WO2009144827A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2009144827A1
WO2009144827A1 PCT/JP2008/060076 JP2008060076W WO2009144827A1 WO 2009144827 A1 WO2009144827 A1 WO 2009144827A1 JP 2008060076 W JP2008060076 W JP 2008060076W WO 2009144827 A1 WO2009144827 A1 WO 2009144827A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cylinder
piston
cylinder wall
exhaust valve
Prior art date
Application number
PCT/JP2008/060076
Other languages
English (en)
French (fr)
Inventor
久誌 勝連
Original Assignee
Katsuren Hisashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katsuren Hisashi filed Critical Katsuren Hisashi
Priority to PCT/JP2008/060076 priority Critical patent/WO2009144827A1/ja
Publication of WO2009144827A1 publication Critical patent/WO2009144827A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/04Steam engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L21/00Use of working pistons or pistons-rods as fluid-distributing valves or as valve-supporting elements, e.g. in free-piston machines
    • F01L21/04Valves arranged in or on piston or piston-rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention is an engine that induces a vapor explosion of a liquid in a cylinder using heat from the outside and uses the explosion pressure due to the vapor explosion as a driving force.
  • a general-purpose hybrid car is driven by an engine using gasoline as a fuel source and a motor using electric power as an energy source.
  • Some general-purpose hybrid cars use the rotation of the engine rotation shaft to generate electricity while the engine is running, store the generated power in a storage battery, and use that power when operating the motor.
  • this type of hybrid car is driven with a gasoline consumption of about half to one third of a gasoline engine.
  • the solar cell generates power using sunlight as an energy source. Therefore, if a solar cell is used, electric power can be generated without consuming any fossil fuel.
  • Patent Document 1 an exhaust gas-based steam explosion engine described in Patent Document 1 is cited.
  • this exhaust gas-utilized steam explosion engine water is sprayed on the exhaust gas discharged from a gasoline engine, the steam explosion of the water is induced using the heat of the exhaust gas, and the explosion pressure of the steam explosion is used as a driving force. It is what is used.
  • JP 2006-242165 A JP 2006-242165 A
  • the hybrid car can reduce the amount of gasoline consumed, it consumes a large amount of gasoline after all. Moreover, a large amount of exhaust gas is unavoidable. Moreover, in order to produce
  • the present invention proposes an engine that induces a vapor explosion of the liquid in the cylinder using heat from the outside and uses the explosion pressure due to the vapor explosion as a driving force.
  • a cylinder having an exhaust port, a heat source for heating a cylinder wall for heating the cylinder wall, a supply tank for supplying liquid to a liquid injection valve, and a bottom dead center of the piston
  • a liquid injection valve for injecting liquid onto the piston head, a piston for pressing the liquid on the piston head against the ceiling of the cylinder wall at the top dead center, and an explosion pressure from the state disposed on the piston head
  • An engine having an exhaust valve which is pressed against the exhaust port to close the exhaust port and falls onto the piston head in response to a predetermined lowering of the piston to open the exhaust port is proposed.
  • the engine according to the first aspect of the invention is further provided with a guide rod that pulls the exhaust valve in a state in which the exhaust port is closed away from the exhaust port and drops it onto the piston head.
  • the cylinder wall ceiling portion is one of a conical shape, a pyramid shape, or a dome shape
  • the piston head has a shape that follows the above shape.
  • the heat source for heating the cylinder wall is to prevent boiling of the injected liquid by always keeping the cylinder wall at 300 degrees Celsius or more and the piston head at 200 degrees Celsius or more. It is possible to generate a vapor film between the injected liquid and the inner surface of the cylinder wall and between the injected liquid and the piston head. In the cylinder, the vapor film is formed on the surface of the cylinder wall ceiling.
  • the engine according to any one of the first to third inventions having a vapor film breaking means for breaking is proposed.
  • the guide rod has a convex part or / and a concave part on the lower surface of the mushroom-like collar part
  • the exhaust valve has a convex part on the lower surface of the mushroom-like collar part.
  • an exhaust duct for discharging the explosive vapor obtained from the exhaust port to a supply tank, and maintaining the temperature of the liquid in the supply tank at a high temperature by the energy of the explosive vapor.
  • the first invention realizes an engine that can be produced at low cost and can efficiently generate power while minimizing the consumption of fossil fuels.
  • the cylinder wall ceiling and the piston head have a conical shape, a pyramid shape, or a dome shape.
  • the surface areas of both can be increased as compared with the case where the cylinder wall ceiling and the piston head are parallel to the horizontal plane.
  • the volume of the liquid that causes a reaction in the cylinder increases. Therefore, a larger-scale steam explosion can be induced.
  • the cylinder wall ceiling and the piston head have the shapes as described above, the exhaust resistance of steam generated in the cylinder is reduced as compared with the case where the cylinder wall ceiling and the piston head are parallel to the horizontal plane. . Therefore, an engine with higher thermal efficiency can be realized.
  • the fourth invention it is possible to generate a vapor film in the cylinder between the liquid and the piston and between the liquid and the cylinder inner side wall.
  • the vapor film can minimize the evaporation of the liquid until the liquid contacts the cylinder wall ceiling. Therefore, it is possible to suppress the loss of explosion pressure due to the steam explosion. Therefore, an engine that generates a larger driving force is realized. Further, by providing the vapor film breaking means on the surface of the cylinder wall ceiling, it is possible to steadily induce a vapor explosion by the liquid in the cylinder.
  • the fifth invention realizes an engine that can alleviate the impact on the guide rod and the exhaust valve during driving.
  • a liquid whose composition does not change due to a vapor explosion such as water, is used as the liquid in the cylinder. Therefore, if the vapor generated by the vapor explosion in the cylinder is recovered, it can be reused as a liquid. Therefore, the supply amount of the liquid can be minimized. Further, exhaust gas such as carbon dioxide and nitrogen oxide is not directly discharged. As a result, it is possible to reduce the burden on the environment. It is also possible to always heat the liquid in the supply tank using the heat of the steam. If the liquid is always heated, it is possible to reduce the amount of heat taken by the cylinder wall, the piston, and the exhaust valve when supplied into the cylinder, as compared with the case where the liquid is at a low temperature. As a result, a more efficient engine is realized.
  • FIG. Diagram explaining the cylinder body The figure which shows the example of the heat source for cylinder wall heating
  • the figure explaining the opening-closing mechanism of an exhaust valve in case the engine concerning this invention consists of a structure shown in FIG.
  • the figure which shows an example of a mode that the engine of FIG.1 and FIG.4 produces motive power The figure which shows an example of a mode that the engine of FIG.1 and FIG.4 produces motive power
  • the figure which shows an example of a mode that the engine of Fig.6 (a) produces motive power The figure which showed the example of the shape of the cylinder wall ceiling part of the engine concerning Embodiment 3 by sectional drawing
  • the figure which showed the example of the shape of the cylinder wall ceiling part of the engine concerning Embodiment 3 by sectional drawing In the engine concerning Embodiment 4, the fragmentary sectional view which shows the mode in a cylinder immediately after the liquid was supplied in the cylinder.
  • FIG. 9 is a diagram illustrating how the impact of a collision between a mushroom-shaped flange and an exhaust valve is reduced by the guide rod side convex portion and the exhaust valve side concave portion in the fifth embodiment.
  • Embodiment 1 >> ⁇ Outline of Embodiment 1>
  • the engine according to this embodiment basically includes a cylinder (0101), a cylinder wall heating heat source (0102 to 0104), a piston (0105), an exhaust valve (0106), a liquid injection valve (0107), And a supply tank (0108). Further, the engine according to FIG. 1 further includes a spring (0109) that connects the piston (0105) and the exhaust valve (0106) and controls the opening and closing of the exhaust valve (0106). In addition, a connecting rod (0110) that moves in accordance with the vertical movement of the piston (0105) and a crankshaft (0111) that is connected to the connecting rod (0110) and rotates in accordance with the movement of the connecting rod (0110) are also included. .
  • FIG. 1 only represents an example of the structure of the engine concerning this embodiment until it gets tired. Therefore, the spring (0109), the connecting rod (0110), and the crankshaft (0111) are not necessarily elements that constitute the engine according to the present embodiment.
  • the spring (0109) if there is a mechanism suitable for connecting the piston (0105) and the exhaust valve (0106) and controlling the opening and closing of the exhaust valve (0106), it is also possible to use that mechanism. Yes (this point will be described in detail in (Description of Exhaust Valve)). If there is a mechanism that can take out the vertical movement of the piston (0105) as power instead of the connecting rod (0110) and the crankshaft (0111), that mechanism may be used. (Description of cylinder)
  • the cylinder (0101) seals the inside together with the piston (0105) and the exhaust valve (0106). This is because the explosive force of the steam explosion occurring inside the cylinder is confined inside the cylinder, so that the explosion pressure of the steam explosion acts only on the exhaust valve and the piston.
  • the vapor explosion occurs when the liquid supplied from the supply tank contacts the cylinder ceiling heated by the cylinder wall heating heat source. (Here, only the cylinder is described here, and other constituent elements and the process of the steam explosion will be described later.)
  • the cylinder (0101) has an exhaust port. The exhaust port serves to exhaust the steam generated by the steam explosion inside the cylinder (0101) to the outside of the engine.
  • FIG. 2A shows an example of the shape of a cylinder in the engine of the present invention (note that FIG. 2 shows only the cylinder body.
  • the liquid injection valve (0107) and (The supply tank (0108) and the like related to other components are omitted).
  • FIG. 2B is a cross-sectional view of the cylinder shown in FIG.
  • the cylinder has a shape (0201) that is like an inverted cup.
  • an exhaust port is provided in the center part of a cylinder ceiling part (0202).
  • a chimney-shaped protrusion (0203) is provided at the center of the upper surface of the cylinder ceiling, and the vapor in the cylinder can be discharged from the exhaust port through the protrusion.
  • the shape of the cylinder shown in FIG. 2 is just an example.
  • the vicinity of the cylinder ceiling exhaust port (0202) is preferably concave (0204). This is because when the exhaust valve rises as the piston rises, the exhaust valve can be stored in the concave portion (0204).
  • the cylinder of the engine according to the present invention is made of a material having strength sufficient to withstand the steam explosion in the cylinder, heat resistance sufficient to withstand the steam explosion temperature in the cylinder, and high thermal conductivity. There is a need to. Therefore, it is preferable to use, for example, copper, an aluminum alloy (A1050, A6063, etc.), molybdenum, or the like for the cylinder of the engine according to the present invention. (Explanation of heat source for cylinder wall heating)
  • the cylinder wall heating heat source (0102 to 0104) is provided to heat the cylinder wall.
  • FIG. 3 shows an example of a heat source for heating the cylinder wall in the present invention.
  • the heat source for heating the cylinder wall there is an example in which an electric heating body (0301) is installed in contact with the outer wall of the cylinder (0302) as shown in FIG.
  • a heat insulating cover (0303) so as to cover the electric heating body (0301) so as not to let the heat generated by the electric heating body escape to the outside of the engine.
  • a throwing heater, a sheathed heater, or the like as the electric heating body (0301) by appropriately modifying it according to the shape of the cylinder (0302).
  • any one that consumes low power and exhibits high temperature can be used.
  • the electric heating element can be embedded in the cylinder wall.
  • charcoal (0305) can be burned near the outer wall of the cylinder (0304), and the combustion heat (0306) can be used. is there.
  • FIG. 3C it is also possible to use a flame generated by a burner or a plasma generator (0307) or a plasma jet (0308).
  • FIG.3 (d) it is also possible to use the heat
  • the above-mentioned cylinder wall heating heat source is selected according to the vapor explosion temperature of the liquid used in the engine according to the present invention.
  • a sheathed heater made of Inconel-600 can be used.
  • a liquid injection valve (0107) is provided for injecting liquid onto the piston head at the bottom dead center of the piston.
  • the liquid injection valve is opened only when the liquid stored in the supply tank is supplied into the cylinder, and is closed at other times.
  • the supply tank supplies liquid to the liquid injection valve.
  • the liquid supply method there is a method in which the supply tank is arranged at a position higher than the liquid injection valve, as shown in FIG. By disposing the supply tank at a position higher than the liquid injection valve, the liquid in the supply tank can be supplied to the liquid injection valve by the action of gravity. (Description of piston)
  • the piston (0105) explodes by pressing the liquid on the piston head against the cylinder wall ceiling at the top dead center.
  • Top dead center means a state in which the piston (0105) is fully raised in the cylinder.
  • explosion refers to inducing a vapor explosion or bringing the liquid into a critical state.
  • the piston of the engine according to the present invention is made of a material having a strength sufficient to withstand the steam explosion in the cylinder and a heat resistance sufficient to withstand the steam explosion temperature in the cylinder.
  • the thermal conductivity of the engine piston according to the present invention is not necessarily required.
  • the piston when the heat transmitted from the cylinder is used to heat the piston, the piston is preferably made of a material similar to that of the cylinder (0101).
  • a material such as a copper alloy (such as C2801) having low thermal conductivity for the piston. (Explanation about the exhaust valve)
  • FIG. 4 illustrates an opening / closing mechanism of the exhaust valve (0106) when the engine according to the present invention has the configuration shown in FIG.
  • FIG. 4A when the piston (0401) is at the bottom dead center, there is a sufficient interval between the exhaust valve (0402) and the cylinder ceiling (0403). From this state, when the piston (0404) rises to the top dead center with the rotation of the engine in FIG.
  • the exhaust valve (0405) also rises with the rise and is pressed against the ceiling of the cylinder wall. It becomes a state. Further, the spring (0406) between the exhaust valve (0405) and the piston (0404) is contracted, so that the piston (0404) can reach the vicinity of the cylinder wall ceiling. Therefore, when the piston (0404) reaches the top dead center, a gap formed between the piston (0404) and the cylinder ceiling can be reduced. Thus, by reducing the gap, the explosion pressure of the vapor explosion generated in the gap can be sufficiently transmitted to the piston (0404). For a while after the steam explosion occurs, the exhaust valve (0405) is kept pressed against the ceiling of the cylinder wall by the explosion pressure of the steam explosion.
  • FIG. 4A to 4C show that the exhaust valve thickness (0410) is larger than the depth (0411) of the concave portion provided on the cylinder wall ceiling.
  • FIG. 4D which is a partially enlarged view of the vicinity of the exhaust valve (0405) in FIG. 4B, this is a space for confining liquid between the cylinder wall ceiling and the piston head (0413, 0414).
  • the configuration of the exhaust valve (0412) shown in FIG. For example, as shown in FIG. 4 (e), a structure (0416, 0417) in which liquid is confined also on the bottom surface side of the exhaust valve (0415) may be mentioned.
  • the exhaust valve (0415) is attached to the cylinder wall ceiling by applying the explosion pressure of the steam explosion to the exhaust valve (0415) from the moment when the steam explosion occurs. (0418, 0419).
  • the exhaust valve is shaped like a frustoconical shape, and the concave portion provided on the cylinder wall ceiling is shaped so that the exhaust valve can be fitted.
  • the concave partial inlet becomes wider than the upper surface of the exhaust valve. Therefore, even when the direction of expansion / contraction movement of the spring and the direction of vertical movement of the exhaust valve are slightly different for each expansion / contraction movement or for each vertical movement, the exhaust valve can be securely fitted into the concave portion.
  • the above is the opening / closing mechanism of the exhaust valve (0106) when the engine according to the present invention has the configuration shown in FIG. Note that the opening / closing mechanism of the exhaust valve (0106) described above is only an example.
  • the exhaust valve of the engine according to the present invention is made of a material having a strength sufficient to withstand the steam explosion in the cylinder and a heat resistance sufficient to withstand the steam explosion temperature in the cylinder, like the cylinder (0101). There is a need to. Therefore, it is preferable to use the same material as the cylinder for the exhaust valve of the engine according to the present invention. As shown in FIGS. 1 and 4, when a spring is used for the opening / closing mechanism of the exhaust valve, it is preferable to use a spring for opening / closing a valve of a gasoline engine as an example.
  • FIG. 5 is a diagram showing an example of how the engine described in FIGS. 1 and 4 generates power.
  • bulb closes with a raise of a piston (0504).
  • the liquid injection valve (0505) is closed, the liquid is supplied to the supply tank (0506). Further, the steam remaining in the cylinder is pushed out to the exhaust port as the piston (0504) rises. Further, when the piston (0504) is raised to a predetermined height, the exhaust valve (0507) closes the exhaust port of the cylinder. Then, the piston (0504) reaches top dead center, the liquid comes into contact with the cylinder ceiling, and the liquid causes a vapor explosion.
  • the piston (0508) is pushed down by the vapor explosion pressure generated in the cylinder and moves downward.
  • the downward movement of the piston is transmitted to the connecting rod (0509), and the crankshaft connected to the connecting rod is rotated.
  • the exhaust valve (0510) continues to be pressed against the ceiling of the cylinder wall by the explosion pressure of the steam explosion until the piston (0508) is lowered to a predetermined height after the steam explosion occurs. Accordingly, since the cylinder is sealed during this period, the explosion pressure due to the steam explosion continues to push down the piston (0508).
  • the rotation of the crankshaft can be used for power generation.
  • a part of the electric power generated by the power generation can be used as electric power for the cylinder wall heating heat source to generate heat.
  • the rotation of the crankshaft can also be used as a driving force such as the power of an automobile.
  • Embodiment 2 an engine that can be realized at low cost and can efficiently generate power while minimizing the consumption of fossil fuel is realized.
  • Embodiment 2 >> ⁇ Outline of Embodiment 2>
  • FIG. 6A is a cross-sectional view showing an example of the configuration of the engine according to the present embodiment.
  • the engine according to the present embodiment is basically the same as the configuration of the engine according to the first embodiment, but the first embodiment is different from the first embodiment in that a guide rod (0601) having a mushroom-like flange (0603) is provided at the top. Different from such an engine.
  • the engine according to the first embodiment is also different in that an exhaust valve (0602) is inserted through the guide rod (0601). (Explanation about guide bar)
  • the guide rod (0601) is erected on the piston head (0604), is inserted into the exhaust valve (0602), and has a mushroom-like flange (0603) at the top, and the mushroom-like flange (0603) Then, the exhaust valve (0602) pressed against the exhaust port (0605) by the explosion pressure and closing the exhaust port (0605) is pulled away from the exhaust port (0605) and dropped onto the piston head (0604).
  • the connecting portion (0608) of the guide rod (0601) to the piston head (0604) preferably has a divergent shape in order to increase the connection strength between them.
  • a portion (0609) of the guide rod (0601) extending from the mushroom-like flange portion (0603) to the piston head (0604) is preferably in a divergent shape.
  • the upper surface and the lower surface of the exhaust valve (0602) also need to be hollowed in a conical shape in accordance with the divergent shape.
  • FIG. 6B is a three-dimensional enlargement of the exhaust valve and the guide rod shown in FIG.
  • the mushroom-shaped collar part (0606) of a guide rod is a disk shape.
  • the mushroom-shaped ridge portion may include a cross shape as shown in FIG. This is because the exhaust resistance of the steam from the exhaust port can be reduced by making the exhaust valve into a cross shape as shown in FIG.
  • FIG. 7 is a diagram showing an example of how the engine described in FIG. 6A generates power.
  • pouring valve (0705) closes with a raise of a piston (0704).
  • the exhaust valve (0706) closes the exhaust port of the cylinder.
  • the liquid comes into contact with the cylinder ceiling, and the liquid causes a vapor explosion.
  • the piston (0707) is pushed down by the vapor explosion pressure generated in the cylinder, and moves downward.
  • the downward movement of the piston is transmitted to the connecting rod (0708) to rotate the crankshaft (0709).
  • the exhaust valve (0710) is pressed against the cylinder ceiling by the explosion pressure of the steam explosion until the mushroom-shaped flange (0711) of the guide rod is caught, and continues to seal the exhaust port. Therefore, during this time, the explosion pressure due to the steam explosion continues to push down the piston (0707).
  • the guide rod also descends, and the mushroom-shaped flange (0711) of the guide rod is caught by the exhaust valve (0710).
  • the exhaust valve (0714) also descends when the mushroom-like flange (0713) of the guide rod (0712) is caught by the exhaust valve (0714).
  • the pressure inside the cylinder is the same or smaller than the pressure outside the cylinder, there is no force to press the exhaust valve (0714) against the ceiling of the cylinder wall, and the exhaust valve (0714) falls.
  • the exhaust valve (0714) is lowered or dropped, the exhaust port is opened, so that the steam generated by the vapor explosion is exhausted from the exhaust port.
  • the exhaust valve can be driven in accordance with the top and bottom of the cylinder without providing a separate drive device such as a camshaft. Therefore, an engine having a simpler structure is realized.
  • Embodiment 3 >> ⁇ Outline of Embodiment 3>
  • the engine according to the present embodiment is basically the same as the configuration of the engine according to the first or second embodiment.
  • the cylinder wall ceiling portion is any one of a conical shape, a pyramid shape, or a dome shape
  • the piston head has a shape that conforms to the above shape. It is different from the engine that takes 2.
  • FIG. 8 is a sectional view showing an example of the shape of the cylinder wall ceiling of the engine according to the present embodiment.
  • FIG. 8A shows a case where the cylinder wall ceiling is conical or pyramidal.
  • the piston head when the cylinder wall ceiling (0801) has a conical shape or a pyramid shape, the piston head also needs to have a conical shape or a pyramid shape in accordance with the shape of the cylinder wall ceiling portion. .
  • the shape of the exhaust valve needs to be conical or pyramidal.
  • FIG.8 (b) shows the case where a cylinder wall ceiling part is a dome shape. In this case as well, the piston head needs to have a dome shape in accordance with the shape of the cylinder wall ceiling. Also, the shape of the exhaust valve needs to be a dome shape.
  • the shape of the cylinder wall ceiling according to the present embodiment is not limited to a conical shape, a pyramid shape, or a dome shape.
  • the cylinder wall ceiling portion can be constituted by a plurality of surfaces having different inclinations.
  • FIG. 8 (e) is an enlarged view of the vicinity of the exhaust valve (0802) of FIG. 8 (a).
  • the exhaust valve bottom surface (0805) is opposed to the surfaces (0803, 0804) where the piston head contacts the exhaust valve. 0806) needs to be larger. This is because, in order to cause a steam explosion in the cylinder, a space is required to sandwich the liquid between the cylinder wall ceiling and the piston head. Since the lower surface of the exhaust valve is larger than the surface contacting the exhaust valve on the piston head, it is possible to create spaces (0807, 0808) in which liquid is sandwiched between the cylinder wall ceiling and the piston head.
  • the cylinder wall ceiling and the piston head in this embodiment have a conical shape, a pyramid shape, a dome shape, or the like.
  • the surface areas of both can be increased as compared with the case where the cylinder wall ceiling and the piston head are parallel to the horizontal plane.
  • the volume of the liquid that causes a reaction in the cylinder increases. Therefore, a larger-scale steam explosion can be induced.
  • the cylinder wall ceiling and the piston head have the shapes as described above, the exhaust resistance of steam generated in the cylinder is reduced as compared with the case where the cylinder wall ceiling and the piston head are parallel to the horizontal plane. . Therefore, an engine with higher thermal efficiency can be realized.
  • the engine according to the present embodiment is basically the same as the configuration of the engine according to the first to third embodiments.
  • the engine according to the first to third embodiments is such that the heat source for heating the cylinder wall always keeps the cylinder wall at 300 degrees Celsius or more and the piston head is always kept at 200 degrees Celsius or more.
  • the configuration is different.
  • the engine according to the present embodiment is different from the configuration of the engine according to the first to third embodiments in that a vapor film breaking means is provided on the surface of the cylinder wall ceiling.
  • FIG. 9 is a partial cross-sectional view showing a state in the cylinder immediately after the liquid (0902) is supplied into the cylinder (0901) in the engine according to the present embodiment.
  • the cylinder wall heating heat source (0903-0905) always has the cylinder (0901) wall at 300 degrees Celsius or higher and the piston head (0906) always has 200 degrees Celsius or higher. Keep on.
  • the liquid does not evaporate immediately. This is because a vapor film is generated between the liquid and the piston and between the liquid and the cylinder inner wall due to the Leidenfrost phenomenon. This is because the vapor film serves as a heat insulating material between the liquid and the piston and between the liquid and the cylinder inner wall.
  • the sheathed heater as the separate heat source, like the heat source for heating the cylinder wall.
  • the power supply of the said sheathed heater can mention the method of supplying through a connecting rod and a crankshaft.
  • water or water having properties as close as possible is used as the liquid.
  • An example of a property as close as possible to the water is methyl methacrylate.
  • the boiling point of methyl methacrylate is 101.0 ° C., which is very close to the boiling point of water.
  • the flash point is 421 ° C.
  • these methyl methacrylates should be treated as dangerous substances by various laws, such as being designated as a Class I Designated Chemical Substance in the Chemical Substance Management Promotion Law. Therefore, when using methyl methacrylate for the liquid, it is necessary to handle it based on various laws. (Explanation of vapor film breaking means)
  • the cylinder according to the present embodiment has a vapor film breaking means for breaking the vapor film on the cylinder wall ceiling surface.
  • FIG. 10 shows an example of how the vapor film is broken and its mechanism near the surface of the cylinder wall ceiling (portion indicated by the dotted line A in FIG. 9). 10 (a) and 10 (b), the vapor film is divided into an electrode provided on the piston head surface, that is, a piston side electrode (1001), and an electrode provided on the cylinder wall ceiling surface, that is, a cylinder side electrode (1002). The state of the operation of the mechanism that breaks down by applying a voltage between is shown.
  • FIG. 10A shows a state in which no voltage is applied between the piston side electrode (1001) and the cylinder side electrode (1002).
  • a vapor film (1004) is generated between the liquid (1003) and the cylinder wall ceiling surface, the cylinder inner wall side surface, and the piston head surface.
  • the reason why a vapor film is generated between the liquid (1003) and the surface of the cylinder wall ceiling is that the Leidenfrost phenomenon occurs at the moment when the liquid comes into contact with the surface of the cylinder wall ceiling.
  • a voltage is applied between the piston side electrode and the cylinder side electrode.
  • FIG. 10B shows the situation at that time.
  • a power source for applying a voltage between the piston side electrode and the cylinder side electrode outside the cylinder.
  • a piston side electrode and the said power supply via a connecting rod and a crankshaft.
  • the electric cable connecting the power source and the crankshaft support shaft, the crankshaft, the support shaft connecting the crankshaft and the connecting rod, the connecting shaft connecting the connecting rod and the piston that is, the piston drive.
  • the shaft and the electric wire connecting the piston drive shaft and the piston side electrode are used.
  • the connection method between the piston side electrode and the power source and the connection method between the cylinder side electrode and the power source are just examples.
  • the entire piston and the entire cylinder are made of a conductor. In this case, in order to insulate the piston and the cylinder, insulation equipment such as providing a piston ring made of an insulator on the piston and configuring the exhaust valve with an insulator is necessary.
  • the vapor film breaking means shown in FIGS. 10 (a) and 10 (b) is just an example.
  • the vapor film breaking means according to the present embodiment there may be mentioned one (1007) in which fine scratches are provided on the surface of the cylinder wall ceiling as shown in FIG. The fine scratch breaks the vapor film once generated between the cylinder wall ceiling surface and the liquid, and induces a vapor explosion of the liquid. This phenomenon is considered to be possible based on the experiment conducted by the present inventor shown in FIG.
  • the present inventor made a high-temperature aluminum product having a fine scratch on the tip portion of the liquid (1009) causing the Leidenfrost phenomenon on the high-temperature iron plate (1008).
  • the fine scratches provided on the cylinder wall ceiling surface have a depth of 100 ⁇ m to 700 ⁇ m and a tip radius of 5 ⁇ m to 50 ⁇ m. Further, the depth may be 700 ⁇ m or more.
  • the cylinder wall ceiling shown in FIGS. 9 and 10 is the same as that shown in FIG. Similarly, in the engine according to the present embodiment, it is preferable that the cylinder wall ceiling and the piston head have the same shape as that shown in FIG. In FIGS. 8A, 8B, and 8D, the piston head and the cylinder inner wall form a V shape. Since the load of the liquid sandwiched between the piston head and the cylinder wall ceiling portion concentrates on the V-shaped tip portion, there is a possibility of destroying the vapor film generated around the liquid. If the vapor film is broken before the liquid undergoes a vapor explosion and the liquid evaporates, the vapor explosion will not occur. Therefore, the shape of the cylinder wall ceiling and the piston head according to the present embodiment is preferably such that the piston head and the cylinder inner wall are at right angles, as shown in FIG. ⁇ Effect of Embodiment 4>
  • Embodiment 5 it is possible to generate a vapor film between the liquid and the piston and between the liquid and the cylinder inner wall in the cylinder.
  • the vapor film can minimize the evaporation of the liquid until the liquid contacts the cylinder wall ceiling. Therefore, it is possible to suppress the loss of explosion pressure due to the steam explosion. Therefore, an engine that generates a larger driving force is realized. Further, by providing the vapor film breaking means on the surface of the cylinder wall ceiling, it is possible to steadily induce a vapor explosion by the liquid in the cylinder.
  • Embodiments 2 to 4 having a mechanism for reducing the impact when the exhaust valve and the mushroom-like saddle collide (for Embodiments 3 and 4, the embodiment 2 is used).
  • the engine described in any one of them will be described.
  • the engine according to the present embodiment is basically the same as the configuration of the engine according to the second to fourth embodiments.
  • the engine according to the present embodiment is different from the configurations of the engines according to the second to fourth embodiments in that the guide rod has a convex portion on the lower surface of the mushroom-like saddle portion.
  • the configuration of the engine according to the second to fourth embodiments is different also in that the exhaust valve has a recess on the upper surface.
  • the convex portion is referred to as a guide rod side convex portion.
  • the recess is referred to as an exhaust valve side recess.
  • the relationship between the protrusions and recesses on the guide rod side protrusions and the exhaust valve side recesses may be reversed.
  • FIG. 11 shows how the collision between the mushroom-like flange (1105) and the exhaust valve (1106) is mitigated by the guide rod side convex portions (1101, 1102) and the exhaust valve side concave portions (1103, 1104).
  • FIG. 11A shows a state before the mushroom-like saddle portion and the exhaust valve collide. As shown in FIG. 11A, the guide rod side convex portions (1101, 1102) are slightly smaller than the exhaust valve side concave portions (1103, 1104).
  • FIG.11 (b) is a state at the time of the said mushroom-like collar part (1107) and the said exhaust valve (1108) colliding.
  • the exhaust valve side recess (from the gap between the guide rod side protrusion (1109, 1110) and the exhaust valve side recess (1111, 1112) 1111, 1112) is pushed out (1113, 1114).
  • the extruded residual gas (1113, 1114) prevents the guide rod side convex portion (1109, 1110) from entering the deep portion of the exhaust valve side concave portion (1111, 1112). In this way, the impact of the collision between the mushroom-like ridge (1107) and the exhaust valve (1108) is mitigated.
  • the area of the lower side surface (1115, 1116) of the guide rod side convex portion (1101, 1102) is about 90% to 70% of the area of the bottom surface (1117, 1118) of the exhaust valve side concave portion (1103, 1104). It is preferable that When the area of the lower side surface (1115, 1116) of the guide rod side convex portion (1101, 1102) is larger than 90% of the area of the bottom surface (1117, 1118) of the exhaust valve side concave portion (1103, 1104), exhaust There is a possibility that the resistance when the residual gas is pushed out from the valve side recesses (1103, 1104) becomes too strong. If the resistance is too strong, the energy required for the downward movement of the piston increases, which may reduce the efficiency of the engine.
  • the area of the lower side surface (1115, 1116) of the guide rod side convex portion (1101, 1102) is more than 70% of the area of the bottom surface (1117, 1118) of the exhaust valve side concave portion (1103, 1104). If it is small, the resistance when the residual gas is pushed out from the recesses (1103, 1104) on the exhaust valve side may become too weak. If the resistance is too weak, there is a possibility that the impact at the time of collision between the mushroom-like ridge and the exhaust valve cannot be sufficiently mitigated.
  • Embodiment 6 >> ⁇ Outline of Embodiment 6>
  • the engine according to this embodiment is basically the same as the configuration of the engine according to the first to fifth embodiments.
  • the engine according to the present embodiment differs from the configuration of the engine according to the first to fifth embodiments in that it has an exhaust duct.
  • it differs from the structure of the engine concerning Embodiments 1-5 in the point which uses the liquid whose composition does not change even by vapor explosion.
  • liquid used for the engine of this embodiment it is necessary to use the liquid whose composition does not change even by vapor explosion.
  • water, liquid nitrogen, tetramethylsilane, benzene, etc. are mentioned as said liquid.
  • water is particularly preferred as the liquid. This is because water vapor is a substance that is very easy to handle because it is less toxic and not flammable as compared to organic solvent vapor. Further, even if the steam is discharged outside the cylinder, there is almost no adverse effect on the natural environment outside the cylinder. In addition, water exists as a liquid between 0 ° C. and 100 ° C. under normal pressure.
  • FIG. 12 shows an engine according to the present embodiment.
  • emitted from a cylinder (1201) is sent to a supply tank (1204) via an exhaust duct (1202).
  • the steam is generated by a steam explosion occurring in the cylinder (1201), and contains a lot of heat. Therefore, the steam sent to the supply tank (1204) transfers its own heat to the liquid (1205) in the supply tank.
  • the liquid (1205) in the supply tank can always maintain a temperature slightly lower than the boiling point due to the heat received from the vapor.
  • the liquid (1205) in the supply tank was supplied into the cylinder as a liquid compared to the case where the temperature of the liquid (1205) in the supply tank was low. In this case, it is possible to reduce the amount of heat taken by the cylinder wall, the piston, and the exhaust valve.
  • the supply tank according to the present embodiment supplies the unchanged liquid whose composition does not change due to the explosion. If a liquid whose composition does not change due to vapor explosion is used, the liquid vapor can be cooled by the liquid (1205) in the exhaust duct and the supply tank and reused. In addition, by using a liquid whose composition does not change as the liquid, exhaust gases such as carbon dioxide and nitrogen oxides generated by burning gasoline in a conventional gasoline engine are almost generated in the engine according to this embodiment. Not. ⁇ Effect of Embodiment 6>
  • a liquid whose composition does not change due to a vapor explosion such as water, is used as the liquid in the cylinder. Therefore, if the vapor generated by the vapor explosion in the cylinder is recovered, it can be reused as a liquid. Therefore, the supply amount of the liquid can be minimized. Further, exhaust gas such as carbon dioxide and nitrogen oxide is not directly discharged. As a result, it is possible to reduce the burden on the environment. It is also possible to always heat the liquid in the supply tank using the heat of the steam. If the liquid is always heated, it is possible to reduce the amount of heat taken by the cylinder wall, the piston, and the exhaust valve when supplied into the cylinder, as compared with the case where the liquid is at a low temperature. As a result, a more efficient engine is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 排気口を有するシリンダと、シリンダ壁を加熱するためのシリンダ壁加熱用熱源と、液体注入バルブに液体を供給する供給タンクと、ピストンの下死点にてピストンヘッド上に液体を注入するための液体注入バルブと、上死点でピストンヘッド上の液体をシリンダ壁天井部に押圧し爆発させるピストンと、ピストンヘッド上に配置された状態から爆発圧で排気口に押しあてられて排気口を閉とし、ピストンの所定長下降に応じてピストンヘッド上に落下して排気口を開とする排気バルブとを有する。外部からの熱を用いてシリンダ内の液体の蒸気爆発を誘発し、前記蒸気爆発による爆圧を駆動力とするエンジンを提供する。

Description

エンジン
 本発明は、外部からの熱を用いてシリンダ内の液体の蒸気爆発を誘発し、前記蒸気爆発による爆圧を駆動力とするエンジンである。
 今日、われわれ人間は、生活の多くの場面において化石燃料の大量消費に依存している。たとえば、日本における総発電量のうち59.9%は化石燃料の消費によりなされたものである。また、日本国内の物流の側面においても、国内貨物輸送における自動車の割合は半分を超える(2000年日本統計年鑑より)。また、日本国内において交通手段として自動車による移動を選ぶ人は多い。特に、地方圏の交通不便なところに住む人々にとって自動車は必要不可欠なものである。自動車のほとんどは化石燃料より生成されたガソリンや軽油を燃料として動くものである。
 しかし、生活の多くの場面において化石燃料に依存することは好ましいことではない。まず、化石燃料の埋蔵量に乏しい我が国において、化石燃料の獲得については、そのほとんどを他国からの輸入に頼らざるを得ない。ゆえに、我が国においては、国民が、化石燃料の輸入の如何によって、節電を余儀なくされたり、自動車が使えなくなり日用品を買いに行くことさえままならなくなるなど、生活上制約を受ける可能性が極めて高いといえる。また、化石燃料は地球上に無限に存在するわけではない。たとえば、2000年に発表されたデータによれば、世界最大の石油埋蔵量を誇るサウジアラビアにおける石油の枯渇年数は約120年であるという報告がなされている。未だ先であるとはいえ、地球上の化石燃料が枯渇する日は必ず来る。そして、化石燃料の消費に依存する生活を人類が続けるうちに、いずれ、枯渇しつつあるわずかな化石燃料を取り合って国家間の衝突が起きることは不可避である。また、化石燃料の消費により発生する二酸化炭素は、地球温暖化の原因となる。化石燃料の大量消費を抑制することは現代社会の最大の課題であるといっても過言ではないはずである。
 化石燃料の消費抑制の目的で、エンジンとモータとにより駆動するハイブリッドカーや、太陽電池など、さまざまな技術が開発されている。汎用的なハイブリッドカーは、ガソリンを燃料源とするエンジンと、電力をエネルギー源とするモータと、により駆動するものである。汎用的なハイブリッドカーの中には、エンジンが稼動している最中にエンジン回転軸の回転を利用して発電を行い、生じた電力を蓄電池に貯め、その電力をモータを稼動する際に用いるものもある。一般に、このようなタイプのハイブリッドカーは、ガソリンエンジンの半分から3分の1程度のガソリン消費量で駆動する。
 また、太陽電池は、太陽光をエネルギー源として発電を行うものである。したがって、太陽電池を用いれば、化石燃料を一切消費せずに電力を生成することができる。
 また、最近特許出願された発明の一例として、特許文献1に記載の排気ガス利用水蒸気爆発エンジンを挙げる。この排気ガス利用水蒸気爆発エンジンは、ガソリンエンジンが排出する排気ガスに水を噴霧し、前記排気ガスの熱を利用して前記水の水蒸気爆発を誘起し、前記水蒸気爆発の爆圧を推進力として用いるものである。
特開2006-242165号
 しかし、前記ハイブリッドカーは、消費するガソリンの量を抑えることはできるものの、結局ガソリンを大量に消費することについては、従来までのガソリンエンジンとかわりはない。また、排気ガスの大量排出も避けられない。また、太陽電池を用いて高電力を生成するには、面積の大きい太陽電池パネルを用いなければならず、そのためには、大きなコストを費やす必要がある。ゆえに、太陽電池により発生した電力を主要な電力源とする国家や企業は少ない。また、特許文献1にかかるエンジンは、動力の一部を水蒸気爆発の爆圧から得られるものの、自身を駆動させるには常にガソリンを燃焼し続けないといけないものである。結局は、特許文献1にかかるエンジンも、ガソリンを大量に消費することについては、従来までのガソリンエンジンとかわりはない。
 ひいては、低コストで実現し、化石燃料の消費を最小限に抑えたうえで効率よく動力を生成することのできる機関が必要であると考える。
 そこで、本件発明においては、外部からの熱を用いてシリンダ内の液体の蒸気爆発を誘発し、前記蒸気爆発による爆圧を駆動力とするエンジンを提案する。
 具体的には、まず第一の発明として、排気口を有するシリンダと、シリンダ壁を加熱するためのシリンダ壁加熱用熱源と、液体注入バルブに液体を供給する供給タンクと、ピストンの下死点にてピストンヘッド上に液体を注入するための液体注入バルブと、上死点でピストンヘッド上液体を前記シリンダ壁天井部に押圧し爆発させるピストンと、ピストンヘッド上に配置された状態から爆発圧で排気口に押しあてられて排気口を閉とし、ピストンの所定長下降に応じてピストンヘッド上に落下して排気口を開とする排気バルブと、を有するエンジンを提案する。
 次に、第二の発明として、ピストンヘッドに立設され、排気バルブに挿通されるとともに、頂部にキノコ状鉤部を有し、このキノコ状鉤部にて爆発圧で排気口に押し当てられて排気口を閉としている状態の排気バルブを排気口から引き離してピストンヘッドに落下させるガイド棒をさらに有する、第一の発明に記載のエンジンを提案する。
 次に、第三の発明として、シリンダ壁天井部は、円錐形状、角錐形状、またはドーム形状のいずれかであり、ピストンヘッドも前記形状にならう形状である、第一の発明または第二の発明に記載のエンジンを提案する。
 次に、第四の発明として、シリンダ壁加熱用熱源は、シリンダ壁を常に摂氏300度以上に、また、ピストンヘッドを常に摂氏200度以上に保つことで、前記注入された液体の沸騰を防ぐために注入された液体とシリンダ壁内側面との間、および、注入された液体とピストンヘッドとの間に蒸気膜を生成可能であり、シリンダにおいては、シリンダ壁天井部表面に、前記蒸気膜を破壊するための蒸気膜破壊手段を有する、第一の発明から第三の発明のうちいずれか一に記載のエンジンを提案する。
 次に、第五の発明として、前記ガイド棒は、前記キノコ状鉤部下側表面上に凸部又は/および凹部を有し、排気バルブは上側表面に、前記キノコ状鉤部下側表面上の凸部又は/および凹部をゆるやかにはめ込む凹部又は/および凸部を有し、キノコ状鉤部と排気バルブとの衝突の際に凸部と凹部との間に流体が挟まれることで両者の衝突を緩和する、第二の発明から第四の発明のうちいずれか一に記載のエンジンを提案する。
 次に、第六の発明として、排気口から得られる爆発蒸気を供給タンクに排出し、前記爆発蒸気が持つエネルギーにより供給タンク内の液体の温度を高温に保つための排気ダクトを有し、供給タンクは爆発によって組成が変化しない不変化液体を供給する、第一の発明から第六の発明のうちいずれか一に記載のエンジンを提案する。
 第一の発明により、低コストで実現し、化石燃料の消費を最小限に抑えたうえで効率よく動力を生成することのできるエンジンが実現する。
 第二の発明においては、排気バルブを、カムシャフトなどの別途駆動装置を設けることなく、シリンダの上下に合わせて駆動させることが可能である。従って、より簡易な構造のエンジンが実現する。
 第三の発明におけるシリンダ壁天井部およびピストンヘッドは、円錐形状、角錐形状、またはドーム形状のいずれかをなす。シリンダ壁天井部およびピストンヘッドが前述のような形状をとることにより、シリンダ壁天井部およびピストンヘッドが水平面に対し平行である場合に比べ、両者の表面積を大きくすることができる。両者の表面積を大きくすることにより、シリンダ内で反応を起こす液体の体積が増える。従って、より規模の大きい蒸気爆発を誘起することができる。また、シリンダ壁天井部およびピストンヘッドが前述のような形状であることにより、シリンダ壁天井部およびピストンヘッドが水平面に対し平行である場合に比べ、シリンダ内に生じる蒸気の排気抵抗が低減される。従って、より熱効率のよいエンジンを実現できる。
 第四の発明においては、シリンダ内で、液体とピストンとの間、および、前記液体とシリンダ内面側壁との間に蒸気膜を生成させることが可能である。前記蒸気膜により、前記液体がシリンダ壁天井部に接触するまでの間、前記液体の蒸発を最小限に抑えることができる。よって、蒸気爆発による爆圧のロスを抑えることが可能である。したがって、より大きい駆動力を生ずるエンジンが実現する。また、蒸気膜破壊手段をシリンダ壁天井部表面に設けることで、シリンダ内の液体により着実に蒸気爆発を誘起することが可能である。
 第五の発明により、駆動時にガイド棒および排気バルブにかかる衝撃を緩和することのできるエンジンが実現する。
 第六の発明のエンジンにおいては、シリンダ内の液体に、水などの、蒸気爆発により組成が変化しないものを用いる。そこで、シリンダ内での蒸気爆発により生じる蒸気を回収すれば、液体として再利用することが可能である。従って、前記液体の供給量を最小限に抑えられる。また、二酸化炭素や窒素酸化物などの排気ガスを直接排出することもない。ひいては、環境への負荷を抑えることが可能となる。また、前記蒸気が持つ熱を用いて、供給タンク内の液体を常に熱することも可能である。前記液体が常に熱されていれば、前記液体が低温である場合に比べ、シリンダ内に供給された際に、シリンダ壁やピストンや排気バルブが奪われる熱量を低減することが可能である。ひいては、より熱効率の良いエンジンが実現する。
実施形態1にかかるエンジンの構成の一例を示す図 シリンダ本体を説明する図 シリンダ壁加熱用熱源の例を示す図 本件発明にかかるエンジンが図1に示す構成からなる場合の排気バルブの開閉機構を説明する図 図1および図4に記載のエンジンが動力を生み出す様子の一例を示す図 図1および図4に記載のエンジンが動力を生み出す様子の一例を示す図 実施形態2にかかるエンジンの排気バルブとガイド棒との形状および機構の例を示す図 図6(a)に記載のエンジンが動力を生み出す様子の一例を示す図 実施形態3にかかるエンジンのシリンダ壁天井部の形状の例を断面図にして示した図 実施形態3にかかるエンジンのシリンダ壁天井部の形状の例を断面図にして示した図 実施形態4にかかるエンジンにおいて、シリンダ内に液体が供給された直後のシリンダ内の様子を示す部分断面図 実施形態4にかかるシリンダ壁天井部表面近傍にて、前記蒸気膜が破壊される様子およびその機構を示す図 実施形態5において、ガイド棒側凸部および排気バルブ側凹部により、キノコ状鉤部と排気バルブとの衝突の衝撃が緩和される様子を示す図 実施形態6にかかるエンジンの構成の一例を示す図
符号の説明
1201 シリンダ
1202 排気ダクト
1203 蒸気
1204 供給タンク
1205 供給タンク中の液体
 以下に、本発明の実施の形態を説明する。なお、本発明はこれら実施の形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施しうる。なお、以下の実施形態と請求項の関係は次の通りである。
実施形態1は、主に請求項1などについて説明する。
実施形態2は、主に請求項2などについて説明する。
実施形態3は、主に請求項3などについて説明する。
実施形態4は、主に請求項4などについて説明する。
実施形態5は、主に請求項5などについて説明する。
実施形態6は、主に請求項6などについて説明する。
<<実施形態1>>
<実施形態1の概要>
 本実施形態においては、外部からの熱を用いてシリンダ内の液体の蒸気爆発を誘発し、前記蒸気爆発による爆圧を駆動力とするエンジンについて説明する。
<実施形態1の機能的構成>
 本実施形態にかかるエンジンの構成の一例を図1に示す。本実施形態にかかるエンジンは基本的にはシリンダ(0101)と、シリンダ壁加熱用熱源(0102~0104)と、ピストン(0105)と、排気バルブ(0106)と、液体注入バルブ(0107)と、供給タンク(0108)と、からなる。また、図1にかかるエンジンはさらに、ピストン(0105)と排気バルブ(0106)とを接続し、排気バルブ(0106)の開閉を制御するバネ(0109)を有する。また、ピストン(0105)の上下運動に合わせて運動するコンロッド(0110)と、前記コンロッド(0110)と接続し、前記コンロッド(0110)の運動に合わせて回転するクランクシャフト(0111)と、も有する。なお、図1に示すのは飽くまでも本実施形態にかかるエンジンの構成の一例を表すものに過ぎない。したがって、前記バネ(0109)および前記コンロッド(0110)および前記クランクシャフト(0111)は、本実施形態にかかるエンジンを構成するのに必ずしも必要な要素ではない。前記バネ(0109)以外に、ピストン(0105)と排気バルブ(0106)とを接続し、排気バルブ(0106)の開閉を制御するのに適した機構があれば、その機構を用いることも可能である(この点については、詳しくは(排気バルブについての説明)において説明する)。また、前記コンロッド(0110)および前記クランクシャフト(0111)に代わり、前記ピストン(0105)の上下運動を動力として取り出せる機構があれば、その機構を用いてもかまわない。
(シリンダについての説明)
 シリンダ(0101)は、自身の内部を、ピストン(0105)と排気バルブ(0106)と共に密閉する。それは、シリンダの内部にて起こる蒸気爆発の爆発力をシリンダの内部に閉じ込めることで、前記水蒸気爆発の爆圧を排気バルブ、および、ピストンにのみ作用させるためである。ここで、蒸気爆発とは、供給タンクから供給される液体が、シリンダ壁加熱用熱源により加熱されたシリンダ天井部に接触することで起こるものである。(なお、ここでは、シリンダの説明のみを行い、その他の構成要件、および、蒸気爆発の起こる過程については、後述する。)また、シリンダ(0101)は、排気口を有する。前記排気口は、シリンダ(0101)内部にて蒸気爆発により生じた蒸気を、エンジン外部へと排気する役割を果たす。
 図2(a)は、本件発明のエンジンにおけるシリンダの形状の一例を示すものである(なお、図2は、シリンダ本体のみを示すものである。図2においては、液体注入バルブ(0107)や、供給タンク(0108)など、別の構成要件に関係するものは省略した。)。また、図2(b)は、図2(a)に示すシリンダの断面図である。シリンダは、コップを逆さにしたような形状(0201)をしている。そして、排気口は、シリンダ天井部の中心部分に設けられる(0202)。また、シリンダ天井部上面中心部分には、煙突形状の突起(0203)があり、シリンダ内の蒸気は排気口から前記突起を介して排出されるような構成をとることも可能である。このような突起があれば、たとえば前記突起の先端部分にホースを接続することで、シリンダ内の蒸気を任意の場所に排出することが可能である。なお、図2に示すシリンダの形状は飽くまでも一例である。また、シリンダ天井部排気口(0202)近傍は、凹状(0204)になっているのが好ましい。ピストンの上昇に伴い排気バルブが上昇した際に、この凹状(0204)の部分に、排気バルブを格納することができるからである。
 本件発明にかかるエンジンのシリンダは、シリンダ内の蒸気爆発に耐えられるだけの強度、および、シリンダ内の蒸気爆発温度に耐えられるだけの耐熱性、および、高い熱伝導性を有する材質のものを利用する必要がある。したがって、本件発明にかかるエンジンのシリンダには、例として銅やアルミ合金(A1050やA6063など)やモリブデンなどを用いるのが好ましい。
(シリンダ壁加熱用熱源についての説明)
 シリンダ壁加熱用熱源(0102~0104)は、シリンダ壁を加熱するために設けられる。図3は、本件発明におけるシリンダ壁加熱用熱源の例を示すものである。
 まず、シリンダ壁加熱用熱源の一例として、図3(a)に示すような、電熱体(0301)をシリンダ(0302)外壁に接触するように設置したものがあげられる。このような構成をとる場合、前記電熱体が生じる熱をエンジン外部へ逃さないよう、前記電熱体(0301)を覆うように断熱カバー(0303)を設けるのが好ましい。なお、前記電熱体(0301)には、投込型ヒーターやシーズヒーターなどをシリンダ(0302)の形状に合わせて適宜変形して用いるのが好ましい。また、前述した電熱体の例以外にも、消費電力が低く、かつ、高温を発揮するものであれば利用可能である。また、シリンダ壁加熱用熱源に電熱体を用いる場合、図示はしないが、前記電熱体をシリンダ壁の中に埋め込むことも可能である。
 また、シリンダ壁加熱用熱源の他の例として、図3(b)に示すように、シリンダ(0304)外壁近傍で木炭(0305)を燃焼させ、その燃焼熱(0306)を用いることも可能である。また、他にも、図3(c)に示すように、バーナーやプラズマ発生装置(0307)が生じる炎やプラズマジェット(0308)を用いることも可能である。また、図3(d)に示すように、複数のレンズ(0309)と光ファイバケーブル(0310)とによりシリンダ壁外面に集束される太陽光(0311)の熱を用いることも可能である。
 なお、前述したシリンダ壁加熱用熱源については、本件発明にかかるエンジンに用いられる液体の蒸気爆発温度に応じて選択する。たとえば、前記液体に水を用いる場合、インコネル-600を材質とするシーズヒーターを用いることが可能である。
(液体注入バルブについての説明)
 液体注入バルブ(0107)は、ピストンの下死点にてピストンヘッド上に液体を注入するために設けられる。この液体注入バルブは、供給タンクに貯められている液体を、シリンダ内に供給する時のみ開き、それ以外の時には閉じている。
(供給タンクについての説明)
 供給タンクは、液体注入バルブに液体を供給する。前記液体の供給方法の一例としては、図1に示すように、供給タンクを液体注入バルブよりも高い位置に配置する方法がある。供給タンクを液体注入バルブよりも高い位置に配置することで、重力の作用により、供給タンク中の液体を液体注入バルブに供給できる。
(ピストンについての説明)
 ピストン(0105)は、上死点でピストンヘッド上液体を前記シリンダ壁天井部に押圧し爆発させる。「上死点」とは、前記ピストン(0105)がシリンダ内で上がりきった状態のことをいう。また、「爆発させる」とは、蒸気爆発を誘起させること、もしくは、前記液体を臨界状態にすること、を指す。
 本件発明にかかるエンジンのピストンは、シリンダ(0101)同様、シリンダ内の蒸気爆発に耐えられるだけの強度、および、シリンダ内の蒸気爆発温度に耐えられるだけの耐熱性を有する材質のものを利用する必要がある。ただし、本件発明にかかるエンジンのピストンについては、熱伝導性については必ずしも必要であるとは限らない。たとえば、シリンダから伝達される熱を、ピストンを熱するのに利用する場合は、ピストンはシリンダ(0101)の材質と同様の材質で構成するのが好ましい。逆に、ピストンを熱する必要がない場合は、ピストンには、熱伝導性の低い銅合金(C2801など)などの材質を用いる必要がある。
(排気バルブについての説明)
 排気バルブ(0106)は、ピストンヘッド上に配置された状態から爆発圧で排気口に押しあてられて排気口を閉とし、ピストンの所定長下降に応じてピストンヘッド上に落下して排気口を開とする。図4は、本件発明にかかるエンジンが図1に示す構成からなる場合の排気バルブ(0106)の開閉機構を説明するものである。まず、図4(a)に示すように、ピストン(0401)が下死点にある場合、排気バルブ(0402)とシリンダ天井部(0403)との間には充分な間隔がある。この状態から、図4(b)エンジンの回転に伴いピストン(0404)が上死点へと上昇した際、前記上昇に伴って排気バルブ(0405)も上昇し、シリンダ壁天井部に押し当てられた状態になる。また、排気バルブ(0405)とピストン(0404)とのばね(0406)が縮むことにより、ピストン(0404)はシリンダ壁天井部近傍にまで到達することができる。したがって、ピストン(0404)が上死点に到達した際に、ピストン(0404)とシリンダ天井部との間にできる隙間を小さくすることができる。このように、前記隙間を小さくすることで、前記隙間にて発生する蒸気爆発の爆圧をピストン(0404)に充分に伝えることができる。前記蒸気爆発が発生してからしばらくの間は、排気バルブ(0405)は前記蒸気爆発の爆圧により、シリンダ壁天井部に押し当てられた状態を保つ。そして、図4(c)に示すように、ピストン(0407)が下死点へと向かう際、ばね(0408)が所定の長さに戻る。そして、ばね(0408)がピストン(0407)に引っ張られ、つられて排気バルブ(0409)も引っ張られる。このようにしてピストン内部は開放され、シリンダ内で発生した蒸気爆発による蒸気は排気口を介して排気される。
 なお、図4(a)~(c)においては、排気バルブの厚さ(0410)がシリンダ壁天井部に設けられた前記凹状の部分の深さ(0411)よりも大きい様子を示した。これは、図4(b)の排気バルブ(0405)近傍の部分拡大図である図4(d)に示すように、シリンダ壁天井部とピストンヘッドとの間に、液体を閉じ込める空間(0413、0414)を作るためである。ただし、図4(d)に示す排気バルブ(0412)の構成は飽くまでも一例である。たとえば、図4(e)に示すように、排気バルブ(0415)の底面側にも液体が閉じ込められる構造(0416、0417)にすることも挙げられる。図4(e)に示すような構成にすることで、蒸気爆発が生じた瞬間から、排気バルブ(0415)に前記蒸気爆発の爆圧を加えることで、排気バルブ(0415)をシリンダ壁天井部に押し当てられる(0418、0419)。
 また、図示はしないが、排気バルブ形状を截頭円錐形状にし、シリンダ壁天井部に設けられた凹状の部分を前記排気バルブが嵌めこまれるように形状加工するという構成も可能である。前記構成をとることで、前記凹状部分入口が前記排気バルブ上面よりも広い状態になる。従って、前記ばねの伸縮運動方向および排気バルブの上下運動方向が、前記伸縮運動ごとまたは前記上下運動ごとに微妙に異なる場合でも、確実に前記排気バルブを前記凹状部分にはめ込むことが可能である。
 以上が、本件発明にかかるエンジンが図1に示す構成からなる場合の排気バルブ(0106)の開閉機構である。なお、以上に説明した排気バルブ(0106)の開閉機構は、飽くまでも一例である。
 本件発明にかかるエンジンの排気バルブは、シリンダ(0101)同様、シリンダ内の蒸気爆発に耐えられるだけの強度、および、シリンダ内の蒸気爆発温度に耐えられるだけの耐熱性を有する材質のものを利用する必要がある。したがって、本件発明にかかるエンジンの排気バルブには、シリンダと同様の材質のものを用いるのが好ましい。また、図1、および、図4に示すように、排気バルブの開閉機構にばねを用いる場合、そのばねには、一例として、ガソリンエンジンのバルブ開閉用のばねを用いるのが好ましい。
 図5は、図1および図4に記載のエンジンが動力を生み出す様子の一例を示した図である。
 まず、図5(a)に示すように、ピストン(0501)が下死点にあるときに、液体注入バルブ(0502)が開放され、供給タンク(0503)からシリンダ内に液体が供給される。
 そして、図5(b)に示すように、ピストン(0504)の上昇に伴い、液体注入バルブ(0505)は閉じる。液体注入バルブ(0505)が閉じるのと同時に、供給タンク(0506)には液体が供給される。また、シリンダ内に残存していた蒸気が、前記ピストン(0504)の上昇に伴い、排気口へと押し出される。また、ピストン(0504)が所定の高さまで上昇したところで、排気バルブ(0507)はシリンダの排気口をふさぐ。そして、ピストン(0504)が上死点に到達し、前記液体がシリンダ天井部に接触し、前記液体は蒸気爆発を起こす。
 そして、図5(c)に示すように、シリンダ内で発生した蒸気爆圧の爆圧によりピストン(0508)が押し下げられ、下方向へ運動する。前記ピストンの下方向への運動がコンロッド(0509)に伝わり、コンロッドと接続しているクランクシャフトを回転させる。蒸気爆発が起きてから、ピストン(0508)が所定の高さにまで下がるまで、前記蒸気爆発の爆圧により排気バルブ(0510)はシリンダ壁天井部に押し当てられ続ける。したがって、この間は、シリンダ内は密閉されているため、蒸気爆発による爆圧がピストン(0508)を押し下げ続ける。
 そして、図5(d)に示すように、ピストン(0511)が所定の高さよりも下に下がった際に、排気バルブ(0512)も引き下げられ、排気口が開放される。排気口が開放されることで、前記蒸気爆発により生じた蒸気が、排気口から排気される。
 クランクシャフトの回転は、発電に用いることが可能である。また、その場合、前記発電により生じた電力の一部を、シリンダ壁加熱用熱源が熱を生じるための電力として利用することも可能である。このようにすることで、シリンダ壁加熱用熱源が消費する電力を低減させることが可能である。また、前記クランクシャフトの回転は、自動車の動力など、駆動力として活用することも可能である。
<実施形態1の効果>
 本実施形態により、低コストで実現し、化石燃料の消費を最小限に抑えたうえで効率よく動力を生成することのできるエンジンが実現する。
<<実施形態2>>
<実施形態2の概要>
 本実施形態においては、排気バルブの開閉機構がより簡易な構造からなる実施形態1に記載のエンジンについて説明する。
<実施形態2の機能的構成>
 図6(a)は、本実施形態にかかるエンジンの構成例を断面図にして示したものである。本実施形態にかかるエンジンは、基本的には実施形態1にかかるエンジンの構成と同様であるが、頂部にキノコ状鉤部(0603)を有するガイド棒(0601)を有する点において実施形態1にかかるエンジンと異なる。また、排気バルブ(0602)が前記ガイド棒(0601)に挿通されている点においても、実施形態1にかかるエンジンと異なる。
(ガイド棒についての説明)
 ガイド棒(0601)は、ピストンヘッド(0604)に立設され、排気バルブ(0602)に挿通されるとともに、頂部にキノコ状鉤部(0603)を有し、このキノコ状鉤部(0603)にて爆発圧で排気口(0605)に押し当てられて排気口(0605)を閉としている状態の排気バルブ(0602)を排気口(0605)から引き離してピストンヘッド(0604)に落下させる。このガイド棒(0601)のピストンヘッド(0604)との接続部分(0608)は、両者の接続強度を上げるために、末広がり形状になっているのが好ましい。また、同様に、このガイド棒(0601)のキノコ状鉤部(0603)からピストンヘッド(0604)へと延びている部分(0609)についても、末広がり形状になっているのが好ましい。その場合、前記末広がり形状に合わせて、排気バルブ(0602)の上面および下面も、円錐状にくりぬかれている必要がある。
 図6(b)は、図6(a)に示す排気バルブおよびガイド棒を立体的に拡大したものである。図6(b)に示すように、ガイド棒のキノコ状鉤部(0606)は円盤状であるのが好ましい。このような構成にすることで、排気バルブ(0607)がキノコ状鉤部(0606)に衝突した際の衝撃がキノコ状鉤部(0606)の局所に集中することを回避できる。また、前記キノコ状鉤部については、図6(c)に示すような十字形状であるものも挙げられる。排気バルブを図6(c)に示すような十字形状にすることで、排気口からの蒸気の排出抵抗を低減することが可能だからである。
 図7は、図6(a)に記載のエンジンが動力を生み出す様子の一例を示した図である。
 まず、図7(a)に示すように、ピストン(0701)が下死点にあるときに、排気バルブ(0702)下面とピストンヘッドとが接触した状態にある。また、この状態下、液体注入バルブ(0703)が開放され、供給タンクからシリンダ内に液体が供給される。
 そして、図7(b)に示すように、ピストン(0704)の上昇に伴い、液体注入バルブ(0705)は閉じる。そして、ピストン(0704)が上死点まで上昇したところで、排気バルブ(0706)はシリンダの排気口をふさぐ。同時に、前記液体がシリンダ天井部に接触し、前記液体は蒸気爆発を起こす。
 そして、図7(c)に示すように、シリンダ内で発生した蒸気爆圧の爆圧によりピストン(0707)が押し下げられ、下方向へ運動する。前記ピストンの下方向への運動がコンロッド(0708)に伝わり、クランクシャフト(0709)を回転させる。そして、排気バルブ(0710)は、ガイド棒のキノコ状鉤部(0711)が引っかかるまで、前記蒸気爆発の爆圧により、シリンダ天井部に押し当てられ、排気口を封じ続ける。したがって、この間は、蒸気爆発による爆圧がピストン(0707)を押し下げ続ける。そして、ピストン(0707)の下方向への運動に伴い、ガイド棒も下降し、ガイド棒のキノコ状鉤部(0711)が排気バルブ(0710)に引っかかる。
 そして、図7(d)に示すように、ガイド棒(0712)のキノコ状鉤部(0713)が排気バルブ(0714)に引っかかることで、排気バルブ(0714)も下降する。もしくは、シリンダ内の圧力がシリンダ外の圧力に対し同じあるいは小さくなることで、排気バルブ(0714)をシリンダ壁天井部へと押し当てる力がなくなり、排気バルブ(0714)は落下する。排気バルブ(0714)の下降もしくは落下に伴い、排気口が開放されることで、前記蒸気爆発により生じた蒸気が、排気口から排気される。
<実施形態2の効果>
 本実施形態のエンジンにおいては、排気バルブを、カムシャフトなどの別途駆動装置を設けることなく、シリンダの上下に合わせて駆動させることが可能である。従って、より簡易な構造のエンジンが実現する。
<<実施形態3>>
<実施形態3の概要>
 本実施形態においては、より効率よく動力を得るべくシリンダの形状を加工した実施形態1もしくは2に記載のエンジンについて説明する。
<実施形態3の機能的構成>
 本実施形態にかかるエンジンは、基本的には実施形態1もしくは2にかかるエンジンの構成と同様である。ただし、本実施形態にかかるエンジンにおいては、シリンダ壁天井部が、円錐形状、角錐形状、またはドーム形状のいずれかであり、ピストンヘッドも前記形状にならう形状である点において、実施形態1もしくは2にかかるエンジンと異なる。
 図8は、本実施形態にかかるエンジンのシリンダ壁天井部の形状の例を断面図にして示したものである。まず、図8(a)はシリンダ壁天井部が円錐形状もしくは角錐形状である場合を示すものである。図8(a)に示すように、シリンダ壁天井部(0801)が円錐形状もしくは角錐形状である場合、シリンダ壁天井部の形状に合わせて、ピストンヘッドも円錐形状もしくは角錐形状にする必要がある。また、排気バルブの形状も併せて円錐形状もしくは角錐形状にする必要がある。次に、図8(b)はシリンダ壁天井部がドーム形状である場合を示すものである。この場合も同様に、シリンダ壁天井部の形状に合わせて、ピストンヘッドもドーム形状にする必要がある。また、排気バルブの形状も併せてドーム形状にする必要がある。
 また、本実施形態にかかるシリンダ壁天井部の形状は、円錐形状、角錐形状、ドーム形状に限定されるものではない。たとえば、図8(c)に示すように、シリンダ壁天井部の中心から内側のみが円錐形状あるいは角錐形状であり、その外側は水平面に対し平行をなすような形状であってもかまわない。また、図8(d)に示すように、シリンダ壁天井部を、それぞれ傾きの異なる複数の面から構成することも可能である。図8(c)、(d)に示すような構成にすることで、シリンダ壁天井部およびピストンヘッドの表面積を大きくすることができる。
 図8(e)は、図8(a)の排気バルブ(0802)近傍を拡大した図である。この図8(e)に例示するように、図8(a)~(d)に例示するエンジンにおいては、ピストンヘッドが排気バルブと接触する面(0803、0804)に対し、排気バルブ底面(0805、0806)の方が大きい必要がある。これは、シリンダ内において蒸気爆発を起こすには、シリンダ壁天井部とピストンヘッドとの間に液体を挟み込む空間が必要であるからである。排気バルブ下面がピストンヘッド上の排気バルブと接触する面よりも大きいことで、シリンダ壁天井部とピストンヘッドとの間に液体を挟み込む空間(0807、0808)をつくることができる。また、このような構成をとることで、蒸気爆発の際に排気バルブには上方向の力(0809、0810)しか加わらず、より着実に排気バルブをシリンダ壁天井部へと押し当てることが可能である。
<実施形態3の効果>
 本実施形態におけるシリンダ壁天井部およびピストンヘッドは、円錐形状、角錐形状、またはドーム形状などをなす。シリンダ壁天井部およびピストンヘッドが前述のような形状をとることにより、シリンダ壁天井部およびピストンヘッドが水平面に対し平行である場合に比べ、両者の表面積を大きくすることができる。両者の表面積を大きくすることにより、シリンダ内で反応を起こす液体の体積が増える。従って、より規模の大きい蒸気爆発を誘起することができる。また、シリンダ壁天井部およびピストンヘッドが前述のような形状であることにより、シリンダ壁天井部およびピストンヘッドが水平面に対し平行である場合に比べ、シリンダ内に生じる蒸気の排気抵抗が低減される。従って、より熱効率のよいエンジンを実現できる。
<<実施形態4>>
<実施形態4の概要>
 本実施形態においては、シリンダおよび排気バルブに設けられた特殊な機構により、より大きな駆動力を生ずる実施形態1から3のうちいずれか一に記載のエンジンについて説明する。
<実施形態4の機能的構成>
 本実施形態にかかるエンジンは、基本的には実施形態1から3にかかるエンジンの構成と同様である。ただし、本実施形態にかかるエンジンにおいては、シリンダ壁加熱用熱源がシリンダ壁を常に摂氏300度以上に、また、ピストンヘッドを常に摂氏200度以上に保つ点において、実施形態1から3にかかるエンジンの構成と異なる。また、本実施形態にかかるエンジンにおいては、シリンダ壁天井部表面に、蒸気膜破壊手段を有する点においても、実施形態1から3にかかるエンジンの構成と異なる。
 本実施形態にかかるシリンダ壁加熱用熱源は、シリンダ壁を常に摂氏300度以上に、また、ピストンヘッドを常に摂氏200度以上に保つことで、前記注入された液体の沸騰を防ぐため注入された液体とシリンダ壁内側面との間、および、注入された液体とピストンヘッドとの間に蒸気膜を生成可能である。図9は、本実施形態にかかるエンジンにおいて、シリンダ(0901)内に液体(0902)が供給された直後のシリンダ内の様子を部分断面図として示したものである。上述したとおり、本実施形態にかかるエンジンにおいて、シリンダ壁加熱用熱源(0903~0905)は、シリンダ(0901)壁を常に摂氏300度以上に、また、ピストンヘッド(0906)を常に摂氏200度以上に保つ。よって、シリンダ内に液体が供給された直後においては、前記液体はすぐには蒸発しない。これは、ライデンフロスト現象により、前記液体とピストンとの間、および、前記液体とシリンダ内面側壁との間に蒸気膜が生成するからである。そして、前記蒸気膜が、前記液体とピストンとの間、および、前記液体とシリンダ内面側壁との間の断熱材としての役割を果たすからである。なお、ピストンヘッドを常に摂氏200度以上に保つ方法としては、一例として、シリンダからの熱伝導を利用するのが好ましい。また、シリンダからピストンヘッドへの熱伝導が不十分である場合は、シリンダ壁加熱用熱源とは別に、シリンダ内部に別途熱源を設けるなどする。この場合、前記別途熱源としては、シリンダ壁加熱用熱源同様に、前記シーズヒーターを用いるのが好ましい。なお、前記シーズヒーターの電源は、コンロッドおよびクランクシャフトを介して供給する方法があげられる。
 なお、本実施形態においては、液体には水、もしくは、水となるべく性質の近いものを用いる。前記水となるべく近い性質のものの例としては、メタクリル酸メチルがあげられる。メタクリル酸メチルの沸点は101.0℃であり、水の沸点と非常に近い。ただし、引火点が421℃であるので、メタクリル酸メチルを前記液体として用いるのであれば、シリンダ壁およびピストンヘッドの温度を常に摂氏400度以下にしたうえで用いる必要がある。また、このメタクリル酸メチルは化学物質管理促進法において第一種指定化学物質に指定されているなど、諸法律などにより危険な物質として扱うべき旨規定されている。したがって、前記液体にメタクリル酸メチルを用いる場合、諸法律などに基づいて取り扱う必要がある。
(蒸気膜破壊手段についての説明)
 本実施形態にかかるシリンダにおいては、シリンダ壁天井部表面に、前記蒸気膜を破壊するための蒸気膜破壊手段を有する。図10に、シリンダ壁天井部表面(図9の点線Aで示される部分)近傍にて、前記蒸気膜が破壊される様子およびその機構の例を示す。図10(a)、(b)は、前記蒸気膜を、ピストンヘッド表面に設けられた電極すなわちピストン側電極(1001)とシリンダ壁天井部表面に設けられた電極すなわちシリンダ側電極(1002)との間に電圧をかけることにより破壊する機構の動作の様子を示すものである。図10(a)は、ピストン側電極(1001)とシリンダ側電極(1002)との間に電圧が印加されていない状態を示す。この状態下、液体(1003)とシリンダ壁天井部表面およびシリンダ内壁側面およびピストンヘッド表面との間には、蒸気膜(1004)が生じている。液体(1003)とシリンダ壁天井部表面との間にも蒸気膜が生成するのは、液体がシリンダ壁天井部表面と接触した瞬間にライデンフロスト現象を起こすからである。ここで、ピストン側電極とシリンダ側電極との間に電圧を印加する。その際の様子を表したのが図10(b)である。ピストン側電極(1005)とシリンダ側電極(1006)との間に電圧を印加することで、前記蒸気膜は破壊され、液体はシリンダ壁天井部表面およびシリンダ内壁側面およびピストンヘッド表面と接触し、蒸気爆発を起こす。この現象は、高熱の鉄板上でライデンフロスト現象を起こしている液体と前記鉄板との間に電圧を印加すると、前記鉄板と前記液体との間の蒸気膜が破壊されるという実験報告(第1回ジャパン・サイエンス&エンジニアリング・チャレンジ2003にて富山県立富山高等学校早水悠登らが発表した「高温物質上を浮遊する液滴パート2液滴の膜沸騰破壊」)に基づく。このような現象を用いて前記蒸気膜を破壊することで、単に液体をシリンダ壁天井部表面に接触させただけの時に比べ、より着実に蒸気爆発を誘起することが可能である。 
 ところで、この場合、ピストン側電極とシリンダ側電極との間に電圧を印加するための電源はシリンダ外部に設けるのが好ましい。そして、ピストン側電極と前記電源との接続は、コンロッドとクランクシャフトとを介して行うのが好ましい。より具体的には、前記電源とクランクシャフト支軸とを結ぶ電気ケーブルと、クランクシャフトと、クランクシャフトとコンロッドを接続する支軸と、コンロッドと、コンロッドとピストンとを接続する支軸すなわちピストン駆動軸と、ピストン駆動軸とピストン側電極とを結ぶ電線と、を用いるなどする。そして、シリンダ側電極と前記電源との間は、電気ケーブルを設けるなどして接続するのが好ましい。この場合、ピストン全体のうち、ピストン側電極、および、ピストン駆動軸とピストン側電極とを結ぶ電線以外は、絶縁体で構成する必要がある。また同様に、シリンダ全体のうち、シリンダ側電極、および、シリンダ側電極と電極とを結ぶ電気ケーブル以外は、絶縁体で構成する必要がある。ちなみに、上記の、ピストン側電極と前記電源との接続方法およびシリンダ側電極と前記電源との接続方法は飽くまでも一例である。他の方法例としては、ピストン全体およびシリンダ全体を導体で構成することがあげられる。この場合、ピストンとシリンダとを絶縁するために、ピストンに絶縁体製のピストンリングを設けることや、排気バルブを絶縁体で構成することなどの絶縁設備が必要である。
 なお、図10(a)、(b)に示す蒸気膜破壊手段は飽くまでも一例である。本実施形態にかかる蒸気膜破壊手段の別の例として、図10(c)に示すような、シリンダ壁天井部表面に微細な傷を設けたもの(1007)も挙げられる。前記微細な傷が、シリンダ壁天井部表面と液体との間に一旦生成された蒸気膜を破壊し、前記液体の蒸気爆発を誘起する。この現象は、図10(d)に示す、本件発明者が行った実験に基づき可能であると考える。図10(d)に示すように、本件発明者は、高温の鉄板(1008)上でライデンフロスト現象を起こしている液体(1009)に、先端部分に微細な傷のついた高温状態のアルミ製の棒(1010)を接触し、前記液体(1009)がどのような挙動を示すかを観察した。その結果、前記液体(1009)は激しく飛び散った(1011)。この実験結果によれば、シリンダ壁天井部表面に微細な傷を設けた場合でも、シリンダ内の液体に、より着実に蒸気爆発を誘起させることが可能である。この場合、シリンダ壁天井部表面に設ける微細な傷については、その深さが100μmから700μmであり、その先端の半径が5μmから50μmであるものが好ましい。また、前記深さは700μm以上であってもかまわない。
 ところで、図9ならびに図10に示すシリンダ壁天井部は、図8(c)に示すものと同様のものを用いている。同様に、本実施形態に係るエンジンにおいては、シリンダ壁天井部ならびにピストンヘッドの形状は、図8(c)に示すものと同様のものを用いるのが好ましい。図8(a)や(b)や(d)においては、ピストンヘッドとシリンダ内面側壁とがV字状をなす。ピストンヘッドとシリンダ壁天井部との間にはさまれた液体の荷重が、前記V字状の先端部分に集中するため、前記液体の周りに生じている蒸気膜を破壊する可能性がある。前記液体が蒸気爆発を起こす前に前記蒸気膜が破壊され、前記液体が蒸発してしまうと、前記蒸気爆発は起こらなくなってしまう。したがって、本実施形態にかかるシリンダ壁天井部およびピストンヘッドの形状については、図8(c)に示すように、ピストンヘッドとシリンダ内面側壁とが直角になるなどのものが好ましい。
<実施形態4の効果>
 第四の発明においては、シリンダ内で、液体とピストンとの間、および、前記液体とシリンダ内面側壁との間に蒸気膜を生成させることが可能である。前記蒸気膜により、前記液体がシリンダ壁天井部に接触するまでの間、前記液体の蒸発を最小限に抑えることができる。よって、蒸気爆発による爆圧のロスを抑えることが可能である。したがって、より大きい駆動力を生ずるエンジンが実現する。また、蒸気膜破壊手段をシリンダ壁天井部表面に設けることで、シリンダ内の液体により着実に蒸気爆発を誘起することが可能である。
<<実施形態5>>
<実施形態5の概要>
 本実施形態においては、排気バルブとキノコ状鉤部とが衝突する際の衝撃を緩和する機構を有する実施形態2から4(実施形態3、4については、実施形態2を利用しているもの)のうちいずれか一に記載のエンジンについて説明する。
<実施形態5の機能的構成>
 本実施形態にかかるエンジンは、基本的には実施形態2から4にかかるエンジンの構成と同様である。ただし、本実施形態にかかるエンジンにおいては、ガイド棒がキノコ状鉤部下側表面上に凸部を有する点において、実施形態2から4にかかるエンジンの構成と異なる。また、排気バルブが上側表面に、凹部を有する点においても、実施形態2から4にかかるエンジンの構成と異なる。なお、便宜上、本件明細書においては、前記凸部のことをガイド棒側凸部と呼ぶことにする。また、前記凹部のことを排気バルブ側凹部と呼ぶこととする。また、前記ガイド棒側凸部および排気バルブ側凹部の凹凸の関係は逆であってもかまわない。
 前記ガイド棒側凸部および前記排気バルブ側凹部は、前記キノコ状鉤部と前記排気バルブとの衝突の際に、両者の間に流体が挟まれることで前記衝突の衝撃を緩和する役割を果たす。図11に、ガイド棒側凸部(1101、1102)および排気バルブ側凹部(1103、1104)により、キノコ状鉤部(1105)と排気バルブ(1106)との衝突が緩和される様子を示す。図11(a)は、前記キノコ状鉤部と前記排気バルブとが衝突する前の状態である。図11(a)に示すように、ガイド棒側凸部(1101、1102)は、排気バルブ側凹部(1103、1104)に比べわずかに小さい。そして、図11(b)は、前記キノコ状鉤部(1107)と前記排気バルブ(1108)とが衝突した際の状態である。排気バルブ(1108)とキノコ状鉤部(1107)とが衝突した際に、ガイド棒側凸部(1109、1110)と排気バルブ側凹部(1111、1112)との隙間から、排気バルブ側凹部(1111、1112)中の残留気体が押し出される(1113、1114)。前記押し出された残留気体(1113、1114)が、ガイド棒側凸部(1109、1110)が排気バルブ側凹部(1111、1112)の深部へと入り込むのを邪魔する。このようにして、キノコ状鉤部(1107)と排気バルブ(1108)との衝突の衝撃が緩和される。
 なお、ガイド棒側凸部(1101、1102)の下側側面(1115、1116)の面積は、排気バルブ側凹部(1103、1104)の底面(1117、1118)の面積の90%から70%程度であることが好ましい。ガイド棒側凸部(1101、1102)の下側側面(1115、1116)の面積が、排気バルブ側凹部(1103、1104)の底面(1117、1118)の面積の90%よりも大きい場合、排気バルブ側凹部(1103、1104)から残留気体が押し出される際の抵抗が強くなりすぎる可能性がある。前記抵抗が強すぎることで、ピストンの下方向への運動に必要なエネルギーが大きくなり、エンジンの効率を低下させる恐れがある。また逆に、ガイド棒側凸部(1101、1102)の下側側面(1115、1116)の面積が、排気バルブ側凹部(1103、1104)の底面(1117、1118)の面積の70%よりも小さい場合、排気バルブ側凹部(1103、1104)から残留気体が押し出される際の抵抗が弱くなりすぎる可能性がある。前記抵抗が弱すぎることで、前記キノコ状鉤部と前記排気バルブとの衝突の際の衝撃を十分に緩和することができなくなる恐れがある。
 本実施形態により、駆動時にガイド棒にかかる衝撃を緩和することのできるエンジンが実現する。
<<実施形態6>>
<実施形態6の概要>
 本実施形態においては、蒸気爆発によっても組成が変化しない液体を用い、前記液体の蒸気爆発により生じた蒸気の持つ熱を再利用するための機構を有する実施形態1から5のうちいずれか一に記載のエンジンについて説明する。
<実施形態6の機能的構成>
 本実施形態にかかるエンジンは、基本的には実施形態1から5にかかるエンジンの構成と同様である。ただし、本実施形態にかかるエンジンにおいては、排気ダクトを有する点において、実施形態1から5にかかるエンジンの構成と異なる。また、蒸気爆発によっても組成が変化しない液体を用いる点において、実施形態1から5にかかるエンジンの構成と異なる。
 本実施形態のエンジンに用いる液体については、蒸気爆発によっても組成が変化しない液体を用いる必要がある。たとえば、水、液体窒素、テトラメチルシラン、ベンゼンなどが前記液体として挙げられる。その中でも、水は前記液体として特に好まれる。それは、水の蒸気は、有機溶剤の蒸気などに比べ、毒性が低く、また、引火性もないなど、非常に取り扱いやすい物質であるからである。また、その蒸気をシリンダ外に排出しても、シリンダ外の自然環境に及ぼす悪影響はほぼない。また、水は常圧下0℃から100℃の間では液体として存在する。したがって、本実施形態のエンジンに用いる液体に、水を用いることで、わざわざ液体状態を維持するために冷却装置を設けるなどの必要を省くことができる。(実施形態1から5においては、ピストンヘッド上に供給される液体について特段厳密に記載しなかった。しかし、上記の理由から、前記液体についても特に水を用いることが好ましいことをここに追記する。)なお、蒸気爆発に関する調査によると、水が蒸気爆発を起こす際、水に熱を加える側の温度は約400℃以上であることがわかっている。従って、本実施形態ならびに本件発明において、前記液体に水を用いる場合、シリンダ壁天井部をシリンダ壁加熱用熱源により常に400℃以上に加熱する必要がある。
(排気ダクトについての説明)
 排気ダクトは、排気口から得られる爆発蒸気を供給タンクに排出し、前記爆発蒸気が持つエネルギーにより供給タンク内の液体の温度を高温に保つために設けられる。図12は、本実施形態にかかるエンジンを示すものである。図12に示すように、シリンダ(1201)から排出される蒸気(1203)は排気ダクト(1202)を介して供給タンク(1204)へと送られる。前記蒸気は、シリンダ(1201)内で起きた蒸気爆発により生じたものであり、多くの熱を含んでいる。したがって、供給タンク(1204)へと送られた前記蒸気は、自身が持つ熱を供給タンク中の液体(1205)へと伝達する。供給タンク中の液体(1205)は、前記蒸気から受け取った熱により、常に沸点よりもやや低い程度の温度を保つことができる。このように、供給タンク中の液体(1205)が常に沸点よりもやや低い程度の温度であれば、供給タンク中の液体(1205)の温度が低い場合に比べ、液体としてシリンダ内に供給された際に、シリンダ壁やピストンや排気バルブが奪われる熱量を低減することが可能である。
 また、本実施形態にかかる供給タンクは、爆発によって組成が変化しない不変化液体を供給する。液体に、蒸気爆発よって組成が変化しないものを用いれば、前記液体の蒸気を排気ダクトおよび供給タンク中の液体(1205)により冷却し、再利用することが可能である。また、組成が変化しないものを前記液体として用いることで、従来のガソリンエンジンにおいてガソリンが燃焼されることで生じる二酸化炭素や窒素酸化物などの排気ガスが、本実施形態にかかるエンジンにおいてはほとんど生成されない。
<実施形態6の効果>
 第六の発明のエンジンにおいては、シリンダ内の液体に、水などの、蒸気爆発により組成が変化しないものを用いる。そこで、シリンダ内での蒸気爆発により生じる蒸気を回収すれば、液体として再利用することが可能である。従って、前記液体の供給量を最小限に抑えられる。また、二酸化炭素や窒素酸化物などの排気ガスを直接排出することもない。ひいては、環境への負荷を抑えることが可能となる。また、前記蒸気が持つ熱を用いて、供給タンク内の液体を常に熱することも可能である。前記液体が常に熱されていれば、前記液体が低温である場合に比べ、シリンダ内に供給された際に、シリンダ壁やピストンや排気バルブが奪われる熱量を低減することが可能である。ひいては、より熱効率の良いエンジンが実現する。

Claims (6)

  1.  排気口を有するシリンダと、
     シリンダ壁を加熱するためのシリンダ壁加熱用熱源と、
     液体注入バルブに液体を供給する供給タンクと、
     ピストンの下死点にてピストンヘッド上に液体を注入するための液体注入バルブと、
     上死点でピストンヘッド上液体を前記シリンダ壁天井部に押圧し爆発させるピストンと、
     ピストンヘッド上に配置された状態から爆発圧で排気口に押しあてられて排気口を閉とし、ピストンの所定長下降に応じてピストンヘッド上に落下して排気口を開とする排気バルブと、
    を有するエンジン。
  2.  ピストンヘッドに立設され、排気バルブに挿通されるとともに、頂部にキノコ状鉤部を有し、このキノコ状鉤部にて爆発圧で排気口に押し当てられて排気口を閉としている状態の排気バルブを排気口から引き離してピストンヘッドに落下させるガイド棒をさらに有する請求項1に記載のエンジン。
  3.  シリンダ壁天井部は、円錐形状、角錐形状、またはドーム形状のいずれかであり、ピストンヘッドも前記形状にならう形状である請求項1または2に記載のエンジン。
  4.  シリンダ壁加熱用熱源は、シリンダ壁を常に摂氏300度以上に、また、ピストンヘッドを常に摂氏200度以上に保つことで、前記注入された液体の沸騰を防ぐために注入された液体とシリンダ壁内側面との間、および、注入された液体とピストンヘッドとの間に蒸気膜を生成可能であり、
     シリンダにおいては、シリンダ壁天井部表面に、前記蒸気膜を破壊するための蒸気膜破壊手段を有する、
    請求項1から3のいずれか一に記載のエンジン。
  5.  前記ガイド棒は、前記キノコ状鉤部下側表面上に凸部又は/および凹部を有し、
     排気バルブは上側表面に、前記キノコ状鉤部下側表面上の凸部又は/および凹部をゆるやかにはめ込む凹部又は/および凸部を有し、
     キノコ状鉤部と排気バルブとの衝突の際に凸部と凹部との間に流体が挟まれることで両者の衝突の衝撃を緩和する請求項2から4のいずれかに記載のエンジン。
  6.  排気口から得られる爆発蒸気を供給タンクに排出し、前記爆発蒸気が持つエネルギーにより供給タンク内の液体の温度を高温に保つための排気ダクトを有し、
     供給タンクは爆発によって組成が変化しない不変化液体を供給する
    請求項1から5のいずれか一に記載のエンジン。
PCT/JP2008/060076 2008-05-30 2008-05-30 エンジン WO2009144827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060076 WO2009144827A1 (ja) 2008-05-30 2008-05-30 エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060076 WO2009144827A1 (ja) 2008-05-30 2008-05-30 エンジン

Publications (1)

Publication Number Publication Date
WO2009144827A1 true WO2009144827A1 (ja) 2009-12-03

Family

ID=41376726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060076 WO2009144827A1 (ja) 2008-05-30 2008-05-30 エンジン

Country Status (1)

Country Link
WO (1) WO2009144827A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988425A1 (fr) * 2012-03-22 2013-09-27 Jean Claude Fendrich Moteur a production interne de vapeur instantane adaptable a la cogeneration
CN103541781A (zh) * 2013-11-15 2014-01-29 余义刚 一种利用环境热能的蒸发式对外做功装置以及方法
JP2015098835A (ja) * 2013-11-19 2015-05-28 行廣 睦夫 バンケル型ロータリーエンジンの点火方法
CN107503807A (zh) * 2017-10-19 2017-12-22 封海涛 低压热力发电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280601A (ja) * 1988-05-02 1989-11-10 Naoki Kirinoe 水蒸気爆発原動機
JPH05133281A (ja) * 1991-10-24 1993-05-28 F Asano Ekooson 内燃機関
JPH07224724A (ja) * 1994-02-08 1995-08-22 Hirofumi Kimura 内燃機関とその運転方法
JP3097674U (ja) * 2002-05-09 2004-02-05 ユ−チ ツァイ ピストンエアエンジン
JP2006090143A (ja) * 2004-09-21 2006-04-06 Toshio Wakamatsu エンジン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280601A (ja) * 1988-05-02 1989-11-10 Naoki Kirinoe 水蒸気爆発原動機
JPH05133281A (ja) * 1991-10-24 1993-05-28 F Asano Ekooson 内燃機関
JPH07224724A (ja) * 1994-02-08 1995-08-22 Hirofumi Kimura 内燃機関とその運転方法
JP3097674U (ja) * 2002-05-09 2004-02-05 ユ−チ ツァイ ピストンエアエンジン
JP2006090143A (ja) * 2004-09-21 2006-04-06 Toshio Wakamatsu エンジン

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988425A1 (fr) * 2012-03-22 2013-09-27 Jean Claude Fendrich Moteur a production interne de vapeur instantane adaptable a la cogeneration
CN103541781A (zh) * 2013-11-15 2014-01-29 余义刚 一种利用环境热能的蒸发式对外做功装置以及方法
CN103541781B (zh) * 2013-11-15 2016-07-13 东莞市新纪元能源科技有限公司 一种利用环境热能的蒸发式对外做功装置以及方法
JP2015098835A (ja) * 2013-11-19 2015-05-28 行廣 睦夫 バンケル型ロータリーエンジンの点火方法
CN107503807A (zh) * 2017-10-19 2017-12-22 封海涛 低压热力发电系统

Similar Documents

Publication Publication Date Title
CN102576833B (zh) 紧急冷却装置
KR100735617B1 (ko) 폐열을 이용한 열전발전장치
JP5572792B2 (ja) 内燃機関
WO2009144827A1 (ja) エンジン
JP5695050B2 (ja) 一体化された燃料噴射器及び点火器並びに関連する使用及び製造方法
JP2009503363A (ja) 発電機
PT107973B (pt) Método para aumentar a eficiência de motores de combustão
US9057024B2 (en) Liquefaction and internal logic flow processing unit and prioritized cost effective machine apparatus used for the creation of a liquid fuel material made from the underwater arching of carbon rods. Apparatus emphases are placed on cost-effectiveness and energy saving liquefaction process for the replacement of petroleum gasoline
CN102291058A (zh) 半导体温差发电装置和照明灯
CN101389893B (zh) 带有用低温存储的燃料驱动的机组的机动车
US20120125290A1 (en) Hydrogene engine
FR2820341A1 (fr) Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne comportant un catalyseur accumulateur
JP6329340B2 (ja) 内燃機関及び内燃機関システム
US20120085098A1 (en) Vapor explosion and shock wave generating device, motor, and turbine device
KR20120036113A (ko) 차량 배기 가스를 이용한 열전 발전 장치
JP2013170454A (ja) スターリングエンジン用加熱装置及び加熱方法
CN106555725B (zh) 甲醇发动机冷启动系统
US7933506B2 (en) Heat reservoir for a steam engine
CN201623674U (zh) 半导体温差发电装置
WO2006061615A9 (en) An engine which operates on water
JPH0849603A (ja) 水素エンジン
JP2015135116A (ja) 燃料噴射器及び燃料噴射器を作動させる方法
JP2008121615A (ja) エンジン
JP2006242041A (ja) 内燃機関用レーザ点火装置
KR101645679B1 (ko) 연비 향상 및 매연 저감용 연료 예열장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08764936

Country of ref document: EP

Kind code of ref document: A1