WO2018073873A1 - Servo control device - Google Patents
Servo control device Download PDFInfo
- Publication number
- WO2018073873A1 WO2018073873A1 PCT/JP2016/080744 JP2016080744W WO2018073873A1 WO 2018073873 A1 WO2018073873 A1 WO 2018073873A1 JP 2016080744 W JP2016080744 W JP 2016080744W WO 2018073873 A1 WO2018073873 A1 WO 2018073873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- end position
- servo control
- motor
- control device
- command
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
Definitions
- the present invention relates to a servo control device that drives a servo motor.
- the actuator In the servo control device of a machine tool, the actuator is controlled so that the position of a driven body such as a table or a tool for fixing the workpiece follows the command.
- Examples of the actuator to be driven include a rotary motor and a linear motor.
- control for driving a tool position with respect to a workpiece so as to accurately follow a command path, which is a commanded path is referred to as path control or contour motion control, and is a numerical control device and a servo control device attached thereto. Is precisely executed by.
- the machine device to be controlled has a plurality of axes, and the servo motors constituting each axis are driven by the respective servo control devices.
- Friction, backlash, and lost motion that exist in the mechanical system become disturbance factors for trajectory control in the servo control device, and cause follow-up errors.
- a typical example is a tracking error that occurs when the moving direction of the driven body along the feed axis is reversed at the arc quadrant switching position when an arc locus is commanded. If this error is displayed with the amount of error enlarged in the radial direction, it becomes a projection-like error outside the locus, so it is called a quadrant projection. When a tracking error such as a quadrant projection occurs, streaks or scratches are generated on the processed surface, which is not preferable.
- the servo control device in order to suppress the quadrant protrusion, when the moving direction of the driven body along the feed shaft is reversed, the servo control device is set in advance to compensate for each factor of backlash, elastic deformation, and static friction. The correction amount is added to the speed command (see Patent Document 1).
- Patent Document 1 since friction and elastic deformation change depending on control conditions such as command speed or command trajectory, the method disclosed in Patent Document 1 needs to set a correction amount each time the control conditions such as command speed or command trajectory change. is there. In addition, since friction changes depending on environmental factors such as temperature, it is necessary to reset the correction amount each time the environmental factors change. For this reason, in order to perform high-accuracy correction on a command trajectory in which various control conditions are combined, it is necessary to readjust the correction amount with respect to the control conditions and environmental factors during processing, which requires a lot of trouble. There was a problem of requiring.
- the correction amount and the correction time differ depending on the machine configuration, and even if the machines have the same configuration, there are individual differences. Therefore, there is a problem that it is necessary to adjust the correction amount for each machine, which takes time.
- a servo control device that controls the position of a driven body using a drive transmission mechanism such as a rotary motor and a ball screw is controlled by a fully closed loop
- the position measured by a position detector attached in the vicinity of the driven body The deviation from the position of the driven body calculated from the rotation angle measured by the rotation angle detector attached to the rotation motor that drives the mechanical system greatly affects the tracking error when the moving direction is reversed. Therefore, there is a problem that a sufficient correction effect cannot be obtained depending on the command locus.
- the present invention has been made in view of the above, and an object of the present invention is to provide a servo control device capable of suppressing a tracking error with respect to a command locus of a machine end position when the moving direction of a driven body is reversed.
- the present invention is a servo control device for controlling a motor connected to a driven body via a drive transmission mechanism, based on a position command and an error correction amount.
- a servo control unit that calculates and outputs a torque command to the motor so that the machine end position, which is the position of the driven body, follows the position command, and detects the direction of movement of the machine end position based on the position command And a moving direction detecting unit.
- the present invention relates to a torsion amount calculation unit that calculates and outputs a torsion amount from a machine end position and a motor end position that is a motor position, a torsion amount when a moving direction is reversed, a driven body, and a drive transmission mechanism And a correction amount calculation unit that calculates an error correction amount using the mechanical characteristics of.
- the servo control device has an effect that it is possible to suppress a tracking error with respect to the command locus of the machine end position when the moving direction of the driven body is reversed.
- FIG. 3 is a diagram illustrating a configuration of a correction amount calculation unit according to the first embodiment.
- the motor and the mechanical system according to the first embodiment are modeled by a two-inertia system
- the motor and the mechanical system according to the first embodiment are modeled by a two-inertia system
- a diagram showing a two-inertia system model of a motor and a mechanical system according to the first embodiment in a block diagram The figure which shows the locus of the machine end position when the circular arc position command is given to the servo controller
- FIG. The figure which shows the structure of the corrected amount calculating part concerning Embodiment 2.
- FIG. The figure which shows the structure of the numerical control apparatus concerning Embodiment 3 of this invention.
- FIG. 1 is a diagram showing a configuration of a numerical control apparatus 101 according to the first embodiment of the present invention.
- the numerical control device 101 includes a position command generation unit 5 that generates a position command 200 and a servo control device 100 that outputs a torque command 201 based on the position command 200.
- the servo control device 100 is connected to the motor 6 and the mechanical system 7, and drives the mechanical system 7 that is a control target by giving a torque command 201 to the motor 6.
- the mechanical device to be controlled by the numerical control device 101 has a plurality of axes, the servo control device 100, the motor 6, and the mechanical system 7 are provided on each axis, but only one axis is shown in FIG.
- the servo control device 100 includes a servo control unit 1 that outputs a torque command 201, a movement direction detection unit 2 that outputs a movement direction signal 204, a twist amount calculation unit 3 that outputs a twist amount 205, and an error correction amount 206. And an output correction amount calculation unit 4.
- FIG. 2 is a diagram illustrating the configuration of the motor 6 and the mechanical system 7 according to the first embodiment.
- the motor 6 includes a servo motor 61 and a motor end position detector 62.
- a specific example of the motor end position detector 62 is a rotary encoder.
- the motor end position detector 62 is attached to the servo motor 61 and detects a motor end position 202 that is the rotation angle of the servo motor 61.
- the mechanical system 7 includes a coupling 70 that transmits the power of the servo motor 61, a ball screw 71 that is rotationally driven by the servo motor 61, a ball screw nut 72 that converts the rotation of the ball screw 71 into a linear motion, and a ball screw. And a table 73 which is a driven body fixed to the nut 72.
- the ball screw 71 is connected to the servo motor 61 via the coupling 70.
- the ball screw nut 72 is fitted to the ball screw 71, and the table 73 and the ball screw nut 72 are driven together.
- the coupling 70, the ball screw 71, and the ball screw nut 72 constitute a drive transmission mechanism from the motor 6 to the table 73. Therefore, the mechanical system 7 includes a driven body and a drive transmission mechanism.
- the machine tool having the numerical control device 101 further includes a linear encoder having a machine end position detector 74 and a scale 75.
- a specific example of the scale 75 is a glass surface having a grid-like scale.
- the machine end position detector 74 reads the scale 75 and outputs it as a signal.
- the signal output from the machine end position detector 74 is converted into the machine end position 203 that is the position of the table 73 that is the driven body, and is output to the servo control device 100.
- the detection unit of the rotation angle detected by the motor end position detector 62 is degrees
- multiply the motor end position 202 by a ball screw lead which is a table movement amount per rotation of the servo motor 61, at 360 degrees.
- the rotation angle can be converted into the length of the table 73 in the moving direction.
- the moving direction is a direction along the axis that the servo control device 100 is in charge of, and the direction of the moving direction can be either positive or negative.
- a value converted into the moving direction of the table 73 is used as the motor end position 202.
- the position command generator 5 numerically controls the machine end position 203 by generating a position command 200 based on the machining program.
- the machining program is a program in which a tool for machining a workpiece and how to move the mechanical system 7 are described in a series of formats by an instruction such as a G code. In the machining program, the moving distance and moving speed of the tool and the mechanical system 7 with respect to the workpiece are determined.
- the position command generator 5 calculates a position command 200 for each axis based on the machining program, and outputs it to the servo control device for each axis.
- the servo control device 100 receives the position command 200 generated by the position command generation unit 5 and is obtained from the motor end position 202 detected by the motor end position detector 62 and the signal output by the machine end position detector 74.
- the machine end position 203 is acquired.
- the servo control device 100 uses the motor end position 202 and the machine end position 203 as position feedback, generates a torque command 201 so that the machine end position 203 follows the position command 200, and outputs the torque command 201 to the motor 6.
- FIG. 3 is a diagram illustrating a configuration of the servo control unit 1 according to the first embodiment.
- the servo control unit 1 includes a position control unit 11, a speed control unit 12, a differential calculation unit 13, subtracters 14 and 16, and an adder 15.
- the subtractor 14 obtains a position deviation that is a difference between the position command 200 and the machine end position 203 and outputs the position deviation to the position control unit 11.
- the position control unit 11 executes position control processing such as proportional control with respect to the position deviation, and calculates and outputs a speed command.
- the adder 15 adds a speed command and an error correction amount 206 calculated by the correction amount calculation unit 4 described later and outputs the result.
- the differential calculation unit 13 differentiates the motor end position 202 and outputs a motor end speed that is a differential value of the motor end position 202.
- the subtracter 16 obtains a speed deviation that is a difference between the output of the adder 15 and the motor end speed, and outputs the speed deviation to the speed control unit 12.
- the speed control unit 12 executes a predetermined speed control process such as proportional integral control with respect to the speed deviation, and calculates and outputs a torque command 201 that causes the machine end position 203 to follow the position command 200.
- FIG. 4 is a diagram illustrating a configuration of the moving direction detection unit 2 according to the first embodiment.
- the moving direction detection unit 2 includes a position control simulation unit 21, an integration calculation unit 22, a sign calculation unit 23, and a subtracter 24.
- the movement direction detection unit 2 simulates the response of the machine end position 203 based on the position command 200 and outputs a movement direction signal 204 indicating the direction of the movement direction of the table 73.
- the subtractor 24 obtains the difference between the position command 200 and the model position that is the output of the integral calculation unit 22 and outputs the difference to the position control simulation unit 21.
- the position control simulation unit 21 simulates the position control unit 11 of the servo control unit 1.
- the position control simulation unit 21 executes the same position control processing as the position control unit 11 on the difference between the position command 200 input from the subtractor 24 and the model position, and uses the obtained speed command as a model speed. Output.
- the model speed output by the position control simulation unit 21 corresponds to the calculated value of the speed in the table 73.
- the integration calculation unit 22 obtains a calculated value of the machine end position 203 by integrating the model speed and outputs it as a model position.
- the sign calculation unit 23 detects whether the moving direction of the table 73 is positive or negative based on the model speed, takes a positive or negative sign according to the moving direction, and the absolute value is “1”.
- the movement direction signal 204 which is a step-like signal is output. Thereby, the timing at which the moving direction of the table 73 is reversed can be accurately detected.
- the sign calculation unit 23 outputs the same movement direction signal 204 as the previous time when the model speed becomes 0, and outputs “0” as the movement direction signal 204 in the initial state.
- FIG. 5 is a diagram illustrating a configuration of the twist amount calculation unit 3 according to the first embodiment.
- the twist amount calculation unit 3 includes differential calculation units 31 and 32, a unit conversion unit 33, and subtractors 34 and 35.
- the torsion amount calculation unit 3 receives the motor end position 202 and the machine end position 203 as inputs, and calculates and outputs a torsion amount 205 caused by friction for each calculation cycle.
- the torsion amount 205 is an amount based on a deviation between the motor end position 202 and the machine end position 203. This deviation includes a component caused by frictional force and a component caused by inertial force.
- the component resulting from the inertia force is a component due to elastic deformation of the mechanical system 7.
- the torsion amount calculation unit 3 in order to calculate the torsion amount 205 as a deviation due to friction, a deviation due to inertial force is obtained and removed from the deviation between the motor end position 202 and the machine end position 203.
- the motor end position 202 is second-order differentiated by the differential operation units 31 and 32 connected in series, and the motor end acceleration am of the motor 6 is calculated and output to the unit conversion unit 33.
- the unit conversion unit 33 calculates and outputs a deviation due to inertial force by multiplying the input motor end acceleration am of the motor 6 by a predetermined coefficient. The coefficient will be described later.
- the subtractor 34 obtains a deviation between the motor end position 202 and the machine end position 203 and outputs it to the subtractor 35.
- the subtractor 35 subtracts the deviation of the component caused by the inertial force output by the unit conversion unit 33 from the entire deviation inputted, thereby calculating and outputting the twist amount 205 that is the deviation of the component caused by friction. To do. As a result, the torsion amount 205 due to friction can be calculated with high accuracy.
- FIG. 6 is a diagram illustrating a configuration of the correction amount calculation unit 4 according to the first embodiment.
- the correction amount calculation unit 4 includes a correction gain calculation unit 41 and a mechanical characteristic filter 42.
- the correction amount calculation unit 4 receives the twist amount 205 output from the twist amount calculation unit 3 and the movement direction signal 204 output from the movement direction detection unit 2 and outputs an error correction amount 206.
- the correction gain calculation unit 41 can determine that the moving direction is reversed when the direction of the moving direction of the table 73 changes based on the moving direction signal 204.
- the moving direction of the table 73 is reversed, that is, when the moving direction signal 204 changes from “+1” to “ ⁇ 1”, or when the moving direction signal 204 changes from “ ⁇ 1” to “+1”.
- a correction gain is calculated based on the twist amount 205 at that time.
- the correction gain is calculated by multiplying the twist amount 205 by the correction magnification.
- the correction gain is set to 0 except when the moving direction of the table 73 is reversed.
- the correction gain calculation unit 41 outputs an impulse signal whose amplitude is the magnitude of the correction gain to the mechanical characteristic filter 42. Therefore, the correction gain calculation unit 41 outputs an impulse signal having the amplitude of the correction gain as an amplitude to the mechanical characteristic filter 42 when the moving direction of the table 73 is reversed.
- the mechanical characteristic filter 42 filters the output of the correction gain calculation unit 41 with a transfer function type filter that represents mechanical characteristics, and corresponds to the elapsed time after the moving direction of the table 73 to be controlled is reversed. An error correction amount 206 is calculated and output. The setting of the mechanical characteristic filter 42 will be described later.
- 7 and 8 are diagrams in which the motor 6 and the mechanical system 7 according to the first embodiment are modeled by a two-inertia system.
- K is the spring constant of the elastic element of the mechanical system 7
- C is the viscous friction coefficient of the damping element of the mechanical system 7
- Jm is the inertia of the motor 6
- Jl is the mechanical system 7
- FM is a friction force acting on the motor 6
- FL is a friction force acting on the mechanical system 7.
- the position of Jm imitates the motor end position 202
- the position of Jl imitates the machine end position 203.
- the reason why Jm and Jl are separated through the elastic element is that a deviation occurs between the motor end position 202 and the machine end position 203 due to elastic deformation caused by the frictional force generated between the motor 6 and the mechanical system 7. It expresses that.
- FIG. 7 shows a case where the motor end position 202 and the machine end position 203 are moved in the + direction of the movement direction
- FIG. 8 shows that the motor end position 202 and the machine end position 203 are moved in the ⁇ direction of the movement direction. Shows the case.
- the force by the elastic element acting in the + direction on Jl and the frictional force FL are balanced.
- the force by the elastic element acting in the negative direction on Jl and the frictional force FL are balanced.
- FIG. 9 is a block diagram showing a two-inertia system model of the motor 6 and the mechanical system 7 according to the first embodiment.
- Tm is a torque output from the servo motor 61 in accordance with the torque command 201
- xl is a variable indicating the machine end position 203
- xm is a variable indicating the motor end position 202
- s is a Laplace operator representing differentiation.
- xm respectively those of xl and FL and Laplace transform, when X M, X L and F L, the value obtained by Laplace transform a deviation between the motor end position 202 and the machine end position 203, the following equation (1) Represented.
- a M is one where the motor end acceleration am the differentiating unit 32 and output to Laplace transform.
- the motor end acceleration am is a value obtained by second-order differentiation of the motor end position 202.
- ⁇ n is a resonance frequency of the mechanical system 7
- ⁇ is a damping coefficient of the mechanical system 7.
- the first term in parentheses on the right side of the last line of Equation (1) is a term due to frictional force
- the second term in parentheses is a term due to inertial force.
- the tracking error Et of the machine end position 203 corresponding to the elapsed time since the direction of the movement direction of the motor end position 202 is reversed is expressed by the following formula (2) because the amount of change in the frictional force at the time of reversal is 2FL. It is.
- the follow-up error is suppressed by compensating the follow-up error Et represented by Expression (2).
- the second term in parentheses on the right side of the last line of Equation (1) is a deviation caused by inertial force. Therefore, the twist amount calculation unit 3 removes the deviation due to the inertial force of the second term from the entire deviation as described above.
- the coefficient multiplied by the unit conversion unit 33 may be the reciprocal 1 / ⁇ n 2 of the square of the resonance frequency of the mechanical system 7.
- the resonance frequency ⁇ n can be identified by examining the frequency response characteristics.
- the torsion amount 205 output from the torsion amount calculation unit 3 is a deviation caused by the frictional force and is a value corresponding to FL / K.
- the correction gain calculation unit 41 calculates the correction gain by doubling the twist amount 205.
- the mechanical characteristic filter 42 may be set as a transfer function type filter Gf (s) represented by the following Expression (3).
- Gf of formula (3) (s) is the transfer function multiplied by K to transfer characteristics from the friction force F L acting on the mechanical system 7 to torsion amount of 2 inertia model shown in FIGS.
- FIG. 10 and 11 are diagrams showing the locus of the machine end position when an arc-shaped position command is given to the servo control device.
- a clockwise arc-shaped position command is given to two axes of the X axis and the Y axis which are orthogonal to each other.
- FIG. 10 shows the locus of the machine end position when feedback control for the position command is executed without correcting the follow-up error Et of the machine end position 203.
- the broken line in FIG. 10 indicates the command locus, and the solid line indicates the locus of the machine end position.
- the locus error at the position where the moving direction along the Y axis is reversed is displayed in an enlarged manner, and a large protrusion is generated. This is a quadrant projection caused by the tracking delay.
- FIG. 11 is a diagram illustrating an effect when the correction by the servo control device 100 according to the first embodiment is executed. Also in FIG. 11, the broken line indicates the command locus and the solid line indicates the locus of the machine end position, as in FIG. 10, but the quadrant protrusion is suppressed by the correction at the position where the moving direction along the Y axis is reversed. Therefore, the broken line and the solid line overlap.
- the twist amount 205 is always obtained, and the error correction amount 206 is calculated using the twist amount 205 when the moving direction is reversed.
- the tracking error Et of the machine end position 203 caused by the friction force when the moving direction is reversed can be accurately corrected, and robust correction is performed for control conditions such as command speed or command trajectory and environmental factors such as temperature. There is an effect that becomes possible.
- the error correction amount 206 is calculated by using the mechanical characteristic filter 42 in which the mechanical characteristic of the mechanical system 7 is represented by a transfer function type filter.
- FIG. FIG. 12 is a diagram showing a configuration of the numerical controller 301 according to the second embodiment of the present invention.
- the numerical control device 301 includes a position command generation unit 5 that generates a position command 200 and a servo control device 300 that outputs a torque command 201 based on the position command 200.
- the same components as those in FIG. 1 according to the first embodiment are given the same names and reference numerals as those in the first embodiment, and the description thereof is omitted.
- the difference between the numerical control device 301 and the numerical control device 101 according to the first embodiment will be mainly described.
- FIG. 13 is a diagram illustrating a configuration of the moving direction detection unit 320 according to the second embodiment.
- the movement direction detection unit 320 includes a differential calculation unit 324 in addition to the position control simulation unit 21, the integration calculation unit 22, the sign calculation unit 23, and the subtractor 24.
- the movement direction detector 320 simulates the response of the machine end position 203 based on the position command 200 and outputs a model acceleration 207 in addition to outputting a movement direction signal 204 indicating the direction of the movement direction of the mechanical system 7. To do.
- the differentiation calculation unit 324 calculates a model acceleration 207 that is a calculated value of the acceleration at the machine end position 203 by differentiating the model speed output from the position control simulation unit 21.
- the movement direction detection unit 320 outputs the model acceleration 207 together with the movement direction signal 204 to the correction amount calculation unit 340.
- FIG. 14 is a diagram illustrating a configuration of the correction amount calculation unit 340 according to the second embodiment.
- the correction amount calculation unit 340 includes a correction gain calculation unit 341, a mechanical characteristic filter 42, and a correction magnification table 343.
- the correction magnification table 343 is a table showing correction magnifications T0, T1,..., Tn corresponding to reference model accelerations a0, a1,.
- a correction magnification corresponding to the model acceleration 207 received by the correction amount calculation unit 340 in the correction magnification table 343 is input to the correction gain calculation unit 341.
- the correction gain calculation unit 341 calculates the correction gain by multiplying the twist amount 205 and the correction magnification when the movement direction signal 204 changes, as in the first embodiment.
- the correction magnification is determined based on the model acceleration 207 that is the state quantity of the servo control device 300 at the time of inversion.
- the state quantity on which the correction magnification depends other state quantities of the servo control device 300 may be used instead of the model acceleration 207 depending on the structure or characteristics of the mechanical system 7.
- a calculated value related to the position or speed other than the acceleration calculated from the position command 200 using any model may be used.
- a history of a position feedback value that is an actual measurement value such as the motor end position 202 or the machine end position 203 at the time of reversal, and a speed feedback value that is a differential value of the position feedback value may be used.
- a specific example of the history of the speed feedback value is the maximum speed of the speed feedback value within a certain time before inversion.
- the temperature or temperature of the motor 6 or the mechanical system 7 may be used as the state quantity.
- the correction magnification may depend on two or more of the state quantities described above.
- the correction magnification is changed according to the state quantity of the servo control device 300, so that it is based on the mechanical characteristics of the mechanical system 7 for each control condition. There is an effect that can be corrected. Furthermore, robust correction can be made against changes in environmental factors.
- FIG. 15 is a diagram illustrating a configuration of a numerical control device 401 according to the third embodiment of the present invention.
- the numerical control device 401 includes a position command generation unit 5 that generates a position command 200 and a servo control device 400 that outputs a torque command 201 based on the position command 200.
- FIG. 15 the same components and elements as those in FIG. In the following, differences between the numerical control device 401 and the numerical control device 101 according to the first embodiment will be mainly described.
- the servo control device 400 further includes a vibration command generation unit 8 and a machine model identification unit 9 in addition to the components of the servo control device 100.
- the vibration command generator 8 outputs a vibration command 208 to the servo controller 410 when identifying the machine model.
- the machine model is a transfer function that depends on the mechanical characteristics of the mechanical system 7 and is a transfer function from the motor end position 202 to the machine end position 203.
- FIG. 16 is a diagram illustrating a configuration of the servo control unit 410 according to the third embodiment.
- the subtractors 43 and 45 and the adder 44 perform the same operations as the subtracters 14 and 16 and the adder 15 of FIG.
- an adder 46 is further provided.
- the vibration command 208 is input to the adder 46 and output as a torque command 201, and the motor 6 is driven to vibrate the mechanical system 7.
- the position command 200 and the error correction amount 206 are both set to zero.
- the vibration command 208 may be input to the position control unit 11 as the position command 200, or input to the speed control unit 12 as a speed command. Also good. In these cases, the same vibration effect can be obtained.
- the machine model identification unit 9 uses the measured values of the motor end position 202 and the machine end position 203 when the motor 6 is driven by the vibration command 208 to vibrate the mechanical system 7, and uses the measured values from the motor end position 202 to the machine end.
- the transfer function Gm (s) up to position 203 is identified.
- the transfer function Gm (s) is expressed by the following formula (4).
- the machine model identification unit 9 uses a method such as a least square method, a spectrum analysis method, or a subspace method to transfer the transfer function of Equation (4).
- Gm (s) can be identified.
- the transfer function type filter Gf (s) given by Equation (3) is determined.
- the machine model identification unit 9 outputs the transfer function type filter Gf (s) thus obtained to the correction amount calculation unit 4 as a mechanical characteristic filter 209.
- the correction amount calculation unit 4 uses the transfer function type filter Gf (s) received as the mechanical characteristic filter 209 for the mechanical characteristic filter 42, and calculates and outputs an error correction amount 206 based on this.
- the servo control unit 410 can perform robust correction suitable for the mechanical characteristics of the mechanical system 7.
- the servo control device 400 further includes the vibration command generation unit 8 and the machine model identification unit 9, so that a new sensor is not added. 7 has the effect of automatically identifying a transfer function representing the mechanical characteristics of No. 7.
- Embodiment 4 The configuration of the numerical control device 401 and the servo control unit 410 according to the fourth embodiment is the same as that of the third embodiment shown in FIGS. 15 and 16.
- the vibration command generator 8 of the servo control device 400 performs vibration while moving the motor 6 and the mechanical system 7. Therefore, the vibration command 208 is a signal obtained by adding the movement component and the vibration component.
- the moving component is a command to move in one direction at a constant speed. Then, the vibration command 208 to which a random vibration signal is added as a vibration component at the timing when the speed is constant is used.
- the moving component may be another command such as a reciprocating motion, and the excitation component may be a sine sweep signal that changes the frequency of the sine wave stepwise.
- the machine model identification unit 9 uses the actual measurement values of the motor end position 202 and the machine end position 203 when the vibration command 208 is vibrated, from the motor end position 202 to the machine end position 203.
- the transfer function Gm (s) up to is identified.
- the machine model identification unit 9 determines the movement component from the measured values of the motor end position 202 and the machine end position 203.
- the transfer function Gm (s) is identified from the measured values of the motor end position 202 and the machine end position 203 with respect to the vibration component.
- the measured values of the motor end position 202 and the machine end position 203 when the vibration command 208 of only the moving component is given in advance are measured, and the measured motor end position 202 is measured. Further, the actual measurement value of the machine end position 203 is subtracted from the actual measurement values of the motor end position 202 and the machine end position 203 when the vibration command 208 including the vibration component is given.
- the method for determining Gf (s) is the same as in the third embodiment.
- the mechanical model identifying unit 9 removes the influence of the frictional force by performing vibration using the vibration command 208 including the moving component and the vibration component. Identification becomes possible.
- vibration is performed in a state where the mechanical system 7 is stopped, in the mechanical system 7 having a large frictional force, the vibration amplitude at the machine end position 203 becomes small due to the influence of friction, and the transfer function type filter Gf (s) is reduced.
- the transfer function type filter Gf (representing the mechanical characteristics of the mechanical system 7) The effect that s) can be identified more accurately is obtained.
- FIG. 17 is a diagram illustrating a hardware configuration when the functions of the numerical control device according to the first to fourth embodiments are realized by a computer.
- the functions of the numerical control devices 101, 301, and 401 are, as shown in FIG. 17, a CPU (Central Processing Unit) 51, a memory 52, an interface 53, and a dedicated device. This is realized by the circuit 54.
- a CPU Central Processing Unit
- Some of the functions of the numerical control devices 101, 301, and 401 are realized by software, firmware, or a combination of software and firmware.
- Software or firmware is described as a program and stored in the memory 52.
- the CPU 51 implements the functions of each unit by reading and executing the program stored in the memory 52.
- the numerical control devices 101, 301, and 401 are programs that, as a result, execute steps of the numerical control devices 101, 301, and 401 when the functions of the respective units are executed by the computer.
- a memory 52 for storing is provided. These programs can also be said to cause a computer to execute the procedures or methods of the numerical control apparatuses 101, 301, and 401.
- the memory 52 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Nonvolatile Memory, or an EEPROM (Electrically Erasable Memory)
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory an EPROM (Erasable Programmable Read Only Nonvolatile Memory
- EEPROM Electrically Erasable Memory
- a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disk) are applicable.
- the CPU 51 reads out and executes the program stored in the memory 52, thereby realizing the functions of the position command generation unit 5, the correction amount calculation units 4 and 340, the twist amount calculation unit 3, and the movement direction detection units 2 and 320. .
- the interface 53 has a function for receiving the motor end position 202 and the machine end position 203.
- a specific example of the dedicated circuit 54 is an inverter circuit of the servo control units 1 and 410.
- the numerical control devices 101, 301, and 401 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Control Of Position Or Direction (AREA)
Abstract
This servo control device (100) controls a motor (6) connected via a drive transmission mechanism to an object to be driven, and is provided with: a servo control unit (1) which calculates and outputs a torque command (201) to the motor (6) on the basis of a position command (200) and an amount of error correction (206) so that a machine edge position (203), which is a position of the object to be driven, is dictated by the position command (200); a movement direction detection unit (2) which detects the direction of movement of the machine edge position (203) on the basis of the position command (200); a skew amount calculation unit (3) which calculates an amount of skew (205) from the machine edge position (203) and a motor edge position (202), which is a position of the motor (6), and outputs the calculated amount of skew (205); and a correction amount calculation unit (4) which calculates said amount of error correction (206), using the amount of skew (205) as calculated when the direction of movement of the machine edge position (203) is reversed, and also using the mechanical characteristics of the object to be driven and the drive transmission mechanism.
Description
本発明は、サーボモータを駆動するサーボ制御装置に関する。
The present invention relates to a servo control device that drives a servo motor.
工作機械のサーボ制御装置では、工作物を固定するテーブルまたは工具といった被駆動体の位置が指令に追従するようにアクチュエータの駆動制御を行う。駆動するアクチュエータには、回転モータまたはリニアモータなどがある。工作機械において、工作物に対する工具位置を指令された経路である指令軌跡に正確に追従するように駆動する制御は、軌跡制御または輪郭運動制御と呼ばれ、数値制御装置およびそれに付属するサーボ制御装置によって精密に実行される。制御対象である機械装置は複数の軸を有し、各軸を構成するサーボモータはそれぞれのサーボ制御装置によって駆動される。
In the servo control device of a machine tool, the actuator is controlled so that the position of a driven body such as a table or a tool for fixing the workpiece follows the command. Examples of the actuator to be driven include a rotary motor and a linear motor. In a machine tool, control for driving a tool position with respect to a workpiece so as to accurately follow a command path, which is a commanded path, is referred to as path control or contour motion control, and is a numerical control device and a servo control device attached thereto. Is precisely executed by. The machine device to be controlled has a plurality of axes, and the servo motors constituting each axis are driven by the respective servo control devices.
機械系に存在する摩擦、バックラッシおよびロストモーションは、サーボ制御装置における軌跡制御の外乱要因となり、追従誤差を生じさせる。典型的な例としては、円弧軌跡を指令した場合に、円弧の象限切り替え位置において送り軸に沿った被駆動体の移動方向が反転する際に生じる追従誤差がある。この誤差を半径方向に誤差量を拡大して表示すると、軌跡の外側の突起状の誤差となることから象限突起と呼ばれる。象限突起のような軌跡の追従誤差が発生すると、加工表面に筋または傷が発生することになり、好ましくない。
Friction, backlash, and lost motion that exist in the mechanical system become disturbance factors for trajectory control in the servo control device, and cause follow-up errors. A typical example is a tracking error that occurs when the moving direction of the driven body along the feed axis is reversed at the arc quadrant switching position when an arc locus is commanded. If this error is displayed with the amount of error enlarged in the radial direction, it becomes a projection-like error outside the locus, so it is called a quadrant projection. When a tracking error such as a quadrant projection occurs, streaks or scratches are generated on the processed surface, which is not preferable.
従来のサーボ制御装置では、象限突起を抑制するために、送り軸に沿った被駆動体の移動方向が反転した場合に、バックラッシ、弾性変形および静摩擦の各要因を補償するためにあらかじめ設定された補正量を速度指令に加える、といったことが行われている(特許文献1参照)。
In the conventional servo control device, in order to suppress the quadrant protrusion, when the moving direction of the driven body along the feed shaft is reversed, the servo control device is set in advance to compensate for each factor of backlash, elastic deformation, and static friction. The correction amount is added to the speed command (see Patent Document 1).
しかしながら、摩擦および弾性変形は、指令速度または指令軌跡といった制御条件により変化するため、特許文献1に開示されている方法では指令速度または指令軌跡といった制御条件が変わるたびに補正量を設定する必要がある。また、摩擦は、気温といった環境要因によっても変化するため、環境要因が変化するたびに補正量を設定し直す必要がある。そのため、様々な制御条件が組み合わされた指令軌跡に対して高精度な補正を行うためには、制御条件および加工する際の環境要因に対して補正量を調整し直す必要があり、多くの手間を要するという問題があった。
However, since friction and elastic deformation change depending on control conditions such as command speed or command trajectory, the method disclosed in Patent Document 1 needs to set a correction amount each time the control conditions such as command speed or command trajectory change. is there. In addition, since friction changes depending on environmental factors such as temperature, it is necessary to reset the correction amount each time the environmental factors change. For this reason, in order to perform high-accuracy correction on a command trajectory in which various control conditions are combined, it is necessary to readjust the correction amount with respect to the control conditions and environmental factors during processing, which requires a lot of trouble. There was a problem of requiring.
また、補正量および補正時間は機械の構成により異なり、同じ構成の機械であっても個体差があるため、機械毎に補正量の調整を行う必要があり、手間がかかるという問題もあった。さらに、回転モータおよびボールねじのような駆動伝達機構を用いて被駆動体位置を制御するサーボ制御装置をフルクローズドループで制御する場合は、被駆動体近傍に取り付けた位置検出器で測定した位置と、機械系を駆動する回転モータに取り付けられた回転角検出器で測定した回転角から算出される被駆動体の位置との偏差が移動方向の反転時の追従誤差に大きな影響を及ぼす。そのため、指令軌跡によっては十分な補正の効果が得られないという問題があった。
In addition, the correction amount and the correction time differ depending on the machine configuration, and even if the machines have the same configuration, there are individual differences. Therefore, there is a problem that it is necessary to adjust the correction amount for each machine, which takes time. Furthermore, when a servo control device that controls the position of a driven body using a drive transmission mechanism such as a rotary motor and a ball screw is controlled by a fully closed loop, the position measured by a position detector attached in the vicinity of the driven body The deviation from the position of the driven body calculated from the rotation angle measured by the rotation angle detector attached to the rotation motor that drives the mechanical system greatly affects the tracking error when the moving direction is reversed. Therefore, there is a problem that a sufficient correction effect cannot be obtained depending on the command locus.
本発明は、上記に鑑みてなされたものであって、被駆動体の移動方向が反転する場合において機械端位置の指令軌跡に対する追従誤差を抑制することが可能なサーボ制御装置を得ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a servo control device capable of suppressing a tracking error with respect to a command locus of a machine end position when the moving direction of a driven body is reversed. And
上述した課題を解決し、目的を達成するために、本発明は、被駆動体に駆動伝達機構を介して接続されたモータを制御するサーボ制御装置であって、位置指令および誤差補正量に基づいて、被駆動体の位置である機械端位置が位置指令に追従するようにモータに対するトルク指令を算出して出力するサーボ制御部と、位置指令に基づいて機械端位置の移動方向の向きを検出する移動方向検出部と、を備えることを特徴とする。本発明は、機械端位置とモータの位置であるモータ端位置とからねじれ量を算出して出力するねじれ量演算部と、移動方向が反転したときのねじれ量と、被駆動体および駆動伝達機構の機械特性とを用いて誤差補正量を算出する補正量演算部と、をさらに備えることを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention is a servo control device for controlling a motor connected to a driven body via a drive transmission mechanism, based on a position command and an error correction amount. A servo control unit that calculates and outputs a torque command to the motor so that the machine end position, which is the position of the driven body, follows the position command, and detects the direction of movement of the machine end position based on the position command And a moving direction detecting unit. The present invention relates to a torsion amount calculation unit that calculates and outputs a torsion amount from a machine end position and a motor end position that is a motor position, a torsion amount when a moving direction is reversed, a driven body, and a drive transmission mechanism And a correction amount calculation unit that calculates an error correction amount using the mechanical characteristics of.
本発明にかかるサーボ制御装置は、被駆動体の移動方向が反転する場合において機械端位置の指令軌跡に対する追従誤差を抑制することが可能になるという効果を奏する。
The servo control device according to the present invention has an effect that it is possible to suppress a tracking error with respect to the command locus of the machine end position when the moving direction of the driven body is reversed.
以下に、本発明の実施の形態にかかるサーボ制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, a servo control device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
図1は、本発明の実施の形態1にかかる数値制御装置101の構成を示す図である。数値制御装置101は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置100と、を備える。サーボ制御装置100は、モータ6および機械系7に接続されており、モータ6にトルク指令201を与えることにより、制御対象である機械系7を駆動する。数値制御装置101の制御対象である機械装置が複数の軸を有する場合、サーボ制御装置100、モータ6および機械系7は各軸に設けられるが、図1では1つの軸についてのみ記載する。Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of anumerical control apparatus 101 according to the first embodiment of the present invention. The numerical control device 101 includes a position command generation unit 5 that generates a position command 200 and a servo control device 100 that outputs a torque command 201 based on the position command 200. The servo control device 100 is connected to the motor 6 and the mechanical system 7, and drives the mechanical system 7 that is a control target by giving a torque command 201 to the motor 6. When the mechanical device to be controlled by the numerical control device 101 has a plurality of axes, the servo control device 100, the motor 6, and the mechanical system 7 are provided on each axis, but only one axis is shown in FIG.
図1は、本発明の実施の形態1にかかる数値制御装置101の構成を示す図である。数値制御装置101は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置100と、を備える。サーボ制御装置100は、モータ6および機械系7に接続されており、モータ6にトルク指令201を与えることにより、制御対象である機械系7を駆動する。数値制御装置101の制御対象である機械装置が複数の軸を有する場合、サーボ制御装置100、モータ6および機械系7は各軸に設けられるが、図1では1つの軸についてのみ記載する。
FIG. 1 is a diagram showing a configuration of a
サーボ制御装置100は、トルク指令201を出力するサーボ制御部1と、移動方向信号204を出力する移動方向検出部2と、ねじれ量205を出力するねじれ量演算部3と、誤差補正量206を出力する補正量演算部4と、を備えている。
The servo control device 100 includes a servo control unit 1 that outputs a torque command 201, a movement direction detection unit 2 that outputs a movement direction signal 204, a twist amount calculation unit 3 that outputs a twist amount 205, and an error correction amount 206. And an output correction amount calculation unit 4.
図2は、実施の形態1にかかるモータ6および機械系7の構成を示す図である。モータ6は、サーボモータ61およびモータ端位置検出器62を備える。モータ端位置検出器62の具体例は、ロータリエンコーダである。モータ端位置検出器62は、サーボモータ61に取り付けられており、サーボモータ61の回転角度であるモータ端位置202を検出する。
FIG. 2 is a diagram illustrating the configuration of the motor 6 and the mechanical system 7 according to the first embodiment. The motor 6 includes a servo motor 61 and a motor end position detector 62. A specific example of the motor end position detector 62 is a rotary encoder. The motor end position detector 62 is attached to the servo motor 61 and detects a motor end position 202 that is the rotation angle of the servo motor 61.
機械系7は、サーボモータ61の動力を伝達するカップリング70と、サーボモータ61により回転駆動されるボールねじ71と、ボールねじ71の回転を直線運動に変換するボールねじナット72と、ボールねじナット72に固定されている被駆動体であるテーブル73と、を備える。ボールねじ71は、カップリング70を介してサーボモータ61に接続されている。ボールねじナット72はボールねじ71に嵌合されており、テーブル73およびボールねじナット72は一体となって駆動される。カップリング70、ボールねじ71およびボールねじナット72は、モータ6からテーブル73への駆動伝達機構を構成している。したがって、機械系7は、被駆動体および駆動伝達機構で構成される。
The mechanical system 7 includes a coupling 70 that transmits the power of the servo motor 61, a ball screw 71 that is rotationally driven by the servo motor 61, a ball screw nut 72 that converts the rotation of the ball screw 71 into a linear motion, and a ball screw. And a table 73 which is a driven body fixed to the nut 72. The ball screw 71 is connected to the servo motor 61 via the coupling 70. The ball screw nut 72 is fitted to the ball screw 71, and the table 73 and the ball screw nut 72 are driven together. The coupling 70, the ball screw 71, and the ball screw nut 72 constitute a drive transmission mechanism from the motor 6 to the table 73. Therefore, the mechanical system 7 includes a driven body and a drive transmission mechanism.
数値制御装置101を有する工作機械は、機械端位置検出器74およびスケール75を有するリニアエンコーダをさらに備える。スケール75の具体例は、格子状の目盛りを有するガラス面である。機械端位置検出器74は、スケール75を読み取って信号にして出力する。機械端位置検出器74が出力した信号は、被駆動体であるテーブル73の位置である機械端位置203に変換されてサーボ制御装置100に出力される。
The machine tool having the numerical control device 101 further includes a linear encoder having a machine end position detector 74 and a scale 75. A specific example of the scale 75 is a glass surface having a grid-like scale. The machine end position detector 74 reads the scale 75 and outputs it as a signal. The signal output from the machine end position detector 74 is converted into the machine end position 203 that is the position of the table 73 that is the driven body, and is output to the servo control device 100.
モータ端位置検出器62により検出された回転角度の検出単位が度であるとすると、モータ端位置202にサーボモータ61の1回転あたりのテーブル移動量であるボールねじリードを乗じて、360度で除することにより回転角度をテーブル73の移動方向の長さに換算することができる。ここで、移動方向とは、サーボ制御装置100が担当する軸に沿った方向であり、移動方向の向きは正負のいずれかを取り得る。以下の説明では、モータ端位置202としてテーブル73の移動方向に換算した値を用いることとする。
Assuming that the detection unit of the rotation angle detected by the motor end position detector 62 is degrees, multiply the motor end position 202 by a ball screw lead, which is a table movement amount per rotation of the servo motor 61, at 360 degrees. The rotation angle can be converted into the length of the table 73 in the moving direction. Here, the moving direction is a direction along the axis that the servo control device 100 is in charge of, and the direction of the moving direction can be either positive or negative. In the following description, a value converted into the moving direction of the table 73 is used as the motor end position 202.
位置指令生成部5は、加工プログラムに基づいて位置指令200を生成することにより、機械端位置203を数値制御する。加工プログラムは、ワークを加工するための工具および機械系7の動かし方について、Gコードといった命令により一連のフォーマットで記載されたプログラムである。加工プログラムにはワークに対する工具および機械系7の移動距離および移動速度が定められている。位置指令生成部5は、加工プログラムに基づいて各軸の位置指令200を算出して、各軸のサーボ制御装置に出力する。
The position command generator 5 numerically controls the machine end position 203 by generating a position command 200 based on the machining program. The machining program is a program in which a tool for machining a workpiece and how to move the mechanical system 7 are described in a series of formats by an instruction such as a G code. In the machining program, the moving distance and moving speed of the tool and the mechanical system 7 with respect to the workpiece are determined. The position command generator 5 calculates a position command 200 for each axis based on the machining program, and outputs it to the servo control device for each axis.
サーボ制御装置100は、位置指令生成部5で生成された位置指令200を受け取るとともに、モータ端位置検出器62により検出されたモータ端位置202および機械端位置検出器74が出力した信号から得られた機械端位置203を取得する。サーボ制御装置100は、モータ端位置202および機械端位置203を位置フィードバックとして用いて、機械端位置203が位置指令200に追従するようにトルク指令201を生成して、モータ6に出力する。
The servo control device 100 receives the position command 200 generated by the position command generation unit 5 and is obtained from the motor end position 202 detected by the motor end position detector 62 and the signal output by the machine end position detector 74. The machine end position 203 is acquired. The servo control device 100 uses the motor end position 202 and the machine end position 203 as position feedback, generates a torque command 201 so that the machine end position 203 follows the position command 200, and outputs the torque command 201 to the motor 6.
図3は、実施の形態1にかかるサーボ制御部1の構成を示す図である。サーボ制御部1は、位置制御部11、速度制御部12、微分演算部13、減算器14,16および加算器15を備える。
FIG. 3 is a diagram illustrating a configuration of the servo control unit 1 according to the first embodiment. The servo control unit 1 includes a position control unit 11, a speed control unit 12, a differential calculation unit 13, subtracters 14 and 16, and an adder 15.
減算器14は、位置指令200と機械端位置203との差である位置偏差を求めて、位置制御部11に出力する。位置制御部11は、位置偏差に対して比例制御といった位置制御処理を実行して、速度指令を算出して出力する。加算器15は、速度指令と後述する補正量演算部4で算出された誤差補正量206とを加算して出力する。微分演算部13は、モータ端位置202を微分し、モータ端位置202の微分値であるモータ端速度を出力する。減算器16は、加算器15の出力とモータ端速度との差である速度偏差を求めて、速度制御部12に出力する。速度制御部12は、速度偏差に対して比例積分制御といった予め定められた速度制御処理を実行して、機械端位置203を位置指令200に追従させるトルク指令201を算出して出力する。
The subtractor 14 obtains a position deviation that is a difference between the position command 200 and the machine end position 203 and outputs the position deviation to the position control unit 11. The position control unit 11 executes position control processing such as proportional control with respect to the position deviation, and calculates and outputs a speed command. The adder 15 adds a speed command and an error correction amount 206 calculated by the correction amount calculation unit 4 described later and outputs the result. The differential calculation unit 13 differentiates the motor end position 202 and outputs a motor end speed that is a differential value of the motor end position 202. The subtracter 16 obtains a speed deviation that is a difference between the output of the adder 15 and the motor end speed, and outputs the speed deviation to the speed control unit 12. The speed control unit 12 executes a predetermined speed control process such as proportional integral control with respect to the speed deviation, and calculates and outputs a torque command 201 that causes the machine end position 203 to follow the position command 200.
図4は、実施の形態1にかかる移動方向検出部2の構成を示す図である。移動方向検出部2は、位置制御模擬部21、積分演算部22、符号演算部23および減算器24を備えている。移動方向検出部2は、位置指令200に基づいて機械端位置203の応答を模擬し、テーブル73の移動方向の向きを示す移動方向信号204を出力する。
FIG. 4 is a diagram illustrating a configuration of the moving direction detection unit 2 according to the first embodiment. The moving direction detection unit 2 includes a position control simulation unit 21, an integration calculation unit 22, a sign calculation unit 23, and a subtracter 24. The movement direction detection unit 2 simulates the response of the machine end position 203 based on the position command 200 and outputs a movement direction signal 204 indicating the direction of the movement direction of the table 73.
減算器24は、位置指令200と積分演算部22の出力であるモデル位置との差を求めて、位置制御模擬部21に出力する。位置制御模擬部21は、サーボ制御部1の位置制御部11を模擬する。位置制御模擬部21は、減算器24から入力された位置指令200とモデル位置との差に対して、位置制御部11と同じ位置制御処理を実行して、得られた速度指令をモデル速度として出力する。位置制御模擬部21が出力するモデル速度は、テーブル73の速度の計算値に相当する。積分演算部22は、モデル速度を積分することにより機械端位置203の計算値を求めて、モデル位置として出力する。符号演算部23は、モデル速度に基づいてテーブル73の移動方向の向きが正負のいずれであるかを検出し、当該移動方向の向きに応じて正または負の符号をとり絶対値が“1”のステップ状の信号である移動方向信号204を出力する。これにより、テーブル73の移動方向が反転するタイミングを正確に検出することができる。なお、符号演算部23は、モデル速度が0となる場合には前回と同じ移動方向信号204を出力し、初期状態では移動方向信号204として“0”を出力する。
The subtractor 24 obtains the difference between the position command 200 and the model position that is the output of the integral calculation unit 22 and outputs the difference to the position control simulation unit 21. The position control simulation unit 21 simulates the position control unit 11 of the servo control unit 1. The position control simulation unit 21 executes the same position control processing as the position control unit 11 on the difference between the position command 200 input from the subtractor 24 and the model position, and uses the obtained speed command as a model speed. Output. The model speed output by the position control simulation unit 21 corresponds to the calculated value of the speed in the table 73. The integration calculation unit 22 obtains a calculated value of the machine end position 203 by integrating the model speed and outputs it as a model position. The sign calculation unit 23 detects whether the moving direction of the table 73 is positive or negative based on the model speed, takes a positive or negative sign according to the moving direction, and the absolute value is “1”. The movement direction signal 204 which is a step-like signal is output. Thereby, the timing at which the moving direction of the table 73 is reversed can be accurately detected. The sign calculation unit 23 outputs the same movement direction signal 204 as the previous time when the model speed becomes 0, and outputs “0” as the movement direction signal 204 in the initial state.
図5は、実施の形態1にかかるねじれ量演算部3の構成を示す図である。ねじれ量演算部3は、微分演算部31,32、単位変換部33および減算器34,35を備えている。ねじれ量演算部3は、モータ端位置202および機械端位置203を入力として、摩擦に起因するねじれ量205を計算周期毎に算出し出力する。ねじれ量205は、モータ端位置202と機械端位置203との偏差に基づいた量であるが、この偏差には摩擦力に起因する成分と慣性力に起因する成分とが含まれる。慣性力に起因する成分は、機械系7の弾性変形による成分である。ねじれ量演算部3では、摩擦に起因する偏差としてねじれ量205を演算するために、慣性力に起因する偏差を求めて、モータ端位置202と機械端位置203との偏差から取り除く。
FIG. 5 is a diagram illustrating a configuration of the twist amount calculation unit 3 according to the first embodiment. The twist amount calculation unit 3 includes differential calculation units 31 and 32, a unit conversion unit 33, and subtractors 34 and 35. The torsion amount calculation unit 3 receives the motor end position 202 and the machine end position 203 as inputs, and calculates and outputs a torsion amount 205 caused by friction for each calculation cycle. The torsion amount 205 is an amount based on a deviation between the motor end position 202 and the machine end position 203. This deviation includes a component caused by frictional force and a component caused by inertial force. The component resulting from the inertia force is a component due to elastic deformation of the mechanical system 7. In the torsion amount calculation unit 3, in order to calculate the torsion amount 205 as a deviation due to friction, a deviation due to inertial force is obtained and removed from the deviation between the motor end position 202 and the machine end position 203.
直列に接続された微分演算部31,32によりモータ端位置202が2階微分されてモータ6のモータ端加速度amが算出され、単位変換部33に出力される。単位変換部33は、入力されたモータ6のモータ端加速度amに予め定めた係数を乗ずることにより、慣性力に起因する偏差を算出して出力する。係数については後述する。減算器34は、モータ端位置202と機械端位置203との偏差を求めて減算器35に出力する。減算器35は、入力された全体の偏差から単位変換部33が出力する慣性力に起因する成分の偏差を減算することにより、摩擦に起因する成分の偏差であるねじれ量205を算出して出力する。これにより摩擦に起因するねじれ量205を高精度に算出可能となる。
The motor end position 202 is second-order differentiated by the differential operation units 31 and 32 connected in series, and the motor end acceleration am of the motor 6 is calculated and output to the unit conversion unit 33. The unit conversion unit 33 calculates and outputs a deviation due to inertial force by multiplying the input motor end acceleration am of the motor 6 by a predetermined coefficient. The coefficient will be described later. The subtractor 34 obtains a deviation between the motor end position 202 and the machine end position 203 and outputs it to the subtractor 35. The subtractor 35 subtracts the deviation of the component caused by the inertial force output by the unit conversion unit 33 from the entire deviation inputted, thereby calculating and outputting the twist amount 205 that is the deviation of the component caused by friction. To do. As a result, the torsion amount 205 due to friction can be calculated with high accuracy.
図6は、実施の形態1にかかる補正量演算部4の構成を示す図である。補正量演算部4は、補正ゲイン演算部41および機械特性フィルタ42を備えている。補正量演算部4は、ねじれ量演算部3から出力されたねじれ量205および移動方向検出部2から出力された移動方向信号204を入力として、誤差補正量206を出力する。
FIG. 6 is a diagram illustrating a configuration of the correction amount calculation unit 4 according to the first embodiment. The correction amount calculation unit 4 includes a correction gain calculation unit 41 and a mechanical characteristic filter 42. The correction amount calculation unit 4 receives the twist amount 205 output from the twist amount calculation unit 3 and the movement direction signal 204 output from the movement direction detection unit 2 and outputs an error correction amount 206.
補正ゲイン演算部41は、移動方向信号204に基づいて、テーブル73の移動方向の向きが変化したときに移動方向が反転したと判断することができる。補正ゲイン演算部41は、テーブル73の移動方向が反転した場合、すなわち移動方向信号204が“+1”から“-1”に変化した場合または“-1”から“+1”に変化した場合に、そのときのねじれ量205に基づいて補正ゲインを算出する。補正ゲインの算出方法の具体例は、ねじれ量205に補正倍率を乗じて補正ゲインを算出する。そして、テーブル73の移動方向が反転した場合以外は、補正ゲインを0とする。そして、補正ゲイン演算部41は、補正ゲインの大きさを振幅とするインパルス信号を機械特性フィルタ42に出力する。したがって、補正ゲイン演算部41は、テーブル73の移動方向が反転した場合に補正ゲインの大きさを振幅とするインパルス信号を機械特性フィルタ42に出力する。機械特性フィルタ42は、補正ゲイン演算部41の出力に対して機械特性を表す伝達関数型のフィルタでフィルタリングを行い、制御対象であるテーブル73の移動方向が反転してからの経過時間に応じた誤差補正量206を算出して出力する。機械特性フィルタ42の設定については後述する。
The correction gain calculation unit 41 can determine that the moving direction is reversed when the direction of the moving direction of the table 73 changes based on the moving direction signal 204. When the moving direction of the table 73 is reversed, that is, when the moving direction signal 204 changes from “+1” to “−1”, or when the moving direction signal 204 changes from “−1” to “+1”. A correction gain is calculated based on the twist amount 205 at that time. As a specific example of the correction gain calculation method, the correction gain is calculated by multiplying the twist amount 205 by the correction magnification. The correction gain is set to 0 except when the moving direction of the table 73 is reversed. Then, the correction gain calculation unit 41 outputs an impulse signal whose amplitude is the magnitude of the correction gain to the mechanical characteristic filter 42. Therefore, the correction gain calculation unit 41 outputs an impulse signal having the amplitude of the correction gain as an amplitude to the mechanical characteristic filter 42 when the moving direction of the table 73 is reversed. The mechanical characteristic filter 42 filters the output of the correction gain calculation unit 41 with a transfer function type filter that represents mechanical characteristics, and corresponds to the elapsed time after the moving direction of the table 73 to be controlled is reversed. An error correction amount 206 is calculated and output. The setting of the mechanical characteristic filter 42 will be described later.
次に、実施の形態1にかかるサーボ制御装置100における補正の原理について説明する。図7および図8は、実施の形態1にかかるモータ6および機械系7を2慣性系でモデル化した図である。図7および図8において、Kは機械系7の弾性要素のバネ定数であり、Cは機械系7のダンピング要素の粘性摩擦係数であり、Jmはモータ6のイナーシャであり、Jlは機械系7のイナーシャであり、FMはモータ6に作用する摩擦力であり、FLは機械系7に作用する摩擦力である。図7および図8において、Jmの位置はモータ端位置202を模しており、Jlの位置は機械端位置203を模している。JmおよびJlが弾性要素を介して離れているのは、モータ6と機械系7との間に生じる摩擦力に起因する弾性変形によりモータ端位置202と機械端位置203との間に偏差が生じることを表現している。
Next, the principle of correction in the servo control apparatus 100 according to the first embodiment will be described. 7 and 8 are diagrams in which the motor 6 and the mechanical system 7 according to the first embodiment are modeled by a two-inertia system. 7 and 8, K is the spring constant of the elastic element of the mechanical system 7, C is the viscous friction coefficient of the damping element of the mechanical system 7, Jm is the inertia of the motor 6, and Jl is the mechanical system 7 , FM is a friction force acting on the motor 6, and FL is a friction force acting on the mechanical system 7. 7 and 8, the position of Jm imitates the motor end position 202, and the position of Jl imitates the machine end position 203. The reason why Jm and Jl are separated through the elastic element is that a deviation occurs between the motor end position 202 and the machine end position 203 due to elastic deformation caused by the frictional force generated between the motor 6 and the mechanical system 7. It expresses that.
図7および図8において、紙面左右方向がモータ端位置202および機械端位置203の移動方向を示しており、いずれも、モータ端位置202の動きに機械端位置203の動きが追従する様子を示している。図7は、モータ端位置202および機械端位置203が移動方向の+方向に移動している場合を示し、図8は、モータ端位置202および機械端位置203が移動方向の-方向に移動している場合を示している。図7では、Jlに+方向に働く弾性要素による力と摩擦力FLとが釣り合っている。一方、図8では、Jlに-方向に働く弾性要素による力と摩擦力FLとが釣り合っている。テーブル73の移動方向の向きが反転すると、モータ端位置202と機械端位置203との位置関係が反転するので、図7から図8へまたは図8から図7へと、JmとJlとの位置関係も入れ替わる。その結果、Jlに働く弾性要素による力の向きが反転して、摩擦力FLの作用方向も反転する。
7 and 8, the horizontal direction on the paper surface indicates the movement direction of the motor end position 202 and the machine end position 203, and both show how the movement of the machine end position 203 follows the movement of the motor end position 202. ing. FIG. 7 shows a case where the motor end position 202 and the machine end position 203 are moved in the + direction of the movement direction, and FIG. 8 shows that the motor end position 202 and the machine end position 203 are moved in the − direction of the movement direction. Shows the case. In FIG. 7, the force by the elastic element acting in the + direction on Jl and the frictional force FL are balanced. On the other hand, in FIG. 8, the force by the elastic element acting in the negative direction on Jl and the frictional force FL are balanced. When the direction of the moving direction of the table 73 is reversed, the positional relationship between the motor end position 202 and the machine end position 203 is reversed, so the positions of Jm and Jl are changed from FIG. 7 to FIG. 8 or from FIG. 8 to FIG. The relationship also changes. As a result, the direction of the force due to the elastic element acting on Jl is reversed, and the acting direction of the frictional force FL is also reversed.
図9は、実施の形態1にかかるモータ6および機械系7の2慣性系モデルをブロック線図で示した図である。Tmはトルク指令201に従ってサーボモータ61が出力するトルクであり、xlは機械端位置203を示す変数であり、xmはモータ端位置202を示す変数であり、sは微分を表すラプラス演算子である。xm、xlおよびFLをラプラス変換したものをそれぞれ、XM、XLおよびFLとすると、モータ端位置202と機械端位置203との偏差をラプラス変換した値は、以下の数式(1)で表わされる。
FIG. 9 is a block diagram showing a two-inertia system model of the motor 6 and the mechanical system 7 according to the first embodiment. Tm is a torque output from the servo motor 61 in accordance with the torque command 201, xl is a variable indicating the machine end position 203, xm is a variable indicating the motor end position 202, and s is a Laplace operator representing differentiation. . xm, respectively those of xl and FL and Laplace transform, when X M, X L and F L, the value obtained by Laplace transform a deviation between the motor end position 202 and the machine end position 203, the following equation (1) Represented.
ここで、AMは、微分演算部32が出力したモータ端加速度amをラプラス変換したものである。モータ端加速度amはモータ端位置202を2階微分した値である。また、ωnは機械系7の共振周波数であり、ζは機械系7の減衰係数である。
Here, A M is one where the motor end acceleration am the differentiating unit 32 and output to Laplace transform. The motor end acceleration am is a value obtained by second-order differentiation of the motor end position 202. Further, ω n is a resonance frequency of the mechanical system 7, and ζ is a damping coefficient of the mechanical system 7.
数式(1)の最終行の右辺の括弧内の第1項は摩擦力に起因する項であり、括弧内の第2項は慣性力に起因する項である。テーブル73の移動方向が反転する場合に、摩擦力の作用方向の反転に伴って、第1項の摩擦力に起因する偏差であるねじれ量の符号が反転する。テーブル73の移動方向を反転させる時にはモータ端位置202を急峻にステップ状に移動させて移動方向を反転させる必要があるが、フィードバック制御のみではモータ端位置202の移動に遅れが生じる。その結果として機械端位置203の移動方向の反転が遅れて、位置指令200に対する機械端位置203の追従誤差が生じる。モータ端位置202の移動方向の向きが反転してからの経過時間に応じた機械端位置203の追従誤差Etは、反転時の摩擦力の変化量が2FLなので、以下の数式(2)で表わされる。
The first term in parentheses on the right side of the last line of Equation (1) is a term due to frictional force, and the second term in parentheses is a term due to inertial force. When the moving direction of the table 73 is reversed, the sign of the twist amount, which is a deviation due to the frictional force of the first term, is reversed with the reversal of the acting direction of the frictional force. When the moving direction of the table 73 is reversed, it is necessary to move the motor end position 202 steeply in a stepwise manner to reverse the moving direction. However, only the feedback control causes a delay in the movement of the motor end position 202. As a result, the reversal of the moving direction of the machine end position 203 is delayed, and a tracking error of the machine end position 203 with respect to the position command 200 occurs. The tracking error Et of the machine end position 203 corresponding to the elapsed time since the direction of the movement direction of the motor end position 202 is reversed is expressed by the following formula (2) because the amount of change in the frictional force at the time of reversal is 2FL. It is.
実施の形態1にかかるサーボ制御装置100においては、数式(2)で示される追従誤差Etを補償することにより追従誤差を抑制する。数式(1)の最終行の右辺の括弧内の第2項は慣性力に起因する偏差である。したがって、ねじれ量演算部3において偏差全体から上記第2項の慣性力に起因する偏差を上述したように除去する。数式(1)から、単位変換部33で乗算する係数は、機械系7の共振周波数の2乗の逆数1/ωn
2とすればよい。共振周波数ωnは周波数応答特性を調べることにより同定することができる。
In the servo control device 100 according to the first embodiment, the follow-up error is suppressed by compensating the follow-up error Et represented by Expression (2). The second term in parentheses on the right side of the last line of Equation (1) is a deviation caused by inertial force. Therefore, the twist amount calculation unit 3 removes the deviation due to the inertial force of the second term from the entire deviation as described above. From Equation (1), the coefficient multiplied by the unit conversion unit 33 may be the reciprocal 1 / ω n 2 of the square of the resonance frequency of the mechanical system 7. The resonance frequency ω n can be identified by examining the frequency response characteristics.
以上により、ねじれ量演算部3より出力されるねじれ量205は摩擦力に起因する偏差となり、FL/Kに相当する値となる。また、補正ゲイン演算部41では、ねじれ量205を2倍して補正ゲインを算出する。
As described above, the torsion amount 205 output from the torsion amount calculation unit 3 is a deviation caused by the frictional force and is a value corresponding to FL / K. The correction gain calculation unit 41 calculates the correction gain by doubling the twist amount 205.
また、機械端位置203における追従誤差Etは、機械系7の機械特性を示すバネ定数Kおよび粘性摩擦係数Cに依存する。そのため、機械系7の機械特性を考慮した補正が必要となる。数式(2)によれば、機械特性フィルタ42を、以下の数式(3)で示される伝達関数型フィルタGf(s)として設定すればよい。数式(3)のGf(s)は、図7および図8で示した2慣性モデルにおける機械系7に作用する摩擦力FLからねじれ量までの伝達特性にKを乗じた伝達関数である。
Further, the tracking error Et at the machine end position 203 depends on the spring constant K and the viscous friction coefficient C indicating the mechanical characteristics of the mechanical system 7. For this reason, it is necessary to perform correction in consideration of the mechanical characteristics of the mechanical system 7. According to Expression (2), the mechanical characteristic filter 42 may be set as a transfer function type filter Gf (s) represented by the following Expression (3). Gf of formula (3) (s) is the transfer function multiplied by K to transfer characteristics from the friction force F L acting on the mechanical system 7 to torsion amount of 2 inertia model shown in FIGS.
図10および図11は、サーボ制御装置に円弧状の位置指令を与えた場合の機械端位置の軌跡を示す図である。図10および図11においては共に、直交するX軸およびY軸の2軸に対して時計まわりの円弧状の位置指令が与えられている。円弧状の位置指令を実現するためには、X軸およびY軸のそれぞれに対して、1つずつ実施の形態1にかかるサーボ制御装置100、モータ6および機械系7を備える必要がある。
10 and 11 are diagrams showing the locus of the machine end position when an arc-shaped position command is given to the servo control device. In both FIG. 10 and FIG. 11, a clockwise arc-shaped position command is given to two axes of the X axis and the Y axis which are orthogonal to each other. In order to realize the arc-shaped position command, it is necessary to provide the servo control device 100, the motor 6, and the mechanical system 7 according to the first embodiment for each of the X axis and the Y axis.
図10は、機械端位置203の追従誤差Etに対する補正を実施しないで、位置指令に対するフィードバック制御を実行した場合の機械端位置の軌跡を示している。図10の破線は指令軌跡を示し、実線は機械端位置の軌跡を示している。Y軸に沿った移動方向が反転する位置における軌跡誤差を拡大して表示しており、大きな突起が生じている。これが追従遅れにより生じる象限突起である。
FIG. 10 shows the locus of the machine end position when feedback control for the position command is executed without correcting the follow-up error Et of the machine end position 203. The broken line in FIG. 10 indicates the command locus, and the solid line indicates the locus of the machine end position. The locus error at the position where the moving direction along the Y axis is reversed is displayed in an enlarged manner, and a large protrusion is generated. This is a quadrant projection caused by the tracking delay.
図11は、実施の形態1にかかるサーボ制御装置100よる補正を実行した場合の効果を示す図である。図11でも、図10と同様に破線は指令軌跡を示し、実線は機械端位置の軌跡を示しているが、Y軸に沿った移動方向が反転する位置において補正により象限突起が抑制されているので、破線と実線とが重なっている。
FIG. 11 is a diagram illustrating an effect when the correction by the servo control device 100 according to the first embodiment is executed. Also in FIG. 11, the broken line indicates the command locus and the solid line indicates the locus of the machine end position, as in FIG. 10, but the quadrant protrusion is suppressed by the correction at the position where the moving direction along the Y axis is reversed. Therefore, the broken line and the solid line overlap.
以上説明したように、実施の形態1にかかるサーボ制御装置100によれば、常時ねじれ量205を求めておき、移動方向が反転した時のねじれ量205を用いて誤差補正量206を算出するので、移動方向の反転時の摩擦力によって生じる機械端位置203の追従誤差Etを精度よく補正することができ、指令速度または指令軌跡といった制御条件および気温といった環境要因に対してロバストな補正を行うことが可能になるという効果を奏する。
As described above, according to the servo control device 100 according to the first embodiment, the twist amount 205 is always obtained, and the error correction amount 206 is calculated using the twist amount 205 when the moving direction is reversed. The tracking error Et of the machine end position 203 caused by the friction force when the moving direction is reversed can be accurately corrected, and robust correction is performed for control conditions such as command speed or command trajectory and environmental factors such as temperature. There is an effect that becomes possible.
さらに、実施の形態1にかかるサーボ制御装置100によれば、機械系7の機械特性を伝達関数型フィルタで表した機械特性フィルタ42を用いて誤差補正量206を計算することにより、機械系7の機械特性に応じた補正を行うことができ、テーブル73の移動方向の反転時における機械端位置203の追従誤差Etを精度よく補正することができるという効果を奏する。
Furthermore, according to the servo control apparatus 100 according to the first embodiment, the error correction amount 206 is calculated by using the mechanical characteristic filter 42 in which the mechanical characteristic of the mechanical system 7 is represented by a transfer function type filter. Thus, there is an effect that the tracking error Et of the machine end position 203 at the time of reversing the moving direction of the table 73 can be accurately corrected.
実施の形態2.
図12は、本発明の実施の形態2にかかる数値制御装置301の構成を示す図である。数値制御装置301は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置300と、を備える。図12において、実施の形態1にかかる図1と同様の構成要素には実施の形態1と同一の名称および符号を付して、説明を省略する。以下では、数値制御装置301が実施の形態1にかかる数値制御装置101と異なる点を主として説明する。Embodiment 2. FIG.
FIG. 12 is a diagram showing a configuration of thenumerical controller 301 according to the second embodiment of the present invention. The numerical control device 301 includes a position command generation unit 5 that generates a position command 200 and a servo control device 300 that outputs a torque command 201 based on the position command 200. In FIG. 12, the same components as those in FIG. 1 according to the first embodiment are given the same names and reference numerals as those in the first embodiment, and the description thereof is omitted. In the following, the difference between the numerical control device 301 and the numerical control device 101 according to the first embodiment will be mainly described.
図12は、本発明の実施の形態2にかかる数値制御装置301の構成を示す図である。数値制御装置301は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置300と、を備える。図12において、実施の形態1にかかる図1と同様の構成要素には実施の形態1と同一の名称および符号を付して、説明を省略する。以下では、数値制御装置301が実施の形態1にかかる数値制御装置101と異なる点を主として説明する。
FIG. 12 is a diagram showing a configuration of the
図13は、実施の形態2にかかる移動方向検出部320の構成を示す図である。移動方向検出部320は、位置制御模擬部21、積分演算部22、符号演算部23および減算器24に加え、微分演算部324を備える。移動方向検出部320は、位置指令200に基づいて機械端位置203の応答を模擬し、機械系7の移動方向の向きを示す移動方向信号204を出力するのに加えて、モデル加速度207を出力する。
FIG. 13 is a diagram illustrating a configuration of the moving direction detection unit 320 according to the second embodiment. The movement direction detection unit 320 includes a differential calculation unit 324 in addition to the position control simulation unit 21, the integration calculation unit 22, the sign calculation unit 23, and the subtractor 24. The movement direction detector 320 simulates the response of the machine end position 203 based on the position command 200 and outputs a model acceleration 207 in addition to outputting a movement direction signal 204 indicating the direction of the movement direction of the mechanical system 7. To do.
微分演算部324は、位置制御模擬部21から出力されたモデル速度を微分することにより機械端位置203の加速度の計算値であるモデル加速度207を算出する。移動方向検出部320は、移動方向信号204と共にモデル加速度207を補正量演算部340に出力する。
The differentiation calculation unit 324 calculates a model acceleration 207 that is a calculated value of the acceleration at the machine end position 203 by differentiating the model speed output from the position control simulation unit 21. The movement direction detection unit 320 outputs the model acceleration 207 together with the movement direction signal 204 to the correction amount calculation unit 340.
図14は、実施の形態2にかかる補正量演算部340の構成を示す図である。補正量演算部340は、補正ゲイン演算部341、機械特性フィルタ42および補正倍率テーブル343を備える。補正倍率テーブル343は、基準となるモデル加速度である基準モデル加速度a0,a1,…,anに対応する補正倍率T0,T1,…,Tnを示すテーブルである。そして、補正量演算部340が受け取ったモデル加速度207に補正倍率テーブル343において対応した補正倍率が補正ゲイン演算部341に入力される。機械系7の機械特性によっては、反転時のテーブル73の加速度により必要な補正量が変化するためこのように補正倍率をモデル加速度207に依存して変化させる。補正ゲイン演算部341では、実施の形態1と同様に移動方向信号204が変化した場合にねじれ量205と補正倍率とを乗算して補正ゲインを算出する。
FIG. 14 is a diagram illustrating a configuration of the correction amount calculation unit 340 according to the second embodiment. The correction amount calculation unit 340 includes a correction gain calculation unit 341, a mechanical characteristic filter 42, and a correction magnification table 343. The correction magnification table 343 is a table showing correction magnifications T0, T1,..., Tn corresponding to reference model accelerations a0, a1,. A correction magnification corresponding to the model acceleration 207 received by the correction amount calculation unit 340 in the correction magnification table 343 is input to the correction gain calculation unit 341. Depending on the mechanical characteristics of the mechanical system 7, the necessary correction amount changes depending on the acceleration of the table 73 at the time of reversal, and thus the correction magnification is changed depending on the model acceleration 207. The correction gain calculation unit 341 calculates the correction gain by multiplying the twist amount 205 and the correction magnification when the movement direction signal 204 changes, as in the first embodiment.
以上のように、実施の形態2においては、反転時におけるサーボ制御装置300の状態量であるモデル加速度207に基づいて、補正倍率を決定している。補正倍率を依存させる状態量には、機械系7の構造または特性によってはモデル加速度207ではなく、サーボ制御装置300の他の状態量を用いてもよい。他の状態量の具体例としては、何らかのモデルを用いて位置指令200から算出した加速度以外の、位置または速度にかかる計算値でもよい。また、状態量として、反転時におけるモータ端位置202または機械端位置203といった実測値である位置フィードバック値、位置フィードバック値の微分値である速度フィードバック値の履歴を用いてもよい。速度フィードバック値の履歴の具体例は、反転前の一定時間内における速度フィードバック値の最高速度である。さらに、状態量として、モータ6または機械系7の温度または気温を用いてもよい。また、補正倍率は、以上説明した状態量の2つ以上に依存させてもかまわない。
As described above, in the second embodiment, the correction magnification is determined based on the model acceleration 207 that is the state quantity of the servo control device 300 at the time of inversion. As the state quantity on which the correction magnification depends, other state quantities of the servo control device 300 may be used instead of the model acceleration 207 depending on the structure or characteristics of the mechanical system 7. As a specific example of the other state quantity, a calculated value related to the position or speed other than the acceleration calculated from the position command 200 using any model may be used. Further, as the state quantity, a history of a position feedback value that is an actual measurement value such as the motor end position 202 or the machine end position 203 at the time of reversal, and a speed feedback value that is a differential value of the position feedback value may be used. A specific example of the history of the speed feedback value is the maximum speed of the speed feedback value within a certain time before inversion. Further, the temperature or temperature of the motor 6 or the mechanical system 7 may be used as the state quantity. The correction magnification may depend on two or more of the state quantities described above.
以上のように、実施の形態2にかかるサーボ制御装置300によれば、補正倍率をサーボ制御装置300の状態量に応じて変更することにより、制御条件毎に機械系7の機械特性に基づいた補正が可能となる効果を奏する。さらに、環境要因変化などに対してロバストな補正が可能である。
As described above, according to the servo control device 300 according to the second embodiment, the correction magnification is changed according to the state quantity of the servo control device 300, so that it is based on the mechanical characteristics of the mechanical system 7 for each control condition. There is an effect that can be corrected. Furthermore, robust correction can be made against changes in environmental factors.
実施の形態3.
図15は、本発明の実施の形態3にかかる数値制御装置401の構成を示す図である。数値制御装置401は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置400と、を備える。図15において、実施の形態1にかかる図1と同様の構成要素には実施の形態1と同一の名称および符号を付して、説明を省略する。以下では、数値制御装置401が実施の形態1にかかる数値制御装置101と異なる点を主として説明する。Embodiment 3 FIG.
FIG. 15 is a diagram illustrating a configuration of anumerical control device 401 according to the third embodiment of the present invention. The numerical control device 401 includes a position command generation unit 5 that generates a position command 200 and a servo control device 400 that outputs a torque command 201 based on the position command 200. In FIG. 15, the same components and elements as those in FIG. In the following, differences between the numerical control device 401 and the numerical control device 101 according to the first embodiment will be mainly described.
図15は、本発明の実施の形態3にかかる数値制御装置401の構成を示す図である。数値制御装置401は、位置指令200を生成する位置指令生成部5と、位置指令200に基づいてトルク指令201を出力するサーボ制御装置400と、を備える。図15において、実施の形態1にかかる図1と同様の構成要素には実施の形態1と同一の名称および符号を付して、説明を省略する。以下では、数値制御装置401が実施の形態1にかかる数値制御装置101と異なる点を主として説明する。
FIG. 15 is a diagram illustrating a configuration of a
サーボ制御装置400は、サーボ制御装置100の構成要素に加えて加振指令生成部8および機械モデル同定部9をさらに備えている。加振指令生成部8は、機械モデルを同定する際に、加振指令208をサーボ制御部410に出力する。ここで、機械モデルとは機械系7の機械特性に依存した伝達関数であり、モータ端位置202から機械端位置203までの伝達関数である。
The servo control device 400 further includes a vibration command generation unit 8 and a machine model identification unit 9 in addition to the components of the servo control device 100. The vibration command generator 8 outputs a vibration command 208 to the servo controller 410 when identifying the machine model. Here, the machine model is a transfer function that depends on the mechanical characteristics of the mechanical system 7 and is a transfer function from the motor end position 202 to the machine end position 203.
図16は、実施の形態3にかかるサーボ制御部410の構成を示す図である。減算器43,45および加算器44は、それぞれ図3の減算器14,16および加算器15と同様な演算を実行する。図16にはさらに加算器46が設けられており、加振指令208は加算器46に入力されてトルク指令201として出力され、モータ6を駆動して機械系7を加振する。この加振が行われる際は、位置指令200および誤差補正量206の入力は共に0にしてある。加振指令208は、サーボ制御部410に入力されるのであれば、図16と異なり、位置制御部11に位置指令200として入力してもよいし、速度制御部12に速度指令として入力してもよい。これらの場合も、同様の加振効果が得られる。
FIG. 16 is a diagram illustrating a configuration of the servo control unit 410 according to the third embodiment. The subtractors 43 and 45 and the adder 44 perform the same operations as the subtracters 14 and 16 and the adder 15 of FIG. In FIG. 16, an adder 46 is further provided. The vibration command 208 is input to the adder 46 and output as a torque command 201, and the motor 6 is driven to vibrate the mechanical system 7. When this vibration is performed, the position command 200 and the error correction amount 206 are both set to zero. As long as the vibration command 208 is input to the servo control unit 410, unlike FIG. 16, the vibration command 208 may be input to the position control unit 11 as the position command 200, or input to the speed control unit 12 as a speed command. Also good. In these cases, the same vibration effect can be obtained.
機械モデル同定部9は、加振指令208によりモータ6を駆動して機械系7を加振した場合のモータ端位置202および機械端位置203の実測値を用いて、モータ端位置202から機械端位置203までの伝達関数Gm(s)を同定する。モータ6および機械系7が図7および図8のような2慣性系でモデル化される場合、伝達関数Gm(s)は以下の数式(4)で表される。
The machine model identification unit 9 uses the measured values of the motor end position 202 and the machine end position 203 when the motor 6 is driven by the vibration command 208 to vibrate the mechanical system 7, and uses the measured values from the motor end position 202 to the machine end. The transfer function Gm (s) up to position 203 is identified. When the motor 6 and the mechanical system 7 are modeled by a two-inertia system as shown in FIGS. 7 and 8, the transfer function Gm (s) is expressed by the following formula (4).
機械モデル同定部9は、測定されたモータ端位置202および機械端位置203の実測値に基づいて、最小二乗法、スペクトル解析法または部分空間法といった手法を用いて、数式(4)の伝達関数Gm(s)を同定することができる。同定された伝達関数Gm(s)から算出されるJl、C、Kを用いて、数式(3)で与えられる伝達関数型フィルタGf(s)を決定する。機械モデル同定部9は、このようにして得られた伝達関数型フィルタGf(s)を補正量演算部4に機械特性フィルタ209として出力する。補正量演算部4は、機械特性フィルタ42に、機械特性フィルタ209として受け取った伝達関数型フィルタGf(s)を用い、これに基づいて誤差補正量206を算出して出力する。誤差補正量206を用いることにより、サーボ制御部410は、機械系7の機械特性に適したロバストな補正を行うことができる。
Based on the measured values of the motor end position 202 and the machine end position 203, the machine model identification unit 9 uses a method such as a least square method, a spectrum analysis method, or a subspace method to transfer the transfer function of Equation (4). Gm (s) can be identified. Using Jl, C, and K calculated from the identified transfer function Gm (s), the transfer function type filter Gf (s) given by Equation (3) is determined. The machine model identification unit 9 outputs the transfer function type filter Gf (s) thus obtained to the correction amount calculation unit 4 as a mechanical characteristic filter 209. The correction amount calculation unit 4 uses the transfer function type filter Gf (s) received as the mechanical characteristic filter 209 for the mechanical characteristic filter 42, and calculates and outputs an error correction amount 206 based on this. By using the error correction amount 206, the servo control unit 410 can perform robust correction suitable for the mechanical characteristics of the mechanical system 7.
以上に説明したように、実施の形態3にかかるサーボ制御装置400は、加振指令生成部8および機械モデル同定部9をさらに備えることにより、新たなセンサを追加するといったこと無しに、機械系7の機械特性を表す伝達関数を自動的に同定することができるという効果を奏する。
As described above, the servo control device 400 according to the third embodiment further includes the vibration command generation unit 8 and the machine model identification unit 9, so that a new sensor is not added. 7 has the effect of automatically identifying a transfer function representing the mechanical characteristics of No. 7.
実施の形態4.
実施の形態4にかかる数値制御装置401およびサーボ制御部410の構成は実施の形態3と同じく図15および図16で示した構成である。Embodiment 4 FIG.
The configuration of thenumerical control device 401 and the servo control unit 410 according to the fourth embodiment is the same as that of the third embodiment shown in FIGS. 15 and 16.
実施の形態4にかかる数値制御装置401およびサーボ制御部410の構成は実施の形態3と同じく図15および図16で示した構成である。
The configuration of the
実施の形態4にかかるサーボ制御装置400の加振指令生成部8は、モータ6および機械系7を移動させながら加振を行う。そのため、加振指令208は、移動成分と加振成分とを加算した信号となる。移動成分は一定速度で一方向に移動する指令とする。そして、速度一定に達しているタイミングで加振成分としてランダム加振信号を付加した加振指令208を使用する。なお、移動成分は往復運動といった他の指令でもよく、加振成分は正弦波の振動数を段階的に変更するサインスイープ信号でもよい。
The vibration command generator 8 of the servo control device 400 according to the fourth embodiment performs vibration while moving the motor 6 and the mechanical system 7. Therefore, the vibration command 208 is a signal obtained by adding the movement component and the vibration component. The moving component is a command to move in one direction at a constant speed. Then, the vibration command 208 to which a random vibration signal is added as a vibration component at the timing when the speed is constant is used. The moving component may be another command such as a reciprocating motion, and the excitation component may be a sine sweep signal that changes the frequency of the sine wave stepwise.
実施の形態3と同様に、機械モデル同定部9は、加振指令208で加振した場合のモータ端位置202および機械端位置203の実測値を用いて、モータ端位置202から機械端位置203までの伝達関数Gm(s)を同定する。ただし、実施の形態4においては、加振指令208には移動成分と加振成分が含まれているので、機械モデル同定部9では、モータ端位置202および機械端位置203の実測値から移動成分を除去して、加振成分に対するモータ端位置202および機械端位置203の実測値から伝達関数Gm(s)を同定する。移動成分の除去の方法の具体例は、事前に移動成分のみの加振指令208を与えた場合のモータ端位置202および機械端位置203の実測値を測定しておき、測定したモータ端位置202および機械端位置203の実測値を、加振成分を加えた加振指令208を与えた場合のモータ端位置202および機械端位置203の実測値から減算することによって行う。移動成分が除去されたモータ端位置202および機械端位置203の実測値から、数式(4)で表される伝達関数Gm(s)を同定する方法および数式(3)で与えられる伝達関数型フィルタGf(s)を決定する方法は、実施の形態3と同じである。
Similarly to the third embodiment, the machine model identification unit 9 uses the actual measurement values of the motor end position 202 and the machine end position 203 when the vibration command 208 is vibrated, from the motor end position 202 to the machine end position 203. The transfer function Gm (s) up to is identified. However, in the fourth embodiment, since the vibration command 208 includes a movement component and an excitation component, the machine model identification unit 9 determines the movement component from the measured values of the motor end position 202 and the machine end position 203. And the transfer function Gm (s) is identified from the measured values of the motor end position 202 and the machine end position 203 with respect to the vibration component. As a specific example of the method for removing the moving component, the measured values of the motor end position 202 and the machine end position 203 when the vibration command 208 of only the moving component is given in advance are measured, and the measured motor end position 202 is measured. Further, the actual measurement value of the machine end position 203 is subtracted from the actual measurement values of the motor end position 202 and the machine end position 203 when the vibration command 208 including the vibration component is given. A method for identifying the transfer function Gm (s) represented by Expression (4) from the measured values of the motor end position 202 and the machine end position 203 from which the moving component has been removed, and a transfer function type filter given by Expression (3) The method for determining Gf (s) is the same as in the third embodiment.
以上説明したように、実施の形態4にかかるサーボ制御装置400では、移動成分および加振成分を含む加振指令208により加振することにより、機械モデル同定部9で摩擦力の影響を除去した同定が可能となる。機械系7を停止させた状態で加振を行った場合、摩擦力の大きい機械系7では、摩擦の影響により機械端位置203における加振振幅が小さくなり、伝達関数型フィルタGf(s)を精度よく測定できない場合があるが、実施の形態4にかかるサーボ制御装置400によれば、加振指令208が移動成分を含んでいるので、機械系7の機械特性を表す伝達関数型フィルタGf(s)をより精度よく同定できるという効果が得られる。
As described above, in the servo control device 400 according to the fourth embodiment, the mechanical model identifying unit 9 removes the influence of the frictional force by performing vibration using the vibration command 208 including the moving component and the vibration component. Identification becomes possible. When vibration is performed in a state where the mechanical system 7 is stopped, in the mechanical system 7 having a large frictional force, the vibration amplitude at the machine end position 203 becomes small due to the influence of friction, and the transfer function type filter Gf (s) is reduced. Although there is a case where the measurement cannot be performed with high accuracy, according to the servo control device 400 according to the fourth embodiment, since the vibration command 208 includes a moving component, the transfer function type filter Gf (representing the mechanical characteristics of the mechanical system 7) The effect that s) can be identified more accurately is obtained.
図17は、実施の形態1から4にかかる数値制御装置の機能をコンピュータで実現する場合のハードウェア構成を示す図である。数値制御装置101,301,401の機能をコンピュータで実現する場合、数値制御装置101,301,401の機能は、図17に示すようにCPU(Central Processing Unit)51、メモリ52、インタフェース53および専用回路54により実現される。数値制御装置101,301,401の機能の一部は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ52に格納される。CPU51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、数値制御装置101,301,401は、各部の機能がコンピュータにより実行されるときに、数値制御装置101,301,401の動作を実施するステップが結果的に実行されることになるプログラムを格納するためのメモリ52を備える。また、これらのプログラムは、数値制御装置101,301,401の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリ52とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)が該当する。
FIG. 17 is a diagram illustrating a hardware configuration when the functions of the numerical control device according to the first to fourth embodiments are realized by a computer. When the functions of the numerical control devices 101, 301, and 401 are realized by a computer, the functions of the numerical control devices 101, 301, and 401 are, as shown in FIG. 17, a CPU (Central Processing Unit) 51, a memory 52, an interface 53, and a dedicated device. This is realized by the circuit 54. Some of the functions of the numerical control devices 101, 301, and 401 are realized by software, firmware, or a combination of software and firmware. Software or firmware is described as a program and stored in the memory 52. The CPU 51 implements the functions of each unit by reading and executing the program stored in the memory 52. That is, the numerical control devices 101, 301, and 401 are programs that, as a result, execute steps of the numerical control devices 101, 301, and 401 when the functions of the respective units are executed by the computer. A memory 52 for storing is provided. These programs can also be said to cause a computer to execute the procedures or methods of the numerical control apparatuses 101, 301, and 401. Here, the memory 52 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Nonvolatile Memory, or an EEPROM (Electrically Erasable Memory) A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disk) are applicable.
CPU51は、メモリ52に格納されたプログラムを読み出して実行することによって、位置指令生成部5、補正量演算部4,340、ねじれ量演算部3および移動方向検出部2,320の機能を実現する。インタフェース53は、モータ端位置202および機械端位置203を受信するための機能を有している。専用回路54の具体例は、サーボ制御部1,410のインバータ回路である。このように数値制御装置101,301,401は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
The CPU 51 reads out and executes the program stored in the memory 52, thereby realizing the functions of the position command generation unit 5, the correction amount calculation units 4 and 340, the twist amount calculation unit 3, and the movement direction detection units 2 and 320. . The interface 53 has a function for receiving the motor end position 202 and the machine end position 203. A specific example of the dedicated circuit 54 is an inverter circuit of the servo control units 1 and 410. As described above, the numerical control devices 101, 301, and 401 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
1,410 サーボ制御部、2,320 移動方向検出部、3 ねじれ量演算部、4,340 補正量演算部、5 位置指令生成部、6 モータ、7 機械系、8 加振指令生成部、9 機械モデル同定部、11 位置制御部、12 速度制御部、13,31,32,324 微分演算部、21 位置制御模擬部、22 積分演算部、23 符号演算部、33 単位変換部、41,341 補正ゲイン演算部、42,209 機械特性フィルタ、51 CPU、52 メモリ、53 インタフェース、54 専用回路、61 サーボモータ、62 モータ端位置検出器、70 カップリング、71 ボールねじ、72 ボールねじナット、73 テーブル、74 機械端位置検出器、75 スケール、100,300,400 サーボ制御装置、101,301,401 数値制御装置、200 位置指令、201 トルク指令、202 モータ端位置、203 機械端位置、204 移動方向信号、205 ねじれ量、206 誤差補正量、207 モデル加速度、208 加振指令、343 補正倍率テーブル。
1,410 Servo control unit, 2,320 Movement direction detection unit, 3 Twist amount calculation unit, 4,340 Correction amount calculation unit, 5 Position command generation unit, 6 Motor, 7 Mechanical system, 8 Excitation command generation unit, 9 Machine model identification unit, 11 position control unit, 12 speed control unit, 13, 31, 32, 324 differential operation unit, 21 position control simulation unit, 22 integral operation unit, 23 sign operation unit, 33 unit conversion unit, 41, 341 Correction gain calculation unit, 42, 209 mechanical characteristic filter, 51 CPU, 52 memory, 53 interface, 54 dedicated circuit, 61 servo motor, 62 motor end position detector, 70 coupling, 71 ball screw, 72 ball screw nut, 73 Table, 74 Machine end position detector, 75 scale, 100, 300, 400 Servo control , 101, 301, 401 numerical control device, 200 position command, 201 torque command, 202 motor end position, 203 machine end position, 204 movement direction signal, 205 twist amount, 206 error correction amount, 207 model acceleration, 208 vibration Command, 343 Correction magnification table.
Claims (8)
- 被駆動体に駆動伝達機構を介して接続されたモータを制御するサーボ制御装置であって、
位置指令および誤差補正量に基づいて、前記被駆動体の位置である機械端位置が前記位置指令に追従するように前記モータに対するトルク指令を算出して出力するサーボ制御部と、
前記位置指令に基づいて前記機械端位置の移動方向の向きを検出する移動方向検出部と、
前記機械端位置と前記モータの位置であるモータ端位置とからねじれ量を算出して出力するねじれ量演算部と、
前記移動方向が反転したときの前記ねじれ量と、前記被駆動体および前記駆動伝達機構の機械特性とを用いて前記誤差補正量を算出する補正量演算部と、
を備えることを特徴とするサーボ制御装置。 A servo control device for controlling a motor connected to a driven body via a drive transmission mechanism,
A servo control unit that calculates and outputs a torque command for the motor based on a position command and an error correction amount so that a machine end position that is the position of the driven body follows the position command;
A moving direction detector that detects the direction of the moving direction of the machine end position based on the position command;
A torsion amount calculation unit that calculates and outputs a torsion amount from the machine end position and a motor end position that is the position of the motor;
A correction amount calculation unit that calculates the error correction amount using the twist amount when the moving direction is reversed, and mechanical characteristics of the driven body and the drive transmission mechanism;
A servo control device comprising: - 前記ねじれ量演算部は、前記機械端位置と前記モータ端位置との偏差から偏差に含まれる慣性力による成分を除去して前記ねじれ量を算出する
ことを特徴とする請求項1に記載のサーボ制御装置。 2. The servo according to claim 1, wherein the twist amount calculation unit calculates the twist amount by removing a component due to an inertial force included in a deviation from a deviation between the machine end position and the motor end position. Control device. - 前記機械特性は、前記被駆動体および前記駆動伝達機構に作用する摩擦力から前記ねじれ量までの伝達特性である
ことを特徴とする請求項1または2に記載のサーボ制御装置。 The servo control device according to claim 1, wherein the mechanical characteristic is a transmission characteristic from a frictional force acting on the driven body and the drive transmission mechanism to the torsion amount. - 前記移動方向検出部は、前記サーボ制御部を模擬することにより前記被駆動体の速度の計算値を求め、前記計算値に基づいて前記移動方向の向きを検出する
ことを特徴とする請求項1から3のいずれか1つに記載のサーボ制御装置。 The said moving direction detection part calculates | requires the calculated value of the speed of the said to-be-driven body by simulating the said servo control part, and detects the direction of the said moving direction based on the said calculated value. 4. The servo control device according to any one of 3 to 3. - 前記補正量演算部は、前記ねじれ量に補正倍率を乗じて得た補正ゲインの大きさを振幅とするインパルス信号を前記機械特性に基づいてフィルタリングすることにより前記誤差補正量を算出する
ことを特徴とする請求項1から4のいずれか1つに記載のサーボ制御装置。 The correction amount calculation unit calculates the error correction amount by filtering an impulse signal having an amplitude that is a correction gain obtained by multiplying the twist amount by a correction magnification based on the mechanical characteristics. The servo control device according to any one of claims 1 to 4. - 前記補正倍率を、前記位置指令から算出した値、前記機械端位置、前記モータ端位置、前記モータの温度、前記被駆動体の温度、前記駆動伝達機構の温度および気温の少なくとも1つに依存して変化させる
ことを特徴とする請求項5に記載のサーボ制御装置。 The correction magnification depends on at least one of a value calculated from the position command, the machine end position, the motor end position, the motor temperature, the temperature of the driven body, the temperature of the drive transmission mechanism, and the air temperature. The servo control device according to claim 5, wherein the servo control device is changed. - 前記サーボ制御部に入力する加振信号を生成する加振信号生成部と、
前記サーボ制御部に前記加振信号が入力されたときの前記モータ端位置および前記機械端位置の実測値とから、前記モータ端位置から前記機械端位置までの伝達関数を同定する機械モデル同定部と、
をさらに備えることを特徴とする請求項1から6のいずれか1つに記載のサーボ制御装置。 An excitation signal generation unit that generates an excitation signal to be input to the servo control unit;
A machine model identification unit for identifying a transfer function from the motor end position to the machine end position from the measured value of the motor end position and the machine end position when the excitation signal is input to the servo control unit When,
The servo control device according to claim 1, further comprising: - 前記加振信号は、移動成分と加振成分とを加算した信号である
ことを特徴とする請求項7に記載のサーボ制御装置。 The servo control device according to claim 7, wherein the excitation signal is a signal obtained by adding a movement component and an excitation component.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018507037A JP6333495B1 (en) | 2016-10-17 | 2016-10-17 | Servo control device |
PCT/JP2016/080744 WO2018073873A1 (en) | 2016-10-17 | 2016-10-17 | Servo control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080744 WO2018073873A1 (en) | 2016-10-17 | 2016-10-17 | Servo control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018073873A1 true WO2018073873A1 (en) | 2018-04-26 |
Family
ID=62018345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080744 WO2018073873A1 (en) | 2016-10-17 | 2016-10-17 | Servo control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6333495B1 (en) |
WO (1) | WO2018073873A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239594A1 (en) * | 2018-06-15 | 2019-12-19 | 三菱電機株式会社 | Numerical control device |
CN113711138A (en) * | 2019-04-22 | 2021-11-26 | 三菱电机株式会社 | Servo control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000250614A (en) * | 1998-12-28 | 2000-09-14 | Mitsubishi Electric Corp | Backlash correction device and numerical control system |
JP2001202136A (en) * | 2000-01-19 | 2001-07-27 | Toshiba Mach Co Ltd | Method for correcting dynamic deflection of motion controller and the motion controller |
JP2007058278A (en) * | 2005-08-22 | 2007-03-08 | Okuma Corp | Position controller with lost motion correcting function |
JP2014013554A (en) * | 2012-06-04 | 2014-01-23 | Fanuc Ltd | Servo control device including function for correcting expansion and contraction amount of ball screw |
JP2016076119A (en) * | 2014-10-07 | 2016-05-12 | ファナック株式会社 | Motor controller for correcting reverse delay of motor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4361285B2 (en) * | 2003-01-29 | 2009-11-11 | 三菱電機株式会社 | Numerical controller |
JP5890473B2 (en) * | 2014-06-13 | 2016-03-22 | ファナック株式会社 | Motor control device for controlling a motor |
-
2016
- 2016-10-17 JP JP2018507037A patent/JP6333495B1/en active Active
- 2016-10-17 WO PCT/JP2016/080744 patent/WO2018073873A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000250614A (en) * | 1998-12-28 | 2000-09-14 | Mitsubishi Electric Corp | Backlash correction device and numerical control system |
JP2001202136A (en) * | 2000-01-19 | 2001-07-27 | Toshiba Mach Co Ltd | Method for correcting dynamic deflection of motion controller and the motion controller |
JP2007058278A (en) * | 2005-08-22 | 2007-03-08 | Okuma Corp | Position controller with lost motion correcting function |
JP2014013554A (en) * | 2012-06-04 | 2014-01-23 | Fanuc Ltd | Servo control device including function for correcting expansion and contraction amount of ball screw |
JP2016076119A (en) * | 2014-10-07 | 2016-05-12 | ファナック株式会社 | Motor controller for correcting reverse delay of motor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239594A1 (en) * | 2018-06-15 | 2019-12-19 | 三菱電機株式会社 | Numerical control device |
JPWO2019239594A1 (en) * | 2018-06-15 | 2020-12-17 | 三菱電機株式会社 | Numerical control device |
CN112236729A (en) * | 2018-06-15 | 2021-01-15 | 三菱电机株式会社 | Numerical control device |
CN112236729B (en) * | 2018-06-15 | 2024-03-15 | 三菱电机株式会社 | Numerical control device |
CN113711138A (en) * | 2019-04-22 | 2021-11-26 | 三菱电机株式会社 | Servo control device |
CN113711138B (en) * | 2019-04-22 | 2024-02-13 | 三菱电机株式会社 | Servo control device |
Also Published As
Publication number | Publication date |
---|---|
JP6333495B1 (en) | 2018-05-30 |
JPWO2018073873A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5885883B2 (en) | Servo control device | |
US10108177B2 (en) | Control parameter adjustment device | |
JP6316323B2 (en) | Motor control device | |
US20180297196A1 (en) | Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device | |
JP6457569B2 (en) | Servo motor control device, servo motor control method, and servo motor control program | |
JP7117827B2 (en) | MOTOR CONTROL SYSTEM, CONTROL METHOD FOR MOTOR CONTROL SYSTEM, AND ROBOT SYSTEM | |
WO2013031465A1 (en) | Control method and control device | |
JP5875714B2 (en) | Servo control device and servo control method | |
JP6091523B2 (en) | Servo control device | |
JP2014136260A (en) | Control device | |
WO2007105527A1 (en) | Control method and controller of positioning mechanism | |
JP6407076B2 (en) | Parameter setting method for positioning device and positioning device | |
JP2019181610A (en) | Robot system for learning by use of motor encoder and sensor | |
JP4361285B2 (en) | Numerical controller | |
JP6333495B1 (en) | Servo control device | |
JP5836206B2 (en) | Servo control device | |
JP6370866B2 (en) | Servo motor control device, servo motor control method, and servo motor control program | |
TWI516888B (en) | Servo control device | |
CN112236729B (en) | Numerical control device | |
JP2006293624A (en) | Multiaxis controller | |
JP6544851B2 (en) | Patent application title: Parameter setting method for positioning device, parameter setting device, and positioning device provided with the parameter setting device | |
JP2022039922A (en) | Adaptation method for processing resistance estimation, adaptation program for processing resistance estimation and machine tool | |
JP2023133902A (en) | Motor control method and motor control device | |
JP2003345402A (en) | Position control device | |
WO2018042554A1 (en) | Servo control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018507037 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16919570 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16919570 Country of ref document: EP Kind code of ref document: A1 |