WO2009145180A1 - 新規選択マーカー遺伝子およびその利用 - Google Patents
新規選択マーカー遺伝子およびその利用 Download PDFInfo
- Publication number
- WO2009145180A1 WO2009145180A1 PCT/JP2009/059592 JP2009059592W WO2009145180A1 WO 2009145180 A1 WO2009145180 A1 WO 2009145180A1 JP 2009059592 W JP2009059592 W JP 2009059592W WO 2009145180 A1 WO2009145180 A1 WO 2009145180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- seed
- fluorescent protein
- promoter
- plant
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8209—Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
- C12N15/821—Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
- C12N15/8212—Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/60—Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
Definitions
- the present invention relates to a novel selectable marker gene and use thereof, and more particularly to a gene encoding a fusion protein of a seed protein and a fluorescent protein and use thereof.
- a drug resistance gene is generally used as a selection marker.
- the technique for producing a transformant using a drug resistance gene has the following drawbacks. [1] Since there is a possibility that a gene is horizontally transmitted in the growing stage of a plant, there is a limit in growing a plant having a drug resistance gene in the field. [2] Since it is necessary to perform drug treatment when selecting a desired transformant, it is necessary to separately prepare a drug-containing medium for selection. [3] Even a plant having a drug resistance gene is damaged by the drug treatment. [4] It is difficult to obtain a transformant at a level that cannot survive in a drug-containing medium.
- Non-Patent Documents 1 and 2 In order to solve these problems, attempts have been made to produce transformant plants that do not have a drug resistance gene (see, for example, Non-Patent Documents 1 and 2).
- a method called co-transformation two plasmids (one containing a drug resistance gene marker and the other containing the target transforming gene) are introduced into the plant at the same time, and then passed through several generations. Individuals that do not have a drug resistance gene but have the target transforming gene can be selected (see, for example, Non-Patent Document 3).
- a technique site-specific recombination method
- excludes drug resistance gene markers from transformed plants using a site-specific recombination mechanism see, for example, Non-Patent Documents 4 to 7).
- a transformant plant having no drug resistance gene marker can be produced.
- these methods require complicated steps, and furthermore, in these methods, it takes time to produce transformed plants.
- the present invention has been made in view of the above-mentioned problems, and its purpose is to produce a transformant plant without requiring a complicated process and to obtain the target transformant in a relatively short time. It is to provide a technique for obtaining.
- Green fluorescent protein one of the fluorescent proteins utilized as a visual selectable marker, is a protein that is non-toxic to living organisms and can be easily visualized without the use of a substrate (for example, non-fluorescent protein).
- a substrate for example, non-fluorescent protein.
- transgenic seed selection markers using fluorescent proteins other than GFP are also known (see, for example, Non-Patent Documents 10 to 11).
- a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter is excellent as a visual selection marker.
- the present inventors have found that it can be used as a codominant marker and have completed the present invention.
- the DNA construct according to the present invention is a DNA construct containing a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter. It is a feature.
- the present invention individuals that have been successfully transformed can be easily selected as seeds that emit detectable fluorescence.
- the fluorescence detected from the seed using the present invention is very strong compared to the fluorescence from the seed obtained when only the gene encoding the fluorescent protein is operably linked to the seed-specific promoter.
- a transformant plant in which the fluorescent protein is expressed only in the seed and the fluorescent protein is not expressed in the seedling (root, leaf, stem, etc.) on which the seed is grown can be obtained.
- all of the fluorescent proteins are expressed in all tissues because their expression is controlled by a strong promoter (CaMV 35S promoter or pCVMV promoter).
- the seed-specific promoter may be operably linked with a second gene encoding a target protein and a gene encoding a second fluorescent protein.
- the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
- the fluorescence emitted by the second fluorescent protein can be visually distinguished from the fluorescence emitted by the fluorescent protein constituting the fusion protein, the expression of the fusion protein and the expression of the target protein are expressed in the seed. Can be detected visually.
- the DNA construct according to the present invention may further include a second promoter for expressing the target protein in the target tissue.
- the gene encoding the target protein operates on the second promoter. Connected as possible.
- Non-Patent Documents 10 to 11 are techniques for accumulating a target protein in seeds, and a gene encoding the target protein is operably linked to a seed-specific promoter.
- a target gene can be expressed in a target tissue without being limited to seeds, and a target protein can be accumulated in the target tissue.
- the fluorescent protein is expressed only in the seed, and the fluorescent protein is not expressed in the seedling (root, leaf, stem, etc.) on which the seed is grown.
- the second promoter may be operably linked with a second gene encoding a target protein and a gene encoding a second fluorescent protein.
- the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
- the fluorescent protein expressed in the seed and the fluorescent protein expressed in the target tissue emit fluorescence of different colors, and the fluorescent protein expressed in the seed and the second There is no interference with the expression of the fluorescent protein. Therefore, not only can a transformed individual be easily selected as a seed emitting detectable fluorescence, but also the expression of the target protein in the target tissue can be easily confirmed.
- the seed protein is preferably an oil body-localized protein, and the oil body-localized protein is more preferably a protein selected from the group consisting of oleosin, caleosin and steroleosin.
- the seed-specific promoter is preferably a native promoter of a gene encoding an oil body localized protein. When this promoter is used, detection of fluorescence from the seed is much easier than when a promoter having directivity for other organelles in the seed is used, and it is very excellent as a visual selection marker at the seed stage.
- the promoter of the gene encoding the oil body localized protein is more preferably a promoter of a gene encoding a protein selected from the group consisting of oleosin, caleosin and steroleosin.
- the fusion protein is preferably configured by fusing a fluorescent protein to the C-terminus of the seed protein.
- the selection marker according to the present invention is characterized in that it contains the above DNA construct.
- the selection marker kit according to the present invention is characterized by comprising the above-described DNA construct.
- the transformant plant according to the present invention is characterized in that a gene encoding a fusion protein of a seed protein and a fluorescent protein, which is operably linked to a seed-specific promoter, is introduced.
- the transformant plant according to the present invention is preferably a grown individual plant, a plant cell, a plant tissue, a callus, or a seed.
- the method for selecting a transformant plant detects the presence of a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in the seed. It includes the process of performing.
- the detecting step includes detecting the fluorescence due to the fluorescent protein from the seed, but detecting the gene encoding the fusion protein or the gene encoding the fluorescent protein from the seed extract. But you can.
- the method may further include a step of detecting the presence of a gene encoding the second fluorescent protein operably linked to a seed-specific promoter in the seed.
- the method may further include a step of detecting the presence of a gene encoding the second fluorescent protein operably linked to the second promoter in the target tissue.
- the protein production method includes (1) a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in order to produce the protein in the plant body.
- the DNA construct preferably further includes a second promoter for expressing the target protein in the target tissue.
- the inserting step includes the steps of: Two genes are operably linked to a second promoter.
- the introducing step includes performing a floral-dip method or a vacuum-infiltration method.
- a transformant plant can be selected more easily and efficiently than when a drug resistance marker is used.
- the present invention can be used as a codominant marker that can easily differentiate between homo and hetero lines.
- FIG. 1 is a diagram showing the structure of a DNA construct according to the present invention.
- FIG. 2 is a diagram showing the results of observing seeds of a plant line introduced with a vector for overexpressing CLO3 according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of GFP, (B) shows a bright-field image.
- FIG. 3 is a diagram showing the segregation ratio of T2 seed population and T3 homoline seed population of a plant body (35SCLO3 (OLE1GFP)) according to an embodiment, and the number of seeds having resistance to a drug (Glufosinate-ammonium). .
- FIG. 1 is a diagram showing the structure of a DNA construct according to the present invention.
- FIG. 2 is a diagram showing the results of observing seeds of a plant line introduced with a vector for overexpressing CLO3 according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of GFP, (B) shows a bright-field image.
- FIG. 4 is a view showing the results of confirming the expression of CLO3 in seeds in which GFP fluorescence was observed in the seed population of the plant body (35SCLO3 (OLE1GFP)) according to one embodiment, and (a) shows the expression of CLO3. (B) shows the number of individuals in which the expression of CLO3 was confirmed.
- FIG. 5 is a diagram showing the transition of fluorescence in OLE1GFP after germination.
- FIG. 6 is a graph showing the relationship between the GFP fluorescence intensity in the T2 seed of a 35SCLO3 (OLE1GFP) plant and the genotype of the transformed gene.
- FIG. 7 is a diagram showing the structure of a DNA construct according to the present invention.
- FIG. 8 is a diagram showing the structure of a DNA construct according to the present invention.
- FIG. 9 is a diagram showing a result of observing a T1 seed population of a plant line introduced with a 35S overexpression vector according to an embodiment under a fluorescence microscope, (a) shows the fluorescence of RFP; (B) shows a bright-field image.
- FIG. 10 shows the results of observation of a T3 homozygous seed population obtained from 35S :: GFP-CLO3 (FAST-R06) under a fluorescence microscope.
- A shows the fluorescence of TagRFP
- (b) shows a bright field image.
- Plant seed cells have organelles for storing storage substances, and one of the oil seed plants, Arabidopsis thaliana, is an oil body that stores large quantities of organelles for storing storage substances. Stores fat (mainly triacylglycerol).
- Membrane proteins such as oleosin, caleosin, and stereosin are localized in the oil body. Particularly, oleosin has the largest accumulation amount among the oil body localized proteins.
- Seed type oleosin is a protein that accumulates in large quantities only in the oil body of seeds, and the major isoforms of oleosins (OLE1 to OLE4) exist in Arabidopsis seeds.
- OLE1GFP fusion gene was induced using the OLE1 promoter, and observed under a fluorescence microscope that GFP fluorescence was observed only in the seeds. That is, it was found that OLE1GFP is not only usable as a transformation marker for Arabidopsis but also more useful than conventional drug resistance markers.
- the T1 seed population of transformants into which the OLE1GFP fusion gene was introduced by the floral-dip method using Agrobacterium it was possible to select transformants using GFP fluorescence in the seeds as an index.
- the T2 homozygous seeds could be efficiently selected as seeds with strong GFP fluorescence.
- the OLE1GFP fusion gene can be used as a codominant marker that can easily differentiate between homo and hetero lines.
- conventional selection methods using drug resistance markers there are serious problems such as the possibility of horizontal transmission of drug resistance genes, preparation of selective media containing drugs, and adverse effects of drugs on plants.
- selection method using the OLE1GFP marker selection was possible only by GFP observation under a fluorescence microscope, and it was shown that transformant plants can be selected more easily and efficiently than when a drug resistance marker is used.
- DNA construct and selectable marker The present invention provides a DNA construct that can be used as a novel selectable marker gene.
- the DNA construct according to the present invention includes a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter.
- Fluorescent protein has already been used as a selection marker instead of a drug resistance marker.
- the present invention can provide a technique that is exceptionally superior to conventional selection methods using only a fluorescent protein.
- operably linked means that a gene encoding a protein of interest is under the control of a regulatory region such as a promoter and the protein (or mRNA) is It is intended to be in a form that can be expressed.
- a procedure for constructing a desired vector by “operably linking” a gene encoding a peptide of interest to a control region such as a promoter is well known in the art.
- a method for introducing an expression vector into a host is also well known in the art. Therefore, those skilled in the art can easily produce a desired protein (or mRNA) in a host.
- seed protein that can be used in the present invention may be a protein that is specifically expressed in the seed, and may be a protein that is specifically expressed in each organelle in the seed.
- seed protein is intended to include not only seed storage proteins but also oil body localized proteins.
- Preferred seed storage proteins include, for example, 12S globulin, cucurbitine, glutelin, glycinin, legumin, aratin, conglycinin, 7S globulin, phaseolin, bicilin, concaratin, 2S globulin, amangine, prolamin, zein, gliadin, edestine, glutenin, lysine, Examples include, but are not limited to, hemagglutinin, 2S albumin, canavalin, concanavalin, trypsin inhibitor, cystatin and the like.
- the oil body-localized protein is preferably oleosin (eg, OLE1 (at4g25140)), caleosin (eg, CLO3 (at2g33380)), stereosin ((eg, STE1 (at5g50600)), etc., and oleosin (OLE1 to 4).
- OLE1 to 4 The amino acid sequences of OLE1 to 4 are shown in SEQ ID NOs: 1 to 4, and the amino acid sequence of CLO3 is shown in SEQ ID NO: 5.
- oleosin, caleosin, and stereocin have various isoforms and orthologs in plants. However, it is considered that the effect of the present invention is exhibited regardless of which is used.
- the seed protein may preferably be a seed storage protein and an oil body localized protein, and more preferably an oil body localized protein.
- a seed storage protein when used, it is very difficult to observe fluorescence with a general fluorescence microscope, and it is necessary to use a modified fluorescent protein with high fluorescence intensity or a confocal laser microscope. is there.
- the oil body localized protein by using the oil body localized protein, the fluorescence from the seed can be easily observed even using a general fluorescence microscope.
- the fluorescent protein that can be used in the present invention may be any fluorescent protein known in the art, but GFP, RFP, and the like are preferable from the viewpoint of ease of operation and availability.
- OLE1 consists of the amino acid sequence shown in SEQ ID NO: 1, those skilled in the art who read this specification will easily understand that variants that retain their functions are also included in the category of OLE1.
- a “variant” of OLE1 is a protein consisting of an amino acid sequence in which one or several amino acids are deleted, added or substituted in the amino acid sequence shown in SEQ ID NO: 1. It is intended to be. That is, those skilled in the art readily understand that even if one or several amino acids are deleted, added or substituted, they can be regarded as the protein as long as the function of the original protein is maintained. A person skilled in the art can easily understand the function of the original protein from the name of the protein.
- the fluorescent protein may be fused to either the N-terminal side or the C-terminal side of the seed protein, but when the functional site of the seed protein is present on the N-terminal side, it is fused to the C-terminal side of the seed protein. It is preferable.
- the seed-specific promoter that can be used in the present invention may be a promoter that natively controls a gene encoding a protein that is specifically expressed in the seed.
- Preferred seed-specific promoters include, but are not limited to, promoters that natively control genes encoding seed storage proteins, oil body localization proteins and the like as described above.
- the seed-specific promoter is preferably a promoter that natively controls a gene that encodes a seed storage protein, and a promoter that natively controls a gene that encodes an oil body localized protein.
- the promoter controlling the gene encoding the seed storage protein include 2S albumin 3 promoter (SEQ ID NO: 7), 12S globulin promoter (SEQ ID NO: 8), ⁇ -conglycinin promoter (SEQ ID NO: 9) and the like. It is not limited to. More preferably, the seed-specific promoter may be a promoter that natively controls a gene encoding an oil body localized protein.
- an oil body localized protein as a seed protein shows a much better effect than a seed storage protein. It is more preferable to use a regulated promoter (for example, oleosin promoter (proOLE1): SEQ ID NO: 6) as a seed-specific promoter.
- a regulated promoter for example, oleosin promoter (proOLE1): SEQ ID NO: 6
- proOLE1 oleosin promoter
- some of the promoters that natively control the genes encoding the seed proteins (seed storage protein and oil body localization protein) described above have not been proven in their base sequences. However, those skilled in the art can easily prove it.
- the DNA construct according to the present invention is a DNA construct comprising a gene encoding a fusion protein of a seed protein and a fluorescent protein, and the gene is operably linked to a seed-specific promoter.
- a second gene that encodes the target protein and a gene that encodes the second fluorescent protein are operably linked to a seed-specific promoter, and the second fluorescent protein includes the seed protein and the fluorescent protein. It is a protein that emits fluorescence of a different color from the fluorescent protein that constitutes the fusion protein with the protein.
- the second fluorescent protein is not particularly limited as long as it emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein, and a conventionally known fluorescent protein can be used.
- a fluorescent protein such as GFP, YFP, CFP, and RFP that emits fluorescence having a color different from that of the fluorescent protein constituting the fusion protein can be selected.
- the second fluorescent protein may be linked to either the N-terminal side or the C-terminal side of the target protein.
- to emit fluorescence of different colors means that fluorescence having a wavelength in the visible light region (380 nm to 780 nm) gives a different color sensation depending on the wavelength.
- green-blue (480 nm to 490 nm) fluorescence and blue-green (490 to 500 nm) fluorescence are recognized as different colors, and blue-green fluorescence and green fluorescence (500 to 560 nm) are different colors. It is recognized that there is.
- the second fluorescent protein emits fluorescence having a color different from that of the fluorescent protein that constitutes the fusion protein, whereby the presence of a gene encoding the second fluorescent protein in the seed is determined to be a gene encoding the fusion protein. Can be detected separately from the presence in the seed. That is, the expression of the target protein in the seed can be clearly detected separately from the selection marker, and the seed in which the target protein is expressed can be selected more easily.
- the fluorescent protein constituting the fusion protein is RFP that emits red fluorescence
- GFP that emits green fluorescence is used as the second fluorescent protein
- the target protein is detected using green fluorescence as an index, thereby .
- the expression of the target protein can be clearly detected separately from the selection marker.
- the fluorescence can be confirmed by a conventionally known method, for example, using a fluorescence microscope.
- the procedure itself for constructing a desired vector by operably linking the gene encoding the second gene and the second fluorescent protein to the seed-specific promoter is well known in the art.
- a method for introducing an expression vector into a host is also well known in the art.
- a person skilled in the art who has contacted the present specification constructs an expression vector as appropriate, and distinguishes between fluorescence emitted from the fluorescent protein constituting the fusion protein and fluorescence emitted from the second fluorescent protein in the seed. Can do.
- the above observation can be performed by constructing a vector such as pFAST-R07, which is a modified destination vector constructed in Examples described later.
- the DNA construct according to the present invention further includes a second promoter capable of operably linking a gene encoding the target protein in order to express the target protein in the target tissue.
- a second promoter capable of operably linking a gene encoding the target protein in order to express the target protein in the target tissue.
- any promoter known in the art can be used.
- Known promoters in the art include 35S promoter (SEQ ID NO: 10), dexamethasone-inducible promoter, estrogen-dependent promoter, CHS-A promoter, heat shock promoter, RuBisCO promoter, stress-responsive promoter, and the like. It is not limited to.
- the expression of the fluorescent protein and the expression of the target protein do not interfere at all.
- the fluorescent protein when a promoter other than a seed-specific promoter is used as the second promoter, in the obtained transformant, the fluorescent protein is expressed only in the seed, and seedlings (roots, leaves, stems, etc.) on which the seed is grown In, the fluorescent protein is not expressed.
- a second gene encoding a target protein and a gene encoding a second fluorescent protein are operably linked to the second promoter, and the second fluorescent protein Is a protein that emits fluorescence of a color different from that of the fluorescent protein constituting the fusion protein of the seed protein and the fluorescent protein.
- the second fluorescent protein may be linked to either the N-terminal side or the C-terminal side of the target protein.
- the expression of the target protein in the target tissue can be clearly detected separately from the expression of the selection marker in the seed.
- a procedure for constructing a desired vector by operably linking a gene encoding a target protein and a second fluorescent protein to the second promoter is well known in the art.
- a method for introducing an expression vector into a host is also well known in the art.
- an expression vector as appropriate, observe the fluorescence emitted from the fluorescent protein constituting the fusion protein in the seed, and observe the fluorescence emitted from the second fluorescent protein in the target tissue.
- the above observation can be performed by constructing vectors such as pFAST-R05 and pFAST-R06, which are modified destination vectors constructed in Examples described later.
- the DNA construct according to the present invention is useful as a selection marker and a codominant marker.
- a selectable marker kit comprising the DNA construct according to the present invention is also within the scope of the present invention.
- kit is intended to package a plurality of articles and have a single aspect. That is, the selection marker kit according to the present invention only needs to include reagents other than the DNA construct according to the present invention. Those skilled in the art can easily understand the reagents required when the DNA construct according to the present invention is used as a selection marker.
- the present invention also provides a transformant plant into which the DNA construct is introduced.
- the transformant plant according to the present invention is characterized in that a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter is introduced.
- transformant is intended not only to a cell, tissue or organ, but also to an individual organism.
- the transformant according to the present invention has only to be introduced with at least a gene encoding a polypeptide constituting the fusion protein according to the present invention and express this fusion protein. That is, it should be noted that transformants generated by means other than expression vectors are also included in the technical scope of the present invention.
- gene introduced or “gene introduced” is expressed in a target cell (host cell) by a known genetic engineering technique (gene manipulation technique). It is intended to be introduced (ie, transformant).
- a target cell host cell
- genetic engineering technique gene manipulation technique
- transformant ie, transformant
- various crops plants and crops produced in the agriculture, forestry and fisheries industry
- Specific examples include cereals (rice, wheat, corn, etc.), timbers (pine, cedar, cypress, etc.), various vegetables, and flower buds.
- Plants to be transformed in the present invention include whole plants, plant organs (eg leaves, petals, stems, roots, seeds, etc.), plant tissues (eg epidermis, phloem, soft tissue, xylem, vascular bundle, It means any of a palisade tissue, a spongy tissue, etc.) or a plant culture cell, or various forms of plant cells (eg, suspension culture cells), protoplasts, leaf sections, callus, and the like.
- the plant used for transformation is not particularly limited, and may be any plant belonging to the monocotyledonous plant class or the dicotyledonous plant class.
- the transformant plant according to the present invention may be a grown plant individual, a plant cell, a plant tissue, a callus, or a seed.
- transformation methods known to those skilled in the art for example, the Agrobacterium method
- the constructed plant expression vector is introduced into an appropriate Agrobacterium, and this strain is infected with a sterile cultured leaf piece according to a method well known in the art (for example, the leaf disc method). Good.
- the DNA construct according to the present invention When the DNA construct according to the present invention is introduced via callus using the above vector, it is possible to select heterozygous individuals and homozygous individuals from the seed population of the transformant using fluorescence as an index. Homo individuals can be obtained.
- the Agrobacterium containing the DNA construct according to the present invention introduces the DNA construct into an infected plant body only by using the floral-dip method or vacuum-infiltration method (applying to flower buds or shoot apical meristems). It is only necessary to collect the seed from the infected plant.
- the target seed can be obtained by a very simple method without going through callus.
- the method via callus is complicated such as requiring a sterilization operation, and has the disadvantage that culture mutation is likely to occur. However, such a drawback can be avoided by using the above method.
- the present invention has an advantage that any tissue or organ can be transformed by properly using the second promoter.
- Whether or not a gene has been introduced into a plant may be confirmed using a PCR method, Southern hybridization method, Northern hybridization method, or the like.
- the present invention also includes a plant body into which the fusion protein is introduced so that it can be expressed, or a progeny of the plant body having the same properties as the plant body, or a tissue derived therefrom.
- the method for producing a transformant plant according to the present invention comprises a step of transforming a plant using a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter; It includes the step of selecting a plant that expresses the fusion protein in the transformed plant.
- the method for producing a transformant plant according to the present invention may be as follows: (1) producing a DNA construct comprising a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter; (2) A plant expression vector into which the above gene cut out from the DNA construct prepared in step (1) is inserted is introduced into each Agrobacterium; (3) Infecting the plant body by applying each Agrobacterium obtained in step (2) to the flower bud (floral-dip method); (4) T1 seeds are collected from each individual plant body infected with Agrobacterium obtained in step (3); (5) Fluorescence derived from the fluorescent protein is detected in each T1 seed collected in step (4), and a plant in which fluorescence is observed is selected as a transformed plant; (6) grow each transformant selected in step (5), collect T2 seeds and construct a seed library; (7) The fluorescence derived from the fluorescent protein is detected in each T2 seed collected in the step (6), and the seed in which fluorescence is observed is
- the gene encoding the fusion protein is extracted from an extract of each T1 seed (or T2 seed) or an extract from a plant that has grown each T1 seed (or T2 seed).
- it may be a step of detecting a gene encoding the fluorescent protein.
- the method for producing a transformant according to this embodiment may include a step of applying Agrobacterium containing a DNA construct to flower buds or shoot apical meristems.
- the present invention also provides a method for selecting a transformant plant.
- the method for selecting a transformant plant according to the present invention detects the presence of a gene encoding a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter in the seed. It includes the process of performing.
- a method for selecting a transformant plant according to the present invention can be included as a step of a method for producing a transformant plant, for example, step (5) in the method for producing the transformant plant. It can be (7). That is, in the present method, the detecting step includes detecting the fluorescence due to the fluorescent protein from the seed, and detecting the gene encoding the fusion protein or the gene encoding the fluorescent protein from the seed extract. May be included.
- the method for selecting a transformant plant according to the present invention further comprises a step of detecting the presence of a gene encoding a second fluorescent protein operably linked to a seed-specific promoter in the seed. May be included.
- the vector can be introduced into a host and the resulting seeds can be observed using a fluorescence microscope or the like.
- the method for selecting a transformant plant according to the present invention further comprises that a gene encoding the second fluorescent protein operably linked to the second promoter is present in the target tissue.
- a step of detecting may be included.
- the vector is introduced into a host, It can be performed by observing the tissue in which the target protein is to be expressed using a fluorescence microscope or the like.
- the present invention further provides a protein production method.
- the protein production method according to the present invention is a method for producing a protein in a transformed plant, which encodes a fusion protein of a seed protein and a fluorescent protein operably linked to a seed-specific promoter.
- the second gene is operable to the second promoter for expressing the protein encoded by the second gene in the target tissue. It may be connected to.
- the protein production method according to the present invention preferably further includes a step of purifying the protein from the extract of the transformant plant (eg, cell or tissue).
- the protein purification step is performed by preparing a cell extract from cells or tissues by a well-known method (for example, by centrifuging cells or tissues and then collecting a soluble fraction by centrifugation), and then using this cell extract.
- HPLC high performance liquid chromatography
- the protein production method according to the present invention is the use of the above-described transformant. Therefore, a protein production method including the steps shown in the embodiment of the method for producing a transformant described above is also included in the technical scope of the present invention.
- the protein production method according to the present invention includes: In order to introduce a target gene into a plant body, a floral-dip method or a vacuum-infiltration method is used.
- the synthesized peptide sequence is as follows.
- CLO3 CVTSQRKVRNDLEETL (SEQ ID NO: 11)
- the peptide synthesized with 3-maleimidobenzoic acid N-hydroxysuccinimide ester (Sigma-Aldrich) was cross-linked with BSA.
- Peptides cross-linked with BSA were injected subcutaneously into rabbits with complete Freund's adjuvant, an immune aid. From 3 weeks after the start of immunization, booster inoculation was performed 4 times every other week with incomplete Freund's adjuvant.
- Antibodies were purified from blood collected from rabbits one week after the last boost.
- SDS-PAGE and CBB staining SDS-PAGE was performed according to the method of Laemmli et al. J. Mol. Biol. 47, 69-85 (1970).
- the protein sample is subjected to SDS sample buffer (4 wt% SDS, 100 mM Tris-HCl, 10 wt% 2-mercaptoethanol, 20 wt% glycerol, 0.1% BPB (each indicating the final concentration in the sample lysate)). And heated at 95 ° C. for 5 minutes. The heated protein sample was then applied to a 7.5-15% acrylamide gradient gel (BIO CRAFT).
- the gel after electrophoresis was stained with CBB staining solution (0.25 wt% Coomassie blue R250, 45% methanol, 10% acetic acid) for 1 hour. Subsequently, the gel was destained in destaining solution A (45% methanol, 10% acetic acid) for 1 hour and in destaining solution B (5% methanol, 7% acetic acid) for 12 hours to detect protein bands. did.
- the nylon membrane on which the protein was transferred was shaken in TBS-T (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.05 wt% Tween 20) containing 5 wt% skim milk for 30 minutes to perform blocking treatment. went.
- the nylon membrane after blocking was shaken in TBS-T containing appropriately diluted antibodies (1/2000 for OLE1 antibody, 1/5000 for OLE2 antibody, 1/5000 for CLO3 antibody) for 1 hour. The membrane was then washed 3 times with TBS-T for 5 minutes.
- the destination vector pBGWFS7 (Plant System Biology) has a GFP-GUS fusion protein coding region downstream of the gateway multicloning site.
- a modified destination vector pBGWF7 from which the GUS coding region in the vector was removed was prepared by treating pBGFS7 with the restriction enzyme Nru1.
- OLE1GFP In order to express a protein in which GFP was fused to the C-terminus of OLE1 (OLE1GFP), about 2 kb upstream of the coding region of the protein was used as a promoter region for the OLE1 gene. In order to fuse GFP to the C-terminal side of the OLE1 protein, one base guanine was added to the reverse primer in order to remove the stop codon of the OLE1 coding region and prevent frame shift. Using the Col-0 genome as a template, the OLE1 gene was amplified by TOYOBO KOD-plus- Polymerase and subcloned into pENTER / D-TOPO (Invitrogen) to prepare an entry vector pOLE1. The base sequence of the entry vector pOLE1 was confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
- the primers used are as follows: OLE1_Fwd, 5′-CACCCTACTTAGATACAACACATAAA-3 ′ (SEQ ID NO: 12) OLE1_Rev, 5′-GAGTAGTGTGCTGGCCACCACCG-3 ′ (SEQ ID NO: 13).
- modified destination vector pB-OLE1GFP-2GW7 A 3 kDa DNA fragment containing 35S promoter, gateway multicloning site, and 35S terminator by treating destination vector pH2GW7 (Plant System Biology) with restriction enzyme Aat2. Got.
- the expression vector pB-OLE1GFP was similarly treated with Aat2, and a DNA fragment treated with alkaline phosphatase to prevent intramolecular binding was obtained.
- a modified destination vector pB-OLE1GFP-2GW7 was prepared (upper figure in FIG. 1).
- CLO3 mRNA is induced in trophic organs by treatment with drought stress, salt stress and abscisic acid (Takahashi et al. Plant Cell Physiol. 41, 898-903 (2000)). When the accumulation of CLO3 protein was examined, no accumulation was observed in the seedlings on the seventh day (FIG. 4 (a)).
- the region from the start codon to the stop codon of the CLO3 gene was amplified with TOYOBO KOD-plus- Polymerase and subcloned into pENTER / D-TOPO (Invitrogen) to prepare the entry vector pCLO3.
- the base sequence of the entry vector pCLO3 was confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
- the primers used are as follows: CLO3_Fwd; 5′-CACCCATGGCAGGAGAGGCAGAGGCTG-3 ′ (SEQ ID NO: 14) CLO3_Rev; 5′-TTAGTCTTGTTTGCGAGAATTGGCCCC-3 ′ (SEQ ID NO: 15).
- a 3.5 kb region containing the OLE1GFP fusion gene and terminator 35S was amplified by PCR using pB-OLE1GFP-2GW7 as a template and TOYOBO KOD-plus-polymerase.
- a recognition sequence of restriction enzyme Apa1 or Spe1 was added to the primer, and a recognition sequence of Apa1 or Spe1 was added before and after the DNA fragment containing the OLE1GFP fusion gene and terminator 35S.
- Each of the obtained fragments was subcloned into pENTER / D-TOPO (Invitrogen) to prepare entry vectors pOLE1GFP-Apa1 and pOLE1GFP-Spe1.
- the base sequences of the entry vectors pOLE1GFP-Apa1 and pOLE1GFP-Spe1 were confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
- the primers used are as follows: OLE1GFP-Apa1_Fwd; 5′-CACCGGGGCCCTACTTAGATACAACACATAAA-3 ′ (SEQ ID NO: 16), OLE1GFP-Apa1_Rev; OLE1GFP-Spe1_Rev; 5′-ACTAGTCCGCATGCCTGCAGGTCACTGGAT-3 ′ (SEQ ID NO: 19).
- Destination vector pHGW Plant System Biology
- Apa1 restriction enzyme
- the entry vector pOLE1GFP-Apa1 was digested with the restriction enzyme Apa1, and a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and the terminator 35S was purified. These two fragments were ligated to prepare a modified destination vector pH-OLE1GFP-GW as a general-purpose vector.
- Destination vector pH7GWIWG2 (Plant System Biology) was digested with restriction enzyme Apa1, and the resulting DNA fragment was treated with alkaline phosphatase to prevent intramolecular binding.
- the entry vector pOLE1GFP-Apa1 was similarly digested with the restriction enzyme Apa1 to purify a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and terminator 35S. These two fragments were ligated to produce a modified destination vector pH-OLE1GFP-7GWIWG2 (I) as an RNAi vector.
- Destination vector pKGFS7 Plant System Biology
- restriction enzyme Spe1 restriction enzyme to prevent intramolecular binding
- entry vector pOLE1GFP-Spe1 was digested with the restriction enzyme Spe1 to purify a 3.5 kb DNA fragment containing the OLE1GFP fusion gene and the terminator 35S. These two fragments were ligated to produce a modified destination vector pK-OLE1GFP-GWFS7 as a promoter analysis vector.
- OLE1_Fwd2,5′-CACCACTAGGTTATGTAGGTATATAGATACAT-3 ′ (SEQ ID NO: 20)
- TagRFP_Fwd 5'-CAGCACACTACTATGAGCGAGCTGATTAAG-3 '(SEQ ID NO: 22)
- TagRFP_Rev 5′-TGTTTTGAACGATTCACTTGTGCCCCAGTT-3 ′ (SEQ ID NO: 23)
- NOST_Fwd 5'-GGGGCACAAGTGAATCGTTCAAACATTTGGC-3 '(SEQ ID NO: 24)
- NOST_Rev, 5′-ACTAGTGATTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 25) [3-2]
- Preparation of OLE1 TagRFP marker Using the OLE1 gene fragment, TagRFP fragment and NOS terminator fragment
- nucleotide sequences of the entry vectors pOLE1TagRFP-Spe1, pOLE1TagRFP-Hind3 and pOLE1TagRFP-Apa1 were confirmed using ABI BigDye Terminator v3.1 Cycle Sequencing Kit.
- the primers used are as follows: FAST-R_Spe1Fwd, 5′-CACCACTAGTGTATGTAGGTTAGTAACAT-3 ′ (SEQ ID NO: 26) FAST-R_Spe1Rev, 5′-ACTAGTGATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 27) FAST-R_Hind3Fwd, 5′-CACCCAAGCTTCAAGGTTATGTAGGTATAGT-3 ′ (SEQ ID NO: 28) FAST-R_Hind3Rev, 5′-AAGCTTGATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 29) FAST-R_Apa1Fwd, 5′-CACCGGGGCCCTCAAGTGTATGTAGGTATA-3 ′ (SEQ ID NO: 30) FAST-R_Apa1Rev, 5′-GGGGCCCATCTAGTAACATAGATGACACC-3 ′ (SEQ ID NO: 31) [3-3] Preparation
- modified destination vector pFAST-R01 The destination vector pHGW was treated with the restriction enzyme Spe1 and the resulting DNA fragment was treated with alkaline phosphatase to prevent intramolecular binding.
- the entry vector pOLE1TagRFP-Spe1 was similarly treated with the restriction enzyme Spe1 to purify a 3.5 kDa DNA fragment containing the OLE1-TagRFP fusion gene and NOS terminator. These two fragments were ligated to produce a modified destination vector pFAST-R01, which is a general-purpose vector (FIG. 8).
- pB-OLE1TagRFP-35S-GFPCLO3 construct having OLE1TagRFP marker According to the method of Gateway Technology, LR reaction is performed between entry vector pCLO3 and pFAST-R06, and expression vector pB-OLE1TagRFP- A 35S-GFPCLO3 construct was made.
- pFAST-R06 has a GFP gene and a cloning site downstream of the 35S promoter, and the GFP gene and the fusion protein derived from the target gene can be overexpressed by the 35S promoter by LR reaction.
- the leaves of 35S :: GFP-CLO3 (FAST-R06) were observed under a confocal laser microscope (LSM510 META; Carl Zeiss, Jena, Germany), and intracellular GFP fluorescence was photographed.
- the laser used was a 488-nm line of a 40-mV Ar / Kr laser.
- Differential interference contrast (DIC) images were taken at the same time.
- the structure of the DNA construct according to the present invention is shown in FIG.
- the upper diagram in FIG. 1 is a vector (pB-OLEGFP-2GW7) for producing a plant body overexpressing the target gene using the CaMV35S promoter, and the lower diagram in FIG.
- CLO3 overexpresses CLO3 as one embodiment. Shows a vector (pB-OLE1GFP-35S :: CLO3).
- LB represents Left Border
- RB represents Right Border
- Bar represents Basta gene
- p35s represents CaMV35S promoter
- t35s represents CaMV35S terminator
- CmR represents chloramphenicol resistance gene
- ccdB Indicates E. coli gyrase inhibitor protein.
- FIG. 2 shows the results of observing the seeds of a plant line introduced with a vector for overexpression of CLO3 (pB-OLE1GFP-35S :: CLO3) under a fluorescence microscope.
- a plant body 35SCLO3 (OLE1GFP) transformed with wild-type Col-0 (T0 plant) using pB-OLE1GFP-35S :: CLO3 was obtained.
- T1 seed population, T2 seed population, and T3 homozygous seed population obtained from this plant were observed under a fluorescence microscope.
- (A) shows fluorescence of GFP
- (b) shows a bright field image. In the T1 seed population, several seeds having GFP fluorescence were observed (arrowheads in the figure).
- the selected 35S: CLO3 (OLE1GFP) T1 seeds were grown, and the obtained T2 seed population was observed with a fluorescence microscope. As a result, seeds having GFP fluorescence (GFP +) and seeds having no GFP (GFP-) were observed. Were mixed (FIG. 2, T2 seeds). Furthermore, in the next generation T3 homozygous seed population obtained by growing T2 seeds, all seeds had GFP fluorescence (FIG. 2, T3 seeds).
- FIG. 3 shows the separation ratio of the T2 seed population and the T3 homoline seed population of 35 SCLO3 (OLE1GFP) plants.
- T2 seed population and 35 TLO homoline seed population of 35SCLO3 OLO3
- seeds having GFP fluorescence (GFP +) and seeds having no GFP fluorescence (GFP ⁇ ) were counted.
- the separation ratio of GFP +: GFP ⁇ was about 3: 1 in the # 1, # 5, and # 6 lines of the T2 seed population.
- the separation ratio of GFP +: GFP ⁇ was approximately 15: 1. From this, it is presumed that the pB-OLE1GFP-35s :: CLO3 construct was inserted into the 1 locus while the separation ratio of 15: 1 was inserted into the 2 locus when the separation ratio was 3: 1. It was.
- OLE1GFP fusion gene can be used not only as a visual selection marker but also has a selection ability equivalent to that of a drug selection marker.
- OLE1GFP fusion gene is referred to as an OLE1GFP marker.
- FIG. 4 shows the results of confirming the expression of CLO3 in seeds in which GFP fluorescence was observed in the seed population of 35SCLO3 (OLE1GFP) plants.
- A grows seeds in which GFP fluorescence was observed, seeds in which GFP fluorescence was not observed, and T2 homozygous lines in T2 lines of wild type plant Col-0, OLE1GFP plant, and 35SCLO3 (OLE1GFP) plant, The result of having investigated the expression of CLO3 in the seedling of the 7th day by the immunoblot is shown.
- FIG. 5 is a diagram showing the transition of fluorescence in OLE1GFP after germination.
- FIG. 6 shows the relationship between the GFP fluorescence intensity in the T2 seeds of 35SCLO3 (OLE1GFP) plant and the genotype of the transformed gene.
- T2 seed (# 1 line) of 35SCLO3 (OLE1GFP) plant the GFP fluorescence intensity of one seed was measured, and the genotype of the transformed gene of the seed was examined. The genotype was determined from the separation ratio of the GFP fluorescence of the seeds obtained by growing the plant body.
- a histogram was prepared with the number of seeds on the vertical axis and the GFP fluorescence intensity on the horizontal axis. Histograms for GFP fluorescence intensity were created for each of the homo line, hetero line, and non-transformant. The GFP fluorescence intensity was higher in the hetero line seed population than in the non-transformed seed group, and the hetero line seeds.
- homoseed seed population tended to be higher than the population. Similar results were obtained for the # 5 and # 6 lines (results not shown). This suggests that homozygous seeds can be selected by selecting those having a very strong fluorescence intensity in the T2 seed population.
- the probability that all four individuals are not homozygous is 19.8%, which indicates that the possibility that a homozygous line cannot be selected is very high compared to when the OLE1GFP marker is used. From these results, it was shown that the OLE1GFP marker is useful as a codominant marker capable of distinguishing between homo and hetero lines.
- FIG. 9 shows the result of observing the seeds of the plant line into which the expression vector pB-35S-CLO3-OLE1TagRFP was introduced under a fluorescence microscope.
- a plant body obtained by transforming wild-type Col-0 (T0 plant) with pB-35S-CLO3-OLE1TagRFP was obtained.
- the T1 seed population obtained from this plant was observed under a fluorescence microscope.
- (A) shows the fluorescence of TagRFP
- (b) shows a bright field image.
- FIG. 9 several seeds having TagRFP red fluorescence were observed in the T1 seed population.
- the OLE1TagRFP fusion gene can also be used as a visual selection marker, like the OLE1GFP fusion gene.
- FIG. 10 shows the results of observation of a T3 homozygous seed population obtained from 35S :: GFP-CLO3 (FAST-R06) under a fluorescence microscope.
- (A) shows the fluorescence of TagRFP
- (b) shows a bright field image.
- T3 homoline seed population obtained by growing T1 seed of 35S :: GFP-CLO3 (FAST-R06) and growing the obtained T2 seed population all seeds had TagRFP fluorescence. (FIG. 10 (a)).
- FIG. 11 shows the results of observing the expression of CLO3 in the leaves of 35S :: GFP-CLO3 (FAST-R06) using GFP fluorescence as an index.
- A is an image showing a result of observing the leaf under a differential interference microscope
- (b) is an image showing a result of observing the leaf under a confocal laser microscope and detecting GFP fluorescence.
- C is an image obtained by superimposing (a) and (b).
- PFAST-R06 contains the OLE1TagRFP fusion gene as shown in FIG. Therefore, in 35S :: GFP-CLO3 (FAST-R06), the expression of the selection marker in the seed can be confirmed by the red fluorescence of TagRFP.
- pFAST-R06 a gene encoding GFP as a second fluorescent protein and a gene encoding CLO3 as a target protein are operably linked to a 35S promoter as a second promoter. Therefore, as shown in FIGS. 11 (b) and 11 (c), the expression of CLO3 in the leaves of 35S :: GFP-CLO3 (FAST-R06) is detected by distinguishing it from the expression of the selection marker in seeds by green fluorescence. Can do.
- the DNA construct according to the present invention is a novel selection marker for selecting transformed plants, and the expressed protein is a fusion protein of a plant-derived seed protein and a fluorescent protein that is non-toxic to living organisms. From this, it can be said that the DNA construct according to the present invention is a safe selection marker that is harmless to organisms and the environment.
- the DNA construct according to the present invention is a simpler and more useful selection marker than general drug resistance markers.
- a drug resistance marker it is necessary to prepare a selective medium containing an appropriate concentration of a drug and sow seeds in order to examine the selection and isolation ratio of transformed plants.
- the DNA construct according to the present invention which is a visual selection marker
- preparation of a medium having a special composition and seed sowing are not required.
- the transformation is not successful, it can be determined from the fluorescence observation, so that it is not necessary to sow the seed in the selective medium. From these facts, the use of the DNA construct according to the present invention makes it possible to reduce extra drugs and culture media.
- T1 plant using a drug resistance marker When selecting a T1 plant using a drug resistance marker, it is necessary to sow a large amount of T1 seed population in a selective medium, which is very laborious.
- the DNA construct according to the present invention when used, it is possible to visually select in the dry seed state, so that the seed to be seeded is only a reliable T1 transformant, and the seed required for sowing Is small and very efficient.
- direct soil planting is possible. Therefore, in the case of a transformant that also shows a phenotype in a hetero line, such as RNAi or overexpressor, T1 Comparison with control plants is possible at the transformant stage, and analysis can be performed quickly. It is also possible to select weak transformants that cannot grow in a selective medium.
- the DNA construct according to the present invention can be used as a codominant marker, it is possible to isolate a homo line with high probability by selecting seeds with strong fluorescence intensity. Can be reduced by one generation.
- a transformant plant can be produced by the Agrobacterium-based floral-dip method or the vacuum-infiltration method.
- the plant to be applied may be any plant that accumulates seed proteins (especially oil body localized proteins) in the seeds, and thus can be applied to various plants.
- Japanese radish (Raphanus sativus) has been reported as a plant species that can use the above-mentioned floral-dip method or vacuum-infiltration method (Curtis, IS and Nam, amHG Transgenic Res. 10, 363-371 (2001) ).
- cruciferous plants that are oil seeds and accumulate oil body localized protein (oleosin) are plants to which the floral-dip method or vacuum-infiltration method can be applied. It is considered that the DNA construct according to the above can be widely used as long as it is a plant of the Brassicaceae family.
- a target transformant can be obtained in a relatively short time without requiring a complicated process in order to produce a transformant plant, so that it can be effectively used for breeding.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
〔1〕植物は育成段階で遺伝子が水平伝播する可能性があるので、薬剤耐性遺伝子を有する植物を野外にて育成するには制限がある。
〔2〕所望の形質転換体を選抜する際に薬剤処理を行う必要があるので、選抜用の薬剤含有培地を別途調製する必要がある。
〔3〕薬剤耐性遺伝子を有している植物であっても、薬剤処理によりダメージを受ける。
〔4〕薬剤含有培地において生存し得ないレベルの形質転換体を得ることが困難である。
本発明は、新規選択マーカー遺伝子として利用可能なDNA構築物を提供する。本発明に係るDNA構築物は、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでおり、該遺伝子が種子特異的プロモータに作動可能に連結されていることを特徴としている。
本発明はまた、上記DNA構築物が導入された形質転換体植物を提供する。本発明に係る形質転換体植物は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が導入されていることを特徴としている。
(1)種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含むDNA構築物を作製する;
(2)工程(1)において作製したDNA構築物から切り出した上記遺伝子を挿入した植物発現ベクターを、各々アグロバクテリウムに導入する;
(3)工程(2)で得られた各アグロバクテリウムを花芽に塗布すること(floral-dip法)により、植物体に感染させる;
(4)工程(3)で得られたアグロバクロテリウムに感染した植物体の各個体より、T1種子を回収する;
(5)工程(4)において回収した各T1種子において上記蛍光タンパク質由来の蛍光を検出し、蛍光が観察された植物を形質転換植物として選抜する;
(6)工程(5)において選抜した各形質転換体を生育し、T2種子を回収して種子ライブラリーを構築する;
(7)工程(6)において回収した各T2種子において上記蛍光タンパク質由来の蛍光を検出し、蛍光が観察された種子を選抜する。なお、工程(5)および(7)は、各T1種子(またはT2種子)の抽出物または各T1種子(またはT2種子)を成育した植物体からの抽出物から、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を検出する工程であってもよい。このように、本実施形態に係る形質転換体の作製方法は、DNA構築物を含むアグロバクテリウムを花芽または茎頂分裂組織に塗布する工程を包含すればよいともいえる。
本発明に係るDNA構築物を用いれば、目的のタンパク質が発現している種子を容易に選抜し得る。すなわち、本発明はまた、形質転換体植物を選抜する方法を提供する。本発明に係る形質転換体植物を選抜する方法は、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含することを特徴としている。1つの局面において、本発明に係る形質転換体植物を選抜する方法は、形質転換体植物を作製する方法の工程として包含され得、例えば、上記形質転換体植物を作製する方法における工程(5)~(7)であり得る。すなわち、本方法において、上記検出する工程は、上記蛍光タンパク質による蛍光を種子から検出することを含んでも、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を種子抽出物から検出することを含んでもよい。
本発明はさらに、タンパク質生産方法を提供する。本発明に係るタンパク質生産方法は、形質転換体植物内にてタンパク質を生産する方法であって、種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする第1の遺伝子を含んでいるDNA構築物に、目的のタンパク質をコードする第2の遺伝子を挿入する工程;および得られたDNA構築物を植物体に導入する工程を包含することを特徴としている。本方法において、第2の遺伝子は、種子特異的プロモータに作動可能に連結されていても、第2の遺伝子によってコードされるタンパク質を目的の組織にて発現させるための第2のプロモータに作動可能に連結されていてもよい。
試薬は特に記述しない場合は、ナカライテスクもしくは和光純薬工業から購入したものを用いた。
植物材料としてシロイヌナズナ(Arabidopsis thaliana)のエコタイプCol-0を用いた。Murashige and Skoog Plant Salt Mixtureを、アガロースと混合して調整した固形培地(MS培地)を用いた。アガロースは最終濃度が0.9%(w/w)になるように用いた。また、ショ糖を最終濃度0-1%になるように適宜加えた。種子表面を滅菌するために、70%エタノールで10分間処理した後、99%エタノールで1回洗浄した。培地上に種子を無菌的に播種し、3日間4℃で暗所にて低温吸水処理を適宜行った。その後、22℃で連続明条件下にて育成した。育成には人工気象機(サンヨーグロースチャンバーMLR-350)および白色蛍光灯(FL40SS・W/37、40形、37ワット)を使用した。
CLO3について、他のタンパク質と相同性の低い、特異的なアミノ酸配列を有している部分を、Peptide Synthesizer model 431 A (Applied Biosystems)を用いて化学合成した。
CLO3:CVTSQRKVRNDLEETL(配列番号11)
3-maleimidobenzoic acid N-hydroxysuccinimide ester (Sigma-Aldrich)により、合成したペプチドを、BSAと架橋した。BSAと架橋したペプチドを、免疫助成剤である完全フロイントアジュバントとともにウサギに皮下注射した。免疫開始の3週間後から1週間おきに4回、不完全フロイントアジュバントとともに追加接種を行った。最後の追加接種から1週間後にウサギより採取した血液から抗体を精製した。
SDS-PAGEを、Laemmli et al. J. Mol. Biol. 47, 69-85 (1970)の方法に準じて行った。タンパク質試料をSDSサンプル緩衝液(4重量%SDS、100mM Tris-HCl、10重量% 2-メルカプトエタノール、20重量% グリセロール、0.1% BPB(それぞれ試料溶解液中の最終濃度を示す。))に懸濁し、95℃で5分間加熱した。その後、7.5-15% アクリルアミドグラディエントゲル(BIO CRAFT)に、加熱したタンパク質試料をアプライした。電気泳動後のゲルを、CBB染色液(0.25重量% Coomassie blue R250,45%メタノール、10%酢酸)を用いて1時間染色した。その後、脱染色液A(45%メタノール、10%酢酸)中で1時間、脱染色液B(5%メタノール、7%酢酸)中で12時間、ゲルの脱染色を行い、タンパク質のバンドを検出した。
15%アクリルアミドゲルを用いて、上記の方法と同様にSDS-PAGEを行った。電気泳動後、ゲルを転写用液(100mM Tris-glycine(pH6.8)、20%メタノール)に浸し、5分間振盪した後、同じ溶液を用いて前処理したナイロン膜とろ紙との間に配置した。セミドライブロッター装置(Bio Craft)を用いて、2mA/cm2の条件下で、ゲル内のタンパク質をナイロン膜 (Immunobilon-P,MILLIPORE) に電気的に転写した。
〔2〕OLE1GFPマーカーを有しているCLO3過剰発現形質転換植物の作出
カリフラワーモザイクウィルス35Sプロモータ(35Sプロモータと略す。)の制御下にてCLO3を過剰発現する形質転換植物の作出を試みた。植物用の形質転換選択マーカーとしてOLE1およびGFPの融合遺伝子マーカー(OLE1GFPマーカー)を用いた。コンストラクトの作製にはGateway Technology (Invitrogen) の方法を用いた。
デスティネーションベクターpBGWFS7(Plant System Biology)は、ゲートウェイ・マルチクローニングサイトの下流にGFP-GUS融合タンパク質のコード領域を有している。pBGWFS7を制限酵素Nru1で処理することにより、ベクター内のGUSコード領域を取り除いた改変デスティネーションベクターpBGWF7を作製した。
OLE1のC末端にGFPを融合させたタンパク質(OLE1GFP)を発現させるために、OLE1遺伝子について、タンパク質のコード領域の上流約2kbをプロモータ領域として用いた。GFPをOLE1タンパク質のC末端側に融合させるため、OLE1コード領域の終止コドンを除去し、フレームシフトを防ぐために、リバース側のプライマーに1塩基グアニンを付加した。Col-0のゲノムを鋳型にしてTOYOBO KOD-plus- PolymeraseによってOLE1遺伝子を増幅し、pENTER/D-TOPO (Invitrogen) にサブクローニングし、エントリーベクターpOLE1を作製した。エントリーベクターpOLE1についてABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。
OLE1_Fwd,5’-CACCCTACTTAGATCAACACATAAA-3’(配列番号12)
OLE1_Rev,5’-GAGTAGTGTGCTGGCCACCACG-3’(配列番号13)。
Gateway Technologyの方法に従い、改変デスティネーションベクターpBGWD7とエントリーベクターpOLE1との間でLR反応を行い、発現ベクターpB-OLE1GFPコンストラクトを作製した。
デスティネーションベクターpH2GW7(Plant System Biology)を制限酵素Aat2で処理し、35Sプロモータ、ゲートウェイ・マルチクローニングサイト、35Sターミネータを含む3kDaのDNA断片を得た。発現ベクターpB-OLE1GFPについても同じくAat2で処理し、さらに分子内結合を防ぐためにアルカリフォスファターゼで処理したDNA断片を得た。2つの断片をライゲーションすることで、改変デスティネーションベクターpB-OLE1GFP-2GW7を作製した(図1上図)。
改変デスティネーションベクターpB-OLE1GFP-2GW7に組み込む遺伝子として、オイルボディタンパク質の一つであるカレオシンのアイソフォームの一つであるCLO3を用いた(Chen et al. Plant Cell Physiol. 40, 1079-1086 (1999), Naested et al. Plant Mol. Biol. 44, 463-476 (2000), Frandsen et al. Physiol. Plant 112, 301-307 (2001), Hanano et al. J. Biol. Chem. 281, 33140-33151 (2006))。CLO3 mRNAは乾燥ストレス、塩ストレス、アブシジン酸処理を行うことによって栄養器官にて誘導される(Takahashi et al. Plant Cell Physiol. 41, 898-903 (2000))。CLO3タンパク質の蓄積を調べたところ、7日目の実生では蓄積が見られない(図4(a))。
CLO3_Fwd;5’-CACCATGGCAGGAGAGGCAGAGGCTT-3’(配列番号14)
CLO3_Rev;5’-TTAGTCTTGTTTGCGAGAATTGGCCC-3’(配列番号15)。
Gateway Technologyの方法に従い、エントリーベクターpCLO3とpB-OLE1GFP-2GW7の間でLR反応を行い、発現ベクターpB-OLE1GFP-35S-CLO3コンストラクトを作製した(図1下図)。pB-OLE1GFP-2GW7は35Sプロモータの下流にクローニングサイトが存在し、LR反応により目的遺伝子を35Sプロモータにより過剰発現させることができる。
作製したOLE1GFP融合遺伝子を含む改変デスティネーションベクターとして、35S過剰発現用ベクター(pB-OLE1GFP-2GW7)以外に、汎用ベクター(pH-OLE1GFP-GW)、RNAi用ベクター(pH-OLE1GFP-7GWIWG2(I))、およびプロモータ解析用ベクター(pK-OLE1GFP-GWFS7)をさらに作製した(図7)。
OLE1GFP-Apa1_Fwd;5’-CACCGGGCCCTACTTAGATCAACACATAAA-3’(配列番号16)、OLE1GFP-Apa1_Rev;5’-GGGCCCTCGCATGCCTGCAGGTCACTGGAT-3’(配列番号17)、OLE1GFP-Spe1_Fwd;5’-CACCACTAGTTAGTAAGTGAAGAACCACAA-3’(配列番号18)、OLE1GFP-Spe1_Rev;5’-ACTAGTCGCATGCCTGCAGGTCACTGGAT-3’(配列番号19)。
作製した発現ベクターpB-OLE1GFP-35S-CLO3をエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1GFPマーカーを指標にして、形質転換体を選抜した。この形質転換体植物を35S:CLO3(OLE1GFP)と称する。
前述の発現ベクターpB-OLE1GFPコンストラクトをエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法によって野生型Col-0を形質転換した。OLE1GFPマーカーを指標にして、形質転換体を選抜した。導入遺伝子に対して1遺伝子座として分離する系統を単離し、導入遺伝子をホモに有している系統を得た。それぞれのホモ系統の種子に対して、イムノブロットによりそれぞれのタンパク質の発現を確認した。
種子集団を蛍光顕微鏡下で観察し、GFP蛍光を示す種子の存在や、その分離比を確認した。GFP蛍光を示す種子を選抜するときは、先を少し湿らせた爪楊枝を用いて種子を集団から選抜した。蛍光強度を測定する場合は、写真撮影し、画像をPhotoshop Elements 5.0を用いて蛍光の強さを測定した。種子はMS培地に播種した。また、必要に応じて、Glufosinate-ammonium (10mg/L)を含む培地に播種した。
植物用の形質転換選択マーカーとして、OLE1とTagRFP(Evrogen JSC, Moscow, Russia) (Merzlyak et al., Bright monomeric red fluorescent protein with an extended fluorescence lifetime, Nat. Methods, vol.4, 555-7, 2007)との融合遺伝子マーカー(OLE1TagRFPマーカー)を持つ改変デスティネーションベクターを作製した。OLE1TagRFPマーカーは、OLE1プロモータ、OLE1-TagRFP融合遺伝子およびNOSターミネーターから構成される。
OLE1のC末端にTagRFPを融合させたタンパク質(OLE1TagRFP)を発現させるために、OLE1遺伝子について、タンパク質のコード領域の上流約2kbをプロモータ領域として用いた。TagRFPをOLE1タンパク質のC末端側に融合させるため、OLE1コード領域の終止コドンを除去した。pB-OLE1GFPを鋳型にしてTOYOBO KOD-plus- Polymeraseによって約2.2kbのOLE1遺伝子を増幅した.またTOYOBO KOD-plus- Polymeraseによって約0.7kbのTagRFPの断片と,約0.2kbのNOSターミネーターの断片を増幅した。
OLE1_Fwd2,5´-CACCACTAGTGTATGTAGGTATAGTAACAT-3´(配列番号20)
OLE1_Rev2,5´-CAGCTCGCTCATAGTAGTGTGCTGGCCACC-3´(配列番号21)
TagRFP_Fwd,5´-CAGCACACTACTATGAGCGAGCTGATTAAG-3´(配列番号22)
TagRFP_Rev,5´-TGTTTGAACGATTCACTTGTGCCCCAGTTT-3’(配列番号23)
NOST_Fwd,5´-GGGCACAAGTGAATCGTTCAAACATTTGGC-3’(配列番号24)
NOST_Rev,5´-ACTAGTGATCTAGTAACATAGATGACACC-3’(配列番号25)
〔3-2〕OLE1TagRFPマーカーの作製
〔3-1〕で増幅したOLE1遺伝子の断片、TagRFPの断片およびNOSターミネーターの断片を用い、TOYOBO KOD-plus- Polymeraseによって、OLE1プロモータ、OLE1-TagRFP融合遺伝子およびNOSターミネーターからなる約3.5kbのOLE1TagRFPマーカー断片を増幅した。この際、プライマーに制限酵素Spe1、Hind3またはApa1の認識配列を付加し、OLE1TagRFPマーカー断片の前後に,Spe1、Hind3またはApa1の認識配列を付加した。得られた断片のそれぞれを、pENTER/D-TOPO(Invitrogen)にサブクローニングし、エントリーベクターpOLE1TagRFP-Spe1、pOLE1TagRFP-Hind3およびpOLE1TagRFP-Apa1を作製した。エントリーベクターpOLE1TagRFP-Spe1、pOLE1TagRFP-Hind3およびpOLE1TagRFP-Apa1について、ABI BigDye Terminator v3.1 Cycle Sequencing Kitを用いて塩基配列を確認した。
FAST-R_Spe1Fwd,5’-CACCACTAGTGTATGTAGGTATAGTAACAT-3’(配列番号26)
FAST-R_Spe1Rev,5’-ACTAGTGATCTAGTAACATAGATGACACC-3’(配列番号27)
FAST-R_Hind3Fwd,5’-CACCAAGCTTCAAGTGTATGTAGGTATAGT-3’(配列番号28)
FAST-R_Hind3Rev,5’-AAGCTTGATCTAGTAACATAGATGACACC-3’(配列番号29)
FAST-R_Apa1Fwd,5’-CACCGGGCCCTTCAAGTGTATGTAGGTATA-3’(配列番号30)
FAST-R_Apa1Rev,5’-GGGCCCATCTAGTAACATAGATGACACC-3’(配列番号31)
〔3-3〕改変デスティネーションベクターpHGWF7の作製
デスティネーションベクターpHGWFS7(Plant System Biology)は、ゲートウェイ・マルチクローニングサイトの下流にGFP-GUS融合タンパク質のコード領域を有している。pHGWFS7を制限酵素Nru1で処理することにより、ベクター内のGUSコード領域を取り除いた改変デスティネーションベクターpHGWF7を作製した。
デスティネーションベクターpHGWを制限酵素Spe1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Spe1についても同様に制限酵素Spe1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、汎用ベクターである改変デスティネーションベクターpFAST-R01を作製した(図8)。
デスティネーションベクターpBGWFS7(Plant System Biology)を制限酵素Apa1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Apa1についても同様に制限酵素Apa1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、35S過剰発現用ベクターである改変デスティネーションベクターpFAST-R02を作製した(図8)。
デスティネーションベクターpH7GWIWG2(I)を制限酵素Apa1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Apa1についても同様に制限酵素Apa1で処理し、OLE1-TagRFP融合遺伝子とNOSターミネーターとを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、RNAi(ノックダウン)用ベクターである改変デスティネーションベクターpFAST-R03を作製した(図8)。
デスティネーションベクターpGWB405 (Nakagawa et al.,Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng., 2007, vol. 104, 34-41)を制限酵素Hind3で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Hind3についても同様に制限酵素Hind3で処理し、OLE1-TagRFP融合遺伝子とNOSターミネーターとを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、C末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R05を作製した(図8)。
デスティネーションベクターpGWB406 (Nakagawa et al., J. Biosci. Bioeng., 2007, vol. 104, 34-41)を制限酵素Hind3で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Hind3についても同様に制限酵素Hind3で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、N末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R06を作製した(図8)。
デスティネーションベクターpHGWF7を制限酵素Spe1で処理し、得られたDNA断片を、分子内結合を防ぐためにアルカリフォスファターゼで処理した。エントリーベクターpOLE1TagRFP-Spe1についても同様に制限酵素Spe1で処理し、OLE1-TagRFP融合遺伝子,NOSターミネーターを含む3.5kDaのDNA断片を精製した。これら2つの断片をライゲーションして、C末端にGFPを融合させた目的タンパク質を発現させるための、改変デスティネーションベクターpFAST-R07を作製した(図8)。
Gateway Technologyの方法に従い、エントリーベクターpCLO3とpFAST-R02の間でLR反応を行い、発現ベクターpB-35S-CLO3-OLE1TagRFPコンストラクトを作製した。pFAST-R02は、35Sプロモータの下流にクローニングサイトが存在し、LR反応により目的遺伝子を35Sプロモータにより過剰発現させることができる。
作製した発現ベクターpB-35S-CLO3-OLE1TagRFPをエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1TagRFPマーカーを指標にして、形質転換体を選抜した。結果は図9に示した。
Gateway Technologyの方法に従い、エントリーベクターpCLO3とpFAST-R06との間でLR反応を行い、発現ベクターpB-OLE1TagRFP-35S-GFPCLO3コンストラクトを作製した。pFAST-R06は35Sプロモータの下流にGFP遺伝子とクローニングサイトが存在し、LR反応により、GFP遺伝子および目的遺伝子由来の融合タンパク質を35Sプロモータにより過剰発現させることができる。
作製した発現ベクターpB-OLE1TagRFP-35S-GFPCLO3をエレクトロポレーション法によりアグロバクテリウム(Agrobacterium tumefaciens GV3101株)に導入し、floral-dip法を用いて野生型Col-0を形質転換した(Daimon et al. 改訂3版 モデル植物の実験プロトコール.秀潤社, 149-154 (2005))。OLE1TagRFPマーカーを指標にして、形質転換体を選抜した。この形質転換体植物を35S::GFP-CLO3(FAST-R06)と称する。導入遺伝子に対して1遺伝子座として分離する系統を単離し、導入遺伝子をホモに有している系統を得た。
〔4〕結果および考察
本発明に係るDNA構築物の構造を、図1に示す。図1の上図は、CaMV35Sプロモータによる、目的遺伝子が過剰発現する植物体を作製するためのベクター(pB-OLEGFP-2GW7)であり、図1の下図は、一実施形態としてCLO3を過剰発現させるためのベクター(pB-OLE1GFP-35S::CLO3)を示す。図中、LBはLeft Borderを示し、RBはRight Borderを示し、BarはBasta遺伝子を示し、p35sはCaMV35Sプロモータを示し、t35sはCaMV35Sターミネータを示し、CmRはクロラムフェニコール耐性遺伝子を示し、ccdBは大腸菌ジャイレース阻害タンパク質を示す。
Claims (19)
- 種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物であって、該遺伝子が種子特異的プロモータに作動可能に連結されていることを特徴とするDNA構築物。
- さらに、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが上記種子特異的プロモータに作動可能に連結されており、
該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質であることを特徴とする、請求項1に記載のDNA構築物。 - 目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでいることを特徴とする請求項1に記載のDNA構築物。
- 上記第2のプロモータには、目的のタンパク質をコードする第2の遺伝子と、第2の蛍光タンパク質をコードする遺伝子とが作動可能に連結されており、
該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質であることを特徴とする、請求項3に記載のDNA構築物。 - 上記種子タンパク質が、オイルボディ局在性タンパク質であることを特徴とする請求項1~4のいずれか1項に記載のDNA構築物。
- 上記種子特異的プロモータが、オイルボディ局在性タンパク質をコードする遺伝子のプロモータであることを特徴とする請求項1~5のいずれか1項に記載のDNA構築物。
- 上記種子タンパク質がオレオシンであることを特徴とする請求項1~6のいずれか1項に記載のDNA構築物。
- 上記種子特異的プロモータがOLE1プロモータであることを特徴とする請求項1~7のいずれか1項に記載のDNA構築物。
- 請求項1~8のいずれか1項に記載のDNA構築物を含んでいることを特徴とする選択マーカー。
- 請求項1~8のいずれか1項に記載のDNA構築物を備えていることを特徴とする選択マーカーキット。
- 種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が導入されていることを特徴とする形質転換体植物。
- 種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含することを特徴とする形質転換体植物を選抜する方法。
- 上記検出する工程が、上記蛍光タンパク質による蛍光を種子から検出することを含む、請求項12に記載の方法。
- 上記検出する工程が、上記融合タンパク質をコードする遺伝子または上記蛍光タンパク質をコードする遺伝子を種子抽出物から検出することを含む、請求項12に記載の方法。
- さらに、種子特異的プロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が種子中に存在していることを検出する工程を包含し、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質である、請求項12に記載の方法。
- さらに、第2のプロモータに作動可能に連結された、第2の蛍光タンパク質をコードする遺伝子が目的の組織に存在していることを検出する工程を包含し、該第2の蛍光タンパク質は、種子タンパク質と蛍光タンパク質との融合タンパク質を構成する蛍光タンパク質とは異なる色の蛍光を発するタンパク質である、請求項12に記載の方法。
- 植物体内でタンパク質を生産する方法であって、
種子特異的プロモータに作動可能に連結された、種子タンパク質と蛍光タンパク質との融合タンパク質をコードする遺伝子を含んでいるDNA構築物に、目的のタンパク質をコードする第2の遺伝子を挿入する工程;および
得られたDNA構築物を植物体に導入する工程
を包含することを特徴とする生産方法。 - 上記DNA構築物が、目的のタンパク質を目的の組織にて発現させるための第2のプロモータをさらに含んでおり、上記挿入する工程が、第2の遺伝子が第2のプロモータに作動可能に連結することを含む、請求項17に記載の生産方法。
- 上記導入する工程が、floral-dip法またはvacuum-infiltration法を行うことを含む、請求項17または18に記載の生産方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09754688.1A EP2298883B1 (en) | 2008-05-28 | 2009-05-26 | Novel selection marker gene and use thereof |
CA2725674A CA2725674A1 (en) | 2008-05-28 | 2009-05-26 | Selection marker gene and use thereof |
US12/994,615 US20110126315A1 (en) | 2008-05-28 | 2009-05-26 | Novel selection marker gene and use thereof |
JP2010514488A JP5499408B2 (ja) | 2008-05-28 | 2009-05-26 | 新規選択マーカー遺伝子およびその利用 |
AU2009252377A AU2009252377B2 (en) | 2008-05-28 | 2009-05-26 | Novel selection marker gene and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008140083 | 2008-05-28 | ||
JP2008-140083 | 2008-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009145180A1 true WO2009145180A1 (ja) | 2009-12-03 |
Family
ID=41377053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059592 WO2009145180A1 (ja) | 2008-05-28 | 2009-05-26 | 新規選択マーカー遺伝子およびその利用 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110126315A1 (ja) |
EP (1) | EP2298883B1 (ja) |
JP (1) | JP5499408B2 (ja) |
AU (1) | AU2009252377B2 (ja) |
CA (1) | CA2725674A1 (ja) |
WO (1) | WO2009145180A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016144458A (ja) * | 2010-01-22 | 2016-08-12 | ダウ アグロサイエンシィズ エルエルシー | 遺伝子改変生物における導入遺伝子の切除 |
JP2018517403A (ja) * | 2015-04-13 | 2018-07-05 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 細胞における代謝産物の産生及びモニタリング |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007510420A (ja) * | 2003-11-14 | 2007-04-26 | セムバイオシス ジェネティクス インコーポレイテッド | トランスジェニック植物におけるアポリポタンパク質の産生法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6288304B1 (en) * | 1991-02-22 | 2001-09-11 | Sembiosys Genetics Inc. | Expression of somatotropin in plant seeds |
US7091401B2 (en) * | 1991-02-22 | 2006-08-15 | Sembiosys Genetics Inc. | Expression of epidermal growth factor in plant seeds |
US6750046B2 (en) * | 1991-02-22 | 2004-06-15 | Sembiosys Genetics, Inc. | Preparation of thioredoxin and thioredoxin reductase proteins on oil bodies |
US5650554A (en) * | 1991-02-22 | 1997-07-22 | Sembiosys Genetics Inc. | Oil-body proteins as carriers of high-value peptides in plants |
US6753167B2 (en) * | 1991-02-22 | 2004-06-22 | Sembiosys Genetics Inc. | Preparation of heterologous proteins on oil bodies |
US5948682A (en) * | 1991-02-22 | 1999-09-07 | Sembiosys Genetics Inc. | Preparation of heterologous proteins on oil bodies |
DE4291398T1 (de) * | 1991-05-06 | 1994-04-28 | Peter John Elliott | Luftgestütztes, transientes elektromagnetisches Verfahren mit Erdschleifen |
UA41319C2 (uk) * | 1992-04-02 | 2001-09-17 | Сембайозіс Дженетікс Інк. | Спосіб експресії послідовності днк,що представляє інтерес,у клітині насіння,химерний ген,експресуюча касета,ізольована регуляторна ділянка транскрипції,спосіб зміни специфічного для насіння метаболізму, спосіб одержання нових поліпептидів у насінні,ізольована днк, спосіб експресії послідовності днк,що представляє інтерес,у рослині-хазяїні,спосіб одержання очищеного поліпептиду,що представляє інтерес,спосіб одержання поліпептиду, що представляє інтерес, в олійному тілі |
US6307123B1 (en) * | 1998-05-18 | 2001-10-23 | Dekalb Genetics Corporation | Methods and compositions for transgene identification |
WO2003027296A1 (fr) * | 2001-09-20 | 2003-04-03 | Plantech Research Institute | Genes intervenant dans la synthese d'acide gras presentant une liaison double conjuguee trans-11-, cis-13-, et utilisation desdits genes |
CA2570566A1 (en) * | 2004-06-25 | 2006-01-12 | Altor Bioscience Corporation | Production of tissue factor in plants |
-
2009
- 2009-05-26 AU AU2009252377A patent/AU2009252377B2/en not_active Ceased
- 2009-05-26 JP JP2010514488A patent/JP5499408B2/ja not_active Expired - Fee Related
- 2009-05-26 CA CA2725674A patent/CA2725674A1/en not_active Abandoned
- 2009-05-26 WO PCT/JP2009/059592 patent/WO2009145180A1/ja active Application Filing
- 2009-05-26 US US12/994,615 patent/US20110126315A1/en not_active Abandoned
- 2009-05-26 EP EP09754688.1A patent/EP2298883B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007510420A (ja) * | 2003-11-14 | 2007-04-26 | セムバイオシス ジェネティクス インコーポレイテッド | トランスジェニック植物におけるアポリポタンパク質の産生法 |
Non-Patent Citations (29)
Title |
---|
"Saibonai Kozo no Kochiku to Kino no Kansatsuho, Oil Body no Kozo to Kino, Saibo Kogaku Bessatsu Shokubutsu Saibo Kogaku Series", NEW EDITION SHOKUBUTSU NO SAIBO O MIRU JIKKEN PROTOCOL, vol. 22, no. 2ND ED, 2006, pages 219, 220 - 222, XP008142975 * |
BARANSKI, R. ET AL., PLANT CELL REP, vol. 25, 2006, pages 190 - 197 |
C. B. TAYLOR: "Comprehending Cosuppression", PLANT CELL, vol. 9, 1997, pages 1245 - 1249 |
CHEN ET AL., PLANT CELL PHYSIOL., vol. 40, 1999, pages 1079 - 1086 |
CURTIS I.S. ET AL.: "Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method--plant development and surfactant are important in optimizing transformation efficiency.", TRANSGENIC RES., vol. 10, no. 4, 2001, pages 363 - 371, XP002416814 * |
CURTIS, I.S.; NAM, H.G., TRANSGENIC RES., vol. 10, 2001, pages 363 - 371 |
DAIMON ET AL.: "Experiment protocol for model plants", SHUJUNSHA, pages: 149 - 154 |
DAIMON ET AL.: "Third revised edition, Experiment protocol for model plants", SHUJUNSHA, pages: 149 - 154 |
DARBANI ET AL., BIOTECHNOL., vol. 2, 2007, pages 83 - 90 |
FRANDSEN ET AL., PHYSIOL. PLANT, vol. 112, 2001, pages 301 - 307 |
HALFHILL, M.D. ET AL., PLANT CELL REP., vol. 26, 2007, pages 303 - 311 |
HANANO ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 33140 - 33151 |
HU, Q. ET AL., BIOTECHNOL. LETT., vol. 28, 2006, pages 1793 - 1804 |
JOHN I. YODER, A.P.G. NATURE BIOTECHNOLOGY, vol. 12, 1994, pages 263 - 267 |
KIM ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 22677 - 22684 |
LAEMMLI ET AL., J. MOL. BIOL., vol. 47, 1970, pages 69 - 85 |
LI, Z. ET AL., PLANT MOL. BIOL., vol. 65, 2007, pages 329 - 341 |
LU, C. ET AL., PLANT J., vol. 45, 2006, pages 847 - 856 |
LU, C.; KANG, J., PLANT CELL REP., vol. 27, 2008, pages 273 - 278 |
MERZLYAK ET AL.: "Bright monomeric red fluorescent protein with an extended fluorescence lifetime", NAT. METHODS, vol. 4, 2007, pages 555 - 7 |
NAESTED ET AL., PLANT MOL. BIOL., vol. 44, 2000, pages 463 - 476 |
NAKAGAWA ET AL., J. BIOSCI. BIOENG., vol. 104, 2007, pages 34 - 41 |
NAKAGAWA ET AL.: "Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation", J. BIOSCI. BIOENG., vol. 104, 2007, pages 34 - 41 |
PARKHI, V. ET AL., MOL. GENET. GENOMICS, vol. 274, 2005, pages 325 - 336 |
See also references of EP2298883A4 |
SUGITA, K. ET AL., PLANT J., vol. 22, 2000, pages 461 - 469 |
TAKAHASHI ET AL., PLANT CELL PHYSIOL., vol. 41, 2000, pages 898 - 903 |
WAHLROOS T ET AL.: "Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells", GENESIS., vol. 35, no. 2, 2003, pages 125 - 132, XP008141026 * |
ZUO, J. ET AL., NAT. BIOTECHNOL., vol. 19, 2001, pages 157 - 161 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016144458A (ja) * | 2010-01-22 | 2016-08-12 | ダウ アグロサイエンシィズ エルエルシー | 遺伝子改変生物における導入遺伝子の切除 |
JP2018517403A (ja) * | 2015-04-13 | 2018-07-05 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 細胞における代謝産物の産生及びモニタリング |
JP2021104054A (ja) * | 2015-04-13 | 2021-07-26 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 細胞における代謝産物の産生及びモニタリング |
Also Published As
Publication number | Publication date |
---|---|
EP2298883A1 (en) | 2011-03-23 |
JPWO2009145180A1 (ja) | 2011-10-13 |
CA2725674A1 (en) | 2009-12-03 |
EP2298883A4 (en) | 2011-11-09 |
AU2009252377B2 (en) | 2014-01-23 |
US20110126315A1 (en) | 2011-05-26 |
EP2298883B1 (en) | 2016-07-27 |
JP5499408B2 (ja) | 2014-05-21 |
AU2009252377A1 (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10538779B2 (en) | Constitutive photomorphogenesis 1 (COP1) nucleic acid sequence from Zea mays and its use thereof | |
ES2372607T3 (es) | El gen del factor de transcripción osnacx del arroz y su uso para mejorar la tolerancia de las plantas a la sequía y la sal. | |
CN107459565B (zh) | 大豆抗旱相关蛋白在调控大豆抗旱性中的应用 | |
CN107827964A (zh) | 一种与植物耐逆性相关的转录因子PwNAC2及其编码基因与应用 | |
JP4741994B2 (ja) | 蛍光タンパク質の園芸植物への応用 | |
US8937218B2 (en) | Transformed soybean plant which accumulates vaccine, and use thereof | |
JP4677568B2 (ja) | 窒素固定活性の高い根粒を着生する植物の作出法 | |
JP5499408B2 (ja) | 新規選択マーカー遺伝子およびその利用 | |
CN114703199B (zh) | 一种植物抗旱性相关的基因TaCML46及应用 | |
CN106480069B (zh) | 黄瓜CsERF025基因及其在促进黄瓜果实顺直发育中的应用 | |
WO2010024269A1 (ja) | 矮性化形質転換植物および矮性化を誘導するための遺伝子 | |
CN110218247A (zh) | PwRBP1和PwNAC1两种蛋白互作协同提高植物耐逆性及其应用 | |
CN111172176B (zh) | 一个参与桃芳樟醇合成调控的转录因子PpMADS2及其应用 | |
CN116606358A (zh) | GmTLP8蛋白及其编码基因在调控植物耐逆性中的应用 | |
US20160010105A1 (en) | Stress tolerant plants | |
CN113481211A (zh) | 果胶甲酯酶抑制因子基因GhPMEI39及其编码蛋白的应用 | |
KR101724370B1 (ko) | Trsv 재조합 벡터 및 이의 용도 | |
CN108192919A (zh) | 一种培育抗旱转基因棉花的方法 | |
KR100543063B1 (ko) | 재조합 단백질의 제조 및 분리 방법 | |
CN111533794B (zh) | 烟草NtDREB-1BL1转录因子及其应用 | |
Kim et al. | Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes | |
CN111440806A (zh) | 烟草NtDREB-1BL3转录因子及其应用 | |
CN111499712A (zh) | 烟草NtDREB-1BL2转录因子及其应用 | |
CN109678942A (zh) | 一种提高水稻远缘杂交后代育性的方法与所用蛋白质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754688 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514488 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2725674 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009252377 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2009754688 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009754688 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009252377 Country of ref document: AU Date of ref document: 20090526 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12994615 Country of ref document: US |