WO2009141560A2 - Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs - Google Patents

Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs Download PDF

Info

Publication number
WO2009141560A2
WO2009141560A2 PCT/FR2009/050827 FR2009050827W WO2009141560A2 WO 2009141560 A2 WO2009141560 A2 WO 2009141560A2 FR 2009050827 W FR2009050827 W FR 2009050827W WO 2009141560 A2 WO2009141560 A2 WO 2009141560A2
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
vinyl polymer
latex
halogenated vinyl
copolymers
Prior art date
Application number
PCT/FR2009/050827
Other languages
English (en)
Other versions
WO2009141560A3 (fr
Inventor
Manuel Hidalgo
Thierry Pascal
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to US12/991,220 priority Critical patent/US20110065860A1/en
Priority to EP09750041A priority patent/EP2274364A2/fr
Publication of WO2009141560A2 publication Critical patent/WO2009141560A2/fr
Publication of WO2009141560A3 publication Critical patent/WO2009141560A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to a process for preparing a pulverulent resin based on a halogenated vinyl polymer and an associative group-bearing copolymer. It also relates to said resin, a composition containing said resin, and the use of this composition for the manufacture of rigid or plasticized materials.
  • the so-called supramolecular materials are materials consisting of compounds associated by non-covalent bonds, such as hydrogen, ionic and / or hydrophobic bonds. It may be in particular polymers on which are grafted associative groups, likely to unite by cooperative hydrogen bonds.
  • An advantage of these materials is that these physical bonds are reversible, especially under the influence of temperature or by the action of a selective solvent.
  • the ease of use and / or the properties of the polymers, such as the mechanical, rheological, thermal, optical, chemical and physicochemical properties, can therefore be improved by the grafting of these associative groups.
  • the latter can also impart the properties of high-mass polymers to low-mass polymers that are easier to prepare in a controlled manner.
  • WO 2006/016041 thus discloses polymers grafted with associative groups allowing to give them a higher elastic modulus and better resistance to solvents.
  • Example 9 more particularly discloses the product of the reaction of UDETA on a copolymer of maleic anhydride and methyl methacrylate. This product is formulated into a lacquer that can be sprayed onto steel panels (Examples 14 and 15).
  • the grafting of associative groups on a PVC via functions other than the amine function of UDETA, such as the mercaptan function does not offer a satisfactory solution either, insofar as the synthesis of molecules bearing both associative functions of the imidazolidone type and non-amine grafting units, such as these mercaptan functions, add steps to the process for obtaining the grafted PVCs.
  • the Applicant has devised an "indirect modification" of a halogenated vinyl polymer such as PVC, by mixing, at the nanoscale, with a copolymer rich in monomers which, after polymerization, give mixtures compatible with PVC and also bearing given associative groups. It is thus possible to obtain a highly compatible homogeneous mixture of polymers and to indirectly convey certain associative groups in PVC in order to confer different properties.
  • a halogenated vinyl polymer such as PVC
  • the polymer bearing the associative groups according to the invention makes it possible to confer properties of strong adhesion to metals and improved creep resistance to the halogenated vinyl polymer such as PVC and could possibly provide it with in addition to improved rheological, mechanical or thermal properties, in particular greater elongation at break, better thermal stability, higher softening temperature and better resistance to low shear rate melting.
  • the present invention specifically relates to a process for preparing a polymer resin comprising the successive steps consisting of:
  • first latex from at least one halogenated vinyl polymer and a second latex from at least one copolymer containing, on the one hand, units derived from a first monomer (A) rendering said copolymer compatible with said halogenated vinyl polymer and, on the other hand, units derived from a second monomer (B) bearing at least one associative group selected from imidazolidonyl, triazolyl, triazinyl, bis-ureyl and ureido-pyrimidyl groups, preferably an imidazolidonyl group,
  • the present invention also relates to the resin obtainable by this method.
  • the first step of the process according to the invention comprises the formation of latex, on the one hand, a copolymer carrying given associative groups and, on the other hand, a halogenated vinyl polymer.
  • the copolymer bearing associative groups contains precisely, on the one hand, units of a first monomer (A) rendering said copolymer compatible with said halogenated vinyl polymer and, on the other hand, units of a second monomer (B) distinct from the pattern (A) and carrying one or more associative groups according to the invention.
  • the monomer (A) preferably represents at least 20 mol% and advantageously at most 80 mol% of the copolymer.
  • ком ⁇ онент it is meant that the halogenated vinyl polymer and the copolymer exhibit partial or complete miscibility.
  • compatibility within the meaning of the invention with the halogenated vinyl polymer can be obtained in proportions of the mixture of the two variable polymers. This compatibility can be demonstrated by physical miscibility measurements.
  • This total or partial miscibility can be identified by various analytical methods known to those skilled in the art such as scanning electron microscopy (SEM) or transmission (TEM) or atomic force microscopy (AFM), which can often identify inhomogeneities of mixtures in the form domains with a characteristic size greater than 1 micron (immiscibility), as well as glass transition temperature measurements, Tg, of the mixture of the two polymers.
  • SEM scanning electron microscopy
  • TEM transmission
  • AFM atomic force microscopy
  • Tg glass transition temperature measurements
  • the total miscibility results in the existence of a single Tg for the mixture
  • the partial miscibility results in the existence of two Tg, at least one of which is different from the Tg of the halogenated vinyl polymer and the Tg of the copolymer.
  • Methods for measuring the Tg of polymers and polymer blends are known to those skilled in the art and include differential scanning calorimetry (DSC), volumetry or dynamic mechanical analysis (DMA).
  • any copolymer bearing associative groups according to the invention and compatible, in the sense explained above, with the halogenated vinyl polymer may be used according to the invention, in particular any copolymer based on a monomer (A). ) whose corresponding homopolymer is known to be miscible with the halogenated vinyl polymer or whose presence of units from the monomer (A) causes compatibility with the halogenated vinyl polymer.
  • monomers (A) include (meth) acrylic monomers such as methyl methacrylate, polyethylene glycol methacrylate, methoxy polyethylene glycol methacrylate and acrylonitrile, or maleic anhydride.
  • copolymers bearing associative groups which can be mixed, in proportions varying according to their nature and that of the halogenated vinyl polymer, with the halogenated vinyl polymer to obtain the compatibility and the effects of "indirect modification" by reversible physical bonds according to US Pat. invention, there may be mentioned copolymers of methyl methacrylate (so-called PMMA-type copolymers) carrying these associative groups, copolymers of polyethylene glycol side-chain monomers (so-called PEG side-chain copolymers) carrying these associative groups, copolymers of maleic anhydride bearing these associative groups or copolymers of acrylonitrile carrying these associative groups.
  • PMMA-type copolymers carrying these associative groups
  • copolymers of polyethylene glycol side-chain monomers so-called PEG side-chain copolymers carrying these associative groups
  • associative groups groups capable of associating with each other by hydrogen bonds, advantageously by 1 to 6 hydrogen bonds.
  • the associative groups which can be used according to the invention are more specifically the imidazolidonyl, triazolyl, triazinyl, bis-ureyl and ureido-pyrimidyl groups, the imidazolidonyl groups being preferred.
  • the associative groups are introduced during the formation of the copolymer.
  • the copolymer is thus capable of being obtained by copolymerization of the monomer (A) with a monomer (B) which carries the associative groups and optionally one or more other monomers, preferably from: - on the one hand, a monomer (A) which is a (meth) acrylic monomer selected from: methyl methacrylate, (methoxy) polyethylene glycol (meth) acrylate and acrylonitrile; or maleic anhydride,
  • a monomer (B) bearing associative groups preferably imidazolidonyl groups, which is advantageously chosen from: ethylimidazolidone methacrylate (or MEIO) and ethylimidazolidone methacrylamide (or WAM II) and optionally, one or more other monomers chosen from acrylic or methacrylic acids, their esters, their amides or their salts, itaconic acid, its esters, its amides or its salts, and styrene and its derivatives such as styrene sulfonate.
  • ethylimidazolidone methacrylate or MEIO
  • ethylimidazolidone methacrylamide or WAM II
  • one or more other monomers chosen from acrylic or methacrylic acids, their esters, their amides or their salts, itaconic acid, its esters, its amides or its salts, and styrene and its derivatives such as sty
  • Such a copolymer may be prepared in latex form by radical polymerization methods in dispersed medium, for example in aqueous emulsion. These methods are well known to those skilled in the art and described in general and specialized works, as, for example, in Chapter 7 of the book “Synthetic Latexes: Elaboration, Properties, Applications", coordinated by C. Pichot and JC. Daniel (TEC & DOC editions of Lavoisier, France, 2006).
  • water-soluble radical polymerization initiators use water-soluble radical polymerization initiators.
  • Different radical generation mechanisms can be implemented such as, for example, thermal decomposition, oxidation-reduction reactions, decomposition caused by electromagnetic radiation and, in particular, radiation in the ultraviolet.
  • Non-exclusive examples of water-soluble initiators include hydroperoxides such as tert-butyl hydroperoxide, water-soluble azo compounds such as 2,2'-azobis (2-amidinopropane) dihydrochloride, and organic or inorganic salts of 4,4'-Azobis (4-cyano valeric acid), inorganic oxidants such as sodium, potassium or ammonium persulfates, hydrogen peroxide, perchlorates, percarbonates and ferric salts.
  • hydroperoxides such as tert-butyl hydroperoxide
  • water-soluble azo compounds such as 2,2'-azobis (2-amidinopropane) dihydrochloride
  • oxidants can be used alone or in combination with inorganic or organic reducing agents such as sodium or potassium bisulfite or metabisulphite, vitamin C (ascorbic acid), sodium or potassium hypophosphites.
  • inorganic or organic reducing agents such as sodium or potassium bisulfite or metabisulphite, vitamin C (ascorbic acid), sodium or potassium hypophosphites.
  • organic or inorganic reducing agents can also be used alone, that is to say in the absence of inorganic oxidants.
  • the initiators soluble in the aqueous phase are used, in the case of emulsion polymerizations, in proportions ranging from 0.01 to 10% by weight relative to the total weight of the monomers.
  • chain transfer agents which make it possible to reduce the molecular masses.
  • chain transfer agents mention may be made of alkyl mercaptans, such as methyl mercaptan, ethyl mercaptan, n-propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan and tert-butyl.
  • the chain transfer agents are generally used in proportions of between 0.01 and 10%, and preferably between 0.5 and 2% by weight relative to the total weight of the monomers.
  • additives such as antioxidants, such as butylhydroxytoluene (BHT), biocides and / or activators of polymerization initiators.
  • BHT butylhydroxytoluene
  • additives are generally used in proportions of between 0.01% and 5% by weight relative to the total weight of the monomers.
  • surfactants or stabilizers for constituting the starting emulsions and stabilizing the final latex obtained can be used.
  • Three families of surfactants or stabilizers can be considered, namely:
  • surfactant molecules of natural or synthetic origin having a dispersing and stabilizing effect by electrostatic repulsion and comprising the positively or negatively charged amphiphilic molecules, or forming (amphoteric) zwitterions, in the aqueous phase, among which may be mentioned, for example non-exclusive examples: sodium or potassium alkyl sulphates or sulphonates, in particular sodium dodecyl sulphate, sodium or potassium alkyl aryl sulphates or sulphonates, in particular sodium dodecyl benzene sulphonate potassium, sodium or potassium salts, ammonium of fatty acids, in particular sodium stearate, alkylated and disulfonated diphenyl oxides, in particular commercial surfactants from the Dowfax ® range, such as Dowfax ® 2Al, sulphosuccinates and, in particular, commercial surfactants from the Aerosol range ® such as Aerosol ® MA 80 which is sodium dihexyl suifosuccinate or
  • surfactant molecules having a dispersing and stabilizing effect by steric repulsion, uncharged or nonionic, among which may be mentioned, by way of non-exclusive examples: ethoxylated alkyl phenols, ethoxylated fatty alcohols, block copolymers polyethylene oxide and polypropylene oxide, such as those of the Pluronic range, fatty acid esters, alkyl polyglycosides;
  • amphiphilic or completely hydrophilic polymeric molecules which may or may not be charged, among which may be mentioned, by way of non-exclusive examples: polymers of natural or synthetic origin soluble in water, such as polymers and copolymers of (meth) acrylic acid and their salts, polymers and copolymers of acrylamide and its derivatives, polymers based on vinyl alcohol and vinyl acetate, hydroxyethyl cellulose and hydrophobic modified hydroxyethyl cellulose, polyvinyl caprolactam, and polyvinyl pyrrolidone.
  • polymers of natural or synthetic origin soluble in water such as polymers and copolymers of (meth) acrylic acid and their salts, polymers and copolymers of acrylamide and its derivatives, polymers based on vinyl alcohol and vinyl acetate, hydroxyethyl cellulose and hydrophobic modified hydroxyethyl cellulose, polyvinyl caprolactam, and polyvinyl pyrrolidone.
  • dispersants or stabilizers are generally present in an amount of 0.1 to 10% by weight relative to the total weight of the monomers. It is also possible to carry out the emulsion polymerization in the absence of surfactants or stabilizing or dispersing agents; in this particular case, the final proportions of polymer, expressed as final solids content or final dry extract, that is to say, after evaporation of the volatiles and, in particular water, are less than 30% by weight , relative to the total weight of the latex resulting from the emulsion polymerization.
  • the aqueous emulsion polymerization can be carried out at atmospheric pressure or under pressure and at polymerization temperatures of between 5 ° C. and
  • the copolymer is obtained at atmospheric pressure and at polymerization temperatures between 50 and 95 0 C.
  • the final concentrations or after polymerization of the copolymer and other non-volatile components are comprised between 1 and 75 % and preferably between
  • the process for synthesizing the copolymer may be continuous or in batches ("batch") or else semi-continuous type, that is to say with added additions of components, such as, for example, metered additions of monomers, either on their own or pre-emulsified additions of additives such as dispersants or stabilizers, initiators, or other additives.
  • additives such as dispersants or stabilizers, initiators, or other additives.
  • the average diameter of the copolymer particles bearing associative groups obtained by radical polymerization in aqueous emulsion is generally less than 300 nm measured by particle size distribution. diffraction and diffusion using for example a MASTERSIZER2000 ® device from the company MALVERN or using a sedimentometer.
  • the halogenated vinyl polymer may in particular be a fluorinated and / or chlorinated homo- or copolymer. It is usually a thermoplastic polymer.
  • chlorinated polymer is polyvinyl chloride or PVC. Such a polymer is sold especially by the company Arkema under the trade name Lacovyl ®.
  • Other chlorinated polymers useful in this invention are vinyl chloride copolymers with monomers such as acrylonitrile, ethylene, propylene, vinyl acetate, and polyvinylidene chloride or derivatives thereof. acrylic.
  • the chlorinated polymer according to the invention is a mixture including at least two of the chlorinated polymers or copolymers above. In the case of vinyl chloride copolymers, it is preferable that the proportion of vinyl chloride units is greater than 25% and advantageously not more than 99% of the total weight of the copolymer.
  • fluoropolymers examples include:
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • CFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • VF3 trifluoroethylene
  • TFE tetrafluoroethylene
  • VF3 trifluoroethylene
  • PVDF and PVC are preferred for use in the present invention.
  • the halogenated vinyl polymer can be obtained by aqueous microsuspension or aqueous emulsion polymerization processes, which are well known to those skilled in the art.
  • the aqueous emulsion polymerization can thus be carried out using a water-soluble polymerization initiator such as a persulfate, in particular potassium, combined with an emulsifying agent such as sodium lauryl sulphate or sodium dodecyl benzene sulphonate and / or stabilizing polymers, and optionally to inorganic or organic reducing agents such as sodium formaldehyde sulfoxylate. Examples of such compounds have been described previously.
  • the average diameter of the vinyl polymer particles halogen thus obtained is generally less than 500 nm, as measured by particle size by diffraction and scattering, using for example an apparatus MASTERSIZER2000 ® from MALVERN or with the aid of a sedimentometer.
  • the polymerization in aqueous micro-suspension may be of inoculated type and carried out as described in particular in application FR 2 752 844, that is to say according to a process for the polymerization of vinyl chloride in the presence of:
  • a first vinyl chloride-based seeding polymer (P1) prepared as described, for example, in Application FR 2 309 569, the particles of which may have an average diameter of between 0.6 and 0.9; ⁇ m and contain at least one organosoluble initiator such as an organic peroxide,
  • a second vinyl chloride-based seeding polymer (P2) which may also be prepared as described in application FR 2 309 569 and whose particles have a mean diameter less than that of the particles of the first seed polymer (P1) and for example between 0.1 and 0.14 ⁇ m,
  • an anionic emulsifier a soluble metal salt, in particular a copper salt,
  • a reducing agent such as ascorbic acid
  • a water-soluble initiator such as ammonium persulfate.
  • the average diameter of the vinyl polymer particles halogen thus obtained is generally less than 2000 nm, as measured by particle size by diffraction and scattering, using for example an apparatus MASTERSIZER2000 ® from MALVERN or with the aid of a sedimentometer.
  • the halogenated vinyl polymer is prepared by aqueous emulsion polymerization.
  • the halogenated vinyl polymer latexes, on the one hand, and the associative group-bearing copolymer according to the invention can be mixed by any means known to the skilled in the art, for example in a tank equipped with a stirring means, or continuously in a static mixer.
  • each of the latexes is diluted by adding water to a dry extract ranging from 10 to 40%, preferably from 15 to
  • the latices are preferably mixed in a ratio of the halogenated vinyl polymer to the copolymer carrying associative groups ranging from 1: 200 to 100: 1, more preferably from 1: 100 to 1: 1 (in dry matter).
  • the latices obtained above are subjected to any method making it possible to isolate the polymers in the form of particles from this mixture.
  • This process can either comprise or be followed by a drying step.
  • Examples of such methods include spray drying, coagulation and lyophilization.
  • Spray drying involves injecting the latex mixture, generally via spray nozzles, into a stream of hot air which has the effect of converting the latexes into polymer droplets and drying them.
  • the mixture is sprayed using conventional spray known to the skilled person, such as a camera PRODUCTION MINOR ® the company Niro, generally choosing a range of air inlet temperature between 300 and 12O 0 C and a flow rate such that the exit temperatures of the air and of the atomized product are between 100 ° C. and 50 ° C.
  • the coagulation of the polymer latices is generally carried out by mixing them under adequate agitation with a coagulation agent based on a bivalent or trivalent metal salt such as chlorides, sulphates, nitrates or calcium acetates, aluminum , iron, magnesium, strontium, barium, tin or zinc.
  • a coagulation agent based on a bivalent or trivalent metal salt such as chlorides, sulphates, nitrates or calcium acetates, aluminum , iron, magnesium, strontium, barium, tin or zinc.
  • Other types of coagulation agents may be used, such as ammonium carbonate, organic compounds of methyl isobutyl carbinol type (described for example in patent application GB659722) or dioctyl phthalate (described for example in the application JP 7268021), or cationic or anionic polymers (described for example in the patent application FR 2373564).
  • the amount of coagulation agent used is usually between 100 and 50,000 ppm and preferably between 500 and 6000 ppm.
  • a coagulation additive such as a modified polyamine may be added to facilitate filtration and to increase the solids level in the coagulated product after filtration.
  • the pH of the medium can be adjusted to a value of between 2 and 7 by introducing a dilute acid, such as hydrochloric acid or sulfuric acid, to obtain a coagulate in the form of friable agglomerates, which are easier to filter.
  • the coagulation of the latices can also be obtained by adding, under appropriate agitation, a strong mineral acid, such as hydrochloric acid or acid. sulfuric acid, with or without the addition of a coagulation agent as described above, the amounts of acid being fixed so as to obtain a pH close to 1.
  • a strong mineral acid such as hydrochloric acid or acid.
  • sulfuric acid with or without the addition of a coagulation agent as described above, the amounts of acid being fixed so as to obtain a pH close to 1.
  • coagulation technologies may be used. These involve either a heating of the latex under strong stirring via steam injection, with or without the addition of coagulation agent, as described in patent application DE954920, that is to say specific stirring at very high mechanical shear, such as turbine coagulators requiring or not the use of a coagulation agent (as described in patent application JP4106106), or a thin-film latex freezing in a continuous process as described in patent application FR2531716).
  • a pulverulent resin containing an intimate mixture of the halogenated vinyl polymer and the associative group-carrying copolymer is obtained.
  • the particle size of the powder is measured by diffraction and scattering, using for example an apparatus MASTERSIZER2000 ® from MALVERN or with the aid of a sedimentometer.
  • the invention also relates to a composition containing the pulverulent resin described above, optionally in ground form.
  • composition may be in particular in solid form or in the form of emulsions, suspensions or solutions.
  • composition according to the invention may contain various additives including one or more plasticizers.
  • polymeric plasticizers such as polyphthalates and polyadipates
  • monomeric plasticizers such as azelates, trimellitates (TOTM, TEHTM 7), sebacates (DIOS, DINS, DIDS %), adipates (DOA, DEHA, DINA, DIPA %), phthalates ( DOP, DEHP, DIDP, DINP %), citrates, benzoates, tallates, glutarates, fumarates, maleates, oleates, palmitates, acetates such as acetylated monoglycerides; and their mixtures.
  • Phthalates such as di-octyl phthalate, dialkyl adipates such as ditridecyl adipate (DTDA), di-acetylated monoglycerides such as glycerol monolaurate di-acetate and dialkyl sebacates such as diisodecyl sebacate (DIDS) are preferred for use in the present invention.
  • the amount of plasticizer may for example be from 60 to 100% by weight, based on the weight of the halogenated vinyl polymer.
  • composition according to the invention may furthermore contain: - lubricants such as stearic acid and its esters (the Loxiol G12 ® Cognis), wax esters (the Loxiol G70 S ® Cognis), polyethylene waxes, paraffin wax or acrylic lubricants (including Plastistrength ® , in particular LlOOO, from ARKEMA),
  • - lubricants such as stearic acid and its esters (the Loxiol G12 ® Cognis), wax esters (the Loxiol G70 S ® Cognis), polyethylene waxes, paraffin wax or acrylic lubricants (including Plastistrength ® , in particular LlOOO, from ARKEMA),
  • inorganic or organic pigments such as carbon black or titanium dioxide
  • thermal stabilizers and / or UV such as tin stearate, lead, zinc, cadmium, barium or sodium, the Thermolite ® from Arkema,
  • epoxidized natural oils especially soybean oils such as epoxidized Ecepox ® PB3 from Arkema,
  • antioxidants for example phenolic, sulfuric or phosphitic,
  • fillers or reinforcements especially cellulosic fillers, talc, calcium carbonate, mica or wollastonite, glass or metal oxides or hydrates, antistatic agents,
  • - anti-shock agents such as copolymers of MBS, which Clearstrength ® C303H from Arkema, and acrylic modifiers of core-shell type such as Durastrength ® from Arkema,
  • blowing agents such as azodicarbonamides, azobisobutyronitrile, diethyl azobisisobutyrate,
  • flameproofing agents including antimony trioxide, zinc borate and brominated or chlorinated phosphate esters,
  • additives may for example represent from 0.1 to 50% of the total weight of the composition.
  • composition according to the invention can be used for the manufacture of materials that are rigid or plasticized. To do this, it can be implemented by any means, including calendering, extrusion, extrusion blow molding, injection molding, rotational molding, thermoforming, etc.
  • This composition can thus be used for the manufacture of coatings, in particular floor and wall coverings, furniture, mesh parts or parts of the passenger compartment of motor vehicles (such as skins for dashboards, steering wheels and door cladding); clothing ; joints, particularly in the building or automobile industry; self-adhesive film, food, agricultural, stationery; sheets and roof plates, as well as cladding boards; profiles, including shower and window; shutters, doors, skirting boards, angles; cables; and devices for transporting or storing fluids, in particular tubes, ducts, pumps, valves or fittings; electrical boxes; garden hoses; bottles and flasks, foil, especially for packaging; stretch films; blood or solute bags; transfusion tubes; microgroove records; of toys ; panels; helmets; shoes ; draperies, curtains or tablecloths; buoys; gloves; blinds; fiber; glues and adhesives; of membranes.
  • the invention therefore also relates to the aforementioned uses.
  • a solution of potassium persulfate in water at 2 g / liter is injected at a rate of 270 ml / hour for 1 hour and then at 180 ml / hour for 4 hours.
  • a solution of sodium lauryl sodium sulfate at 80 g / liter is injected at a flow rate of 250 ml / hour for 4 hours.
  • the reaction is continued until a pressure drop of -1 bar relative to the initial CVM pressure. At this level of pressure drop, the autoclave is cooled to 50 ° C. by injection of water at 18 ° C. into the double jacket.
  • the total reaction time since the end of the heating ramp to -1 bar is approximately 5 hours.
  • the CVM is degassed and the autoclave is then placed under dynamic vacuum for 4 hours in order to remove residual VCM. 19.2 kg of 37.5% latex of dry extract are thus recovered.
  • the diameter of the elementary particles, measured with the Brookhaven granulometer, is 226 nm.
  • Example 3 Mixing and Spraying Latex According to the Invention
  • the latices of Example la (or Ib) and of Example 2 are diluted by adding deionized water to a solids content of 20%. 15 kg of each diluted latex are incorporated in a tank of 50 liters equipped with an anchor stirrer.
  • the latex mixture is homogenized with stirring at 50 rpm for 1 hour at room temperature. After this homogenization step, the latex mixture is filtered on a 100 ⁇ m mesh wire mesh.
  • the latex mixture is then dried with a Niro Minor Production type atomizer equipped with a two-fluid bifluid nozzle having an internal diameter of 1 mm.
  • Example la (or Ib) and of Example 2 are diluted by adding deionized water to a solids content of 20%. 15 kg of each diluted latex are incorporated in a tank of 50 liters equipped with an anchor stirrer. The latex mixture is homogenized with stirring at 50 rpm for 1 hour at room temperature. After this step homogenization, the latex mixture is filtered on a wire mesh mesh 100 microns.
  • the 30 kg of the latex mixture are then introduced into a glass reactor with a volume of 60 liters and an inside diameter of 300 mm, which is provided with a double jacket heated by a thermoregulated bath and a stirring mobile.
  • three-blade propeller also called “impeller” with a diameter of 205 mm.
  • the stirring speed is increased to 600 rpm in successive increments of 100 rpm.
  • 180 ml of 95% concentrated sulfuric acid are added in 5 minutes to lower the pH of the mixture to 1.
  • the coagulation of the latex is thus obtained.
  • the coagulated latex is heated at 90 ° C. for 30 minutes after a heating ramp at 2 ° C./minutes.
  • the coagulated latex is neutralized by casting a soda solution at 100 g / liter and then hot filtered under a pressure of 5 bar on a polypropylene fabric having an average pore size of 6. .mu.m.
  • the filtrate is washed by adding 10 liters of deionized water and then dried at 60 ° C. in a ventilated oven to constant weight. 5.9 kg of mixing powder are thus obtained.
  • the residual moisture content in the powder is less than 0.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

La présente invention concerne un procédé de préparation d'une résine polymère à base de polymère vinylique halogène et de copolymère porteur de groupes associatifs, comprenant les étapes consistant à former un latex de chacun de ces polymères, mélanger lesdits latex, puis isoler et sécher les polymères contenus dans lesdits latex pour former une résine pulvérulente. Elle concerne également ladite résine, une composition pulvérulente renfermant ladite résine, ainsi que l'utilisation de cette composition pour la fabrication de matériaux rigides ou plastifiés.

Description

Procédé de préparation d'un mélange de polymère halogène et de copolymère porteur de groupes associatifs
La présente invention concerne un procédé de préparation d'une résine pulvérulente à base de polymère vinylique halogène et de copolymère porteur de groupes associatifs. Elle concerne également ladite résine, une composition renfermant ladite résine, ainsi que l'utilisation de cette composition pour la fabrication de matériaux rigides ou plastifiés.
Les matériaux dits supramoléculaires sont des matériaux constitués de composés associés par des liaisons non covalentes, telles que des liaisons hydrogène, ioniques et/ou hydrophobes. Il peut s'agir en particulier de polymères sur lesquels sont greffés des groupes associatifs, susceptibles de s'unir par des liaisons hydrogène coopératives. Un avantage de ces matériaux est que ces liaisons physiques sont réversibles, notamment sous l'influence de la température ou par l'action d'un solvant sélectif. La facilité de mise en oeuvre et/ou les propriétés des polymères, comme les propriétés mécaniques, rhéologiques, thermiques, optiques, chimiques, physico-chimiques, peuvent donc se trouver améliorées par le greffage de ces groupes associatifs. Ces derniers peuvent également conférer les propriétés de polymères de grande masse à des polymères de faible masse, plus faciles à préparer de façon contrôlée .
Le document WO 2006/016041 divulgue ainsi des polymères greffés par des groupes associatifs permettant de leur conférer un module élastique plus élevé et une meilleure résistance aux solvants.
De son côté, le document US-2,980,652 divulgue des copolymères renfermant des groupes associatifs de type imidazolidone, présentant une bonne capacité à adhérer à des substrats, notamment métalliques, et utiles en particulier pour fabriquer des peintures à base aqueuse.
L'Exemple 9 divulgue plus particulièrement le produit de la réaction de l' UDETA sur un copolymère d'anhydride maléique et de méthacrylate de méthyle. Ce produit est formulé en une laque qui peut être pulvérisée sur des panneaux en acier (Exemples 14 et 15) .
Dans ce contexte, la Demanderesse s'est intéressée aux moyens permettant de modifier des polymères vinyliques halogènes tels que le PVC en vue d'en faire des matériaux supramoléculaires et d'améliorer ainsi leurs propriétés. Différents essais ont par conséquent été entrepris, dans le but de greffer des groupes associatifs imidazolidone sur du PVC en faisant réagir ce dernier avec la N-aminoéthyl-2-imidazolidone (UDETA) .
Il est toutefois apparu aux Demanderesses que l'attaque nucléophile de l' UDETA sur le PVC entraînait une dégradation de ce dernier par déhydrochloration, avec formation concomitante d'acide chlorhydrique, ce qui rendait impossible le greffage direct d ' UDETA en masse
(sans solvant) sur le PVC dans des appareillages de transformation du PVC tels que des calandres, extrudeuses ou presses . Pour contourner ce problème, d'autres voies ont été envisagées, qui présentent toutefois toutes des inconvénients majeurs.
II en est ainsi du greffage en voie solvant qui, bien qu'autorisant un ajustement des conditions opératoires (concentration de PVC et UDETA, choix de solvant, température) pour favoriser la substitution du PVC par l' UDETA aux dépens de sa dégradation, nécessite l'utilisation de grandes quantités de solvant.
En outre, bien qu'elle représente une alternative intéressante, la copolymérisation du chlorure de vinyle monomère avec des monomères méthacryliques porteurs de groupes associatifs de type imidazolidone se heurterait à la difficulté d'obtention de copolymères de composition homogène, compte tenu de la différence importante des rapports de réactivité des monomères méthacryliques et acryliques en général, avec le chlorure de vinyle monomère (CVM) (voir J. BANDRUP et al., Polymer Handbook, 3eme Edition, John Wiley) .
Enfin, le greffage de groupes associatifs sur un PVC via des fonctions autres que la fonction aminé de 1 'UDETA, comme la fonction mercaptan, n'offre pas non plus une solution satisfaisante, dans la mesure où la synthèse de molécules portant à la fois des fonctions associatives de type imidazolidone et des motifs de greffage autres qu'aminé, comme ces fonctions mercaptan, ajoute des étapes au procédé d'obtention des PVC greffés.
Il est du mérite de la Demanderesse d'avoir mis au point un procédé permettant de conduire à un matériau de type supramoléculaire à base de PVC, présentant des propriétés améliorées tout en surmontant les inconvénients précités. Pour atteindre ce but, la Demanderesse a imaginé une "modification indirecte" d'un polymère vinylique halogène tel que le PVC, par mélange, à l'échelle nanométrique, avec un copolymère riche en monomères qui, après polymérisation, donnent des mélanges compatibles avec le PVC et portant par ailleurs des groupes associatifs donnés. Il est ainsi possible d'obtenir un mélange homogène hautement compatible de polymères et de véhiculer indirectement certains groupes associatifs dans le PVC en vue de lui conférer différentes propriétés.
Plus précisément, il a été mis en évidence que le polymère porteur des groupes associatifs selon l'invention permettait de conférer des propriétés de forte adhésion aux métaux et de résistance au fluage améliorée au polymère vinylique halogène tel que le PVC et pouvait éventuellement lui apporter en outre des propriétés rhéologiques, mécaniques ou thermiques améliorées, en particulier un plus grand allongement à la rupture, une meilleure stabilité thermique, une température de ramollissement plus élevée et une meilleure tenue du fondu à bas gradient de cisaillement.
Il est, certes, déjà connu de FR 2 891 548 que l'adhésion du poly (chlorure de vinylidène) ou PVDC sur des surfaces métalliques ou polymères peut être améliorée en le mélangeant à un copolymère renfermant des monomères, notamment acryliques, porteurs de groupes phosphonates et d'autres monomères, notamment acryliques. Il n'est toutefois pas suggéré dans ce document que l'utilisation d'un copolymère porteur de groupes associatifs de type hétérocycle azoté pouvait permettre d'améliorer plusieurs propriétés de polymères vinyliques halogènes tels que le PVDF.
La présente invention a précisément pour objet un procédé de préparation d'une résine polymère comprenant les étapes successives consistant à :
1- former un premier latex à partir d'au moins un polymère vinylique halogène et un second latex à partir d'au moins un copolymère renfermant, d'une part, des motifs issus d'un premier monomère (A) rendant ledit copolymère compatible avec ledit polymère vinylique halogène et, d'autre part, des motifs issus d'un second monomère (B) porteur d'au moins un groupe associatif choisi parmi les groupes imidazolidonyle, triazolyle, triazinyle, bis-uréyle et uréido-pyrimidyle, de préférence un groupe imidazolidonyle,
2- mélanger lesdits latex, et 3- isoler et sécher les polymères contenus dans lesdits latex pour former une résine pulvérulente.
La présente invention a également pour objet la résine susceptible d'être obtenue suivant ce procédé.
Les différentes étapes du procédé selon 1 ' invention seront maintenant décrites plus en détail. Il est bien entendu que ce procédé peut comprendre d'autres étapes que celles mentionnées ci-dessus, notamment une ou plusieurs étapes préliminaires, ultérieures et/ou intermédiaires, pour autant que la succession d'étapes mentionnées précédemment soit respectée. Formation des latex
La première étape du procédé selon 1 ' invention comprend la formation de latex, d'une part, d'un copolymère porteur de groupes associatifs donnés et, d'autre part, d'un polymère vinylique halogène.
Le copolymère portant des groupes associatifs renferme précisément, d'une part, des motifs d'un premier monomère (A) rendant ledit copolymère compatible avec ledit polymère vinylique halogène et, d'autre part, des motifs d'un second monomère (B) distinct du motif (A) et porteur d'un ou plusieurs groupes associatifs selon l'invention. Le monomère (A) représente de préférence au moins 20% en mole et avantageusement au plus 80% en mole du copolymère.
Par « compatible », on entend que le polymère vinylique halogène et le copolymère présentent une miscibilité partielle ou totale. Selon la nature du copolymère et en particulier du monomère (A) utilisé pour sa synthèse, la compatibilité au sens de l'invention avec le polymère vinylique halogène peut être obtenue dans des proportions du mélange des deux polymères variables. Cette compatibilité peut être mise en évidence par des mesures physiques de miscibilité.
Cette miscibilité totale ou partielle peut être repérée par différentes méthodes analytiques connues de l'homme du métier comme la microscopie électronique à balayage (MEB) ou à transmission (MET) ou encore la microscopie de force atomique (AFM) , permettant souvent de repérer des inhomogénéités des mélanges sous la forme de domaines de taille caractéristique supérieure à 1 micron (immiscibilité) , ainsi que par des mesures de température de transition vitreuse, Tg, du mélange des deux polymères. La miscibilité totale se traduit par l'existence d'une seule Tg pour le mélange, et la miscibilité partielle se traduit par l'existence de deux Tg, dont au moins une est différente de la Tg du polymère vinylique halogène et de la Tg du copolymère. Les méthodes de mesure de la Tg des polymères et des mélanges de polymères sont connues de l'homme du métier et incluent la calorimétrie différentielle à balayage (DSC) , la volumétrie ou l'analyse mécanique dynamique (DMA) .
Ainsi, tout copolymère portant des groupes associatifs selon l'invention et compatible, dans le sens expliqué ci-dessus, avec le polymère vinylique halogène, peut être utilisé selon l'invention, en particulier, tout copolymère à base d'un monomère (A) dont 1 'homopolymère correspondant est connu pour être miscible avec le polymère vinylique halogène ou dont la présence de motifs issus du monomère (A) entraîne la compatibilité avec le polymère vinylique halogène. Comme exemples non exclusifs de monomères (A) , on peut citer les monomères (méth) acryliques tels que le méthyl méthacrylate, le méthacrylate de polyéthylène glycol, le méthacrylate de méthoxy polyéthylène glycol et 1 'acrylonitrile, ou encore l'anhydride maléique. Comme exemples de copolymères portant des groupes associatifs pouvant être mélangés, en des proportions variables selon leur nature et celle du polymère vinylique halogène, avec le polymère vinylique halogène pour obtenir la compatibilité et les effets de « modification indirecte » par des liaisons physiques réversibles selon l'invention, on peut citer les copolymères de méthyl méthacrylate (dits copolymères type PMMA) portant ces groupes associatifs, les copolymères de monomères à chaîne latérale de polyéthylène glycol (dits copolymères à chaîne latérale PEG) portant ces groupes associatifs, les copolymères de l'anhydride maléique portant ces groupes associatifs ou les copolymères d'acrylonitrile portant ces groupes associatifs.
Par "groupes associatifs", on entend des groupes susceptibles de s'associer les uns aux autres par des liaisons hydrogène, avantageusement par 1 à 6 liaisons hydrogène. Les groupes associatifs utilisables selon l'invention sont plus précisément les groupes imidazolidonyle, triazolyle, triazinyle, bis-uréyle, uréido-pyrimidyle, les groupes imidazolidonyle étant préférés .
Selon un mode de réalisation préféré de l'invention, les groupes associatifs sont introduits lors de la formation du copolymère. Le copolymère est ainsi susceptible d'être obtenu par copolymérisation du monomère (A) avec un monomère (B) qui porte les groupes associatifs et éventuellement un ou plusieurs autres monomères, de préférence à partir : - d'une part, d'un monomère (A) qui est un monomère (méth) acrylique choisi parmi : le méthacrylate de méthyle, le (méth) acrylate de (méthoxy) polyéthylèneglycol et 1 'acrylonitrile ; ou l'anhydride maléique,
- d'autre part, d'un monomère (B) porteur de groupes associatifs, de préférence de groupes imidazolidonyle, qui est avantageusement choisi parmi : le méthacrylate d ' éthylimidazolidone (ou MEIO) et le méthacrylamide d ' éthylimidazolidone (ou WAM II) et - éventuellement, d'un ou plusieurs autres monomères choisis parmi les acides acrylique ou méthacrylique, leurs esters, leurs amides ou leurs sels, l'acide itaconique, ses esters, ses amides ou ses sels, et le styrène et ses dérivés comme le 4-styrène sulfonate.
Un tel copolymère peut être préparé sous forme de latex selon des méthodes de polymérisation radicalaire en milieu dispersé, par exemple en émulsion aqueuse. Ces méthodes sont bien connues de l'homme du métier et décrites dans des ouvrages généraux et spécialisés, comme, par exemple, dans le Chapitre 7 du livre "Les latex synthétiques : Elaboration, Propriétés, Applications", coordonné par C. Pichot et J. C. Daniel (Editions TEC&DOC de Lavoisier, France, 2006) .
Ces méthodes utilisent des amorceurs de polymérisation radicalaire solubles dans l'eau. Différents mécanismes de génération de radicaux peuvent être mis en œuvre comme, par exemple, la décomposition thermique, les réactions d'oxydo-réduction, la décomposition provoquée par un rayonnement électromagnétique et, en particulier, un rayonnement dans l'ultra-violet. Des exemples non-exclusifs d'amorceurs hydrosolubles incluent les hydroperoxydes comme 1 'hydroperoxyde de tert-butyle, les composés azoïques hydrosolubles tels que le 2, 2 '-Azobis- (2- amidinopropane) dihydrochlorure et les sels organiques ou minéraux de l'acide 4, 4 '-Azobis- ( 4-cyano valérique) , les oxydants minéraux tels que les persulfates de sodium, potassium ou ammonium, l'eau oxygénée, les perchlorates, les percarbonates et les sels ferriques. Ces oxydants peuvent être utilisés seuls ou en combinaison avec des réducteurs minéraux ou organiques tels que le bisulfite ou le métabisulfite de sodium ou de potassium, la vitamine C (acide ascorbique) , les hypophosphites de sodium ou de potassium. Ces réducteurs organiques ou minéraux peuvent également être utilisés seuls, c'est-à- dire en l'absence d'oxydants minéraux. Les amorceurs solubles dans la phase aqueuse sont utilisés, dans le cas des polymérisations en émulsion, dans des proportions allant de 0,01 à 10% en poids par rapport au poids total des monomères.
En plus des amorceurs de polymérisation, il peut s'avérer utile de dissoudre dans les monomères à copolymériser d'autres additifs, parmi lesquels on peut citer les agents de transfert de chaîne, permettant de diminuer les masses moléculaires. A titre d'exemples d'agents de transfert de chaîne on peut citer les alkyl mercaptans, comme le méthyl mercaptan, l'éthyl mercaptan, le n-propyl mercaptan, l'isopropyl mercaptan, le n-butyl mercaptan, le tert-butyl mercaptan, le cyclohexyl mercaptan, le benzyl mercaptan, le n-octyl mercaptan, le tert-nonyl mercaptan, le n-dodécyl mercaptan, le tert- dodécyl mercaptan, les alkyl thioglycolates comme le méthyl thioglycolate, l'éthyl thioglycolate, le 2-éthyl- hexyl thioglycolate ou l'iso-octyl thioglycolate. Les agents de transfert de chaîne sont généralement utilisés dans des proportions comprises entre 0,01 et 10%, et de préférence entre 0,5 et 2% en poids par rapport au poids total des monomères.
II est également possible de dissoudre dans les monomères à copolymériser d'autres additifs tels que des antioxydants, comme le butylhydroxytoluène (BHT) , des biocides et/ou des activateurs d'amorceurs de polymérisation. Ces additifs sont généralement utilisés dans des proportions comprises entre 0,01% et 5% en poids par rapport au poids total des monomères.
En outre, des tensioactifs ou des stabilisants permettant de constituer les émulsions de départ et de stabiliser les latex finaux obtenus peuvent être utilisés. Trois familles de tensioactifs ou stabilisants peuvent être considérées, à savoir :
1) les molécules tensioactives d'origine naturelle ou synthétique ayant un effet dispersant et stabilisant par répulsion électrostatique et comprenant les molécules amphiphiles chargées positivement ou négativement, ou formant des zwitterions (amphotères) , en phase aqueuse, parmi lesquelles on peut citer, à titre d'exemples non exclusifs : les alkyl sulfates ou sulfonates de sodium ou potassium, en particulier le dodécyl sulfate de sodium, les alkyl aryl sulfates ou sulfonates de sodium ou potassium, en particulier le dodécyl benzène sulfonate de sodium les sels de potassium, sodium ou ammonium des acides gras, en particulier le stéarate de sodium, les diphenyl oxydes alkylés et disulfonés, en particulier les tensioactifs commerciaux de la gamme Dowfax®, comme le Dowfax® 2Al, les suifosuccinates et, en particulier, les tensioactifs commerciaux de la gamme Aérosol® comme l'Aérosol® MA 80 qui est le sodium dihexyl suifosuccinate ou l'Aérosol® OT-75 qui est le sodium di-octyl suifosuccinate, les esters phosphoriques, les aminés grasses, les polyamines et leurs sels, les sels d'ammonium quaternaire, comme les alkyl triméthyl chlorures ou bromures d'ammonium, les betaïnes comme les N-alkyl betaïnes ou les suifobetaïnes, les imidazolines carboxylates, ainsi que les dérivés éthoxylés de tous ces composés ;
2) les molécules tensioactives ayant un effet dispersant et stabilisant par répulsion stérique, non chargées ou non-ioniques, parmi lesquelles on peut citer, à titre d'exemples non exclusifs : les alkyl phénols éthoxylés, les alcools gras éthoxylés, les copolymères à blocs de polyoxyde d'éthylène et polyoxyde de propylène, comme ceux de la gamme Pluronic , les esters d'acides gras, les alkyl polyglycosides ;
3) les molécules polymériques amphiphiles ou complètement hydrophiles, chargées ou non, parmi lesquelles on peut citer, à titre d'exemples non exclusifs : les polymères d'origine naturelle ou synthétique solubles dans l'eau tels que les polymères et copolymères de l'acide (méth) acrylique et leurs sels, les polymères et copolymères de l'acrylamide et ses dérivés, les polymères à base d'alcool vinylique et acétate de vinyle, 1 'hydroxyéthyl cellulose et 1 'hydroxyéthyl cellulose modifiée hydrophobe, le polyvinyl caprolactame, et la polyvinyl pyrrolidone.
Ces dispersants ou stabilisants sont généralement présents à hauteur de 0,1 à 10% en poids par rapport au poids total des monomères. Il est également possible de conduire la polymérisation en émulsion en absence de tensioactifs ou agents stabilisants ou dispersants ; dans ce cas particulier, les proportions finales de polymère, exprimées en taux de solides final ou extrait sec final, c'est-à-dire, après évaporation des volatils et, en particulier de l'eau, sont inférieures à 30% en poids, par rapport au poids total du latex issu de la polymérisation en émulsion.
La polymérisation en émulsion aqueuse peut être conduite à pression atmosphérique ou sous pression et à des températures de polymérisation comprises entre 50C et
18O0C. De manière préférée, le copolymère est obtenu à pression atmosphérique et à des températures de polymérisation comprises entre 50 et 950C. Les concentrations finales ou après polymérisation du copolymère et des autres composants non volatils se trouvent comprises entre 1 et 75% et de préférence entre
15 et 50% en poids, exprimées en extrait sec ou taux de solides final, par rapport au poids total de l' émulsion (latex) .
Le procédé de synthèse du copolymère peut être continu ou par lots (« batch ») ou encore de type semi- continu, c'est-à-dire avec ajouts dosés de composants, comme par exemple des ajouts dosés de monomères, tels quels ou pré-émulsifiés, des ajouts dosés d'additifs comme des dispersants ou stabilisants, des amorceurs, ou d'autres additifs.
Le diamètre moyen des particules de copolymère porteur de groupes associatifs obtenu par polymérisation radicalaire en émulsion aqueuse est généralement inférieur à 300 nm mesuré par granulométrie par diffraction et diffusion en utilisant par exemple un appareil MASTERSIZER2000® de la société MALVERN ou à l'aide d'un sédimentomètre .
De son côté, le polymère vinylique halogène peut en particulier être un homo- ou copolymère fluoré et/ou chloré. Il s'agit généralement d'un polymère thermoplastique .
Un exemple préféré de polymère chloré est le poly (chlorure de vinyle) ou PVC. Un tel polymère est notamment commercialisé par la société ARKEMA sous la dénomination commerciale Lacovyl®. D'autres polymères chlorés utilisables dans cette invention sont les copolymères de chlorure de vinyle avec des monomères tels que l 'acrylonitrile, l'éthylène, le propylène, l'acétate de vinyle, ainsi que le poly (chlorure de vinylidène) ou des dérivés acryliques. Il est également possible que le polymère chloré selon l'invention soit un mélange incluant au moins deux des polymères ou copolymères chlorés ci-dessus. Dans le cas des copolymères de chlorure de vinyle, il est préférable que la proportion de motifs chlorure de vinyle soit supérieure à 25% et avantageusement d'au plus 99% du poids total du copolymère.
Comme polymères fluorés, on peut notamment citer ceux comprenant un ou plusieurs monomères de formule (D :
CFX=CHX' (I) où X et X' désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré) . On préfère en particulier que X=F et X ' =H .
Comme exemples de polymères fluorés, on peut notamment citer :
- le poly (fluorure de vinylidène) (PVDF),
- les copolymères de fluorure de vinylidène avec par exemple 1 ' hexafluoropropylène (HFP), le chlorotrifluoroéthylène (CTFE), 1 ' hexafluoropropylène (HFP), le trifluoroéthylène (VF3) ou le tétrafluoroéthylène (TFE),
- les homo- et copolymères de trifluoroéthylène (VF3),
- les copolymères fluoroéthylène / propylène (FEP) ,
- les copolymères d'éthylène avec le fluoroéthylène/propylène (FEP) , le tétrafluoroéthylène (TFE) , le perfluorométhylvinyl éther (PFMVE) , le chlorotrifluoroéthylène (CTFE) ou 1 ' hexafluoropropylène (HFP) , et
- leurs mélanges, certains de ces polymères étant notamment commercialisés par la société ARKEMA sous la dénomination commerciale Kynar®.
Le PVDF et le PVC sont préférés pour une utilisation dans la présente invention.
Le polymère vinylique halogène peut être obtenu suivant des procédés de polymérisation en microsuspension aqueuse ou en émulsion aqueuse, bien connus de l'homme du métier. La polymérisation en émulsion aqueuse peut ainsi être effectuée en utilisant un amorceur de polymérisation hydrosoluble tel qu'un persulfate, notamment de potassium, associé à un agent émulsifiant tel que le lauryl sulfate de sodium ou le dodécyl benzène sulfonate de sodium et/ou à des polymères stabilisants, et éventuellement à des réducteurs minéraux ou organiques tels que le formaldéhyde sulfoxylate de sodium. Des exemples de tels composés ont été décrits précédemment. Le diamètre moyen des particules de polymère vinylique halogène ainsi obtenu est généralement inférieur à 500 nm, tel que mesuré par granulométrie par diffraction et diffusion en utilisant par exemple un appareil MASTERSIZER2000® de la société MALVERN ou à l'aide d'un sédimentomètre .
La polymérisation en micro-suspension aqueuse peut être de type ensemencé et effectuée comme décrit notamment dans la demande FR 2 752 844, c'est-à-dire suivant un procédé de polymérisation de chlorure de vinyle en présence :
- d'un premier polymère d'ensemencement (Pl) à base de chlorure de vinyle, préparé tel que décrit par exemple dans la demande FR 2 309 569, dont les particules peuvent avoir un diamètre moyen compris entre 0,6 et 0,9 μm et renferment au moins un amorceur organosoluble tel qu'un peroxyde organique,
- d'un deuxième polymère d'ensemencement (P2) à base de chlorure de vinyle, qui peut également être préparé tel que décrit dans la demande FR 2 309 569 et dont les particules ont un diamètre moyen inférieur à celui des particules du premier polymère d'ensemencement (Pl) et par exemple compris entre 0,1 et 0,14 μm,
- d'eau,
- d'un émulsifiant anionique, - d'un sel métallique soluble, en particulier un sel de cuivre,
- d'un agent réducteur tel que l'acide ascorbique,
- éventuellement, d'un amorceur hydrosoluble tel que le persulfate d'ammonium.
Le diamètre moyen des particules de polymère vinylique halogène ainsi obtenu est généralement inférieur à 2000 nm, tel que mesuré par granulométrie par diffraction et diffusion en utilisant par exemple un appareil MASTERSIZER2000® de la société MALVERN ou à l'aide d'un sédimentomètre .
On préfère selon l'invention que le polymère vinylique halogène soit préparé par polymérisation en émulsion aqueuse.
Mélange des latex
Dans la seconde étape du procédé selon l'invention, les latex de polymère vinylique halogène, d'une part, et de copolymère porteur de groupes associatifs selon l'invention, d'autre part, peuvent être mélangés par tout moyen connu de l'homme du métier, par exemple dans une cuve munie d'un moyen d'agitation, ou en continu dans un mélangeur statique.
On préfère qu'avant ou après mélange, chacun des latex soit dilué par ajout d'eau, jusqu'à une teneur en extrait sec allant de 10 à 40 %, de préférence de 15 à
Z J) o
En outre, les latex sont de préférence mélangés dans un rapport du polymère vinylique halogène au copolymère porteur de groupes associatifs allant de 1: 200 à 100:1, plus préférentiellement de 1:100 à 1:1 (en matière sèche) .
Formation et séchage de la résine pulvérulente
Dans la troisième étape du procédé selon l'invention, après mélange et éventuellement filtration, les latex obtenus précédemment sont soumis à un procédé quelconque permettant d'isoler les polymères sous forme de particules à partir de ce mélange. Ce procédé peut soit comprendre, soit être suivi, d'une étape de séchage.
Des exemples de tels procédés incluent le séchage par atomisation ou pulvérisation, la coagulation et la lyophilisation .
Le séchage par atomisation consiste à injecter le mélange de latex, généralement par l'intermédiaire de buses de pulvérisation, dans un courant d'air chaud qui a pour effet de transformer les latex en gouttelettes de polymères et de les sécher. Plus précisément, le mélange est atomisé en utilisant un atomiseur classique connu de l'homme du métier, tel qu'un appareil PRODUCTION MINOR® de la société NIRO, en choisissant généralement une température d'entrée d'air comprise entre 300 et 12O0C et un débit tel que les températures de sortie de l'air et du produit atomisé soient comprises entre 1000C et 5O0C. De son coté, la coagulation des latex de polymères est généralement réalisée en mélangeant ceux-ci sous une agitation adéquate avec un agent de coagulation à base de sel de métal bivalent ou trivalent tel que les chlorures, sulfates, nitrates ou acétates de calcium, aluminium, fer, magnésium, strontium, baryum, étain ou Zinc. D'autres types d'agents de coagulation peuvent être utilisés, tels que le carbonate d'ammonium, des composés organiques de type méthyl isobutyl carbinol (décrits par exemple dans la demande de brevet GB659722) ou dioctyl phtalate (décrits par exemple dans la demande de brevet JP7268021), ou encore des polymères cationiques ou anioniques (décrits par exemple dans la demande de brevet FR 2373564) .
La quantité d'agent de coagulation employée est usuellement comprise entre 100 et 50000 ppm et de préférence entre 500 et 6000 ppm. En plus de l'agent coagulation, un additif de coagulation tel qu'une polyamine modifiée peut être ajouté de manière à faciliter la filtration et à augmenter le taux de matière solide dans le produit coagulé après filtration. Par ailleurs, le pH du milieu peut être ajusté à une valeur comprise entre 2 et 7 par introduction d'un acide dilué, tel que l'acide chlorhydrique ou l'acide sulfurique pour permettre l'obtention d'un coagulât sous forme d'agglomérats friables, lesquels sont plus facilement filtrables .
La coagulation des latex peut également être obtenue par addition sous une agitation adéquate d'un acide minéral fort, tel que l'acide chlorhydrique ou l'acide sulfurique, avec ou sans apport d'un agent de coagulation tel que décrit plus haut, les quantités d'acide étant fixées de manière à obtenir un pH proche de 1. Un procédé du type ci-dessus est décrit dans la demande de brevet GB1233144.
D'autres technologies de coagulation peuvent être utilisées. Celles-ci mettent en oeuvre, soit un chauffage des latex sous forte agitation par l'intermédiaire d'injection de vapeur, avec ou sans ajout d'agent de coagulation, tel que décrit dans la demande de brevet DE954920, soit des systèmes d'agitation spécifiques à très fort cisaillement mécanique, tels que des coagulateurs à turbine nécessitant ou non l'emploi d'un agent de coagulation (tel que décrit dans la demande de brevet JP4106106), soit une congélation du latex en couche mince selon un procédé continu, tel que décrit dans la demande de brevet FR2531716) .
On obtient, suivant l'un ou l'autre de ces procédés, ainsi une résine pulvérulente renfermant un mélange intime du polymère vinylique halogène et du copolymère porteur de groupes associatifs.
Lorsque ce mélange a été séché par atomisation, on obtient généralement une poudre dont la granulométrie est comprise entre 10 et 150μm. Lorsque ce mélange a été séché par coagulation, on obtient généralement une poudre dont la granulométrie est comprise entre 10 et 300μm.
La granulométrie de la poudre est mesurée par diffraction et diffusion en utilisant par exemple un appareil MASTERSIZER2000® de la société MALVERN ou à l'aide d'un sédimentomètre . L'invention a également pour objet une composition renfermant la résine pulvérulente décrite précédemment, éventuellement sous forme broyée.
Cette composition peut se présenter notamment sous forme solide ou sous la forme d'émulsions, de suspensions ou de solutions.
Hormis la résine décrite précédemment, la composition selon l'invention peut renfermer divers additifs dont un ou plusieurs plastifiants.
Ceux-ci peuvent par exemple être choisis parmi : les plastifiants polymères tels que les polyphtalates et les polyadipates ; les plastifiants monomères tels que les azélates, les trimellitates (TOTM, TEHTM...), les sébaçates (DIOS, DINS, DIDS...), les adipates (DOA, DEHA, DINA, DIPA...), les phtalates (DOP, DEHP, DIDP, DINP...), les citrates, les benzoates, les tallates, les glutarates, les fumarates, les maléates, les oléates, les palmitates, les acétates comme les monoglycérides acétylés ; et leurs mélanges. Les phtalates tels que le di-octyl phtalate, les dialkyl adipates tels que le ditridécyl adipate (DTDA) , les monoglycérides di-acétylés tels que le glycérol monolaurate di-acétate et les dialkyl sébaçates tels que le diisodécyl sébaçate (DIDS) sont préférés pour une utilisation dans la présente invention. La quantité de plastifiant peut par exemple représenter de 60 à 100% en poids, par rapport au poids du polymère vinylique halogène.
La composition selon l'invention peut par ailleurs renfermer : - des lubrifiants, tels que l'acide stéarique et ses esters (dont le Loxiol® G12 de COGNIS), les esters cireux (dont le Loxiol® G70 S de COGNIS), les cires de polyéthylène, la paraffine ou les lubrifiants acryliques (dont les Plastistrength®, notamment LlOOO, d'ARKEMA),
- des pigments minéraux ou organiques, tels que le noir de carbone ou le dioxyde de titane,
- des stabilisants thermiques et/ou UV, tels que les stéarates d'étain, de plomb, de zinc, de cadmium, de baryum ou de sodium, dont le Thermolite® d'ARKEMA,
- des co-stabilisants tels que les huiles naturelles époxydées, en particulier les huiles de soja époxydées telles que l'Ecepox® PB3 d'ARKEMA,
- des anti-oxydants, par exemple phénoliques, soufrés ou phosphitiques,
- des charges ou renforts, notamment des charges cellulosiques, du talc, du carbonate de calcium, du mica ou de la wollastonite, du verre ou des oxydes ou hydrates métalliques, - des agents antistatiques,
- des fongicides et biocides,
- des agents anti-choc, tels que les copolymères de MBS, dont le Clearstrength® C303H d'ARKEMA, et les modifiants acryliques de type core-shell tels que les Durastrength® d'ARKEMA,
- des agents gonflants tels que les azodicarbonamides, l'azo bis isobutyronitrile, le diéthyl azo-bis isobutyrate,
- des agents ignifugeants, dont le trioxyde d'antimoine, le borate de zinc et les phosphate esters bromes ou chlorés,
- des solvants, et
- leurs mélanges. Ces additifs peuvent par exemple représenter de 0,1 à 50% du poids total de la composition.
La composition selon l'invention peut être utilisée pour la fabrication de matériaux soit rigides, soit plastifiés. Pour ce faire, elle peut être mise en oeuvre par tout moyen, et notamment par calandrage, extrusion, extrusion-soufflage, moulage par injection, rotomoulage, thermoformage, etc.
Cette composition peut ainsi être utilisée pour la fabrication de revêtements, notamment de revêtements de sol et muraux, de meubles, de pièces en grillage ou de parties d'habitacle de véhicules automobiles (telles que des peaux de planches de bord, de volants et des habillages de portes) ; de vêtements ; de joints, notamment dans le bâtiment ou l'industrie automobile ; de films auto-adhésifs, alimentaires, agricoles, de papeterie ; de tôles et plaques de toit, ainsi que de plaques de bardage ; de profilés, notamment de douche et de fenêtre ; de volets, portes, plinthes, cornières ; de câbles ; et de dispositifs de transport ou de stockage de fluides, en particulier de tubes, de gaines, de pompes, de vannes ou de raccords ; de boîtiers électriques ; de tuyaux d'arrosage ; de bouteilles et flacons, de feuille, notamment pour l'emballage ; de films étirables ; de poches à sang ou à soluté ; de tubes de transfusion ; de disques microsillons ; de jouets ; de panneaux ; de casques ; de chaussures ; de tentures, rideaux ou nappes ; de bouées ; de gants ; de stores ; de fibres ; de colles et adhésifs ; de membranes. L'invention a donc également pour objet les utilisations précitées.
L'invention sera mieux comprise à la lumière des exemples suivants, donnés à des fins d'illustration seulement et qui n'ont pas pour but de limiter la portée de l'invention, qui est définie par les revendications annexées .
EXEMPLES
Exemple 1 : Préparation d'un latex de PVC
Exemple la : Synthèse en émulsion d'un latex de PVC (diamètre des particules = 200 nm)
Dans un autoclave de 30 litres équipé d'un mobile d'agitation de type ancre, on introduit 10 litres d'eau dé-ionisée. On ajoute 2,2 g de formaldéhyde sulfoxylate de sodium, 2,2 g de sel disodique de l'acide éthylène diamine tétraacétique et 0,24 g de sulfate de fer pentahydrate . On ferme l'autoclave, on démarre l'agitation à 80 tours/minute et on tire sous vide sous une pression de 0,04 bar pendant 30 minutes. On charge 8 kg de chlorure de vinyle monomère (CVM) . On porte ensuite la température du milieu réactionnel à 660C en chauffant l'autoclave par l'intermédiaire de sa double-enveloppe selon une rampe de chauffe à 2°C/min. Lorsque la température atteint 660C, une solution de persulfate de potassium dans l'eau à 2 g/litre est injectée à un débit de 270 ml/heure pendant 1 heure, puis à 180 ml/heure pendant 4 heures. Après une durée de 30 minutes à la température de 660C, une solution de sodium lauryl sulfate de Sodium à 80 g/litre est injectée à un débit de 250 ml/heure pendant 4 heures. La réaction est poursuivie jusqu'à une baisse de pression de - 1 bar par rapport à la pression initiale de CVM. A ce niveau de baisse de pression, l'autoclave est refroidi à 5O0C par injection d'eau à 180C dans la double-enveloppe. La durée totale de réaction depuis la fin de rampe de chauffe jusqu'à -1 bar est d'environ 5 heures. A 5O0C sous une agitation réduite à 50 tours/min, le CVM est dégazé puis l'autoclave est mis sous vide dynamique pendant 4 heures pour éliminer le CVM résiduel. On récupère ainsi 19,2 kg de latex à 37,5 % d'extrait sec. Le diamètre des particules élémentaires, mesuré au granulomètre Brookhaven, s'élève à 226 nm.
Exemple Ib : Synthèse en émulsion d'un latex de PVC (diamètre des particules = 100 nm)
Dans un autoclave de 30 litres équipé d'un mobile d'agitation de type ancre, on introduit 8,8 litres d'eau dé-ionisée, 32 g d'acide laurique et 9 g d'hydroxyde de potassium à partir d'une solution à 100 g/litre. On ajoute 1,1 g de formaldéhyde sulfoxylate de sodium, 1 g de sel disodique de l'acide éthylène diamine tétraacétique et 0,11 g de sulfate de fer penahydrate. On ferme l'autoclave, on démarre l'agitation à 80 tours/minute et on tire sous vide sous une pression de 0,04 bar pendant 30 min. On charge 8 kg de chlorure de vinyle monomère (CVM) . On porte la température du milieu réactionnel à 550C en chauffant l'autoclave par l'intermédiaire de sa double-enveloppe selon une rampe de chauffe de 2°C/min. Lorsque la température atteint 550C, une solution de persulfate d'ammonium dans l'eau à 4 g/litre est injectée à un débit de 200 ml/heure pendant 5 heures .
Après une durée de 30 minutes à la température de 550C, une solution de dodécyl benzène sulfonate de sodium à 88 g/litre est injectée à un débit de 250 ml/heure pendant 4 heures. La réaction est poursuivie jusqu'à une baisse de pression de - 1 bar par rapport à la pression initiale de CVM. A ce niveau de baisse de pression, l'autoclave est refroidi à 4O0C par injection d'eau à 180C dans la double-enveloppe. La durée totale de réaction depuis la fin de rampe de chauffe jusqu'à -1 bar est d'environ 5 heures. A 4O0C sous une agitation réduite à 50 tours/min, le CVM est dégazé puis l'autoclave est mis sous vide dynamique pendant 4 heures pour éliminer le CVM résiduel. On récupère ainsi 18 kg de latex à 39,3 % d'extrait sec. Le diamètre moyen des particules élémentaires, mesuré au granulomètre Brookhaven, s'élève à 115 nm.
Exemple 2 ; Préparation d'un latex de copolymère porteur de groupes associatifs
Dans un autoclave de 30 litres équipé d'un mobile d'agitation de type ancre, d'un système de condensation de vapeurs à reflux et de piquages pour l'introduction des réactifs, on introduit 10 litres d'eau dé-ionisée. On ajoute 2,2 g de formaldéhyde sulfoxylate de sodium ; 2,2 g de sel disodique de l'acide éthylène diamine tétraacétique et 0,24 g de sulfate de fer pentahydrate . On ferme l'autoclave, on démarre l'agitation à 80 tours/minute et on purge le milieu par bullage d'azote pendant 30 minutes. On charge ensuite successivement 5,6 kg de méthacrylate de méthyle ; 0,48 kg d'acrylate d'éthyle ; 1,92 kg de Norsocryl N102® d'Arkema (mélange de 25% en poids de méthacrylate d'éthyl imidazolidone, MEIO, et de 75% en poids de méthacrylate de méthyle) ; et 36,5 g de n-dodécyl mercaptan d'Arkema. On porte ensuite la température du milieu réactionnel à 7O0C en chauffant l'autoclave par l'intermédiaire de sa double-enveloppe selon une rampe de chauffe à 2°C/min. Lorsque la température atteint 7O0C, une solution de persulfate de potassium dans l'eau à 2 g/litre est injectée à un débit de 200 ml/heure pendant 1 heure, puis à 150 ml/heure pendant 3 heures.
Après 30 minutes à la température de 7O0C, une solution de lauryl sulfate de sodium à 100 g/litre est injectée à un débit de 250 ml/heure pendant 3,5 heures. Au terme de l'addition du persulfate de potassium et du lauryl sulfate de sodium, la réaction est complétée par un traitement d'une heure à 8O0C sous agitation. L'autoclave est ensuite refroidi à 2O0C par injection d'eau à 180C dans la double-enveloppe. La durée totale de réaction depuis la fin de rampe de chauffe jusqu'à la fin du traitement à 8O0C est d'environ 5 heures. On récupère ainsi 18,7 kg de latex à 38,4 % d'extrait sec. Le diamètre des particules élémentaires, mesuré au granulomètre Brookhaven, s'élève à 235 nm.
Exemple 3 : Mélange et atomisation des latex selon 1 ' invention Les latex de l'exemple la (ou Ib) et de l'exemple 2 sont dilués par ajout d'eau dé-ionisée jusqu'à un extrait sec de 20%. 15 kg de chacun des latex dilués sont incorporés dans une cuve de 50 litres équipée d'un agitateur à ancre. Le mélange des latex est homogénéisé sous agitation à 50 tours/minutes pendant 1 heure à température ambiante. Après cette étape d'homogénéisation, le mélange de latex est filtré sur une toile métallique de maille 100 μm.
Le mélange de latex est ensuite séché avec un atomiseur de type Niro Minor Production équipé d'une buse bifluide d'un diamètre interne de 1 mm. Les conditions opératoires d'atomisation sont fixées comme suit : température d'entrée = 15O0C, température de sortie = 7O0C, pression d'air de pulvérisation = 3 bars. Dans ces conditions, le débit de séchage se stabilise à 14 kg de latex/heure. L'atomiseur est maintenu en fonctionnement pendant 2 heures. 5,5 Kg de poudre de mélange sont ainsi obtenus. Le taux d'humidité résiduelle dans la poudre est inférieur à 0,5%.
Exemple 4 : Mélange et coagulation/séchage des latex selon l ' invention
Les latex de l'exemple la (ou Ib) et de l'exemple 2 sont dilués par ajout d'eau dé-ionisée jusqu'à un extrait sec de 20%. 15 kg de chacun des latex dilués sont incorporés dans une cuve de 50 litres équipée d'un agitateur à ancre. Le mélange des latex est homogénéisé sous agitation à 50 tours/minutes pendant 1 heure à température ambiante. Après cette étape d'homogénéisation, le mélange de latex est filtré sur une toile métallique de maille 100 μm.
Les 30 kg du mélange de latex sont ensuite introduits dans un réacteur en verre de volume de 60 litres et de diamètre intérieur de 300 mm, lequel est muni d'une double-enveloppe chauffée par un bain thermorégulé et d'un mobile d'agitation de type hélice tripale, également nommée « impeller » d'un diamètre de 205 mm. La vitesse d'agitation est portée à 600 tours/minutes par paliers successifs de 100 tours/minutes. 180 ml d'acide sulfurique concentré à 95% sont ajoutés en 5 minutes pour abaisser le pH du mélange à 1. La coagulation du latex est ainsi obtenue. Le latex coagulé est porté à 9O0C pendant 30 minutes après une rampe de chauffe à 2°C/minutes. Au terme de cette étape de chauffage, le latex coagulé est neutralisé par coulée d'une solution de soude à 100 g/litre, puis filtré à chaud sous une pression de 5 bars sur une toile de polypropylène présentant une dimension moyenne de pores de 6 μm. Le filtrat est lavé par addition de 10 litres d'eau dé-ionisée, puis séché à 6O0C dans une étuve ventilée jusqu'à poids constant. 5,9 kg de poudre de mélange sont ainsi obtenus. Le taux d'humidité résiduelle dans la poudre est inférieur à 0,5%.

Claims

REVENDICATIONS
1. Procédé de préparation d'une résine polymère comprenant les étapes successives consistant à : 1- former un premier latex à partir d'au moins un polymère vinylique halogène et un second latex à partir d'au moins un copolymère renfermant, d'une part, des motifs issus d'un premier monomère (A) rendant ledit copolymère compatible avec ledit polymère vinylique halogène et, d'autre part, des motifs issus d'un second monomère (B) porteur d'au moins un groupe associatif choisi parmi les groupes imidazolidonyle, triazolyle, triazinyle, bis-uréyle et uréido-pyrimidyle, de préférence un groupe imidazolidonyle, 2- mélanger lesdits latex, et
3- isoler et sécher les polymères contenus dans lesdits latex pour former une résine pulvérulente.
2. Procédé selon la revendication 1, caractérisé en ce que le copolymère est susceptible d'être obtenu à partir :
- d'une part, d'un monomère (A) qui est un monomère (méth) acrylique choisi parmi : le méthacrylate de méthyle, le (méth) acrylate de (méthoxy) polyéthylèneglycol, 1 'acrylonitrile et l'anhydride maléique,
- d'autre part, d'un monomère (B) porteur de groupes associatifs, de préférence de groupes imidazolidonyle, qui est avantageusement choisi parmi : le méthacrylate d ' éthylimidazolidone (ou MEIO) et le méthacrylamide d ' éthylimidazolidone (ou WAM II), et
- éventuellement, d'un ou plusieurs autres monomères choisis parmi les acides acrylique ou méthacrylique, leurs esters, leurs amides ou leurs sels, l'acide itaconique, ses esters, ses amides ou ses sels, et le styrène et ses dérivés comme le 4-styrène sulphonate.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que ledit copolymère est susceptible d'être obtenu par polymérisation radicalaire en émulsion aqueuse .
4. Procédé selon l'une quelconque des revendications
1 à 3, caractérisé en ce que polymère vinylique halogène est choisi parmi : le poly (chlorure de vinyle) (PVC) ; ; les copolymères de chlorure de vinyle avec des monomères choisis parmi l 'acrylonitrile, l'éthylène, le propylène, ou l'acétate de vinyle ; le poly (chlorure de vinylidène) ; et leurs mélanges.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que polymère vinylique halogène est choisi parmi les polymères fluorés comprenant un ou plusieurs monomères de formule (I) :
CFX=CHX' (I)
où X et X' désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré) , avec de préférence X=F et X ' =H .
6. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le polymère vinylique halogène est choisi parmi :
- le poly (fluorure de vinylidène) (PVDF), - les copolymères de fluorure de vinylidène avec par exemple 1 ' hexafluoropropylène (HFP), le chlorotrifluoroéthylène (CTFE), 1 ' hexafluoropropylène (HFP), le trifluoroéthylène (VF3) ou le tétrafluoroéthylène (TFE),
- les homo- et copolymères de trifluoroéthylène (VF3),
- les copolymères fluoroéthylène / propylène (FEP) ,
- les copolymères d'éthylène avec le fluoroéthylène/propylène (FEP) , le tétrafluoroéthylène
(TFE) , le perfluorométhylvinyl éther (PFMVE) , le chlorotrifluoroéthylène (CTFE) ou 1 ' hexafluoropropylène (HFP) , et
- leurs mélanges.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le polymère vinylique halogène est susceptible d'être obtenu suivant un procédé de polymérisation en micro-suspension aqueuse, éventuellement de type ensemencé, ou en émulsion aqueuse.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que, dans la seconde étape du procédé, les latex sont mélangés dans un rapport du polymère vinylique halogène au copolymère porteur de groupes associatifs allant de 1:200 à 100:1, plus préférentiellement de 1:100 à 1:1 (en matière sèche) .
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, dans la troisième étape du procédé, les latex sont soumis à un procédé de séchage par atomisation, de coagulation ou de lyophilisation.
10. Résine susceptible d'être obtenue suivant le procédé selon l'une quelconque des revendications 1 à 9.
11. Composition renfermant la résine selon la revendication 10 et éventuellement des plastifiants.
12. Utilisation de la composition selon la revendication 11 pour la fabrication de revêtements, notamment de revêtements de sol et muraux, de meubles, de pièces en grillage ou de parties d'habitacle de véhicules automobiles (telles que des peaux de planches de bord, de volants et des habillages de portes) ; de vêtements ; de joints, notamment dans le bâtiment ou l'industrie automobile ; de films auto-adhésifs, alimentaires, agricoles, de papeterie ; de tôles et plaques de toit, ainsi que de plaques de bardage ; de profilés, notamment de douche et de fenêtre ; de volets, portes, plinthes, cornières ; de câbles ; et de dispositifs de transport ou de stockage de fluides, en particulier de tubes, de gaines, de pompes, de vannes ou de raccords ; de boîtiers électriques ; de tuyaux d'arrosage ; de bouteilles et flacons, de feuille, notamment pour l'emballage ; de films étirables ; de poches à sang ou à soluté ; de tubes de transfusion ; de disques microsillons ; de jouets ; de panneaux ; de casques ; de chaussures ; de tentures, rideaux ou nappes ; de bouées ; de gants ; de stores ; de fibres ; de colles et adhésifs ; de membranes.
PCT/FR2009/050827 2008-05-07 2009-05-05 Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs WO2009141560A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/991,220 US20110065860A1 (en) 2008-05-07 2009-05-05 Method for preparing a blend of halogenated polymer and of copolymer bearing associative groups
EP09750041A EP2274364A2 (fr) 2008-05-07 2009-05-05 Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853030 2008-05-07
FR0853030A FR2930945B1 (fr) 2008-05-07 2008-05-07 Procede de preparation d'un melange de polymere halogene et de copolymere porteur de groupes associatifs

Publications (2)

Publication Number Publication Date
WO2009141560A2 true WO2009141560A2 (fr) 2009-11-26
WO2009141560A3 WO2009141560A3 (fr) 2010-01-28

Family

ID=40343483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050827 WO2009141560A2 (fr) 2008-05-07 2009-05-05 Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs

Country Status (4)

Country Link
US (1) US20110065860A1 (fr)
EP (1) EP2274364A2 (fr)
FR (1) FR2930945B1 (fr)
WO (1) WO2009141560A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229435A1 (fr) 2017-06-15 2018-12-20 Arkema France Composition a base de polymere fluore presentant une adhesion amelioree

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993389B2 (en) 2011-09-19 2018-06-12 Fenwal, Inc. Red blood cell products and the storage of red blood cells in containers free of phthalate plasticizer
US11160728B2 (en) 2014-02-20 2021-11-02 Fresenius Kabi Deutschland Gmbh Medical containers and system components with non-DEHP plasticizers for storing red blood cell products, plasma and platelets
CN113861459B (zh) * 2021-11-25 2023-07-21 四川轻化工大学 一种螺旋纳米碳纤维增强橡胶复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980652A (en) * 1958-09-19 1961-04-18 Rohm & Haas Unsaturated derivatives of n-(omega-aminoalkyl)-1, 3-cyclodiazolidin-2-ones and copolymers thereof
FR2891548A1 (fr) * 2005-10-05 2007-04-06 Solvay Dispersion aqueuse comprenant au moins un polymere du chlorure de vinylidene et au moins un copolymere

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324322B2 (en) * 2003-09-23 2012-12-04 Solvay (Societe Anonyme) Polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2980652A (en) * 1958-09-19 1961-04-18 Rohm & Haas Unsaturated derivatives of n-(omega-aminoalkyl)-1, 3-cyclodiazolidin-2-ones and copolymers thereof
FR2891548A1 (fr) * 2005-10-05 2007-04-06 Solvay Dispersion aqueuse comprenant au moins un polymere du chlorure de vinylidene et au moins un copolymere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O. IGUERB, R. BOUYAHIA, F. BOUZOUIA, S. DJADOUN, R. LEGRAS: "Specific interactions in binary and ternary blends of poly(vinyl chloride) with poly(methyl methacrylate-co-acrylic acid) and poly(n-butyl methacrylate-co-4-vinylpyridine)" EUROPEAN POLYMER JOURNAL, vol. 34, 1999, pages 1345-1350, XP002516126 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229435A1 (fr) 2017-06-15 2018-12-20 Arkema France Composition a base de polymere fluore presentant une adhesion amelioree
US11827778B2 (en) 2017-06-15 2023-11-28 Arkema France Ink based on fluorinated polymer having improved adhesion

Also Published As

Publication number Publication date
US20110065860A1 (en) 2011-03-17
WO2009141560A3 (fr) 2010-01-28
FR2930945B1 (fr) 2011-03-11
EP2274364A2 (fr) 2011-01-19
FR2930945A1 (fr) 2009-11-13

Similar Documents

Publication Publication Date Title
EP2274377B1 (fr) Composition renfermant un polymère vinylique halogéné et un copolymère porteur de groupes associatifs.
WO2009156628A1 (fr) Procede de preparation multi-etapes d'un latex composite halogene porteur de groupes associatifs
JP5128734B2 (ja) プラスチック添加剤ポリマー組成物
DE19928352A1 (de) Verbesserte Poly(meth)acrylatptastisole und Verfahren zu ihrer Herstellung
WO2009141560A2 (fr) Procédé de préparation d'un mélange de polymère halogéné et de copolymère porteur de groupes associatifs
FR2891548A1 (fr) Dispersion aqueuse comprenant au moins un polymere du chlorure de vinylidene et au moins un copolymere
JP6686435B2 (ja) 艶消し用熱可塑性樹脂組成物、フッ素系艶消しフィルム及びフッ素系艶消し積層フィルム
US20210032381A1 (en) Method for manufacturing fluoropolymer, surfactant for polymerization, use for surfactant, and composition
US20220275119A1 (en) Method for producing fluoropolymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
EP2288627B1 (fr) Composition renfermant un polymere (meth)acrylique et un copolymere porteur de groupes associatifs
EP2041193B1 (fr) Procédé de préparation d'un latex d'un polymère vinylique chloré
JP2019502804A (ja) 溶融強度及び透明度の加工助剤としてアクリル酸コポリマーを含む熱可塑性組成物
DE69911840T2 (de) Kontinuierliches Verfahren zur Herstellung von Kautschukartigem Polymer
EP3344697A1 (fr) Compositions polymères de chlorure de vinylidène et articles les comprenant
FR2936248A1 (fr) Procede pour augmenter la compatibilite de polymeres
FR2859999A1 (fr) Composition polymerique comprenant un polymere et au moins un cooligomere porteur d'un groupement fonctionnel particulier
CA2011092C (fr) Procede pour la fabrication de polymeres du chlorure de vinyle modifies par des polymeres de lactones et nouveaux polymeres du chlorure de vinyle modifies par des polymeres de lactones
EP2960271B1 (fr) Procede pour la preparation d'un polymere du chlorure de vinyle
FR3052168A1 (fr)
EP2935355A1 (fr) Procede pour la preparation d'un polymere du chlorure de vinyle
FR3061717A1 (fr) Composition de polymere avec une charge, son procede de preparation et son utilisation
EP3344685A1 (fr) Procédés de préparation de compositions polymères de chlorure de vinylidène
WO2023210819A1 (fr) Procédé de fabrication de polymère fluoré
FR3038612A1 (fr)
FR3038611A1 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750041

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009750041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12991220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE