WO2009140989A1 - Vorrichtung zur reinigung von dieselabgasen - Google Patents

Vorrichtung zur reinigung von dieselabgasen Download PDF

Info

Publication number
WO2009140989A1
WO2009140989A1 PCT/EP2008/008995 EP2008008995W WO2009140989A1 WO 2009140989 A1 WO2009140989 A1 WO 2009140989A1 EP 2008008995 W EP2008008995 W EP 2008008995W WO 2009140989 A1 WO2009140989 A1 WO 2009140989A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
palladium
particulate filter
oxidation catalyst
ratio
Prior art date
Application number
PCT/EP2008/008995
Other languages
English (en)
French (fr)
Inventor
Wolfgang Schneider
Lothar Mussmann
Gerald Jeske
Michael Schiffer
Marcus Pfeifer
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to BRPI0822719A priority Critical patent/BRPI0822719B1/pt
Priority to RU2010152011/04A priority patent/RU2479341C2/ru
Priority to US12/226,857 priority patent/US8057768B2/en
Priority to CN2008801287482A priority patent/CN102015074B/zh
Publication of WO2009140989A1 publication Critical patent/WO2009140989A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a special device for purifying diesel exhaust gases, which contains in the flow direction of the exhaust gas, an oxidation catalyst, a diesel particulate filter with catalytically active coating and, downstream of a feed device for a reducing agent from an external reducing agent source, an SCR catalyst.
  • the raw exhaust gas of diesel engines contains a relatively high oxygen content of up to 15% by volume.
  • particulate emissions are contained, which consist predominantly of soot residues and optionally organic agglomerates and result from a partially incomplete fuel combustion in the cylinder.
  • the reduction of nitrogen oxides to nitrogen (“denitrification" of the exhaust gas) is more difficult because of the high oxygen content.
  • a known method is the selective catalytic reduction (SCR) of the nitrogen oxides on a suitable catalyst, abbreviated to SCR catalyst.
  • SCR selective catalytic reduction
  • the reduction of the nitrogen oxides contained in the exhaust gas takes place in the SCR process with the aid of a reducing agent metered into the exhaust gas system from an external source, preferably ammonia or an ammonia-releasing compound such as, for example, urea
  • the ammonia if present, generated in situ from the precursor compound reacts with the nitrogen oxides from the exhaust gas in the SCR catalyst in a comproportionation reaction to form nitrogen and water.
  • An advance Direction for the purification of diesel engine exhaust gases must contain at least one oxidation-active catalyst and denitrification an SCR catalyst upstream Einsetzvoriques for reducing agent (preferably ammonia or urea solution) and external source of reducing agent (for example, an additional tank with urea solution or an ammonia storage). If, by optimizing the engine combustion, it is not possible to keep the particle emissions so low that they can be removed via the oxidation catalyst by direct oxidation with oxygen, it is additionally necessary to use a particle filter.
  • reducing agent preferably ammonia or urea solution
  • external source of reducing agent for example, an additional tank with urea solution or an ammonia storage
  • EP-B-1 054 722 describes a system for treating NO x and particulate-containing diesel exhaust gases, wherein an oxidation catalytic converter is connected upstream of a particulate filter.
  • an oxidation catalytic converter is connected upstream of a particulate filter.
  • a reducing agent source and a metering device for the reducing agent, and an SCR catalyst are arranged on the outflow side to the particle filter.
  • the NO 2 content in the exhaust gas and thus the NO 2 / NO 2 ratio are increased by at least partial oxidation of NO on the oxidation catalyst, the NO / NO 2 ratio preferably being "predetermined" for the SCR catalyst optimal level is set ".
  • This optimum for the SCR catalyst NO / NO 2 ratio is for all currently known SCR catalysts to 1. If the NO x contained in the exhaust gas only from NO and NO 2 , so is the optimal NO 2 / NO x ratio between 0.3 and 0.7, preferably between 0.4 and 0.6 and more preferably at 0.5. Whether this ratio is achieved before the SCR catalyst in a system according to EP-B-1 054 722, depends on the exhaust gas temperature and thus on the operating condition of the engine, the activity of the oxidation catalyst and the design and soot loading of the diesel particulate filter downstream of the oxidation catalyst.
  • the untreated exhaust gas of conventional diesel engines contains only a very small proportion of NO 2 in NO x .
  • the majority of nitrogen oxides is nitric oxide NO.
  • NO is at least partially oxidized to NO 2 . How high the NO 2 formation rate is depends on the activity of the oxidation catalyst and the exhaust gas temperature. If a significant amount of soot has been deposited on the downstream particulate filter, then the NO 2 fraction present after the oxidation catalytic converter in the NO x is expelled. reaching exhaust gas temperature again reduced. Since in the oxidation of soot with NO 2 from the NO 2 predominantly NO is formed, but this does not denitrify the exhaust gas.
  • EP-B-1 054 722 does not provide any technical teaching as to how this adjustment of the NO 2 / NO x ratio in the exhaust gas before the SCR catalyst can be accomplished over the entirety of the oxidation catalyst and the filter.
  • An important object of the present invention is to provide a technical teaching for setting an optimum NO 2 / NO x ratio in the exhaust gas before SCR catalyst in an exhaust gas purification system according to EP-B-1 054 722.
  • auxiliary measures include the additional injection of fuel into the exhaust line before the oxidation catalyst or into the cylinder of the combustion chamber during the Auslrawkolbenhubes.
  • the unburned fuel that enters the exhaust gas from time to time is burnt over the oxidation catalyst to release heat; the oxidation catalyst is used as a "heating catalyst” to heat the downstream diesel particulate filter to temperatures well above the Rußzündtemperatur in oxygen-containing atmosphere, ie in the range 500 to 650 0 C.
  • the soot particles with the exhaust gas containing oxygen "burned".
  • the oxidation catalyst In order for the oxidation catalyst to function as a "heating catalyst" in "active" diesel particulate filter regeneration, it must meet some requirements in terms of conversion performance and aging stability. He must be able to convert high amounts of unburned hydrocarbons oxidatively, without causing the In this case, the conversion of unburned hydrocarbons must be as complete as possible, since the breakthrough of unburned hydrocarbons by the oxidation catalyst at the latest SCR catalyst, which is further downstream, can lead to poisoning of the same Hydrocarbons at the end of the exhaust system can also lead to non-compliance with the legal limits.The more fuel that can be completely burned over the oxidation catalyst, the more flexible the strategy for active regeneration is.And it is an important requirement that the oxidation catalyst at low exhaust gas temperatures (180 to 250 ° C) "ignites".
  • an oxidation catalyst which is also ideally suited as a heating catalyst should show very high HC conversion rates even at the lowest possible exhaust gas temperatures, with the HC conversion starting to rise as abruptly as possible from the “ignition temperature” (light-off temperature) the catalyst is so resistant to aging that it is not excessively impaired in its activity by the exotherm generated during the hydrocarbon combustion
  • ignition temperature light-off temperature
  • a device for purifying diesel exhaust gases which contains in the flow direction of the exhaust gas an oxidation catalyst, a diesel particulate filter with catalytically active coating, a device for introducing a reducing agent from an external reducing agent source and an SCR catalyst, wherein the oxidation catalyst and the catalytically active coating of the diesel particulate filter palladium and platinum.
  • the apparatus is characterized in that the ratio of the total amount of palladium to the total amount of platinum is between 8: 1 and 1:15, wherein at the same time the ratio platinum: palladium in the oxidation catalyst is not greater than 6: 1, while the ratio platinum: palladium in the catalytically active coating of the diesel particulate filter is not less than 10: 1.
  • the device according to the invention ensures that before the SCR catalyst in the vast majority of diesel vehicles typical operating conditions in which significant levels of nitrogen oxides are present in the exhaust gas to be cleaned, the best possible NO 2 / NO ⁇ ratio is applied. On the other hand, it is ensured that the oxidation catalyzer has a sufficiently good “heat-up performance" in order to enable "active" diesel particle filter regeneration at important operating points.
  • the invention is based on the following findings:
  • oxidation catalysts with high platinum contents in diesel exhaust gases cause high conversion rates in the oxidation of NO to NO 2 . It is also known that oxidation catalysts containing a lot of palladium can quite fully convert high quantities of unburned hydrocarbons in the diesel exhaust even at low temperatures. Unfortunately, catalysts with high platinum contents tend to degrade at high hydrocarbon levels while palladium has insufficient NO oxidation activity. This is a conflict of interest between the required NO conversion performance of a catalyst on the one hand and its "heat-up performance" on the other.This cost-related conflict can not be resolved by a simple "addition" of the two precious metals palladium and platinum in the oxidation catalyst.
  • the inventors have now found that it is advantageous if the essential contribution to the formation of NO 2 takes place in passing the exhaust gas flow over the diesel particulate filter. This is surprising insofar as it has hitherto been assumed that a high degree of "passive" particulate filter regeneration can only be achieved by high NO 2 formation rates over the oxidation catalyst in order to minimize the number of supplementary "active" diesel particulate filter regenerations.
  • the total amount of noble metal in the device according to the invention has a subordinate influence on the particle size distribution. filter achievable NO 2 / NO x ratio has.
  • the platinum: palladium ratio and the distribution of the precious metals platinum and palladium via the exhaust gas purification units oxidation catalyst and particle filter are of importance for the NO 2 formation behavior.
  • the "heat-up" performance of the oxidation catalyst is improved with increasing noble metal content of the oxidation catalyst, provided that the platinum: palladium ratio in the oxidation catalyst does not exceed 6: 1.
  • the ratio is Platinum: palladium in the oxidation catalyst between 0.5: 1 and 3: 1, more preferably between 1: 1 and 2.5: 1.
  • the platinum: palladium ratio in the catalytically active coating of the diesel particulate filter be not less than 10: 1.
  • the ratio of platinum to palladium in the catalytically active coating of the diesel particulate filter is between 12: 1 and 14 in preferred embodiments : 1.
  • the ratio of the total amount of palladium to the total amount of platinum in the device can be varied over a very wide range, namely between 8: 1 and 1:15, preferably between 2: 1 and 1:10, and particularly preferably between 1: 1 and 1: 7, providing cost-effective exhaust systems for virtually all diesel vehicles currently in use and testing and many future diesel vehicles.
  • oxidation catalyst and diesel particulate filter are in the form of two separate components. If, for example, only a small amount of space is available in the exhaust system of a diesel passenger car, these can otherwise be accommodated in a housing. Likewise, the positioning in two different housings in different positions (near the engine and / or in the underbody of the vehicle) is possible.
  • the oxidation catalyst consists of a platinum and palladium-containing catalytically active coating which is applied to a ceramic or metallic fürflußwabenanalysis.
  • a ceramic or metallic fürflußwabenArch Preference is given to using ceramic flow-through honeycomb bodies which have cell densities of 15 to 150 cells per square centimeter, particularly preferably 60 to 100 cells per square centimeter.
  • the channel Wall thickness of preferred support bodies is between 0.05 and 0.25 millimeters, more preferably between 0.07 and 0.17 millimeters.
  • the diesel particulate filter consists of a platinum and palladium-containing catalytically active coating and a filter body.
  • a filter body metallic and ceramic filter body are suitable, for example, metallic fabric and knitted body.
  • Wandflußfiltersubstrate of ceramic material or silicon carbide are used.
  • the platinum and palladium-containing catalytically active coating is introduced into the wall of such a Wandflußfiltersubstrats of ceramic material or silicon carbide.
  • an oxidation catalyst consisting of a platinum and palladium-containing catalytically active coating on a ceramic or metallic flow honeycomb body and a diesel particulate filter consisting of a platinum and palladium-containing catalytically active coating and a filter body are suitably selected in that the volume ratio of flow-through honeycomb body to filter body is between 1: 1, 5 and 1: 5.
  • the volume ratio of naturalflußwabenArchitol is between 1: 2 and 1: 4.
  • platinum and palladium are contained in a catalytically active coating.
  • the noble metals platinum and palladium are preferably present on one or more oxidic support materials. They may be applied separately on optionally different support materials or may be present together on one or more support materials.
  • the support materials are selected from the group consisting of aluminum oxide, lanthanum oxide-stabilized aluminum oxide, aluminosilicate, silicon dioxide, titanium dioxide, cerium oxide, cerium-zirconium mixed oxide, rare earth metal sesquioxide, zeolite and mixtures thereof. Preference is given to using aluminum oxide, lanthanum oxide-stabilized aluminum oxide, aluminosilicate, titanium dioxide and zeolite as support materials.
  • the oxidation catalyst are platinum and / or palladium deposited on alumina and / or aluminum silicate as Shinmaierial ago.
  • platinum and / or palladium are supported on lanthanum stabilized alumina.
  • the catalytically active coating of the oxidation catalyst also contains prefers zeolite. Whether zeolite should also be present in the catalytically active coating of the diesel particle filter essentially depends on the field of application of the device according to the invention. If the device is to be used for purifying diesel exhaust gases in passenger cars, diesel particulate filters which contain zeolite in the catalytically active coating are preferred.
  • Such a component is suitable in an exhaust gas purification device according to the invention in combination with an oxidation catalyst having a platinum: palladium ratio not greater than 6: 1, especially for the purification of diesel exhaust gases in applications with very low operating temperature of the filter (average temperature in NEDC ⁇ 250 0 C).
  • the preferred noble metal-containing components for such use can For example, be generated by the fact that the usually oxidic support material is moistened pore-filling with a suitable aqueous solution of a noble metal precursor compound, but preserving its flowability. Then, the noble metal is thermally fixed in the pores in a subsequent Schnellkalzinationsbacter.
  • the noble metal-containing powder components resulting from such a process can be processed into a coating suspension and applied or introduced onto a throughflow honeycomb body and / or filter body.
  • all previously known SCR catalysts can be used.
  • vanadium oxide-based SCR catalysts and zeolite compounds exchanged with iron and / or copper as known from the prior art and commercially available.
  • transition-metal oxide-based SCR catalyst technologies which include, for example, cerium oxides or cerium transition metal mixed oxides and / or tungsten oxide.
  • the device is suitable for cleaning diesel exhaust gases and can preferably be used in motor vehicles.
  • the device When passing the diesel exhaust gases to be cleaned by the device according to the invention under the conditions typical for this task, all emissions contained in the diesel exhaust gas are reduced.
  • FIG. 1 NO conversion in the model gas as a function of the temperature before catalyst as a typical measurement result in the determination of the average NO 2 / NO X -
  • Figure 2 Mean NO 2 / NO ⁇ ratio 200 - 400 0 C in the model exhaust after diesel particulate filter in the inventive systems SYS_1, SYS_2, SYS_3 and SYS_4 and in the comparison systems VSYS_1, VSYS_2 and VSYS_3.
  • FIG. 4 HC breakthrough [Vppm] in the "heat-up experiment” after diesel particle filter in the systems SYS_1, SYS_2, SYS_3 and SYS_4 according to the invention and in the comparison systems VSYS_1, VSYS_2 and VSYS_3.
  • homogeneous silicon-aluminum mixed oxide (5% by weight of SiO 2 based on the total mass of the mixed oxide, BET surface area: 150 m 2 / g) was mixed with an aqueous solution of tetraammineplatinum acetate and tetraamminepalladium nitrate pore-filling moistened, whereby the flowability of the powder was retained.
  • Cat-Idents with the prefix "DOC” designate catalysts according to the invention.
  • Cat-identifiers with the prefix "VDOC” designate comparative catalysts
  • a lanthanum oxide-stabilized aluminum oxide (4% by weight of La 2 O 3 based on the total mass of the mixed oxide, BET surface area 180 nm 7 g) was mixed with an aqueous solution of tetraammineplatinate acetate and tetraamine palladium
  • the noble metal content of the solution and the precious metal ratio were chosen according to the target quantities and ratios to be achieved (see table below) in the coated particle filter to be produced.
  • the wet powder was fixed for the duration of the precious metal of 4 hours calcined at 300 0 C
  • the thus obtained Catalytically activated powders were suspended in water, ground and placed in the walls of a cylindrical ceramic wall flow filter substrate (DURATRAP CO 200/12) with a diameter of 144 millimeters and a length of 152.4 millimeters in a conventional dip coating process.
  • a coating amount of The wall-flow filter substrate had 31 cells sealed per square centimeter and a cell wall thickness of 0.3 millimeters.
  • the resulting catalytically activated diesel particulate filters were calcined at 300 ° C for 4 hours and then at 500 0 C treated with forming gas for a period of 2 hours The following table shows which diesel particulate filters were produced in this way
  • Cat-idents with the prefix “DPF” designate diesel particulate filters according to the invention.
  • Cat-idents prefixed with “VDPF” denote comparison parts
  • the oxidation catalysts and diesel particulate filters thus obtained were subjected prior to the characterization of a synthetic aging procedure to this, the parts were in an oven at 750 0 C for a period of 16 hours an atmosphere of 10 VoI - exposed to% oxygen in nitrogen -% water vapor and 10 VoI
  • Oxidation catalyst and diesel particulate filter were installed in the reactor of a laboratory model gas system, wherein the oxidation catalyst upstream, the diesel particulate filter was arranged downstream.
  • the following experimental conditions were set:
  • FIG. 1 shows by way of example a typical result.
  • set to diesel particulate filter NO 2 / NO ⁇ ratio over the temperature range 200 to 400 0 C was determined by integration of the NO conversion curve of 200 ° C to 400 0 C, the average NO 2 content in the gas and the sum of itself and the area above the curve (up to 100%) in the same temperature range.
  • Figure 2 shows the NO 2 / NO x ratio thus obtained, which is achieved over the systems tested in the temperature range 200 to 400 0 C on average.
  • a NO 2 / NO x ratio between 0.3 and 0.7 can be achieved downstream of the diesel particulate filter.
  • Optimal is a NO 2 / NO ⁇ ratio of 0.5.
  • Figure 2 shows that the minimum ratio of 0.3 in the comparison systems is achieved only by the system VSYS_3. In contrast, all tested systems according to the invention achieve the minimum NO 2 / NO x ratio. The best results are achieved with the SYS_2 system.
  • the total Pd: Pt ratio is 1: 9.2.
  • the ratio Pt: Pd in Oxidation catalyst is 6 1
  • the ratio Pt Pd in the catalytically active coating of the diesel particulate filter is 12 1
  • FIG. 3 shows by way of example a typical result of such a measurement.
  • FIG. 4 shows the results obtained for the systems tested, with HC breakthrough limits given in [Vppm]. It can be clearly seen that the comparison system VSYS_3, which has the best average NO 2 / NO x ratio after diesel particle filter (see FIG. Unfortunately, the same applies to the system SYS_2 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Die Erfindung betrifft eine spezielle Vorrichtung zur Reinigung von Dieselabgasen, die in Strömungsrichtung des Abgases einen Oxidationskatalysator, ein Dieselpartikelfilter mit katalytisch aktiver Beschichtung und, nachgeschaltet zu einer Dosierungsvorrichtung für ein Reduktionsmittel aus einer externen Reduktionsmittelquelle, einen SCR-Katalysator enthält. Der Oxidationskatalysator und die katalytisch aktive Beschichtung des Dieselpartikelfilters enthalten Palladium und Platin. Das Verhältnis der Edelmetalle Platin und Palladium im Gesamtsystem und auf den Einzelkomponenten Oxidationskatalysator bzw. katalytisch beschichtetes Dieselpartikelfilter sind so aufeinander abgestimmt, daß ein optimales NO/NO2- Verhältnis im Abgas vor dem nachgeordneten SCR-Katalysator einerseits, und ein optimales Aufheiz- und HC- Umsatzverhalten während einer aktiven Partikelfilterregeneration andererseits erreicht wird.

Description

Vorrichtung zur Reinigung von Dieselabgasen Beschreibung
Die Erfindung betrifft eine spezielle Vorrichtung zur Reinigung von Dieselabgasen, die in Strömungsrichtung des Abgases einen Oxidationskatalysator, ein Dieselpartikeilfilter mit katalytisch aktiver Beschichtung und, nachgeschaltet zu einer Einbringvorrichtung für ein Reduktionsmittel aus einer externen Reduktionsmittelquelle, einen SCR- Katalysator enthält.
Das Rohabgas von Dieselmotoren enthält neben Kohlenmonoxid CO, Kohlenwas- serstoffen HC und Stickoxiden NOx einen relativ hohen Sauerstoffgehalt von bis zu 15 Vol.-%. Außerdem sind Partikelemissionen enthalten, die überwiegend aus Rußrückständen und gegebenenfalls organischen Agglomeraten bestehen und aus einer partiell unvollständigen Kraftstoffverbrennung im Zylinder herrühren.
Die Einhaltung künftig in Europa, Nordamerika und Japan geltender gesetzlicher Abgasgrenzwerte für Dieselfahrzeuge erfordert die gleichzeitige Entfernung von Partikeln und Stickoxiden aus dem Abgas. Die Schadgase Kohlenmonoxid und Kohlenwasserstoffe können aus dem mageren Abgas durch Oxidation an einem geeigneten Oxidationskatalysator leicht unschädlich gemacht werden. Zur Entfernung der Partikelemissionen sind Dieselpartikelfilter mit und ohne zusätzliche katalytisch aktive Be- Schichtung geeignete Aggregate. Die Reduktion der Stickoxide zu Stickstoff („Entstickung" des Abgases) ist wegen des hohen Sauerstoffgehaltes schwieriger. Ein bekanntes Verfahren ist die selektive katalytische Reduktion (Selective Catalytic Reduktion SCR) der Stickoxide an einem geeigneten Katalysator, kurz SCR-Kata- lysator. Dieses Verfahren gilt gegenwärtig für die Entstickung von Dieselmotoren- abgasen als bevorzugt. Die Verminderung der im Abgas enthaltenden Stickoxide erfolgt im SCR-Verfahren unter Zuhilfenahme eines aus einer externen Quelle in den Abgasstrang eindosierten Reduktionsmittels. Als Reduktionsmittel wird bevorzugt Ammoniak oder eine Ammoniak freisetzende Verbindung wie beispielsweise Harnstoff oder Ammoniumcarbamat eingesetzt. Das gegebenenfalls aus der Vorläuferverbindung in situ erzeugte Ammoniak reagiert am SCR-Katalysator mit den Stickoxiden aus dem Abgas in einer Komproportionierungsreaktion zu Stickstoff und Wasser.
Derzeit ist, um den aufkommenden gesetzlichen Vorgaben gerecht zu werden, eine Kombination der verschiedenen Abgasreinigungsaggregate unumgänglich. Eine Vor- richtung zur Reinigung von Dieselmotorenabgasen muß mindestens einen oxidations- aktiven Katalysator und zur Entstickung einen SCR-Katalysator mit vorgeschalteter Einbringvorrichtung für Reduktionsmittel (bevorzugt Ammoniak oder Harnstofflösung) und externer Reduktionsmittelquelle (beispielsweise einen Zusatztank mit Harnstoff- lösung oder einen Ammoniakspeicher) enthalten. Falls es durch Optimierung der motorischen Verbrennung nicht gelingt, die Partikelemissionen so gering zu halten, daß diese über dem Oxidationskatalysator durch direkte Oxidation mit Sauerstoff entfernt werden können, ist zusätzlich der Einsatz eines Partikelfilters notwendig.
Entsprechende Abgasreinigungssysteme sind bereits beschrieben worden; einige befinden sich derzeit in der praktischen Erprobung.
So beschreibt die EP-B-1 054 722 ein System zur Behandlung von NOx- und Partikel- haltigen Dieselabgasen, worin ein Oxidationskatalysator einem Partikelfilter vorgeschaltet ist. Abströmseitig zum Partikelfilter sind eine Reduktionsmittelquelle und eine Dosiereinrichtung für das Reduktionsmittel, sowie ein SCR-Katalysator angeordnet. Im hier beschriebenen Verfahren wird der NO2-Anteil im Abgas und somit das NO2/NOχ- Verhältnis durch wenigstens teilweise Oxidation von NO am Oxidationskatalysator erhöht, wobei das NO/NO2-Verhältnis bevorzugt auf „ein vorbestimmtes, für den SCR- Katalysator optimales Niveau eingestellt wird".
Dieses für den SCR-Katalysator optimale NO/NO2-Verhältnis liegt für alle derzeit bekannten SCR-Katalysatoren um 1. Besteht das im Abgas enthaltene NOx nur aus NO und NO2, so liegt das optimale NO2/NOx-Verhältnis zwischen 0,3 und 0,7, bevorzugt zwischen 0,4 und 0,6 und besonders bevorzugt bei 0,5. Ob dieses Verhältnis vor dem SCR-Katalysator in einem System nach EP-B-1 054 722 erreicht wird, hängt von der Abgastemperatur und somit vom Betriebszustand des Motors, von der Aktivität des Oxidationskatalysators und der Ausgestaltung und Rußbeladung des dem Oxidationskatalysator nachgeschalteten Dieselpartikelfilters ab.
Das unbehandelte Abgas herkömmlicher Dieselmotoren enthält nur einen sehr geringen Anteil NO2 im NOx. Den Hauptanteil der Stickoxide stellt Stickstoffmonoxid NO. Bei Überleiten dieses Rohabgases über den Oxidationskatalysator wird NO min- destens anteilig zu NO2 oxidiert. Wie hoch die NO2-Bildungsrate ist, hängt von der Aktivität des Oxidationskatalysators und der Abgastemperatur ab. Ist auf dem abströmseitig angeordneten Dieselpartikelfilter eine signifikante Menge an Ruß abgeschieden, so wird der nach dem Oxidationskatalysator vorliegende NO2-Anteil im NOx bei aus- reichender Abgastemperatur wieder verringert. Da bei der Oxidation von Ruß mit NO2 aus dem NO2 überwiegend NO entsteht, erfolgt dadurch jedoch keine Entstickung des Abgases. Dies muß über dem nachgeordneten SCR-Katalysator erfolgen, wofür das NO2/NOχ-Verhältnis über der Gesamtheit von Oxidationskatalysator und Dieselpartikel- filter optimal eingestellt werden muß. EP-B-1 054 722 liefert jedoch keine technische Lehre dazu, wie diese Einstellung des NO2/NOx-Verhältnisses im Abgas vor dem SCR- Katalysator über der Gesamtheit von Oxidationskatalysator und Filter bewerkstelligt werden kann.
Eine wichtige Aufgabe der vorliegenden Erfindung ist es, eine technische Lehre zur Einstellung eines möglichst optimalen NO2/NOx-Verhältnisses im Abgas vor SCR-Katalysator in einem Abgasreinigungssystem gemäß der EP-B-1 054 722 bereitzustellen.
Ein weiteres in der EP-B-1 054 722 nicht diskutiertes, in der Praxis aber auftretendes Problem besteht darin, daß die in diesem System erfolgende „passive" Partikelfilterregeneration, d.h. der „in situ" erfolgende Abbrand von Ruß durch Oxidation mit über dem Oxidationskatalysator erzeugtem NO2, allein in der Regel nicht ausreichend ist, um ein Zusetzen des Partikelfilters mit Ruß und ein dadurch bedingtes Ansteigen des Abgasgegendruckes auf nicht akzeptable Werte zu verhindern. Es sind applikative Hilfsmaßnahmen nötig, durch die beispielweise zusätzliche, „aktive" Dieselpartikelfilterregenerationen vorgenommen werden können, wenn der Abgasgegendruck über dem Partikelfilter einen kritischen Schwellwert übersteigt.
Zu diesen Hilfsmaßnahmen gehört die zusätzliche Einspritzung von Kraftstoff in den Abgasstrang vor Oxidationskatalysator oder in den Zylinder des Brennraums während des Auslaßkolbenhubes. Der mit Hilfe dieser Einrichtung von Zeit zu Zeit ins Abgas gelangende unverbrannte Kraftstoff wird über dem Oxidationskatalysator unter Freisetzung von Wärme verbrannt; der Oxidationskatalysator wird als „Heizkatalysator" verwendet, um den nachgeschalteten Dieselpartikelfilter auf Temperaturen aufzuheizen, die deutlich über der Rußzündtemperatur in Sauerstoff-haltiger Atmosphäre, d.h. im Bereich 500 bis 6500C liegen. Durch den so erzielten Temperaturanstieg werden die Rußpartikel mit dem im Abgas enthaltenden Sauerstoff „abgebrannt". Damit der Oxidationskatalysator als „Heizkatalysator" in der „aktiven" Dieselpartikelfilterregeneration arbeiten kann, muß er einige Anforderungen hinsichtlich Umsatzverhalten und Alterungsstabilität erfüllen. Er muß kurzzeitig hohe Mengen unverbrannter Kohlenwasserstoffe oxidativ umsetzen können, ohne daß dabei die Oxidationsreaktion „absäuft" und so zum Erliegen kommt. Dabei muß der Umsatz der unverbrannten Kohlenwasserstoffe möglichst vollständig sein, da der Durchbruch unverbrannter Kohlenwasserstoffe durch den Oxidationskatalysator spätestens am SCR-Katalysator, der weiter abströmseitig angeordnet ist, zu Vergiftungen desselben führen kann. Ein Durchbruch unverbrannter Kohlenwasserstoffe am Ende der Abgasanlage kann darüber hinaus zur Nichteinhaltung der gesetzlichen Grenzwerte führen. Je mehr Kraftstoff vollständig über dem Oxidationskatalysator verbrannt werden kann, um so flexibler gestaltet sich die Strategie für die aktive Regeneration. Weiterhin ist es eine wichtige Anforderung, daß der Oxidationskatalysator schon bei niedrigen Abgas- temperaturen (180 bis 2500C) „zündet".
In Summe soll ein auch als Heizkatalysator ideal geeigneter Oxidationskatalysator also sehr hohe HC-Umsatzraten schon bei möglichst geringen Abgastemperaturen zeigen, wobei der HC-Umsatz ab Erreichen der „Zündtemperatur" (Light-Off-Temperatur) möglichst sprunghaft auf Maximalwerte ansteigen soll. Außerdem muß der Katalysator so alterungsstabil sein, daß er durch die während der Kohlenwasserstoffverbrennung erzeugte Exothermie in seiner Aktivität nicht zu stark beeinträchtigt wird. Diese Leistungsanforderungen werden im folgenden zusammenfassend als „heat-up- Performance" bezeichnet.
Es ist eine weitere wichtige Aufgabe der vorliegenden Erfindung, ein Abgasreinigungs- System mit dem in EP-B-1 054 722 beschriebenen Grundaufbau bereitzustellen, in dem der Oxidationskatalysator im Falle einer „aktiven" Partikelfilterregeneration eine möglichst gute „heat-up-Performance" zeigt.
Die beiden genannten Aufgaben werden durch eine Vorrichtung zur Reinigung von Dieselabgasen gelöst, die in Strömungsrichtung des Abgases einen Oxidationskata- lysator, ein Dieselpartikelfilter mit katalytisch aktiver Beschichtung, eine Einbringvorrichtung für ein Reduktionsmittel aus einer externen Reduktionsmittelquelle und einen SCR-Katalysator enthält, wobei der Oxidationskatalysator und die katalytisch aktive Beschichtung des Dieselpartikelfilters Palladium und Platin enthalten. Die Vorrichtung ist dadurch gekennzeichnet, daß das Verhältnis der Gesamtmenge an Palladium zur Gesamtmenge an Platin zwischen 8 : 1 und 1 : 15 liegt, wobei zugleich das Verhältnis Platin : Palladium im Oxidationskatalysator nicht größer als 6 : 1 ist, während das Verhältnis Platin : Palladium in der katalytisch aktiven Beschichtung des Dieselpartikelfilters nicht geringer als 10 : 1 ist. Mit der erfindungsgemäßen Vorrichtung ist einerseits gewährleistet, daß vor dem SCR- Katalysator in der überwiegenden Mehrzahl der für Dieselfahrzeuge typischen Betriebszustände, in denen signifikante Stickoxid-Gehalte im zu reinigenden Abgas vorhanden sind, ein möglichst optimales NO2/NOχ-Verhältnis anliegt. Andererseits ist gewährleistet, daß der Oxidationskatalystor eine hinreichend gute „heat-up-Perfor- mance" aufweist, um in wichtigen Betriebspunkten eine „aktive" Dieselpartikelfilterregeneration zu ermöglichen.
Der Erfindung liegen die folgenden Erkenntnisse zugrunde:
Es ist bekannt, daß Oxidationskatalysatoren mit hohen Platingehalten in Diesel- abgasen hohe Umsatzraten in der Oxidation von NO zu NO2 bewirken. Es ist weiterhin bekannt, daß Oxidationskatalysatoren, die viel Palladium enthalten, hohe Mengen unverbrannter Kohlenwasserstoffe im Dieselabgas schon bei geringen Temperaturen recht vollständig umsetzen können. Leider zeigen Katalysatoren mit hohen Platingehalten die Neigung, bei anstehenden hohen Kohlenwasserstoffgehalten zu ver- löschen, während Palladium keine hinreichende NO-Oxidationsaktivität aufweist. Hierin liegt ein Zielkonflikt zwischen der geforderten NO-Umsatzleistung eines Katalysators einerseits und seiner „heat-up-Performance" andererseits. Dieser Konflikt kann schon aus Kostengründen nicht durch eine einfache „Addition" der beiden Edelmetalle Palladium und Platin im Oxidationskatalysator aufgelöst werden. Die Erfinder haben nun festgestellt, daß es vorteilhaft ist, wenn der wesentliche Beitrag zur NO2-Bildung beim Überleiten des Abgasstromes über das Dieselpartikelfilter erfolgt. Dies ist insofern überraschend, als daß bislang angenommen wurde, man könne nur durch hohe NO2-Bildungsraten über dem Oxidationskatalysator ein hinreichendes Maß an „passiver" Partikelfilterregeneration erzielen, um die Anzahl ergänzender „aktiver" Dieselpartikelfilterregenerationen möglichst gering zu halten. Die Arbeiten der Erfinder deuten jedoch darauf hin, daß ein Mehraufwand an „aktiver" Partikelfilterregeneration bei zielgerichteter Verteilung der Edelmetalle Platin und Palladium über Oxidationskatalysator und Partikelfilter vermieden werden und trotzdem eine gute „heat-up-Performance" des Oxidationskatalysators bei gleichzeitiger Ein- Stellung eines optimierten NO2/NOx-Verhältnis im Abgas vor SCR-Katalysator gewährleistet werden kann.
Überraschenderweise hat sich gezeigt, daß die Gesamtmenge an Edelmetall in der erfindungsgemäßen Vorrichtung einen untergeordneten Einfluß auf das nach Partikel- filter erzielbare NO2/NOx-Verhältnis hat. Von Bedeutung für das NO2-Bildungsverhalten sind dagegen das Platin : Palladium-Verhältnis und die Verteilung der Edelmetalle Platin und Palladium über die Abgasreinigungsaggregate Oxidationskatalysator und Partikelfilter. Im Unterschied dazu zeigt sich, daß die „heat-up"-Performance des Oxidationskataly- sators mit zunehmendem Edelmetallgehalt des Oxidationskatalysator verbessert wird, vorausgesetzt, daß das Verhältnis Platin : Palladium im Oxidationskatalysator einen Wert von 6 : 1 nicht übersteigt. Bevorzugt liegt das Verhältnis Platin : Palladium im Oxidationskatalysator zwischen 0,5 : 1 und 3 : 1 , besonders bevorzugt zwischen 1 : 1 und 2,5 : 1. Um zugleich ein für den nachgeschalteten SCR-Katalysator möglichst optimales NO2/NOx-Verhältnis nach Dieselpartikelfilter zu erzielen, ist es erforderlich, daß das Verhältnis Platin : Palladium in der katalytisch aktiven Beschichtung des Dieselpartikelfilters nicht geringer ist als 10 : 1. Das Verhältnis von Platin zu Palladium in der katalytisch aktiven Beschichtung des Dieselpartikelfilters liegt in bevorzugten Ausführungsformen zwischen 12 : 1 und 14 : 1.
Werden diese Rahmenbedingungen eingehalten, so kann das Verhältnis der Gesamtmenge an Palladium zur Gesamtmenge an Platin in der Vorrichtung über einen sehr weiten Bereich variiert werden, nämlich zwischen 8 : 1 und 1 : 15, bevorzugt zwischen 2 : 1 und 1 : 10 und besonders bevorzugt zwischen 1 : 1 und 1 : 7, womit sich kostenoptimierte Abgassysteme für praktisch alle derzeit in Anwendung und Testung befindlichen und viele zukünftige Dieselfahrzeuge bereitstellen lassen.
Typischerweise liegen Oxidationskatalysator und Dieselpartikelfilter in Form von zwei separaten Bauteilen vor. Diese können, wenn beispielsweise in der Abgasanlage eines Diesel-Pkw nur wenig Bauraum zur Verfügung steht, gegenenenfalls in einem Gehäuse untergebracht sein. Ebenso ist die Positionierung in zwei verschiedenen Gehäusen an unterschiedlichen Positionen (in Motornähe und/oder im Unterboden des Fahrzeugs) möglich.
Üblicherweise besteht der Oxidationskatalysator aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung, die auf einen keramischen oder metallischen Durchflußwabenkörper aufgebracht ist. Bevorzugt werden keramische Durchflußwabenkörper eingesetzt, die Zelldichten von 15 bis 150 Zellen pro Quadratzentimeter, besonders bevorzugt 60 bis 100 Zellen pro Quadratzentimeter aufweisen. Die Kanal- Wandstärke bevorzugter Tragkörpern liegt zwischen 0,05 und 0,25 Millimetern, besonders bevorzugt zwischen 0,07 und 0,17 Millimetern.
Das Dieselpartikelfilter besteht aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung und einem Filterkörper. Als Filterkörper sind metallische und keramische Filterkörper geeignet, beispielsweise metallische Gewebe- und Gestrickkörper. Bevorzugt werden Wandflußfiltersubstrate aus keramischem Material oder Siliciumcarbid eingesetzt. Besonders bevorzugt ist die Platin und Palladium enthaltende katalytisch aktive Beschichtung in die Wand eines solchen Wandflußfiltersubstrats aus keramischem Material oder Siliciumcarbid eingebracht. In der erfindungsgemäßen Vorrichtung werden geeigneterweise ein Oxidationskata- lysator, der aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung auf einem keramischen oder metallischen Durchflußwabenkörper besteht, und ein Dieselpartikelfilter, das aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung und einem Filterkörper besteht, so ausgewählt, daß das Volumen- Verhältnis von Durchflußwabenkörper zu Filterkörper zwischen 1 : 1 ,5 und 1 : 5 liegt. Bevorzugt beträgt das Volumenverhältnis von Durchflußwabenkörper zu Filterkörper zwischen 1 : 2 und 1 : 4.
Sowohl im Oxidationskatalysator als auch im Dieselpartikelfilter einer erfindungsgemäßen Vorrichtung sind Platin und Palladium in einer katalytisch aktiven Beschich- tung enthalten. Die Edelmetalle Platin und Palladium liegen bevorzugt auf einem oder mehreren oxidischen Trägermaterialien vor. Sie können getrennt auf gegebenenfalls unterschiedlichen Trägermaterialien aufgebracht sein oder gemeinsam auf einem oder mehreren Trägermaterialien vorliegen. Dabei sind die Trägermaterialien ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Lanthanoxid-stabilisiertem AIu- miniumoxid, Alumosilikat, Siliciumdioxid, Titandioxid, Ceroxid, Cer-Zirkon-Mischoxid, Seltenerdmetall-Sesquioxid, Zeolith und Mischungen davon. Bevorzugt werden Aluminiumoxid, Lanthanoxid-stabilisiertes Aluminiumoxid, Alumosilikat, Titandioxid und Zeolith als Trägermaterialien eingesetzt.
In den bevorzugten Ausführungsformen des Oxidationskatalysators liegen Platin und/oder Palladium aufgebracht auf Aluminiumoxid und/oder Aluminiumsilikat als Trägermaierial vor. In den bevorzugten Ausführungsformen des Dieselpartikelfilters liegen Platin und/oder Palladium aufgebracht auf Lanthan-stabilisiertem Aluminiumoxid vor. Die katalytisch aktive Beschichtung des Oxidationskatalysators enthält außerdem bevorzugt Zeolith. Ob Zeolith auch in der katalytisch aktiven Beschichtung des Dieselpartikelfilters vorhanden sein sollte, hängt im wesentlichen vom Anwendungsbereich der erfindungsgemäßen Vorrichtung ab. Soll die Vorrichtung zur Reinigung von Dieselabgasen in Personenkraftwagen eingesetzt werden, so sind Dieselpartikelfilter, die Zeolith in der katalytisch aktiven Beschichtung enthalten, bevorzugt. Bei Nutzfahrzeuganwendungen führt ein wirksamer Zeolith-Anteil in der katalytisch aktiven Beschichtung des Dieselpartikelfilters jedoch nicht selten zu unerwünschten Nachteilen bezüglich des Staudruckverhaltens, weshalb hier Zeolith-freie Dieselpartikelfilter häufig geeigneter sind. Die Aufbringung der Edelmetalle auf die genannten, bevorzugten Trägermaterialien erfolgt nach den üblichen, dem Fachmann bekannten Verfahren der Injektion, der Auffällung, der mit „incipient wetness" bezeichneten Arbeitsmethode und anderen, aus der Literatur bekannten Techniken. Welche der sich im Stand der Technik darstellenden Methoden jeweils zu bevorzugen ist, hängt nicht zuletzt von der damit erzielbaren Edelmetallpartikelgröße und der Zielapplikation ab.
So wurde beobachtet, daß an Platin-reichen Edelmetallpartikeln mit einer mittleren Partikelgröße von 5 bis 10 Nanometern besonders hohe Ausbeuten in der NO-Oxi- dation erzielt werden können. Um solche großen, Platin-reichen Edelmetallpartikel auf dem Trägermaterial zu erzeugen, kann man beispielsweise ein herkömmliches Fällungsinjektionsverfahren unter Verwendung einer nur mäßig auf dem Trägermaterial sorbierenden Edelmetallvorläuferverbindung wählen. Wird eine derart hergestellte Beschichtungssuspension in die Wand eines Wandflußfiltersubstrates eingebracht, so entsteht ein katalytisch aktiviertes Dieselpartikelfilter mit ausgesprochen hoher NO- Oxidationsleistung im frisch hergestellten Zustand. Ein solches Bauteil eignet sich in einer erfindungsgemäßen Abgasreinigungsvorrichtung in Kombination mit einem Oxidationskatalysator, der ein Platin : Palladium-Verhältnis nicht größer als 6 : 1 aufweist, besonders zur Reinigung von Dieselabgasen in Applikationen mit sehr geringer Betriebstemperatur des Filters (mittlere Temperatur im NEDC < 2500C).
Für Hochtemperaturanwendungen oder zur Reinigung stark partikelhaltiger Diesel- abgase, wenn häufige „aktive" Dieselpartikelfilterregenerationen nötig sind, ist es dagegen von größerer Bedeutung, daß die Abgasreinigungsvorrichtung und somit die Abgasreingungsaggregate eine hohe thermische Alterungsstabilität aufweisen. Die für eine solche Anwendung bevorzugten Edelmetall-haltigen Komponenten können beispielsweise dadurch erzeugt werden, daß das meist oxidische Trägermaterial mit einer geeigneten wässrigen Lösung einer Edelmetallvorläuferverbindung porenfüllend, jedoch unter Erhalt seiner Rieselfähigkeit befeuchtet wird. Dann wird das Edelmetall in den Poren in einem sich anschließenden Schnellkalzinationsverfahren thermisch fixiert. Die aus einem solchen Prozeß resultierenden edelmetallhaltigen Pulverkomponenten können zu einer Beschichtungssuspension verarbeitet und auf einen Durchflußwabenkörper und/oder Filterkörper auf- bzw. eingebracht werden.
Die Aufbringung der katalytisch aktiven Beschichtung auf Durchflußwabenkörper und Filterkörper bzw. die Einbringung derselben in die Wand des Wandflußfiltersubstrates erfolgt nach den üblichen Tauchbeschichtungsverfahren bzw. Pump- und Saug- Beschichtungsverfahren mit sich anschließender thermischer Nachbehandlung (Kalzi- nation und gegebenenfalls Reduktion mit Formiergas oder Wasserstoff), die für diese Abgasreinigungsaggregate aus dem Stand der Technik hinreichend bekannt sind.
In der erfindungsgemäßen Vorrichtung können alle bisher bekannten SCR-Kataly- satoren eingesetzt werden. Gut geeignet sind insbesondere Vanadiumoxid-basierte SCR-Katalysatoren und mit Eisen und/oder Kuper ausgetauschte Zeolithverbindungen, wie sie aus dem Stand der Technik bekannt und kommerziell erhältlich sind. Ferner eignen sich Übergangsmetalloxid-basierte SCR-Katalysatortechnologien, die beispielsweise Ceroxide oder Cer-Übergangsmetall-Mischoxide und/oder Wolframoxid ent- halten.
Die Vorrichtung eignet sich zur Reinigung von Dieselabgasen und kann bevorzugt in Kraftfahrzeugen eingesetzt werden. Beim Durchleiten der zu reinigenden Dieselabgase durch die erfindungsgemäße Vorrichtung unter den für diese Aufgabe typischen Bedingungen werden alle im Dieselabgas enthaltenen Emissionen vermindert. Im folgenden sollen einige Beispiele und Figuren die Erfindung näher beschreiben. Es zeigen:
Figur 1 : NO-Umsatz im Modellgas als Funktion der Temperatur vor Katalysator als typisches Meßergebnis bei der Bestimmung des mittleren NO2/NOX-
Verhältnis für den Temperaturbereich 200 bis 4000C; das mittlere NO2/NOx-Verhältnis wird daraus durch Ermittlung der Fläche unter der
Kurve (Integration) und Division durch die die Summe aus derselben und des entsprechenden Integralwerts über der Kurve (bis 100 %) in den Grenzen 200 - 40O0C erhalten.
Figur 2: Mittleres NO2/NOχ-Verhältnis 200 - 4000C im Modellabgas nach Dieselpartikelfilter in den erfindungsgemäßen Systemen SYS_1 , SYS_2, SYS_3 und SYS_4 und in den Vergleichssystemen VSYS_1 , VSYS_2 und VSYS_3.
Figur 3: Verlauf der HC-Konzentration nach Dieselpartikelfilter als Funktion der
Meßzeit in einem „Heat-up-Experiment" im Modellabgas; Start der n-Do- dekan-Dosierung bei t = 900 s; Temperatur im Reaktor = const. = 2500C; Versuchsende bei t = 1800 s; zur Beurteilung der „Heat-up-Per- formance" wird die Höhe des HC-Durchbruchs nach Einschwingen (im gezeigten Beispiel zwischen bei t = 1500 - 1750 s) angegeben.
Figur 4: HC-Durchbruch [Vppm] im „Heat-up-Experiment" nach Dieselpartikelfilter in den erfindungsgemäßen Systemen SYS_1 , SYS_2, SYS_3 und SYS_4 und in den Vergleichssystemen VSYS_1 , VSYS_2 und VSYS_3.
Figur 5: Zusammengefaßtes Ergebnis der Modellgasuntersuchungen - über dem
Gesamtsystem erzielter HC-Umsatz [%] im „Heat-up-Experiment" und mittleres NGVNCvVerhältnis in [% NO2 im NOJ für den Temperaturbereich 200 bis 400°C in den erfindungsgemäßen Systemen SYS_1 , SYS_2, SYS_3 und SYS_4 und in den Vergleichssystemen VSYSJ ,
VSYS_2 und VSYS_3.
Untersuchungen im Modellabqas:
Zur Untersuchung im Modellabgas wurden verschiedene Oxidationskatalysatoren und Dieselpartikelfilter hergestellt. Edelmetallmengen und -Verhältnisse wurden so gewählt, daß für alle Vorrichtungen enthaltend Oxidationskatalysator und Dieselpartikelfilter dieselben Edelmetallkosten resultierten.
Zur Herstellung von erfindungsgemäßen Oxidationskatalysatoren und Vergleichskatalysatoren wurde homogenes Silicium-Aluminium-Mischoxid (5 Gew.-% SiO2 bezogen auf die Gesamtmasse des Mischoxids; BET-Oberfläche: 150 m2/g) mit einer wässrigen Lösung von Tetraaminplatin-acetat und Tetraaminpalladium-nitrat porenfüllend befeuchtet, wobei die Rieselfähigkeit des Pulvers erhalten blieb. Dabei wurden Edelmetallgehalt der Losung und Edelmetallverhaltnis entsprechend der zu erreichenden Zielmengen und -Verhältnisses (vgl nachstehende Tabelle) in den herzustellenden Katalysatoren gewählt Zur Fixierung des Edelmetalls wurde das Feuchtpulver für die Dauer von 4 Stunden bei 300°C kalziniert Das so erhaltene katalytisch aktivierte Pulver wurde in Wasser suspendiert, vermählen und in einem konventionellen Tauchbeschichtungsverfahren auf einen zylindrischen Durchflußwabenkorper mit einem Durchmesser von 118 Millimetern und einer Lange von 61 Millimetern aufgebracht Der Durchflußwabenkorper wies 62 Zellen pro Quadratzentimeter und eine Zellwandstarke von 0,17 Millimetern auf Die resultierenden Katalysatoren wurden für die Dauer von 4 Stunden bei 3000C kalziniert und anschließend bei 5000C für die Dauer von 2 Stunden mit Formiergas behandelt Die derart hergestellten Oxidations- katalysatoren sind in der nachfolgenden Tabelle zusammengestellt
Figure imgf000013_0001
Anmerkungen
• Der Gesamtedelmetallgehalt in Gramm ist bezogen auf das Volumen des Katalysators
• Kat-Idents mit Präfix „DOC" bezeichnen erfindungsgemäße Katalysatoren Kat-Idents mit Präfix „VDOC" bezeichnen Vergleichskatalysatoren
Zur Herstellung der für die Systeme benotigten katalytisch beschichteten Diesel- partikelfilter wurde ein Lanthanoxid-stabilisiertes Aluminiumoxid (4 Gew -% La2O3 bezogen auf die Gesamtmasse des Mischoxids, BET-Oberflache 180 nτ7g) mit einer wassrigen Losung von Tetraaminplatin-acetat und Tetraaminpalladium-nitrat poren- fullend befeuchtet, wobei die Rieselfahigkeit des Pulvers erhalten blieb Dabei wurden Edelmetallgehalt der Losung und Edelmetallverhaltnis entsprechend der zu erreichenden Zielmengen und -Verhältnisses (vgl nachstehende Tabelle) in den herzustellenden beschichteten Partikelfilter gewählt Zur Fixierung des Edelmetalls wurde das Feuchtpulver für die Dauer von 4 Stunden bei 3000C kalziniert Das so erhaltene katalytisch aktivierte Pulver wurde in Wasser suspendiert, vermählen und in einem konventionellen Tauchbeschichtungsverfahren in die Wände eines zylindrischen, keramischen Wandflußfiltersubstrats (DURATRAP CO 200/12) mit einem Durchmesser von 144 Millimetern und einer Lange von 152,4 Millimetern eingebracht Dabei wurde eine aufzubringende Beschichtungsmenge von 15 Gramm pro Liter, bezogen auf das Substratvolumen, gewählt Das Wandflußfiltersubstrat wies 31 wechselseitig verschlossene Zellen pro Quadratzentimeter und eine Zellwandstarke von 0,3 Millimetern auf Die resultierenden katalytisch aktivierten Dieselpartikelfilter wurden für die Dauer von 4 Stunden bei 300°C kalziniert und anschließend bei 5000C für die Dauer von 2 Stunden mit Formiergas behandelt Der nachfolgenden Tabelle ist zu entnehmen, welche Dieselpartikelfilter derart hergestellt wurden
Figure imgf000014_0001
Anmerkungen
• Der Gesamtedelmetallgehalt in Gramm ist bezogen auf das Volumen des Dieselpartikelfilters
• Kat-Idents mit Präfix „DPF" bezeichnen erfindungsgemäße Dieselpartikelfilter Kat-Idents mit Präfix „VDPF" bezeichnen Vergleichsteile
Die so erhaltenen Oxidationskatalysatoren und Dieselpartikelfilter wurden vor Charakterisierung einer synthetischen Alterungsprozedur unterzogen Dazu wurden die Teile in einem Ofen bei 7500C für die Dauer von 16 Stunden einer Atmosphäre aus 10 VoI - % Wasserdampf und 10 VoI -% Sauerstoff in Stickstoff ausgesetzt
Zur anschließenden Untersuchung im Modellabgas wurden den so behandelten Oxidationskatalysatoren und Dieselpartikelfiltern Bohrkerne mit einem Durchmesser von 25,4 Millimetern entnommen Die so erhaltenen Prüflinge wurden zu den in der nachstehenden Tabelle aufgeführten Systemen zusammengesetzt und getestet
Figure imgf000015_0001
Anmerkungen-
• Der Gesamtedelmetallgehalt in Gramm ist bezogen auf das Gesamtvolumen der Abgasreinigungsaggregate • System-Idents mit Präfix „SYS" bezeichnen erfindungsgemäße Systemgestaltungen. System-Idents mit Präfix „VSYS" bezeichnen Vergleichssysteme
Oxidationskatalysator und Dieselpartikelfilter wurden in den Reaktor einer Labor- Modellgasanlage eingebaut, wobei der Oxidationskatalysator anströmseitig, das Dieselpartikelfilter abströmseitig angeordnet wurde. Zunächst wurde das nach Dieselpartikelfilter erzielbare mittlere NO2/NOχ-Verhältnis bestimmt. Dazu wurden folgende Versuchsbedingungen eingestellt:
Figure imgf000015_0002
Figure imgf000016_0001
Aus der Bestimmung des Stickoxid-Gehaltes und des NO- bzw. NO2-Gehaltes im Gas vor Eintritt in den Oxidationskatalysator (Dosierwerte) und nach Austritt aus dem Dieselpartikelfilter (gemessene Werte) wurde zunächst der NO-Umsatz über dem Gesamtsystem (Oxidationskatalysator und Dieselpartikelfilter) als Funktion der Temperatur bestimmt. Figur 1 zeigt beispielhaft ein typisches Ergebnis. Zur Bestimmung des mittleren, nach Dieselpartikelfilter eingestellten NO2/NOχ-Verhältnisses über den Temperaturbereich 200 bis 4000C wurde durch Integration der NO-Umsatzkurve von 200°C bis 4000C der mittlere NO2-Anteil im Gas bestimmt und zur Summe aus sich selbst und der Fläche oberhalb der Kurve (bis 100 %) im gleichen Temperaturbereich in Beziehung gesetzt. Figur 2 zeigt das so erhaltene NO2/NOx-Verhältnis, das über den getesteten Systemen im Temperaturbereich 200 bis 4000C im Mittel erzielt wird.
In einer Vorrichtung gemäß Anspruch 1, in der abströmseitig zum Dieselpartikelfilter eine Einbringvorrichtung für ein Reduktionsmittel aus einer externen Reduktionsmittelquelle und ein SCR-Katalysator zur Entfernung von Stickoxiden angeordnet ist, muß, um eine durchgehend ausreichende Entstickungswirkung des nachgeschalteten SCR- Katalysators zu gewährleisten ein NO2/NOx-Verhältnis zwischen 0,3 und 0,7 erreicht werden. Optimal ist ein NO2/NOχ-Verhältnis von 0,5. Figur 2 zeigt, daß das Mindest- Verhältnis von 0,3 bei den Vergleichssystemen nur von dem System VSYS_3 erreicht wird. Dagegen erreichen alle getesteten erfindungsgemäßen Systeme das Mindest- NO2/NOx-Verhältnis. Die besten Resultate werden mit dem System SYS_2 erzielt. Hierin liegt das Gesamt-Pd : Pt-Verhältnis bei 1 : 9,2. Das Verhältnis Pt : Pd im Oxidationskatalysator hegt bei 6 1 Das Verhältnis Pt Pd in der katalytisch aktiven Beschichtung des Dieselpartikelfilters liegt bei 12 1
Weiterhin wurde mit den Systemen ein sog „Heat-up-Expeπment" durchgeführt In einem solchen „Heat-up-Experimenf wird untersucht, wie gut das System aus Oxidationskatalysator und Dieselpartikelfilter eine plötzliche auftretende, sehr hohe Konzentration langkettiger Kohlenwasserstoffverbindungen im Abgas umsetzen kann Dazu wird zu einem definierten Zeitpunkt im ansonsten stationären Zustand n-Dodekan vor Oxidationskatalysator in den Abgasstrang eindosiert und erfasst, wieviel Kohlenwasserstoffe nach Dieselpartikelfilter durchbrechen Aus dem Qotient aus [Dosierungskonzentration - Enddurchbruchswert] und Dosierungskonzentration ergibt sich außerdem ein Stationarumsatzwert für die langkettigen Kohlenwasserstoffe, aus dem sich ableiten laßt, mit welcher Intensität die HC-Oxιdatιonsreaktιon unter diesen erschwerten Bedingungen fortlauft Kommt die Reaktion zum Erliegen („Verloschen" des Oxidationskatalysators), so hegt dieser Umsatzendwert unterhalb von 10 % Nachstehende Tabelle fasst die im „Heat-up-Experιment" eingestellten Versuchsbedingungen zusammen
Figure imgf000017_0001
Figur 3 zeigt beispielhaft ein typisches Ergebnis einer solchen Messung.
Figur 4 zeigt die für die getesteten Systeme erhaltenen Ergebnisse, wobei die HC- Durchbruchsendwerte in [Vppm] angegeben sind. Es ist deutlich zu erkennen, daß das Vergleichssystem VSYS_3, das das beste mittlere NO2/NOx-Verhältnis nach Dieselpartikelfilter aufweist (s. Figur 2), auch den mit 2350 Vppm höchsten HC- Durchbruch und somit die schlechteste „heat-up-Performance" zeigt. Entsprechendes gilt leider tendenziell auch für das erfindungsgemäße System SYS_2. Eine kostenäquivalente Umverteilung des Edelmetalls vom Partikelfilter auf den vorgeschalteten Oxidationskatalysator unter Erhalt des Edelmetallverhältnisse (> SYS_1) führt in einem solchen erfindungsgemäßen System jedoch dazu, daß der HC- Durchbruch auf weit unter 1000 Vppm (hier: 190 Vppm) abgesenkt werden kann, ohne daß dadurch das NO2/NOx-Verhältnis den kritischen Wert von 0,3 unterschreitet. Auch an den erfindungsgemäßen Systemen SYS_3 und SYS_4 wird eine exzellente „heat- up-Performance" unter Beibehaltung guter NC^/NCvRaten erzielt. Figur 5 faßt alle erhaltenen Modellgasergebnisse zusammen. Dargestellt sind der über dem Gesamtsystem erzielte HC-Umsatz [%] im „Heat-up-Experiment" und für das mittlere Nθ2/NOx-Verhältnis für den Temperaturbereich 200 bis 4000C entsprechende Angaben als prozentualer NO2-Anteil im NOx. Die detaillierte Betrachtung zeigt, daß der Zielkonflikt zwischen „heat-up-Performance" und ausreichender NO-Konvertierung unter den gegebenen experimentellen. Randbedingungen am besten mit den erfindungsgemäßen Systemen SYS_3 und SYS_4 gelöst werden kann.
Zusammenfassend ist festzustellen, daß mit einem System nach Anspruch 1 alle eingangs genannten Aufgaben zufriedenstellend gelöst werden können. Bei Einhaltung der angegebenen Platin : Palladium-Verhältnisse in Oxidationskatalysator, Dieselpar- tikelfilter und Gesamtsystem kann in allen relevanten Betriebspunkten ein mittleres NO2/NOx-Verhältnis nach Dieselpartikelfilter und vor SCR-Katalysator von mindestens 0,3 bei zugleich hinreichend guter „heat-up-Performance" des anströmseitig angeordneten Oxidationskatalysators während einer „aktiven" Partikelfilterregeneration sichergestellt werden.

Claims

Patentansprüche
1. Vorrichtung zur Reinigung von Dieselabgasen, die in Strömungsrichtung des Abgases einen Oxidationskatalysator, ein Dieselpartikelfilter mit katalytisch aktiver Beschichtung, eine Einbringvorrichtung für ein Reduktionsmittel aus einer externen Reduktionsmittelquelle und einen SCR-Katalysator enthält, wobei der
Oxidationskatalysator und die katalytisch aktive Beschichtung des Dieselpartikelfilters Palladium und Platin enthalten, dadurch gekennzeichnet, daß das Verhältnis der Gesamtmenge an Palladium zur Gesamtmenge an Platin zwischen 8 : 1 und 1 : 15 liegt, wobei zugleich das Verhältnis Platin : Palladium im Oxidationskatalysator nicht größer als 6 : 1 ist, während das Verhältnis Platin : Palladium in der katalytisch aktiven Beschichtung des Dieselpartikelfilters nicht geringer als 10 : 1 ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß der Oxidationskatalysator aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung auf einem keramischen oder metallischen Durchflußwabenkörper besteht, das Dieselpartikelfilter aus einer Platin und Palladium enthaltenden katalytisch aktiven Beschichtung und einem Filterkörper besteht und das Volumenverhältnis von Durchflußwabenkörper zu Filterkörper zwischen 1 : 1,5 und 1 : 5 liegt.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Filterkörper ausgewählt ist aus der Gruppe der Wandflußfiltersubstrate bestehend aus keramischem Material oder Siliciumcarbid.
4. Vorrichtung nach Anpspruch 3, dadurch gekennzeichnet, daß Platin aufgebracht ist auf einem oder mehreren oxidischen Trägermaterialien ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Lanthanoxid- stabilisiertes Aluminiumoxid, Alumosilikat, Siliciumdioxid, Titandioxid, Ceroxid,
Cer-Zirkon-Mischoxid, Seltenerdmetall-Sesquioxid, Zeolith und Mischungen davon.
5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß Palladium aufgebracht ist auf einem oder mehreren oxidischen Trägermaterialien ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Lanthanoxid-stabilisiertes Aluminiumoxid, Alumosilikat, Siliciumdioxid,
Titandioxid, Ceroxid, Cer-Zirkon-Mischoxid, Seltenerdmetall-Sesquioxid, Zeolith und Mischungen davon.
6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß Platin und Palladium aufgebracht sind auf einem oder mehreren oxidischen
Trägermaterialien ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Lanthanoxid-stabilisiertes Aluminiumoxid, Alumosilikat, Siliciumdioxid, Titandioxid, Ceroxid, Cer-Zirkon-Mischoxid, Seltenerdmetall-Sesquioxid, Zeolith und Mischungen davon.
7. Verfahren zur Reinigung von Dieselabgasen, dadurch gekennzeichnet, daß die zu reinigenden Dieselabgase durch eine Vorrichtung nach einem der vorstehenden Ansprüche geleitet werden.
PCT/EP2008/008995 2008-05-23 2008-10-23 Vorrichtung zur reinigung von dieselabgasen WO2009140989A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0822719A BRPI0822719B1 (pt) 2008-05-23 2008-10-23 dispositivo para a purificação de gases de exaustão de diesel.
RU2010152011/04A RU2479341C2 (ru) 2008-05-23 2008-10-23 Устройство для снижения токсичности отработавших газов дизельного двигателя
US12/226,857 US8057768B2 (en) 2008-05-23 2008-10-23 Device for the purification of diesel exhaust gases
CN2008801287482A CN102015074B (zh) 2008-05-23 2008-10-23 用于柴油废气的纯化的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08009493A EP2123345B1 (de) 2008-05-23 2008-05-23 Vorrichtung zur Reinigung von Dieselabgasen
EP08009493.1 2008-05-23

Publications (1)

Publication Number Publication Date
WO2009140989A1 true WO2009140989A1 (de) 2009-11-26

Family

ID=39789871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/008995 WO2009140989A1 (de) 2008-05-23 2008-10-23 Vorrichtung zur reinigung von dieselabgasen

Country Status (10)

Country Link
US (1) US8057768B2 (de)
EP (1) EP2123345B1 (de)
JP (1) JP4773501B2 (de)
KR (1) KR100993742B1 (de)
CN (1) CN102015074B (de)
AT (1) ATE476246T1 (de)
BR (1) BRPI0822719B1 (de)
DE (1) DE502008001082D1 (de)
RU (1) RU2479341C2 (de)
WO (1) WO2009140989A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110837A1 (en) * 2010-03-08 2011-09-15 Johnson Matthey Plc Exhaust system comprising a nox storage catalyst and catalysed soot filter
CN102441328A (zh) * 2010-10-12 2012-05-09 福特环球技术公司 包括铂族金属捕集装置的柴油发动机废气处理系统和方法
EP2653681A1 (de) 2012-04-20 2013-10-23 Umicore AG & Co. KG Beschichtetes Dieselpartikelfilter
EP2674584A1 (de) 2012-06-14 2013-12-18 Umicore AG & Co. KG Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
US8932546B2 (en) 2012-02-03 2015-01-13 Umicore Ag & Co. Kg Catalytically active particulate filter and use thereof
RU2575717C2 (ru) * 2010-03-08 2016-02-20 Джонсон Мэтти Плс ВЫХЛОПНАЯ СИСТЕМА, СОДЕРЖАЩАЯ КАТАЛИЗАТОР НАКОПЛЕНИЯ NOx И КАТАЛИЗИРУЕМЫЙ ФИЛЬТР САЖИ
DE102015225579A1 (de) 2015-12-17 2017-06-22 Umicore Ag & Co. Kg Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
DE102011111023B4 (de) 2010-09-08 2019-08-01 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Reduzieren von NOx-Emissionen in einem Antriebsstrang eines Fahrzeugs bei Kaltstart oder überstöchiometrischem Betrieb
DE102013209487B4 (de) 2013-05-22 2020-07-02 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112339A1 (de) * 2008-04-24 2009-10-28 Umicore AG & Co. KG Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
US8246923B2 (en) * 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
US8557203B2 (en) * 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
MY163935A (en) * 2010-05-05 2017-11-15 Basf Corp Catalyzed soot filter and emissions treatment systems and methods
US8062601B2 (en) 2010-10-26 2011-11-22 Ford Global Technologies, Llc Emission SCR NOX aftertreatment system having reduced SO3 generation and improved durability
EP2651540B2 (de) 2010-12-14 2022-01-26 Umicore AG & Co. KG Architektonischer dieseloxidationskatalysator für verbesserten no2-generator
GB201021887D0 (en) 2010-12-21 2011-02-02 Johnson Matthey Plc Oxidation catalyst for a lean burn internal combustion engine
JP5937067B2 (ja) * 2011-04-28 2016-06-22 エヌ・イーケムキャット株式会社 排気ガス浄化装置
DE102011101079B4 (de) 2011-05-10 2020-08-20 Umicore Ag & Co. Kg Verfahren zur Regeneration von NOx-Speicherkatalysatoren von Dieselmotoren mit Niederdruck-AGR
GB2492175B (en) * 2011-06-21 2018-06-27 Johnson Matthey Plc Exhaust system for internal combustion engine comprising catalysed filter substrate
DE102011107692B3 (de) 2011-07-13 2013-01-03 Umicore Ag & Co. Kg Verfahren zur Reaktivierung von Abgasreinigungsanlagen von Dieselmotoren mit Niederdruck-AGR
DK2597279T3 (da) 2011-11-22 2021-10-25 Deutz Ag Anordning og fremgangsmåde til rensning af dieselmotorudstødningsgasser
GB2497597A (en) * 2011-12-12 2013-06-19 Johnson Matthey Plc A Catalysed Substrate Monolith with Two Wash-Coats
GB201121468D0 (en) 2011-12-14 2012-01-25 Johnson Matthey Plc Improvements in automotive catalytic aftertreatment
JP2013169501A (ja) * 2012-02-20 2013-09-02 Mitsubishi Motors Corp 排気浄化装置
ES2638605T3 (es) 2012-02-22 2017-10-23 Watlow Electric Manufacturing Company Regeneración activa y pasiva asistida por calentamiento eléctrico para controles de emisión eficaces de motores diésel
DE102012007890B4 (de) 2012-04-23 2014-09-04 Clariant Produkte (Deutschland) Gmbh Abgasreinigungssystem zur Reinigung von Abgasströmen aus Dieselmotoren
US8562924B1 (en) * 2012-07-02 2013-10-22 Southwest Research Institute Control of NO/NOx ratio to improve SCR efficiency for treating engine exhaust
EP2772302A1 (de) 2013-02-27 2014-09-03 Umicore AG & Co. KG Hexagonaler Oxidationskatalysator
CA2898316A1 (en) * 2013-03-12 2014-10-09 Basf Corporation Catalyst materials for no oxidation
US9333490B2 (en) 2013-03-14 2016-05-10 Basf Corporation Zoned catalyst for diesel applications
DE102013207709A1 (de) * 2013-04-26 2014-10-30 Umicore Ag & Co. Kg Entschwefelung von NOX-Speicherkatalysatoren
DE102013013973A1 (de) 2013-08-23 2015-02-26 Clariant Produkte (Deutschland) Gmbh Partikelfilter zur Reinigung von Abgasen, Abgasreinigungssystem und Verfahren zur Reinigung von Abgas
JP6330444B2 (ja) * 2014-04-16 2018-05-30 いすゞ自動車株式会社 排気浄化システム
KR20170018914A (ko) * 2014-06-16 2017-02-20 우미코레 아게 운트 코 카게 배기 가스 처리 시스템
DE102017102966A1 (de) 2016-02-25 2017-08-31 FEV Europe GmbH Reinigungsvorrichtung zur Reinigung eines Abgases eines Verbrennungsmotors sowie Verbrennungsmotor
KR102401150B1 (ko) * 2016-07-19 2022-05-25 우미코레 아게 운트 코 카게 디젤 산화 촉매 컨버터
US10807080B2 (en) 2016-09-30 2020-10-20 Johnson Matthey Public Limited Company Synthesis of metal promoted zeolite catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110628A1 (en) * 2002-02-01 2004-06-10 Cataler Corporation Catalyst for purifying exhaust gases
DE102004040549A1 (de) * 2004-08-21 2006-02-23 Umicore Ag & Co. Kg Katalytisch beschichtetes Partikelfilter und Verfahren zu seiner Herstellung sowie seine Verwendung
WO2007048971A2 (fr) * 2005-10-27 2007-05-03 Peugeot Citroën Automobiles Sa. Ligne d'echappement des gaz notamment pour moteur diesel de vehicule automobile
US20080119353A1 (en) * 2006-11-20 2008-05-22 Jifei Jia Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
DE50011443D1 (de) * 2000-03-01 2005-12-01 Umicore Ag & Co Kg Katalysator für die Reinigung der Abgase von Dieselmotoren und Verfahren zu seiner Herstellung
JP3843746B2 (ja) * 2001-03-15 2006-11-08 いすゞ自動車株式会社 連続再生型ディーゼルパティキュレートフィルタシステムとその再生制御方法
WO2009100097A2 (en) * 2008-02-05 2009-08-13 Basf Catalysts Llc Gasoline engine emissions treatment systems having particulate traps
US7506504B2 (en) * 2005-12-21 2009-03-24 Basf Catalysts Llc DOC and particulate control system for diesel engines
GB0603898D0 (en) * 2006-02-28 2006-04-05 Johnson Matthey Plc Exhaust system comprising catalysed soot filter
US7922987B2 (en) * 2006-08-19 2011-04-12 Umicore Ag & Co. Kg Catalytically coated diesel particle filter, process for producing it and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110628A1 (en) * 2002-02-01 2004-06-10 Cataler Corporation Catalyst for purifying exhaust gases
DE102004040549A1 (de) * 2004-08-21 2006-02-23 Umicore Ag & Co. Kg Katalytisch beschichtetes Partikelfilter und Verfahren zu seiner Herstellung sowie seine Verwendung
WO2007048971A2 (fr) * 2005-10-27 2007-05-03 Peugeot Citroën Automobiles Sa. Ligne d'echappement des gaz notamment pour moteur diesel de vehicule automobile
US20080119353A1 (en) * 2006-11-20 2008-05-22 Jifei Jia Method for Producing Heterogeneous Catalysts Containing Metal Nanoparticles

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575717C2 (ru) * 2010-03-08 2016-02-20 Джонсон Мэтти Плс ВЫХЛОПНАЯ СИСТЕМА, СОДЕРЖАЩАЯ КАТАЛИЗАТОР НАКОПЛЕНИЯ NOx И КАТАЛИЗИРУЕМЫЙ ФИЛЬТР САЖИ
US11484836B2 (en) 2010-03-08 2022-11-01 Johnson Matthey Public Limited Company Exhaust system comprising NOx storage catalyst and CSF
WO2011110837A1 (en) * 2010-03-08 2011-09-15 Johnson Matthey Plc Exhaust system comprising a nox storage catalyst and catalysed soot filter
DE102011111023B4 (de) 2010-09-08 2019-08-01 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Reduzieren von NOx-Emissionen in einem Antriebsstrang eines Fahrzeugs bei Kaltstart oder überstöchiometrischem Betrieb
CN102441328A (zh) * 2010-10-12 2012-05-09 福特环球技术公司 包括铂族金属捕集装置的柴油发动机废气处理系统和方法
CN102441328B (zh) * 2010-10-12 2015-09-16 福特环球技术公司 包括铂族金属捕集装置的柴油发动机废气处理系统和方法
US8932546B2 (en) 2012-02-03 2015-01-13 Umicore Ag & Co. Kg Catalytically active particulate filter and use thereof
US9346019B2 (en) 2012-04-20 2016-05-24 Umicore Ag & Co. Kg Coated diesel particle filter
EP2653681A1 (de) 2012-04-20 2013-10-23 Umicore AG & Co. KG Beschichtetes Dieselpartikelfilter
WO2013185900A1 (de) 2012-06-14 2013-12-19 Umicore Ag & Co. Kg Verfahren zur verhinderung der kontamination eines scr-katalysators mit platin
US9492787B2 (en) 2012-06-14 2016-11-15 Unicore Ag & Co. Kg Method for preventing the contamination by platinum of an SCR catalyst
EP2674584A1 (de) 2012-06-14 2013-12-18 Umicore AG & Co. KG Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
DE102013209487B4 (de) 2013-05-22 2020-07-02 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102015225579A1 (de) 2015-12-17 2017-06-22 Umicore Ag & Co. Kg Verfahren zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
WO2017103040A1 (de) 2015-12-17 2017-06-22 Umicore Ag & Co. Kg Verfahren zur verhinderung der kontamination eines katalysators zur selektiven katalytischen reduktion (scr) mit platin
US10968802B2 (en) 2015-12-17 2021-04-06 Umicore Ag & Co. Kg Method for preventing a selective catalytic reduction (SCR) catalyst from being contaminated with platinum

Also Published As

Publication number Publication date
CN102015074B (zh) 2013-04-17
US20100221161A1 (en) 2010-09-02
JP4773501B2 (ja) 2011-09-14
RU2010152011A (ru) 2012-06-27
JP2009279577A (ja) 2009-12-03
CN102015074A (zh) 2011-04-13
DE502008001082D1 (de) 2010-09-16
BRPI0822719A2 (pt) 2015-07-07
BRPI0822719B1 (pt) 2018-08-28
US8057768B2 (en) 2011-11-15
KR100993742B1 (ko) 2010-11-12
KR20100008746A (ko) 2010-01-26
ATE476246T1 (de) 2010-08-15
EP2123345A1 (de) 2009-11-25
EP2123345B1 (de) 2010-08-04
RU2479341C2 (ru) 2013-04-20

Similar Documents

Publication Publication Date Title
EP2123345B1 (de) Vorrichtung zur Reinigung von Dieselabgasen
DE10308288B4 (de) Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
EP1961933B1 (de) Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
DE102014110701B4 (de) Oxidationskatalysator zum Behandeln eines Abgases aus einem Dieselmotor, dessen Verwendungen und Verfahren zu dessen Herstellung
EP2042225B1 (de) Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
EP1789161B1 (de) Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung
EP2042226B1 (de) Entfernung von partikeln aus dem abgas von mit überwiegend stöchiometrischen luft/kraftstoff-gemisch betriebenen verbrennungsmotoren
EP2275194B1 (de) Partikelfilter mit Schwefelwasserstoff-Sperrfunktion
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
DE112016004452T5 (de) Benzinpartikelfilter
DE102014106943A1 (de) Oxidation catalyst for a compression ignition engine
DE102013207415A1 (de) Filtersubstrat, das einen Dreiwegekatalysator umfasst
DE202010018079U1 (de) Motor mit Funkenzündung, der ein Abgassystem mit einem Filter hierfür umfasst
DE102014104748A1 (de) Filtersubstrat, das einen Dreiwegekatalysator umfasst.
DE60125530T2 (de) DIESELAUSPUFFSYSTEM MIT NOx-FALLE
EP2054153A1 (de) Katalytisch beschichteter dieselpartikelfilter, verfahren zu seiner herstellung und seine verwendung
EP2349537A1 (de) Partikelminderung mit kombiniertem scr- und nh3- schlupf - katalysator
DE102009006404B3 (de) Diesel-Oxidationskatalysator mit guter Tieftemperaturaktivität
EP3452214B1 (de) Drei-zonen-dieseloxidationskatalysator
WO2014072067A1 (de) Katalysatorsystem zur behandlung von nox- und partikelhaltigem dieselabgas
EP2623183B1 (de) Katalytisch aktives partikelfilter und dessen verwendung
EP2653681A1 (de) Beschichtetes Dieselpartikelfilter
WO2020058265A1 (de) Katalysator zur reduktion von stickoxiden
EP2382041B1 (de) Vanadiumfreier diesel-oxidationskatalysator und vefahren zu dessen herstellung
WO2018015259A1 (de) Dieseloxidationskatalysator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128748.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087027967

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12226857

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3422/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010152011

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08874363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0822719

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101118