WO2021176617A1 - Vibration isolation control device and vibration isolation control method - Google Patents

Vibration isolation control device and vibration isolation control method Download PDF

Info

Publication number
WO2021176617A1
WO2021176617A1 PCT/JP2020/009261 JP2020009261W WO2021176617A1 WO 2021176617 A1 WO2021176617 A1 WO 2021176617A1 JP 2020009261 W JP2020009261 W JP 2020009261W WO 2021176617 A1 WO2021176617 A1 WO 2021176617A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
vibration
vibration suppression
follow
gantry
Prior art date
Application number
PCT/JP2020/009261
Other languages
French (fr)
Japanese (ja)
Inventor
裕司 五十嵐
慎 東野
優一 木津
孝志 甲斐
裕幸 関口
英俊 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020227028045A priority Critical patent/KR102523097B1/en
Priority to JP2020542357A priority patent/JP6786024B1/en
Priority to CN202080097330.0A priority patent/CN115151883B/en
Priority to PCT/JP2020/009261 priority patent/WO2021176617A1/en
Publication of WO2021176617A1 publication Critical patent/WO2021176617A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present disclosure relates to a seismic isolation control device and a seismic isolation control method that suppress vibration of the gantry that occurs during operation of a drive device that drives a movable part by a motor fixed to the gantry.
  • a drive device such as a positioning device that drives a movable part with a motor fixed to a gantry to carry an object to a specified position.
  • a speed of the drive device is increased, it is necessary to increase the rotation speed of the motor, so that the gantry vibrates and the operation accuracy of the drive device is lowered.
  • a technique for suppressing vibration generated in the gantry a method of modifying a tracking command for controlling a motor by using a filter based on the vibration frequency generated in the gantry is known.
  • the follow-up command is modified, the time until the operation of the drive device is completed increases.
  • Patent Document 1 includes a vibration isolation control motor different from that of the drive device, drives the vibration isolation control motor in the opposite direction to the drive device motor, and is generated in association with the operation of the drive device.
  • a vibration isolation control device that suppresses vibration of the gantry is disclosed.
  • the seismic isolation control motor drives a second movable portion different from the first movable portion driven by the motor of the drive device.
  • the movable range of the second movable portion by one positioning is required to be the same as that of the first movable portion, and it is required to further suppress the movable range.
  • the present disclosure has been made in view of the above, and is capable of suppressing vibration caused by the operation of a drive device and suppressing the movable range of a movable portion driven by a motor for seismic isolation control.
  • the purpose is to obtain a control device.
  • the vibration isolation control device is a second motor fixed to the gantry by driving the first movable part by the first motor fixed to the gantry.
  • the first control unit that controls the position or speed of the first motor so that the first movable unit follows the follow-up command in time series, and the gantry included in the follow-up command, with the drive device that drives the movable unit as the control target. It is characterized by including a second control unit that follows the position or speed of the second motor in proportion to the vibration suppression command, which is a command of the dimension of the position or speed corresponding to the vibration frequency component of the above.
  • the vibration isolation control device has the effect of suppressing vibration generated by the operation of the drive device and suppressing the movable range of the movable portion driven by the vibration isolation control motor.
  • the figure for demonstrating the 1st example of the vibration suppression calculation part shown in FIG. The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 1st example shown in FIG.
  • the figure for demonstrating the 2nd example of the vibration suppression calculation part shown in FIG. The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 2nd example shown in FIG.
  • the figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 3rd example shown in FIG. The figure for demonstrating the 4th example of the vibration suppression calculation part shown in FIG.
  • the figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 4th example shown in FIG. The figure for demonstrating the 5th example of the vibration suppression calculation part shown in FIG.
  • the figure which shows the follow-up command used by the positioning apparatus shown in FIG. The figure which shows the vibration suppression command used by the positioning apparatus shown in FIG.
  • FIG. 1 is a diagram showing a configuration of a positioning device 1 according to a first embodiment.
  • the positioning device 1 has a drive device 3 and a seismic isolation control device 4.
  • the drive device 3 includes a positioning drive unit 30 including a first motor 302 and a first movable unit 301 for positioning, and a seismic isolation drive unit 31 including a second motor 312 and a second movable unit 311 for seismic isolation control.
  • the first motor 302 and the second motor 312 are fixed to the gantry 2.
  • the first movable portion 301 is mechanically connected to the first motor 302.
  • the first motor 302 drives the first movable portion 301.
  • the second movable portion 311 is mechanically connected to the second motor 312.
  • the second motor 312 drives the second movable portion 311 and suppresses the vibration of the gantry 2 that occurs when the first motor 302 drives the first movable portion 301 by the reaction force thereof.
  • the first motor 302 drives the first movable unit 301 based on the command output by the seismic isolation control device 4, and the second motor 312 drives the second movable unit 311 based on the command output by the seismic isolation control device 4.
  • the seismic isolation control device 4 includes a first control unit 40 that controls the positioning drive unit 30, a second control unit 41 that controls the seismic isolation drive unit 31, a vibration suppression calculation unit 42, and a vibration characteristic setting unit 43.
  • the first control unit 40 supplies a current to the first motor 302 based on a time-series follow-up command 10 input from the outside to control the movement of the first movable unit 301.
  • the first control unit 40 controls the position or speed of the first motor 302 so that the first movable unit 301 follows the follow-up command 10.
  • the follow-up command 10 is a command in the dimension of position or velocity.
  • the second control unit 41 supplies a current to the second motor 312 to control the movement of the second movable unit 311 based on the vibration suppression command 11 calculated by the vibration suppression calculation unit 42 described later.
  • the vibration suppression command 11 is a command corresponding to the vibration frequency component of the gantry 2 included in the follow-up command 10.
  • the second control unit 41 controls the second motor 312 so that the position or speed of the second motor 312 is made to follow the position or speed of the second motor 312 in proportion to the vibration suppression command 11.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 for the second control unit 41 to control the seismic isolation drive unit 31 based on the follow-up command 10.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 corresponding to the vibration frequency component of the gantry 2 included in the follow-up command 10 in the dimension of position or speed.
  • the vibration characteristic setting unit 43 holds in advance the vibration frequency corresponding to the gantry 2.
  • the drive device 3 and the seismic isolation control device 4 are installed on the gantry 2, but a part or all of the seismic isolation control device 4 may be installed on a device different from the gantry 2.
  • the first control unit 40 and the first motor 302 and the second control unit 41 and the second motor 312 are connected by using a cable or the like.
  • the follow-up command 10 is a time-series position command or speed command sent from the outside to the seismic isolation control device 4.
  • FIG. 2 is a diagram showing an example of each command waveform of the drive device 3 generated from the follow-up command 10.
  • FIG. 2 includes waveforms of position command, velocity command, and thrust command, respectively.
  • the acquisition method and generation method of the follow-up command 10 are not particularly limited.
  • the follow-up command 10 may be a command having an arbitrary shape that can be executed by the drive device 3 and the seismic isolation control device 4.
  • the follow-up command 10 is a position command or speed command generated by a PLC (Programmable Logic Controller), an IPC (Industrial Personal Computer), or the like, and is acquired via an industrial network or an analog signal.
  • PLC Programmable Logic Controller
  • IPC Intelligent Personal Computer
  • the follow-up command 10 may be a command generated based on the drive distance of the drive device 3 or the like transmitted to the seismic isolation control device 4 via the communication path. However, from the viewpoint of positioning accuracy, it is desirable that the follow-up command 10 and the vibration suppression command 11 are synchronized.
  • the first control unit 40 drives the position or speed of the first motor 302 to follow the follow-up command 10 in proportion to the follow-up command 10 which is a position command or a speed command.
  • the second control unit 41 drives the position or speed of the second motor 312 to follow the vibration suppression command 11 proportionally in response to the vibration suppression command 11 which is a position command or a speed command.
  • this threshold value is a value that can be regarded as having the same force response generated by the first motor 302 and the second motor 312. Further, when the response speed of the first control unit 40 and the response speed of the second control unit 41 are made the same, the user of the positioning device 1 uses the set value of the first control unit 40 as it is and uses the second control unit 40 as it is. A set value such as a gain of the control unit 41 can be determined, and the set value can be easily determined.
  • the vibration suppression calculation unit 42 vibrates so that the sum of the vibration suppression command 11 and the follow-up command 10 has a frequency response that is minimized at the gantry vibration frequency set in advance in the vibration characteristic setting unit 43 according to the gantry 2.
  • the suppression command 11 is calculated.
  • the seismic isolation control device 4 is composed of, for example, a computer including a control circuit using a CPU (Central Processing Unit) 92 and a memory 93.
  • the CPU 92 is also called a processing circuit, an arithmetic unit, a processor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 93 is, for example, a non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). Magnetic discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Disk), etc.
  • the CPU 92 reads and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40, the second control unit 41, the vibration suppression calculation unit 42, and the vibration characteristic setting unit 43. Realize the function.
  • the memory 93 is also used as a temporary memory in each process executed by the CPU 92.
  • the program executed by the CPU 92 may be provided via a communication path, or may be provided in a state of being recorded on a storage medium.
  • Dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. .. The same applies to the following embodiments.
  • FIG. 3 is a diagram for explaining a first example of the vibration suppression calculation unit 42 shown in FIG.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using an IIR (Infinite Impulse Response) filter.
  • IIR Infinite Impulse Response
  • the filter function of the IIR filter used in the first example is expressed by the following mathematical formula (1).
  • the values of the three constants a 1 , a 2 , and b included in the mathematical formula (1) are set based on the vibration characteristic information set in the vibration characteristic setting unit 43.
  • the vibration frequency of the gantry 2 is ⁇ [Hz]
  • the constant a 1 2 / 2 ⁇
  • the constant a 2 1 / (2 ⁇ ) 2
  • the constant b 0.3 / (2 ⁇ ) 2 If this is the case, the vibration of the gantry 2 can be suppressed.
  • the constant a 1 is proportional to the minus square of the vibration frequency ⁇ of the gantry 2
  • the constant a 2 and the constant b are proportional to the minus square of the vibration frequency ⁇ of the gantry 2.
  • the vibration suppression calculation unit 42 can efficiently suppress the vibration generated in the gantry 2 with a small amount of memory. Further, by expressing the filter continuously, it is possible to suppress the vibration with high accuracy.
  • FIG. 4 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the first example shown in FIG.
  • the horizontal axis of FIG. 4 is the frequency
  • the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11.
  • the frequency response has a minimum value.
  • FIG. 5 is a diagram for explaining a second example of the vibration suppression calculation unit 42 shown in FIG.
  • the vibration of the gantry 2 can be suppressed with a smaller number of operations.
  • FIG. 6 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the second example shown in FIG.
  • the horizontal axis of FIG. 6 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11.
  • the frequency response has a minimum value.
  • FIG. 7 is a diagram for explaining a third example of the vibration suppression calculation unit 42 shown in FIG.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using an FIR (Finite Impulse Response) filter.
  • the first discrete transfer function F 1 (z) of the FIR filter used in the third example is expressed by the following mathematical formula (2).
  • the vibration suppression calculation unit 42 By using the FIR filter shown in the third example by the vibration suppression calculation unit 42, it is possible to suppress the influence of calculation error when performing the calculation of the filter and suppress the vibration. Further, by using the FIR filter, it becomes possible to stabilize the vibration suppression command 11.
  • FIG. 8 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the third example shown in FIG. 7.
  • the horizontal axis of FIG. 8 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11.
  • the frequency response has a minimum value.
  • FIG. 9 is a diagram for explaining a fourth example of the vibration suppression calculation unit 42 shown in FIG.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using the moving average filter.
  • the number of stages of the moving average filter shown in FIG. 9 is N 2 .
  • the value of the constant N 2 indicating the number of stages is set according to the vibration characteristic information set in the vibration characteristic setting unit 43, similarly to the constant N 1 in the third example.
  • the second discrete transfer function F 2 (z) of the moving average filter used in the fourth example is expressed by the following mathematical formula (3).
  • the vibration suppression calculation unit 42 can calculate a stable vibration suppression command 11 even when there is noise in the input of the vibration suppression calculation unit 42.
  • FIG. 10 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the fourth example shown in FIG.
  • the horizontal axis of FIG. 10 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11.
  • the frequency response has a minimum value.
  • the vibration suppression calculation unit 42 the sum of the follow-up command 10 and the vibration suppression command 11 becomes the minimum at the vibration frequency ⁇ of the gantry 2. It suffices if the vibration suppression command 11 can be calculated so as to have a frequency response.
  • the above is an example, and the configuration of the vibration suppression calculation unit 42 is not limited to the described example.
  • the order of the filter may be changed according to the desired characteristics.
  • the vibration suppression calculation unit 42 can also be configured by combining a plurality of filters. Further, the constant of each filter used by the vibration suppression calculation unit 42 can be changed according to the frequency response. The user or designer of the positioning device 1 can select a suitable method according to the device configuration, usage conditions, and the like. Further, the vibration suppression calculation unit 42 may be configured so that the filters can be used properly according to the situation.
  • FIG. 11 is a diagram for explaining a fifth example of the vibration suppression calculation unit 42 shown in FIG.
  • the vibration suppression calculation unit 42 may calculate the vibration suppression command 11 based on the plurality of vibration frequencies ⁇ .
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the two vibration frequencies ⁇ 1 and ⁇ 2.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using two IIR filters.
  • the filter function of one IIR filter is represented by the above formula (1), and the filter function of the other IIR filter is represented by the following formula (4).
  • the vibration of the gantry 2 can be suppressed more accurately. can.
  • FIG. 12 and 13 are diagrams for explaining a first comparative example of the present embodiment.
  • FIG. 12 is a diagram showing a follow-up command 10 used in the first comparative example.
  • FIG. 13 is a diagram showing the result of simulating the acceleration generated in the gantry 2 in the first comparative example. Note that FIG. 13 shows a simulation result when the positioning drive unit 30 is driven independently by using the follow-up command 10 shown in FIG. 12 and the seismic isolation drive unit 31 is not driven.
  • the positioning drive unit 30 when the positioning drive unit 30 is driven without driving the seismic isolation drive unit 31, when the first movable unit 301 is driven according to the follow-up command 10, the gantry 2 vibrates and an error in the position occurs. Since it occurs, the positioning accuracy may decrease.
  • FIG. 14 and 15 are diagrams for explaining a second comparative example of the present embodiment.
  • FIG. 14 is a diagram showing the sum of the follow-up command 10 used in the second comparative example, the follow-up command 10, and the vibration suppression command 11.
  • FIG. 15 is a diagram showing the result of simulating the acceleration generated in the gantry 2 in the second comparative example.
  • the solid line in FIG. 14 shows the sum of the follow-up command 10 and the vibration suppression command 11, and the broken line in FIG. 14 shows the follow-up command 10 alone.
  • the solid line in FIG. 15 shows the simulation result of the acceleration generated in the gantry 2 when the positioning drive unit 30 is driven by using the sum of the follow-up command 10 and the vibration suppression command 11 shown by the solid line in FIG.
  • the broken line in FIG. 15 shows the simulation result of the acceleration generated in the gantry 2 when the positioning drive unit 30 is driven by using the tracking command 10 alone shown by the broken line in FIG.
  • the acceleration generated in the gantry 2 is significantly larger than that in the case where the follow-up command 10 alone drives the positioning drive unit 30. It is suppressed. However, when the vibration suppression command 11 is added to the follow-up command 10, the time until the positioning is completed is increased.
  • FIG. 16 is a diagram showing a follow-up command 10 used by the positioning device 1 shown in FIG.
  • FIG. 17 is a diagram showing a vibration suppression command 11 used by the positioning device 1 shown in FIG.
  • FIG. 18 is a diagram showing a result of simulating the acceleration generated in the gantry 2 in the first embodiment.
  • FIG. 18 shows a simulation result when the positioning drive unit 30 is driven by using the follow-up command 10 shown in FIG. 16 and the seismic isolation drive unit 31 is driven by using the vibration suppression command 11 shown in FIG.
  • the positioning drive unit 30 since the positioning drive unit 30 is controlled based on the follow-up command 10, vibration isolation drive is performed while suppressing an increase in positioning time as caused in the second comparative example.
  • the vibration suppression calculation unit 42 is first movable because it calculates the reaction force of the vibration of the gantry 2 at the time of driving the position command and the speed command instead of the thrust command and the acceleration command of the positioning drive unit 30. Vibration can be suppressed while suppressing the influence of friction applied to the portion 301.
  • the movable range of the second movable portion 311 applies the filter as shown in FIGS. 3, 5, 7, 9, and 11 to the position command, it is not necessary to consider the influence of friction and the like. It can be calculated easily.
  • the second movable unit 311 naturally returns to the starting position at the end of positioning. As a result, even when the follow-up command 10 continuously operates in the same direction, the movable range of the second movable portion 311 is equivalent to one follow-up command. Further, the second motor 312 is controlled so as to follow the vibration suppression command 11 corresponding to the vibration frequency component included in the follow-up command 10. Since the vibration frequency component is smaller than the original follow-up command, the movable range of the second movable portion 311 for one time is shortened with respect to the original follow-up command.
  • the position or speed of the first motor 302 is controlled in the first movable portion 301 so as to follow the follow-up command in the time series.
  • the position or speed of the second motor 312 is controlled so as to follow a proportional multiple of the vibration suppression command 11 corresponding to the vibration frequency component of the gantry 2. Therefore, it is possible to suppress the vibration generated by the operation of the drive device 3 to be controlled and to suppress the movable range of the second movable portion 311.
  • the difference between the response speed of the first control unit 40 and the response speed of the second control unit 41 is set to be equal to or less than the threshold value.
  • the responses of the forces generated by the first motor 302 and the second motor 312 can be made the same, and the vibration generated in the gantry 2 can be suppressed with high accuracy.
  • the user of the positioning device 1 uses the set value of the first control unit 40 as it is and uses the second control unit 40 as it is.
  • a set value such as a gain of the control unit 41 can be determined, and the set value can be easily determined.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 so that the sum with the follow-up command 10 has a frequency response that is minimized at a frequency based on the vibration frequency of the gantry 2.
  • the vibration suppression calculation unit 42 can calculate the vibration suppression command 11 by the method shown in the first to fifth examples above. By using the filter, it becomes possible to easily generate the vibration suppression command 11.
  • FIG. 19 is a diagram showing the configuration of the positioning device 1-1 according to the second embodiment. A part of the configuration of the positioning device 1-1 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described.
  • the positioning device 1-1 includes a drive device 3-1 and a seismic isolation control device 4-1.
  • the drive device 3-1 has a positioning drive unit 30-1 and a seismic isolation drive unit 31-1.
  • the positioning drive unit 30-1 includes a first movable unit 301, a first motor 302, and a first position detector 303.
  • the seismic isolation drive unit 31-1 includes a second movable unit 311, a second motor 312, and a second position detector 313.
  • the seismic isolation control device 4-1 includes a first control unit 40-1, a second control unit 41-1, a vibration suppression calculation unit 42, a vibration characteristic setting unit 43, an inertia ratio compensation unit 44, and an inertial characteristic. It has a setting unit 45.
  • the first position detector 303 measures the position of the first movable unit 301, and outputs the first position information 12 indicating the measured position to the first control unit 40-1.
  • the first position detector 303 is installed in the first movable portion 301, or is installed in the vicinity of the first movable portion 301.
  • the first position detector 303 is, for example, a linear scale, a proximity sensor, a laser displacement meter, a vision sensor, or the like.
  • the first position detector 303 is attached to the first movable portion 301, but the first position detector 303 may be an encoder, a resolver, or the like attached to the first motor 302. Alternatively, the first position detector 303 may be attached to both the first movable portion 301 and the first motor 302.
  • the second position detector 313 measures the position of the second movable unit 311 and outputs the second position information 13 indicating the measured position to the second control unit 41-1.
  • the second position detector 313 is installed in the second movable portion 311 or is installed in the vicinity of the second movable portion 311.
  • the second position detector 313 is, for example, a linear scale, a proximity sensor, a laser displacement meter, a vision sensor, or the like.
  • the second position detector 313 is attached to the second movable portion 311.
  • the second position detector 313 may be an encoder, a resolver, or the like attached to the second motor 312.
  • the second position detector 313 may be attached to both the second movable portion 311 and the second motor 312.
  • the first control unit 40-1 receives the first position information 12 indicating the position of the first movable unit 301 measured by the first position detector 303, and is based on the received first position information 12 and the follow-up command 10. This is a servo system that feedback-controls the first motor 302.
  • the second control unit 41-1 receives the second position information 13 indicating the position of the second movable unit 311 measured by the second position detector 313, and receives the second position information 13 and the vibration suppression command. It is a servo system that feedback-controls the second motor 312 based on 11.
  • the inertial ratio compensating unit 44 compensates for the influence of the inertial ratio on vibration with respect to the follow-up command 10 according to the inertial ratio set in advance in the inertial characteristic setting unit 45.
  • the inertia ratio is set in advance according to the inertia ratio of the first movable portion 301 and the first motor 302 and the second movable portion 311 and the second motor 312. For example, when the mass of the first movable portion 301 is M and the mass of the second movable portion 311 is m, the inertia ratio compensating unit 44 multiplies the follow-up command 10 by M / m to obtain the first movable portion 301 and the first movable portion 301. 2 It is possible to compensate for the influence of vibration of the gantry 2 due to the difference in mass from the movable portion 311.
  • the inertia ratio compensating unit 44 has the movable direction of the first movable portion 301 and the movable direction of the second movable portion 311.
  • the influence of the difference between the above and the vibration of the gantry 2 can be interpolated.
  • the inertia ratio compensating unit 44 multiplies the follow-up command 10 by M / mcos ⁇ . The vibration generated in the gantry 2 can be suppressed.
  • the inertial ratio set in the inertial characteristic setting unit 45 may be set in advance by the designer of the positioning device 1-1, or may be set by the user according to the device configuration.
  • the inertia ratio set in the inertial characteristic setting unit 45 is "1". Therefore, the seismic isolation control device 4-1 can have a configuration in which the inertial ratio compensation unit 44 and the inertial characteristic setting unit 45 are omitted.
  • the inertia ratio compensation unit 44 is provided after the vibration suppression calculation unit 42, but the processing order of the vibration suppression calculation unit 42 and the inertia ratio compensation unit 44 may be reversed.
  • the first control unit 40-1 can generate a thrust command for driving the first movable unit 301 based on the follow-up command 10 and the first position information 12, and control an external force applied to the first movable unit 301. ..
  • the second control unit 41-1 can generate a thrust command for driving the second movable unit 311 based on the vibration suppression command 11 and the second position information 13, and control the external force applied to the second movable unit 311. can.
  • the friction generated between the first movable portion 301 and its ground contact surface and the friction generated between the second movable portion 311 and its ground contact surface may be different.
  • the thrust is adjusted so that the external force applied to the first movable portion 301 and the external force applied to the second movable portion 311 can be made the same. Therefore, it is possible to accurately suppress the vibration of the gantry 2 generated when the drive device 3-1 is driven.
  • the seismic isolation control device 4-1 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93.
  • the CPU 92 reads and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40-1, the second control unit 41-1, the vibration suppression calculation unit 42, and the vibration characteristic setting.
  • the functions of the unit 43, the inertial ratio compensating unit 44, and the inertial characteristic setting unit 45 can be realized.
  • FIG. 20 is a diagram showing the configuration of the positioning device 1-2 according to the third embodiment. A part of the configuration of the positioning device 1-2 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described.
  • the positioning device 1-2 includes a drive device 3-2 and a seismic isolation control device 4-2.
  • the drive device 3-2 has a plurality of positioning drive units 30A and 30B and a seismic isolation drive unit 31.
  • the positioning drive unit 30A includes a first movable unit 301A and a first motor 302A.
  • the positioning drive unit 30B includes a first movable unit 301B and a first motor 302B.
  • the first movable portions 301A and 301B have the same functions as the first movable portion 301, and the first motors 302A and 302B have the same functions as the first motor 302.
  • the seismic isolation control device 4-2 includes a plurality of first control units 40A and 40B, a second control unit 41, a vibration suppression calculation unit 42, a vibration characteristic setting unit 43, and a plurality of inertial ratio compensation units 44A and 44B. And a plurality of inertial characteristic setting units 45A and 45B.
  • the first control unit 40A has the same function as the first control unit 40 except that it operates based on the first follow-up command 10A.
  • the first control unit 40B has the same function as the first control unit 40 except that it operates based on the second follow-up command 10B.
  • the first control unit 40A supplies a current to the first motor 302A based on the first follow-up command 10A, and first determines the position or speed of the first movable unit 301A mechanically connected to the first motor 302A.
  • the first control unit 40B supplies a current to the first motor 302B based on the second follow-up command 10B, and sets the position or speed of the first movable unit 301B mechanically connected to the first motor 302B to the second.
  • follow-up command 10B follows the follow-up command 10B.
  • the positioning device 1-2 cancels out the vibration of the gantry 2 generated by the two positioning drive units 30A and 30B by the reaction force generated by driving the seismic isolation drive unit 31. Therefore, the second control unit 41 controls the seismic isolation drive unit 31 based on the first follow-up command 10A and the second follow-up command 10B.
  • Each of the first follow-up command 10A and the second follow-up command 10B is compensated by the inertia ratio compensating units 44A and 44B for the influence of inertia, and then the first follow-up command 10A and the second follow-up command 10B after compensation are compensated.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the sum of the first follow-up command 10A and the second follow-up command 10B after compensation.
  • the inertia ratio compensating unit 44A sets the inertial characteristics in advance according to the inertia ratio of the first movable unit 301A and the first motor 302A and the second movable unit 311 and the second motor 312 with respect to the first follow-up command 10A.
  • the influence of the inertia ratio on the vibration of the gantry 2 is compensated by using the inertia ratio set to 45A.
  • the inertia ratio compensating unit 44B sets the inertial characteristics in advance according to the inertia ratio of the first movable unit 301B and the first motor 302B and the second movable unit 311 and the second motor 312 with respect to the second follow-up command 10B.
  • the influence of the inertia ratio on the vibration of the gantry 2 is compensated by using the inertia ratio set to 45B. Since the specific compensation method is the same as that of the first embodiment, the description thereof will be omitted.
  • the maximum thrust generated by the second motor 312 of the seismic isolation drive unit 31 is a value close to the sum of the maximum thrusts generated by the first motors 302A and 302B. Therefore, in the positioning device 1-2, it is desirable that the second motor 312 is a motor having a larger output than the first motors 302A and 302B, respectively.
  • the positioning device 1-2 having two positioning drive units 30A and 30B has been described, but the positioning device 1-2 may include three or more positioning drive units 30.
  • the vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the sum of the same number of follow-up commands 10 as the positioning drive unit 30.
  • the positioning device 1-2 according to the third embodiment can efficiently suppress the vibration of the gantry 2 generated by the plurality of positioning drive units 30A and 30B by using one seismic isolation drive unit 31. Therefore, the size of the entire positioning device 1-2 can be reduced as compared with the provision of the same number of seismic isolation drive units 31 as the number of the positioning drive units 30A and 30B.
  • the seismic isolation control device 4-2 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93.
  • the CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, so that the first control unit 40A and 40B, the second control unit 41, the vibration suppression calculation unit 42, and the vibration characteristic setting unit 43 ,
  • the functions of the inertial ratio compensating units 44A and 44B and the inertial characteristic setting units 45A and 45B can be realized.
  • FIG. 21 is a diagram showing a configuration of the positioning device 1-3 according to the fourth embodiment.
  • a part of the configuration of the positioning device 1-3 is common to the positioning device 1.
  • the positioning device 1-3 includes a drive device 3 and a seismic isolation control device 4-3.
  • the seismic isolation control device 4-3 has a first control unit 40-3, a second control unit 41-3, a first command table 46, and a second command table 47.
  • the first command table 46 stores the follow-up command 10 input in advance by the user.
  • the second command table 47 stores the vibration suppression command 11 input in advance by the user.
  • the first control unit 40-3 controls the positioning drive unit 30 based on the follow-up command 10 supplied from the first command table 46 instead of the follow-up command 10 supplied from the outside.
  • the second control unit 41-3 controls the seismic isolation drive unit 31 based on the vibration suppression command 11 supplied from the second command table 47 instead of the vibration suppression command 11 calculated by the vibration suppression calculation unit 42. ..
  • the first control unit 40-3 and the second control unit 41-3 synchronize the drive timing of the first motor 302 with the drive timing of the second motor 312 based on the synchronization signal 14.
  • the seismic isolation control device 4-3 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93.
  • the CPU 92 can realize the functions of the first control unit 40-3 and the second control unit 41-3 by reading and executing the computer program stored in the memory 93 corresponding to each process.
  • the first command table 46 and the second command table 47 are stored in the memory 93.
  • FIG. 22 is a diagram showing a configuration example of an engineering tool 51 that generates a follow-up command 10 and a vibration suppression command 11 used by the positioning device 1-3 shown in FIG. 21.
  • the engineering tool 51 includes a command input unit 52, a communication unit 53, a vibration suppression calculation unit 42, and a vibration characteristic setting unit 43.
  • the command input unit 52 receives an input of a follow-up command 10 that specifies the movement of the positioning drive unit 30 from the user.
  • the command input unit 52 outputs the received follow-up command 10 to the communication unit 53 and the vibration suppression calculation unit 42, respectively.
  • the communication unit 53 is connected to the positioning device 1-3 via a communication path.
  • the communication unit 53 stores the follow-up command 10 in the first command table 46.
  • Each of the vibration suppression calculation unit 42 and the vibration characteristic setting unit 43 has the same function as that of the first embodiment.
  • the vibration suppression calculation unit 42 generates a vibration suppression command 11 based on the follow-up command 10, and outputs the generated vibration suppression command 11 to the communication unit 53.
  • the communication unit 53 stores the vibration suppression command 11 in the second command table 47.
  • the engineering tool 51 shown in FIG. 22 stores the vibration suppression command 11 calculated by the vibration suppression calculation unit 42 in the second command table 47 by the same operation as in the first embodiment, but the user uses the vibration suppression command 11. May be calculated in advance and stored in the second command table 47.
  • the seismic isolation control device 4-3 shown in FIG. 21 has a configuration in which the vibration suppression calculation unit 42 is omitted, but the vibration isolation control device 4-3 has the vibration suppression calculation unit 42 and the vibration characteristic setting unit 43.
  • the vibration suppression command 11 may be generated based on the follow-up command 10 stored in the first command table 46.
  • the seismic isolation control device 4-3 since the seismic isolation control device 4-3 according to the fourth embodiment stores the follow-up command 10 in the first command table 46 in advance, the amount of communication with the external device can be reduced. Further, since the vibration isolation control device 4-3 stores the vibration suppression command 11 in the second command table 47 in advance and refers to the second command table 47 at the time of execution, the amount of calculation performed at the time of driving can be reduced. can.
  • FIG. 23 is a diagram showing the configuration of the positioning device 1-4 according to the fifth embodiment. A part of the configuration of the positioning device 1-4 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described.
  • the positioning device 1-4 includes a drive device 3 and a seismic isolation control device 4-4.
  • the seismic isolation control device 4-4 has a first control unit 40-4, a second control unit 41-4, and a vibration suppression calculation unit 42-4.
  • the seismic isolation control device 4-4 uses an analog voltage or current as a drive command.
  • the first control unit 40-4 receives the follow-up command 10-4 which is an analog signal, digitally converts the follow-up command 10-4, and uses it as a drive command. Further, the first control unit 40-4 supplies the follow-up command 10-4, which is an analog signal, to the vibration suppression calculation unit 42-4.
  • the first control unit 40-4 may supply the follow-up command 10-4, which is an analog signal, to the vibration suppression calculation unit 42-4 as it is, or offset, command limit, etc. to the follow-up command 10-4.
  • the corrected one may be supplied to the vibration suppression calculation unit 42-4.
  • the vibration suppression calculation unit 42-4 calculates the vibration suppression command 11-4, which is an analog signal, using an analog filter.
  • the analog filter used by the vibration suppression calculation unit 42-4 is designed in advance based on the vibration frequency ⁇ of the gantry 2 so that the sum of the input command and the output command has a minimum frequency response.
  • the vibration suppression calculation unit 42-4 outputs the calculated vibration suppression command 11-4 to the second control unit 41-4.
  • the second control unit 41-4 converts the vibration suppression command 11-4, which is an analog signal output by the vibration suppression calculation unit 42-4, into a digital signal and uses it as a drive command.
  • the seismic isolation control device 4-4 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93.
  • the CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40-4, the second control unit 41-4, and the vibration suppression calculation unit 42-4. Functions can be realized.
  • the seismic isolation control device 4-4 controls the drive device 3 by using the follow-up command 10 and the vibration suppression command 11 which are analog signals.
  • the vibration suppression calculation unit 42-4 calculates the vibration suppression command 11-4 using an analog filter.
  • FIG. 24 is a diagram showing the configuration of the positioning device 1-5 according to the sixth embodiment.
  • a part of the configuration of the positioning device 1-5 is common to the positioning device 1.
  • the positioning device 1-5 includes a drive device 3-5 and a seismic isolation control device 4-5.
  • the drive device 3-5 has a positioning drive unit 30-5 and a seismic isolation drive unit 31-1.
  • the positioning drive unit 30-5 includes a first movable unit 301, a first motor 302, and a first position detector 303-5.
  • the first position detector 303-5 is the first described in the second embodiment except that the detected first position information 12 is output to each of the first control unit 40-1 and the vibration suppression calculation unit 42-5. It has the same function as the position detector 303.
  • the seismic isolation drive unit 31-1 includes a second movable unit 311, a second motor 312, and a second position detector 313.
  • the seismic isolation control device 4-5 has a first control unit 40-1, a second control unit 41-1, a vibration suppression calculation unit 42-5, and a vibration characteristic setting unit 43.
  • the vibration suppression calculation unit 42-5 has a frequency response in which the sum of the first position information 12 output by the first position detector 303-5 and the vibration suppression command 11 is minimized at the vibration frequency ⁇ of the gantry 2.
  • the vibration suppression command 11 is calculated.
  • the vibration suppression calculation unit 42-5 outputs the calculated vibration suppression command 11 to the second control unit 41-1.
  • the seismic isolation control device 4-5 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93.
  • the CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, thereby performing the first control unit 40-1, the second control unit 41-1, the vibration suppression calculation unit 42-5, and the vibration suppression calculation unit 42-5.
  • the function of the vibration characteristic setting unit 43 can be realized.
  • the vibration suppression command 11 is calculated based on the first position information 12 indicating the position of the first movable portion 301. Having such a configuration makes it possible to efficiently suppress the vibration of the gantry 2 by a simple method.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Abstract

A vibration isolation control device (4) is characterized by controlling a drive device (3) which drives a first movable part (301) by means of a first motor (302) fixed to a mount (2), and which also drives a second movable part (311) by means of a second motor (312) fixed to the mount (2), and is further characterized by comprising: a first control unit (40) which controls the position or speed of the first motor (302) such that the first movable part (301) follows a time-series follow command (10); and a second control unit (41) which controls the position or speed of the second motor (312) to be proportional to a vibration suppression command (11), which is a position or speed dimension command corresponding to a vibration frequency component of the mount (2), said vibration frequency component being included in the follow command (10).

Description

免振制御装置および免振制御方法Seismic isolation control device and seismic isolation control method
 本開示は、架台に固定されたモータで可動部を駆動する駆動装置の運転中に生じる架台の振動を抑制する免振制御装置および免振制御方法に関する。 The present disclosure relates to a seismic isolation control device and a seismic isolation control method that suppress vibration of the gantry that occurs during operation of a drive device that drives a movable part by a motor fixed to the gantry.
 架台に固定されたモータで可動部を駆動して指定の位置に物を運ぶ位置決め装置のような駆動装置において、高速化および高精度化が求められている。しかしながら、駆動装置を高速化するとモータの回転数を上げる必要があるため架台に振動が生じ、駆動装置の動作精度が低下してしまう。架台に生じる振動を抑制する技術としては、架台に生じる振動周波数に基づいたフィルタを用いて、モータを制御する追従指令を修正する方法が知られている。しかしながら、追従指令を修正する場合、駆動装置の動作完了までの時間が増加してしまう。 High speed and high accuracy are required in a drive device such as a positioning device that drives a movable part with a motor fixed to a gantry to carry an object to a specified position. However, when the speed of the drive device is increased, it is necessary to increase the rotation speed of the motor, so that the gantry vibrates and the operation accuracy of the drive device is lowered. As a technique for suppressing vibration generated in the gantry, a method of modifying a tracking command for controlling a motor by using a filter based on the vibration frequency generated in the gantry is known. However, when the follow-up command is modified, the time until the operation of the drive device is completed increases.
 特許文献1には、駆動装置のモータとは異なる免振制御用のモータを備え、免振制御用のモータを駆動装置のモータと逆向きに駆動して、駆動装置の動作に伴って発生する架台の振動を抑制する免振制御装置が開示されている。免振制御用のモータは、駆動装置のモータが駆動する第1の可動部と異なる第2の可動部を駆動する。免振制御用のモータを備えることで、駆動装置のモータに与える追従指令を修正する必要がないため、駆動装置の動作完了までの時間を維持することが可能である。また、特許文献1に開示された技術では、位置速度制御による推力指令から架台の振動成分を除去した推力指令を生成し、免振制御用のカウンタ推力指令に追加している。これにより、免振制御用のモータが駆動する第2の可動部は、駆動装置を動作させた後に初期位置に戻るため、連続で同一方向への駆動を繰り返す場合であっても第2の可動部の可動範囲を抑制することができる。 Patent Document 1 includes a vibration isolation control motor different from that of the drive device, drives the vibration isolation control motor in the opposite direction to the drive device motor, and is generated in association with the operation of the drive device. A vibration isolation control device that suppresses vibration of the gantry is disclosed. The seismic isolation control motor drives a second movable portion different from the first movable portion driven by the motor of the drive device. By providing the motor for seismic isolation control, it is not necessary to modify the follow-up command given to the motor of the drive device, so that it is possible to maintain the time until the operation of the drive device is completed. Further, in the technique disclosed in Patent Document 1, a thrust command obtained by removing the vibration component of the gantry from the thrust command by position / speed control is generated and added to the counter thrust command for vibration isolation control. As a result, the second movable portion driven by the seismic isolation control motor returns to the initial position after operating the drive device, so that the second movable portion can be moved even when continuously driving in the same direction. The movable range of the part can be suppressed.
特開2012-52666号公報Japanese Unexamined Patent Publication No. 2012-52666
 しかしながら、上記従来の技術によれば1回の位置決めによる第2の可動部の可動範囲は、第1の可動部と同じ程度必要であり、さらに可動範囲を抑制することが求められていた。 However, according to the above-mentioned conventional technique, the movable range of the second movable portion by one positioning is required to be the same as that of the first movable portion, and it is required to further suppress the movable range.
 本開示は、上記に鑑みてなされたものであって、駆動装置の動作により生じる振動を抑制するとともに、免振制御用のモータが駆動する可動部の可動範囲を抑制することが可能な免振制御装置を得ることを目的とする。 The present disclosure has been made in view of the above, and is capable of suppressing vibration caused by the operation of a drive device and suppressing the movable range of a movable portion driven by a motor for seismic isolation control. The purpose is to obtain a control device.
 上述した課題を解決し、目的を達成するために、本開示にかかる免振制御装置は、架台に固定された第1モータで第1可動部を駆動し架台に固定された第2モータで第2可動部を駆動する駆動装置を制御対象とし、時系列の追従指令に第1可動部が追従するように第1モータの位置または速度を制御する第1制御部と、追従指令に含まれる架台の振動周波数成分に相当する位置または速度の次元の指令である振動抑制指令の比例倍に第2モータの位置または速度を追従させる第2制御部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the vibration isolation control device according to the present disclosure is a second motor fixed to the gantry by driving the first movable part by the first motor fixed to the gantry. 2 The first control unit that controls the position or speed of the first motor so that the first movable unit follows the follow-up command in time series, and the gantry included in the follow-up command, with the drive device that drives the movable unit as the control target. It is characterized by including a second control unit that follows the position or speed of the second motor in proportion to the vibration suppression command, which is a command of the dimension of the position or speed corresponding to the vibration frequency component of the above.
 本発明にかかる免振制御装置は、駆動装置の動作により生じる振動を抑制するとともに、免振制御用のモータが駆動する可動部の可動範囲を抑制することが可能であるという効果を奏する。 The vibration isolation control device according to the present invention has the effect of suppressing vibration generated by the operation of the drive device and suppressing the movable range of the movable portion driven by the vibration isolation control motor.
実施の形態1にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 1. 追従指令から生成される駆動装置の各指令波形の一例を示す図The figure which shows an example of each command waveform of the drive device generated from a follow-up command. 図1に示す振動抑制演算部の第1の例を説明するための図The figure for demonstrating the 1st example of the vibration suppression calculation part shown in FIG. 図3に示す第1の例における追従指令および振動抑制指令の和を周波数解析した結果を示す図The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 1st example shown in FIG. 図1に示す振動抑制演算部の第2の例を説明するための図The figure for demonstrating the 2nd example of the vibration suppression calculation part shown in FIG. 図5に示す第2の例における追従指令および振動抑制指令の和を周波数解析した結果を示す図The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 2nd example shown in FIG. 図1に示す振動抑制演算部の第3の例を説明するための図The figure for demonstrating the 3rd example of the vibration suppression calculation part shown in FIG. 図7に示す第3の例における追従指令および振動抑制指令の和を周波数解析した結果を示す図The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 3rd example shown in FIG. 図1に示す振動抑制演算部の第4の例を説明するための図The figure for demonstrating the 4th example of the vibration suppression calculation part shown in FIG. 図9に示す第4の例における追従指令および振動抑制指令の和を周波数解析した結果を示す図The figure which shows the result of frequency analysis of the sum of the follow-up command and the vibration suppression command in the 4th example shown in FIG. 図1に示す振動抑制演算部の第5の例を説明するための図The figure for demonstrating the 5th example of the vibration suppression calculation part shown in FIG. 第1の比較例で使用する追従指令を示す図The figure which shows the follow-up command used in the 1st comparative example. 第1の比較例において架台に発生する加速度をシミュレーションした結果を示す図The figure which shows the result of simulating the acceleration generated in the gantry in the 1st comparative example. 第2の比較例で使用する追従指令と、追従指令および振動抑制指令の和とを示す図The figure which shows the follow-up command used in the 2nd comparative example, and the sum of a follow-up command and a vibration suppression command. 第2の比較例において架台に発生する加速度をシミュレーションした結果を示す図The figure which shows the result of simulating the acceleration generated in the gantry in the 2nd comparative example. 図1に示す位置決め装置が使用する追従指令を示す図The figure which shows the follow-up command used by the positioning apparatus shown in FIG. 図1に示す位置決め装置が使用する振動抑制指令を示す図The figure which shows the vibration suppression command used by the positioning apparatus shown in FIG. 実施の形態1において架台に発生する加速度をシミュレーションした結果を示す図The figure which shows the result of simulating the acceleration generated in the gantry in Embodiment 1. 実施の形態2にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 2. 実施の形態3にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 3. 実施の形態4にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 4. 図21に示す位置決め装置が用いる追従指令および振動抑制指令を生成するエンジニアリングツールの構成例を示す図A diagram showing a configuration example of an engineering tool that generates a follow-up command and a vibration suppression command used by the positioning device shown in FIG. 21. 実施の形態5にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 5. 実施の形態6にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning apparatus which concerns on Embodiment 6.
 以下に、本開示の実施の形態にかかる免振制御装置および免振制御方法を図面に基づいて詳細に説明する。 The vibration isolation control device and the vibration isolation control method according to the embodiment of the present disclosure will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる位置決め装置1の構成を示す図である。位置決め装置1は、駆動装置3と免振制御装置4とを有する。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a positioning device 1 according to a first embodiment. The positioning device 1 has a drive device 3 and a seismic isolation control device 4.
 駆動装置3は、位置決め用の第1モータ302および第1可動部301を備える位置決め駆動部30と、免振制御用の第2モータ312および第2可動部311を備える免振駆動部31とを有する。第1モータ302および第2モータ312は、架台2に固定されている。第1可動部301は、第1モータ302に機械的に接続されている。第1モータ302は、第1可動部301を駆動する。第2可動部311は、第2モータ312に機械的に接続されている。第2モータ312は、第2可動部311を駆動し、その反力をもって、第1モータ302が第1可動部301を駆動したときに生じる架台2の振動を抑制する。第1モータ302は、免振制御装置4が出力する指令に基づいて第1可動部301を駆動し、第2モータ312は、免振制御装置4が出力する指令に基づいて第2可動部311を駆動する。 The drive device 3 includes a positioning drive unit 30 including a first motor 302 and a first movable unit 301 for positioning, and a seismic isolation drive unit 31 including a second motor 312 and a second movable unit 311 for seismic isolation control. Have. The first motor 302 and the second motor 312 are fixed to the gantry 2. The first movable portion 301 is mechanically connected to the first motor 302. The first motor 302 drives the first movable portion 301. The second movable portion 311 is mechanically connected to the second motor 312. The second motor 312 drives the second movable portion 311 and suppresses the vibration of the gantry 2 that occurs when the first motor 302 drives the first movable portion 301 by the reaction force thereof. The first motor 302 drives the first movable unit 301 based on the command output by the seismic isolation control device 4, and the second motor 312 drives the second movable unit 311 based on the command output by the seismic isolation control device 4. To drive.
 免振制御装置4は、位置決め駆動部30を制御する第1制御部40と、免振駆動部31を制御する第2制御部41と、振動抑制演算部42と、振動特性設定部43とを有する。第1制御部40は、外部から入力される時系列の追従指令10に基づいて、第1モータ302に電流を供給して第1可動部301の動きを制御する。具体的には、第1制御部40は、第1可動部301が追従指令10に追従するように第1モータ302の位置または速度を制御する。追従指令10は、位置または速度の次元の指令である。第2制御部41は、後述する振動抑制演算部42が演算する振動抑制指令11に基づいて、第2モータ312に電流を供給して第2可動部311の動きを制御する。振動抑制指令11は、追従指令10に含まれる架台2の振動周波数成分に相当する指令である。具体的には、第2制御部41は、振動抑制指令11の比例倍に第2モータ312の位置または速度を追従させるように第2モータ312を制御する。 The seismic isolation control device 4 includes a first control unit 40 that controls the positioning drive unit 30, a second control unit 41 that controls the seismic isolation drive unit 31, a vibration suppression calculation unit 42, and a vibration characteristic setting unit 43. Have. The first control unit 40 supplies a current to the first motor 302 based on a time-series follow-up command 10 input from the outside to control the movement of the first movable unit 301. Specifically, the first control unit 40 controls the position or speed of the first motor 302 so that the first movable unit 301 follows the follow-up command 10. The follow-up command 10 is a command in the dimension of position or velocity. The second control unit 41 supplies a current to the second motor 312 to control the movement of the second movable unit 311 based on the vibration suppression command 11 calculated by the vibration suppression calculation unit 42 described later. The vibration suppression command 11 is a command corresponding to the vibration frequency component of the gantry 2 included in the follow-up command 10. Specifically, the second control unit 41 controls the second motor 312 so that the position or speed of the second motor 312 is made to follow the position or speed of the second motor 312 in proportion to the vibration suppression command 11.
 振動抑制演算部42は、追従指令10に基づいて、第2制御部41が免振駆動部31を制御するための振動抑制指令11を演算する。振動抑制演算部42は、追従指令10に含まれる架台2の振動周波数成分に相当する振動抑制指令11を位置または速度の次元で演算する。振動特性設定部43は、架台2に応じた振動周波数を予め保持する。 The vibration suppression calculation unit 42 calculates the vibration suppression command 11 for the second control unit 41 to control the seismic isolation drive unit 31 based on the follow-up command 10. The vibration suppression calculation unit 42 calculates the vibration suppression command 11 corresponding to the vibration frequency component of the gantry 2 included in the follow-up command 10 in the dimension of position or speed. The vibration characteristic setting unit 43 holds in advance the vibration frequency corresponding to the gantry 2.
 図1において、駆動装置3および免振制御装置4は架台2上に設置されているが、免振制御装置4の一部または全部を架台2とは別の機器に設置してもよい。この場合、第1制御部40と第1モータ302との間および第2制御部41と第2モータ312との間は、ケーブル等を用いて接続される。 In FIG. 1, the drive device 3 and the seismic isolation control device 4 are installed on the gantry 2, but a part or all of the seismic isolation control device 4 may be installed on a device different from the gantry 2. In this case, the first control unit 40 and the first motor 302 and the second control unit 41 and the second motor 312 are connected by using a cable or the like.
 追従指令10は、外部から免振制御装置4に送られる時系列の位置指令または速度指令である。図2は、追従指令10から生成される駆動装置3の各指令波形の一例を示す図である。図2は、位置指令、速度指令、および、推力指令のそれぞれの波形を含む。なお、追従指令10の取得方法および生成方法は、特に制限されない。追従指令10は、駆動装置3および免振制御装置4が実行可能な任意の形状の指令であってよい。例えば、追従指令10は、PLC(Programmable Logic Controller)、IPC(Industrial Personal Computer)などで生成した位置指令または速度指令であって、産業用ネットワークまたはアナログ信号などを介して取得されたものである。また、追従指令10は、駆動装置3の駆動距離などに基づいて生成した指令を通信路を介して免振制御装置4に送信したものであってもよい。ただし、位置決め精度の観点から追従指令10および振動抑制指令11は同期されていることが望ましい。 The follow-up command 10 is a time-series position command or speed command sent from the outside to the seismic isolation control device 4. FIG. 2 is a diagram showing an example of each command waveform of the drive device 3 generated from the follow-up command 10. FIG. 2 includes waveforms of position command, velocity command, and thrust command, respectively. The acquisition method and generation method of the follow-up command 10 are not particularly limited. The follow-up command 10 may be a command having an arbitrary shape that can be executed by the drive device 3 and the seismic isolation control device 4. For example, the follow-up command 10 is a position command or speed command generated by a PLC (Programmable Logic Controller), an IPC (Industrial Personal Computer), or the like, and is acquired via an industrial network or an analog signal. Further, the follow-up command 10 may be a command generated based on the drive distance of the drive device 3 or the like transmitted to the seismic isolation control device 4 via the communication path. However, from the viewpoint of positioning accuracy, it is desirable that the follow-up command 10 and the vibration suppression command 11 are synchronized.
 第1制御部40は、位置指令または速度指令である追従指令10に応じて、第1モータ302の位置または速度を追従指令10の比例倍に追従させるように駆動する。第2制御部41は、位置指令または速度指令である振動抑制指令11に応じて、第2モータ312の位置または速度を振動抑制指令11の比例倍に追従させるように駆動する。このとき、第2制御部41の応答速度を第1制御部40の応答速度と同一に設定することによって、第1モータ302および第2モータ312で発生させる力の応答を同一とすることができ、架台2に発生する振動を精度よく抑制することが可能になる。なお、第1制御部40の応答速度と第2制御部41の応答速度との差が閾値以下である場合、第1制御部40の応答速度と第2制御部41の応答速度とは同一であるとみなすことができる。この閾値は、第1モータ302および第2モータ312で発生させる力の応答が同一であるとみなせる程度の値とすることが望ましい。また、第1制御部40の応答速度と第2制御部41の応答速度とを同一にした場合、位置決め装置1の使用者は、第1制御部40の設定値をそのまま流用して、第2制御部41のゲインなどの設定値を決定することができ、設定値の決定を容易に行うことが可能になる。 The first control unit 40 drives the position or speed of the first motor 302 to follow the follow-up command 10 in proportion to the follow-up command 10 which is a position command or a speed command. The second control unit 41 drives the position or speed of the second motor 312 to follow the vibration suppression command 11 proportionally in response to the vibration suppression command 11 which is a position command or a speed command. At this time, by setting the response speed of the second control unit 41 to be the same as the response speed of the first control unit 40, the response of the forces generated by the first motor 302 and the second motor 312 can be made the same. , It becomes possible to accurately suppress the vibration generated in the gantry 2. When the difference between the response speed of the first control unit 40 and the response speed of the second control unit 41 is equal to or less than the threshold value, the response speed of the first control unit 40 and the response speed of the second control unit 41 are the same. Can be considered to be. It is desirable that this threshold value is a value that can be regarded as having the same force response generated by the first motor 302 and the second motor 312. Further, when the response speed of the first control unit 40 and the response speed of the second control unit 41 are made the same, the user of the positioning device 1 uses the set value of the first control unit 40 as it is and uses the second control unit 40 as it is. A set value such as a gain of the control unit 41 can be determined, and the set value can be easily determined.
 振動抑制演算部42は、振動抑制指令11と追従指令10との和が、架台2に応じて予め振動特性設定部43に設定された架台振動周波数において極小となる周波数応答を持つように、振動抑制指令11を演算する。 The vibration suppression calculation unit 42 vibrates so that the sum of the vibration suppression command 11 and the follow-up command 10 has a frequency response that is minimized at the gantry vibration frequency set in advance in the vibration characteristic setting unit 43 according to the gantry 2. The suppression command 11 is calculated.
 なお、免振制御装置4は、例えばCPU(Central Processing Unit)92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、処理回路、演算装置、プロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などとも呼ばれる。メモリ93は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)などである。 The seismic isolation control device 4 is composed of, for example, a computer including a control circuit using a CPU (Central Processing Unit) 92 and a memory 93. The CPU 92 is also called a processing circuit, an arithmetic unit, a processor, a microcomputer, a DSP (Digital Signal Processor), or the like. The memory 93 is, for example, a non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). Magnetic discs, flexible discs, optical discs, compact discs, mini discs, DVDs (Digital Versatile Disk), etc.
 CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40、第2制御部41、振動抑制演算部42、および振動特性設定部43の機能を実現する。メモリ93は、CPU92が実行する各処理における一時メモリとしても使用される。CPU92が実行するプログラムは、通信路を介して提供されてもよいし、記憶媒体に記録された状態で提供されてもよい。 The CPU 92 reads and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40, the second control unit 41, the vibration suppression calculation unit 42, and the vibration characteristic setting unit 43. Realize the function. The memory 93 is also used as a temporary memory in each process executed by the CPU 92. The program executed by the CPU 92 may be provided via a communication path, or may be provided in a state of being recorded on a storage medium.
 なお、上記ではCPU92およびメモリ93を用いた例について示したが、免振制御装置4の少なくとも一部の機能は、専用のハードウェアにより実現されてもよい。専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。以下の実施の形態についても同様である。 Although the example using the CPU 92 and the memory 93 has been shown above, at least a part of the functions of the seismic isolation control device 4 may be realized by dedicated hardware. Dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. .. The same applies to the following embodiments.
 図3は、図1に示す振動抑制演算部42の第1の例を説明するための図である。第1の例では、振動抑制演算部42は、IIR(Infinite Impulse Response:無限インパルス応答)フィルタを用いて、振動抑制指令11を演算する。第1の例で用いられるIIRフィルタのフィルタ関数は、以下の数式(1)で表される。 FIG. 3 is a diagram for explaining a first example of the vibration suppression calculation unit 42 shown in FIG. In the first example, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using an IIR (Infinite Impulse Response) filter. The filter function of the IIR filter used in the first example is expressed by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで数式(1)に含まれる3つの定数a,a,bのそれぞれの値は、振動特性設定部43に設定された振動特性の情報に基づいて設定される。例えば、架台2の振動周波数がω[Hz]であるとき、定数a=2/2πωであり、定数a=1/(2πω)であり、定数b=0.3/(2πω)である場合、架台2の振動を抑制することができる。定数aは、架台2の振動周波数ωのマイナス1乗に比例し、定数aおよび定数bは、架台2の振動周波数ωのマイナス2乗に比例する。 Here, the values of the three constants a 1 , a 2 , and b included in the mathematical formula (1) are set based on the vibration characteristic information set in the vibration characteristic setting unit 43. For example, when the vibration frequency of the gantry 2 is ω [Hz], the constant a 1 = 2 / 2πω, the constant a 2 = 1 / (2πω) 2 , and the constant b = 0.3 / (2πω) 2 If this is the case, the vibration of the gantry 2 can be suppressed. The constant a 1 is proportional to the minus square of the vibration frequency ω of the gantry 2, and the constant a 2 and the constant b are proportional to the minus square of the vibration frequency ω of the gantry 2.
 振動抑制演算部42が第1の例のIIRフィルタを用いることで、少ないメモリで効率的に架台2に発生する振動を抑制することができる。また、フィルタを連続の表現とすることで、精度よく振動を抑制することが可能になる。 By using the IIR filter of the first example, the vibration suppression calculation unit 42 can efficiently suppress the vibration generated in the gantry 2 with a small amount of memory. Further, by expressing the filter continuously, it is possible to suppress the vibration with high accuracy.
 図4は、図3に示す第1の例における追従指令10および振動抑制指令11の和を周波数解析した結果を示す図である。図4の横軸は周波数であり、縦軸は追従指令10および振動抑制指令11の和である。架台2の振動周波数ωにおいて、周波数応答は極小値をとっている。 FIG. 4 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the first example shown in FIG. The horizontal axis of FIG. 4 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11. At the vibration frequency ω of the gantry 2, the frequency response has a minimum value.
 図5は、図1に示す振動抑制演算部42の第2の例を説明するための図である。第2の例は、第1の例におけるIIRフィルタを離散で実装し、さらにa=bとした例である。IIRフィルタを離散で実装することにより、さらに少ない演算で架台2の振動を抑制することができる。また、a=bとすることで、伝達関数の分子の2次の係数が0となる。このため、演算量をより少なくすることができる。 FIG. 5 is a diagram for explaining a second example of the vibration suppression calculation unit 42 shown in FIG. The second example is an example in which the IIR filter in the first example is discretely implemented and a 2 = b. By mounting the IIR filter discretely, the vibration of the gantry 2 can be suppressed with a smaller number of operations. In addition, by setting a 2 = b, 2-order coefficients of the numerator of the transfer function is zero. Therefore, the amount of calculation can be reduced.
 図6は、図5に示す第2の例における追従指令10および振動抑制指令11の和を周波数解析した結果を示す図である。図6の横軸は周波数であり、縦軸は追従指令10および振動抑制指令11の和である。架台2の振動周波数ωにおいて、周波数応答は極小値をとっている。 FIG. 6 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the second example shown in FIG. The horizontal axis of FIG. 6 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11. At the vibration frequency ω of the gantry 2, the frequency response has a minimum value.
 図7は、図1に示す振動抑制演算部42の第3の例を説明するための図である。第3の例では、振動抑制演算部42は、FIR(Finite Impulse Response:有限インパルス応答)フィルタを用いて、振動抑制指令11を演算する。第3の例で用いられるFIRフィルタの第1の離散系伝達関数F(z)は、以下の数式(2)で表される。 FIG. 7 is a diagram for explaining a third example of the vibration suppression calculation unit 42 shown in FIG. In the third example, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using an FIR (Finite Impulse Response) filter. The first discrete transfer function F 1 (z) of the FIR filter used in the third example is expressed by the following mathematical formula (2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 定数Nの値は、振動特性設定部43に設定された振動特性の情報に応じて設定される。例えば、架台2の振動周波数ω、振動抑制演算部42の処理周期tとした場合、N=1/ωtとすることで、架台2の振動を抑制することができる。 The value of the constant N 1 is set according to the vibration characteristic information set in the vibration characteristic setting unit 43. For example, when the vibration frequency ω of the gantry 2 and the processing cycle t of the vibration suppression calculation unit 42 are set, the vibration of the gantry 2 can be suppressed by setting N 1 = 1 / ωt.
 振動抑制演算部42が第3の例に示すFIRフィルタを用いることで、フィルタの演算を行うときの演算誤差の影響を抑制して、振動を抑制することができる。また、FIRフィルタを用いることで、振動抑制指令11を安定させることが可能になる。 By using the FIR filter shown in the third example by the vibration suppression calculation unit 42, it is possible to suppress the influence of calculation error when performing the calculation of the filter and suppress the vibration. Further, by using the FIR filter, it becomes possible to stabilize the vibration suppression command 11.
 図8は、図7に示す第3の例における追従指令10および振動抑制指令11の和を周波数解析した結果を示す図である。図8の横軸は周波数であり、縦軸は追従指令10および振動抑制指令11の和である。架台2の振動周波数ωにおいて、周波数応答は極小値をとっている。 FIG. 8 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the third example shown in FIG. 7. The horizontal axis of FIG. 8 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11. At the vibration frequency ω of the gantry 2, the frequency response has a minimum value.
 図9は、図1に示す振動抑制演算部42の第4の例を説明するための図である。第4の例では、振動抑制演算部42は、移動平均フィルタを用いて、振動抑制指令11を演算する。図9に示す移動平均フィルタの段数はNである。段数を示す定数Nの値は、第3の例における定数Nと同様に、振動特性設定部43に設定された振動特性の情報に応じて設定される。第4の例で用いられる移動平均フィルタの第2の離散系伝達関数F(z)は、以下の数式(3)で表される。 FIG. 9 is a diagram for explaining a fourth example of the vibration suppression calculation unit 42 shown in FIG. In the fourth example, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using the moving average filter. The number of stages of the moving average filter shown in FIG. 9 is N 2 . The value of the constant N 2 indicating the number of stages is set according to the vibration characteristic information set in the vibration characteristic setting unit 43, similarly to the constant N 1 in the third example. The second discrete transfer function F 2 (z) of the moving average filter used in the fourth example is expressed by the following mathematical formula (3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 振動抑制演算部42が図9に示す移動平均フィルタを用いることで、振動抑制演算部42の入力にノイズがある場合であっても、安定した振動抑制指令11を演算することができる。 By using the moving average filter shown in FIG. 9, the vibration suppression calculation unit 42 can calculate a stable vibration suppression command 11 even when there is noise in the input of the vibration suppression calculation unit 42.
 図10は、図9に示す第4の例における追従指令10および振動抑制指令11の和を周波数解析した結果を示す図である。図10の横軸は周波数であり、縦軸は追従指令10および振動抑制指令11の和である。架台2の振動周波数ωにおいて、周波数応答は極小値をとっている。 FIG. 10 is a diagram showing the result of frequency analysis of the sum of the follow-up command 10 and the vibration suppression command 11 in the fourth example shown in FIG. The horizontal axis of FIG. 10 is the frequency, and the vertical axis is the sum of the follow-up command 10 and the vibration suppression command 11. At the vibration frequency ω of the gantry 2, the frequency response has a minimum value.
 以上、振動抑制演算部42の第1~第4の例について説明したが、振動抑制演算部42は、追従指令10と振動抑制指令11との和が、架台2の振動周波数ωにおいて極小となる周波数応答を持つように振動抑制指令11を演算することができればよい。上記は一例であって、振動抑制演算部42の構成は、説明した例に限定されない。 Although the first to fourth examples of the vibration suppression calculation unit 42 have been described above, in the vibration suppression calculation unit 42, the sum of the follow-up command 10 and the vibration suppression command 11 becomes the minimum at the vibration frequency ω of the gantry 2. It suffices if the vibration suppression command 11 can be calculated so as to have a frequency response. The above is an example, and the configuration of the vibration suppression calculation unit 42 is not limited to the described example.
 例えば、望まれる特性に応じて、フィルタの次数が変更されてよい。また、振動抑制演算部42は、複数のフィルタを組み合わせて構成することもできる。また、振動抑制演算部42が用いる各フィルタの定数を、周波数応答に応じて変更することもできる。位置決め装置1の使用者または設計者は、装置構成、使用状況などに応じて、適した手法を選択することができる。また、状況に応じて、フィルタの使い分けができるように振動抑制演算部42を構成してもよい。 For example, the order of the filter may be changed according to the desired characteristics. Further, the vibration suppression calculation unit 42 can also be configured by combining a plurality of filters. Further, the constant of each filter used by the vibration suppression calculation unit 42 can be changed according to the frequency response. The user or designer of the positioning device 1 can select a suitable method according to the device configuration, usage conditions, and the like. Further, the vibration suppression calculation unit 42 may be configured so that the filters can be used properly according to the situation.
 図11は、図1に示す振動抑制演算部42の第5の例を説明するための図である。振動抑制演算部42は、複数の振動周波数ωに基づいて、振動抑制指令11を演算してもよい。第5の例において、振動抑制演算部42は、2つの振動周波数ω,ωに基づいて、振動抑制指令11を演算する。例えば、振動抑制演算部42は2つのIIRフィルタを用いて、振動抑制指令11を演算する。一方のIIRフィルタのフィルタ関数は、上記の数式(1)で表され、他方のIIRフィルタのフィルタ関数は、以下の数式(4)で表される。 FIG. 11 is a diagram for explaining a fifth example of the vibration suppression calculation unit 42 shown in FIG. The vibration suppression calculation unit 42 may calculate the vibration suppression command 11 based on the plurality of vibration frequencies ω. In the fifth example, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the two vibration frequencies ω 1 and ω 2. For example, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 using two IIR filters. The filter function of one IIR filter is represented by the above formula (1), and the filter function of the other IIR filter is represented by the following formula (4).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 第5の例では、数式(1)に含まれる定数a=2/2πωであり、定数a=1/(2πωであり、定数b=0.3/(2πωであり、数式(4)に含まれるa3=2/2πωであり、定数a=1/(2πωであり、定数b=0.3/(2πωである場合、架台2の振動を抑制することができる。 In the fifth example, the constant a 1 = 2 / 2πω 1 included in the mathematical formula (1), the constant a 2 = 1 / (2πω 1 ) 2 , and the constant b = 0.3 / (2πω 1 ) 2 If a3 = 2 / 2πω 2 included in the mathematical formula (4), a constant a 2 = 1 / (2πω 2 ) 2 , and a constant b = 0.3 / (2πω 2 ) 2 , then the gantry The vibration of 2 can be suppressed.
 第5の例では、追従指令10と振動抑制指令11との和が、それぞれの振動周波数ω,ωで極小となる周波数応答を有するため、より精度よく架台2の振動を抑制することができる。 In the fifth example, since the sum of the follow-up command 10 and the vibration suppression command 11 has a frequency response that is minimized at the respective vibration frequencies ω 1 and ω 2 , the vibration of the gantry 2 can be suppressed more accurately. can.
 続いて、図1に示す位置決め装置1の奏する効果について説明する。図12および図13は、本実施の形態の第1の比較例を説明するための図である。図12は、第1の比較例で使用する追従指令10を示す図である。図13は、第1の比較例において架台2に発生する加速度をシミュレーションした結果を示す図である。なお、図13は、図12に示す追従指令10を用いて位置決め駆動部30を単独で駆動し、免振駆動部31を駆動しない場合のシミュレーション結果を示している。 Next, the effect of the positioning device 1 shown in FIG. 1 will be described. 12 and 13 are diagrams for explaining a first comparative example of the present embodiment. FIG. 12 is a diagram showing a follow-up command 10 used in the first comparative example. FIG. 13 is a diagram showing the result of simulating the acceleration generated in the gantry 2 in the first comparative example. Note that FIG. 13 shows a simulation result when the positioning drive unit 30 is driven independently by using the follow-up command 10 shown in FIG. 12 and the seismic isolation drive unit 31 is not driven.
 図13に示すように、免振駆動部31を駆動させずに、位置決め駆動部30を駆動した場合、第1可動部301が追従指令10に従って駆動すると、架台2が振動して位置に誤差が発生するため、位置決め精度が低下してしまうことがある。 As shown in FIG. 13, when the positioning drive unit 30 is driven without driving the seismic isolation drive unit 31, when the first movable unit 301 is driven according to the follow-up command 10, the gantry 2 vibrates and an error in the position occurs. Since it occurs, the positioning accuracy may decrease.
 図14および図15は、本実施の形態の第2の比較例を説明するための図である。図14は、第2の比較例で使用する追従指令10と、追従指令10および振動抑制指令11の和とを示す図である。図15は、第2の比較例において架台2に発生する加速度をシミュレーションした結果を示す図である。図14の実線は、追従指令10および振動抑制指令11の和を示しており、図14の破線は、追従指令10単体を示している。図15の実線は、図14の実線で示される追従指令10および振動抑制指令11の和を使用して、位置決め駆動部30を駆動した場合に架台2に発生する加速度のシミュレーション結果を示しており、図15の破線は、図14の破線で示される追従指令10単体を使用して、位置決め駆動部30を駆動した場合に架台2に発生する加速度のシミュレーション結果を示している。 14 and 15 are diagrams for explaining a second comparative example of the present embodiment. FIG. 14 is a diagram showing the sum of the follow-up command 10 used in the second comparative example, the follow-up command 10, and the vibration suppression command 11. FIG. 15 is a diagram showing the result of simulating the acceleration generated in the gantry 2 in the second comparative example. The solid line in FIG. 14 shows the sum of the follow-up command 10 and the vibration suppression command 11, and the broken line in FIG. 14 shows the follow-up command 10 alone. The solid line in FIG. 15 shows the simulation result of the acceleration generated in the gantry 2 when the positioning drive unit 30 is driven by using the sum of the follow-up command 10 and the vibration suppression command 11 shown by the solid line in FIG. The broken line in FIG. 15 shows the simulation result of the acceleration generated in the gantry 2 when the positioning drive unit 30 is driven by using the tracking command 10 alone shown by the broken line in FIG.
 図15の実線と破線とを比較すると、追従指令10に振動抑制指令11を追加することで、架台2に発生する加速度は、追従指令10単体で位置決め駆動部30を駆動した場合よりも大幅に抑制されている。しかしながら、追従指令10に振動抑制指令11を追加した場合、位置決めが完了するまでの時間が増加している。 Comparing the solid line and the broken line in FIG. 15, by adding the vibration suppression command 11 to the follow-up command 10, the acceleration generated in the gantry 2 is significantly larger than that in the case where the follow-up command 10 alone drives the positioning drive unit 30. It is suppressed. However, when the vibration suppression command 11 is added to the follow-up command 10, the time until the positioning is completed is increased.
 図16は、図1に示す位置決め装置1が使用する追従指令10を示す図である。図17は、図1に示す位置決め装置1が使用する振動抑制指令11を示す図である。図18は、実施の形態1において架台2に発生する加速度をシミュレーションした結果を示す図である。図18は、図16に示す追従指令10を用いて位置決め駆動部30を駆動し、図17に示す振動抑制指令11を用いて免振駆動部31を駆動した場合のシミュレーション結果を示している。 FIG. 16 is a diagram showing a follow-up command 10 used by the positioning device 1 shown in FIG. FIG. 17 is a diagram showing a vibration suppression command 11 used by the positioning device 1 shown in FIG. FIG. 18 is a diagram showing a result of simulating the acceleration generated in the gantry 2 in the first embodiment. FIG. 18 shows a simulation result when the positioning drive unit 30 is driven by using the follow-up command 10 shown in FIG. 16 and the seismic isolation drive unit 31 is driven by using the vibration suppression command 11 shown in FIG.
 本実施の形態にかかる位置決め装置1では、位置決め駆動部30は、追従指令10に基づいて制御されるため、第2の比較例で生じたような位置決め時間の増加を抑制しつつ、免振駆動部31を振動抑制指令11に基づいて制御することで、架台2の振動を抑制することができる。このとき振動抑制演算部42は、位置決め駆動部30の推力指令、加速度指令ではなく、位置指令および速度指令に対して、その駆動時の架台2の振動の反力を演算するため、第1可動部301にかかる摩擦の影響を抑えつつ、振動を抑制することができる。 In the positioning device 1 according to the present embodiment, since the positioning drive unit 30 is controlled based on the follow-up command 10, vibration isolation drive is performed while suppressing an increase in positioning time as caused in the second comparative example. By controlling the unit 31 based on the vibration suppression command 11, the vibration of the gantry 2 can be suppressed. At this time, the vibration suppression calculation unit 42 is first movable because it calculates the reaction force of the vibration of the gantry 2 at the time of driving the position command and the speed command instead of the thrust command and the acceleration command of the positioning drive unit 30. Vibration can be suppressed while suppressing the influence of friction applied to the portion 301.
 ここで、第2可動部311の可動範囲は、位置指令に図3,5,7,9,11に示したようなフィルタを適用したものであるため、摩擦などの影響を考慮する必要なく、容易に計算することができる。 Here, since the movable range of the second movable portion 311 applies the filter as shown in FIGS. 3, 5, 7, 9, and 11 to the position command, it is not necessary to consider the influence of friction and the like. It can be calculated easily.
 また、振動抑制演算部42が使用するフィルタの性質によって、第2可動部311は、位置決め終了時に自然に始動位置に戻る。これにより、追従指令10が同一方向に連続で動作するような場合であっても、第2可動部311の可動範囲は、追従指令1回分と同等となる。さらに、第2モータ312は、追従指令10に含まれる振動周波数成分に相当する振動抑制指令11の比例倍に追従するように制御される。振動周波数成分は、元の追従指令と比較して小さいため、第2可動部311の1回分の可動範囲は、元の追従指令に対して短縮される。 Further, due to the nature of the filter used by the vibration suppression calculation unit 42, the second movable unit 311 naturally returns to the starting position at the end of positioning. As a result, even when the follow-up command 10 continuously operates in the same direction, the movable range of the second movable portion 311 is equivalent to one follow-up command. Further, the second motor 312 is controlled so as to follow the vibration suppression command 11 corresponding to the vibration frequency component included in the follow-up command 10. Since the vibration frequency component is smaller than the original follow-up command, the movable range of the second movable portion 311 for one time is shortened with respect to the original follow-up command.
 以上説明したように、実施の形態1にかかる免振制御装置4によれば、第1可動部301は、時系列の追従指令に追従するように第1モータ302の位置または速度が制御され、第2モータ312の位置または速度は、架台2の振動周波数成分に相当する振動抑制指令11の比例倍に追従するように制御される。このため、制御対象である駆動装置3の動作により生じる振動を抑制するとともに、第2可動部311の可動範囲を抑制することが可能になる。 As described above, according to the vibration isolation control device 4 according to the first embodiment, the position or speed of the first motor 302 is controlled in the first movable portion 301 so as to follow the follow-up command in the time series. The position or speed of the second motor 312 is controlled so as to follow a proportional multiple of the vibration suppression command 11 corresponding to the vibration frequency component of the gantry 2. Therefore, it is possible to suppress the vibration generated by the operation of the drive device 3 to be controlled and to suppress the movable range of the second movable portion 311.
 また、第1制御部40の応答速度と第2制御部41の応答速度との差は閾値以下に設定される。これにより、第1モータ302および第2モータ312で発生させる力の応答を同一とすることができ、架台2に発生する振動を精度よく抑制することが可能になる。また、第1制御部40の応答速度と第2制御部41の応答速度とを同一にした場合、位置決め装置1の使用者は、第1制御部40の設定値をそのまま流用して、第2制御部41のゲインなどの設定値を決定することができ、設定値の決定を容易に行うことが可能になる。 Further, the difference between the response speed of the first control unit 40 and the response speed of the second control unit 41 is set to be equal to or less than the threshold value. As a result, the responses of the forces generated by the first motor 302 and the second motor 312 can be made the same, and the vibration generated in the gantry 2 can be suppressed with high accuracy. Further, when the response speed of the first control unit 40 and the response speed of the second control unit 41 are made the same, the user of the positioning device 1 uses the set value of the first control unit 40 as it is and uses the second control unit 40 as it is. A set value such as a gain of the control unit 41 can be determined, and the set value can be easily determined.
 なお、振動抑制演算部42は、追従指令10との和が、架台2の振動周波数に基づいた周波数で極小となる周波数応答を持つように振動抑制指令11を演算することで、振動抑制指令11を、追従指令10に含まれる架台2の振動周波数成分に相当する指令とすることができる。つまり、振動抑制指令11は、架台2の振動が小さくなる周波数応答をもつ指令と、追従指令10との差をとることで計算される。このため、簡易な演算で架台2の振動を抑制することが可能になる。 The vibration suppression calculation unit 42 calculates the vibration suppression command 11 so that the sum with the follow-up command 10 has a frequency response that is minimized at a frequency based on the vibration frequency of the gantry 2. Can be a command corresponding to the vibration frequency component of the gantry 2 included in the follow-up command 10. That is, the vibration suppression command 11 is calculated by taking the difference between the command having a frequency response that reduces the vibration of the gantry 2 and the follow-up command 10. Therefore, it is possible to suppress the vibration of the gantry 2 by a simple calculation.
 なお、振動抑制演算部42は、上記の第1~第5の例に示す方法で、振動抑制指令11を演算することができる。フィルタを用いることで、容易に振動抑制指令11を生成することが可能になる。 The vibration suppression calculation unit 42 can calculate the vibration suppression command 11 by the method shown in the first to fifth examples above. By using the filter, it becomes possible to easily generate the vibration suppression command 11.
実施の形態2.
 図19は、実施の形態2にかかる位置決め装置1-1の構成を示す図である。位置決め装置1-1の構成の一部は、位置決め装置1と共通である。以下、位置決め装置1と共通する部分については、同じ符号を用いることで、詳細な説明を省略し、位置決め装置1と異なる部分について主に説明する。位置決め装置1-1は、駆動装置3-1と、免振制御装置4-1とを有する。
Embodiment 2.
FIG. 19 is a diagram showing the configuration of the positioning device 1-1 according to the second embodiment. A part of the configuration of the positioning device 1-1 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described. The positioning device 1-1 includes a drive device 3-1 and a seismic isolation control device 4-1.
 駆動装置3-1は、位置決め駆動部30-1と、免振駆動部31-1とを有する。位置決め駆動部30-1は、第1可動部301と、第1モータ302と、第1位置検出器303とを有する。免振駆動部31-1は、第2可動部311と、第2モータ312と、第2位置検出器313とを有する。 The drive device 3-1 has a positioning drive unit 30-1 and a seismic isolation drive unit 31-1. The positioning drive unit 30-1 includes a first movable unit 301, a first motor 302, and a first position detector 303. The seismic isolation drive unit 31-1 includes a second movable unit 311, a second motor 312, and a second position detector 313.
 免振制御装置4-1は、第1制御部40-1と、第2制御部41-1と、振動抑制演算部42と、振動特性設定部43と、慣性比補償部44と、慣性特性設定部45とを有する。 The seismic isolation control device 4-1 includes a first control unit 40-1, a second control unit 41-1, a vibration suppression calculation unit 42, a vibration characteristic setting unit 43, an inertia ratio compensation unit 44, and an inertial characteristic. It has a setting unit 45.
 第1位置検出器303は、第1可動部301の位置を測定し、測定した位置を示す第1位置情報12を第1制御部40-1に出力する。第1位置検出器303は、第1可動部301に設置、または第1可動部301に近接して設置される。第1位置検出器303は、例えば、リニアスケール、近接センサ、レーザ変位計、ビジョンセンサなどである。なお、図19では、第1位置検出器303は、第1可動部301に取り付けられているが、第1位置検出器303は、第1モータ302に取り付けられたエンコーダ、レゾルバなどであってもよいし、第1位置検出器303は、第1可動部301および第1モータ302の両方に取り付けられてもよい。 The first position detector 303 measures the position of the first movable unit 301, and outputs the first position information 12 indicating the measured position to the first control unit 40-1. The first position detector 303 is installed in the first movable portion 301, or is installed in the vicinity of the first movable portion 301. The first position detector 303 is, for example, a linear scale, a proximity sensor, a laser displacement meter, a vision sensor, or the like. In FIG. 19, the first position detector 303 is attached to the first movable portion 301, but the first position detector 303 may be an encoder, a resolver, or the like attached to the first motor 302. Alternatively, the first position detector 303 may be attached to both the first movable portion 301 and the first motor 302.
 第2位置検出器313は、第2可動部311の位置を測定し、測定した位置を示す第2位置情報13を第2制御部41-1に出力する。第2位置検出器313は、第2可動部311に設置、または第2可動部311に近接して設置される。第2位置検出器313は、例えば、リニアスケール、近接センサ、レーザ変位計、ビジョンセンサなどである。なお、図19では、第2位置検出器313は、第2可動部311に取り付けられているが、第2位置検出器313は、第2モータ312に取り付けられたエンコーダ、レゾルバなどであってもよいし、第2位置検出器313は、第2可動部311および第2モータ312の両方に取り付けられてもよい。 The second position detector 313 measures the position of the second movable unit 311 and outputs the second position information 13 indicating the measured position to the second control unit 41-1. The second position detector 313 is installed in the second movable portion 311 or is installed in the vicinity of the second movable portion 311. The second position detector 313 is, for example, a linear scale, a proximity sensor, a laser displacement meter, a vision sensor, or the like. In FIG. 19, the second position detector 313 is attached to the second movable portion 311. However, the second position detector 313 may be an encoder, a resolver, or the like attached to the second motor 312. Alternatively, the second position detector 313 may be attached to both the second movable portion 311 and the second motor 312.
 第1制御部40-1は、第1位置検出器303が測定した第1可動部301の位置を示す第1位置情報12を受信し、受信した第1位置情報12と追従指令10とに基づいて第1モータ302をフィードバック制御するサーボシステムである。同様に、第2制御部41-1は、第2位置検出器313が測定した第2可動部311の位置を示す第2位置情報13を受信し、受信した第2位置情報13と振動抑制指令11とに基づいて第2モータ312をフィードバック制御するサーボシステムである。 The first control unit 40-1 receives the first position information 12 indicating the position of the first movable unit 301 measured by the first position detector 303, and is based on the received first position information 12 and the follow-up command 10. This is a servo system that feedback-controls the first motor 302. Similarly, the second control unit 41-1 receives the second position information 13 indicating the position of the second movable unit 311 measured by the second position detector 313, and receives the second position information 13 and the vibration suppression command. It is a servo system that feedback-controls the second motor 312 based on 11.
 慣性比補償部44は、予め慣性特性設定部45に設定された慣性比に応じて、追従指令10に対して、慣性比による振動への影響を補償する。ここで、慣性比は、第1可動部301および第1モータ302と、第2可動部311および第2モータ312との慣性比に応じて予め設定される。例えば、第1可動部301の質量がM、第2可動部311の質量がmの場合、慣性比補償部44は、追従指令10にM/mを乗ずることによって、第1可動部301と第2可動部311との質量差による架台2の振動の影響を補うことができる。 The inertial ratio compensating unit 44 compensates for the influence of the inertial ratio on vibration with respect to the follow-up command 10 according to the inertial ratio set in advance in the inertial characteristic setting unit 45. Here, the inertia ratio is set in advance according to the inertia ratio of the first movable portion 301 and the first motor 302 and the second movable portion 311 and the second motor 312. For example, when the mass of the first movable portion 301 is M and the mass of the second movable portion 311 is m, the inertia ratio compensating unit 44 multiplies the follow-up command 10 by M / m to obtain the first movable portion 301 and the first movable portion 301. 2 It is possible to compensate for the influence of vibration of the gantry 2 due to the difference in mass from the movable portion 311.
 また、第1可動部301の可動方向と第2可動部311の可動方向とが並行でない場合、慣性比補償部44は、第1可動部301の可動方向と、第2可動部311の可動方向との差による架台2の振動への影響を補間することができる。例えば、第1可動部301の可動方向と、第2可動部311の可動方向とが角度θ[rad]で交わる場合、慣性比補償部44は、追従指令10にM/mcosθを乗ずることで、架台2に発生する振動を抑制することができる。 Further, when the movable direction of the first movable portion 301 and the movable direction of the second movable portion 311 are not parallel, the inertia ratio compensating unit 44 has the movable direction of the first movable portion 301 and the movable direction of the second movable portion 311. The influence of the difference between the above and the vibration of the gantry 2 can be interpolated. For example, when the movable direction of the first movable portion 301 and the movable direction of the second movable portion 311 intersect at an angle θ [rad], the inertia ratio compensating unit 44 multiplies the follow-up command 10 by M / mcos θ. The vibration generated in the gantry 2 can be suppressed.
 慣性特性設定部45に設定される慣性比は、位置決め装置1-1の設計者が予め設定してもよいし、装置構成に応じて、使用者が設定してもよい。特に、第1可動部301の構成と第2可動部311の構成とが同一であって、その駆動方向が同一である場合、慣性特性設定部45に設定される慣性比は「1」となることから、免振制御装置4-1は、慣性比補償部44および慣性特性設定部45を省略した構成とすることができる。また、図19では、慣性比補償部44は、振動抑制演算部42の後段に設けられているが、振動抑制演算部42および慣性比補償部44の処理順は逆であってもよい。 The inertial ratio set in the inertial characteristic setting unit 45 may be set in advance by the designer of the positioning device 1-1, or may be set by the user according to the device configuration. In particular, when the configuration of the first movable portion 301 and the configuration of the second movable portion 311 are the same and the driving directions thereof are the same, the inertia ratio set in the inertial characteristic setting unit 45 is "1". Therefore, the seismic isolation control device 4-1 can have a configuration in which the inertial ratio compensation unit 44 and the inertial characteristic setting unit 45 are omitted. Further, in FIG. 19, the inertia ratio compensation unit 44 is provided after the vibration suppression calculation unit 42, but the processing order of the vibration suppression calculation unit 42 and the inertia ratio compensation unit 44 may be reversed.
 第1制御部40-1は、追従指令10および第1位置情報12に基づいて、第1可動部301を駆動させる推力指令を生成し、第1可動部301に加わる外力を制御することができる。第2制御部41-1は、振動抑制指令11および第2位置情報13に基づいて、第2可動部311を駆動させる推力指令を生成し、第2可動部311に加わる外力を制御することができる。このような構成を有することによって、第1可動部301とその接地面との間に発生する摩擦と、第2可動部311とその接地面との間に発生する摩擦とが異なる場合であっても、推力が調整され、第1可動部301に加わる外力と第2可動部311に加わる外力とを同一にすることができる。したがって、駆動装置3-1の駆動時に発生する架台2の振動を精度よく抑制することが可能になる。 The first control unit 40-1 can generate a thrust command for driving the first movable unit 301 based on the follow-up command 10 and the first position information 12, and control an external force applied to the first movable unit 301. .. The second control unit 41-1 can generate a thrust command for driving the second movable unit 311 based on the vibration suppression command 11 and the second position information 13, and control the external force applied to the second movable unit 311. can. By having such a configuration, the friction generated between the first movable portion 301 and its ground contact surface and the friction generated between the second movable portion 311 and its ground contact surface may be different. Also, the thrust is adjusted so that the external force applied to the first movable portion 301 and the external force applied to the second movable portion 311 can be made the same. Therefore, it is possible to accurately suppress the vibration of the gantry 2 generated when the drive device 3-1 is driven.
 なお、免振制御装置4-1は、例えばCPU92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40-1、第2制御部41-1、振動抑制演算部42、振動特性設定部43、慣性比補償部44、および、慣性特性設定部45の機能を実現することができる。 The seismic isolation control device 4-1 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93. The CPU 92 reads and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40-1, the second control unit 41-1, the vibration suppression calculation unit 42, and the vibration characteristic setting. The functions of the unit 43, the inertial ratio compensating unit 44, and the inertial characteristic setting unit 45 can be realized.
実施の形態3.
 図20は、実施の形態3にかかる位置決め装置1-2の構成を示す図である。位置決め装置1-2の構成の一部は、位置決め装置1と共通である。以下、位置決め装置1と共通する部分については、同じ符号を用いることで、詳細な説明を省略し、位置決め装置1と異なる部分について主に説明する。位置決め装置1-2は、駆動装置3-2と、免振制御装置4-2とを有する。
Embodiment 3.
FIG. 20 is a diagram showing the configuration of the positioning device 1-2 according to the third embodiment. A part of the configuration of the positioning device 1-2 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described. The positioning device 1-2 includes a drive device 3-2 and a seismic isolation control device 4-2.
 駆動装置3-2は、複数の位置決め駆動部30A,30Bと、免振駆動部31とを有する。位置決め駆動部30Aは、第1可動部301Aと、第1モータ302Aとを有する。位置決め駆動部30Bは、第1可動部301Bと、第1モータ302Bとを有する。なお、第1可動部301A,301Bは、第1可動部301と同様の機能を有し、第1モータ302A,302Bは、第1モータ302と同様の機能を有する。 The drive device 3-2 has a plurality of positioning drive units 30A and 30B and a seismic isolation drive unit 31. The positioning drive unit 30A includes a first movable unit 301A and a first motor 302A. The positioning drive unit 30B includes a first movable unit 301B and a first motor 302B. The first movable portions 301A and 301B have the same functions as the first movable portion 301, and the first motors 302A and 302B have the same functions as the first motor 302.
 免振制御装置4-2は、複数の第1制御部40A,40Bと、第2制御部41と、振動抑制演算部42と、振動特性設定部43と、複数の慣性比補償部44A,44Bと、複数の慣性特性設定部45A,45Bとを有する。 The seismic isolation control device 4-2 includes a plurality of first control units 40A and 40B, a second control unit 41, a vibration suppression calculation unit 42, a vibration characteristic setting unit 43, and a plurality of inertial ratio compensation units 44A and 44B. And a plurality of inertial characteristic setting units 45A and 45B.
 第1制御部40Aは、第1の追従指令10Aに基づいて動作する以外は、第1制御部40と同様の機能を有する。第1制御部40Bは、第2の追従指令10Bに基づいて動作する以外は、第1制御部40と同様の機能を有する。第1制御部40Aは、第1の追従指令10Aに基づいて第1モータ302Aに電流を供給し、第1モータ302Aに機械的に接続された第1可動部301Aの位置または速度を第1の追従指令10Aに追従させる。第1制御部40Bは、第2の追従指令10Bに基づいて第1モータ302Bに電流を供給し、第1モータ302Bに機械的に接続された第1可動部301Bの位置または速度を第2の追従指令10Bに追従させる。 The first control unit 40A has the same function as the first control unit 40 except that it operates based on the first follow-up command 10A. The first control unit 40B has the same function as the first control unit 40 except that it operates based on the second follow-up command 10B. The first control unit 40A supplies a current to the first motor 302A based on the first follow-up command 10A, and first determines the position or speed of the first movable unit 301A mechanically connected to the first motor 302A. Follow the follow-up command 10A. The first control unit 40B supplies a current to the first motor 302B based on the second follow-up command 10B, and sets the position or speed of the first movable unit 301B mechanically connected to the first motor 302B to the second. Follow the follow-up command 10B.
 位置決め装置1-2は、2つの位置決め駆動部30A,30Bがそれぞれ発生させる架台2の振動を、免振駆動部31を駆動させることによる反力をもって相殺する。このため、第2制御部41は、第1の追従指令10Aおよび第2の追従指令10Bに基づいて、免振駆動部31を制御することになる。第1の追従指令10Aおよび第2の追従指令10Bのそれぞれは、慣性比補償部44A,44Bで慣性による影響を補償された後、補償後の第1の追従指令10Aおよび第2の追従指令10Bの和が振動抑制演算部42に出力される。振動抑制演算部42は、補償後の第1の追従指令10Aおよび第2の追従指令10Bの和に基づいて、振動抑制指令11を演算する。 The positioning device 1-2 cancels out the vibration of the gantry 2 generated by the two positioning drive units 30A and 30B by the reaction force generated by driving the seismic isolation drive unit 31. Therefore, the second control unit 41 controls the seismic isolation drive unit 31 based on the first follow-up command 10A and the second follow-up command 10B. Each of the first follow-up command 10A and the second follow-up command 10B is compensated by the inertia ratio compensating units 44A and 44B for the influence of inertia, and then the first follow-up command 10A and the second follow-up command 10B after compensation are compensated. Is output to the vibration suppression calculation unit 42. The vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the sum of the first follow-up command 10A and the second follow-up command 10B after compensation.
 慣性比補償部44Aは、第1の追従指令10Aに対して、第1可動部301Aおよび第1モータ302Aと第2可動部311および第2モータ312との慣性比に応じて予め慣性特性設定部45Aに設定された慣性比を用いて、慣性比による架台2の振動への影響を補償する。慣性比補償部44Bは、第2の追従指令10Bに対して、第1可動部301Bおよび第1モータ302Bと第2可動部311および第2モータ312との慣性比に応じて予め慣性特性設定部45Bに設定された慣性比を用いて、慣性比による架台2の振動への影響を補償する。具体的な補償方法は、実施の形態1と同様であるため説明を省略する。 The inertia ratio compensating unit 44A sets the inertial characteristics in advance according to the inertia ratio of the first movable unit 301A and the first motor 302A and the second movable unit 311 and the second motor 312 with respect to the first follow-up command 10A. The influence of the inertia ratio on the vibration of the gantry 2 is compensated by using the inertia ratio set to 45A. The inertia ratio compensating unit 44B sets the inertial characteristics in advance according to the inertia ratio of the first movable unit 301B and the first motor 302B and the second movable unit 311 and the second motor 312 with respect to the second follow-up command 10B. The influence of the inertia ratio on the vibration of the gantry 2 is compensated by using the inertia ratio set to 45B. Since the specific compensation method is the same as that of the first embodiment, the description thereof will be omitted.
 一般的に、免振駆動部31の第2モータ312に発生させる最大推力は、第1モータ302A,302Bの発生させる最大推力の和に近い値となる。このため、位置決め装置1-2では、第2モータ312は、第1モータ302A,302Bのそれぞれよりも出力の大きいモータであることが望ましい。 Generally, the maximum thrust generated by the second motor 312 of the seismic isolation drive unit 31 is a value close to the sum of the maximum thrusts generated by the first motors 302A and 302B. Therefore, in the positioning device 1-2, it is desirable that the second motor 312 is a motor having a larger output than the first motors 302A and 302B, respectively.
 また、図20では、2つの位置決め駆動部30A,30Bを有する位置決め装置1-2について説明したが、位置決め装置1-2は、3つ以上の位置決め駆動部30を備えてもよい。この場合、振動抑制演算部42は、位置決め駆動部30と同数の追従指令10の和に基づいて、振動抑制指令11を演算する。 Further, in FIG. 20, the positioning device 1-2 having two positioning drive units 30A and 30B has been described, but the positioning device 1-2 may include three or more positioning drive units 30. In this case, the vibration suppression calculation unit 42 calculates the vibration suppression command 11 based on the sum of the same number of follow-up commands 10 as the positioning drive unit 30.
 実施の形態3にかかる位置決め装置1-2は、複数の位置決め駆動部30A,30Bにより発生する架台2の振動を1つの免振駆動部31を用いて効率的に抑制することができる。このため、位置決め駆動部30A,30Bの数と同数の免振駆動部31を設けるよりも、位置決め装置1-2全体の大きさを低減することが可能になる。 The positioning device 1-2 according to the third embodiment can efficiently suppress the vibration of the gantry 2 generated by the plurality of positioning drive units 30A and 30B by using one seismic isolation drive unit 31. Therefore, the size of the entire positioning device 1-2 can be reduced as compared with the provision of the same number of seismic isolation drive units 31 as the number of the positioning drive units 30A and 30B.
 なお、免振制御装置4-2は、例えばCPU92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40A,40B、第2制御部41、振動抑制演算部42、振動特性設定部43、慣性比補償部44A,44B、および、慣性特性設定部45A,45Bの機能を実現することができる。 The seismic isolation control device 4-2 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93. The CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, so that the first control unit 40A and 40B, the second control unit 41, the vibration suppression calculation unit 42, and the vibration characteristic setting unit 43 , The functions of the inertial ratio compensating units 44A and 44B and the inertial characteristic setting units 45A and 45B can be realized.
実施の形態4.
 図21は、実施の形態4にかかる位置決め装置1-3の構成を示す図である。位置決め装置1-3の構成の一部は、位置決め装置1と共通である。以下、位置決め装置1と共通する部分については、同じ符号を用いることで、詳細な説明を省略し、位置決め装置1と異なる部分について主に説明する。位置決め装置1-3は、駆動装置3と、免振制御装置4-3とを有する。
Embodiment 4.
FIG. 21 is a diagram showing a configuration of the positioning device 1-3 according to the fourth embodiment. A part of the configuration of the positioning device 1-3 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described. The positioning device 1-3 includes a drive device 3 and a seismic isolation control device 4-3.
 免振制御装置4-3は、第1制御部40-3と、第2制御部41-3と、第1指令テーブル46と、第2指令テーブル47とを有する。第1指令テーブル46は、予め使用者が入力した追従指令10を記憶する。第2指令テーブル47は、予め使用者が入力した振動抑制指令11を記憶する。 The seismic isolation control device 4-3 has a first control unit 40-3, a second control unit 41-3, a first command table 46, and a second command table 47. The first command table 46 stores the follow-up command 10 input in advance by the user. The second command table 47 stores the vibration suppression command 11 input in advance by the user.
 第1制御部40-3は、外部から供給される追従指令10の代わりに、第1指令テーブル46から供給される追従指令10に基づいて、位置決め駆動部30を制御する。第2制御部41-3は、振動抑制演算部42が演算した振動抑制指令11の代わりに、第2指令テーブル47から供給される振動抑制指令11に基づいて、免振駆動部31を制御する。 The first control unit 40-3 controls the positioning drive unit 30 based on the follow-up command 10 supplied from the first command table 46 instead of the follow-up command 10 supplied from the outside. The second control unit 41-3 controls the seismic isolation drive unit 31 based on the vibration suppression command 11 supplied from the second command table 47 instead of the vibration suppression command 11 calculated by the vibration suppression calculation unit 42. ..
 架台2の振動を抑制するために、位置決め駆動部30と免振駆動部31とは、同期して駆動されることが望ましい。このため、第1制御部40-3および第2制御部41-3は、同期信号14に基づいて、第1モータ302の駆動タイミングと第2モータ312の駆動タイミングとを同期させる。 In order to suppress the vibration of the gantry 2, it is desirable that the positioning drive unit 30 and the seismic isolation drive unit 31 are driven in synchronization. Therefore, the first control unit 40-3 and the second control unit 41-3 synchronize the drive timing of the first motor 302 with the drive timing of the second motor 312 based on the synchronization signal 14.
 なお、免振制御装置4-3は、例えばCPU92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40-3および第2制御部41-3の機能を実現することができる。メモリ93には、第1指令テーブル46および第2指令テーブル47が記憶されている。 The seismic isolation control device 4-3 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93. The CPU 92 can realize the functions of the first control unit 40-3 and the second control unit 41-3 by reading and executing the computer program stored in the memory 93 corresponding to each process. The first command table 46 and the second command table 47 are stored in the memory 93.
 図22は、図21に示す位置決め装置1-3が用いる追従指令10および振動抑制指令11を生成するエンジニアリングツール51の構成例を示す図である。エンジニアリングツール51は、指令入力部52と、通信部53と、振動抑制演算部42と、振動特性設定部43とを有する。 FIG. 22 is a diagram showing a configuration example of an engineering tool 51 that generates a follow-up command 10 and a vibration suppression command 11 used by the positioning device 1-3 shown in FIG. 21. The engineering tool 51 includes a command input unit 52, a communication unit 53, a vibration suppression calculation unit 42, and a vibration characteristic setting unit 43.
 指令入力部52は、使用者から、位置決め駆動部30の動きを指定する追従指令10の入力を受け付ける。指令入力部52は、受け付けた追従指令10を通信部53および振動抑制演算部42のそれぞれに出力する。通信部53は、位置決め装置1-3と通信路を介して接続されている。通信部53は、追従指令10を第1指令テーブル46に記憶させる。振動抑制演算部42および振動特性設定部43のそれぞれは、実施の形態1と同様の機能を有する。振動抑制演算部42は、追従指令10に基づいて、振動抑制指令11を生成し、生成した振動抑制指令11を通信部53に出力する。通信部53は、振動抑制指令11を第2指令テーブル47に記憶させる。 The command input unit 52 receives an input of a follow-up command 10 that specifies the movement of the positioning drive unit 30 from the user. The command input unit 52 outputs the received follow-up command 10 to the communication unit 53 and the vibration suppression calculation unit 42, respectively. The communication unit 53 is connected to the positioning device 1-3 via a communication path. The communication unit 53 stores the follow-up command 10 in the first command table 46. Each of the vibration suppression calculation unit 42 and the vibration characteristic setting unit 43 has the same function as that of the first embodiment. The vibration suppression calculation unit 42 generates a vibration suppression command 11 based on the follow-up command 10, and outputs the generated vibration suppression command 11 to the communication unit 53. The communication unit 53 stores the vibration suppression command 11 in the second command table 47.
 なお、図22に示すエンジニアリングツール51は、実施の形態1と同様の動作により振動抑制演算部42が演算した振動抑制指令11を第2指令テーブル47に記憶させるが、使用者が振動抑制指令11を予め算出して、第2指令テーブル47に記憶させてもよい。また、図21に示す免振制御装置4-3は、振動抑制演算部42を省略した構成となっているが、免振制御装置4-3は、振動抑制演算部42および振動特性設定部43を有し、第1指令テーブル46に記憶された追従指令10に基づいて、振動抑制指令11を生成してもよい。 The engineering tool 51 shown in FIG. 22 stores the vibration suppression command 11 calculated by the vibration suppression calculation unit 42 in the second command table 47 by the same operation as in the first embodiment, but the user uses the vibration suppression command 11. May be calculated in advance and stored in the second command table 47. Further, the seismic isolation control device 4-3 shown in FIG. 21 has a configuration in which the vibration suppression calculation unit 42 is omitted, but the vibration isolation control device 4-3 has the vibration suppression calculation unit 42 and the vibration characteristic setting unit 43. The vibration suppression command 11 may be generated based on the follow-up command 10 stored in the first command table 46.
 実施の形態4にかかる免振制御装置4-3は、追従指令10を予め第1指令テーブル46に記憶しているため、外部装置との間の通信量を低減することができる。また、免振制御装置4-3は、振動抑制指令11を予め第2指令テーブル47に記憶しており、実行時には第2指令テーブル47を参照するため、駆動時に行う演算量を削減することができる。 Since the seismic isolation control device 4-3 according to the fourth embodiment stores the follow-up command 10 in the first command table 46 in advance, the amount of communication with the external device can be reduced. Further, since the vibration isolation control device 4-3 stores the vibration suppression command 11 in the second command table 47 in advance and refers to the second command table 47 at the time of execution, the amount of calculation performed at the time of driving can be reduced. can.
実施の形態5.
 図23は、実施の形態5にかかる位置決め装置1-4の構成を示す図である。位置決め装置1-4の構成の一部は、位置決め装置1と共通である。以下、位置決め装置1と共通する部分については、同じ符号を用いることで、詳細な説明を省略し、位置決め装置1と異なる部分について主に説明する。位置決め装置1-4は、駆動装置3と、免振制御装置4-4とを有する。
Embodiment 5.
FIG. 23 is a diagram showing the configuration of the positioning device 1-4 according to the fifth embodiment. A part of the configuration of the positioning device 1-4 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described. The positioning device 1-4 includes a drive device 3 and a seismic isolation control device 4-4.
 免振制御装置4-4は、第1制御部40-4と、第2制御部41-4と、振動抑制演算部42-4とを有する。免振制御装置4-4は、アナログの電圧または電流を駆動指令として使用する。第1制御部40-4は、アナログ信号である追従指令10-4を受け付け、追従指令10-4をデジタル変換して駆動指令として用いる。また、第1制御部40-4は、アナログ信号である追従指令10-4を振動抑制演算部42-4に供給する。このとき、第1制御部40-4は、アナログ信号である追従指令10-4をそのまま振動抑制演算部42-4に供給してもよいし、追従指令10-4にオフセット、指令制限などの補正を加えたものを振動抑制演算部42-4に供給してもよい。 The seismic isolation control device 4-4 has a first control unit 40-4, a second control unit 41-4, and a vibration suppression calculation unit 42-4. The seismic isolation control device 4-4 uses an analog voltage or current as a drive command. The first control unit 40-4 receives the follow-up command 10-4 which is an analog signal, digitally converts the follow-up command 10-4, and uses it as a drive command. Further, the first control unit 40-4 supplies the follow-up command 10-4, which is an analog signal, to the vibration suppression calculation unit 42-4. At this time, the first control unit 40-4 may supply the follow-up command 10-4, which is an analog signal, to the vibration suppression calculation unit 42-4 as it is, or offset, command limit, etc. to the follow-up command 10-4. The corrected one may be supplied to the vibration suppression calculation unit 42-4.
 振動抑制演算部42-4は、アナログフィルタを用いてアナログ信号である振動抑制指令11-4を演算する。振動抑制演算部42-4が用いるアナログフィルタは、架台2の振動周波数ωに基づいて、入力指令と出力指令との和が、極小となる周波数応答をもつように予め設計されている。振動抑制演算部42-4は、演算した振動抑制指令11-4を第2制御部41-4に出力する。 The vibration suppression calculation unit 42-4 calculates the vibration suppression command 11-4, which is an analog signal, using an analog filter. The analog filter used by the vibration suppression calculation unit 42-4 is designed in advance based on the vibration frequency ω of the gantry 2 so that the sum of the input command and the output command has a minimum frequency response. The vibration suppression calculation unit 42-4 outputs the calculated vibration suppression command 11-4 to the second control unit 41-4.
 第2制御部41-4は、振動抑制演算部42-4が出力するアナログ信号である振動抑制指令11-4をデジタル信号に変換して、駆動指令として用いる。 The second control unit 41-4 converts the vibration suppression command 11-4, which is an analog signal output by the vibration suppression calculation unit 42-4, into a digital signal and uses it as a drive command.
 なお、免振制御装置4-4は、例えばCPU92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40-4、第2制御部41-4、および、振動抑制演算部42-4の機能を実現することができる。 The seismic isolation control device 4-4 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93. The CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, thereby causing the first control unit 40-4, the second control unit 41-4, and the vibration suppression calculation unit 42-4. Functions can be realized.
 以上説明したように、実施の形態5にかかる免振制御装置4-4は、アナログ信号である追従指令10および振動抑制指令11を用いて、駆動装置3を制御する。振動抑制演算部42-4は、アナログフィルタを用いて、振動抑制指令11-4を演算する。このような構成を有することで、第2制御部41-4は、演算量の多いフィルタ処理を行う必要がないため、第2制御部41-4の処理量を削減することができる。 As described above, the seismic isolation control device 4-4 according to the fifth embodiment controls the drive device 3 by using the follow-up command 10 and the vibration suppression command 11 which are analog signals. The vibration suppression calculation unit 42-4 calculates the vibration suppression command 11-4 using an analog filter. By having such a configuration, since the second control unit 41-4 does not need to perform the filter processing with a large amount of calculation, the processing amount of the second control unit 41-4 can be reduced.
実施の形態6.
 図24は、実施の形態6にかかる位置決め装置1-5の構成を示す図である。位置決め装置1-5の構成の一部は、位置決め装置1と共通である。以下、位置決め装置1と共通する部分については、同じ符号を用いることで、詳細な説明を省略し、位置決め装置1と異なる部分について主に説明する。位置決め装置1-5は、駆動装置3-5と、免振制御装置4-5とを有する。
Embodiment 6.
FIG. 24 is a diagram showing the configuration of the positioning device 1-5 according to the sixth embodiment. A part of the configuration of the positioning device 1-5 is common to the positioning device 1. Hereinafter, the parts common to the positioning device 1 will be described in detail by using the same reference numerals, and the parts different from the positioning device 1 will be mainly described. The positioning device 1-5 includes a drive device 3-5 and a seismic isolation control device 4-5.
 駆動装置3-5は、位置決め駆動部30-5と、免振駆動部31-1とを有する。位置決め駆動部30-5は、第1可動部301と、第1モータ302と、第1位置検出器303-5とを有する。第1位置検出器303-5は、検出した第1位置情報12を第1制御部40-1および振動抑制演算部42-5のそれぞれに出力する以外は、実施の形態2で説明した第1位置検出器303と同様の機能を有する。免振駆動部31-1は、第2可動部311と、第2モータ312と、第2位置検出器313とを有する。 The drive device 3-5 has a positioning drive unit 30-5 and a seismic isolation drive unit 31-1. The positioning drive unit 30-5 includes a first movable unit 301, a first motor 302, and a first position detector 303-5. The first position detector 303-5 is the first described in the second embodiment except that the detected first position information 12 is output to each of the first control unit 40-1 and the vibration suppression calculation unit 42-5. It has the same function as the position detector 303. The seismic isolation drive unit 31-1 includes a second movable unit 311, a second motor 312, and a second position detector 313.
 免振制御装置4-5は、第1制御部40-1と、第2制御部41-1と、振動抑制演算部42-5と、振動特性設定部43とを有する。振動抑制演算部42-5は、第1位置検出器303-5が出力する第1位置情報12と、振動抑制指令11との和が架台2の振動周波数ωにおいて極小となる周波数応答を持つように、振動抑制指令11を演算する。振動抑制演算部42-5は、演算した振動抑制指令11を第2制御部41-1に出力する。 The seismic isolation control device 4-5 has a first control unit 40-1, a second control unit 41-1, a vibration suppression calculation unit 42-5, and a vibration characteristic setting unit 43. The vibration suppression calculation unit 42-5 has a frequency response in which the sum of the first position information 12 output by the first position detector 303-5 and the vibration suppression command 11 is minimized at the vibration frequency ω of the gantry 2. The vibration suppression command 11 is calculated. The vibration suppression calculation unit 42-5 outputs the calculated vibration suppression command 11 to the second control unit 41-1.
 なお、免振制御装置4-5は、例えばCPU92およびメモリ93を用いた制御回路を備えるコンピュータによって構成される。CPU92は、メモリ93に記憶された、各処理に対応するコンピュータプログラムを読み出して実行することによって、第1制御部40-1、第2制御部41-1、振動抑制演算部42-5、および、振動特性設定部43の機能を実現することができる。 The seismic isolation control device 4-5 is composed of, for example, a computer including a control circuit using a CPU 92 and a memory 93. The CPU 92 reads out and executes a computer program stored in the memory 93 corresponding to each process, thereby performing the first control unit 40-1, the second control unit 41-1, the vibration suppression calculation unit 42-5, and the vibration suppression calculation unit 42-5. , The function of the vibration characteristic setting unit 43 can be realized.
 以上説明したように、実施の形態6にかかる位置決め装置1-5は、第1可動部301の位置を示す第1位置情報12に基づいて、振動抑制指令11が演算される。このような構成を有することで、架台2の振動を簡便な方法で効率的に抑制することが可能になる。 As described above, in the positioning device 1-5 according to the sixth embodiment, the vibration suppression command 11 is calculated based on the first position information 12 indicating the position of the first movable portion 301. Having such a configuration makes it possible to efficiently suppress the vibration of the gantry 2 by a simple method.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1,1-1,1-2,1-3,1-4,1-5 位置決め装置、2 架台、3,3-1,3-2,3-5 駆動装置、4,4-1,4-2,4-3,4-4,4-5 免振制御装置、10,10-4 追従指令、10A 第1の追従指令、10B 第2の追従指令、11,11-4 振動抑制指令、12 第1位置情報、13 第2位置情報、14 同期信号、30,30A,30B,30-1,30-5 位置決め駆動部、31,31-1 免振駆動部、40,40A,40B,40-1,40-3,40-4 第1制御部、41,41-1,41-3,41-4 第2制御部、42,42-4,42-5 振動抑制演算部、43 振動特性設定部、44,44A,44B 慣性比補償部、45,45A,45B 慣性特性設定部、46 第1指令テーブル、47 第2指令テーブル、51 エンジニアリングツール、52 指令入力部、53 通信部、92 CPU、93 メモリ、301,301A,301B 第1可動部、302,302A,302B 第1モータ、303,303-5 第1位置検出器、311 第2可動部、312 第2モータ、313 第2位置検出器。 1,1-1,1-2,1-3, 1-4,1-5 Positioning device, 2 Stand, 3,3-1,3-2,3-5 Drive device, 4,4-1,4 -2, 4-3, 4-4, 4-5 Seismic isolation control device, 10, 10-4 Follow-up command, 10A 1st follow-up command, 10B 2nd follow-up command, 11, 11-4 Vibration suppression command, 12 1st position information, 13 2nd position information, 14 Synchronous signal, 30, 30A, 30B, 30-1, 30-5 Positioning drive unit, 31, 31-1 Vibration isolation drive unit, 40, 40A, 40B, 40 -1,40-3,40-4 1st control unit, 41,41-1,41-3,41-4 2nd control unit, 42,42-4,42-5 vibration suppression calculation unit, 43 vibration characteristics Setting unit, 44, 44A, 44B inertial ratio compensation unit, 45, 45A, 45B inertial characteristic setting unit, 46 first command table, 47 second command table, 51 engineering tool, 52 command input unit, 53 communication unit, 92 CPU , 93 Memory, 301, 301A, 301B 1st movable part, 302, 302A, 302B 1st motor, 303, 303-5 1st position detector, 311 2nd movable part, 312 2nd motor, 313 2nd position detection vessel.

Claims (14)

  1.  架台に固定された第1モータで第1可動部を駆動し前記架台に固定された第2モータで第2可動部を駆動する駆動装置を制御対象とする免振制御装置であって、
     時系列の追従指令に前記第1可動部が追従するように前記第1モータの位置または速度を制御する第1制御部と、
     前記追従指令に含まれる前記架台の振動周波数成分に相当する位置または速度の次元の指令である振動抑制指令の比例倍に前記第2モータの位置または速度を追従させる第2制御部と、
     を備えることを特徴とする免振制御装置。
    A seismic isolation control device for controlling a drive device in which a first motor fixed to a gantry drives a first movable portion and a second motor fixed to the gantry drives a second movable portion.
    A first control unit that controls the position or speed of the first motor so that the first movable unit follows a time-series follow-up command.
    A second control unit that follows the position or speed of the second motor in proportion to the vibration suppression command, which is a command of the dimension of the position or speed corresponding to the vibration frequency component of the gantry included in the follow-up command.
    A seismic isolation control device characterized by being equipped with.
  2.  前記第1制御部は、前記第1可動部の位置情報を取得し、前記第1可動部の位置情報と前記追従指令とに基づいて前記第1モータを制御するサーボシステムであり、
     前記第2制御部は、前記第2可動部の位置情報を取得し、前記第2可動部の位置情報と前記振動抑制指令とに基づいて前記第2モータを制御するサーボシステムであることを特徴とする請求項1に記載の免振制御装置。
    The first control unit is a servo system that acquires the position information of the first movable part and controls the first motor based on the position information of the first movable part and the follow-up command.
    The second control unit is a servo system that acquires the position information of the second movable part and controls the second motor based on the position information of the second movable part and the vibration suppression command. The vibration isolation control device according to claim 1.
  3.  前記第1制御部の応答速度と前記第2制御部の応答速度との差が閾値以下であることを特徴とする請求項1または2に記載の免振制御装置。 The vibration isolation control device according to claim 1 or 2, wherein the difference between the response speed of the first control unit and the response speed of the second control unit is equal to or less than a threshold value.
  4.  前記追従指令および前記振動抑制指令の和は、前記架台の振動周波数に基づいた周波数で極小となる周波数応答を持つことを特徴とする請求項1から3のいずれか1項に記載の免振制御装置。 The vibration isolation control according to any one of claims 1 to 3, wherein the sum of the follow-up command and the vibration suppression command has a frequency response that is minimized at a frequency based on the vibration frequency of the gantry. Device.
  5.  前記第1可動部の位置情報および前記振動抑制指令の和は、前記架台の振動周波数に基づいた周波数で極小となる周波数応答を持つことを特徴とする請求項1から3のいずれか1項に記載の免振制御装置。 According to any one of claims 1 to 3, the sum of the position information of the first movable portion and the vibration suppression command has a frequency response that is minimized at a frequency based on the vibration frequency of the gantry. The described vibration isolation control device.
  6.  前記振動抑制指令を演算する振動抑制演算部をさらに備えることを特徴とする請求項1から5のいずれか1項に記載の免振制御装置。 The vibration isolation control device according to any one of claims 1 to 5, further comprising a vibration suppression calculation unit that calculates the vibration suppression command.
  7.  前記振動抑制演算部は、前記追従指令の2階微分と前記架台の振動周波数のマイナス2乗に基づく係数とを乗算した値に基づいて、前記振動抑制指令を演算することを特徴とする請求項6に記載の免振制御装置。 The claim is characterized in that the vibration suppression calculation unit calculates the vibration suppression command based on a value obtained by multiplying the second-order differential of the follow-up command by a coefficient based on the minus square of the vibration frequency of the gantry. The vibration isolation control device according to 6.
  8.  前記振動抑制演算部は、無限インパルス応答フィルタを用いて、前記振動抑制指令を演算し、前記無限インパルス応答フィルタの伝達関数は、前記架台の振動周波数のマイナス2乗に基づく定数bと、予め定められた定数a,aとを用いて、以下の数式(1)で表される演算を含むことを特徴とする請求項6または7に記載の免振制御装置。
    Figure JPOXMLDOC01-appb-M000001
    The vibration suppression calculation unit calculates the vibration suppression command using the infinite impulse response filter, and the transmission function of the infinite impulse response filter is predetermined to be a constant b based on the minus square of the vibration frequency of the gantry. The vibration isolation control device according to claim 6 or 7, wherein the operation represented by the following mathematical formula (1) is included using the obtained constants a 1 and a 2.
    Figure JPOXMLDOC01-appb-M000001
  9.  定数aは、定数bと等しいことを特徴とする請求項8に記載の免振制御装置。 The vibration isolation control device according to claim 8, wherein the constant a 2 is equal to the constant b.
  10.  振動抑制演算部は、有限インパルス応答フィルタを用いて、前記振動抑制指令を演算し、前記有限インパルス応答フィルタの伝達関数は、前記架台の振動周波数に基づいて定められた整数である定数Nを用いて以下の数式(2)で表される第1の離散系伝達関数F(z)、または、前記架台の振動周波数に基づいて定められた整数である定数Nを用いて以下の数式(3)で表される第2の離散系伝達関数F2(z)を含むことを特徴とする請求項6から9のいずれか1項に記載の免振制御装置。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    The vibration suppression calculation unit calculates the vibration suppression command using the finite impulse response filter, and the transfer function of the finite impulse response filter is a constant N 1 which is an integer determined based on the vibration frequency of the gantry. Using the first discrete system transfer function F 1 (z) represented by the following mathematical formula (2) , or the constant N 2 which is an integer determined based on the vibration frequency of the gantry, the following mathematical formula The vibration isolation control device according to any one of claims 6 to 9, further comprising a second discrete system transfer function F2 (z) represented by (3).
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  11.  前記第2制御部は、前記第1可動部の並進慣性と前記第1可動部の可動方向に換算した前記第2可動部の並進慣性との比を含む慣性比を前記振動抑制指令に乗じた信号に前記第2可動部が追従するように制御することを特徴とする請求項1から10のいずれか1項に記載の免振制御装置。 The second control unit multiplied the vibration suppression command by an inertial ratio including the ratio of the translational inertia of the first movable portion to the translational inertia of the second movable portion converted into the movable direction of the first movable portion. The vibration isolation control device according to any one of claims 1 to 10, wherein the second movable portion is controlled to follow the signal.
  12.  前記第1制御部に前記追従指令を供給する第1指令テーブルと、
     前記第2制御部に前記振動抑制指令を供給する第2指令テーブルと、
     をさらに備え、
     前記第1制御部および前記第2制御部は、同期信号に基づいて、前記第1モータの駆動タイミングと前記第2モータの駆動タイミングとを同期させることを特徴とする請求項1から5のいずれか1項に記載の免振制御装置。
    A first command table that supplies the follow-up command to the first control unit,
    A second command table that supplies the vibration suppression command to the second control unit,
    With more
    Any of claims 1 to 5, wherein the first control unit and the second control unit synchronize the drive timing of the first motor with the drive timing of the second motor based on a synchronization signal. The seismic isolation control device according to item 1.
  13.  前記追従指令および前記振動抑制指令は、アナログ信号であり、
     前記振動抑制演算部は、アナログフィルタを用いて、前記振動抑制指令を演算することを特徴とする請求項6に記載の免振制御装置。
    The follow-up command and the vibration suppression command are analog signals, and are
    The vibration isolation control device according to claim 6, wherein the vibration suppression calculation unit calculates the vibration suppression command by using an analog filter.
  14.  架台に固定された第1モータで第1可動部を駆動し前記架台に固定された第2モータで第2可動部を駆動する駆動装置を制御対象とする免振制御方法であって、
     免振制御装置が、時系列の追従指令に前記第1可動部が追従するように前記第1モータの位置または速度を制御するステップと、
     前記免振制御装置が、前記追従指令に含まれる前記架台の振動周波数成分に相当する位置または速度の次元の指令である振動抑制指令の比例倍に前記第2モータの位置または速度を追従させるステップと、
     を含むことを特徴とする免振制御方法。
    This is a seismic isolation control method for controlling a drive device in which a first motor fixed to a gantry drives a first movable portion and a second motor fixed to the gantry drives a second movable portion.
    A step in which the seismic isolation control device controls the position or speed of the first motor so that the first movable portion follows a time-series follow-up command.
    The step in which the vibration isolation control device follows the position or speed of the second motor in proportion to the vibration suppression command, which is a command of the dimension of the position or speed corresponding to the vibration frequency component of the gantry included in the tracking command. When,
    A seismic isolation control method characterized by including.
PCT/JP2020/009261 2020-03-04 2020-03-04 Vibration isolation control device and vibration isolation control method WO2021176617A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227028045A KR102523097B1 (en) 2020-03-04 2020-03-04 Seismic isolation control device and seismic isolation control method
JP2020542357A JP6786024B1 (en) 2020-03-04 2020-03-04 Seismic isolation control device and seismic isolation control method
CN202080097330.0A CN115151883B (en) 2020-03-04 2020-03-04 Vibration isolation control device and vibration isolation control method
PCT/JP2020/009261 WO2021176617A1 (en) 2020-03-04 2020-03-04 Vibration isolation control device and vibration isolation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009261 WO2021176617A1 (en) 2020-03-04 2020-03-04 Vibration isolation control device and vibration isolation control method

Publications (1)

Publication Number Publication Date
WO2021176617A1 true WO2021176617A1 (en) 2021-09-10

Family

ID=73219993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009261 WO2021176617A1 (en) 2020-03-04 2020-03-04 Vibration isolation control device and vibration isolation control method

Country Status (4)

Country Link
JP (1) JP6786024B1 (en)
KR (1) KR102523097B1 (en)
CN (1) CN115151883B (en)
WO (1) WO2021176617A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183489B1 (en) * 2022-06-09 2022-12-05 三菱電機株式会社 Motor control device and mechanical device
CN116127838A (en) * 2022-12-30 2023-05-16 中国科学院长春光学精密机械与物理研究所 Active vibration isolation method for optical precision equipment based on load uncertainty

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041734A (en) * 2008-07-31 2010-02-18 Sanyo Denki Co Ltd Motor control system
JP2012052666A (en) * 2011-10-07 2012-03-15 Mitsubishi Electric Corp Base isolation apparatus
WO2016125804A1 (en) * 2015-02-04 2016-08-11 三菱電機株式会社 Electric motor control device and industrial-use mechanical device
JP6422624B1 (en) * 2018-04-06 2018-11-14 三菱電機株式会社 Isolation device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630182A (en) * 1979-08-20 1981-03-26 Nippon Electric Co Indication*control unit
JP3274070B2 (en) * 1996-08-08 2002-04-15 三菱電機株式会社 Motor control method and motor control device
JP4294344B2 (en) * 2002-03-29 2009-07-08 パナソニック株式会社 Electric motor control method and control apparatus
JP4665634B2 (en) 2005-07-13 2011-04-06 シンフォニアテクノロジー株式会社 Vibration absorber
WO2008066035A1 (en) * 2006-11-30 2008-06-05 Mitsubishi Electric Corporation Seismic isolation control system
JP2008295269A (en) * 2007-05-28 2008-12-04 Canon Inc Drive control unit for vibration motor
JP5283804B1 (en) * 2012-10-25 2013-09-04 三菱電機株式会社 Servo control device
JP6845103B2 (en) * 2017-06-30 2021-03-17 国立大学法人 東京大学 Control systems, control methods, and control programs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041734A (en) * 2008-07-31 2010-02-18 Sanyo Denki Co Ltd Motor control system
JP2012052666A (en) * 2011-10-07 2012-03-15 Mitsubishi Electric Corp Base isolation apparatus
WO2016125804A1 (en) * 2015-02-04 2016-08-11 三菱電機株式会社 Electric motor control device and industrial-use mechanical device
JP6422624B1 (en) * 2018-04-06 2018-11-14 三菱電機株式会社 Isolation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183489B1 (en) * 2022-06-09 2022-12-05 三菱電機株式会社 Motor control device and mechanical device
WO2023238329A1 (en) * 2022-06-09 2023-12-14 三菱電機株式会社 Motor control device and machinery
CN116127838A (en) * 2022-12-30 2023-05-16 中国科学院长春光学精密机械与物理研究所 Active vibration isolation method for optical precision equipment based on load uncertainty
CN116127838B (en) * 2022-12-30 2024-01-12 中国科学院长春光学精密机械与物理研究所 Active vibration isolation method for optical precision equipment based on load uncertainty

Also Published As

Publication number Publication date
CN115151883A (en) 2022-10-04
KR102523097B1 (en) 2023-04-19
CN115151883B (en) 2023-06-02
JPWO2021176617A1 (en) 2021-09-10
JP6786024B1 (en) 2020-11-18
KR20220121893A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN107756448B (en) Device and method for testing residual vibration suppression of flexible joint-flexible arm system
WO2021176617A1 (en) Vibration isolation control device and vibration isolation control method
KR100951754B1 (en) Machine position control device
JP6316323B2 (en) Motor control device
US9202496B2 (en) Compensating for voice coil motor and microactuator disturbance in a hard drive
Al-Mamun et al. Integral resonant control for suppression of resonance in piezoelectric micro-actuator used in precision servomechanism
US10261520B2 (en) Motor controller and industrial machine
TWI705657B (en) Motor control device
JP2013054436A (en) Control method and controller
US20160016310A1 (en) Notch filter, external force estimator, motor control apparatus, and robotic system
JPH0438504A (en) Positioning controller
JP5441944B2 (en) Motor control device
JP3943061B2 (en) Servo control device
JP6899099B2 (en) Machine control system, machine control device, and vibration control command generation method
Urakawa Vibration suppression in position control system by pole zero cancellation using limited pole placement method
JP6333495B1 (en) Servo control device
JP4664576B2 (en) Servo control device
JP3811639B2 (en) Control device
Kokuryu et al. Wide-bandwidth bilateral control using two stage actuator systems: Evaluation results of a prototype
CN111796610A (en) Motor control device and computer program for motor control
KR20170050191A (en) Multi-axis dynamometer system and control method of the same
JP5710367B2 (en) Control device, control method, and program
Hazaz et al. Bandwidth improvement of Disturbance Observer with Low Pass Derivative FIR Filter
JPH0922304A (en) Vibration suppressing device
JP2003061379A (en) Frequency characteristic computing device for motor controller

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227028045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923175

Country of ref document: EP

Kind code of ref document: A1