物体から得られたT1種子集団を蛍光顕微鏡下にて観察した。(a)はTagRFPの蛍光を示し、(b)は明視野像を示す。図9に示すように、T1種子集団ではTagRFPの赤色蛍光を有している種子がいくつか観察された。このように、OLE1TagRFP融合遺伝子も、OLE1GFP融合遺伝子と同様に、視覚的選択マーカーとして使用可能であることが明らかとなった。
 図10は、35S::GFP-CLO3(FAST-R06)から得られたT3ホモ系統種子集団を蛍光顕微鏡下にて観察した結果を示すものである。(a)はTagRFPの蛍光を示し、(b)は明視野像を示す。35S::GFP-CLO3(FAST-R06)のT1種子を育成し、得られたT2種子集団を育成して得られたT3ホモ系統種子集団では、全ての種子がTagRFPの蛍光を有していた(図10(a))。
 図11は、35S::GFP-CLO3(FAST-R06)の葉におけるCLO3の発現を、GFP蛍光を指標として観察した結果を示すものである。(a)は上記葉を微分干渉顕微鏡下で観察した結果を示す画像であり、(b)は上記葉を共焦点レーザー顕微鏡下で観察し、GFP蛍光を検出した結果を示す画像である。(c)は、(a)と(b)とを重ね合わせた画像である。
 pFAST-R06は、図8に示すように、OLE1TagRFP融合遺伝子を含んでいる。そのため、35S::GFP-CLO3(FAST-R06)では、種子における選択マーカーの発現をTagRFPの赤色蛍光によって確認することができる。一方、pFAST-R06には、第2のプロモータである35Sプロモータに、第2の蛍光タンパク質であるGFPをコードする遺伝子と目的タンパク質であるCLO3をコードする遺伝子とが作動可能に連結されている。そのため、図11(b)(c)に示すように、35S::GFP-CLO3(FAST-R06)の葉におけるCLO3の発現を、緑色蛍光によって、種子における選択マーカーの発現と区別して検出することができる。
 このように、本発明に係るDNA構築物は、形質転換植物を選抜するための新規選択マーカーであり、発現されるタンパク質は植物由来の種子タンパク質および生物体に無毒の蛍光タンパク質の融合タンパク質である。このことから、本発明に係るDNA構築物が、生物および環境に無害である安全な選択マーカーであるといえる。
 本発明に係るDNA構築物は、一般的な薬剤耐性マーカーよりも簡便かつ有用な選択マーカーである。薬剤耐性マーカーを用いた場合、形質転換植物の選抜や分離比を調べるためには、適切な濃度の薬剤が入った選択培地を調製し、そこに種子を播種する必要がある。これに対して、視覚的選択マーカーである、本発明に係るDNA構築物を用いた場合は、特別な組成の培地の調製および種子の播種を必要としない。また、仮に形質転換が首尾よくいかなかった場合、そのことを蛍光観察から判別できるため、種子を選択培地に播種することを行わなくてもよい。これらのことから、本発明に係るDNA構築物を用いれば、余分な薬剤や培地を削減することが可能となる。
 薬剤耐性マーカーを用いた場合にT1植物を選抜する際、大量のT1種子集団を選択培地に播種する必要があり、このことは非常に手間を要する。しかし、本発明に係るDNA構築物を用いた場合には、乾燥種子の状態で視覚的に選抜することが可能となるので、播種する種子は確実なT1形質転換体のみとなり、播種に必要な種子が少量でよく、非常に効率的である。また、通常のMS培地を用いればよいだけでなく、直接の土植えが可能であることから、RNAi、過剰発現体などのように、ヘテロ系統でも表現型が現れる形質転換体の場合に、T1形質転換体の段階でコントロール植物との比較が可能であり、解析を迅速に行うことができる。また、選択培地中では生育できないような弱い形質転換体を選抜することも可能である。
 さらに、薬剤耐性マーカーを使った場合では、T2種子集団からホモ系統とヘテロ系統を分離するのは不可能である。しかし、本発明に係るDNA構築物は共優性マーカーとして利用可能であるので、蛍光強度の強い種子を選抜することによって、ホモ系統を高確率で単離することが可能であり、ホモ系統の単離までにかかる時間を1世代分短縮することができる。
 本発明に係るDNA構築物を用いれば,アグロバクテリウムベースのfloral-dip法またはvacuum-infiltration法による形質転換体植物の作出が可能である。さらに、適用対象の植物は、種子に種子タンパク質(特にオイルボディ局在性タンパク質)を蓄積する植物であればよいので,多様な植物に応用可能である。例えば、ダイコン(Raphanus sativus)は、上述したfloral-dip法またはvacuum-infiltration法が利用可能な植物種として報告されている(Curtis, I.S. and Nam, H.G. Transgenic Res. 10, 363-371 (2001))。このことは、油糧種子でありかつオイルボディ局在性タンパク質(オレオシン)を蓄積するアブラナ科の植物が、floral-dip法またはvacuum-infiltration法の適用可能な植物であると推測させ、本発明に係るDNA構築物についてもアブラナ科の植物であれば広く利用可能であると考えられる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明を用いれば、形質転換体植物を作出するために、複雑な工程を必要とせずかつ比較的短時間に目的の形質転換体を得ることができるので、育種に有効利用され得る。

Claims (19)

  1.  種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物であって、該遺伝子が種子特異的プロモータに作動可能に連結されていることを特徴とするDNA構築物。
  2.  さらに、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが上記種子特異的プロモータに作動可能に連結されており、
     該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質であることを特徴とする、請求項1に記載のDNA構築物。
  3.  目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでいることを特徴とする請求項1に記載のDNA構築物。
  4.  上記第2のプロモータには、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが作動可能に連結されており、
     該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質であることを特徴とする、請求項3に記載のDNA構築物。
  5.  上記種子タンパク質が、オイルボディ局在性タンパク質であることを特徴とする請求項1~4のいずれか1項に記載のDNA構築物。
  6.  上記種子特異的プロモータが、オイルボディ局在性タンパク質をコードする遺伝子のプロモータであることを特徴とする請求項1~5のいずれか1項に記載のDNA構築物。
  7.  上記種子タンパク質がオレオシンであることを特徴とする請求項1~6のいずれか1項に記載のDNA構築物。
  8.  上記種子特異的プロモータがOLE1プロモータであることを特徴とする請求項1~7のいずれか1項に記載のDNA構築物。
  9.  請求項1~8のいずれか1項に記載のDNA構築物を含んでいることを特徴とする選択マーカー。
  10.  請求項1~8のいずれか1項に記載のDNA構築物を備えていることを特徴とする選択マーカーキット。
  11.  種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が導入されていることを特徴とする形質転換体植物。
  12.  種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含することを特徴とする形質転換体植物を選抜する方法。
  13.  上記検出する工程が、上記蛍光タンパク質による蛍光を種子から検出することを含む、請求項12に記載の方法。
  14.  上記検出する工程が、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を種子抽出物から検出することを含む、請求項12に記載の方法。
  15.  さらに、種子特異的プロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含し、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質である、請求項12に記載の方法。
  16.  さらに、第2のプロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が目的の組織に存在していることを検出する工程を包含し、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質である、請求項12に記載の方法。
  17.  植物体内でタンパク質を生産する方法であって、
     種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物に、目的のタンパク質をコードする第2の遺伝子を挿入する工程;および
     得られたDNA構築物を植物体に導入する工程
    を包含することを特徴とする生産方法。
  18.  上記DNA構築物が、目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでおり、上記挿入する工程が、第2の遺伝子が第2のプロモータに作動可能に連結することを含む、請求項17に記載の生産方法。
  19.  上記導入する工程が、floral-dip法またはvacuum-infiltration法を行うことを含む、請求項17または18に記載の生産方法。
PCT/JP2009/059592 2008-05-28 2009-05-26 新規選択マーカー遺伝子およびその利用 WO2009145180A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09754688.1A EP2298883B1 (en) 2008-05-28 2009-05-26 Novel selection marker gene and use thereof
CA2725674A CA2725674A1 (en) 2008-05-28 2009-05-26 Selection marker gene and use thereof
US12/994,615 US20110126315A1 (en) 2008-05-28 2009-05-26 Novel selection marker gene and use thereof
JP2010514488A JP5499408B2 (ja) 2008-05-28 2009-05-26 新規選択マーカー遺伝子およびその利用
AU2009252377A AU2009252377B2 (en) 2008-05-28 2009-05-26 Novel selection marker gene and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008140083 2008-05-28
JP2008-140083 2008-05-28

Publications (1)

Publication Number Publication Date
WO2009145180A1 true WO2009145180A1 (ja) 2009-12-03

Family

ID=41377053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059592 WO2009145180A1 (ja) 2008-05-28 2009-05-26 新規選択マーカー遺伝子およびその利用

Country Status (6)

Country Link
US (1) US20110126315A1 (ja)
EP (1) EP2298883B1 (ja)
JP (1) JP5499408B2 (ja)
AU (1) AU2009252377B2 (ja)
CA (1) CA2725674A1 (ja)
WO (1) WO2009145180A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144458A (ja) * 2010-01-22 2016-08-12 ダウ アグロサイエンシィズ エルエルシー 遺伝子改変生物における導入遺伝子の切除
JP2018517403A (ja) * 2015-04-13 2018-07-05 プレジデント アンド フェローズ オブ ハーバード カレッジ 細胞における代謝産物の産生及びモニタリング

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510420A (ja) * 2003-11-14 2007-04-26 セムバイオシス ジェネティクス インコーポレイテッド トランスジェニック植物におけるアポリポタンパク質の産生法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288304B1 (en) * 1991-02-22 2001-09-11 Sembiosys Genetics Inc. Expression of somatotropin in plant seeds
US7091401B2 (en) * 1991-02-22 2006-08-15 Sembiosys Genetics Inc. Expression of epidermal growth factor in plant seeds
US6750046B2 (en) * 1991-02-22 2004-06-15 Sembiosys Genetics, Inc. Preparation of thioredoxin and thioredoxin reductase proteins on oil bodies
US5650554A (en) * 1991-02-22 1997-07-22 Sembiosys Genetics Inc. Oil-body proteins as carriers of high-value peptides in plants
US6753167B2 (en) * 1991-02-22 2004-06-22 Sembiosys Genetics Inc. Preparation of heterologous proteins on oil bodies
US5948682A (en) * 1991-02-22 1999-09-07 Sembiosys Genetics Inc. Preparation of heterologous proteins on oil bodies
DE4291398T1 (de) * 1991-05-06 1994-04-28 Peter John Elliott Luftgestütztes, transientes elektromagnetisches Verfahren mit Erdschleifen
UA41319C2 (uk) * 1992-04-02 2001-09-17 Сембайозіс Дженетікс Інк. Спосіб експресії послідовності днк,що представляє інтерес,у клітині насіння,химерний ген,експресуюча касета,ізольована регуляторна ділянка транскрипції,спосіб зміни специфічного для насіння метаболізму, спосіб одержання нових поліпептидів у насінні,ізольована днк, спосіб експресії послідовності днк,що представляє інтерес,у рослині-хазяїні,спосіб одержання очищеного поліпептиду,що представляє інтерес,спосіб одержання поліпептиду, що представляє інтерес, в олійному тілі
US6307123B1 (en) * 1998-05-18 2001-10-23 Dekalb Genetics Corporation Methods and compositions for transgene identification
WO2003027296A1 (fr) * 2001-09-20 2003-04-03 Plantech Research Institute Genes intervenant dans la synthese d'acide gras presentant une liaison double conjuguee trans-11-, cis-13-, et utilisation desdits genes
CA2570566A1 (en) * 2004-06-25 2006-01-12 Altor Bioscience Corporation Production of tissue factor in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510420A (ja) * 2003-11-14 2007-04-26 セムバイオシス ジェネティクス インコーポレイテッド トランスジェニック植物におけるアポリポタンパク質の産生法

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"Saibonai Kozo no Kochiku to Kino no Kansatsuho, Oil Body no Kozo to Kino, Saibo Kogaku Bessatsu Shokubutsu Saibo Kogaku Series", NEW EDITION SHOKUBUTSU NO SAIBO O MIRU JIKKEN PROTOCOL, vol. 22, no. 2ND ED, 2006, pages 219, 220 - 222, XP008142975 *
BARANSKI, R. ET AL., PLANT CELL REP, vol. 25, 2006, pages 190 - 197
C. B. TAYLOR: "Comprehending Cosuppression", PLANT CELL, vol. 9, 1997, pages 1245 - 1249
CHEN ET AL., PLANT CELL PHYSIOL., vol. 40, 1999, pages 1079 - 1086
CURTIS I.S. ET AL.: "Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method--plant development and surfactant are important in optimizing transformation efficiency.", TRANSGENIC RES., vol. 10, no. 4, 2001, pages 363 - 371, XP002416814 *
CURTIS, I.S.; NAM, H.G., TRANSGENIC RES., vol. 10, 2001, pages 363 - 371
DAIMON ET AL.: "Experiment protocol for model plants", SHUJUNSHA, pages: 149 - 154
DAIMON ET AL.: "Third revised edition, Experiment protocol for model plants", SHUJUNSHA, pages: 149 - 154
DARBANI ET AL., BIOTECHNOL., vol. 2, 2007, pages 83 - 90
FRANDSEN ET AL., PHYSIOL. PLANT, vol. 112, 2001, pages 301 - 307
HALFHILL, M.D. ET AL., PLANT CELL REP., vol. 26, 2007, pages 303 - 311
HANANO ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 33140 - 33151
HU, Q. ET AL., BIOTECHNOL. LETT., vol. 28, 2006, pages 1793 - 1804
JOHN I. YODER, A.P.G. NATURE BIOTECHNOLOGY, vol. 12, 1994, pages 263 - 267
KIM ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 22677 - 22684
LAEMMLI ET AL., J. MOL. BIOL., vol. 47, 1970, pages 69 - 85
LI, Z. ET AL., PLANT MOL. BIOL., vol. 65, 2007, pages 329 - 341
LU, C. ET AL., PLANT J., vol. 45, 2006, pages 847 - 856
LU, C.; KANG, J., PLANT CELL REP., vol. 27, 2008, pages 273 - 278
MERZLYAK ET AL.: "Bright monomeric red fluorescent protein with an extended fluorescence lifetime", NAT. METHODS, vol. 4, 2007, pages 555 - 7
NAESTED ET AL., PLANT MOL. BIOL., vol. 44, 2000, pages 463 - 476
NAKAGAWA ET AL., J. BIOSCI. BIOENG., vol. 104, 2007, pages 34 - 41
NAKAGAWA ET AL.: "Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation", J. BIOSCI. BIOENG., vol. 104, 2007, pages 34 - 41
PARKHI, V. ET AL., MOL. GENET. GENOMICS, vol. 274, 2005, pages 325 - 336
See also references of EP2298883A4
SUGITA, K. ET AL., PLANT J., vol. 22, 2000, pages 461 - 469
TAKAHASHI ET AL., PLANT CELL PHYSIOL., vol. 41, 2000, pages 898 - 903
WAHLROOS T ET AL.: "Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells", GENESIS., vol. 35, no. 2, 2003, pages 125 - 132, XP008141026 *
ZUO, J. ET AL., NAT. BIOTECHNOL., vol. 19, 2001, pages 157 - 161

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144458A (ja) * 2010-01-22 2016-08-12 ダウ アグロサイエンシィズ エルエルシー 遺伝子改変生物における導入遺伝子の切除
JP2018517403A (ja) * 2015-04-13 2018-07-05 プレジデント アンド フェローズ オブ ハーバード カレッジ 細胞における代謝産物の産生及びモニタリング
JP2021104054A (ja) * 2015-04-13 2021-07-26 プレジデント アンド フェローズ オブ ハーバード カレッジ 細胞における代謝産物の産生及びモニタリング

Also Published As

Publication number Publication date
EP2298883A1 (en) 2011-03-23
JPWO2009145180A1 (ja) 2011-10-13
CA2725674A1 (en) 2009-12-03
EP2298883A4 (en) 2011-11-09
AU2009252377B2 (en) 2014-01-23
US20110126315A1 (en) 2011-05-26
EP2298883B1 (en) 2016-07-27
JP5499408B2 (ja) 2014-05-21
AU2009252377A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US10538779B2 (en) Constitutive photomorphogenesis 1 (COP1) nucleic acid sequence from Zea mays and its use thereof
ES2372607T3 (es) El gen del factor de transcripción osnacx del arroz y su uso para mejorar la tolerancia de las plantas a la sequía y la sal.
CN107459565B (zh) 大豆抗旱相关蛋白在调控大豆抗旱性中的应用
CN107827964A (zh) 一种与植物耐逆性相关的转录因子PwNAC2及其编码基因与应用
JP4741994B2 (ja) 蛍光タンパク質の園芸植物への応用
US8937218B2 (en) Transformed soybean plant which accumulates vaccine, and use thereof
JP4677568B2 (ja) 窒素固定活性の高い根粒を着生する植物の作出法
JP5499408B2 (ja) 新規選択マーカー遺伝子およびその利用
CN114703199B (zh) 一种植物抗旱性相关的基因TaCML46及应用
CN106480069B (zh) 黄瓜CsERF025基因及其在促进黄瓜果实顺直发育中的应用
WO2010024269A1 (ja) 矮性化形質転換植物および矮性化を誘導するための遺伝子
CN110218247A (zh) PwRBP1和PwNAC1两种蛋白互作协同提高植物耐逆性及其应用
CN111172176B (zh) 一个参与桃芳樟醇合成调控的转录因子PpMADS2及其应用
CN116606358A (zh) GmTLP8蛋白及其编码基因在调控植物耐逆性中的应用
US20160010105A1 (en) Stress tolerant plants
CN113481211A (zh) 果胶甲酯酶抑制因子基因GhPMEI39及其编码蛋白的应用
KR101724370B1 (ko) Trsv 재조합 벡터 및 이의 용도
CN108192919A (zh) 一种培育抗旱转基因棉花的方法
KR100543063B1 (ko) 재조합 단백질의 제조 및 분리 방법
CN111533794B (zh) 烟草NtDREB-1BL1转录因子及其应用
Kim et al. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes
CN111440806A (zh) 烟草NtDREB-1BL3转录因子及其应用
CN111499712A (zh) 烟草NtDREB-1BL2转录因子及其应用
CN109678942A (zh) 一种提高水稻远缘杂交后代育性的方法与所用蛋白质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2725674

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009252377

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2009754688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009754688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009252377

Country of ref document: AU

Date of ref document: 20090526

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12994615

Country of ref document: US