WO2009144974A1 - 製剤における滑沢剤成分の混合状態をモニターする方法 - Google Patents

製剤における滑沢剤成分の混合状態をモニターする方法 Download PDF

Info

Publication number
WO2009144974A1
WO2009144974A1 PCT/JP2009/052578 JP2009052578W WO2009144974A1 WO 2009144974 A1 WO2009144974 A1 WO 2009144974A1 JP 2009052578 W JP2009052578 W JP 2009052578W WO 2009144974 A1 WO2009144974 A1 WO 2009144974A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
absorbance
lubricant
lubricant component
nir
Prior art date
Application number
PCT/JP2009/052578
Other languages
English (en)
French (fr)
Inventor
弘司 中川
資典 木所
学 加納
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2009144974A1 publication Critical patent/WO2009144974A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a method for monitoring the mixed state of a lubricant component in a preparation.
  • the active pharmaceutical ingredient which is an active ingredient, is processed into various commercially available formulations through various formulation steps.
  • the preparation in the commercial form is a tablet
  • it is finished into a tablet through the steps of pulverization ⁇ granulation ⁇ sizing ⁇ mixing ⁇ tableting ⁇ coating.
  • the manufacture and quality control of pharmaceuticals are performed in accordance with GMP (Good Manufacturing Practice), and are passed to the next process after passing the inspection after the end of each process. This method guarantees the quality of the entire lot based on the inspection result of only a part of the finished product.
  • NIR Near Infrared Spectroscopy
  • Patent Document 2 real-time moisture estimation technology in the granulation process
  • Non-Patent Document 3 real-time content estimation technology in the tableting process
  • Non-destructive estimation technology Patent Document 1 and the like can be mentioned.
  • Non-patent Documents 4 and 5 analysis of the mixed state using wireless NIR has been performed (Non-patent Documents 4 and 5).
  • the concentration of the lubricant is estimated in real time using PLS (Partial Least ⁇ Squares), which is one of multivariate analysis techniques.
  • PLS Partial Least ⁇ Squares
  • Non-Patent Document 5 evaluates a change in lubricant concentration using a single wavelength (1800 nm).
  • this method has the merit that the method can be applied even if the type of preparation is different, the applicable lubricant concentration is 0.84% or more and the applicable concentration range is limited.
  • both methods focus only on the mixing uniformity of the lubricant, and do not mention the evaluation of the spread state of the lubricant, which has a significant influence on the quality, into powders and granules.
  • the mixing step was selected as the study target in the pharmaceutical formulation step.
  • a lubricant for example, magnesium stearate (hereinafter sometimes referred to as “Mg-St”)
  • Mg-St magnesium stearate
  • Mg-St adheres to the powder surface at the time of mixing, and then spreads to suppress powder adhesion to the surface of the tooling at the time of tableting. Reduce disintegration. At the present time, it is difficult to say that it is fully capable of dealing with fluctuations in powder physical properties from lot to lot because it is operated under the constant mixing conditions set by validation of 3 lots.
  • an object of the present invention is to provide a method for evaluating a mixing state of a lubricant component in real time and ending the mixing step at an optimum mixing end point adapted to fluctuations in powder physical properties for each lot.
  • the mixing end point is a mixed state satisfying the quality and manufacturability of the preparation, refers to a state where the mixing uniformity of the lubricant is ensured, and the spread state of the lubricant is appropriate.
  • the inventors of the present invention evaluated the mixing state using the change in absorbance of the total value of the wavelength region including the absorption wavelength (one wavelength) of the lubricant component as an index. It was also confirmed that the spread state can be measured with high accuracy. The present invention has been completed based on these findings.
  • the gist of the present invention is as follows.
  • the method comprising measuring a total value and evaluating the mixing amount, mixing uniformity and spread state of the lubricant component in the preparation using the value as an index.
  • the present invention it is possible to monitor the mixing amount, mixing uniformity, and spreading state of the lubricant component in the preparation in real time or offline, and as a result, it is possible to detect the optimum mixing end point in the lubricant mixing process. It becomes possible.
  • this invention is applicable regardless of the kind of formulation.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2008-141442, which is the basis of the priority of the present application.
  • the RSD of the NIR spectral absorbance of the sample when the mixed amount of Mg-St is changed is shown.
  • the NIR spectrum of Mg-St alone is shown.
  • the baseline fluctuation of the NIR spectrum obtained during mixing is shown. Indicates the sampling location. Changes in absorbance at 1,214 nm during the mixing (evaluation index (1)) are shown.
  • the change in the total absorbance (evaluation index (2)) at 1,128-1,240 nm during mixing is shown.
  • the change of Mg-St concentration estimated value (evaluation index (3)) during mixing is shown.
  • the NIR spectra of PG with different particle sizes are baseline processed at 1,128-1,240 nm.
  • NIR spectrum of lactose with different particle size is processed by baseline at 1,128-1,240 nm.
  • NIR spectra of magnesium stearate, calcium stearate and sodium stearyl fumarate are shown. It is a figure explaining the reason which selected 1,128 nm to 1,240 nm as a wavelength region including an absorption wavelength characteristic of magnesium stearate.
  • It is a SEM photograph of a time-sampling product of spherical granules of mannitol (Nonparel 108). The change (n 5) of the discharge
  • emission power of a mannitol spherical particle (nonpareil 108) with extension of the mixing time of a lubricant component is shown.
  • the change of the specific surface area of the mannitol spherical particle (non-parrel 108) accompanying the extension of the mixing time of the lubricant component is shown. It is an X-ray CT photograph of a sample of mannitol spherical granules (non-parrell 108) obtained by mixing mannitol spherical granules (non-parrell 108) and a lubricant component for 120 minutes.
  • the present invention is a method for monitoring the mixing amount, mixing uniformity and spread state of a lubricant component in a preparation in real time or offline, and the absorbance in a wavelength region including an absorption wavelength characteristic of the lubricant component
  • the above-mentioned method comprises measuring the total value of the above, and evaluating the mixing amount, mixing uniformity and spread state of the lubricant component in the preparation using the value as an index.
  • this index is applied, when the value of this index is equal to or greater than a preset value, or when the variation in the value of this index with time is less than or equal to the preset value, the blending end point is used. Can be set.
  • end point of the lubricant mixing process cannot be set as a general value, and individual preparations are determined according to the weight of one tablet, one capsule, or one package of the target preparation and the required quality level (for example, dissolution). Should be set appropriately.
  • the preparation may be a solid preparation.
  • the lubricant component include, but are not limited to, magnesium stearate, calcium stearate, sodium stearyl fumarate, hardened oil, stearic acid, and the like.
  • the absorption wavelength characteristic of the lubricant component and the wavelength region including the absorption wavelength are determined by measuring the absorption spectrum for each lubricant component, and based on the result, the absorption wavelength characteristic of the lubricant component and the absorption wavelength. What is necessary is just to select the wavelength range to include. For example, when the lubricant component is magnesium stearate, 1,166 nm, 1,188 nm, 1,214 nm, 1,390 nm, 1,418 nm, 1,539 nm, etc. may be selected as the absorption wavelength characteristic of magnesium stearate. it can.
  • the absorption wavelength characteristic of the lubricant component may be a wavelength that gives the maximum value of absorbance in the absorption spectrum, and examples include the wavelength in the wavelength region corresponding to the combined sound, overtone and overtone of CH stretching vibration. However, it is not limited to these.
  • the lubricant component is magnesium stearate
  • a wavelength region from 1,125 ⁇ 25 nm to 1,240 nm ⁇ 20 nm can be selected as a wavelength region including an absorption wavelength characteristic of magnesium stearate.
  • the same shape spectrum as magnesium stearate is obtained for calcium stearate and sodium stearyl fumarate, so that the wavelength region including a characteristic absorption wavelength is similarly 1,125 ⁇ 25 nm.
  • To 1,240 nm ⁇ 20 nm can be selected.
  • the selection of the above wavelength range is obtained by measuring the near-infrared (NIR) spectra of samples having different lubricant prescription amounts.
  • the absorbance variation at each wavelength of the NIR spectrum was calculated and compared with the pure spectrum of the lubricant, which was determined by a method of selecting a range including a peak characteristic of the lubricant.
  • This wavelength range is set to vary depending on the shape of the actually measured NIR spectrum, and the reason for selecting 1,128 nm to 1,240 nm this time is that of the measured NIR spectrum as shown in FIG. This is because the bottom of the peak in this range was selected.
  • the wavelength region including the absorption wavelength characteristic of the lubricant component is preferably in the near infrared region.
  • the near infrared region refers to a wavelength range of about 800 to 2,500 nm.
  • the total value of absorbance in the wavelength region including the absorption wavelength characteristic of the lubricant component is obtained by measuring the absorbance at each wavelength in the wavelength region at a certain wavelength interval (resolution) and integrating the measured values.
  • the wavelength interval (resolution) is suitably from 1 to 6 nm, preferably from 1 to 4 nm, more preferably from 1 to 2 nm.
  • the total absorbance in the wavelength region including the absorption wavelength characteristic of the lubricant component may be measured over time.
  • the total absorbance is measured at an appropriate number of rotations (eg, every 1 rotation, every 2 rotations, every 5 rotations) or at appropriate time intervals (eg, every 2 seconds, every 3 seconds, every 30 seconds). . Measurement over time facilitates real-time evaluation of the mixing state and detection of the optimal mixing end point.
  • baseline processing is processing for correcting the absorbance of each corresponding wavelength by setting the absorbance at a point on a straight line connecting two wavelengths set in advance to zero.
  • the baseline fluctuation is recognized depending on the measurement timing of the absorbance, and this fluctuation can be canceled by performing the baseline processing.
  • a spectrophotometer such as a near-infrared spectrophotometer can be used to measure the absorbance in the wavelength region including the absorption wavelength characteristic of the lubricant component.
  • This device is a dispersion type, Fourier transform type, diode array. Any type of mold may be used.
  • a commercially available apparatus for example, a diode array type NIR analyzer such as Corona (Carl Zeiss) or a Fourier transform type NIR analyzer such as MPA (Bruker Optics) can be used.
  • a spectrophotometer is placed near the inlet or outlet of the mixer, and the absorbance is measured at an appropriate number of revolutions (for example, once).
  • an absorption spectrum is measured, and the data may be transmitted to a computer via a wireless LAN and stored.
  • the method of the present invention can be applied to all types of mixers such as a bin type, a polygonal drum type, and a container type mixer.
  • the present invention also provides a method for producing a pharmaceutical product and a pharmaceutical product produced by this method, including monitoring the mixing amount, mixing uniformity and spread state of the lubricant component in the pharmaceutical preparation by the above method.
  • the target pharmaceutical is not particularly limited, but a pharmaceutical or small molecule (for example, a hydrocarbon, a physiologically active peptide or protein, an antibody, a vaccine, an antigen, etc.), which is an active ingredient.
  • a pharmaceutical or small molecule for example, a hydrocarbon, a physiologically active peptide or protein, an antibody, a vaccine, an antigen, etc.
  • Pharmaceutical products can be administered orally or parenterally (for example, intravenous administration, rectal administration, transdermal administration, transmucosal administration, subcutaneous administration, etc.).
  • unit dosage forms suitable for oral administration include, but are not limited to, powders, granules, tablets, capsules and the like.
  • unit dosage forms suitable for parenteral administration include, but are not limited to, injections and suppositories.
  • appropriate pharmacologically acceptable additives such as excipients, lubricants, binders, disintegrants, emulsifiers, stabilizers, flavoring agents, diluents, etc. Can be used.
  • the dosage of the drug can be appropriately selected according to various factors such as the administration route, the type of the active ingredient, the age, weight, or symptom of the patient, the purpose of prevention or treatment.
  • Example 1 The purpose of this study was to evaluate the mixed state of Mg-St in granules in real time.
  • the physical state of Mg-St changes due to the share taken at the time of mixing (the spreading effect) and affects the quality and manufacturability, it is not only the mixing uniformity of Mg-St. It is necessary to determine the blending end point that satisfies the quality and manufacturing suitability in consideration of the spread state.
  • 1.1 NIR spectral data structure An in-line NIR analyzer (such as the Corona series) is used to evaluate the mixed state in real time.
  • the measurement conditions of this apparatus are as follows. Wavelength range: 1,050-1,680 nm Resolution: 2 nm Number of measurements: 1 time / one rotation of the mixer The difference between the upper limit (1,680 nm) and lower limit (1,050 nm) of the measurement wavelength is 630 nm, and the resolution is 2 nm. can get.
  • a data matrix (A) of 316 ⁇ n is obtained in n rotations as shown below.
  • the granule (Granules) used this time is a general-purpose prescription mainly composed of mannitol.
  • the at-line NIR (MPA) of about 1 g sampled from the sampling points (six points) shown in Fig. IV-4 after mixing was completed.
  • the mixing amount of Mg-St was measured by
  • the estimation accuracy of the Mg-St mixture amount by MPA is as shown in Table IV (Calibration model (MPA)), and RMSECV is 0.03%.
  • PG is sieved into a fraction with a particle size of about 250 ⁇ m (60 mesh) or more and a fraction with a particle size of 100 ⁇ m (150 mesh) or less, and the difference in particle size (apparent density) is reflected in the absorbance of the NIR spectrum.
  • the differences shown in Figure 8 were confirmed.
  • this was calculated with an evaluation index of 2.2, it was confirmed that the fraction with a large particle size of 250 ⁇ m or more was 1.34, and the fraction with a small particle size of 60 ⁇ m or less was 1.14, and that the coarser particle size was about 0.2 larger.
  • Example 2 As shown in Example 1, by analyzing the mixing operation of granules and Mg-St using NIR, the NIR spectrum that can evaluate the minute change of Mg-St mixed amount in the mixed granule (vs. 0.1% of mixed amount) The analysis method could be constructed. In addition, it was suggested that by applying this analysis method, it is possible to estimate the spread state of the Mg-St granules from the NIR spectrum, which greatly affects the quality and manufacturability of the preparation. However, since the granule of Example 1 showed a change in density during the mixing operation, it was difficult to accurately determine whether the spread state of Mg-St could be evaluated by NIR.
  • the evaluation index constructed in Example 1 (hereinafter referred to as the Mg-St area evaluation index) was used as an analysis method of the NIR spectrum.
  • NIR measurement conditions sampling: Corona (manufactured by Carl Zeiss)
  • Measurement method Diffuse reflection measurement (special jig) Number of scans: 10 times Measurement wavelength (wave number) region: 1,050-1,680 nm Resolution: 2 nm
  • Non-parrel 108 and Mg-St were mixed, and the possibility of evaluating the spread state of Mg-St by NIR was examined.
  • Mg-St area evaluation index it was possible to evaluate not only a slight mixing amount difference of Mg-St but also an extended state of Mg-St in at-line and in-line.
  • the present invention can be used for pharmaceutical production and quality control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Medicinal Preparation (AREA)

Abstract

 医薬品の製剤化プロセスのうち、滑沢剤混合工程における最適混合終点を検出する方法を提供する。  製剤における滑沢剤成分の混合量、混合均一性及び展延状態をリアルタイムもしくはオフラインでモニターする方法であって、前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を測定し、その値を指標として製剤における滑沢剤成分の混合量、混合均一性及び展延状態を評価することを含む前記方法。

Description

製剤における滑沢剤成分の混合状態をモニターする方法
 本発明は、製剤における滑沢剤成分の混合状態をモニターする方法に関する。
 有効成分である医薬品原薬は、種々の製剤化工程を経て、汎用的な市販形態の製剤に仕上げられる。例えば、市販形態の製剤が錠剤である場合には、粉砕→造粒→整粒→混合→打錠→コーティングという工程を経て、錠剤に仕上げられる。医薬品の製造及び品質管理は、GMP(Good Manufacturing Practice)に準拠して行われ、各工程終了後の検査に合格後、次工程に払い出される。本手法では、仕上品の一部のみの検査結果をもとにロット全体の品質保証を行っている。
 近年、ICH(International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use)では、科学的根拠に基づいた品質保証手法のパラダイムシフトとして、品質を研究開発段階で十分に設計し作り込む概念(QbD:Quality by Design)を打ち出している(非特許文献1)。QbDでは、製剤化工程が品質に与えるリスクを研究開発段階で特定し、そのリスクを適切にコントロールすることが求められている。その中で、重要品質特性をリアルタイムでモニタリングし、これを製剤化工程中で制御する技術であるPAT(Process Analytical Technology)が注目されている。近年の分析技術の発展もPATの技術開発を加速させる背景にある。
 製剤化工程へのPAT適用においては、NIR(近赤外分光法)が多用される。NIRを用いた製剤化工程の技術開発としては、造粒工程におけるリアルタイム水分推定技術(非特許文献2)、打錠工程におけるリアルタイム含量推定技術(非特許文献3)、コーティング工程におけるコーティング膜厚の非破壊推定技術(特許文献1)などが挙げられる。
 また、滑沢剤成分の混合工程においても、無線式のNIRを用いた混合状態の解析がなされている(非特許文献4,5)。非特許文献4では、多変量解析手法の一つであるPLS(Partial Least Squares)を用いて、滑沢剤の濃度をリアルタイムに推定している。しかし、PLSを用いる場合は、基本的に、製剤の種類が異なる毎に濃度の推定モデルを構築する必要がある。一方、非特許文献5では、滑沢剤の濃度の変化を単一波長(1800nm)を用いて評価している。本手法では、製剤の種類が異なっても同手法を適用できるメリットがある反面、適用できる滑沢剤濃度が0.84 %以上となり、適用濃度範囲が限定される。また、両手法とも滑沢剤の混合均一性にのみ着目しており、品質に重大な影響を与える滑沢剤の粉末及び顆粒への展延状態の評価については言及していない。
国際公開第WO2006/083001号パンフレット ICH HARMONISED TRIPARTITE GUIDELINE;PHARMACEUTICAL DEVELOPMENT Q8 On-line monitoring of moisture content in an instrumented fluidized bed granulator with a multi-channel NIR moisture sensor, J.Rantanen et al., Powder Technology 99 (1998) 163-170 A comparison of reflectance and transmittance near-infrared spectroscopic techniques in determining drug content in intact tablets, Pharmaceutical Development and Technology 6 (2001) 19-29 Evaluation of Risk and Benefit in the Implementation of Near-Infrared Spectroscopy for Monitoring of Lubricant Mixing, A.S.El Hagrasy et al., Pharmaceutical Development and Technology 11 (2006) 303-312 第24回製剤と粒子設計シンポジウム(2007)一般講演3「高分解能AOTF・NIRによる混合状態のリアルタイム測定とその評価」、第13頁~第16頁、(粉体工学会/製剤と粒子設計部会、2007年11月7日)
 本発明は、医薬品の製剤化工程のうち、混合工程を検討ターゲットとして選定した。本工程では、打錠工程での製造適性を確保(Sticking防止)するために、滑沢剤(例えば、ステアリン酸マグネシウム(以下、「Mg-St」と記すこともある))を添加することが多い。Mg-Stは、混合時に粉末表面に付着し、その後展延することで、打錠時の杵臼表面への粉末付着を抑制するが、過混合時は、その疎水性の性質により錠剤の硬度及び崩壊性を低下させる。現時点では、3ロットのバリデーションによって設定した一定の混合条件で運転しているため、ロット毎の粉末物性の変動には十分に対応しきれているとは言い難い。本背景より、本発明は、リアルタイムで滑沢剤成分の混合状態を評価し、ロット毎の粉末物性の変動に適応した最適な混合終点で混合工程を終了する方法を提供することを目的とする。尚、混合終点とは、製剤の品質及び製造適性を満足する混合状態であり、滑沢剤の混合均一性が確保され、かつ滑沢剤の展延状態が適切である状態を指す。
 本発明者らは、滑沢剤成分の吸収波長(1波長)の波長を含む波長領域の合計値の吸光度変化を指標として混合状態を評価したところ、滑沢剤成分の混合量、混合均一性及び展延状態を高精度で測定できることを確認した。本発明は、これらの知見に基づいて完成された。本発明の要旨は以下の通りである。
(1)製剤における滑沢剤成分の混合量、混合均一性及び展延状態をリアルタイムもしくはオフラインでモニターする方法であって、前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を測定し、その値を指標として製剤における滑沢剤成分の混合量、混合均一性及び展延状態を評価することを含む前記方法。
(2)前記滑沢剤成分に特徴的な吸収波長を含む波長領域が近赤外領域にある(1)記載の方法。
(3)前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を経時的に測定する(1)記載の方法。
(4)滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値がベースライン処理を行ったものである(1)~(3)のいずれかに記載の方法。
(5)滑沢剤成分がステアリン酸マグネシウムであり、ステアリン酸マグネシウムに特徴的な吸収波長が1,214 nmである(1)~(4)のいずれかに記載の方法。
(6)ステアリン酸マグネシウムに特徴的な吸収波長を含む波長領域が、1,125±25nmから1,240 nm±20nmまでの波長領域である(5)記載の方法。
(7)製剤における滑沢剤成分の混合量、混合均一性及び展延状態を(1)~(6)のいずれかに記載の方法でモニターすることを含む、医薬品の製造方法。
(8)(7)記載の方法で製造された医薬品。
 本発明によれば、製剤における滑沢剤成分の混合量、混合均一性及び展延状態をリアルタイムもしくはオフラインでモニターすることができ、その結果、滑沢剤混合工程における最適な混合終点の検出が可能となる。尚、本発明は製剤の種類によらず適用可能である。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2008‐141442の明細書および/または図面に記載される内容を包含する。
Mg-Stの混合量を変化させた際の試料のNIRスペクトル吸光度のRSDを示す。 Mg-St単独のNIRスペクトルを示す。 混合時に得られたNIRスペクトルのベースライン変動を示す。 サンプリング箇所を示す。 混合中の1,214 nmの吸光度(評価指標(1))の変化を示す。 混合中の1,128-1,240 nmの吸光度合計値(評価指標(2))の変化を示す。 混合中のMg-St濃度推定値(評価指標(3))の変化を示す。 粒度の異なるPGのNIRスペクトルを1,128-1,240 nmでベースライン処理したものを示す。 粒度の異なる乳糖(Respitose)のNIRスペクトルを1,128-1,240 nmでベースライン処理したものを示す。 ステアリン酸マグネシウム、ステアリン酸カルシウム及びフマル酸ステアリルナトリウムのNIRスペクトルを示す。 ステアリン酸マグネシウムに特徴的な吸収波長を含む波長領域として、1,128 nmから1,240 nmを選択した理由を説明する図である。 マンニトールの球形顆粒(ノンパレル108)の経時サンプリング品のSEM写真である。 滑沢剤成分の混合時間の延長に伴うマンニトール球形粒子(ノンパレル108)の排出力の変化(n=5)を示す。 滑沢剤成分の混合時間の延長に伴うマンニトール球形粒子(ノンパレル108)の硬度の変化(n=5)を示す。 滑沢剤成分の混合時間の延長に伴うマンニトール球形粒子(ノンパレル108)の比表面積の変化を示す。 マンニトールの球形顆粒(ノンパレル108)と滑沢剤成分を120分間混合したマンニトールの球形顆粒(ノンパレル108)のサンプリング品のX線CT写真である。 滑沢剤成分の混合時間の延長に伴うマンニトール球形粒子(ノンパレル108)の排出力の変化と1,128-1,240 nmの吸光度合計値(評価指標(2))の相関関係を示す。 マンニトール球形粒子(ノンパレル108)とMg-Stの混合過程の1,128-1,240 nmの吸光度合計値(評価指標(2))を用いたNIRによるインライン評価結果を示す。
 本発明は、製剤における滑沢剤成分の混合量、混合均一性及び展延状態をリアルタイムもしくはオフラインでモニターする方法であって、前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を測定し、その値を指標として製剤における滑沢剤成分の混合量、混合均一性及び展延状態を評価することを含む前記方法を提供する。
 本指標を適用することにより、本指標の値があらかじめ定めた設定値以上になった場合や、本指標の値の経時変化のばらつきがあらかじめ定めた設定値以下になった場合などを混合終点として設定することができる。
 尚、滑沢剤混合工程の終点は、一概に数値を設定できるものではなく、対象製剤の1錠、1カプセルもしくは1包分の重量や要求される品質レベル(例えば溶出性)によって個々の製剤に対して適切に設定すればよい。
 製剤は、固形製剤であるとよい。滑沢剤成分としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、硬化油、ステアリン酸などを例示することができるが、これらに限定されるわけではない。
 滑沢剤成分に特徴的な吸収波長及びそれを含む波長領域は、滑沢剤成分毎に吸収スペクトルを測定し、その結果に基づいて、その滑沢剤成分に特徴的な吸収波長及びそれを含む波長領域を選定すればよい。例えば、滑沢剤成分がステアリン酸マグネシウムである場合には、ステアリン酸マグネシウムに特徴的な吸収波長として、1,166nm, 1,188nm, 1,214nm,1,390nm, 1,418nm, 1,539nm等を選定することができる。また、ステアリン酸カルシウムにおいては、1,166nm, 1,188nm, 1,214nm,1,390nm, 1,416nm, 1,539nm等を、フマル酸ステアリルナトリウムにおいては、1,166nm, 1,188nm, 1,214nm,1,390nm, 1,416nm, 1,539nm, 1,654nm等の吸収波長を選定することができる。
 滑沢剤成分に特徴的な吸収波長としては、吸収スペクトルにおいて吸光度の極大値を与える波長であるとよく、C-H伸縮振動の結合音、倍音及び2倍音に相当する波長領域にある波長などを例示することができるが、これらに限定されるわけではない。例えば、滑沢剤成分がステアリン酸マグネシウムである場合、ステアリン酸マグネシウムに特徴的な吸収波長を含む波長領域として、1,125±25nmから1,240 nm±20nmまでの波長領域を選定することができる。また、図10に示すように、ステアリン酸カルシウム及びフマル酸ステアリルナトリウムについても、ステアリン酸マグネシウムと同様の形状のスペクトルが得られることから、特徴的な吸収波長を含む波長領域として、同様に1,125±25nmから1,240 nm±20nmまでの波長領域を選定することができる。
 後述の実施例では、Mg-Stを主とする滑沢剤に対して、上記の波長範囲の選択は、滑沢剤処方量の異なるサンプルの近赤外(NIR)スペクトルを測定し、得られたNIRスペクトルの各波長における吸光度変動を算出し、滑沢剤の純スペクトルと比較することで、滑沢剤に特徴的なピークを含む範囲を選択する方法によって決定した。本波長範囲は、実際に測定されたNIRスペクトルの形状により変動するために範囲設定しており、今回、1,128nmから1,240nmを選択した理由は、図11に示すように測定されたNIRスペクトルの本範囲におけるピークのボトムを選択したためである。
 滑沢剤成分に特徴的な吸収波長を含む波長領域は近赤外領域にあるとよい。一般に、近赤外領域とは、800~2,500 nm程度の波長範囲をいう。
 滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値は、前記波長領域の各波長での吸光度を一定の波長間隔(分解能)で測定し、その測定値を積算することにより得ることができる。波長間隔(分解能)は、1~6 nmが適当であり、1~4 nmが好ましく、1~2 nmがより好ましい。
 滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値は経時的に測定するとよい。例えば、適当な回転数毎(例えば、1回転毎、2回転毎、5回転毎)又は適当な時間間隔(例えば、2秒毎、3秒毎、30秒毎)で吸光度の合計値を測定する。経時的な測定により、混合状態のリアルタイム評価及び最適混合終点を検出することが容易となる。
 また、滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値にはベースライン処理を行うことが好ましい。ベースライン処理は、あらかじめ設定した2波長を結ぶ直線上の点の吸光度を0とし、対応する各波長の吸光度を補正する処理である。滑沢剤の混合時には、吸光度の測定タイミングによりベースライン変動が認められるので、ベースライン処理を行うことにより、この変動をキャンセルすることができる。
 滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の測定には、近赤外分光光度計などの分光光度計を用いることができ、この装置は分散型、フーリエ変換型、ダイオードアレイ型のいずれの型であってもよい。例えば、市販の装置(例えば、Corona(Carl Zeiss社)などのダイオードアレイ型NIR分析装置、MPA(Bruker Optics社)などのフーリエ変換型NIR分析装置)を用いことができる。混合状態をリアルタイムで評価するためのインライン型NIR分析装置の場合には、分光光度計を混合機の投入口又は排出口の近くに配置し、適当な回転数(例えば、1回)毎に吸光度又は吸光スペクトルを測定し、そのデータを無線LANによりコンピュータに送信し、格納するとよい。
 本発明の方法は、ビン型、多角形ドラム型、コンテナ型混合機などのあらゆる型の混合機に応用可能である。
 本発明は、製剤における滑沢剤成分の混合量、混合均一性及び展延状態を上記の方法でモニターすることを含む、医薬品の製造方法及びこの方法により製造された医薬品も提供する。
 対象となる医薬品は、特に限定されるものではないが、高分子(例えば、生理活性を有するペプチド及びタンパク質、抗体、ワクチン、抗原など)を有効成分とする医薬品、低分子(例えば、炭化水素、ニトロ化合物、芳香族化合物、エーテル、アセタール、硫黄化合物、セレン化合物、テルル化合物、アルデヒド、ケトン、アミン、アミド、酸、エステル、ニトリル、重金属を含有する化合物、パーオキシ化合物、複素環式化合物、アゾ化合物、ジアゾ化合物、アゾキシ化合物、アジド化合物、ジアゾアミノ化合物、リン化合物、ホウ素化合物、ケイ素化合物、炭水化物などの有機化合物、金属、金属化合物などの無機成分など)を有効成分とする医薬品などを例示することができる。固形の医薬品であることが好ましい。
 医薬品は、経口投与あるいは非経口投与(例えば、静脈内投与、直腸内投与、経皮投与、経粘膜投与、皮下投与など)で投与することができる。経口投与に適する単位投与形態としては、例えば、散剤、顆粒剤、錠剤、カプセル剤などを挙げることができるが、これらに限定されることはない。非経口投与に適する単位投与形態としては、例えば、注射剤、坐剤などを挙げることができるが、これらに限定されることはない。単位投与形態の調整にあたっては、適宜の薬理学的に許容される、賦形剤、滑沢剤、結合剤、崩壊剤、乳化剤、安定剤、矯味矯臭剤、希釈剤等の製剤用添加物を用いることができる。
 医薬品の投与量は、投与経路、有効成分の種類、患者の年齢、体重、若しくは症状、予防若しくは治療の目的など、種々の要因に応じて適宜選択することができる。
 以下に、試験例及び製剤例をあげて本発明をさらに詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
〔実施例1〕
 今回、顆粒中のMg-Stの混合状態をリアルタイムで評価することを目的とした検討を実施した。尚、Mg-Stは混合時にかかるシェアによって物理状態が変化し(展延効果)、品質及び製造適性に影響することが知られているため、単なるMg-Stの混合均一性のみではなく、その展延状態も踏まえ、品質及び製造適性を満足する混合終点を決定する必要がある。
 [実験]
1 Mg-St混合状態評価指標の検討
Mg-St混合状態を評価するには、これを評価するための適切な評価指標を選定する必要がある。そこで、まず本指標を決定するための検討を実施した。
1.1 NIRスペクトルデータ構造
混合状態をリアルタイムで評価するために、インライン型NIR分析装置(Coronaシリーズなど)を使用する。本装置の測定条件は、以下の通りである。
 波長範囲      :1,050-1,680 nm
 分解能        :2 nm
 測定回数      :1回/混合機1回転
 測定波長の上限(1,680 nm)と下限(1,050 nm)の差が630 nmであり、分解能が2 nmであることから、1測定にて316個のデータが得られる。また、1回転毎に1個のデータが得られるため、n回転では、下に示すように316×nのデータ行列(A)となる。
Figure JPOXMLDOC01-appb-M000001
1.2 検討用試料
 今回は、Mg-Stの混合状態を評価することが目的であるため、まず、Mg-St混合量の差がNIRスペクトルに与える影響を評価するために、表 1(Sample for inspection)に示すMg-St混合量の異なる10 種類の混合顆粒を調製した。尚、各混合顆粒は、ボーレ混合機(PM50;5 L)にて1 kgスケールで、回転速度20.4 rpm、混合時間60 minの条件にて調製した。
 尚、今回用いた顆粒(Granules)は、マンニトールを主とした汎用的な処方である。
Figure JPOXMLDOC01-appb-T000002
1.3 評価指標
 ボーレ混合機の蓋にCoronaを取り付け、各混合顆粒(10種類)のNIRスペクトルをCoronaで繰り返し静置測定し(n=5)、316×50のデータ行列を得た。次に、各波長に対する吸光度の相対標準偏差(RSD)を計算した。本結果を図 1に示す。合わせて、図 2に純品Mg-St(Mallinckrodt製)のスペクトルを示す。
 図 1及び図 2の結果より、Mg-Stの混合状態の評価指標として以下の3つを評価指標として選定した。
 尚、混合時には、測定タイミングにより図 3に示すようなベースライン変動が認められたため、(1)及び(2)の評価指標については、この変動をキャンセルするため1,128-1,240 nmの波長範囲にてベースライン処理を行った。
 (1)1,214 nmの吸光度
 選定理由:1,214 nmがMg-Stに特徴的な吸収波長
 (2)1,128-1,240 nmの吸光度合計値
 選定理由:Mg-Stに特徴的な吸収波長を含み、Mg-St混合量の差異による吸光度変動値が大きい波長範囲
 (3)PLSによるMg-St濃度推定値
 選定理由:NIRスペクトルの解析手法として汎用されるPLS(Partial Least Squares)手法
 PLSによるMg-St濃度の推定精度は、表 2(Calibration model (Corona))に示す通りであり、RMSECV(標準誤差)は、0.06%である。
Figure JPOXMLDOC01-appb-T000003
2 混合実験
 造粒顆粒(PG)及びMg-Stを用いて、以下に示す仕込順序の異なる3回の混合実験及びその対照として造粒顆粒のみの混合実験の合計4回の混合実験を行った。各成分の仕込量は表 3(Batch amounts and formulation rate)に示す通りであり、混合条件は、缶体容量20L、回転速度20.4rpm、混合時間は60 minとした。
*混合実験条件
混合実験(1):(仕込順序)PG(約半量)⇒ Mg-St ⇒ PG(約半量)
混合実験(2):(仕込順序)Mg-St ⇒ PG(全量)
混合実験(3):(仕込順序)PG(全量)⇒ Mg-St
混合実験(4):(仕込順序)PGのみ(対照)
Figure JPOXMLDOC01-appb-T000004
 評価は、1.3にて決定した3つの指標によるインラインでの混合状態評価に加え、混合終了後に図 4に示すサンプリング箇所(6箇所)からサンプリングした約1 gの試料のアットライン型NIR(MPA)によるMg-Stの混合量測定を行った。MPAによるMg-St混合量の推定精度は、表 4(Calibration model (MPA))に示す通りであり、RMSECVは0.03 %である。
Figure JPOXMLDOC01-appb-T000005
[結果及び考察]
1 サンプリング品のアットライン評価結果
 アットライン型NIR(MPA)を用いて各混合実験終了後(混合60 min)のサンプリング品のMg-St混合量を推定した結果を表 5(Prediction of Mg-St ratio (MPA))に示す。本結果より、どの仕込順序においてもRSDは5 %以下であり、混合均一性の標準的なクライテリアを確保できていることが確認できたが、Mg-Stを最初に仕込んだ場合の平均混合比率の推定値は0.67 %であり、他の仕込順序による混合実験の平均混合比率である0.75 %と比較して若干低い傾向が認められた。
 これは、Mg-Stを最初に仕込んだ場合は、凹凸のある缶体の排出口への付着が多くなるためであると推測された。
Figure JPOXMLDOC01-appb-T000006
2 各評価指標によるインライン測定評価結果
2.1 1,214 nmの吸光度の経時変化
 各混合実験で得られたデータを図 5に示す。尚、本結果は、1分間に得られる20データの移動平均の推移を表している。
 本結果より、PGのみを混合した場合とMg-Stを加えた場合を比較すると、最終混合時点で0.005程度の明らかな吸光度の増加が認められた。これは、Mg-Stを添加した場合は、混合によりMg-Stが系内で均一に分布することにより、本波長での吸光度が増加したためであると推察された。しかし、仕込順序の違いによる平均混合比率の微妙な差異は検出することはできなかった。
 また、PGのみを混合した場合は、混合初期と終了時点で0.004程度の大きな吸光度の低下が確認された(本現象については、2.4にて詳述)。
2.2 1,128-1,240 nmの吸光度合計値の経時変化
 各混合実験で得られたデータを図 6に示す。尚、本結果は、1分間に得られる20データの移動平均の推移を表している。
 本結果より、PGのみを混合した場合とMg-Stを加えた場合を比較すると、最終混合時点で0.16程度の明らかな吸光度の差異が認められた。これは、Mg-Stを添加した場合は、1,124 nmでの吸光度の経時変化と同様に、Mg-Stの分布均一化による吸光度増加が起こったためである。また、本評価指標を用いた場合は、仕込順序の違いによる平均混合比率の微妙な差異が0.01程度の吸光度差で検出することができた。これは、多波長を用いた評価を行ったために、その差異を検出する感度が増加したためであると考えられた。
 また、PGのみを混合した場合は、1,124 nmの経時変化と同様に、混合初期と終了時点で0.16程度の大きな吸光度の低下が確認された(本現象については、2.4にて詳述)。
2.3 PLSによるMg-St混合量推定値の経時変化
 各混合実験で得られたデータを図 7に示す。本結果より、各仕込順序による混合実験において、最終混合時点で理論混合比率である0.8 %程度になることが確認された。しかし、本評価指標では、仕込順序の違いによる平均混合比率の微妙な差異を検出することはできなかった。
2.4 PGの吸光度の経時変化
 2.1及び2.2の結果において、Mg-Stを添加していないPGで大きな吸光度変化が確認された。今回の解析に使用した波長範囲である1,128-1,214 nmは、C-H伸縮振動の2倍音に相当する領域であるが、NIRスペクトルの吸収は、このような化学的情報に加え、粒度及び密度のような物理的情報も反映するため、今回のPGの吸光度変化は、粒度及び密度の物理的情報の変化にあると推測された。そこで、PGを約250 μm(60メッシュ)以上の粒度を有する分画と100 μm(150メッシュ)以下の粒度を有する分画に篩分けし、粒度(見掛け密度)の差異がNIRスペクトルの吸光度に与える影響を評価した結果、図 8に示す差異が確認された。これを2.2の評価指標にて算出すると、250 μm以上の粒度の大きい分画は1.34、60 μm以下の粒度の小さい分画では1.14であり、粒度が粗いほうが0.2程度大きくなることを確認した。また、同一の化学構造を有する粒度違いの2種類の乳糖(メーカー:DMV international, 品名:Respitose, グレード:SV003(X50 :60μm), ML006(X50 :17μm))についても同様の確認をした結果、図 9に示すように、粒度の粗いSV003の方が評価指標が大きくなることが確認できた。以上の結果より、今回確認された混合中のPGの吸光度変化は、粒度もしくは見掛け密度の変化に起因すると考えられた。
2.5評価指標と混合状態に関する考察
 今回検討した3つの評価指標において、1,128-1,240 nmの吸光度合計値の経時変化を追跡することが最も効果的であると判断した。また、本指標は、Mg-St混合量変化に加え、混合顆粒の物理状態の変化(粒度(見掛け密度)変化)を加味した指標であることが示唆された。以上の結果より、本指標を用いて混合状態を評価することで、Mg-Stの混合均一性のみならず、混合顆粒の物理状態の変化であるMg-Stの顆粒への展延状態も測定できる可能性が示唆された。本結果より、インライン型NIR分析装置を用いた測定を行うことで、品質及び製造適性を満足する最適な混合終点をロット毎にリアルタイムで決定できる見通しが得られた。
〔実施例2〕
 実施例1に示す通り、顆粒とMg-Stの混合操作をNIRを用いて解析することで、混合顆粒中のMg-St混合量の微量変化(対混合量0.1 %)を評価できるNIRスペクトルの解析方法を構築することができた。また、本解析方法を適用することで、NIRスペクトルから製剤の品質及び製造適性に大きな影響を及ぼすMg-Stの顆粒への展延状態を推定できる可能性が示唆された。しかし、実施例1の顆粒は混合操作中に密度の変化が認められることから、NIRによってMg-Stの展延状態を評価できるかどうかを正確に判断することは困難であった。
 そこで、今回、混合操作中の密度変化を認めないマンニトールの球形顆粒(ノンパレル108)を用いて、Mg-Stの展延状態の異なる混合顆粒を作製し、NIRスペクトルからMg-Stの展延状態を評価できるかを見極めることとした。
[実験]
1.1 試料
・ノンパレル108(平均粒径:約200 μm)
   Lot No.070901 (フロイント産業製)
・Mg-St
   Lot No.E01676 (Mallinckrodt製)
1.2 処方及び仕込量
 ノンパレル108を顆粒と想定し、表6に示す処方比率で検討を行った。
Figure JPOXMLDOC01-appb-T000007
1.3 方法
1.3.1 混合顆粒の作製
 ボーレ混合機(PM50)に20 L容量の混合機缶体(MC20)を取付け、ノンパレル108を全量投入したあとにMg-Stを全量投入した。その後、混合機蓋にインライン方式のNIR(Corona)を取付け、混合中のNIRスペクトルを測定しながら、回転速度20.4 rpm、混合時間120 minの条件で混合した。サンプリングは、混合終了後(120 min)に加え、12, 15, 45, 60, 90 minで混合機を一時停止し、約100 gを秤取した。
*NIR測定条件(インライン方式)
 使用機器      :Corona(Carl Zeiss製)
測定方法      :拡散反射測定(混合機蓋が下の状態で測定)
Scan回数      :3回       
測定波長(波数)領域:1,050-1,680 nm
分解能       :2 nm
1.3.2 混合顆粒の評価
 今回の検討で評価するサンプルは、混合時間の延長に伴う密度変化を認めないこと、かつ混合時間の延長に伴うMg-Stの顆粒への展延状態が変化していることが前提であるため、まずその前提条件を確認するために以下の評価を実施した。尚、評価に使用した機器は、表7に示す通りである。
Figure JPOXMLDOC01-appb-T000008
(1)経時サンプリング品の密度変化の評価(表8)
 粒度分布(平均粒径)、比容積
(2)経時サンプリング品のMg-St展延状態の評価
 SEM(図12)、排出力(図13)、硬度(図14)、比表面積(図15)、X線CT(図16)
 これらの評価結果、表8に示すように粒度分布(平均粒径)及び比容積は、混合時間の延長に伴い変化していないことが確認できた。
Figure JPOXMLDOC01-appb-T000009
 また、Mg-Stの混合時間の延長に伴い、図13に示す排出力の低下、図14に示す硬度の低下及び図15に示す比表面積の増大が確認できたため、作製したサンプルは、Mg-Stの混合時間の延長に伴い、Mg-Stの展延状態が変化していると考えられた。以上の結果より、作製したサンプルは、今回の評価に適切なものであると判断した。
 尚、図12に示すSEM写真からはMg-Stの付着は捉えられたが、Mg-Stの展延状態の変化は確認できず、図16に示すX線CT写真では、Mg-Stの付着状態も確認できなかった。
1.3.3 NIRを用いたMg-St展延状態の推定
 前項の結果より、Mg-Stの展延状態の代替評価項目(排出力、硬度及び比表面積)のうち、図13~15の結果より、今回の実験系で最も精度よくMg-Stの展延状態を表していると考えられた代替評価項目として、排出力を選定し、各サンプリング品のNIRスペクトルとの間に相関関係が認められるかを評価した。また、混合操作中にインライン測定方式で得られたNIRスペクトルに対しても同様の評価を実施した。尚、サンプリング品のNIRスペクトルの測定条件は、以下に示す通りである。
 排出力とNIRスペクトルの相関関係を評価するにあたり、NIRスペクトルの解析手法としては、実施例1で構築した評価指標(以下、Mg-St面積評価指標)を用いた。
*NIR測定条件(サンプリング品)
使用機器      :Corona(Carl Zeiss製)
測定方法      :拡散反射測定(専用治具)
Scan回数      :10回
測定波長(波数)領域:1,050-1,680 nm
分解能       :2 nm
[結果及び考察]
2.1 NIRを用いたMg-St展延状態の推定(サンプリング品)
 図17に示すように、Mg-St面積評価指標と排出力の間に負の相関関係が認められた。これは、混合時間の延長に伴い、Mg-St面積評価指標が増加することを示しており、Mg-Stがノンパレル108を被覆するに伴い、見かけ上Mg-Stの表面積が増加するために、NIRスペクトルの吸光度が増加したと考えられた。
 以上の結果より、対象の混合顆粒に対して、あらかじめ図17に示す関係を構築しておくことにより、NIRを用いたアットライン測定で混合顆粒のMg-St展延状態を迅速に評価できると考えられた。
2.2  NIRを用いたMg-St展延状態の推定(インライン測定)
 図18に示すように、ノンパレル108とMg-Stの混合中にリアルタイムで得られたNIRスペクトルをMg-St面積評価指標を用いて評価した結果、混合時間の延長に伴って、Mg-St面積評価指標が増加する傾向があることが確認できた。
 本結果より、混合機に取付けたNIRを用いて、インラインで得られたNIRスペクトルをMg-St面積評価指標を用いて解析することにより、混合中にリアルタイムでMg-Stの展延状態の変化を評価できると考えられた。
[結論]
 ノンパレル108とMg-Stの混合実験を行い、Mg-Stの展延状態のNIRによる評価可能性を検討した。その結果、Mg-St面積評価指標を用いることにより、Mg-Stの微量な混合量差のみならず、Mg-Stの展延状態もアットライン及びインラインで評価できる見通しが得られた。
 本結果より、インライン方式のNIRにて混合中にリアルタイムで得られたスペクトルをMg-St面積評価指標を用いて解析することにより、最適な混合終点が求められる見通しが得られた。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、医薬品の製造及び品質管理に利用することができる。

Claims (8)

  1. 製剤における滑沢剤成分の混合量、混合均一性及び展延状態をリアルタイムもしくはオフラインでモニターする方法であって、前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を測定し、その値を指標として製剤における滑沢剤成分の混合量、混合均一性及び展延状態を評価することを含む前記方法。
  2. 前記滑沢剤成分に特徴的な吸収波長を含む波長領域が近赤外領域にある請求項1記載の方法。
  3. 前記滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値を経時的に測定する請求項1記載の方法。
  4. 滑沢剤成分に特徴的な吸収波長を含む波長領域における吸光度の合計値がベースライン処理を行ったものである請求項1~3のいずれかに記載の方法。
  5. 滑沢剤成分がステアリン酸マグネシウムであり、ステアリン酸マグネシウムに特徴的な吸収波長が1,214 nmである請求項1~4のいずれかに記載の方法。
  6. ステアリン酸マグネシウムに特徴的な吸収波長を含む波長領域が、1,125±25nmから1,240 nm±20nmまでの波長領域である請求項5記載の方法。
  7. 製剤における滑沢剤成分の混合量、混合均一性及び展延状態を請求項1~6のいずれかに記載の方法でモニターすることを含む、医薬品の製造方法。
  8. 請求項7記載の方法で製造された医薬品。
PCT/JP2009/052578 2008-05-29 2009-02-16 製剤における滑沢剤成分の混合状態をモニターする方法 WO2009144974A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-141442 2008-05-29
JP2008141442 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009144974A1 true WO2009144974A1 (ja) 2009-12-03

Family

ID=41376862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052578 WO2009144974A1 (ja) 2008-05-29 2009-02-16 製剤における滑沢剤成分の混合状態をモニターする方法

Country Status (2)

Country Link
JP (1) JP2010008404A (ja)
WO (1) WO2009144974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596983A (zh) * 2015-02-06 2015-05-06 山东省食品药品检验研究院 一种基于近红外光谱的佐匹克隆片快速鉴别方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798400B2 (ja) * 2011-07-26 2015-10-21 富士電機株式会社 医薬品製造制御装置、医薬品製造制御方法、医薬品製造制御プログラム、医薬品製造システム
JP6161867B2 (ja) 2011-11-17 2017-07-12 株式会社アドバンテスト 滑沢剤の展延解析装置、方法、プログラム、記録媒体
CN104519874B (zh) * 2012-06-05 2018-08-03 武田药品工业株式会社 固体制剂
US20140092376A1 (en) * 2012-10-01 2014-04-03 Momentive Performance Materials, Inc. Container and method for in-line analysis of protein compositions
JP6063367B2 (ja) * 2012-12-04 2017-01-18 本田技研工業株式会社 エポキシ樹脂の混練分散性評価方法
JP6167192B2 (ja) * 2016-01-19 2017-07-19 株式会社アドバンテスト 滑沢剤の展延解析装置、方法、プログラム、記録媒体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083001A1 (ja) * 2005-02-03 2006-08-10 Eisai R&D Management Co., Ltd. コーティング量の測定方法および溶出挙動の予測方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083001A1 (ja) * 2005-02-03 2006-08-10 Eisai R&D Management Co., Ltd. コーティング量の測定方法および溶出挙動の予測方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"24th Symposium on Particulate Preparations and Designs Koen Yoshishu", 12 November 2007, article TAKAYA SATO ET AL.: "Kobunkaino AOTF?NIR ni yoru Kongo Jotai no Real Time Sokutei to sono Hyoka", pages: 13 - 14 *
"Japan Dai 73 Nenkai (2008) Symposium 'Sentan Kagaku Sangyo Gijutsu Program'", 17 February 2008, THE SOCIETY OF CHEMICAL ENGINEERS, article KOJI NAKAGAWA ET AL.: "Iryohin Kongo Katei ni Okeru In-line-gata NIR o Mochiita Kongo Jotai Hyoka Shihyo no Kento", pages: 25 *
AKIYOSHI KAMIYA: "''Global Kigyo no Seisan Senryaku 'Right First Manufacturing '''", DAI 1 KAI GIJUTSU KOENKAI (DAI 16 KAI POWREX GIJUTSU KOENKAI) 2003 KOEN YOSHISHU, 28 August 2003 (2003-08-28), pages 1 - 19 *
SEKULIC S S ET AL.: "On-Line Monitoring of Powder Blend Homogeneity by Near-Infrared Spectroscopy", ANALYTICAL CHEMISTRY, vol. 68, no. 3, 1 February 1996 (1996-02-01), pages 509 - 513 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596983A (zh) * 2015-02-06 2015-05-06 山东省食品药品检验研究院 一种基于近红外光谱的佐匹克隆片快速鉴别方法

Also Published As

Publication number Publication date
JP2010008404A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2009144974A1 (ja) 製剤における滑沢剤成分の混合状態をモニターする方法
Karande et al. In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy: Real time monitoring of tabletting process
Pawar et al. Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC)
Hausman et al. Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity
Kirsch et al. Near-infrared spectroscopic monitoring of the film coating process
Khorasani et al. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting
Shah et al. Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets
Momose et al. Process analytical technology applied for end-point detection of pharmaceutical blending by combining two calibration-free methods: simultaneously monitoring specific near-infrared peak intensity and moving block standard deviation
Pauli et al. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy
Porfire et al. High-throughput NIR-chemometric methods for determination of drug content and pharmaceutical properties of indapamide powder blends for tabletting
Blanco et al. Controlling individual steps in the production process of paracetamol tablets by use of NIR spectroscopy
Razuc et al. Near-infrared spectroscopic applications in pharmaceutical particle technology
Gendre et al. Real-time predictions of drug release and end point detection of a coating operation by in-line near infrared measurements
Bakri et al. Assessment of powder blend uniformity: Comparison of real-time NIR blend monitoring with stratified sampling in combination with HPLC and at-line NIR Chemical Imaging
Colón et al. Near infrared method development for a continuous manufacturing blending process
Alam et al. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy
Ito et al. Development of a method for nondestructive NIR transmittance spectroscopic analysis of acetaminophen and caffeine anhydrate in intact bilayer tablets
Otsuka et al. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics
Kandpal et al. Quality assessment of pharmaceutical tablet samples using Fourier transform near infrared spectroscopy and multivariate analysis
Zhao et al. Tablet splitting: product quality assessment of metoprolol succinate extended release tablets
Cantor et al. NIR spectroscopy applications in the development of a compacted multiparticulate system for modified release
Peeters et al. Assessment and prediction of tablet properties using transmission and backscattering Raman spectroscopy and transmission NIR spectroscopy
WO2006083001A1 (ja) コーティング量の測定方法および溶出挙動の予測方法
Nagy et al. Spectroscopic characterization of tablet properties in a continuous powder blending and tableting process
Lee et al. Near infrared spectroscopy for rapid and in-line detection of particle size distribution variability in lactose during mixing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754482

Country of ref document: EP

Kind code of ref document: A1