WO2009141865A1 - Plate bending method and bending angle detection device - Google Patents

Plate bending method and bending angle detection device Download PDF

Info

Publication number
WO2009141865A1
WO2009141865A1 PCT/JP2008/059208 JP2008059208W WO2009141865A1 WO 2009141865 A1 WO2009141865 A1 WO 2009141865A1 JP 2008059208 W JP2008059208 W JP 2008059208W WO 2009141865 A1 WO2009141865 A1 WO 2009141865A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
bending
angle
sensor ring
detection device
Prior art date
Application number
PCT/JP2008/059208
Other languages
French (fr)
Japanese (ja)
Inventor
末弘 水河
Original Assignee
Mizukawa Suehiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizukawa Suehiro filed Critical Mizukawa Suehiro
Priority to JP2010512872A priority Critical patent/JPWO2009141865A1/en
Priority to US12/993,171 priority patent/US20110061431A1/en
Priority to EP08764368A priority patent/EP2298464A4/en
Priority to PCT/JP2008/059208 priority patent/WO2009141865A1/en
Publication of WO2009141865A1 publication Critical patent/WO2009141865A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/20Bending sheet metal, not otherwise provided for

Definitions

  • the present invention relates to a plate bending method and a bending angle detection device, and more particularly to a plate bending method and a bending angle detection device that can reduce labor required for bending a plate.
  • Patent Document 1 discloses a plate bending apparatus. This device includes a fixed mold having a slit and a movable mold that is rotatably fitted to a fixed mold shaft.
  • Patent Document 2 discloses a method of bending a plate. In this method, a plate is fed out from the outlet, and when the feeding of the plate is stopped, the plate is pressed against the end portion on the outlet side and bent.
  • Patent Document 2 Even an amateur can bend and process a plate into a desired shape easily and quickly like an expert.
  • Patent Document 3 discloses a method for bending a plate. This method is a method of repeating the following two-step process.
  • the first step is a step of keeping the feed bearing in contact with the plate.
  • the second step the plate is intermittently fed through the slit provided in the fixed mold, and the plate is pressed against the exit corner of the slit by the pressing tool every time the feeding of the plate is stopped due to the suspension of the servo motor operation. This is a bending process.
  • Patent Document 4 discloses a plate processing apparatus.
  • This apparatus includes a bending shape input unit, a characteristic data input unit, and an arithmetic unit.
  • the bending shape input unit receives an input of a geometric bending shape of a long plate.
  • the characteristic data input unit accepts input of characteristic data relating to the bending of the plate.
  • the arithmetic unit calculates plate bending data based on the geometric bending shape received by the bending shape input unit and the characteristic data received by the characteristic data input unit.
  • the plate can be accurately processed by taking into consideration the characteristics relating to the bending of the plate.
  • Patent Documents 1 to 3 have a problem that it is difficult to bend the plate at an angle desired by the user. This is because when a force is applied to bend the plate and then the force is released, a springback occurs and the angle of the bent portion changes. “Springback” means a phenomenon in which, when a force is applied to a plate to such an extent that plastic deformation occurs and then the force is removed from the plate, the deformation caused by the elastic deformation is eliminated. It is difficult to predict how much the angle of the bent plate will change due to the springback.
  • the invention disclosed in Patent Document 4 can accurately process a long plate, there is a problem that it is difficult to acquire characteristic data necessary for that purpose.
  • the characteristic data is generated from the data of how much the plate is bent during the bending process and the measurement result of the angle of the portion bent by the bending process.
  • Generating characteristic data in this way requires the data to be processed after iterative bending and measurement of the sample produced thereby. This operation is time consuming and labor intensive. This operation increases the labor and time required for the entire bending operation.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a plate folding method and a bending angle detection device that can reduce the labor required for bending a plate. is there.
  • the plate bending method is a method of bending a plate with a bending machine.
  • the plate is mounted until it is detected that the angle of the bent portion of the plate reaches a predetermined angle when the plate is attached to the bending machine and the springback is completed.
  • the bending operation is repeated a plurality of times.
  • the plate bending method described above is preferably a method of further bending the plate until it is detected by a bending angle detection device connected to a bending machine.
  • the bending angle detection device described above measures the orientation of the plate before the bending machine bends the plate and the orientation of the plate after the bending machine bends the plate by contacting the plate. .
  • the bending angle detection device detects an angle.
  • the bending angle detection device is a device connected to a bending machine.
  • the angle is an angle of a bent portion of a plate bent by a bending machine.
  • the bending angle detection device includes a signal generation device, a connection unit, a drive device, and a rotation angle detection device.
  • the signal generation device generates a signal according to whether or not it is in contact with the plate.
  • the connection unit rotatably connects the signal generation device to the bending machine.
  • the drive device drives the signal generation device to rotate.
  • the rotation angle detection device detects the rotation angle of the signal generation device.
  • the connection part has a holder fixed to the bending machine and a bearing connected to the holder. The bearing positions the signal generator such that the rotation axis of the plate when the bending machine bends the plate and the rotation axis of the signal generator coincide with each other.
  • the signal generating device is rotatably connected to the bending machine by the connecting portion so that the rotation axis of the plate when the bending machine bends the plate and the rotation axis of the rotating member coincide.
  • the signal generation device is driven to rotate by the driving device.
  • the rotation angle of the signal generation device is detected by the rotation angle detection device.
  • the rotation angle of the signal generator matches the rotation angle of the plate bent by the bending machine. Since the signal generator generates a signal according to whether or not it is in contact with the plate, if the rotation angle of the signal generator when the signal is generated is detected by the rotation angle detector, the bending machine can Even without removing the plate, the rotation angle of the plate folded by the bending machine can be detected. If the rotation angle of the plate is measured in a state in which the spring back is completed, it is not necessary to consider the error due to the spring back. As a result, the labor required for bending the plate can be reduced.
  • the plate bending method and the bending angle detection device according to the present invention can reduce the labor required for bending a plate.
  • 1 is an external view of a servo motor according to an embodiment of the present invention. It is sectional drawing about a part of servomotor which concerns on embodiment of this invention. It is an external view of the spring joint which concerns on embodiment of this invention. It is a three-dimensional exploded view of a spring joint according to an embodiment of the present invention. It is sectional drawing of the spring joint which concerns on embodiment of this invention. It is a 1st figure which shows operation
  • FIG. 1 is an external view of a bending angle detection device 50 according to the present embodiment.
  • FIG. 2 is a three-dimensional exploded view of the bending angle detection device 50 according to the present embodiment.
  • FIG. 3 is an external view of the servo motor 60.
  • FIG. 4 is a cross-sectional view of a part of the servo motor 60.
  • FIG. 5 is an external view of the spring joint 104.
  • FIG. 6 is an exploded view of the spring joint 104.
  • FIG. 10 is an external view of the holder 62.
  • FIG. 11 is an external view and a cross-sectional view of the sensor ring L64.
  • FIG. 12 is a perspective view of the sensor ring L64.
  • FIG. 13 is an external view and a cross-sectional view of the sensor ring R66.
  • FIG. 14 is a perspective view of the sensor ring R66.
  • FIG. 15 is a view taken in the direction of arrow A in FIG.
  • FIG. 16 is a diagram showing a situation where the sensor ring L64 is removed from FIG.
  • FIG. 17 is a cross-sectional view of the bending angle detector 50 with the servo motor 60 removed.
  • FIG. 18 is a cross-sectional view of the bending angle detector 50 as viewed from a direction orthogonal to FIG.
  • FIG. 19 is a perspective view of a bending machine 80 to which the bending angle detection device 50 according to the present embodiment is attached.
  • FIG. 20 is a perspective view illustrating a state in which the bending angle detection device 50 is attached to the bending machine 80.
  • FIG. 21 is a control block diagram of the bending machine 80.
  • FIG. 22 is a conceptual diagram showing a situation in which the blade material plate 300 is passed through a slit (not shown) of the bending shaft 92 because it is bent by the claw of the rotary cylinder 90.
  • FIG. 23 is a conceptual diagram showing a situation in which the claw of the rotating cylinder 90 is brought into contact with the blade material plate 300 in order to start bending of the blade material plate 300.
  • FIG. 24 is a conceptual diagram showing a state in which the microswitch R162 is brought into contact with the blade material plate 300 as preparation for measuring the angle of the bent blade material plate 300.
  • FIG. 25 is a conceptual diagram showing a situation when the blade material plate 300 is bent by the claw of the rotary cylinder 90.
  • FIG. 26 is a conceptual diagram showing a state in which the microswitch R162 is brought into contact with the blade member plate 300 to measure the angle after the blade member plate 300 is bent.
  • FIG. 27 is a conceptual diagram illustrating a state in which the microswitch R162 is rotated in the reverse direction after the angle of the blade member plate 300 is measured.
  • FIG. 28 is a flowchart showing a control procedure for accurately bending the blade plate 300 without measuring the spring back in advance.
  • the bending angle detection device 50 is attached to a bending machine 80.
  • the bending angle detection device 50 is connected to the bending machine 80 and measures the angle of the plate bent by the bending machine 80.
  • the bending machine 80 will be described later.
  • the bending angle detection device 50 includes a servo motor 60, a holder 62, a sensor ring L64, a sensor ring R66, a spacer 68, and a bearing 70.
  • the servo motor 60 is controlled by a control unit 98 of a bending machine 80 described later.
  • the servo motor 60 drives the sensor ring L64 and the sensor ring R66.
  • a servo motor 60, a sensor ring L64, and a sensor ring R66 are attached to the holder 62.
  • the tip of the bending shaft 92 of the bending machine 80 is fitted into the holder 62.
  • the bending shaft 92 is fitted into the holder 62 after passing through the rotary cylinder 90 which is also a part of the bending machine 80.
  • the sensor ring L ⁇ b> 64 measures the angle of the bent portion of the blade material plate 300 from one side surface of the blade material plate 300.
  • the sensor ring R66 measures the angle of the bent portion of the blade material plate 300 from the side surface opposite to the sensor ring L64.
  • the spacer 68 is a member for keeping the bearing 70 in an appropriate position.
  • the bearing 70 is configured so that the rotation axis of the blade material plate 300 when the bending machine 80 bends the blade material plate 300 matches the rotation axis of the sensor ring L64 and the sensor ring R66. It is a member for positioning rotatably.
  • the spacer 68 and the bearing 70 are connected to the holder 62 by a bolt 72.
  • the servo motor 60 will be described with reference to FIGS.
  • the servo motor 60 includes a motor main body 100, a rotation angle sensor 102, a spring joint 104, a first gear 106, and a second gear 108.
  • the motor body 100 generates torque for rotating the first gear 106 and the second gear 108.
  • the sensor ring L64 and the sensor ring R66 are driven by this torque.
  • the rotation angle sensor 102 detects the rotation angle of the rotor of the motor main body 100.
  • the spring joint 104 is attached to the rotor of the motor main body 100 and the rotation shafts of the first gear 106 and the second gear 108, and transmits the torque generated by the motor main body 100 to the first gear 106 and the second gear 108.
  • the first gear 106 meshes with the gear 154 of the sensor ring L64, and transmits torque to the sensor ring L64.
  • the second gear 108 meshes with the gear 164 of the sensor ring R66 and transmits torque to the sensor ring R66.
  • the structure of the spring joint 104 will be described with reference to FIGS.
  • the spring joint 104 includes an upper rotating cylinder 110, a first spring 112, a middle rotating cylinder 114, a second spring 116, and a lower rotating cylinder 118.
  • the rotor of the motor main body 100 is fitted into the upper rotating cylinder 110.
  • the upper rotating cylinder 110 transmits the torque generated by the motor main body 100 to the middle rotating cylinder 114.
  • a protrusion 130 is provided at the lower end of the upper rotating cylinder 110.
  • the first spring 112 is fitted in the upper rotating cylinder 110 and the middle rotating cylinder 114, and when the upper rotating cylinder 110 cannot directly transmit torque to the middle rotating cylinder 114, the torque generated by the motor body 100 is transmitted to the middle rotating cylinder 114.
  • the middle rotary cylinder 114 is fitted into the upper rotary cylinder 110 and the lower rotary cylinder 118 while penetrating the first spring 112 and the second spring 116.
  • the middle rotating cylinder 114 transmits the torque transmitted from the upper rotating cylinder 110 or the first spring 112 to the second spring 116.
  • a protrusion 132 is provided at the central portion of the middle rotating cylinder 114.
  • the second spring 116 is fitted into the middle rotating cylinder 114 and the lower rotating cylinder 118, and when the middle rotating cylinder 114 cannot directly transmit torque to the lower rotating cylinder 118, the torque generated by the motor body 100 is transmitted to the lower rotating cylinder 118.
  • the rotating shafts of the first gear 106 and the second gear 108 are fitted into the lower rotating cylinder 118.
  • the lower rotating cylinder 118 transmits the torque generated by the motor main body 100 to the rotating shafts of the first gear 106 and the second gear 108.
  • a protrusion 134 is provided on the upper end of the lower rotating cylinder 118.
  • the operation of the spring joint 104 will be described with reference to FIGS. 8 and 9. It is assumed that torque in the clockwise direction when viewed from the motor main body 100 is transmitted to the spring joint 104.
  • the upper rotating cylinder 110 rotates in the same direction as the rotor of the motor body 100.
  • the protrusion 130 of the upper rotating cylinder 110 presses the protrusion 132 of the middle rotating cylinder 114.
  • the middle rotary cylinder 114 also rotates in the same direction as the rotation axis of the motor body 100.
  • the middle rotary cylinder 114 rotates, the torque generated by the motor main body 100 is transmitted to the lower rotary cylinder 118 via the second spring 116.
  • the second spring 116 since the second spring 116 is deformed, the torque transmitted to the lower rotary cylinder 118 is not so large.
  • the lower rotary cylinder 118 does not rotate.
  • the structure of the holder 62 will be described with reference to FIG.
  • the holder 62 includes a hole 140, a hole 142, and a hole 144.
  • the rotation shafts of the first gear 106 and the second gear 108 pass through the hole 140.
  • the tip of the bending shaft 92 of the bending machine 80 is fitted into the hole 142.
  • Bolts for fixing the holder 62 to the bending machine 80 pass through the holes 144.
  • the sensor ring L64 and the sensor ring R66 are connected to the holder 62 in a rotatable state by a bearing 70.
  • the configuration of the sensor ring L64 will be described with reference to FIGS.
  • the sensor ring L64 includes a micro switch L152 and a gear 154 in the main body 150.
  • the main body 150 has a shape in which a side wall is cylindrical and a round hole is opened at the bottom.
  • a fan-shaped plate 156 is attached to the upper end of the side wall, that is, the bottom of the main body 150 in FIG. 11, and the microswitch L152 is fixed to the fan-shaped plate 156 and the upper end of the side wall.
  • the micro switch L152 includes a switch box in which a push button type switch is incorporated and a contact plate attached to the switch box via a hinge.
  • the contact plate comes into contact with the blade plate 300 that is bent by the bending machine 80, the contact plate presses a switch in the switch box.
  • the sensor ring L64 operates as a device that generates a signal according to whether or not it is in contact with the blade plate 300.
  • the gear 154 is provided at the edge of the hole of the portion that is the top plate of the main body 150 in FIG. However, the gear 154 is not provided all around the edge. A part where the gear 154 is not provided exists at a part of the edge. A groove 158 into which the flange of the bearing 70 is fitted is provided slightly below the gear 154.
  • the configuration of the sensor ring R66 will be described with reference to FIGS.
  • the sensor ring R66 includes a main body 160 provided with a micro switch R162 and a gear 164.
  • the main body 160 is cylindrical.
  • a protrusion 166 is provided at the lower end of the side wall of the main body 160, and a micro switch R162 is attached thereto.
  • the micro switch R162 has the same structure as the micro switch L152. For this reason, sensor ring R66 produces
  • the gear 164 is provided at the upper edge of the main body 160 in FIG. However, the gear 164 is not provided all around the edge. A part where the gear 164 is not provided exists at a part of the edge.
  • a groove 168 into which the flange of the bearing 70 is fitted is provided slightly below the gear 164.
  • the sensor ring L64 and other arrangements will be described with reference to FIGS.
  • the sensor ring L64 and the sensor ring R66 are connected to the holder 62.
  • the sensor ring L64 and the sensor ring R66 are not directly connected to the holder 62.
  • Directly connected to the holder is a spacer 68.
  • a bearing 70 is connected to the holder 62 via a spacer 68.
  • the sensor ring L64 and the sensor ring R66 are indirectly connected to the holder 62 by fitting the flange of the bearing 70 into the groove 158 of the sensor ring L64 and the groove 168 of the sensor ring R66.
  • the fixed position of sensor ring L64 is different from the fixed position of sensor ring R66. Since they are different, the rotation shaft 170 of the sensor ring L64 and the rotation shaft 172 of the sensor ring R66 are different.
  • the rotating shaft 170 and the rotating shaft 172 are positioned near the edge of the blade member plate 300 bent by the rotating cylinder 90. More specifically, the rotating shaft 170 is arranged so as to coincide with the rotating shaft when the blade plate 300 is bent in one direction by the rotating cylinder 90, and the blade plate 300 is bent in the other direction.
  • the rotation shaft 172 is arranged so as to coincide with the rotation shaft of the first rotation shaft.
  • the rotation angle of the sensor ring L64 or the sensor ring R66 matches the bending angle of the plate because the rotation shaft 170 and the rotation shaft 172 coincide with the rotation axis when the blade plate 300 is bent.
  • the rotation axis when the blade material plate 300 is bent is at a distance of one half of the thickness of the blade material plate 300 from the tip of the claw of the rotary cylinder 90, and the blade material plate. It is a point at a distance of one half of the thickness from the side surface of 300.
  • the bending machine 80 includes a top plate 94 and a gear case 96.
  • a bending shaft 92 is fitted in the hole of the top plate 94.
  • the gear case 96 accommodates a gear (not shown). This gear is a gear for transmitting torque to a feed bearing (not shown) for feeding the blade plate 300.
  • the top plate 94 and the gear case 96 are replaced with a different top plate 95 and gear case 97.
  • the top plate 95 is not provided with a hole for fitting the bending shaft 92, and the gear case 97 is provided with a screw hole into which a bolt penetrating the holder 62 is screwed. That is, the bending angle detection device 50 is connected to the bending machine 80 by screwing the holder 62 to the gear case 97.
  • the bending machine 80 further includes a touch panel 91 and a cylinder rotating motor 93.
  • the touch panel 91 is a device for displaying information and allowing the user to input information.
  • the cylinder rotating motor 93 drives the rotating cylinder 90.
  • the control unit 98 of the bending machine 80 will be described with reference to FIG.
  • the bending machine 80 includes a control unit 98 in addition to the touch panel 91 and the cylinder rotation motor 93.
  • the control unit 98 controls the bending process on the blade material plate 300.
  • the control unit 98 controls angle measurement by the bending angle detection device 50 in addition to bending the blade material plate 300.
  • the control unit 98 includes a cylinder rotation motor I / O (input / output) 180, a first external I / O 182, a second external I / O 184, a third external I / O 186, a touch panel I / O 188, and a flash.
  • a memory reading device 190, a ROM (Read Only Memory) 192, a RAM (Random Access Memory) 194, and a CPU (Central Processing Unit) 196 are provided.
  • the cylinder rotation motor I / O 180 outputs a control signal to the cylinder rotation motor 93.
  • the first external I / O 182 is connected to the servo motor 60, receives input of information indicating the rotation angle from the rotation angle sensor 102, and outputs a control signal to the motor body 100.
  • the second external I / O 184 receives a signal input from the micro switch L152.
  • the third external I / O 186 receives a signal input from the micro switch R162.
  • the touch panel I / O 188 outputs an image signal to the touch panel 91 and accepts input of information by the user via the touch panel 91.
  • the flash memory reader 190 reads a control program to be executed by the CPU 196 from the flash memory 350.
  • This control program is a program for controlling the bending angle detection device 50 as well as bending the blade material plate 300.
  • the ROM 192 reads a control program from the flash memory 350 and stores a program for executing the control program.
  • the RAM 194 temporarily stores the control program read from the flash memory 350.
  • the RAM 194 temporarily stores data for the CPU 196 to process information.
  • the CPU 196 sequentially executes the control program stored in the RAM 194 to control the bending process on the blade material plate 300 and the angle measurement by the bending angle detection device 50.
  • the fan-shaped plate 156 and the protruding portion 166 are arranged in contact with each other at a position opposite to the servo motor 60 with respect to the bending shaft 92.
  • the positions of the sensor ring L64 and the sensor ring R66 at this time are referred to as “reference positions”.
  • a feeding roller (not shown) of the bending machine 80 feeds the blade material plate 300 from between the slits of the bending shaft 92.
  • FIG. 22 illustrates this situation.
  • the controller 98 When the blade member plate 300 is sent out, the controller 98 outputs a control signal to the tube rotation motor 93 via the tube rotation motor I / O 180 to drive the tube rotation motor 93. As a result, the rotary cylinder 90 rotates and the tip of the claw reaches the bending start position. FIG. 23 illustrates this situation.
  • the servo motor 60 When the tip of the claw of the rotating cylinder 90 reaches the bending start position, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring L64 and the sensor ring R66 via the first gear 106 and the second gear 108. As a result, the sensor ring R66 rotates. Although the sensor ring L64 initially rotates, the rotation stops halfway. As shown in FIG. 11, the gear 154 is not provided around the entire edge of the main body 150. As a result, the first gear 106 does not mesh with the gear 154. The control unit 98 grasps the rotation angle of the second gear 108 based on the rotation angle data input by the rotation angle sensor 102.
  • the control unit 98 indirectly grasps the rotation angle of the micro switch R162.
  • the micro switch R162 inputs a signal to the third external I / O 186.
  • the CPU 196 detects the rotation angle of the micro switch R162 based on the rotation angle of the second gear 108 at the time when the signal is input to the micro switch R162.
  • FIG. 24 illustrates this situation.
  • the control unit 98 drives the tube rotation motor 93.
  • the rotary cylinder 90 rotates and the tip of the claw of the rotary cylinder 90 bends the blade plate 300.
  • FIG. 25 illustrates this situation.
  • the servo motor 60 When the blade plate 300 is bent, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring R66 via the second gear 108. Thereby, the micro switch R162 rotates again. When the blade plate 300 is contacted again, the microswitch R162 inputs a signal to the third external I / O 186 again. FIG. 26 illustrates this situation.
  • the CPU 196 detects the rotation angle of the micro switch R162 based on the rotation angle of the second gear 108 when the signal is input again by the micro switch R162. When the rotation angle of the micro switch R162 is detected, the CPU 196 calculates an angle difference between the rotation angle and the rotation angle of the micro switch R162 detected first.
  • the rotation axis of the micro switch R162 and the sensor ring R66 is located on the rotation axis when the blade plate 300 is bent.
  • the calculated angle difference becomes equal to the rotation angle of the bent portion of the blade plate 300.
  • This angle difference can be calculated by storing the number of teeth of the second gear 108 and the number of teeth of the gear 164 in the RAM 194 in advance. The number of teeth can be stored in the RAM 194 by reading from the flash memory 350 as part of the control program or as a data file independent of the control program.
  • the servo motor 60 When the angle difference is calculated, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring R66 via the second gear 108. Thereby, the micro switch R162 rotates again. However, the micro switch R162 returns to the reference position by its rotation. When returning to the reference position, the protrusion 166 pushes the fan-shaped plate 156. As a result, the gear 154 meshes with the first gear 106 again. FIG. 27 illustrates this situation.
  • step S250 the CPU 196 of the bending machine 80 drives a feed roller (not shown) to feed the blade plate 300 by a predetermined length.
  • step S252 the CPU 196 outputs a control signal for generating torque to the servo motor 60.
  • the servo motor 60 generates torque according to the control signal.
  • the sensor ring R66 rotates when the torque generated by the servomotor 60 is transmitted. In this case, one of the sensor rings L64 initially rotates, but does not mesh with the first gear 106 and eventually does not rotate.
  • step S254 the CPU 196 determines whether or not the sensor ring R66 has detected the blade plate 300 based on the signal input from the micro switch R162 to the third external I / O 186. When it is determined that blade plate 300 has been detected (YES in step S254), the process proceeds to step S256. If not (NO in step S254), the process proceeds to step S252.
  • step S256 the CPU 196 outputs a control signal for stopping the generation of torque to the servo motor 60. As a result, the rotation of the first gear 106 and the second gear 108 stops.
  • step S258 the CPU 196 calculates the rotation angle of the sensor ring R66 based on the rotation angle data input by the rotation angle sensor 102.
  • the CPU 196 stores the rotation angle in the RAM 194.
  • the rotation angle indicates the folding start point of the blade member plate 300.
  • step S260 the CPU 196 outputs a control signal for generating torque to the servo motor 60.
  • the rotor of the motor main body 100 rotates.
  • the rotation angle at this time is an angle that satisfies the following requirements.
  • the requirement is a requirement that the angle of the bent portion of the blade plate 300 is an angle designated by the user via the touch panel 91.
  • the sensor ring R66 tends to rotate according to the rotation of the rotor. However, since it is blocked by the blade material plate 300, the sensor ring R66 does not rotate. For this reason, the upper rotating cylinder 110 of the spring joint 104 rotates relative to the lower rotating cylinder 118.
  • step S262 the CPU 196 drives the cylinder rotation motor 93. Thereby, the rotary cylinder 90 rotates and the blade member plate 300 is bent in a direction away from the microswitch R162. At this time, since the first spring 112 and the second spring 116 of the spring joint 104 return from the elastically deformed state to the non-elastically deformed state, the microswitch R162 follows the blade plate 300.
  • step S264 the CPU 196 determines whether the micro switch R162 no longer detects the blade plate 300 based on the signal input by the micro switch R162. When it is determined that blade material plate 300 is no longer detected (YES in step S264), the process proceeds to step S266. If not (NO in step S264), the process proceeds to step S262.
  • step S266 the CPU 196 drives the cylinder rotation motor 93 again. Thereby, the rotary cylinder 90 further rotates and the blade material plate 300 is further bent. That is, the blade member plate 300 is pushed further.
  • the rotation angle of the rotary cylinder 90 is an angle at which the plastic deformation of the blade plate 300 proceeds slightly.
  • the CPU 196 rotates the tube rotation motor 93 in the reverse direction. Due to the reverse rotation of the tube rotating motor 93, the rotation angle of the rotating tube 90 returns to the angle at which the micro switch R162 no longer detects the blade plate 300 as a result of rotating the rotating tube 90 in step S262.
  • the direction of the blade member plate 300 slightly returns due to the springback, but since the plastic deformation is progressing, the direction does not return to the direction before the additional pressing. As a result, the angle of the blade member plate 300 when the claw of the rotating cylinder 90 is separated approaches the angle specified by the user.
  • step S268 the CPU 196 determines whether or not the micro switch R162 no longer detects the blade plate 300 based on the signal input by the micro switch R162. When it is determined that blade material plate 300 is no longer detected (YES in step S268), the process proceeds to step S270. If not (NO in step S288), the process proceeds to step S266.
  • step S270 the CPU 196 drives the servo motor 60 so that the micro switch R162 returns to the reference position.
  • step S272 the control unit 98 updates the information in order to perform the next bending process.
  • the bending machine 80 accurately bends the blade material plate 300 based on the orientation of the blade material plate 300 detected as a result of the angle measurement by the bending angle detection device 50. Do not measure springback. This eliminates the need for the user of the bending machine 80 to manually measure the springback. In the first place, it is not necessary to know in detail how much the rotating cylinder 90 is rotated to accurately fold the blade plate 300. Accordingly, the labor required for bending the blade material plate 300 can be reduced.
  • the spring joint 104 is not limited to the configuration described above.
  • a plate spring, a rubber tube, or the like that transmits torque supplied from the motor main body 100 of the servo motor 60 to the signal generation device and elastically deforms by the torque may be used.
  • another cushioning material may be used.
  • the buffer material may be any material that transmits torque supplied from the motor main body 100 to the sensor ring L64 or the sensor ring R66 and is elastically deformed by the torque supplied from the motor main body 100.
  • the spring joint 104 may not be provided.
  • the rotation angles thereof may be directly measured.
  • a method of engaging a spur gear with the gear 154 of the sensor ring L64 or the gear 164 of the sensor ring R66 and connecting an angle sensor to the shaft can be considered.
  • another driving device may drive the sensor ring L64 and the sensor ring R66.
  • the mechanism for driving is not particularly limited.
  • the bending angle detection device 50 may include a signal generation device that generates a signal according to whether or not the blade plate 300 is in contact with a mechanism different from those. good.
  • a signal generation device the rotation angle of the microswitch is determined based on the positional relationship between the position in contact with the blade material plate 300 and the rotation axis of the blade material plate 300 being bent. There is a device for calculating.
  • the bending angle detection device 50 may include a control unit.
  • the configuration of the control unit may be the same as that of the control unit 98.
  • the bending angle detection device 50 can measure the angle of the bent portion of the blade plate 300 without depending on the control unit 98 of the bending machine 80.
  • the control unit of the bending angle detection device 50 may cooperate with the control unit 98 of the bending machine 80.
  • control unit 98 the program recording medium for the control unit 98 to read the control program is not limited to the flash memory 350.
  • a USB memory may be used.
  • control program may be received via the Internet.

Abstract

A bending angle detection device reduces labor required to bend a plate. The bending angle detection device (50) has a sensor ring L (64), a holder (62), a bearing (70), a motor body of a servomotor (60), and a rotation angle sensor (102). The sensor ring L (64) generates a signal depending on whether it is in contact with a blade material plate or not. The holder (62) and the bearing (70) rotatably connect the sensor ring L (64) to a bending machine. The motor body of the servomotor (60) is driven so as to rotate the sensor ring L (64). The rotation angle sensor (102) detects the rotation angle of the sensor ring L (64). The holder (62) and the bearing (70) connect the sensor ring L (64) to the bending machine so that the rotation axis of the blade material plate and the rotation axis of the sensor ring L (64) are aligned with each other when the bending machine bends the blade material plate.

Description

板折り曲げ方法および折り曲げ角検出装置Plate bending method and bending angle detection device
 本発明は、板折り曲げ方法および折り曲げ角検出装置に関し、特に、板の折り曲げ作業に要する労力を軽減させることができる板折り曲げ方法および折り曲げ角検出装置に関する。 The present invention relates to a plate bending method and a bending angle detection device, and more particularly to a plate bending method and a bending angle detection device that can reduce labor required for bending a plate.
 特許文献1は、板の曲げ加工装置を開示する。この装置は、スリットを備えた固定型と固定型の軸体に回転自在に嵌め込まれた可動型とを備えている。 Patent Document 1 discloses a plate bending apparatus. This device includes a fixed mold having a slit and a movable mold that is rotatably fitted to a fixed mold shaft.
 特許文献1に開示された発明によると、曲げ加工中に可動型の相対向する一対の押付型部の平行度が損なわれず、回転伝達機構の歯車群や可動型を分解せずに軸体だけを容易に交換できる。 According to the invention disclosed in Patent Document 1, the parallelism of the pair of opposed pressing mold parts of the movable mold is not impaired during the bending process, and only the shaft body without disassembling the gear group and the movable mold of the rotation transmission mechanism. Can be easily replaced.
 特許文献2は、板の曲げ加工方法を開示する。この方法は、出口から板を送り出し、板の送りが停止されているときに、出口側端部に板を押し付けてその板を折り曲げる方法である。 Patent Document 2 discloses a method of bending a plate. In this method, a plate is fed out from the outlet, and when the feeding of the plate is stopped, the plate is pressed against the end portion on the outlet side and bent.
 特許文献2に開示された発明によると、素人でも熟練者と同様に容易かつ迅速に板を所望の形状に曲げ加工することができる。 According to the invention disclosed in Patent Document 2, even an amateur can bend and process a plate into a desired shape easily and quickly like an expert.
 特許文献3は、板の曲げ加工方法を開示する。この方法は、次に述べる2段階の工程を繰り返す方法である。第1の工程は、送りベアリングを板に接触させておく工程である。第2の工程は、固定型に具備されたスリットを通して板を間欠的に送り出しつつ、サーボモータの運転休止によって板の送りが停止されるごとに、押し具により板をスリットの出口コーナ部に押し付けて曲げ加工する工程である。 Patent Document 3 discloses a method for bending a plate. This method is a method of repeating the following two-step process. The first step is a step of keeping the feed bearing in contact with the plate. In the second step, the plate is intermittently fed through the slit provided in the fixed mold, and the plate is pressed against the exit corner of the slit by the pressing tool every time the feeding of the plate is stopped due to the suspension of the servo motor operation. This is a bending process.
 特許文献3に開示された発明によると、刃材などの板の複数箇所を次々と自動的に曲げ加工していくときに、その複数の曲げ加工箇所を正確に定めることができる。 According to the invention disclosed in Patent Document 3, when a plurality of portions of a plate such as a blade material are automatically bent one after another, the plurality of bending portions can be accurately determined.
 特許文献4は、板の加工装置を開示する。この装置は、曲げ加工形状入力ユニットと、特性データ入力ユニットと、演算ユニットとを具備する。曲げ加工形状入力ユニットは、長尺の板の幾何学的な曲げ加工形状の入力を受け付ける。特性データ入力ユニットは、板の曲げ加工に関する特性データの入力を受け付ける。演算ユニットは、曲げ加工形状入力ユニットが受け付けた幾何学的な曲げ加工形状と特性データ入力ユニットが受け付けた特性データとに基づいて板の曲げ加工データを算出する。 Patent Document 4 discloses a plate processing apparatus. This apparatus includes a bending shape input unit, a characteristic data input unit, and an arithmetic unit. The bending shape input unit receives an input of a geometric bending shape of a long plate. The characteristic data input unit accepts input of characteristic data relating to the bending of the plate. The arithmetic unit calculates plate bending data based on the geometric bending shape received by the bending shape input unit and the characteristic data received by the characteristic data input unit.
 特許文献4に開示された発明によると、板の曲げ加工に関する特性を考慮することによりその板の加工を正確に行いうる。
国際公開第95/00266号パンフレット 特開2001‐353528号公報 特開平8‐215761号公報 特開平6‐304685号公報
According to the invention disclosed in Patent Document 4, the plate can be accurately processed by taking into consideration the characteristics relating to the bending of the plate.
International Publication No. 95/00266 Pamphlet JP 2001-353528 A JP-A-8-215761 Japanese Patent Laid-Open No. 6-304685
 しかし、特許文献1~3に開示された発明では、ユーザが希望する角度に板を曲げることが難しいという問題点がある。板を折り曲げるため力を加えた後その力を解除すると、スプリングバックが生じて折り曲げられた部分の角度が変動するためである。「スプリングバック」とは、塑性変形が生じる程度に板に力を加えた後、その板から力を除去すると、板の変形のうち弾性変形によるものが解消される現象を意味する。折り曲げられた板の角度がスプリングバックによってどの程度変動するかということは、予測が難しい。 However, the inventions disclosed in Patent Documents 1 to 3 have a problem that it is difficult to bend the plate at an angle desired by the user. This is because when a force is applied to bend the plate and then the force is released, a springback occurs and the angle of the bent portion changes. “Springback” means a phenomenon in which, when a force is applied to a plate to such an extent that plastic deformation occurs and then the force is removed from the plate, the deformation caused by the elastic deformation is eliminated. It is difficult to predict how much the angle of the bent plate will change due to the springback.
 特許文献4に開示された発明では、長尺の板の加工を正確に行いうるものの、そのために必要な特性データの取得が困難という問題点がある。通常、曲げ加工の際に板をどの程度折り曲げたかというデータと曲げ加工により折り曲げられた部分の角度の測定結果とから、特性データは生成される。このようにして特性データを生成すると、曲げ加工とそれによって製作されたサンプルの測定とを繰返した後にデータを処理する必要が生じる。この作業は多くの時間と労力とを要するものである。この作業が折り曲げ作業全体の労力と所要時間とを増大させている。 Although the invention disclosed in Patent Document 4 can accurately process a long plate, there is a problem that it is difficult to acquire characteristic data necessary for that purpose. Usually, the characteristic data is generated from the data of how much the plate is bent during the bending process and the measurement result of the angle of the portion bent by the bending process. Generating characteristic data in this way requires the data to be processed after iterative bending and measurement of the sample produced thereby. This operation is time consuming and labor intensive. This operation increases the labor and time required for the entire bending operation.
 本発明は上述の問題点を解決するためになされたものであって、その目的は、板の折り曲げ作業に要する労力を軽減させることができる、板折り曲げ方法および折り曲げ角検出装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a plate folding method and a bending angle detection device that can reduce the labor required for bending a plate. is there.
 上記目的を達成するために、本発明のある局面に従うと、板折り曲げ方法は、曲げ加工機によって板を折り曲げる方法である。板折り曲げ方法は、板における折り曲げられた部分の角度が予め定められた角度に達したことが、曲げ加工機に板が取り付けられ、かつ、スプリングバックが完了した状態で検出されるまで、板を折り曲げる作業を複数回繰り返す方法である。 In order to achieve the above object, according to one aspect of the present invention, the plate bending method is a method of bending a plate with a bending machine. In the plate bending method, the plate is mounted until it is detected that the angle of the bent portion of the plate reaches a predetermined angle when the plate is attached to the bending machine and the springback is completed. In this method, the bending operation is repeated a plurality of times.
 板における折り曲げられた部分の角度が予め定められた角度に達したことが、曲げ加工機に板が取り付けられ、かつ、スプリングバックが完了した状態で検出されるまで、板を折り曲げる作業が複数回繰り返される。これにより、その板を取り外して折り曲げられた部分の角度を測定する必要がなくなる。スプリングバックを考慮する必要もなくなる。その結果、板の折り曲げ作業に要する労力を軽減させることができる。 Bending the plate multiple times until the angle of the bent portion of the plate has reached a predetermined angle is detected with the plate attached to the bending machine and the springback completed. Repeated. This eliminates the need to measure the angle of the bent portion after removing the plate. There is no need to consider springback. As a result, the labor required for bending the plate can be reduced.
 また、上述した板折り曲げ方法は、曲げ加工機に接続される折り曲げ角検出装置により検出されるまで、板をさらに折り曲げる方法であることが望ましい。 The plate bending method described above is preferably a method of further bending the plate until it is detected by a bending angle detection device connected to a bending machine.
 また、上述した折り曲げ角検出装置は、板に接触することによって、曲げ加工機が板を折り曲げる前の板の向きと曲げ加工機が板を折り曲げた後の板の向きとを測定することが望ましい。 Moreover, it is desirable that the bending angle detection device described above measures the orientation of the plate before the bending machine bends the plate and the orientation of the plate after the bending machine bends the plate by contacting the plate. .
 本発明の他の局面に従うと、折り曲げ角検出装置は、角度を検出する。折り曲げ角検出装置は、曲げ加工機に接続される装置である。角度は、曲げ加工機によって折り曲げられた板における折り曲げられた部分の角度である。折り曲げ角検出装置は、信号生成装置と、接続部と、駆動装置と、回転角検出装置とを備える。信号生成装置は、板と接触しているか否かに応じた信号を生成する。接続部は、曲げ加工機に信号生成装置を回転自在に接続する。駆動装置は、信号生成装置を回転するように駆動する。回転角検出装置は、信号生成装置の回転角を検出する。接続部は、曲げ加工機に固定されるホルダーと、ホルダーに接続されるベアリングとを有する。ベアリングは、信号生成装置を、曲げ加工機が板を折り曲げる際の板の回転軸と信号生成装置の回転軸とが一致するよう、回転自在に位置決めする。 According to another aspect of the present invention, the bending angle detection device detects an angle. The bending angle detection device is a device connected to a bending machine. The angle is an angle of a bent portion of a plate bent by a bending machine. The bending angle detection device includes a signal generation device, a connection unit, a drive device, and a rotation angle detection device. The signal generation device generates a signal according to whether or not it is in contact with the plate. The connection unit rotatably connects the signal generation device to the bending machine. The drive device drives the signal generation device to rotate. The rotation angle detection device detects the rotation angle of the signal generation device. The connection part has a holder fixed to the bending machine and a bearing connected to the holder. The bearing positions the signal generator such that the rotation axis of the plate when the bending machine bends the plate and the rotation axis of the signal generator coincide with each other.
 接続部により、信号生成装置は、曲げ加工機が板を折り曲げる際の板の回転軸と回転部材の回転軸とが一致するよう、曲げ加工機に回転自在に接続されている。また、信号生成装置は、駆動装置によって回転するように駆動される。さらに、信号生成装置の回転角は、回転角検出装置によって検出される。これにより、信号生成装置の回転角は曲げ加工機によって折り曲げられた板の回転角に一致することになる。信号生成装置が、板と接触しているか否かに応じた信号を生成するので、その信号が生成されたときの信号生成装置の回転角を回転角検出装置によって検出すれば、曲げ加工機から板を取り外さなくても、曲げ加工機によって折り曲げられた板の回転角を検出することが可能になる。スプリングバックが完了した状態で板の回転角を測定すれば、スプリングバックによる誤差を考慮する必要もなくなる。その結果、板の折り曲げ作業に要する労力を軽減させることができる。 The signal generating device is rotatably connected to the bending machine by the connecting portion so that the rotation axis of the plate when the bending machine bends the plate and the rotation axis of the rotating member coincide. In addition, the signal generation device is driven to rotate by the driving device. Further, the rotation angle of the signal generation device is detected by the rotation angle detection device. As a result, the rotation angle of the signal generator matches the rotation angle of the plate bent by the bending machine. Since the signal generator generates a signal according to whether or not it is in contact with the plate, if the rotation angle of the signal generator when the signal is generated is detected by the rotation angle detector, the bending machine can Even without removing the plate, the rotation angle of the plate folded by the bending machine can be detected. If the rotation angle of the plate is measured in a state in which the spring back is completed, it is not necessary to consider the error due to the spring back. As a result, the labor required for bending the plate can be reduced.
 本発明に係る板折り曲げ方法および折り曲げ角検出装置は、板の折り曲げ作業に要する労力を軽減させることができる。 The plate bending method and the bending angle detection device according to the present invention can reduce the labor required for bending a plate.
本発明の実施形態に係る折り曲げ角検出装置の外観図である。It is an external view of the bending angle detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る折り曲げ角検出装置の立体分解図である。It is a three-dimensional exploded view of a bending angle detection device according to an embodiment of the present invention. 本発明の実施形態に係るサーボモータの外観図である。1 is an external view of a servo motor according to an embodiment of the present invention. 本発明の実施形態に係るサーボモータの一部についての断面図である。It is sectional drawing about a part of servomotor which concerns on embodiment of this invention. 本発明の実施形態に係るスプリングジョイントの外観図である。It is an external view of the spring joint which concerns on embodiment of this invention. 本発明の実施形態に係るスプリングジョイントの立体分解図である。It is a three-dimensional exploded view of a spring joint according to an embodiment of the present invention. 本発明の実施形態に係るスプリングジョイントの断面図である。It is sectional drawing of the spring joint which concerns on embodiment of this invention. 本発明の実施形態に係るスプリングジョイントのトルクがかかったときの動作を示す第1の図である。It is a 1st figure which shows operation | movement when the torque of the spring joint which concerns on embodiment of this invention is applied. 本発明の実施形態に係るスプリングジョイントのトルクがかかったときの動作を示す第2の図である。It is a 2nd figure which shows operation | movement when the torque of the spring joint which concerns on embodiment of this invention is applied. 本発明の実施形態に係るホルダーの外観図である。It is an external view of the holder which concerns on embodiment of this invention. 本発明の実施形態に係るセンサーリングLの外観図および断面図である。It is the external view and sectional drawing of the sensor ring L which concern on embodiment of this invention. 本発明の実施形態に係るセンサーリングLの斜視図である。It is a perspective view of sensor ring L concerning the embodiment of the present invention. 本発明の実施形態に係るセンサーリングRの外観図および断面図である。It is the external view and sectional drawing of the sensor ring R which concern on embodiment of this invention. 本発明の実施形態に係るセンサーリングRの斜視図である。It is a perspective view of sensor ring R concerning an embodiment of the present invention. 本発明の実施形態に係る折り曲げ角検出装置の矢視図である。It is an arrow view of the bending angle detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る折り曲げ角検出装置のセンサーリングLを取り除いた状況での矢視図である。It is an arrow view in the situation where the sensor ring L of the bending angle detection apparatus according to the embodiment of the present invention is removed. 本発明の実施形態に係る折り曲げ角検出装置のサーボモータを取り除いた状態での第1の断面図である。It is the 1st sectional view in the state where the servo motor of the bending angle detection device concerning the embodiment of the present invention was removed. 本発明の実施形態に係る折り曲げ角検出装置のサーボモータを取り除いた状態での第2の断面図である。It is a 2nd sectional view in the state where a servo motor of a bending angle detection device concerning an embodiment of the present invention was removed. 曲げ加工機の斜視図である。It is a perspective view of a bending machine. 本発明の実施形態に係る折り曲げ角検出装置を曲げ加工機に取り付けた状況を示す斜視図である。It is a perspective view which shows the condition which attached the bending angle detection apparatus which concerns on embodiment of this invention to the bending machine. 曲げ加工機の制御ブロック図である。It is a control block diagram of a bending machine. 曲げ軸のスリットに刃材板を通過させた状況を示す概念図である。It is a conceptual diagram which shows the condition which passed the blade material board through the slit of the bending axis. 回転筒の爪を刃材板に接触させた状況を示す概念図である。It is a conceptual diagram which shows the condition which made the nail | claw of a rotating cylinder contact the blade material board. 本発明の実施形態に係るマイクロスイッチRを準備のために刃材板に接触させた状況を示す概念図である。It is a conceptual diagram which shows the condition which made the microswitch R which concerns on embodiment of this invention contact the blade material board for preparation. 回転筒の爪によって刃材板が折曲げられた時点の状況を示す概念図である。It is a conceptual diagram which shows the condition at the time of a blade material board being bent by the nail | claw of a rotation cylinder. 本発明の実施形態に係るマイクロスイッチRを角度を測定するために刃材板に接触させた状況を示す概念図である。It is a conceptual diagram which shows the condition which made the micro switch R which concerns on embodiment of this invention contact the blade material board in order to measure an angle. 本発明の実施形態に係るマイクロスイッチRを逆回転させた状況を示す概念図である。It is a conceptual diagram which shows the condition which reversely rotated the microswitch R which concerns on embodiment of this invention. 本発明の実施形態に係る刃材板の折曲げ処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the bending process of the blade material board which concerns on embodiment of this invention.
符号の説明Explanation of symbols
50  折り曲げ角検出装置
60  サーボモータ
62  ホルダー
64  センサーリングL
66  センサーリングR
68  スペーサ
70  ベアリング
72  ボルト
80  加工機
90  回転筒
91  タッチパネル
92  曲げ軸
93  筒回転モータ
94,95    天板
96,97    ギヤケース
98  制御部
100 モータ本体
102 回転角センサ
104 スプリングジョイント
106 第1ギヤ
108 第2ギヤ
110 上部回転筒
112 第1スプリング
114 中部回転筒
116 第2スプリング
118 下部回転筒
130,132,134  突起
140,142,144  穴
150,160  本体
152 マイクロスイッチL
154,164  ギヤ
156 扇形の板
158,168  溝
162 マイクロスイッチR
166 突出部
170,172  回転軸
180 筒回転モータI/O
182 第1外部I/O
184 第2外部I/O
186 第3外部I/O
188 タッチパネルI/O
190 フラッシュメモリ読み取り装置
300 刃材板
350 フラッシュメモリ
50 Bending angle detector 60 Servo motor 62 Holder 64 Sensor ring L
66 Sensor ring R
68 Spacer 70 Bearing 72 Bolt 80 Processing machine 90 Rotating cylinder 91 Touch panel 92 Bending shaft 93 Cylinder rotating motor 94, 95 Top plate 96, 97 Gear case 98 Control unit 100 Motor body 102 Rotation angle sensor 104 Spring joint 106 First gear 108 Second Gear 110 Upper rotating cylinder 112 First spring 114 Middle rotating cylinder 116 Second spring 118 Lower rotating cylinders 130, 132, 134 Protrusions 140, 142, 144 Holes 150, 160 Main body 152 Micro switch L
154, 164 Gear 156 Fan-shaped plate 158, 168 Groove 162 Micro switch R
166 Projection 170, 172 Rotating shaft 180 Cylinder rotation motor I / O
182 First external I / O
184 Second external I / O
186 Third external I / O
188 Touch panel I / O
190 Flash memory reader 300 Blade material plate 350 Flash memory
 以下、図面を参照しつつ、本発明の実施形態について説明する。本発明の上記の概要ならびに本発明の好ましい実施例の以下の詳細な説明は、添付図面と共に読めばより良く理解される。本発明を図示するため、図面には現在好ましい実施例が示されている。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The foregoing summary of the invention, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、本実施形態に係る折り曲げ角検出装置50の外観図である。図2は、本実施形態に係る折り曲げ角検出装置50の立体分解図である。図3は、サーボモータ60の外観図である。図4は、サーボモータ60の一部についての断面図である。図5は、スプリングジョイント104の外観図である。図6は、スプリングジョイント104の立体分解図である。図7は、スプリングジョイント104の断面図である。図8および図9は、トルクがかかったときのスプリングジョイント104の動作を示す図である。図10は、ホルダー62の外観図である。図11は、センサーリングL64の外観図および断面図である。図12は、センサーリングL64の斜視図である。図13は、センサーリングR66の外観図および断面図である。図14は、センサーリングR66の斜視図である。図15は、図1のA矢視図である。図16は、図15においてセンサーリングL64を取り除いた状況を示す図である。図17は、サーボモータ60を取り除いた状態での折り曲げ角検出装置50の断面図である。図18は、図17とは直交する方向から見た折り曲げ角検出装置50の断面図である。図19は、本実施形態に係る折り曲げ角検出装置50が取り付けられる曲げ加工機80の斜視図である。図20は、折り曲げ角検出装置50を曲げ加工機80に取り付けた状況を示す斜視図である。図21は、曲げ加工機80の制御ブロック図である。図22は、回転筒90の爪によって折曲げるため、曲げ軸92の図示しないスリットに刃材板300を通過させた状況を示す概念図である。図23は、刃材板300の折曲げを開始するため回転筒90の爪を刃材板300に接触させた状況を示す概念図である。図24は、曲げられた刃材板300の角度を測定するための準備としてマイクロスイッチR162を刃材板300に接触させた状況を示す概念図である。図25は、回転筒90の爪によって刃材板300が折曲げられた時点の状況を示す概念図である。図26は、刃材板300が折曲げられた後、その角度を測定するためマイクロスイッチR162を接触させた状況を示す概念図である。図27は、刃材板300の角度が測定された後、マイクロスイッチR162を逆回転させた状況を示す概念図である。図28は、あらかじめスプリングバックを測定することなく刃材板300を的確に折曲げるための制御手順を示すフローチャートである。 FIG. 1 is an external view of a bending angle detection device 50 according to the present embodiment. FIG. 2 is a three-dimensional exploded view of the bending angle detection device 50 according to the present embodiment. FIG. 3 is an external view of the servo motor 60. FIG. 4 is a cross-sectional view of a part of the servo motor 60. FIG. 5 is an external view of the spring joint 104. FIG. 6 is an exploded view of the spring joint 104. FIG. 7 is a cross-sectional view of the spring joint 104. 8 and 9 are diagrams showing the operation of the spring joint 104 when torque is applied. FIG. 10 is an external view of the holder 62. FIG. 11 is an external view and a cross-sectional view of the sensor ring L64. FIG. 12 is a perspective view of the sensor ring L64. FIG. 13 is an external view and a cross-sectional view of the sensor ring R66. FIG. 14 is a perspective view of the sensor ring R66. FIG. 15 is a view taken in the direction of arrow A in FIG. FIG. 16 is a diagram showing a situation where the sensor ring L64 is removed from FIG. FIG. 17 is a cross-sectional view of the bending angle detector 50 with the servo motor 60 removed. FIG. 18 is a cross-sectional view of the bending angle detector 50 as viewed from a direction orthogonal to FIG. FIG. 19 is a perspective view of a bending machine 80 to which the bending angle detection device 50 according to the present embodiment is attached. FIG. 20 is a perspective view illustrating a state in which the bending angle detection device 50 is attached to the bending machine 80. FIG. 21 is a control block diagram of the bending machine 80. FIG. 22 is a conceptual diagram showing a situation in which the blade material plate 300 is passed through a slit (not shown) of the bending shaft 92 because it is bent by the claw of the rotary cylinder 90. FIG. 23 is a conceptual diagram showing a situation in which the claw of the rotating cylinder 90 is brought into contact with the blade material plate 300 in order to start bending of the blade material plate 300. FIG. 24 is a conceptual diagram showing a state in which the microswitch R162 is brought into contact with the blade material plate 300 as preparation for measuring the angle of the bent blade material plate 300. FIG. FIG. 25 is a conceptual diagram showing a situation when the blade material plate 300 is bent by the claw of the rotary cylinder 90. FIG. 26 is a conceptual diagram showing a state in which the microswitch R162 is brought into contact with the blade member plate 300 to measure the angle after the blade member plate 300 is bent. FIG. 27 is a conceptual diagram illustrating a state in which the microswitch R162 is rotated in the reverse direction after the angle of the blade member plate 300 is measured. FIG. 28 is a flowchart showing a control procedure for accurately bending the blade plate 300 without measuring the spring back in advance.
 本実施形態に係る折り曲げ角検出装置50は、曲げ加工機80に取り付けられる。折り曲げ角検出装置50は、曲げ加工機80に接続され、曲げ加工機80によって曲げられた板の角度を測定する。曲げ加工機80については後述する。 The bending angle detection device 50 according to this embodiment is attached to a bending machine 80. The bending angle detection device 50 is connected to the bending machine 80 and measures the angle of the plate bent by the bending machine 80. The bending machine 80 will be described later.
 本実施形態に係る折り曲げ角検出装置50は、サーボモータ60と、ホルダー62と、センサーリングL64と、センサーリングR66と、スペーサ68と、ベアリング70とを備える。 The bending angle detection device 50 according to the present embodiment includes a servo motor 60, a holder 62, a sensor ring L64, a sensor ring R66, a spacer 68, and a bearing 70.
 サーボモータ60は、後述する曲げ加工機80の制御部98により制御される。サーボモータ60は、センサーリングL64およびセンサーリングR66を駆動する。ホルダー62には、サーボモータ60とセンサーリングL64とセンサーリングR66とが取り付けられる。また、ホルダー62には、曲げ加工機80の曲げ軸92の先端が嵌め込まれる。曲げ軸92は、同じく曲げ加工機80の部品である回転筒90を貫通した上で、ホルダー62に嵌め込まれる。センサーリングL64は、刃材板300の一方の側面から、刃材板300の折り曲げられた部分の角度を測定する。センサーリングR66は、センサーリングL64とは反対側の側面から刃材板300の折り曲げられた部分の角度を測定する。スペーサ68は、ベアリング70を適切な位置に保つための部材である。ベアリング70は、センサーリングL64およびセンサーリングR66を、曲げ加工機80が刃材板300を折り曲げる際の刃材板300の回転軸とセンサーリングL64およびセンサーリングR66の回転軸とが一致するよう、回転自在に位置決めするための部材である。なお、スペーサ68およびベアリング70は、ボルト72によってホルダー62に接続される。 The servo motor 60 is controlled by a control unit 98 of a bending machine 80 described later. The servo motor 60 drives the sensor ring L64 and the sensor ring R66. A servo motor 60, a sensor ring L64, and a sensor ring R66 are attached to the holder 62. The tip of the bending shaft 92 of the bending machine 80 is fitted into the holder 62. The bending shaft 92 is fitted into the holder 62 after passing through the rotary cylinder 90 which is also a part of the bending machine 80. The sensor ring L <b> 64 measures the angle of the bent portion of the blade material plate 300 from one side surface of the blade material plate 300. The sensor ring R66 measures the angle of the bent portion of the blade material plate 300 from the side surface opposite to the sensor ring L64. The spacer 68 is a member for keeping the bearing 70 in an appropriate position. The bearing 70 is configured so that the rotation axis of the blade material plate 300 when the bending machine 80 bends the blade material plate 300 matches the rotation axis of the sensor ring L64 and the sensor ring R66. It is a member for positioning rotatably. The spacer 68 and the bearing 70 are connected to the holder 62 by a bolt 72.
 図3および図4を参照して、サーボモータ60について説明する。サーボモータ60は、モータ本体100と、回転角センサ102と、スプリングジョイント104と、第1ギヤ106と、第2ギヤ108とを備える。モータ本体100は、第1ギヤ106および第2ギヤ108が回転するためのトルクを生成する。このトルクによって、センサーリングL64およびセンサーリングR66は駆動される。回転角センサ102は、モータ本体100の回転子の回転角を検出する。スプリングジョイント104は、モータ本体100の回転子と第1ギヤ106および第2ギヤ108の回転軸とに取り付けられ、モータ本体100が生成したトルクを第1ギヤ106および第2ギヤ108に伝達する。第1ギヤ106は、センサーリングL64のギヤ154とかみ合い、センサーリングL64にトルクを伝達する。第2ギヤ108は、センサーリングR66のギヤ164とかみ合い、センサーリングR66にトルクを伝達する。 The servo motor 60 will be described with reference to FIGS. The servo motor 60 includes a motor main body 100, a rotation angle sensor 102, a spring joint 104, a first gear 106, and a second gear 108. The motor body 100 generates torque for rotating the first gear 106 and the second gear 108. The sensor ring L64 and the sensor ring R66 are driven by this torque. The rotation angle sensor 102 detects the rotation angle of the rotor of the motor main body 100. The spring joint 104 is attached to the rotor of the motor main body 100 and the rotation shafts of the first gear 106 and the second gear 108, and transmits the torque generated by the motor main body 100 to the first gear 106 and the second gear 108. The first gear 106 meshes with the gear 154 of the sensor ring L64, and transmits torque to the sensor ring L64. The second gear 108 meshes with the gear 164 of the sensor ring R66 and transmits torque to the sensor ring R66.
 図5~図7を参照して、スプリングジョイント104の構造について説明する。スプリングジョイント104は、上部回転筒110と、第1スプリング112と、中部回転筒114と、第2スプリング116と、下部回転筒118と備える。 The structure of the spring joint 104 will be described with reference to FIGS. The spring joint 104 includes an upper rotating cylinder 110, a first spring 112, a middle rotating cylinder 114, a second spring 116, and a lower rotating cylinder 118.
 上部回転筒110には、モータ本体100の回転子が嵌め込まれる。上部回転筒110はモータ本体100が生成したトルクを中部回転筒114に伝達する。上部回転筒110の下端には、突起130が設けられている。第1スプリング112は、上部回転筒110と中部回転筒114とにはめこまれ、上部回転筒110が中部回転筒114に直接トルクを伝達できないとき、モータ本体100が生成したトルクを中部回転筒114に伝達する。中部回転筒114は、第1スプリング112および第2スプリング116を貫通しつつ上部回転筒110および下部回転筒118に嵌め込まれる。中部回転筒114は、上部回転筒110あるいは第1スプリング112が伝達したトルクを第2スプリング116に伝達する。中部回転筒114の中央部分には、突起132が設けられている。第2スプリング116は、中部回転筒114と下部回転筒118とにはめこまれ、中部回転筒114が下部回転筒118に直接トルクを伝達できないとき、モータ本体100が生成したトルクを下部回転筒118に伝達する。下部回転筒118には第1ギヤ106および第2ギヤ108の回転軸が嵌め込まれる。下部回転筒118は、第1ギヤ106および第2ギヤ108の回転軸にモータ本体100が生成したトルクを伝達する。下部回転筒118の上端には、突起134が設けられている。 The rotor of the motor main body 100 is fitted into the upper rotating cylinder 110. The upper rotating cylinder 110 transmits the torque generated by the motor main body 100 to the middle rotating cylinder 114. A protrusion 130 is provided at the lower end of the upper rotating cylinder 110. The first spring 112 is fitted in the upper rotating cylinder 110 and the middle rotating cylinder 114, and when the upper rotating cylinder 110 cannot directly transmit torque to the middle rotating cylinder 114, the torque generated by the motor body 100 is transmitted to the middle rotating cylinder 114. To communicate. The middle rotary cylinder 114 is fitted into the upper rotary cylinder 110 and the lower rotary cylinder 118 while penetrating the first spring 112 and the second spring 116. The middle rotating cylinder 114 transmits the torque transmitted from the upper rotating cylinder 110 or the first spring 112 to the second spring 116. A protrusion 132 is provided at the central portion of the middle rotating cylinder 114. The second spring 116 is fitted into the middle rotating cylinder 114 and the lower rotating cylinder 118, and when the middle rotating cylinder 114 cannot directly transmit torque to the lower rotating cylinder 118, the torque generated by the motor body 100 is transmitted to the lower rotating cylinder 118. To communicate. The rotating shafts of the first gear 106 and the second gear 108 are fitted into the lower rotating cylinder 118. The lower rotating cylinder 118 transmits the torque generated by the motor main body 100 to the rotating shafts of the first gear 106 and the second gear 108. A protrusion 134 is provided on the upper end of the lower rotating cylinder 118.
 ここで、図8および図9を参照しつつ、スプリングジョイント104の動作を説明する。モータ本体100から見て時計回りの方向のトルクがスプリングジョイント104に伝達されたとする。このとき、上部回転筒110はモータ本体100の回転子と同じ方向に回転する。上部回転筒110が回転すると、上部回転筒110の突起130が中部回転筒114の突起132を押す。突起132が押されることで、中部回転筒114もモータ本体100の回転軸と同じ方向に回転する。中部回転筒114が回転すると、モータ本体100が生成したトルクは第2スプリング116を介して下部回転筒118に伝達される。ただし、その際、第2スプリング116が変形するので、下部回転筒118に伝達されるトルクはそれほど大きくない。何らかの事情で下部回転筒118に抵抗がかかっているとき、下部回転筒118は回転しない。 Here, the operation of the spring joint 104 will be described with reference to FIGS. 8 and 9. It is assumed that torque in the clockwise direction when viewed from the motor main body 100 is transmitted to the spring joint 104. At this time, the upper rotating cylinder 110 rotates in the same direction as the rotor of the motor body 100. When the upper rotating cylinder 110 rotates, the protrusion 130 of the upper rotating cylinder 110 presses the protrusion 132 of the middle rotating cylinder 114. By pressing the protrusion 132, the middle rotary cylinder 114 also rotates in the same direction as the rotation axis of the motor body 100. When the middle rotary cylinder 114 rotates, the torque generated by the motor main body 100 is transmitted to the lower rotary cylinder 118 via the second spring 116. However, at this time, since the second spring 116 is deformed, the torque transmitted to the lower rotary cylinder 118 is not so large. When resistance is applied to the lower rotary cylinder 118 for some reason, the lower rotary cylinder 118 does not rotate.
 一方、モータ本体100から見て反時計回り方向のトルクがスプリングジョイント104に伝達されたとする。このとき、上部回転筒110はモータ本体100の回転軸と同じ方向に回転する。しかし、上部回転筒110の突起130は中部回転筒114の突起132を押さない。モータ本体100が生成したトルクは第1スプリング112によって中部回転筒114に伝達される。ただし、その際、第1スプリング112が変形するので、中部回転筒114に伝達されるトルクはそれほど大きくない。何らかの事情で下部回転筒118に抵抗がかかっているとき、突起132および突起134を介して中部回転筒114にも抵抗がかかるので、中部回転筒114は回転しない。 On the other hand, it is assumed that torque in the counterclockwise direction as viewed from the motor main body 100 is transmitted to the spring joint 104. At this time, the upper rotary cylinder 110 rotates in the same direction as the rotation axis of the motor body 100. However, the protrusion 130 of the upper rotating cylinder 110 does not push the protrusion 132 of the middle rotating cylinder 114. Torque generated by the motor body 100 is transmitted to the middle rotating cylinder 114 by the first spring 112. However, since the 1st spring 112 deform | transforms in that case, the torque transmitted to the center rotation cylinder 114 is not so large. When resistance is applied to the lower rotary cylinder 118 for some reason, resistance is also applied to the middle rotary cylinder 114 via the projections 132 and 134, so the middle rotary cylinder 114 does not rotate.
 図10を参照しつつ、ホルダー62の構造について説明する。ホルダー62には、穴140と、穴142と、穴144とを備える。穴140には第1ギヤ106および第2ギヤ108の回転軸が貫通する。穴142には曲げ加工機80の曲げ軸92の先端が嵌め込まれる。ホルダー62を曲げ加工機80に固定するためのボルトが穴144を貫通する。また、センサーリングL64およびセンサーリングR66が、ベアリング70によって回転自在な状態でホルダー62に接続される。 The structure of the holder 62 will be described with reference to FIG. The holder 62 includes a hole 140, a hole 142, and a hole 144. The rotation shafts of the first gear 106 and the second gear 108 pass through the hole 140. The tip of the bending shaft 92 of the bending machine 80 is fitted into the hole 142. Bolts for fixing the holder 62 to the bending machine 80 pass through the holes 144. Further, the sensor ring L64 and the sensor ring R66 are connected to the holder 62 in a rotatable state by a bearing 70.
 図11および図12を参照してセンサーリングL64の構成について説明する。センサーリングL64は、本体150にマイクロスイッチL152およびギヤ154を備えたものである。本体150は、側壁が円筒状で底に丸い穴が開いているものをひっくり返したような形状をしている。側壁の上端すなわち図11において本体150の底となっている部分には扇形の板156が取り付けられており、マイクロスイッチL152はその扇形の板156と側壁の上端とに固定されている。マイクロスイッチL152は、押しボタン型のスイッチが内蔵されたスイッチボックスとそのスイッチボックスにヒンジを介して取り付けられた接触板とを備える。曲げ加工機80にて折曲げられる刃材板300に接触板が接触すると、接触板はスイッチボックスの中のスイッチを押す。これにより、センサーリングL64は、刃材板300と接触しているか否かに応じた信号を生成する装置として動作することになる。また、ギヤ154は、図11において本体150の天板となっている部分の穴の縁に設けられている。ただし、ギヤ154はその縁の全周に設けられているのではない。その縁の一部には、ギヤ154が設けられていない部分が存在する。ギヤ154の少し下にはベアリング70の鍔が嵌め込まれる溝158が設けられている。 The configuration of the sensor ring L64 will be described with reference to FIGS. The sensor ring L64 includes a micro switch L152 and a gear 154 in the main body 150. The main body 150 has a shape in which a side wall is cylindrical and a round hole is opened at the bottom. A fan-shaped plate 156 is attached to the upper end of the side wall, that is, the bottom of the main body 150 in FIG. 11, and the microswitch L152 is fixed to the fan-shaped plate 156 and the upper end of the side wall. The micro switch L152 includes a switch box in which a push button type switch is incorporated and a contact plate attached to the switch box via a hinge. When the contact plate comes into contact with the blade plate 300 that is bent by the bending machine 80, the contact plate presses a switch in the switch box. As a result, the sensor ring L64 operates as a device that generates a signal according to whether or not it is in contact with the blade plate 300. Further, the gear 154 is provided at the edge of the hole of the portion that is the top plate of the main body 150 in FIG. However, the gear 154 is not provided all around the edge. A part where the gear 154 is not provided exists at a part of the edge. A groove 158 into which the flange of the bearing 70 is fitted is provided slightly below the gear 154.
 図13および図14を参照してセンサーリングR66の構成について説明する。センサーリングR66は、本体160にマイクロスイッチR162およびギヤ164を備えたものである。本体160は円筒状である。本体160の側壁の下端には突出部166が設けられており、そこにマイクロスイッチR162が取り付けられている。マイクロスイッチR162はマイクロスイッチL152と同様の構造となっている。このため、センサーリングR66は、センサーリングL64と同様、刃材板300と接触しているか否かに応じた信号を生成する。ギヤ164は、図13において本体160の上端の縁に設けられている。ただし、ギヤ164はその縁の全周に設けられているのではない。その縁の一部には、ギヤ164が設けられていない部分が存在する。ギヤ164の少し下にはベアリング70の鍔が嵌め込まれる溝168が設けられている。 The configuration of the sensor ring R66 will be described with reference to FIGS. The sensor ring R66 includes a main body 160 provided with a micro switch R162 and a gear 164. The main body 160 is cylindrical. A protrusion 166 is provided at the lower end of the side wall of the main body 160, and a micro switch R162 is attached thereto. The micro switch R162 has the same structure as the micro switch L152. For this reason, sensor ring R66 produces | generates the signal according to whether it is in contact with the blade material board 300 similarly to sensor ring L64. The gear 164 is provided at the upper edge of the main body 160 in FIG. However, the gear 164 is not provided all around the edge. A part where the gear 164 is not provided exists at a part of the edge. A groove 168 into which the flange of the bearing 70 is fitted is provided slightly below the gear 164.
 図15~図18を参照して、センサーリングL64その他の配置を説明する。上述したように、センサーリングL64およびセンサーリングR66が、ホルダー62に接続される。センサーリングL64およびセンサーリングR66は、ホルダー62に直接接続されるのではない。ホルダーに直接接続されているのはスペーサ68である。スペーサ68を介してベアリング70がホルダー62に接続されている。センサーリングL64の溝158およびセンサーリングR66の溝168にベアリング70の鍔が嵌め込まれることによってセンサーリングL64およびセンサーリングR66はホルダー62に間接的に接続されている。 The sensor ring L64 and other arrangements will be described with reference to FIGS. As described above, the sensor ring L64 and the sensor ring R66 are connected to the holder 62. The sensor ring L64 and the sensor ring R66 are not directly connected to the holder 62. Directly connected to the holder is a spacer 68. A bearing 70 is connected to the holder 62 via a spacer 68. The sensor ring L64 and the sensor ring R66 are indirectly connected to the holder 62 by fitting the flange of the bearing 70 into the groove 158 of the sensor ring L64 and the groove 168 of the sensor ring R66.
 このとき、センサーリングL64のギヤ154は第1ギヤ106にかみ合い、センサーリングR66のギヤ164は第2ギヤ108にかみ合う。これにより、サーボモータ60のモータ本体100が生成したトルクはセンサーリングL64およびセンサーリングR66に伝達される。 At this time, the gear 154 of the sensor ring L64 is engaged with the first gear 106, and the gear 164 of the sensor ring R66 is engaged with the second gear 108. Thereby, the torque generated by the motor main body 100 of the servo motor 60 is transmitted to the sensor ring L64 and the sensor ring R66.
 センサーリングL64の固定位置とセンサーリングR66の固定位置とは異なる。それらが異なるので、センサーリングL64の回転軸170とセンサーリングR66の回転軸172とは異なる。回転軸170と回転軸172とは、回転筒90によって折曲げられた刃材板300のエッジ付近に位置する。より具体的に述べると、回転筒90によって刃材板300が一方に折曲げられる時の回転軸と一致するよう、回転軸170は配置されており、刃材板300が他方に折曲げられる時の回転軸と一致するよう、回転軸172は配置されている。回転軸170および回転軸172と刃材板300が折曲げられる時の回転軸とが一致していることで、センサーリングL64あるいはセンサーリングR66の回転角が板の折曲げ角度に一致することとなる。ちなみに、多くの場合、刃材板300が折曲げられる時の回転軸は、回転筒90の爪の先端から刃材板300の厚さの2分の1の距離にあり、かつ、刃材板300の側面からその厚さの2分の1の距離にある点である。 ¡The fixed position of sensor ring L64 is different from the fixed position of sensor ring R66. Since they are different, the rotation shaft 170 of the sensor ring L64 and the rotation shaft 172 of the sensor ring R66 are different. The rotating shaft 170 and the rotating shaft 172 are positioned near the edge of the blade member plate 300 bent by the rotating cylinder 90. More specifically, the rotating shaft 170 is arranged so as to coincide with the rotating shaft when the blade plate 300 is bent in one direction by the rotating cylinder 90, and the blade plate 300 is bent in the other direction. The rotation shaft 172 is arranged so as to coincide with the rotation shaft of the first rotation shaft. The rotation angle of the sensor ring L64 or the sensor ring R66 matches the bending angle of the plate because the rotation shaft 170 and the rotation shaft 172 coincide with the rotation axis when the blade plate 300 is bent. Become. Incidentally, in many cases, the rotation axis when the blade material plate 300 is bent is at a distance of one half of the thickness of the blade material plate 300 from the tip of the claw of the rotary cylinder 90, and the blade material plate. It is a point at a distance of one half of the thickness from the side surface of 300.
 図19~図20を参照して、折り曲げ角検出装置50の取り付け形態について説明する。曲げ加工機80は、天板94とギヤケース96とを備える。天板94の穴に曲げ軸92が嵌め込まれている。ギヤケース96は、図示しないギヤを収容する。このギヤは、刃材板300を送り出すための図示しない送り出しベアリングにトルクを伝達するためのギヤである。折り曲げ角検出装置50を取り付けるため、天板94とギヤケース96とは別の天板95とギヤケース97とに取り替えられる。天板95には曲げ軸92をはめ込むための穴が設けられておらず、ギヤケース97には、ホルダー62を貫通したボルトがねじこまれるねじ穴が設けられている。すなわち、折り曲げ角検出装置50は、ホルダー62がギヤケース97にねじ止めされることで、曲げ加工機80に接続されることとなる。 Referring to FIG. 19 to FIG. 20, the mounting form of the bending angle detection device 50 will be described. The bending machine 80 includes a top plate 94 and a gear case 96. A bending shaft 92 is fitted in the hole of the top plate 94. The gear case 96 accommodates a gear (not shown). This gear is a gear for transmitting torque to a feed bearing (not shown) for feeding the blade plate 300. In order to attach the bending angle detection device 50, the top plate 94 and the gear case 96 are replaced with a different top plate 95 and gear case 97. The top plate 95 is not provided with a hole for fitting the bending shaft 92, and the gear case 97 is provided with a screw hole into which a bolt penetrating the holder 62 is screwed. That is, the bending angle detection device 50 is connected to the bending machine 80 by screwing the holder 62 to the gear case 97.
 なお、曲げ加工機80は、タッチパネル91と筒回転モータ93とをさらに備える。タッチパネル91は、情報を表示し、かつ、ユーザが情報を入力するための装置である。筒回転モータ93は、回転筒90を駆動する。 The bending machine 80 further includes a touch panel 91 and a cylinder rotating motor 93. The touch panel 91 is a device for displaying information and allowing the user to input information. The cylinder rotating motor 93 drives the rotating cylinder 90.
 図21を参照して、曲げ加工機80の制御部98について説明する。曲げ加工機80はタッチパネル91や筒回転モータ93に加え、制御部98を備える。折り曲げ角検出装置50が接続されていないとき、制御部98は、刃材板300に対する曲げ加工を制御する。折り曲げ角検出装置50が接続されているとき、制御部98は、刃材板300に対する曲げ加工に加え、折り曲げ角検出装置50による角度測定を制御する。制御部98は、筒回転モータI/O(input/output)180と、第1外部I/O182と、第2外部I/O184と、第3外部I/O186と、タッチパネルI/O188と、フラッシュメモリ読み取り装置190と、ROM(Read Only Memory)192と、RAM(Random Access Memory)194と、CPU(Central Processing Unit)196とを備える。 The control unit 98 of the bending machine 80 will be described with reference to FIG. The bending machine 80 includes a control unit 98 in addition to the touch panel 91 and the cylinder rotation motor 93. When the bending angle detection device 50 is not connected, the control unit 98 controls the bending process on the blade material plate 300. When the bending angle detection device 50 is connected, the control unit 98 controls angle measurement by the bending angle detection device 50 in addition to bending the blade material plate 300. The control unit 98 includes a cylinder rotation motor I / O (input / output) 180, a first external I / O 182, a second external I / O 184, a third external I / O 186, a touch panel I / O 188, and a flash. A memory reading device 190, a ROM (Read Only Memory) 192, a RAM (Random Access Memory) 194, and a CPU (Central Processing Unit) 196 are provided.
 筒回転モータI/O180は、筒回転モータ93に制御信号を出力する。第1外部I/O182は、サーボモータ60に接続され、回転角センサ102から回転角を示す情報の入力を受け付け、モータ本体100に対して制御信号を出力する。第2外部I/O184は、マイクロスイッチL152による信号入力を受け付ける。第3外部I/O186は、マイクロスイッチR162による信号入力を受け付ける。タッチパネルI/O188は、タッチパネル91に画像信号を出力し、かつ、タッチパネル91を介したユーザによる情報の入力を受け付ける。フラッシュメモリ読み取り装置190は、フラッシュメモリ350からCPU196が実行するための制御プログラムを読み取る。この制御プログラムは、刃材板300に対する曲げ加工だけでなく、折り曲げ角検出装置50に対する制御を行うためのプログラムである。ROM192は、フラッシュメモリ350から制御プログラムを読み取り、これを実行するためのプログラムを記憶する。RAM194は、フラッシュメモリ350から読み取られた制御プログラムを一時的に記憶する。また、RAM194は、CPU196が情報を処理するためのデータを一時的に記憶する。CPU196は、RAM194に記憶された制御プログラムを順次実行することにより、刃材板300に対する曲げ加工や折り曲げ角検出装置50による角度測定を制御する。 The cylinder rotation motor I / O 180 outputs a control signal to the cylinder rotation motor 93. The first external I / O 182 is connected to the servo motor 60, receives input of information indicating the rotation angle from the rotation angle sensor 102, and outputs a control signal to the motor body 100. The second external I / O 184 receives a signal input from the micro switch L152. The third external I / O 186 receives a signal input from the micro switch R162. The touch panel I / O 188 outputs an image signal to the touch panel 91 and accepts input of information by the user via the touch panel 91. The flash memory reader 190 reads a control program to be executed by the CPU 196 from the flash memory 350. This control program is a program for controlling the bending angle detection device 50 as well as bending the blade material plate 300. The ROM 192 reads a control program from the flash memory 350 and stores a program for executing the control program. The RAM 194 temporarily stores the control program read from the flash memory 350. The RAM 194 temporarily stores data for the CPU 196 to process information. The CPU 196 sequentially executes the control program stored in the RAM 194 to control the bending process on the blade material plate 300 and the angle measurement by the bending angle detection device 50.
 図22~図27を参照して、本実施形態に係る折り曲げ角検出装置50における刃材板300の角度を測定するための手順を説明する。 A procedure for measuring the angle of the blade material plate 300 in the bending angle detection device 50 according to the present embodiment will be described with reference to FIGS.
 曲げ軸92に対してサーボモータ60の反対側となる位置に、扇状の板156と突出部166とが互いに接触した状態で配置されているとする。本実施形態においては、この時のセンサーリングL64およびセンサーリングR66の位置を「基準位置」と称する。この状態で、曲げ加工機80の図示しない送り出しローラは曲げ軸92のスリットの間から刃材板300を送り出す。図22は、この状況を示す。 Suppose that the fan-shaped plate 156 and the protruding portion 166 are arranged in contact with each other at a position opposite to the servo motor 60 with respect to the bending shaft 92. In the present embodiment, the positions of the sensor ring L64 and the sensor ring R66 at this time are referred to as “reference positions”. In this state, a feeding roller (not shown) of the bending machine 80 feeds the blade material plate 300 from between the slits of the bending shaft 92. FIG. 22 illustrates this situation.
 刃材板300が送り出されると、制御部98は、筒回転モータI/O180を介して筒回転モータ93に制御信号を出力することで、筒回転モータ93を駆動させる。これにより、回転筒90が回転し、その爪の先端は曲げ開始位置に達する。図23は、この状況を示す。 When the blade member plate 300 is sent out, the controller 98 outputs a control signal to the tube rotation motor 93 via the tube rotation motor I / O 180 to drive the tube rotation motor 93. As a result, the rotary cylinder 90 rotates and the tip of the claw reaches the bending start position. FIG. 23 illustrates this situation.
 回転筒90の爪の先端が曲げ開始位置に達すると、サーボモータ60は、制御部98の制御に従い、トルクを生成する。第1ギヤ106および第2ギヤ108を介してそのトルクはセンサーリングL64およびセンサーリングR66に伝達される。これにより、センサーリングR66は回転する。センサーリングL64は当初回転するが、途中で回転が止まる。図11に示したように、ギヤ154は本体150の縁全周に設けられているのではない。その結果、第1ギヤ106がギヤ154にかみ合わなくなるためである。制御部98は、回転角センサ102が入力した回転角データに基づき、第2ギヤ108の回転角を把握している。その結果、制御部98は、マイクロスイッチR162の回転角も間接的に把握していることになる。刃材板300に接触すると、マイクロスイッチR162は信号を第3外部I/O186に入力する。CPU196は、マイクロスイッチR162が信号を入力した時点の第2ギヤ108の回転角に基づきマイクロスイッチR162の回転角を検出する。図24は、この状況を示す。 When the tip of the claw of the rotating cylinder 90 reaches the bending start position, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring L64 and the sensor ring R66 via the first gear 106 and the second gear 108. As a result, the sensor ring R66 rotates. Although the sensor ring L64 initially rotates, the rotation stops halfway. As shown in FIG. 11, the gear 154 is not provided around the entire edge of the main body 150. As a result, the first gear 106 does not mesh with the gear 154. The control unit 98 grasps the rotation angle of the second gear 108 based on the rotation angle data input by the rotation angle sensor 102. As a result, the control unit 98 indirectly grasps the rotation angle of the micro switch R162. When contacting the blade plate 300, the micro switch R162 inputs a signal to the third external I / O 186. The CPU 196 detects the rotation angle of the micro switch R162 based on the rotation angle of the second gear 108 at the time when the signal is input to the micro switch R162. FIG. 24 illustrates this situation.
 マイクロスイッチR162の回転角が検出されると、制御部98は、筒回転モータ93を駆動させる。これにより、回転筒90が回転し、回転筒90の爪の先端は刃材板300を折り曲げる。図25は、この状況を示す。 When the rotation angle of the micro switch R162 is detected, the control unit 98 drives the tube rotation motor 93. As a result, the rotary cylinder 90 rotates and the tip of the claw of the rotary cylinder 90 bends the blade plate 300. FIG. 25 illustrates this situation.
 刃材板300が折り曲げられると、サーボモータ60は、制御部98の制御に従い、トルクを生成する。第2ギヤ108を介してそのトルクはセンサーリングR66に伝達される。これにより、マイクロスイッチR162は再度回転する。刃材板300に再度接触すると、マイクロスイッチR162は第3外部I/O186に信号を再度入力する。図26は、この状況を示す。CPU196は、マイクロスイッチR162が信号を再度入力した時点の第2ギヤ108の回転角に基づきマイクロスイッチR162の回転角を検出する。マイクロスイッチR162の回転角が検出されると、CPU196は、その回転角と最初に検出されたマイクロスイッチR162の回転角との間の角度差を算出する。上述したように、刃材板300を折り曲げる際の回転軸上にマイクロスイッチR162ひいてはセンサーリングR66の回転軸がある。これにより、算出された角度差は、刃材板300の折り曲げられた部分の回転角に等しくなる。この角度差は、第2ギヤ108の歯の数やギヤ164の歯の数をRAM194にあらかじめ記憶させておくことで算出できる。それらの歯の数は、制御プログラムの一部として、あるいは制御プログラムから独立したデータファイルとして、フラッシュメモリ350から読み取ることにより、RAM194に記憶させることができる。 When the blade plate 300 is bent, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring R66 via the second gear 108. Thereby, the micro switch R162 rotates again. When the blade plate 300 is contacted again, the microswitch R162 inputs a signal to the third external I / O 186 again. FIG. 26 illustrates this situation. The CPU 196 detects the rotation angle of the micro switch R162 based on the rotation angle of the second gear 108 when the signal is input again by the micro switch R162. When the rotation angle of the micro switch R162 is detected, the CPU 196 calculates an angle difference between the rotation angle and the rotation angle of the micro switch R162 detected first. As described above, the rotation axis of the micro switch R162 and the sensor ring R66 is located on the rotation axis when the blade plate 300 is bent. Thereby, the calculated angle difference becomes equal to the rotation angle of the bent portion of the blade plate 300. This angle difference can be calculated by storing the number of teeth of the second gear 108 and the number of teeth of the gear 164 in the RAM 194 in advance. The number of teeth can be stored in the RAM 194 by reading from the flash memory 350 as part of the control program or as a data file independent of the control program.
 角度差が算出されると、サーボモータ60は、制御部98の制御に従い、トルクを生成する。第2ギヤ108を介してそのトルクはセンサーリングR66に伝達される。これにより、マイクロスイッチR162は再度回転する。ただし、マイクロスイッチR162は、その回転により基準位置に戻る。基準位置に戻ると、突出部166が扇状の板156を押す。これにより、ギヤ154は第1ギヤ106に再度かみあうこととなる。図27は、この状況を示す。 When the angle difference is calculated, the servo motor 60 generates torque according to the control of the control unit 98. The torque is transmitted to the sensor ring R66 via the second gear 108. Thereby, the micro switch R162 rotates again. However, the micro switch R162 returns to the reference position by its rotation. When returning to the reference position, the protrusion 166 pushes the fan-shaped plate 156. As a result, the gear 154 meshes with the first gear 106 again. FIG. 27 illustrates this situation.
 図28を参照して、スプリングバックを予め測定することなく刃材板300を的確に折り曲げるための制御手順を説明する。なお、刃材板300を右へ曲げるときの制御手順自体は特に説明しないが、マイクロスイッチL152によって刃材板300の向きが測定されることを除けば、それは刃材板300を左へ曲げたときの制御手順と同様である。 Referring to FIG. 28, a control procedure for accurately bending the blade plate 300 without measuring the spring back in advance will be described. Although the control procedure itself when bending the blade plate 300 to the right is not specifically described, except that the orientation of the blade plate 300 is measured by the micro switch L152, it is bent to the left. It is the same as the control procedure at the time.
 ステップS250にて、曲げ加工機80のCPU196は、図示しない送り出しローラを駆動させ、刃材板300を所定の長さ分送り出させる。 In step S250, the CPU 196 of the bending machine 80 drives a feed roller (not shown) to feed the blade plate 300 by a predetermined length.
 ステップS252にて、CPU196は、サーボモータ60に対し、トルクを生成させるための制御信号を出力する。サーボモータ60は、その制御信号に応じてトルクを生成する。センサーリングR66は、サーボモータ60が生成したトルクが伝達されると回転する。この場合、センサーリングL64一方は、当初回転するものの、第1ギヤ106にかみ合わなくなり、最終的には回転しなくなる。 In step S252, the CPU 196 outputs a control signal for generating torque to the servo motor 60. The servo motor 60 generates torque according to the control signal. The sensor ring R66 rotates when the torque generated by the servomotor 60 is transmitted. In this case, one of the sensor rings L64 initially rotates, but does not mesh with the first gear 106 and eventually does not rotate.
 ステップS254にて、CPU196は、マイクロスイッチR162が第3外部I/O186に入力した信号に基づき、センサーリングR66が刃材板300を検出したか否かを判断する。刃材板300を検出したと判断したとき(ステップS254にてYES)、処理はステップS256へと移される。もしそうでないと(ステップS254にてNO)、処理はステップS252と移される。 In step S254, the CPU 196 determines whether or not the sensor ring R66 has detected the blade plate 300 based on the signal input from the micro switch R162 to the third external I / O 186. When it is determined that blade plate 300 has been detected (YES in step S254), the process proceeds to step S256. If not (NO in step S254), the process proceeds to step S252.
 ステップS256にて、CPU196は、サーボモータ60に対し、トルクの生成を停止させるための制御信号を出力する。これにより、第1ギヤ106および第2ギヤ108の回転は停止する。 In step S256, the CPU 196 outputs a control signal for stopping the generation of torque to the servo motor 60. As a result, the rotation of the first gear 106 and the second gear 108 stops.
 ステップS258にて、CPU196は、回転角センサ102が入力した回転角データに基づき、センサーリングR66の回転角を算出する。センサーリングR66の回転角が算出されると、CPU196は、RAM194にその回転角を記憶させる。その回転角が刃材板300の折り開始点を示す。 In step S258, the CPU 196 calculates the rotation angle of the sensor ring R66 based on the rotation angle data input by the rotation angle sensor 102. When the rotation angle of the sensor ring R66 is calculated, the CPU 196 stores the rotation angle in the RAM 194. The rotation angle indicates the folding start point of the blade member plate 300.
 ステップS260にて、CPU196は、CPU196は、サーボモータ60に対し、トルクを生成させるための制御信号を出力する。この制御信号が入力されると、モータ本体100の回転子は回転する。本実施形態においては、このときの回転角は、次の要件を満たす角度である。その要件とは、刃材板300における折り曲げられた部分の角度がタッチパネル91を介してユーザにより指定された角度になるという要件である。センサーリングR66は、回転子の回転に応じて回転しようとする。しかしながら、刃材板300に遮られるため、センサーリングR66は回転しない。このため、スプリングジョイント104の上部回転筒110が下部回転筒118に対して相対的に回転することとなる。 In step S260, the CPU 196 outputs a control signal for generating torque to the servo motor 60. When this control signal is input, the rotor of the motor main body 100 rotates. In the present embodiment, the rotation angle at this time is an angle that satisfies the following requirements. The requirement is a requirement that the angle of the bent portion of the blade plate 300 is an angle designated by the user via the touch panel 91. The sensor ring R66 tends to rotate according to the rotation of the rotor. However, since it is blocked by the blade material plate 300, the sensor ring R66 does not rotate. For this reason, the upper rotating cylinder 110 of the spring joint 104 rotates relative to the lower rotating cylinder 118.
 ステップS262にて、CPU196は、筒回転モータ93を駆動させる。これにより、回転筒90が回転し、刃材板300はマイクロスイッチR162から離れる方向へ折曲げられる。このとき、スプリングジョイント104の第1スプリング112および第2スプリング116が弾性変形した状態から弾性変形していない状態へ戻るので、マイクロスイッチR162は刃材板300に追随する。 In step S262, the CPU 196 drives the cylinder rotation motor 93. Thereby, the rotary cylinder 90 rotates and the blade member plate 300 is bent in a direction away from the microswitch R162. At this time, since the first spring 112 and the second spring 116 of the spring joint 104 return from the elastically deformed state to the non-elastically deformed state, the microswitch R162 follows the blade plate 300.
 ステップS264にて、CPU196は、マイクロスイッチR162が入力した信号に基づき、マイクロスイッチR162が刃材板300を検出しなくなったか否かを判断する。刃材板300を検出しなくなったと判断したとき(ステップS264にてYES)、処理はステップS266へと移される。もしそうでないと(ステップS264にてNO)、処理はステップS262と移される。 In step S264, the CPU 196 determines whether the micro switch R162 no longer detects the blade plate 300 based on the signal input by the micro switch R162. When it is determined that blade material plate 300 is no longer detected (YES in step S264), the process proceeds to step S266. If not (NO in step S264), the process proceeds to step S262.
 ステップS266にて、CPU196は、筒回転モータ93を再度駆動させる。これにより、回転筒90がさらに回転し、刃材板300はさらに折曲げられる。すなわち、刃材板300は増し押しされる。回転筒90の回転角は、刃材板300の塑性変形が若干進行する程度の角度である。その後、CPU196は、筒回転モータ93を逆回転させる。筒回転モータ93の逆回転により、回転筒90の回転角は、ステップS262にて回転筒90を回転させた結果マイクロスイッチR162が刃材板300を検出しなくなった時点の角度に戻る。このとき、刃材板300の向きはスプリングバックにより若干戻るが、塑性変形が進行しているため、増し押し前の向きには戻らない。その結果、回転筒90の爪が離れたときの刃材板300の角度はユーザが指定した角度に近付く。 In step S266, the CPU 196 drives the cylinder rotation motor 93 again. Thereby, the rotary cylinder 90 further rotates and the blade material plate 300 is further bent. That is, the blade member plate 300 is pushed further. The rotation angle of the rotary cylinder 90 is an angle at which the plastic deformation of the blade plate 300 proceeds slightly. Thereafter, the CPU 196 rotates the tube rotation motor 93 in the reverse direction. Due to the reverse rotation of the tube rotating motor 93, the rotation angle of the rotating tube 90 returns to the angle at which the micro switch R162 no longer detects the blade plate 300 as a result of rotating the rotating tube 90 in step S262. At this time, the direction of the blade member plate 300 slightly returns due to the springback, but since the plastic deformation is progressing, the direction does not return to the direction before the additional pressing. As a result, the angle of the blade member plate 300 when the claw of the rotating cylinder 90 is separated approaches the angle specified by the user.
 ステップS268にて、CPU196は、マイクロスイッチR162が入力した信号に基づき、マイクロスイッチR162が刃材板300を検出しなくなったか否かを判断する。刃材板300を検出しなくなったと判断したとき(ステップS268にてYES)、処理はステップS270へと移される。もしそうでないと(ステップS288にてNO)、処理はステップS266と移される。 In step S268, the CPU 196 determines whether or not the micro switch R162 no longer detects the blade plate 300 based on the signal input by the micro switch R162. When it is determined that blade material plate 300 is no longer detected (YES in step S268), the process proceeds to step S270. If not (NO in step S288), the process proceeds to step S266.
 ステップS270にて、CPU196は、マイクロスイッチR162が基準位置に戻るよう、サーボモータ60を駆動させる。 In step S270, the CPU 196 drives the servo motor 60 so that the micro switch R162 returns to the reference position.
 ステップS272にて、制御部98は、次の曲げ加工を実施するため、情報の更新を行う。 In step S272, the control unit 98 updates the information in order to perform the next bending process.
 以上のようにして、本実施形態に係る曲げ加工機80は、折り曲げ角検出装置50が角度測定の結果として検出した刃材板300の向きに基づき、刃材板300を的確に折曲げる。スプリングバックの測定は行わない。これにより、曲げ加工機80のユーザがいちいち手作業でスプリングバックを測定する必要はなくなる。そもそも、回転筒90をどの程度回転させれば刃材板300が的確に折り曲げられるかを詳細に把握する必要がなくなる。その分、刃材板300の折り曲げ作業に要する労力を軽減させることができる As described above, the bending machine 80 according to the present embodiment accurately bends the blade material plate 300 based on the orientation of the blade material plate 300 detected as a result of the angle measurement by the bending angle detection device 50. Do not measure springback. This eliminates the need for the user of the bending machine 80 to manually measure the springback. In the first place, it is not necessary to know in detail how much the rotating cylinder 90 is rotated to accurately fold the blade plate 300. Accordingly, the labor required for bending the blade material plate 300 can be reduced.
 今回開示された実施形態はすべての点で例示である。本発明の範囲は上述した実施形態に基づいて制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々の設計変更をしてもよいのはもちろんである。 The embodiment disclosed this time is illustrative in all respects. The scope of the present invention is not limited based on the above-described embodiment, and various design changes may be made without departing from the spirit of the present invention.
 たとえば、スプリングジョイント104は、上述したような構成に限られない。上述したスプリングジョイント104に代え、サーボモータ60のモータ本体100が供給するトルクを信号生成装置に伝達し、かつ、そのトルクにより弾性変形する、板バネやゴム製の筒などを用いても良い。スプリングジョイント104に代え、他の緩衝材を用いても良い。緩衝材を用いる場合、その緩衝材は、モータ本体100が供給するトルクをセンサーリングL64あるいはセンサーリングR66に伝達するとともに、モータ本体100が供給するトルクにより弾性変形するものであれば良い。スプリングジョイント104はなくともよい。 For example, the spring joint 104 is not limited to the configuration described above. Instead of the spring joint 104 described above, a plate spring, a rubber tube, or the like that transmits torque supplied from the motor main body 100 of the servo motor 60 to the signal generation device and elastically deforms by the torque may be used. Instead of the spring joint 104, another cushioning material may be used. In the case of using the buffer material, the buffer material may be any material that transmits torque supplied from the motor main body 100 to the sensor ring L64 or the sensor ring R66 and is elastically deformed by the torque supplied from the motor main body 100. The spring joint 104 may not be provided.
 また、回転角センサ102によってセンサーリングL64やセンサーリングR66の回転角を間接的に測定するのではなく、それらの回転角を直接測定しても良い。それらの回転角を直接測定するための具体策としては、センサーリングL64のギヤ154やセンサーリングR66のギヤ164に平歯車を噛み合わせ、その軸に角度センサを接続する方法などが考えられる。 Further, instead of indirectly measuring the rotation angles of the sensor ring L64 and the sensor ring R66 by the rotation angle sensor 102, the rotation angles thereof may be directly measured. As a specific measure for directly measuring these rotation angles, a method of engaging a spur gear with the gear 154 of the sensor ring L64 or the gear 164 of the sensor ring R66 and connecting an angle sensor to the shaft can be considered.
 また、サーボモータ60に代え、その他の駆動装置がセンサーリングL64およびセンサーリングR66を駆動しても良い。駆動のための機構もまた特に制限されない。 Further, instead of the servo motor 60, another driving device may drive the sensor ring L64 and the sensor ring R66. The mechanism for driving is not particularly limited.
 また、センサーリングL64やセンサーリングR66に代え、刃材板300と接触しているか否かに応じた信号をそれらとは異なるしくみで生成する信号生成装置が折り曲げ角検出装置50に備えられても良い。そのような信号生成装置の例としては、マイクロスイッチを直線状で走行させ、刃材板300に接触した位置と折り曲げられている刃材板300の回転軸との位置関係に基づいてその回転角を算出する装置がある。 Further, instead of the sensor ring L64 and the sensor ring R66, the bending angle detection device 50 may include a signal generation device that generates a signal according to whether or not the blade plate 300 is in contact with a mechanism different from those. good. As an example of such a signal generation device, the rotation angle of the microswitch is determined based on the positional relationship between the position in contact with the blade material plate 300 and the rotation axis of the blade material plate 300 being bent. There is a device for calculating.
 また、折り曲げ角検出装置50は、制御部を備えていても良い。この場合、その制御部の構成は制御部98と同様であってもよい。これにより、折り曲げ角検出装置50は、曲げ加工機80の制御部98に依存せずに刃材板300の折り曲げられた部分の角度を測定できる。また、スプリングバックを測定する場合、折り曲げ角検出装置50の制御部は、曲げ加工機80の制御部98の連携してもよい。 Further, the bending angle detection device 50 may include a control unit. In this case, the configuration of the control unit may be the same as that of the control unit 98. Thereby, the bending angle detection device 50 can measure the angle of the bent portion of the blade plate 300 without depending on the control unit 98 of the bending machine 80. When measuring the springback, the control unit of the bending angle detection device 50 may cooperate with the control unit 98 of the bending machine 80.
 また、制御部98が制御プログラムを読み取るためのプログラム記録媒体は、フラッシュメモリ350に限定されない。たとえば、USBメモリであっても良い。さらに、インターネットを介して制御プログラムを受信してもよい。 Further, the program recording medium for the control unit 98 to read the control program is not limited to the flash memory 350. For example, a USB memory may be used. Further, the control program may be received via the Internet.

Claims (4)

  1.  曲げ加工機(80)によって板を折り曲げる板折り曲げ方法であって、
     前記板における折り曲げられた部分の角度が予め定められた角度に達したことが、前記曲げ加工機に前記板が取り付けられ、かつ、スプリングバックが完了した状態で検出されるまで、前記板を折り曲げる作業を複数回繰り返す、板折り曲げ方法。
    A plate bending method of bending a plate by a bending machine (80),
    The plate is bent until it is detected that the angle of the bent portion of the plate reaches a predetermined angle when the plate is attached to the bending machine and the springback is completed. A plate bending method that repeats the work multiple times.
  2.  前記板折り曲げ方法は、前記板における折り曲げられた部分の角度が予め定められた角度に達したことが、前記曲げ加工機に接続される折り曲げ角検出装置(50)により検出されるまで(S284)、前記板をさらに折り曲げる(S286)方法である、請求項1に記載の板折り曲げ方法。 In the plate bending method, until the bending angle detecting device (50) connected to the bending machine detects that the angle of the bent portion of the plate has reached a predetermined angle (S284). 2. The plate bending method according to claim 1, wherein the plate is further bent (S286).
  3.  前記折り曲げ角検出装置は、前記板に接触することによって、前記曲げ加工機が前記板を折り曲げる前の前記板の向きと前記曲げ加工機が前記板を折り曲げた後の前記板の向きとを測定する、請求項2に記載の板折り曲げ方法。 The bending angle detection device measures the orientation of the plate before the bending machine bends the plate and the orientation of the plate after the bending machine bends the plate by contacting the plate. The plate bending method according to claim 2.
  4.  角度を検出する折り曲げ角検出装置(50)であって、
     前記折り曲げ角検出装置は、曲げ加工機(80)に接続され、
     前記角度は、前記曲げ加工機によって折り曲げられた板における折り曲げられた部分の角度であり、
     前記板と接触しているか否かに応じた信号を生成する信号生成装置(64,66)と、
     前記曲げ加工機に前記信号生成装置を回転自在に接続する接続部(62,70)と、
     前記信号生成装置を回転するように駆動する駆動装置(100)と、
     前記信号生成装置の回転角を検出する回転角検出装置(102)とを備え、
     前記接続部は、
     前記曲げ加工機に固定されるホルダー(62)と、
     前記ホルダーに接続されるベアリング(70)とを有し、
     前記ベアリングは、前記信号生成装置を、前記曲げ加工機が前記板を折り曲げる際の前記板の回転軸と前記信号生成装置の回転軸とが一致するよう、回転自在に位置決めする、折り曲げ角検出装置。
    A bending angle detection device (50) for detecting an angle,
    The bending angle detection device is connected to a bending machine (80),
    The angle is an angle of a bent portion in a plate bent by the bending machine,
    A signal generator (64, 66) for generating a signal according to whether or not it is in contact with the plate;
    Connecting portions (62, 70) for rotatably connecting the signal generating device to the bending machine;
    A driving device (100) for driving the signal generating device to rotate;
    A rotation angle detection device (102) for detecting a rotation angle of the signal generation device,
    The connecting portion is
    A holder (62) fixed to the bending machine;
    Bearing (70) connected to the holder,
    The bend angle detection device, wherein the bearing positions the signal generation device so that the rotation axis of the plate when the bending machine bends the plate coincides with the rotation axis of the signal generation device. .
PCT/JP2008/059208 2008-05-20 2008-05-20 Plate bending method and bending angle detection device WO2009141865A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010512872A JPWO2009141865A1 (en) 2008-05-20 2008-05-20 Plate bending method, bending angle detecting device, and computer-readable program recording medium recording control program
US12/993,171 US20110061431A1 (en) 2008-05-20 2008-05-20 Plate bending method and bending angle detection device
EP08764368A EP2298464A4 (en) 2008-05-20 2008-05-20 Plate bending method and bending angle detection device
PCT/JP2008/059208 WO2009141865A1 (en) 2008-05-20 2008-05-20 Plate bending method and bending angle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/059208 WO2009141865A1 (en) 2008-05-20 2008-05-20 Plate bending method and bending angle detection device

Publications (1)

Publication Number Publication Date
WO2009141865A1 true WO2009141865A1 (en) 2009-11-26

Family

ID=41339840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059208 WO2009141865A1 (en) 2008-05-20 2008-05-20 Plate bending method and bending angle detection device

Country Status (4)

Country Link
US (1) US20110061431A1 (en)
EP (1) EP2298464A4 (en)
JP (1) JPWO2009141865A1 (en)
WO (1) WO2009141865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045336A (en) * 2016-10-11 2019-05-02 에스엠에스 그룹 게엠베하 Molding press with bending blade

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000986A (en) * 2011-06-17 2013-01-07 Brother Industries Ltd Inkjet printer
US9314831B2 (en) * 2011-06-24 2016-04-19 Revcor, Inc. Manufacturing system and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304685A (en) 1993-04-21 1994-11-01 Itami Kogyo Kk Device for working knife
JPH07266A (en) 1993-06-15 1995-01-06 Koei Shiyousan Kk Production of clothing cover and device therefor
JPH07116737A (en) * 1993-10-19 1995-05-09 Komatsu Ltd Instrument for measuring bending angle
JPH08215761A (en) 1995-02-20 1996-08-27 Suehiro Mizukawa Method for bending belt-sheet and device therefor
JPH08215760A (en) * 1995-02-20 1996-08-27 Suehiro Mizukawa Movable die of belt-sheet bending device
JP2001353528A (en) 2001-06-11 2001-12-25 Suehiro Mizukawa Method of bending plate material
JP2007114077A (en) * 2005-10-21 2007-05-10 Murata Mach Ltd Sheet material bent angle measuring instrument in press brake, and article angle measuring instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304685A (en) 1993-04-21 1994-11-01 Itami Kogyo Kk Device for working knife
JPH07266A (en) 1993-06-15 1995-01-06 Koei Shiyousan Kk Production of clothing cover and device therefor
JPH07116737A (en) * 1993-10-19 1995-05-09 Komatsu Ltd Instrument for measuring bending angle
JPH08215761A (en) 1995-02-20 1996-08-27 Suehiro Mizukawa Method for bending belt-sheet and device therefor
JPH08215760A (en) * 1995-02-20 1996-08-27 Suehiro Mizukawa Movable die of belt-sheet bending device
JP2001353528A (en) 2001-06-11 2001-12-25 Suehiro Mizukawa Method of bending plate material
JP2007114077A (en) * 2005-10-21 2007-05-10 Murata Mach Ltd Sheet material bent angle measuring instrument in press brake, and article angle measuring instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2298464A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190045336A (en) * 2016-10-11 2019-05-02 에스엠에스 그룹 게엠베하 Molding press with bending blade
KR102213572B1 (en) 2016-10-11 2021-02-08 에스엠에스 그룹 게엠베하 Forming press with bending blades

Also Published As

Publication number Publication date
EP2298464A4 (en) 2011-11-02
EP2298464A1 (en) 2011-03-23
JPWO2009141865A1 (en) 2011-09-22
US20110061431A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US10144132B2 (en) Robot controlling method, robot apparatus, program and recording medium
EP1978328B1 (en) Oscillating scanning probe with constant contact force
CN101842195B (en) Gripping apparatus and gripping apparatus control method
EP2410291B1 (en) Profile Measuring Instrument
JP7000359B2 (en) Judgment device
WO2009141865A1 (en) Plate bending method and bending angle detection device
EP2426473B1 (en) Actuating device for calibrating torque-rotation angle keys
KR20110030889A (en) Actuator for robot and humanoid robot comprising thereof
CN104608114A (en) Robot system and method for producing to-be-processed material
WO2018061566A1 (en) Robot arm, robot control device, and robot system
WO2009141864A1 (en) Bending angle detection device and plate bending method
US10901451B2 (en) Input device
WO2018225689A1 (en) Angular transmission error identifying system, angular transmission error identifying method, and robot system
JP7126817B2 (en) Grasping system and method
JP7267688B2 (en) Robot system, robot arm control method, article manufacturing method, driving device, and driving device control method
JP2017151528A (en) Drive control device, motor drive system, image processing device, and conveyance device
WO2022118760A1 (en) 3d printer using robot and control apparatus for robot
JP2018036097A (en) Angle position detector
WO2018073873A1 (en) Servo control device
JP4449693B2 (en) Robot control apparatus and control method thereof
JP4839242B2 (en) Transfer belt drive mechanism modeling method and control system design support method using the modeling method
JP2020138305A (en) Robot control method, control device, program, storage medium, robot system and manufacturing method
JP7457628B2 (en) Operation method, robot system, control device, teaching method and program
JP2019084561A (en) Flat wire molding device
WO2020250515A1 (en) Control device and operation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512872

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12993171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008764368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE