TWI516888B - Servo control device - Google Patents

Servo control device Download PDF

Info

Publication number
TWI516888B
TWI516888B TW102115394A TW102115394A TWI516888B TW I516888 B TWI516888 B TW I516888B TW 102115394 A TW102115394 A TW 102115394A TW 102115394 A TW102115394 A TW 102115394A TW I516888 B TWI516888 B TW I516888B
Authority
TW
Taiwan
Prior art keywords
function
command
phase
unit
motor
Prior art date
Application number
TW102115394A
Other languages
Chinese (zh)
Other versions
TW201416812A (en
Inventor
池田英俊
丸下貴弘
馬原功次
長谷川澄
尾木英優
Original Assignee
三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機股份有限公司 filed Critical 三菱電機股份有限公司
Publication of TW201416812A publication Critical patent/TW201416812A/en
Application granted granted Critical
Publication of TWI516888B publication Critical patent/TWI516888B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

伺服控制裝置 Servo control unit

本發明係關於一種將控制對象進行驅動控制之伺服(servo)控制裝置。 The present invention relates to a servo control device that performs drive control of a control object.

驅動控制產業用機器人(robot)、沖壓(press)裝置、生產線(line)自動化裝置等產業用機械的伺服控制裝置,係產生有關驅動機械系統的馬達(motor)之運動(位置或速度)的指令,且以馬達之運動追隨該指令之方式進行控制。在機械系統之剛性較低的情況(驅動之機械系統為手臂(arm)狀的情況、或經由低剛性之軸(shaft)或減速器來驅動負載機械的情況等)時,機械前端之運動與馬達之運動會由於低剛性部撓曲而產生差異。又,在機械系統之剛性較低的情況時,會在停止等之指令的變化之後產生振動。由於此等原因,機械前端之運動會相對指令具有誤差,使得控制精度劣化。 A servo control device for an industrial machine such as a robot, a press device, or a line automation device that drives and controls an engine (motor or motor) that drives a mechanical system (position or speed) And control is performed in such a manner that the motion of the motor follows the command. When the rigidity of the mechanical system is low (the mechanical system of the drive is in the shape of an arm, or the case where the load machine is driven by a low-rigidity shaft or a reducer), the movement of the mechanical front end is The motion of the motor will vary due to the deflection of the low rigidity. Further, when the rigidity of the mechanical system is low, vibration is generated after the change of the command such as the stop. For these reasons, the motion of the mechanical front end has an error with respect to the command, which deteriorates the control accuracy.

針對如此之起因於低剛性的問題,在專利文獻1所記載之技術中,係針對位置指令方塊(block)所產生之位置指令值求出有關時間之二階微分值,且對此乘上增益(gain)常數以求出修正值。然後,以馬達追隨原來之位 置指令值加上該修正值所得的修正位置指令值之方法進行控制。 In the technique described in Patent Document 1, the second-order differential value of the time is obtained for the position command value generated by the position command block, and this is multiplied by the gain ( Gain) Constant to find the correction value. Then, follow the original position with the motor The method of setting the command value plus the correction position command value obtained by the correction value is controlled.

又,在專利文獻1所記載之技術中,有記載亦可使用虛擬微分而非使用純微分。再者,有記載在指令速度之圖案(pattern)成為梯形的情況時,抽出指令之加速度變化的時間點,且使用預先設定之時間序列的修正圖案來產生修正值。 Further, in the technique described in Patent Document 1, it is described that virtual differentiation can be used instead of using pure differential. Further, when the pattern of the command speed is trapezoidal, the timing at which the acceleration of the command is changed is changed, and the correction value is generated using the correction pattern of the time series set in advance.

又,伺服控制裝置,係有以下之情況:以不見得為固定之週期,使產業用機械週期性地進行特定圖案之動作。在如此之情況時,係採用具備例如被稱為電子凸輪(cam)之指令函數部的方式。在此方式中,係使用顯示週期內之相位,並且使用隨著時間經過而增加或是減少的相位信號。然後,指令函數部係使用基於相位信號之數式或資料表(data table)參照來產生週期性的位置指令。藉此,對於相位反覆產生同一形狀之位置指令,且使馬達位置追隨該位置指令。就藉由依使用如此之指令函數部的伺服控制裝置而進一步修正位置指令來提高控制精度的技術而言,有專利文獻2所記載之技術。 Further, in the servo control device, there is a case where the industrial machine periodically performs a specific pattern operation in a cycle that is not necessarily fixed. In such a case, a method having, for example, a command function portion called an electronic cam (cam) is employed. In this manner, the phase within the display period is used and the phase signal that increases or decreases over time is used. The command function portion then uses a phase signal based data or data table reference to generate periodic position commands. Thereby, a position command of the same shape is generated for the phase reversal, and the motor position is followed by the position command. The technique described in Patent Document 2 is a technique for further correcting the position command by using the servo control device of the command function unit to improve the control accuracy.

該專利文獻2所記載之技術,係以提高週期性地進行同一圖案之動作的伺服控制裝置之控制精度為目的,而進行指令之修正者。在此技術中,係將相位信號(相位指令值)當作輸入並使用指令函數部(位置圖案產生器)來產生週期性的位置指令(位置圖案)。然後,為了修正追隨控制部(位置控制系統)之延遲,指令函數部,係使用使 相位前進的位置指令,並且對位置指令之關於時間的二階微分值或三階微分值乘上係數而算出修正值。 The technique described in Patent Document 2 is intended to improve the control accuracy of the servo control device that periodically performs the operation of the same pattern, and to correct the command. In this technique, a phase signal (phase command value) is taken as an input and a command function portion (position pattern generator) is used to generate a periodic position command (position pattern). Then, in order to correct the delay of the follow-up control unit (position control system), the command function unit is used to make The phase advancement position command, and the correction value is calculated by multiplying the second order differential value or the third order differential value of the position command with respect to time.

又,在專利文獻2所記載之技術中,記載有以下之技術:按照位置指令之二階微分值或三階微分值之絕對值的大小,切換是否加上上述之修正值,藉此抑制雜訊(noise)重疊於位置指令。 Further, in the technique described in Patent Document 2, there is described a technique of switching whether or not the above-described correction value is added in accordance with the magnitude of the absolute value of the second-order differential value or the third-order differential value of the position command, thereby suppressing noise. (noise) overlaps the position command.

[專利文獻] [Patent Literature]

(專利文獻1)日本特開2003-76426號公報 (Patent Document 1) Japanese Patent Laid-Open Publication No. 2003-76426

(專利文獻2)日本特開2011-67016號公報 (Patent Document 2) Japanese Patent Laid-Open Publication No. 2011-67016

然而,在上述前者之先前技術中,由於當進行位置指令之二階微分時信號就變成有雜訊的信號,所以有難以進行高精度之控制的問題。又,當使用虛擬微分以取代純微分來作為雜訊問題之對策時,有因相位延遲而難以進行高精度之控制的問題。又,在抽出指令之加速度會變化的時間點並藉由預定之圖案求出修正值的方法中,有只能對應特定之指令形狀的問題。 However, in the prior art of the former, since the signal becomes a noise signal when the second-order differentiation of the position command is performed, there is a problem that it is difficult to perform high-precision control. Further, when virtual differentiation is used instead of pure differentiation as a countermeasure against a noise problem, there is a problem that it is difficult to perform high-precision control due to phase delay. Further, in the method of obtaining the correction value by the predetermined pattern at the time when the acceleration of the extraction command changes, there is a problem that it can only correspond to the specific command shape.

又,在上述後者之先前技術中,由於使用指令函數部所輸出的位置指令之關於時間的二階微分或三階微分來運算修正值,所以有指令雜訊變大、且高精度之控制變得困難的問題。又,雖然藉由按照位置指令之二階微分或三階微分的大小來切換是否進行修正來對應雜訊之 問題,但是由於結果在進行修正的情況下仍會受到雜訊之影響,所以有高精度之控制變得困難的問題。 Further, in the latter prior art, since the correction value is calculated by using the second-order differential or the third-order differential of the position command outputted by the command function unit with respect to time, the command noise becomes large and the control with high precision becomes Difficult problem. Moreover, by switching whether or not to perform correction according to the magnitude of the second-order differential or the third-order differential of the position command, corresponding to the noise However, since the result is still affected by noise when the result is corrected, there is a problem that control with high precision becomes difficult.

本發明係有鑑於上述情事而開發完成者,其目的在於獲得一種即便控制對象為低剛性,亦可高精度地控制週期動作的伺服控制裝置。 The present invention has been developed in view of the above circumstances, and an object thereof is to obtain a servo control device that can control a periodic operation with high precision even if the control target is low in rigidity.

為了解決上述之課題且達成目的,本發明之特徵為具備:追隨控制部,其係對於由馬達用前述馬達進行驅動之機械系統所構成的控制對象,以對應於前述馬達之馬達位置或馬達速度的馬達運動會追隨馬達運動指令之方式,來控制前述馬達;指令函數部,其係輸入用以表示使前述控制對象進行的週期動作之相位的相位信號,且藉由預先設定之第1函數,算出相應於前述相位信號之機械運動指令;二次導函數部,其係輸入前述相位信號,且使用預先設定之第2函數作為二次導函數,且算出相應於前述相位信號之前述第2函數的值作為二階微分基礎信號,其中該二次導函數為用前述相位信號將前述第1函數進行二階微分所得的函數;修正值運算部,其係輸入用以表示前述相位信號之時間微分值的相位速度、及前述二階微分基礎信號,且使用前述相位速度之平方值、前述二階微分基礎信號、和第1常數之乘積,來運算用以修正前述馬達運動指令之第1指令修正值;以及修正加法部,其係基於前述第1指令修正值與前述機械運動指令之相加值來算出前述馬達運動指令。 In order to solve the above problems and achieve the object, the present invention provides a tracking control unit that controls a motor system that is driven by the motor to correspond to a motor position or a motor speed of the motor. The motor motion follows the motor motion command to control the motor, and the command function unit inputs a phase signal indicating a phase of the cyclic operation performed by the control target, and calculates a first function by a predetermined function. a mechanical motion command corresponding to the phase signal; a second derivative function unit that inputs the phase signal and uses a predetermined second function as a second derivative function, and calculates a second function corresponding to the phase signal The value is a second-order differential basic signal, wherein the second derivative function is a function obtained by second-order differentiation of the first function by the phase signal; and a correction value calculation unit that inputs a phase for indicating a time differential value of the phase signal Speed, and the aforementioned second-order differential base signal, and using the aforementioned squared phase velocity The first command correction value for correcting the motor motion command is calculated by multiplying the value, the second-order differential base signal, and the first constant; and the correction addition unit is based on the first command correction value and the mechanical motion command The added value is used to calculate the motor motion command.

依據本發明,即便控制對象為低剛性,亦達成可以高精度地控制週期性的動作的效果。 According to the present invention, even if the object to be controlled is low in rigidity, the effect of controlling the periodic operation with high precision can be achieved.

1‧‧‧控制對象 1‧‧‧Control object

2‧‧‧追隨控制部 2‧‧‧ Follow the Control Department

3A、3B‧‧‧相位產生部 3A, 3B‧‧‧ Phase Generation Department

5A、5B‧‧‧指令產生部 5A, 5B‧‧‧ Command Generation Department

11‧‧‧馬達 11‧‧‧Motor

12‧‧‧彈性部 12‧‧‧Flexible Department

13‧‧‧機械負載 13‧‧‧Mechanical load

51‧‧‧指令函數部 51‧‧‧Command Function Department

52‧‧‧二次導函數部 52‧‧‧Secondary Guide Function

53‧‧‧修正值運算部 53‧‧‧Correction value calculation unit

53a‧‧‧平方運算部 53a‧‧‧ Square Computing Department

53b‧‧‧常數乘法部 53b‧‧‧Constant Multiplication Department

53c‧‧‧二階微分乘法部 53c‧‧‧Second Order Differential Multiplication Department

54A、54B‧‧‧修正值加法部 54A, 54B‧‧‧ Correction Value Addition Department

62‧‧‧一次導函數部 62‧‧‧One lead function department

63‧‧‧加速時修正值運算部 63‧‧‧Acceleration time calculation unit

64‧‧‧衰減修正值運算部 64‧‧‧Attenuation correction value calculation unit

100A、100B‧‧‧伺服控制裝置 100A, 100B‧‧‧ servo control device

Cg‧‧‧黏性常數 Cg‧‧‧viscosity constant

f(θ)‧‧‧指令函數 f(θ)‧‧‧ instruction function

f’(θ)‧‧‧一次導函數 f’(θ)‧‧‧First derivative function

f”(θ)‧‧‧二次導函數 f"(θ)‧‧‧secondary derivative function

G(s)‧‧‧傳遞函數 G(s)‧‧‧transfer function

JL‧‧‧負載慣量 JL‧‧‧load inertia

JM‧‧‧馬達慣量 JM‧‧‧Motor Inertia

Kg‧‧‧彈簧常數 Kg‧‧·spring constant

s‧‧‧運算子 s‧‧‧Operator

xb‧‧‧二階微分基礎信號 Xb‧‧‧ second-order differential fundamental signal

xb1‧‧‧一階微分基礎信號 Xb1‧‧‧ first-order differential basis signal

yh‧‧‧指令修正值 Yh‧‧‧ instruction correction value

yha‧‧‧加速時修正值 Yha‧‧‧revised value when accelerating

yhz‧‧‧衰減修正值 Yhz‧‧‧ attenuation correction value

yL‧‧‧負載位置 yL‧‧‧load position

ym‧‧‧馬達位置 Ym‧‧‧Motor position

yr‧‧‧馬達位置指令 Yr‧‧‧Motor Position Command

yr0‧‧‧機械位置指令 Yr0‧‧‧Mechanical position command

α‧‧‧相位加速度 Α‧‧‧ phase acceleration

θ‧‧‧相位信號 Θ‧‧‧ phase signal

ω‧‧‧相位速度 Ω‧‧‧ phase speed

ωz‧‧‧反共振頻率 ω z ‧‧‧anti-resonance frequency

τm‧‧‧馬達轉矩 τm‧‧‧Motor torque

ζ‧‧‧衰減係數 ζ‧‧‧Attenuation coefficient

第1圖係顯示本發明實施形態1之伺服控制裝置的構成之方塊圖。 Fig. 1 is a block diagram showing the configuration of a servo control device according to a first embodiment of the present invention.

第2圖係顯示控制對象之構成例的示意圖。 Fig. 2 is a schematic view showing a configuration example of a control object.

第3圖係顯示本發明實施形態2之伺服控制裝置的構成之方塊圖。 Fig. 3 is a block diagram showing the configuration of a servo control device according to a second embodiment of the present invention.

以下基於圖式詳細說明本發明實施形態之伺服控制裝置。另外,本發明並非由此等實施形態所限定。 Hereinafter, a servo control device according to an embodiment of the present invention will be described in detail based on the drawings. Further, the present invention is not limited to the embodiments.

實施形態1 Embodiment 1

第1圖係顯示本發明實施形態1之伺服控制裝置的構成之方塊圖。實施形態1之伺服控制裝置100A,為驅動控制馬達(後述之馬達11)、及用馬達11進行驅動之由機械系統所構成的控制對象1之裝置。 Fig. 1 is a block diagram showing the configuration of a servo control device according to a first embodiment of the present invention. The servo control device 100A of the first embodiment is a device that drives a control motor (a motor 11 to be described later) and a control target 1 composed of a mechanical system that is driven by the motor 11.

控制對象1,例如為產業用機器人、沖壓裝置、生產線自動化裝置等產業用機械,且具備馬達11、及連接於馬達11之機械系統。伺服控制裝置100A係使用伺服馬達(servo motor)等致動器(actuator)來對控制對象進行驅動控制。伺服控制裝置100A,係藉由使控制對象1之馬達產生馬達轉矩(motor torque)τm,而使控制對象1進行 所期望之動作。具體而言,伺服控制裝置100A,係基於檢測器(未圖示)檢測出的馬達位置ym而逐次變更馬達轉矩τ m,藉此控制馬達11之動作位置以使控制對象1進行所期望之動作。 The control target 1 is, for example, an industrial machine such as an industrial robot, a press device, or a line automation device, and includes a motor 11 and a mechanical system connected to the motor 11. The servo control device 100A drives and controls a control target using an actuator such as a servo motor. The servo control device 100A causes the control target 1 to perform a motor torque τm by causing the motor of the control target 1 to generate a motor torque τm. The desired action. Specifically, the servo control device 100A sequentially changes the motor torque τ m based on the motor position ym detected by the detector (not shown), thereby controlling the operating position of the motor 11 so that the control target 1 performs the desired operation. action.

伺服控制裝置100A,係包含相位產生部3A、指令產生部5A及追隨控制部2所構成。相位產生部3A,係產生表示使控制對象1進行的週期動作之相位的相位信號θ、和表示相位信號θ之變化速度的相位速度ω,並輸出至指令產生部5A。指令產生部5A,係藉由後述之運算而算出馬達位置指令yr,且將所算出的馬達位置指令yr輸出至追隨控制部2。 The servo control device 100A includes a phase generation unit 3A, a command generation unit 5A, and a follow-up control unit 2. The phase generating unit 3A generates a phase signal θ indicating the phase of the periodic operation performed by the control target 1 and a phase velocity ω indicating the rate of change of the phase signal θ, and outputs the phase velocity ω to the command generating unit 5A. The command generation unit 5A calculates the motor position command yr by the calculation described later, and outputs the calculated motor position command yr to the following control unit 2.

追隨控制部2,係輸入從指令產生部5A所輸出的馬達位置指令yr和在控制對象1所檢測出的馬達位置ym,且產生馬達轉矩τ m以使馬達位置ym追隨馬達位置指令yr。亦即,追隨控制部2,係以由馬達位置ym表示的馬達運動追隨馬達位置指令yr,亦即追隨馬達運動指令之方式,產生馬達轉矩τ m並加以控制。 The following control unit 2 inputs the motor position command yr output from the command generating unit 5A and the motor position ym detected by the control target 1, and generates the motor torque τ m so that the motor position ym follows the motor position command yr. That is, the following control unit 2 generates and controls the motor torque τ m so that the motor motion indicated by the motor position ym follows the motor position command yr, that is, following the motor motion command.

另外,在本實施形態中,雖然是針對相位產生部3A在伺服控制裝置100A之內部的情況加以說明,但是,在伺服控制裝置100A之內部亦可沒有相位產生部3A。伺服控制裝置100A,亦可為例如以使其與外部裝置之動作同步的方式,從外部輸入例如進行旋轉動作的外部裝置之旋轉位置等的信號之構成。 In the present embodiment, the case where the phase generating unit 3A is inside the servo control device 100A will be described. However, the phase generating unit 3A may not be provided inside the servo control device 100A. The servo control device 100A may be configured to input, for example, a signal such as a rotational position of an external device that performs a rotational operation from the outside so as to synchronize with the operation of the external device.

相位產生部3A,係例如藉由隨著時間經過 積分從外部被指定之相位速度ω來產生相位信號θ,且將相位速度ω和相位信號θ輸出至指令產生部5A。或是,相位產生部3A亦可將隨著從外部輸入之時間而增大或減少之相位信號θ輸出至指令產生部5A,並且將與相位信號θ之時間微分相當的相位速度ω輸出至指令產生部5A。在此情況下,相位產生部3A,係使用雜訊去除效果充分大的濾波器(filter)來運算相位速度ω,以免因相位信號θ中所含之量化等所引起的雜訊成分起因於微分運算而變大。如此,相位產生部3A係將相位信號θ、和以不包含雜訊成分之方式所產生的相位速度ω輸出至指令產生部5A。 The phase generating portion 3A is, for example, passed over time The phase signal θ is generated from the externally designated phase velocity ω, and the phase velocity ω and the phase signal θ are output to the command generating unit 5A. Alternatively, the phase generating portion 3A may output the phase signal θ which is increased or decreased with time from the external input to the command generating portion 5A, and output the phase velocity ω corresponding to the time differential of the phase signal θ to the command. The generating portion 5A. In this case, the phase generating unit 3A calculates the phase velocity ω using a filter having a sufficiently large noise removing effect to prevent the noise component due to the quantization included in the phase signal θ from being caused by the differential. The operation becomes larger. In this way, the phase generating unit 3A outputs the phase signal θ and the phase velocity ω generated without including the noise component to the command generating unit 5A.

接著,就指令產生部5A之構成和動作加以說明。指令產生部5A係輸入從相位產生部3A所輸出的相位信號θ和相位速度ω,並算出馬達位置指令yr且輸出至追隨控制部2。指令產生部5A,係包含指令函數部51、二次導函數部52、修正值運算部53及修正值加法部54A所構成。 Next, the configuration and operation of the command generating unit 5A will be described. The command generation unit 5A inputs the phase signal θ and the phase velocity ω output from the phase generation unit 3A, calculates the motor position command yr, and outputs it to the following control unit 2. The command generation unit 5A includes a command function unit 51, a second derivative function unit 52, a correction value calculation unit 53, and a correction value addition unit 54A.

在指令產生部5A中,係使得從相位產生部3A輸出之相位信號θ輸入至指令函數部51及二次導函數部52,且使得從相位產生部3A輸出之相位速度ω輸入至修正值運算部53。 In the command generation unit 5A, the phase signal θ outputted from the phase generation unit 3A is input to the command function unit 51 and the second derivative function unit 52, and the phase velocity ω output from the phase generation unit 3A is input to the correction value calculation. Part 53.

指令函數部51,係依據相位信號θ,而算出相對於控制對象1之機械位置指令yr0。此時,指令函數部51係使用預先設定之指令函數f(θ)來算出機械位置指令yr0。換言之,指令函數部51係藉由預先設定之指令 函數f(θ)(第1函數),算出相應於相位信號θ之機械運動指令。指令函數f(θ),例如為數式或資料表。 The command function unit 51 calculates the mechanical position command yr0 with respect to the control target 1 based on the phase signal θ. At this time, the command function unit 51 calculates the mechanical position command yr0 using the command function f(θ) set in advance. In other words, the command function unit 51 is configured by a preset command. The function f(θ) (first function) calculates a mechanical motion command corresponding to the phase signal θ. The instruction function f(θ) is, for example, a number or a data table.

在指令函數f(θ)為資料表之情況,係預先將相位信號θ之點(值)與機械位置指令yr0之點(值)的對應關係,設定於資料表。在資料表中,事先設定預定數之前述對應關係。指令函數部51,係藉由對被輸入的任意值之相位信號θ內插資料表參照值而算出機械位置指令yr0。此時,指令函數部51,係只要使用直線內插法就可以輕易地算出機械位置指令yr0。另外,指令函數部51亦可使用複雜之樣條(spline)內插法等。指令函數部51係將已算出的機械位置指令yr0輸出至修正值加法部54A。 In the case where the command function f(θ) is the data table, the correspondence relationship between the point (value) of the phase signal θ and the point (value) of the mechanical position command yr0 is set in advance in the data table. In the data sheet, the aforementioned correspondence of the predetermined number is set in advance. The command function unit 51 calculates the mechanical position command yr0 by interpolating the reference value of the data table with respect to the input phase signal θ of an arbitrary value. At this time, the command function unit 51 can easily calculate the mechanical position command yr0 by using the linear interpolation method. Further, the command function unit 51 can also use a complicated spline interpolation method or the like. The command function unit 51 outputs the calculated mechanical position command yr0 to the correction value addition unit 54A.

在二次導函數部52中,係預先設定有與指令函數f(θ)之二次導函數f”(θ)相當的函數(第2函數)。在此所謂二次導函數f”(θ),係指藉由相位信號θ將指令函數f(θ)進行二階微分所得者。二次導函數部52,係算出與所輸入之相位信號θ對應的函數之值作為二階微分基礎信號xb,且輸出至修正值運算部53。在此,二次導函數部52之第2函數,係與指令函數f(θ)同樣,例如為數式或資料表。又第2函數,雖然為依情況而近似地表示指令函數f(θ)之二次導函數f”(θ)者,但是在以下沒有必要嚴謹地描述的情況下,則不區別地寫第2函數和二次導函數f”(θ)。 In the secondary derivative function unit 52, a function (second function) corresponding to the second derivative function f"(θ) of the command function f(θ) is set in advance. Here, the second derivative function f" (θ) ) refers to the second-order differentiation of the command function f(θ) by the phase signal θ. The secondary derivative function unit 52 calculates a value of a function corresponding to the input phase signal θ as a second-order differential base signal xb, and outputs it to the correction value calculation unit 53. Here, the second function of the second derivative function unit 52 is, for example, a numerical formula or a data table, similarly to the command function f(θ). Further, the second function is similar to the second derivative function f"(θ) of the command function f(θ) depending on the situation. However, in the case where it is not necessary to describe it rigorously, the second function is written indiscriminately. The function and the second derivative function f"(θ).

在二次導函數部52中之第2函數為資料表的情況,係將相位信號θ之點(值)與相當於二次導函數f” (θ)之點(值)的對應關係、亦即將相位信號θ之點(值)與二階微分基礎信號xb之點(值)的對應關係預先設定於資料表。二次導函數部52係藉由對被輸入的任意值之相位信號θ內插資料表參照值而算出二階微分基礎信號xb。二次導函數部52,係將已算出的二階微分基礎信號xb輸出至修正值運算部53。 In the case where the second function in the second derivative function unit 52 is a data table, the point (value) of the phase signal θ is equivalent to the second derivative function f" The correspondence relationship between the points (values) of (θ), that is, the correspondence between the point (value) of the phase signal θ and the point (value) of the second-order differential base signal xb is set in advance in the data table. The second derivative function unit 52 calculates the second-order differential basic signal xb by interpolating the reference value of the data table with respect to the input phase signal θ of an arbitrary value. The secondary derivative function unit 52 outputs the calculated second-order differential base signal xb to the correction value calculation unit 53.

修正值運算部53係輸入二階微分基礎信號xb和相位速度ω,且使用相位速度ω之平方、預定之常數(第1常數)、和二階微分基礎信號xb之乘積,算出用以修正機械位置指令yr0之指令修正值yh。修正值運算部53係將已算出的指令修正值yh輸出至修正值加法部54A。在此,預定之常數,係按照與控制對象1之剛性或振動有關的機械常數來設定者,且設定成為後述的控制對象1之反共振頻率之平方的倒數。 The correction value calculation unit 53 inputs the second-order differential base signal xb and the phase velocity ω, and calculates a product for correcting the mechanical position using the product of the square of the phase velocity ω, a predetermined constant (the first constant), and the second-order differential base signal xb. The yr0 command correction value yh. The correction value calculation unit 53 outputs the calculated command correction value yh to the correction value addition unit 54A. Here, the predetermined constant is set in accordance with the mechanical constant related to the rigidity or vibration of the control target 1, and is set to the reciprocal of the square of the anti-resonance frequency of the control target 1 to be described later.

修正值運算部53,係具有平方運算部53a、常數乘法部53b、及二階微分乘法部53c。在修正值運算部53中,由平方運算部53a算出相位速度ω之平方並輸出至常數乘法部53b。然後,常數乘法部53b係對來自平方運算部53a之輸出,乘上預定之常數(例如,基於控制對象1之反共振頻率ωz的平方之倒數的值)。常數乘法部53b係將相乘所得之值輸出至二階微分乘法部53c。再者,二階微分乘法部53c係進行來自常數乘法部53b之輸出與二階微分基礎信號xb的乘法運算並算出指令修正值yh。然後,二階微分乘法部53c係將指令修正值yh輸出至修正值加法 部54A。 The correction value calculation unit 53 includes a square operation unit 53a, a constant multiplication unit 53b, and a second-order differential multiplication unit 53c. In the correction value calculation unit 53, the square operation unit 53a calculates the square of the phase velocity ω and outputs it to the constant multiplication unit 53b. Then, the constant multiplication unit 53b multiplies the output from the square operation unit 53a by a predetermined constant (for example, a value based on the inverse of the square of the anti-resonance frequency ω z of the control target 1). The constant multiplication unit 53b outputs the multiplied value to the second-order differential multiplication unit 53c. Further, the second-order differential multiplication unit 53c performs multiplication of the output from the constant multiplication unit 53b and the second-order differential base signal xb, and calculates a command correction value yh. Then, the second-order differential multiplication unit 53c outputs the command correction value yh to the correction value addition unit 54A.

在此,修正值運算部53內之各部的乘法運算之順序並非被特別限定於上述之順序。修正值運算部53係只要以指令修正值yh會成為將相位速度ω之平方、取反共振頻率ωz的平方所得的值之倒數、和二階微分基礎信號xb相乘之積的方式來計算即可。 Here, the order of multiplication of each unit in the correction value calculation unit 53 is not particularly limited to the above-described order. The correction value calculation unit 53 calculates that the command correction value yh is obtained by multiplying the inverse of the value obtained by dividing the square of the phase velocity ω and the square of the inverse resonance frequency ω z by the second-order differential base signal xb. can.

修正值加法部54A係將對指令函數部51所輸出的機械位置指令yr0加上修正值運算部53所輸出的指令修正值yh所得之結果(相加值),作為馬達位置指令yr而輸出至追隨控制部2。如此,指令產生部5A,係藉由上述之動作,而依據相位信號θ和相位速度ω算出馬達位置指令yr且輸出至追隨控制部2。 The correction value addition unit 54A outputs the result (added value) obtained by adding the command position correction value yh outputted by the correction value calculation unit 53 to the mechanical position command yr0 output from the command function unit 51, and outputs it as the motor position command yr. Follow the control unit 2. In this manner, the command generation unit 5A calculates the motor position command yr based on the phase signal θ and the phase velocity ω and outputs the result to the follow-up control unit 2 by the above operation.

追隨控制部2係輸入指令產生部5A所輸出的馬達位置指令yr和從控制對象1檢測出的馬達位置ym。追隨控制部2係以馬達位置ym追隨馬達位置指令yr並成為一致之方式一邊控制控制對象1中的馬達11之電流一邊產生馬達轉矩τm。追隨控制部2係使用例如由馬達位置控制、馬達速度控制、以及馬達電流控制所構成的串級(cascade)控制等。 The following control unit 2 inputs the motor position command yr output from the command generating unit 5A and the motor position ym detected from the control target 1. The tracking control unit 2 generates the motor torque τm while controlling the current of the motor 11 in the control target 1 so that the motor position y follows the motor position command yr. The tracking control unit 2 uses, for example, cascade control including motor position control, motor speed control, and motor current control.

其次,為了說明由本實施形態所得之效果,首先就本實施形態所考慮的控制對象1之特性加以說明。第2圖係顯示控制對象之構成例的示意圖。 Next, in order to explain the effects obtained by the present embodiment, first, the characteristics of the control target 1 considered in the present embodiment will be described. Fig. 2 is a schematic view showing a configuration example of a control object.

控制對象1,係用軸等之彈性部12來結合馬達11和機械負載13。然後,在控制對象1中,藉由伺 服控制裝置100A所產生的馬達轉矩τ m來驅動馬達11,並透過彈性部12來驅動機械負載13。 The control object 1 is coupled to the motor 11 and the mechanical load 13 by an elastic portion 12 such as a shaft. Then, in the control object 1, by the servo The motor torque τ m generated by the service control device 100A drives the motor 11 and transmits the mechanical load 13 through the elastic portion 12.

機械負載13之負載慣量(inertia)為JL,作為動作的機械負載13之位置的負載位置為yL,彈性部12之彈簧常數為Kg,彈性部12之黏性常數為Cg,馬達11之馬達慣量為JM。 The load inertia (inertia) of the mechanical load 13 is JL, the load position at the position of the mechanical load 13 as the operation is yL, the spring constant of the elastic portion 12 is Kg, the viscosity constant of the elastic portion 12 is Cg, and the motor inertia of the motor 11 For JM.

藉由馬達轉矩τ m而驅動控制對象1的情況之負載位置yL與馬達位置ym之關係係用以下之數式(1)來表示。另外,以下敘述中,記號之s為拉普拉斯(Laplace)運算子,且為等效意指時間微分之運算子。 The relationship between the load position yL and the motor position ym in the case where the control target 1 is driven by the motor torque τ m is expressed by the following equation (1). In addition, in the following description, the s of the symbol is a Laplace operator, and is equivalent to the operator of time differentiation.

yL/ym=1/(s2z 2+2ζ.s/ωz+1)...(1) yL/ym=1/(s 2z 2 +2ζ.s/ω z +1). . . (1)

數式(1)之ωz為控制對象1之反共振頻率,ζ為衰減係數,分別用以下之數式(2)和數式(3)來表示。 The ω z of the equation (1) is the anti-resonance frequency of the control object 1, and ζ is the attenuation coefficient, which is expressed by the following equations (2) and (3), respectively.

ωz=(Kg/JL)(1/2)...(2) ω z =(Kg/JL) (1/2) . . . (2)

ζ=Cg/{2(JL.Kg)(1/2)}...(3) ζ=Cg/{2(JL.Kg) (1/2) }. . . (3)

在此,將作為藉由追隨控制部2之作用而控制的結果之從馬達位置指令yr至馬達位置ym為止的傳遞函數表示為G(s)。亦即,當以下之數式(4)成立時,從馬達位置指令yr至負載位置yL為止的傳遞函數係成為以下之數式(5)。 Here, the transfer function from the motor position command yr to the motor position ym as a result of the control by the action of the control unit 2 is expressed as G(s). In other words, when the following equation (4) is satisfied, the transfer function from the motor position command yr to the load position yL is expressed by the following equation (5).

ym/yr=G(s)...(4) Ym/yr=G(s). . . (4)

yL/yr=G(s){1/(s2z 2+2ζ.s/ωz+1)}...(5) yL/yr=G(s){1/(s 2z 2 +2ζ.s/ω z +1)}. . . (5)

在控制對象1中的機械系統之剛性較低的情況,通常由於衰減係數ζ變得比1還更顯著地小,所以 當將衰減係數ζ視為充分地小而加以忽視時,係可以由以下之數式(6)來近似數式(5)。 In the case where the rigidity of the mechanical system in the control object 1 is low, usually since the attenuation coefficient ζ becomes significantly smaller than 1, it is When the attenuation coefficient ζ is considered to be sufficiently small and ignored, the equation (5) can be approximated by the following equation (6).

yL/yr=G(s){1/(s2z 2+1)}‧‧‧(6) yL/yr=G(s){1/(s 2z 2 +1)}‧‧‧(6)

因而,即便將追隨控制部2之響應設為高速高精度(即便使傳遞函數G(s)接近1),數式(6)亦包含二次共振特性。因此,可明白:負載位置yL之響應係具有誤差,且相對於馬達位置指令yr之變化以反共振頻率ωz進行振動性的動作。如此,反共振頻率ωz,係對應機械系統之振動頻率。 Therefore, even if the response of the following control unit 2 is set to high speed and high precision (even if the transfer function G(s) is close to 1), the equation (6) includes the secondary resonance characteristic. Therefore, it can be understood that the response of the load position yL has an error, and the vibration is performed at the anti-resonance frequency ω z with respect to the change of the motor position command yr. Thus, the anti-resonance frequency ω z corresponds to the vibration frequency of the mechanical system.

其次,就指令產生部5A之詳細的特性加以說明。指令產生部5A係藉由進行上述之動作,而對相位信號θ之輸入計算由以下之數式(7)所表示的指令修正值yh。 Next, the detailed characteristics of the command generating unit 5A will be described. The command generation unit 5A calculates the command correction value yh represented by the following equation (7) by inputting the phase signal θ by performing the above-described operation.

yh=f”(θ)‧ω2z 2‧‧‧(7) Yh=f”(θ)‧ω 2z 2 ‧‧‧(7)

在此,考慮機械位置指令yr0(即f(θ))之時間微分。機械位置指令yr0之一階微分值及二階微分值,係用以下之數式(8)及數式(9)來表示。 Here, the time differentiation of the mechanical position command yr0 (i.e., f(θ)) is considered. The first-order differential value and the second-order differential value of the mechanical position command yr0 are expressed by the following equations (8) and (9).

df(θ)/dt={df(θ)/dθ}(dθ/dt)‧‧‧(8) Df(θ)/dt={df(θ)/dθ}(dθ/dt)‧‧‧(8)

d2f(θ)/dt2={d2f(θ)/dθ2}(dθ/dt)2+{df(θ)/dθ}(d2θ/dt2)‧‧‧(9) d 2 f(θ)/dt 2 ={d 2 f(θ)/dθ 2 }(dθ/dt) 2 +{df(θ)/dθ}(d 2 θ/dt 2 )‧‧‧(9)

在此,當作為相位信號θ之時間微分的相位速度ω,在考慮的期間中為固定或是變化十分地小時,數式(9)就變成以下之數式(10)。 Here, when the phase velocity ω which is the time differential of the phase signal θ is fixed or changed very small in the period under consideration, the equation (9) becomes the following equation (10).

d2f(θ)/dt2={d2f(θ)/dθ2}(dθ/dt)2‧‧‧(10) d 2 f(θ)/dt 2 ={d 2 f(θ)/dθ 2 }(dθ/dt) 2 ‧‧‧(10)

在數式(10)中當將d2f(θ)/dθ2改寫為f”(θ),將dθ/dt改寫為ω,將f(θ)改寫為yr0,將時間微分改寫為運算子s時,數式(10)就能改寫為以下之數式(11)。然後,表示指令修正值yh之數式(7),係用以下之數式(12)來表示。 In the equation (10), when d 2 f(θ)/dθ 2 is rewritten as f"(θ), dθ/dt is rewritten as ω, f(θ) is rewritten as yr0, and time differential is rewritten as an operator. In the case of s, the equation (10) can be rewritten as the following equation (11). Then, the equation (7) indicating the command correction value yh is expressed by the following equation (12).

s2yrO=f”(θ)ω2‧‧‧(11) s 2 yrO=f”(θ)ω 2 ‧‧‧(11)

yh=(s2z 2)yrO‧‧‧(12) Yh=(s 2z 2 )yrO‧‧‧(12)

如此,就無關於在安裝上並未對機械位置指令yr0進行時間微分之運算,而是可以等效地作為對機械位置指令yr0之與時間有關的二階微分值乘上預定之常數的信號,來運算指令修正值yh。 Thus, it is irrelevant that the mechanical position command yr0 is not time-differentiated on the installation, but can be equivalently multiplied by a predetermined constant for the time-dependent second-order differential value of the mechanical position command yr0. The operation instruction correction value yh.

又,馬達位置指令yr,由於為yr0與yh之和,所以從機械位置指令yr0至馬達位置指令yr為止之傳遞函數係成為以下之數式(13)。結果,從機械位置指令yr0至負載位置yL為止之傳遞函數,係藉由合併數式(6)和數式(13)而成為以下之數式(14)。 Further, since the motor position command yr is the sum of yr0 and yh, the transfer function from the mechanical position command yr0 to the motor position command yr is expressed by the following equation (13). As a result, the transfer function from the mechanical position command yr0 to the load position yL is expressed by the following equation (6) by combining the equations (6) and (13).

yr/yrO=(s2z 2+1)‧‧‧(13) Yr/yrO=(s 2z 2 +1)‧‧‧(13)

yL/yrO=G(s)‧‧‧(14) yL/yrO=G(s)‧‧‧(14)

因而,藉由將追隨控制部2之響應作成高速高精度,且使傳遞函數G(s)接近1,則即便控制對象1之剛性較低,亦能夠以負載位置yL會以高速高精度追隨機械位置指令yr0之方式進行控制。 Therefore, by making the response of the following control unit 2 high-speed and high-precision, and making the transfer function G(s) close to 1, even if the rigidity of the control target 1 is low, the machine can be followed by the high-speed and high-precision with the load position yL. The position command yr0 is controlled.

指令產生部5A之特性,係藉由使用作為控制對象1之機械特性(例如,與剛性或振動頻率有關係的機 械特性)的反共振頻率ωz來設定已設定於常數乘法部53b中的預定之常數所得者。例如按照控制對象1之機械特性而從外部設定指令產生部5A之特性,藉此可以實現對控制對象1之高精度控制。 The command generation unit 5A sets the predetermined setting in the constant multiplication unit 53b by using the anti-resonance frequency ω z which is a mechanical characteristic of the control target 1 (for example, a mechanical characteristic related to the rigidity or the vibration frequency). The constant income. For example, the characteristics of the command generating unit 5A are externally set in accordance with the mechanical characteristics of the control target 1, whereby high-precision control of the control target 1 can be realized.

又,反共振頻率ωz,係對應控制對象1之振動頻率。因此,亦可例如以在伺服控制裝置100A內自動地測定振動頻率並將反共振頻率ωz設定於指令產生部5A的方式來構成伺服控制裝置100A。 Further, the anti-resonance frequency ω z corresponds to the vibration frequency of the control target 1. Therefore, the servo control device 100A can be configured, for example, by automatically measuring the vibration frequency in the servo control device 100A and setting the anti-resonance frequency ω z to the command generation unit 5A.

上述之高速高精度控制所能獲得的效果,在原理上,只要將從機械位置指令yr0至馬達位置指令yr為止之傳遞函數設為如數式(13)即可獲得。該性質,在原理上係與專利文獻1所記載之方法相同。 The effect that can be obtained by the high-speed high-precision control described above can be obtained by simply setting the transfer function from the mechanical position command yr0 to the motor position command yr to the equation (13). This property is basically the same as the method described in Patent Document 1.

另一方面,本實施形態之伺服控制裝置100A的特徵之一,係使用設定有相對於相位信號θ之函數的二次導函數部52來算出二階微分基礎信號xb,且運算指令修正值yh作為相位速度ω之平方與二階微分基礎信號xb和預定之常數的乘積。如此,在伺服控制裝置100A中,不用直接地進行二階之時間微分來運算數式(12)所表示的指令修正值yh。 On the other hand, in one of the features of the servo control device 100A of the present embodiment, the second-order differential basic signal xb is calculated using the secondary derivative function unit 52 which is set as a function of the phase signal θ, and the arithmetic command correction value yh is calculated as The square of the phase velocity ω is the product of the second-order differential base signal xb and a predetermined constant. As described above, in the servo control device 100A, the command correction value yh represented by the equation (12) is not directly calculated by performing the second-order time differentiation.

作為先前技術與伺服控制裝置100A之比較,係假設考慮實際上以實際時間運算如數式(12)所示之二階時間微分的情況。在實際的伺服控制裝置100A之運算中,係使用有效位數為有限長度之數值運算。在該情況下,當進行相位產生部3A中的相位信號θ之運算時,會 對理想值混入量化雜訊。又,在指令函數部51中,在從相位信號θ輸出機械位置指令yr0之過程(基於資料表參照而進行內插運算的過程)的各四則運算中,混入起因於概算誤差或截斷誤差之量化雜訊。 As a comparison between the prior art and the servo control device 100A, it is assumed that the case where the second-order time differential as shown in the equation (12) is actually calculated in real time is considered. In the calculation of the actual servo control device 100A, a numerical operation in which the effective number of bits is a finite length is used. In this case, when the calculation of the phase signal θ in the phase generating portion 3A is performed, Mix the quantization noise into the ideal value. Further, in the command function unit 51, in the four arithmetic operations of the process of outputting the mechanical position command yr0 from the phase signal θ (the process of performing the interpolation operation based on the data table reference), the quantization due to the estimation error or the truncation error is mixed. Noise.

當對混入有如此之量化雜訊的機械位置指令yr0,進行如進行雙重之時間微分的二階微分運算時,量化雜訊之成分就會變得非常大,而變得無法直接用於指令修正值yh之運算。又,為了抑制量化雜訊,當使濾波器在實際時間運算中產生作用時,由於會產生取決於濾波器之延遲,所以很難實現高精度之控制。 When the second-order differential operation of the time-differentiation is performed on the mechanical position command yr0 in which such quantization noise is mixed, the component of the quantization noise becomes very large and becomes impossible to be directly used for the command correction value. The operation of yh. Further, in order to suppress quantization noise, when the filter is caused to function in the actual time calculation, it is difficult to achieve high-precision control because a delay depending on the filter occurs.

相對於此,在本實施形態中,由於是基於設定有相對於相位信號θ之函數或資料表的二次導函數部52之參照值而進行指令修正值yh之計算,所以可以抑制起因於數值之量化和時間微分的雜訊成分之增大。結果,不用追加濾波器等就可以輕易地實現高精度之控制。 On the other hand, in the present embodiment, since the calculation of the command correction value yh is performed based on the reference value set with the function of the phase signal θ or the second derivative function unit 52 of the data table, it is possible to suppress the cause of the numerical value. The quantization and the increase of the time-differentiated noise component. As a result, high-precision control can be easily realized without adding a filter or the like.

如此,伺服控制裝置100A係用二次導函數部52來算出相當於與機械位置指令yr0之相位信號θ有關的二階微分值之二階微分基礎信號xb。然後,伺服控制裝置100A係將二階微分基礎信號xb、在相位產生部3A以不包含雜訊成分之方式所產生的相位速度ω之平方、和預定之常數進行相乘而算出指令修正值yh。藉此,亦對應相位速度ω之變更(使控制對象1進行的週期動作之周期的變更),且可以實現與使用機械位置指令yr0之二階時間微分同等的控制特性。又,由於在實際之運算中不進行時間微 分,所以可以算出抑制信號之雜訊成份的馬達位置指令yr。 In this manner, the servo control device 100A calculates the second-order differential base signal xb corresponding to the second-order differential value related to the phase signal θ of the mechanical position command yr0 by the second derivative function unit 52. Then, the servo control device 100A calculates the command correction value yh by multiplying the second-order differential base signal xb by the phase generation unit 3A by the square of the phase velocity ω generated without including the noise component, and a predetermined constant. Thereby, it is also possible to change the phase velocity ω (change the cycle of the cycle operation performed by the control target 1), and to realize the control characteristic equivalent to the second-order time differential using the mechanical position command yr0. Also, since the time is not performed in the actual calculation The motor position command yr that suppresses the noise component of the signal can be calculated.

又,在相位產生部3A中的相位速度ω之運算中,即便使用用以去除雜訊之較慢的低通濾波器(low-pass filter),只要相位速度ω之變化較和緩,則由於低通濾波器之延遲而帶給指令修正值yh之運算的影響亦會變得微小。因此,伺服控制裝置100A即不會使控制精度惡化,並可以去除雜訊之不良影響。 Further, in the calculation of the phase velocity ω in the phase generating portion 3A, even if a slow-passing low-pass filter for removing noise is used, as long as the phase velocity ω changes slowly, it is low. The effect of the operation of the filter correction value yh caused by the delay of the pass filter is also small. Therefore, the servo control device 100A does not deteriorate the control accuracy and can remove the adverse effects of noise.

在本實施形態中,係已就藉由預先設定之資料表和內插運算來算出指令函數部51之指令函數f(θ)及二次導函數部52之二次導函數f”(θ)的情況加以說明。該資料表之製作方法,並非被特別限定者。在可以將指令函數f(θ)及二次導函數f”(θ)當作相對於相位信號θ之數式來運算的情況,即便是非常複雜的運算,亦可事先表格(table)化而藉此避免在實際時間動作中起因於計算時間的問題。又,只要在事先製作相當於二次導函數f”(θ)之資料表時使用高精度之浮數點運算等來事先運算資料表,則能夠不混入雜訊誤差而製作資料表。因此,不會產生高頻之雜訊問題而可實現高精度之控制。 In the present embodiment, the command function f(θ) of the command function unit 51 and the second derivative function f"(θ) of the second derivative function unit 52 are calculated by a predetermined data table and interpolation calculation. The case of the data sheet is not particularly limited. The command function f(θ) and the second derivative function f"(θ) can be calculated as a formula relative to the phase signal θ. In the case, even a very complicated operation can be tabled in advance to avoid the problem of calculating time in the actual time action. In addition, when the data table corresponding to the second derivative function f"(θ) is prepared in advance, the data table is calculated in advance using a high-precision floating-point arithmetic operation or the like, and the data table can be created without mixing noise errors. High-frequency noise problems are not generated and high-precision control is achieved.

又,作為事先設定於指令函數部51的函數f(θ),亦可不用基於數式而設定相對於有限個相位信號θ之點的數值表。在此情況下,可以輕易地設定就數式而言難以表示的任意圖案之週期動作。在如此之情況下,作為基於指令函數部51之指令函數f(θ)的資料表之單純方式,當假設藉由雙進行二次與鄰接的相位信號θ之點有關 的差分運算而求出相當於二次導函數f”(θ)的資料表時,就有使相位信號θ之區域中的高頻成分過大的情況。 Further, as the function f(θ) previously set in the command function unit 51, it is not necessary to set a numerical value table with respect to a point of the finite number of phase signals θ based on the mathematical expression. In this case, it is possible to easily set a periodic motion of an arbitrary pattern which is difficult to represent in terms of a number. In such a case, as a simple manner of the data table based on the instruction function f(θ) of the instruction function portion 51, it is assumed that the second is related to the point of the adjacent phase signal θ by double. When the data table corresponding to the second derivative function f"(θ) is obtained by the difference calculation, the high-frequency component in the region of the phase signal θ may be excessively large.

在使高頻成分過大的情況下,雖然需要由濾波器所進行的平滑化操作,但是由於並非是靠實際時間運算而是只要事前在離線(off-line)狀態下進行平滑化操作即可,所以能夠不發生相位誤差而抑制高頻成分。 When the high-frequency component is too large, the smoothing operation by the filter is required, but the smoothing operation may be performed in an off-line state instead of the actual time calculation. Therefore, the high frequency component can be suppressed without causing a phase error.

具體而言,在相位信號θ之區域中起作用的濾波器運算中使用被稱為零(zero)相位濾波器的手法。亦即,將抑制關於相位信號θ之高頻成分的特性之濾波器運算,雙重地應用於相位信號θ之正方向和反方向。藉此,可以一邊以不發生相位誤差之方式抑制高頻成分,同時一邊製作相當於二次導函數部52中之二次導函數f”(θ)的函數。結果,在用二次導函數部52進行資料表參照和內插運算的實際時間操作之運算時,不會加大輸出信號之高頻雜訊,而可以針對對於控制對象1之振動或控制誤差產生之影響較大的反共振頻率ωz附近之頻率特性進行高精度之實際時間運算。因而,能夠實現高精度之控制。 Specifically, a technique called a zero phase filter is used in the filter operation that functions in the region of the phase signal θ. That is, the filter operation for suppressing the characteristics of the high-frequency component of the phase signal θ is applied to both the positive direction and the reverse direction of the phase signal θ. Thereby, the high-frequency component can be suppressed without causing a phase error, and a function corresponding to the second derivative function f"(θ) in the second derivative function portion 52 can be created. As a result, the second derivative function is used. When the part 52 performs the calculation of the actual time operation of the data table reference and the interpolation operation, the high frequency noise of the output signal is not increased, and the anti-resonance which has a large influence on the vibration or the control error of the control object 1 can be performed. The frequency characteristic near the frequency ω z is subjected to high-accuracy actual time calculation, and thus high-precision control can be realized.

又,在本實施形態中,雖然已就將相當於指令函數部51之函數f(θ)及二次導函數部52之f”(θ)的函數,設定作為相對於預定數之相位信號θ之點的資料表之情況加以說明,但是亦可事先設定數式運算作為指令函數f(θ)或二次導函數f”(θ)。例如,在可以用能夠進行實際時間運算之函數來實現指令函數f(θ)或二次導函數f”(θ)的情況,則亦可不需要設定資料表而進行相對於 相位信號θ之數式運算。 Further, in the present embodiment, a function corresponding to the function f(θ) of the command function unit 51 and f"(θ) of the second derivative function unit 52 is set as the phase signal θ with respect to the predetermined number. The case of the data sheet of the point is explained, but the mathematical expression may be set in advance as the command function f(θ) or the second derivative function f"(θ). For example, in the case where the command function f(θ) or the second derivative function f"(θ) can be realized by a function capable of performing actual time calculation, it is also possible to perform relative information without setting a data table. The numerical calculation of the phase signal θ.

如此,在本實施形態中,係已就伺服控制裝置100A進行位置控制的情況加以說明。具體而言,以相位信號θ為輸入的指令函數部51會算出機械位置指令yr0,以相位信號θ和相位速度ω為輸入的修正值運算部53會算出指令修正值yh,修正值加法部54A會算出馬達位置指令yr。然後,追隨控制部2,以馬達位置ym會追隨馬達位置指令yr之方式控制控制對象1。 As described above, in the present embodiment, the case where the servo control device 100A performs position control will be described. Specifically, the command function unit 51 that inputs the phase signal θ calculates the mechanical position command yr0, and the correction value calculation unit 53 that inputs the phase signal θ and the phase velocity ω calculates the command correction value yh, and the correction value addition unit 54A The motor position command yr is calculated. Then, the following control unit 2 controls the control target 1 such that the motor position ym follows the motor position command yr.

另外,伺服控制裝置100A,亦能夠在同樣的構成下以速度之次元來動作,在該情況下亦能夠獲得與在位置控制之情況下完全同樣的效果。在該情況下,以相位信號θ為輸入的指令函數部51會算出機械速度指令作為機械運動指令,以相位信號θ和相位速度ω為輸入的修正值運算部53會算出速度之指令修正值,修正值加法部54A會算出馬達速度指令作為馬達運動指令。然後,追隨控制部2以作為馬達運動之馬達速度會追隨馬達速度指令之方式控制控制對象1。 Further, the servo control device 100A can also operate in the same order as the speed of the speed. In this case as well, the same effect as in the case of the position control can be obtained. In this case, the command function unit 51 that inputs the phase signal θ calculates the mechanical speed command as the mechanical motion command, and the correction value calculation unit 53 that inputs the phase signal θ and the phase velocity ω calculates the command correction value of the speed. The correction value addition unit 54A calculates a motor speed command as a motor motion command. Then, the following control unit 2 controls the control target 1 such that the motor speed as the motor motion follows the motor speed command.

如此,依據實施形態1,則可以抑制因使進行週期動作的控制對象1之低剛性而引起的振動或控制誤差,同時一邊亦對應週期變更,一邊不產生起因於指令之信號量化的雜訊之問題並實現高精度之控制。因而,即便控制對象1為低剛性,亦能夠高精度地控制週期動作。 As described above, according to the first embodiment, it is possible to suppress the vibration or the control error caused by the low rigidity of the control target 1 that performs the periodic operation, and also to generate the noise due to the signal quantization of the command while changing the cycle. Problems and achieve high precision control. Therefore, even if the control target 1 is low in rigidity, the periodic operation can be controlled with high precision.

實施形態2 Embodiment 2

接著,使用第3圖就本發明之實施形態2加以說明。 第3圖係顯示本發明實施形態2之伺服控制裝置的構成之方塊圖。有關第3圖之各構成要素之中達成與第1圖所示之實施形態1的伺服控制裝置100A同一功能之構成要素係附記同一編號,且省略重複之說明。 Next, a second embodiment of the present invention will be described using FIG. Fig. 3 is a block diagram showing the configuration of a servo control device according to a second embodiment of the present invention. Among the components of the third embodiment, the same components as those of the servo control device 100A of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.

實施形態2之伺服控制裝置100B,係進行比伺服控制裝置100A還更複雜的設定或運算,藉此實現比伺服控制裝置100A還更高精度的控制。本實施形態之伺服控制裝置100B係具備一次導函數部62及加速時修正值運算部63,藉此即便在表示相位信號θ之變化速度的相位速度ω非為固定的情況下亦能提高控制精度。又具備一次導函數部62及衰減修正值運算部64,藉此即便在控制對象1之振動特性中的衰減較大之情況下亦能提高控制精度。 The servo control device 100B of the second embodiment performs more complicated setting or calculation than the servo control device 100A, thereby achieving more precise control than the servo control device 100A. The servo control device 100B of the present embodiment includes the primary guidance function unit 62 and the acceleration correction value calculation unit 63, whereby the control accuracy can be improved even when the phase velocity ω indicating the rate of change of the phase signal θ is not constant. . Further, the first derivative function unit 62 and the attenuation correction value calculation unit 64 are provided, whereby the control accuracy can be improved even when the attenuation in the vibration characteristics of the control target 1 is large.

伺服控制裝置100B係包含相位產生部3B、指令產生部5B及追隨控制部2所構成。相位產生部3B係與實施形態1之相位產生部3A同樣,將相位信號θ和相位速度ω輸出至指令產生部5B。又,相位產生部3B,係將與相位速度ω之時間微分相當的相位加速度α輸出至指令產生部5B。該相位加速度α,係藉由事先設定作為時間序列圖案等之方法,而能夠以不包含雜訊之成分之方式使其輸出。 The servo control device 100B includes a phase generation unit 3B, a command generation unit 5B, and a follow-up control unit 2. Similarly to the phase generating unit 3A of the first embodiment, the phase generating unit 3B outputs the phase signal θ and the phase velocity ω to the command generating unit 5B. Further, the phase generating unit 3B outputs a phase acceleration α corresponding to the time differential of the phase velocity ω to the command generating unit 5B. The phase acceleration α can be output as a component that does not include noise by setting a time series pattern or the like in advance.

指令產生部5B係輸入相位信號θ、相位速度ω、相位加速度α並算出馬達位置指令yr,且將所算出的馬達位置指令yr輸出至追隨控制部2。指令產生部5B 係包含指令函數部51、二次導函數部52、修正值運算部53、修正值加法部54B、一次導函數部62、加速時修正值運算部63及衰減修正值運算部64所構成。 The command generation unit 5B inputs the phase signal θ, the phase velocity ω, and the phase acceleration α to calculate the motor position command yr, and outputs the calculated motor position command yr to the following control unit 2. Command generation unit 5B The command function unit 51, the second derivative function unit 52, the correction value calculation unit 53, the correction value addition unit 54B, the primary guidance function unit 62, the acceleration correction value calculation unit 63, and the attenuation correction value calculation unit 64 are included.

在指令產生部5B中,係對指令函數部51、二次導函數部52及一次導函數部62輸入從相位產生部3B輸出的相位信號θ。又,對修正值運算部53及衰減修正值運算部64輸入從相位產生部3B輸出的相位速度ω。再者,對加速時修正值運算部63輸入從相位產生部3B輸出的相位加速度α。 In the command generation unit 5B, the phase signal θ output from the phase generation unit 3B is input to the instruction function unit 51, the second derivative function unit 52, and the primary guidance function unit 62. Moreover, the phase velocity ω output from the phase generation unit 3B is input to the correction value calculation unit 53 and the attenuation correction value calculation unit 64. Further, the acceleration time correction value calculation unit 63 inputs the phase acceleration α output from the phase generation unit 3B.

在一次導函數部62,係預先設定有與指令函數部51中的指令函數f(θ)之一次導函數f’(θ)相當的第3函數。與一次導函數f’(θ)相當的第3函數,為與藉由相位信號θ而將指令函數f(θ)進行一階微分所得者相當的函數。一次導函數部62,係將與輸入之相位信號θ對應的第3函數之值當作一階微分基礎信號xb1,並輸出至加速時修正值運算部63及衰減修正值運算部64。該與一次導函數f’(θ)相當的第3函數,係與指令函數f(θ)或二次導函數f”(θ)同樣地例如為數式或資料表。 In the primary function unit 62, a third function corresponding to the primary derivative function f'(θ) of the command function f(θ) in the command function unit 51 is set in advance. The third function corresponding to the first derivative function f'(θ) is a function equivalent to the first-order differentiation of the command function f(θ) by the phase signal θ. The primary function unit 62 uses the value of the third function corresponding to the input phase signal θ as the first-order differential basic signal xb1, and outputs it to the acceleration-time correction value calculation unit 63 and the attenuation correction value calculation unit 64. The third function corresponding to the primary derivative function f'(θ) is, for example, a mathematical expression or a data table, similarly to the command function f(θ) or the second derivative function f"(θ).

在與一次導函數f’(θ)相當的第3函數為資料表之情況,係將相位信號θ之點(值)與一階微分基礎信號xb1之點(值)之間的對應關係,以預定數預先設定於資料表。一次導函數部62係藉由對被輸入的任意值之相位信號θ內插資料表參照值而算出一階微分基礎信號xb1。一次導函數部62,係將所算出的一階微分基礎信號xb1輸 出至加速時修正值運算部63及衰減修正值運算部64。 In the case where the third function corresponding to the first derivative function f'(θ) is the data table, the correspondence between the point (value) of the phase signal θ and the point (value) of the first-order differential base signal xb1 is The predetermined number is preset in the data sheet. The primary derivative function unit 62 calculates the first-order differential basic signal xb1 by interpolating the reference value of the data table with respect to the input phase signal θ of an arbitrary value. The first derivative function unit 62 converts the calculated first-order differential basic signal xb1 The acceleration correction value calculation unit 63 and the attenuation correction value calculation unit 64 are outputted.

加速時修正值運算部63係輸入一階微分基礎信號xb1和相位加速度α,且算出一階微分基礎信號xb1和相位加速度α和預定之常數(第2常數)的乘積,作為加速時修正值yha。加速時修正值運算部63係將所算出的加速時修正值yha輸出至修正值加法部54B。 The acceleration time correction value calculation unit 63 inputs the first-order differential base signal xb1 and the phase acceleration α, and calculates a product of the first-order differential base signal xb1 and the phase acceleration α and a predetermined constant (second constant) as the acceleration correction value yha. . The acceleration time correction value calculation unit 63 outputs the calculated acceleration time correction value yha to the correction value addition unit 54B.

在加速時修正值運算部63所用的預定之常數,係與在實施形態1之修正值運算部53所用的預定之常數同樣地按照與控制對象1之剛性或振動有關的機械常數所設定者。例如,在加速時修正值運算部63所用的預定之常數,係以成為控制對象1之反共振頻率ωz的平方之倒數的方式所設定。因而,加速時修正值yha,係能使用以下之數式(15)來運算。 The predetermined constant used by the correction value calculation unit 63 in the acceleration is set in accordance with the mechanical constant related to the rigidity or vibration of the control target 1 in the same manner as the predetermined constant used in the correction value calculation unit 53 of the first embodiment. For example, the predetermined constant used by the correction value calculation unit 63 at the time of acceleration is set so as to be the inverse of the square of the anti-resonance frequency ω z of the control target 1. Therefore, the acceleration correction value yha can be calculated using the following equation (15).

yha=f’(θ)‧α/ωz‧‧‧(15) Yha=f'(θ)‧α/ω z ‧‧‧(15)

在此,機械位置指令yr0(即f(θ))之與時間有關的二階微分值,係如在實施形態1所說明般,能由數式(9)來表示。在實施形態1假定的相位速度ω之變化為充分地小的條件不成立之情況下,數式(9)係能改寫為以下之數式(16)。又,根據數式(7)和數式(15),指令修正值yh和加速時修正值yha之和,係能用以下之數式(17)來表示。 Here, the time-dependent second-order differential value of the mechanical position command yr0 (i.e., f(θ)) can be expressed by the formula (9) as described in the first embodiment. When the condition that the change in the phase velocity ω assumed in the first embodiment is sufficiently small is not satisfied, the equation (9) can be rewritten as the following equation (16). Further, according to the equations (7) and (15), the sum of the command correction value yh and the acceleration correction value yha can be expressed by the following equation (17).

s2yrO=f”(θ)ω2+f’(θ)α‧‧‧(16) s 2 yrO=f”(θ)ω 2 +f'(θ)α‧‧‧(16)

yh+yha=(s2z 2)yrO‧‧‧(17) Yh+yha=(s 2z 2 )yrO‧‧‧(17)

衰減修正值運算部64係輸入上述之一階微分基礎信號xb1和相位速度ω,且算出一階微分基礎信號 xb1和相位速度ω和預定之常數(第3常數)的乘積,作為衰減修正值yhz。衰減修正值運算部64係將所算出的衰減修正值yhz,輸出至修正值加法部54B。 The attenuation correction value calculation unit 64 inputs the first-order differential base signal xb1 and the phase velocity ω, and calculates a first-order differential base signal. The product of xb1 and the phase velocity ω and a predetermined constant (the third constant) is used as the attenuation correction value yhz. The attenuation correction value calculation unit 64 outputs the calculated attenuation correction value yhz to the correction value addition unit 54B.

衰減修正值運算部64中的預定之常數,係例如為基於將控制對象1之衰減係數ζ的二倍和反共振頻率ωz之倒數進行相乘後之值所得的值。又,由於根據實施形態1之數式(8),以下之數式(18)將成立,所以運算的衰減修正值yhz係能用以下之數式(19)來表示。 The predetermined constant in the attenuation correction value calculation unit 64 is, for example, a value obtained by multiplying the inverse of the attenuation coefficient ζ of the control target 1 by the inverse of the anti-resonance frequency ω z . Further, in the equation (8) according to the first embodiment, the following equation (18) is established. Therefore, the calculated attenuation correction value yhz can be expressed by the following equation (19).

s‧yrO=f’(θ)ω‧‧‧(18) s‧yrO=f’(θ)ω‧‧‧(18)

yhz=(2ζ‧s/ωz)yrO‧‧‧(19) Yhz=(2ζ‧s/ω z )yrO‧‧‧(19)

修正值加法部54B係將對指令函數部51所輸出的機械位置指令yr0,加上修正值運算部53所輸出的指令修正值yh、加速時修正值運算部63所輸出的加速時修正值yha、衰減修正值yhz所得之結果,作為馬達位置指令yr並輸出至追隨控制部2。當依據數式(17)和數式(19),算出從機械位置指令yr0至馬達位置指令yr之傳遞函數時,就成為以下之數式(20)。 The correction value adding unit 54B adds the command correction value yh outputted by the correction value calculation unit 53 and the acceleration time correction value yh outputted by the acceleration time correction value calculation unit 63 to the mechanical position command yr0 output from the command function unit 51. The result obtained by the attenuation correction value yhz is output to the tracking control unit 2 as the motor position command yr. When the transfer function from the mechanical position command yr0 to the motor position command yr is calculated according to the equations (17) and (19), the following equation (20) is obtained.

yr/yrO=(s2z 2+2ζs/ωz+1)‧‧‧(20) Yr/yrO=(s 2z 2 +2ζs/ω z +1)‧‧‧(20)

因而,即便是在無法忽視表示相位速度ω之變化的相位加速度α之情況、或無法忽視控制對象1之衰減係數ζ的情況,亦可以藉由合併數式(6)和數式(20),而與實施形態1同樣地用數式(14)來表示從機械位置指令yr0至負載位置yL為止之傳遞函數。 Therefore, even when the phase acceleration α indicating the change in the phase velocity ω cannot be ignored or the attenuation coefficient 控制 of the control target 1 cannot be ignored, the equations (6) and (20) can be combined. Similarly to the first embodiment, the transfer function from the mechanical position command yr0 to the load position yL is expressed by the equation (14).

結果,藉由將追隨控制部2之響應作成高 速高精度,且使傳遞函數G(s)接近1,則能夠以負載位置yL以高速高精度追隨機械位置指令yr0之方式來控制控制對象1。 As a result, the response of the follow-up control unit 2 is made high. When the speed is high-precision and the transfer function G(s) is close to 1, the control target 1 can be controlled such that the mechanical position command yr0 follows the load position yL with high speed and high precision.

另外,在本實施形態中,雖然已就對機械位置指令yr0,加上指令修正值yz、加速時修正值yha及衰減修正值yhz之全部,藉此算出馬達位置指令yr的情況加以說明,但是馬達位置指令yr之算出方法,並不限於此方法。指令產生部5B係只要藉由對機械位置指令yr0和指令修正值yh之相加值,加上加速時修正值yha及衰減修正值yhz之至少一個,而算出馬達位置指令yr即可。 In addition, in the present embodiment, the motor position command yr is added to the mechanical position command yr0, and the motor position command yr is calculated by adding all of the command correction value yz, the acceleration correction value yha, and the attenuation correction value yhz. The method of calculating the motor position command yr is not limited to this method. The command generation unit 5B may calculate the motor position command yr by adding at least one of the acceleration time correction value yha and the attenuation correction value yhz by adding the mechanical position command yr0 and the command correction value yh.

例如,在算出馬達位置指令yr時不加上加速時修正值yha的情況,就不需要加速時修正值運算部63。又,在算出馬達位置指令yr時不加上衰減修正值yhz的情況,就不需要衰減修正值運算部64。 For example, when the motor position command yr is calculated, the acceleration time correction value yha is not added, and the acceleration time correction value calculation unit 63 is not required. Further, when the motor position command yr is not calculated, the attenuation correction value yhz is not added, and the attenuation correction value calculation unit 64 is not required.

如此,依據實施形態2,則即便是在無法忽視相位速度ω之變化的情況、或無法忽視控制對象1之振動特性的衰減係數ζ之情況,亦可以抑制因使進行週期動作的控制對象1之低剛性而引起的振動或控制誤差,同時一邊亦對應週期變更,一邊不發生起因於指令之信號量化的雜訊之問題並實現高精度之控制。 As described above, according to the second embodiment, even when the phase velocity ω cannot be ignored or the attenuation coefficient 振动 of the vibration characteristic of the control target 1 cannot be ignored, the control target 1 for performing the periodic operation can be suppressed. The vibration or control error caused by low rigidity, while also changing the cycle period, does not cause the problem of noise due to signal quantization of the command and achieves high-precision control.

(產業上之可利用性) (industrial availability)

如以上所述,本發明之伺服控制裝置,係適於用馬達來驅動機械系統的控制對象之控制。 As described above, the servo control device of the present invention is adapted to drive the control of the control object of the mechanical system with a motor.

1‧‧‧控制對象 1‧‧‧Control object

2‧‧‧追隨控制部 2‧‧‧ Follow the Control Department

3A‧‧‧相位產生部 3A‧‧‧ Phase Generation Department

5A‧‧‧指令產生部 5A‧‧‧Command Generation Department

51‧‧‧指令函數部 51‧‧‧Command Function Department

52‧‧‧二次導函數部 52‧‧‧Secondary Guide Function

53‧‧‧修正值運算部 53‧‧‧Correction value calculation unit

53a‧‧‧平方運算部 53a‧‧‧ Square Computing Department

53b‧‧‧常數乘法部 53b‧‧‧Constant Multiplication Department

53c‧‧‧二階微分乘法部 53c‧‧‧Second Order Differential Multiplication Department

54A‧‧‧修正值加法部 54A‧‧‧Correction Value Addition Department

100A‧‧‧伺服控制裝置 100A‧‧‧Servo Control Unit

f(θ)‧‧‧指令函數 f(θ)‧‧‧ instruction function

f”(θ)‧‧‧二次導函數 f"(θ)‧‧‧secondary derivative function

xb‧‧‧二階微分基礎信號 Xb‧‧‧ second-order differential fundamental signal

yh‧‧‧指令修正值 Yh‧‧‧ instruction correction value

ym‧‧‧馬達位置 Ym‧‧‧Motor position

yr‧‧‧馬達位置指令 Yr‧‧‧Motor Position Command

yr0‧‧‧機械位置指令 Yr0‧‧‧Mechanical position command

θ‧‧‧相位信號 Θ‧‧‧ phase signal

ω‧‧‧相位速度 Ω‧‧‧ phase speed

τm‧‧‧馬達轉矩 τm‧‧‧Motor torque

Claims (8)

一種伺服控制裝置,其特徵為具備:追隨控制部,係對於由馬達及用前述馬達進行驅動之機械系統所構成的控制對象,以對應於前述馬達之馬達位置或馬達速度的馬達運動會追隨馬達運動指令之方式,來控制前述馬達;指令函數部,係輸入用以表示使前述控制對象進行的週期動作之相位的相位信號,且藉由預先設定之第1函數,算出相應於前述相位信號之機械運動指令;二次導函數部,係輸入前述相位信號,且使用預先設定之第2函數作為二次導函數,算出相應於前述相位信號之前述第2函數的值作為二階微分基礎信號,其中,該二次導函數為用前述相位信號將前述第1函數進行二階微分所得的函數;修正值運算部,係輸入用以表示前述相位信號之時間微分值的相位速度、及前述二階微分基礎信號,且使用前述相位速度之平方值、前述二階微分基礎信號、和第1常數之乘積,來運算用以修正前述馬達運動指令之第1指令修正值;以及修正加法部,係基於前述第1指令修正值與前述機械運動指令之相加值來算出前述馬達運動指令。 A servo control device comprising: a follow-up control unit that controls a motor motion corresponding to a motor position or a motor speed of the motor to control a motor target and a motor system that is driven by the motor; The command function unit inputs a phase signal indicating a phase of the cyclic operation performed by the control target, and calculates a mechanical signal corresponding to the phase signal by a first function set in advance. a second instruction function unit that inputs the phase signal and calculates a value corresponding to the second function of the phase signal as a second-order differential base signal using a second function that is set in advance as a second derivative function, wherein The second derivative function is a function obtained by second-order differentiation of the first function by the phase signal; the correction value calculation unit inputs a phase velocity indicating a time differential value of the phase signal, and the second-order differential basic signal, And using the aforementioned squared phase velocity value, the aforementioned second-order differential basic signal Calculating a first command correction value for correcting the motor motion command by multiplying the first constant; and correcting the addition unit to calculate the motor based on the added value of the first command correction value and the mechanical motion command Motion instruction. 如申請專利範圍第1項所述之伺服控制裝置,係以按照前述控制對象之機械特性而從外部設定前述第1常數的方式所構成。 The servo control device according to the first aspect of the invention is configured to externally set the first constant in accordance with the mechanical characteristics of the control target. 如申請專利範圍第1項所述之伺服控制裝置,其中,前述第1常數為基於將與前述控制對象之振動頻率對應的反共振頻率進行平方後的值之倒數所得的值。 The servo control device according to claim 1, wherein the first constant is a value obtained by reciprocal of a value obtained by squaring an anti-resonance frequency corresponding to a vibration frequency of the control target. 如申請專利範圍第1項所述之伺服控制裝置,其中,前述第2函數為顯示前述相位信號與前述二階微分基礎信號之對應關係的第1資料表,前述二次導函數部係使用前述第1資料表進行算出而作為前述二階微分基礎信號。 The servo control device according to claim 1, wherein the second function is a first data table that displays a correspondence relationship between the phase signal and the second-order differential base signal, and the second derivative function unit uses the foregoing 1 The data table is calculated as the second-order differential basic signal. 如申請專利範圍第1至3項中任一項所述之伺服控制裝置,復具備:一次導函數部,係輸入前述相位信號,且使用預先設定之第3函數作為一次導函數,算出相應於前述相位信號之前述第3函數的值作為一階微分基礎信號,其中,該一次導函數為用前述相位信號將前述第1函數進行微分所得的函數;以及加速時修正值運算部,係輸入用以表示前述相位信號之時間微分值的相位加速度、及前述一階微分基礎信號,且使用前述一階微分基礎信號、前述相位加速度、和第2常數之乘積,來算出用以修正前述馬達運動指令之第2指令修正值,前述修正加法部,係基於前述第1及第2指令修正值與前述機械運動指令之相加值而算出前述馬達運動指令。 The servo control device according to any one of claims 1 to 3, further comprising: a first derivative function unit that inputs the phase signal and uses a predetermined third function as a first derivative function to calculate a corresponding The value of the third function of the phase signal is a first-order differential basic signal, wherein the primary derivative function is a function obtained by differentiating the first function by the phase signal; and an acceleration time correction value calculation unit is used for inputting Calculating a phase acceleration for a time differential value of the phase signal and the first-order differential base signal, and calculating a motor motion command by using a product of the first-order differential base signal, the phase acceleration, and a second constant The second command correction value is calculated by the correction addition unit based on the added value of the first and second command correction values and the mechanical motion command. 如申請專利範圍第5項所述之伺服控制裝置,其中, 前述第2常數為基於將與前述控制對象之振動頻率對應的反共振頻率進行平方後的值之倒數所得的值。 The servo control device according to claim 5, wherein The second constant is a value obtained by reciprocal of a value obtained by squaring the anti-resonance frequency corresponding to the vibration frequency of the control target. 如申請專利範圍第1至3項中任一項所述之伺服控制裝置,復具備:一次導函數部,係輸入前述相位信號,且使用預先設定之第3函數作為一次導函數,算出相應於前述相位信號之前述第3函數的值作為一階微分基礎信號,其中,該一次導函數為用前述相位信號將前述第1函數進行微分所得的函數;以及衰減修正值運算部,係輸入前述一階微分基礎信號及前述相位速度,且使用前述一階微分基礎信號、前述相位速度、和第3常數之乘積,來算出用以修正前述馬達運動指令之第3指令修正值,前述修正加法部係基於前述第1及第3指令修正值與前述機械運動指令之相加值而算出前述馬達運動指令。 The servo control device according to any one of claims 1 to 3, further comprising: a first derivative function unit that inputs the phase signal and uses a predetermined third function as a first derivative function to calculate a corresponding a value of the third function of the phase signal as a first-order differential base signal, wherein the first derivative function is a function obtained by differentiating the first function by the phase signal; and an attenuation correction value calculation unit is configured to input the first one And a third command correction value for correcting the motor motion command by using a product of the first-order differential base signal, the phase velocity, and a third constant, wherein the correction addition unit is used The motor motion command is calculated based on the added value of the first and third command correction values and the mechanical motion command. 如申請專利範圍第7項所述之伺服控制裝置,其中,前述第3常數為基於前述控制對象之衰減係數、和與前述控制對象之振動頻率對應的反共振頻率之倒數的乘積所得之值。 The servo control device according to claim 7, wherein the third constant is a value obtained by multiplying a product of an attenuation coefficient of the control target and a reciprocal of an anti-resonance frequency corresponding to a vibration frequency of the control target.
TW102115394A 2012-10-25 2013-04-30 Servo control device TWI516888B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077653 WO2014064815A1 (en) 2012-10-25 2012-10-25 Servo control device

Publications (2)

Publication Number Publication Date
TW201416812A TW201416812A (en) 2014-05-01
TWI516888B true TWI516888B (en) 2016-01-11

Family

ID=49274020

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102115394A TWI516888B (en) 2012-10-25 2013-04-30 Servo control device

Country Status (7)

Country Link
US (1) US8890460B2 (en)
JP (1) JP5283804B1 (en)
KR (1) KR101347921B1 (en)
CN (1) CN103907070B (en)
DE (1) DE112012007053B4 (en)
TW (1) TWI516888B (en)
WO (1) WO2014064815A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168824A1 (en) * 2015-04-16 2016-10-20 Bohnert Equipment Company, Inc. Barrel hoop driving apparatus and electric drive
JP6816704B2 (en) * 2017-11-09 2021-01-20 オムロン株式会社 Command value interpolator and servo driver
JP6923587B2 (en) * 2019-03-28 2021-08-18 ファナック株式会社 Servo motor controller
EP3753682B1 (en) 2019-06-17 2021-12-29 Schneider Electric Industries SAS Method of controlling a drive motor
WO2021176617A1 (en) * 2020-03-04 2021-09-10 三菱電機株式会社 Vibration isolation control device and vibration isolation control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657561B2 (en) 1990-02-09 1997-09-24 富士通株式会社 Positioning control method
JPH04201189A (en) * 1990-11-30 1992-07-22 Hitachi Ltd Controller for leg walking mechanism
JP3750633B2 (en) 2001-06-22 2006-03-01 富士電機機器制御株式会社 Machine control device
US6844693B2 (en) * 2002-03-29 2005-01-18 Matsushita Electric Industrial Co., Ltd. Position control apparatus for motor
US6936990B2 (en) * 2002-03-29 2005-08-30 Matsushita Electric Industrial Co., Ltd. Method for controlling electric motor and apparatus for controlling the same
JP4258262B2 (en) * 2003-04-22 2009-04-30 株式会社安川電機 Twin synchronous control method and apparatus
JP4673326B2 (en) * 2007-01-11 2011-04-20 オークマ株式会社 Rotary shaft position control device
US8214415B2 (en) * 2008-04-18 2012-07-03 Motion Engineering Incorporated Interpolator for a networked motion control system
US8120303B2 (en) 2008-09-29 2012-02-21 Oriental Motor Co., Ltd. Method and apparatus for controlling inertial system
JP5532784B2 (en) 2009-09-17 2014-06-25 富士電機株式会社 Servo control device

Also Published As

Publication number Publication date
CN103907070B (en) 2015-10-21
TW201416812A (en) 2014-05-01
JPWO2014064815A1 (en) 2016-09-05
CN103907070A (en) 2014-07-02
WO2014064815A1 (en) 2014-05-01
KR101347921B1 (en) 2014-01-07
DE112012007053B4 (en) 2017-08-31
US20140117919A1 (en) 2014-05-01
JP5283804B1 (en) 2013-09-04
US8890460B2 (en) 2014-11-18
DE112012007053T5 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
TWI514099B (en) Servo control device
US10108177B2 (en) Control parameter adjustment device
TWI516888B (en) Servo control device
JP5269158B2 (en) Control method and control apparatus
JP7117827B2 (en) MOTOR CONTROL SYSTEM, CONTROL METHOD FOR MOTOR CONTROL SYSTEM, AND ROBOT SYSTEM
TWI705657B (en) Motor control device
JPWO2015111298A1 (en) Motor control device
JP2014136260A (en) Control device
JPWO2013140679A1 (en) Trajectory control device
JP6834528B2 (en) Control devices, control programs and control systems
JP2005316937A (en) Control device and its control method
JPWO2014091840A1 (en) Servo control device
Suzuki et al. Performance conditioning of time delayed bilateral teleoperation system by scaling down compensation value of communication disturbance observer
JP5836206B2 (en) Servo control device
JP5441944B2 (en) Motor control device
JP2004234205A (en) Numerical controller
JP6333495B1 (en) Servo control device
JP6237039B2 (en) Robot control apparatus and robot control method
JP5532784B2 (en) Servo control device
US20220216813A1 (en) Motor control system, motor control method, and program
KR20200080871A (en) Control device of a gantry stage including a error controller
JP4507071B2 (en) Motor control device
JP6336204B2 (en) Robot controller
KR20240105737A (en) Apparatus and method for generating motion profile for anti-vibration control
JPH04364501A (en) Controller for robot