WO2009139404A1 - バイオマス混焼微粉炭焚きボイラ及び同ボイラの運転方法 - Google Patents

バイオマス混焼微粉炭焚きボイラ及び同ボイラの運転方法 Download PDF

Info

Publication number
WO2009139404A1
WO2009139404A1 PCT/JP2009/058887 JP2009058887W WO2009139404A1 WO 2009139404 A1 WO2009139404 A1 WO 2009139404A1 JP 2009058887 W JP2009058887 W JP 2009058887W WO 2009139404 A1 WO2009139404 A1 WO 2009139404A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
pulverized coal
furnace
biomass fuel
mill
Prior art date
Application number
PCT/JP2009/058887
Other languages
English (en)
French (fr)
Inventor
親利 蔵田
和人 吉川
和芳 貝塚
孝二 谷口
尊美 浅川
徳昭 石川
Original Assignee
カワサキプラントシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カワサキプラントシステムズ株式会社 filed Critical カワサキプラントシステムズ株式会社
Priority to EA201001798A priority Critical patent/EA201001798A1/ru
Priority to MX2010012333A priority patent/MX2010012333A/es
Priority to KR1020107025134A priority patent/KR101280199B1/ko
Priority to BRPI0911995A priority patent/BRPI0911995A2/pt
Priority to DK09746610.6T priority patent/DK2287529T3/en
Priority to EP09746610.6A priority patent/EP2287529B1/en
Priority to US12/988,804 priority patent/US9068746B2/en
Publication of WO2009139404A1 publication Critical patent/WO2009139404A1/ja
Priority to ZA2010/08158A priority patent/ZA201008158B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/06Mechanically-operated devices, e.g. clinker pushers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/01001Co-combustion of biomass with coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2700/00Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
    • F23J2700/001Ash removal, handling and treatment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2700/00Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
    • F23J2700/002Ash and slag handling in pulverulent fuel furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1003Processes to make pulverulent fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0266Cooling with means to convey the charge on an endless belt

Definitions

  • This invention relates to a boiler (biomass mixed fired pulverized coal fired boiler) that co-fires biomass fuel (mainly wood fuel) and pulverized coal.
  • the pulverized particle size of biomass fuel in this specification refers to the size of a mesh for selecting the pulverized powder particles with a sieve.
  • “pulverized particle size of 5 mm” is a powder particle in which 90% by weight of the entire powder particle passes through a 5 mm mesh
  • “pulverized particle size of 5 mm or more” is a particle material in which the particle particle passing through a 5 mm mesh is 90% or less Yes
  • “pulverized particle size of 5 mm or less” means that 90% or more of the powder particles passing through a 5 mm mesh.
  • the 5 mm particle size adopted here means “the limit biomass particle size for floating combustion”, which differs depending on the type, shape, moisture content, etc. of the biomass, but for woody biomass it is about 3-5 mm. It is being watched.
  • Coal fossil fuels such as coal and biomass fuels are required to reduce the consumption of fossil fuels.
  • biomass fuels for example, woody biomass fuels
  • a method of co-firing biomass fuel with a pulverized coal-fired boiler a method is adopted in which a small amount of biomass is put into a coal bunker, pulverized with coal and pulverized, and this is air conveyed to a burner and burned in a furnace. Yes.
  • biomass fuel is pulverized by a dedicated mill and supplied to a furnace with a burner different from coal fine powder to co-firing.
  • the biomass fuel co-firing rate can be increased without reducing the coal pulverization ability.
  • the combustion efficiency will deteriorate.
  • the particle size must be less than the limit particle size (about 3 to 5 mm for woody biomass) for floating combustion.
  • the graph shown in FIG. 8 shows three particle size distributions shifted to ⁇ 5 mm and pulverized particle size 5 mm based on data ( ⁇ 3 mm) obtained by pulverizing woody biomass with a dedicated pulverizer. If the average pulverized particle size d50 (50% by weight particle size) obtained from this figure is entered in a graph showing the relationship between the average pulverized particle size d50 and the power consumption unit described in a known research report (NEDO), as shown in FIG. Thus, it can be seen that the power unit is reduced by about one digit at a pulverized particle size of 5 mm as compared with a pulverized particle size ⁇ 3 mm.
  • pulverization of biomass fuel by a dedicated mill may have a pulverization particle size of 5 mm or more, the pulverization power will be greatly reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-291431
  • first prior art Japanese Patent Application Laid-Open No. 2005-291431
  • the pulverized coal burner 4 and the biomass burner 5 are provided in multiple stages at the same level.
  • Coal supplied from the coal bunker 11 is pulverized by the coal mill 6 and supplied to the furnace 1 by the pulverized coal burner 4.
  • the biomass fuel 16 is charged into the biomass bunker 12, pulverized by the biomass mill 13, and supplied to the furnace 1 by the biomass burner 5.
  • the pulverized coal and the biomass fuel are burned with the combustion air from the wind box 3 and blown upward, and further, the combustion air is further added from the air outlet 2 and burned.
  • the biomass fuel with small particle size burns while floating and flows out of the furnace together with the exhaust gas, but some large particle size biomass fuel falls to the furnace bottom against the combustion gas while burning .
  • pulverization power (necessary for pulverization) Power) tends to increase exponentially.
  • the pulverization particle size of the biomass fuel by the dedicated mill is larger than 5 mm (the maximum particle size is 5 mm or more and less than 5 mm is 90% or less), the pulverization power is significantly reduced.
  • the first prior art is based on the above knowledge and uses a biomass fuel having a pulverized particle size of 5 mm.
  • the biomass fuel can be pulverized to a particle size of 5 mm and mixed and fired without reducing the coal pulverization efficiency by the coal mill.
  • the wet separation apparatus 14 is provided in the wet clinker processing apparatus, the carbide bunker 15 is provided, and the carbide conveyance apparatus 18 is provided between the wet separation apparatus 14 and the carbide bunker 15.
  • the unburned biomass (carbide) which fell to the clinker processing apparatus 17 is processed with a wet process, and after that, the wet separation apparatus 14 isolate
  • the first conventional technique is based on cooling the carbonized unburned bimass fuel with the wet clinker processing apparatus and recovering the unburned matter (carbide) with the wet separation apparatus 14, but the dry clinker processing apparatus. It is also described that can be used.
  • the biomass fuel (carbide etc.) cooled and recovered by the wet clinker processing apparatus is the medium grain b in FIG.
  • the resistance is small and it is relatively easy to grind.
  • the size of the biomass fuel particles co-fired by the first prior art is limited to those within the range where they are completely carbonized and fall to the furnace bottom.
  • a dry clinker processing apparatus is known as a clinker processing apparatus, and an example thereof is described in Japanese Patent Publication No. 7-56375 (Patent Document 4).
  • An outline of this known dry clinker processing apparatus is as shown in FIG. 7, which is provided with a metal conveyor belt 23 having high heat resistance, and is provided by a transition hopper 20 provided between the furnace 1 and the furnace. The bottom ash of the furnace 1 is guided to the conveyor belt 23. The conveyor belt 23 is driven by drive wheels 24.
  • the casing 22 of the dry clinker processing apparatus has a sealed structure, and a plurality of cooling air suction holes 31 are provided on the side of the conveyor belt 23, and clinker cooling air is supplied thereby.
  • the bottom ash dropped on the bottom (furnace bottom) of the furnace 1 is received by the conveyor belt 23 and slowly transferred (about 5 mm per second), and gradually cooled by air for about 1 hour (conveyor belt 23 transport time). It is discharged and collected by the clinker collecting means 41.
  • cooling air is supplied into the main body of the clinker processing apparatus 21, and the bottom ash dropped on the conveyor belt 23 is slowly cooled by the air while moving inside the main body and discharged outside.
  • the cooling air supplied to the main body is heated by the burned bottom ash and becomes high temperature, sucked into the furnace 1 and merged with the combustion gas in the furnace.
  • the amount of cooling air supplied to the dry clinker treatment apparatus is limited and is about 2% of the amount of combustion air supplied to the furnace.
  • the bottom ash is cooled to approximately 100 ° C. while moving in the main body of the processing apparatus (FIG. 7) to the discharge position (about 1 hour).
  • the biomass burner 5 of the first prior art is disposed above the pulverized coal burner 4, and the biomass fuel is combusted in the upper combustion region, and the combustion in the furnace 1 is performed.
  • Time is slightly longer. Therefore, the pulverization particle size of the biomass fuel can be somewhat increased.
  • the ratio of coarse particles B of 5 mm or more increases, so that even if the biomass burner 5 is disposed above the pulverized coal burner 4 and the combustion time in the furnace is slightly increased, The problem that the core remains cannot be solved.
  • the first conventional technology (patent document 1) related to a mixed-fired boiler requires a wet separation device, a transport line, a storage bunker, a cutting device, etc. in order to collect the biomass fuel carbide and put it into a coal bunker. For this reason, there is a problem that additional equipment for co-firing biomass fuel with an existing coal boiler is large, and this equipment cost is very high.
  • the present invention has been made in consideration of the above-mentioned problems of the prior art, and does not require a significant addition of equipment to the configuration of the conventional biomass fuel mixed fired pulverized coal fired boiler, and relatively large grains. It is an object to make it possible to use a biomass fuel having a diameter (particularly, a biomass fuel having a pulverized particle size of 5 mm or more) and to increase the co-firing rate of the biomass fuel.
  • a biomass fuel co-fired pulverized coal fired boiler includes a furnace for co-firing pulverized coal and biomass fuel, a pulverized coal burner for supplying the pulverized coal to the furnace, A biomass burner for supplying the biomass fuel to the furnace, a biomass mill for pulverizing the biomass fuel supplied to the biomass burner, and a bottom ash provided below the furnace and discharged from the furnace
  • a dry clinker processing apparatus having a clinker conveyor for transporting the ash, and supplying combustion air toward the bottom ash on the clinker conveyor, thereby removing unburned biomass fuel contained in the bottom ash Combustion air supply means for burning on the clinker conveyor And features.
  • the biomass mill is configured to pulverize the biomass fuel into particles having a pulverization particle size of 5 mm or more.
  • the combustion air supply means supplies the combustion air toward the bottom ash so that unburned biomass fuel is completely burned on the clinker conveyor.
  • the boiler has a flow rate of combustion air supplied toward the inside of the furnace and a flow rate of the combustion air supplied from the combustion air supply means toward the bottom ash on the clinker conveyor.
  • a combustion air control device is further included for controlling and optimizing the combustion efficiency of the entire boiler.
  • the biomass burner is disposed at a position above the pulverized coal burner.
  • the boiler further includes a cooling air supply means for supplying cooling air to the dry clinker processing apparatus.
  • the boiler further includes a coal mill for pulverizing coal to produce the pulverized coal supplied to the pulverized coal burner.
  • the present invention is a method for operating a biomass-mixed pulverized coal-fired boiler, the step of pulverizing biomass fuel by a biomass mill, and supplying the pulverized biomass fuel to a furnace by a biomass burner
  • the combustion efficiency of the entire boiler is optimized by controlling the flow rate of the combustion air supplied toward the inside of the furnace and the flow rate of the combustion air supplied toward the bottom ash on the clinker conveyor. Turn into.
  • the boiler operation method further includes a step of supplying cooling air to the dry clinker processing apparatus.
  • the biomass mill is used as a dedicated mill for pulverizing the biomass fuel
  • the coal mill is used as a dedicated mill for pulverizing the coal.
  • the present invention includes a coal-dedicated mill and a biomass-dedicated mill, and a biomass fuel co-fired pulverized coal fired boiler that co-fires biomass fuel pulverized by a dedicated pulverizer with coal fine powder without adding special equipment. It is an object of the present invention to devise a method for co-firing biomass fuel so that coarse-grained biomass fuel can be completely burned into ash and the co-firing rate can be increased.
  • the means for solving the above problems is based on the premise of a biomass-mixed pulverized coal fired boiler that is equipped with a coal-dedicated mill and a biomass-dedicated mill, supplying biomass fuel crushed by the biomass-dedicated mill and co-firing with pulverized coal. This is due to the following (a) to (d).
  • the biomass fuel to be co-fired is a granular material having a pulverized particle size of 5 mm or more
  • a dry clinker treatment device is provided below the transition hopper of the boiler
  • the dry clinker treatment device includes combustion air supply means, and the unburned biomass fuel that has fallen into the dry clinker treatment device is completely burned on a conveyor belt to become ash
  • D) The amount of combustion air supplied is controlled so that the pulverized coal and biomass fuel are combusted by the amount of air supplied to the dry clinker treatment device and the amount of combustion air supplied to the furnace by the combustion air supply means, etc. is being done.
  • the biomass fuel is pulverized into a pulverized particle size of 5 mm or more by a dedicated mill and mixed with pulverized coal.
  • the biomass fuel is blown up by the combustion gas from the pulverized coal burner and floats and burns, and the coarse particles descend in the furnace and finally fall to the dry clinker processing apparatus disposed below the transition hopper.
  • the fine particles of 3 mm or less are completely burned out in the furnace to become ash, and the medium particles of about 5 mm are almost carbonized and fall into the dry clinker processing apparatus, and coarse particles B significantly larger than 5 mm. Falls onto the conveyor belt with the wooden core remaining.
  • the moving speed of the conveyor belt of the dry clinker processing apparatus is extremely slow (about 5 mm / second), and the time required for discharging to the clinker collecting means is about 1 hour.
  • the combustion gas of unburned biomass that has fallen into the dry clinker treatment apparatus is sucked into the furnace through the transition hopper from the lower end of the furnace, and merges with the combustion gas of pulverized coal and biomass fuel.
  • the present invention drops a large amount of unburned biomass with a wooden core remaining on a conveyor belt of a dry clinker processing apparatus, and provides a combustion air supply means in the dry clinker processing apparatus, and a large amount of combustion air is provided by the combustion air supply means. And the unburned biomass that has fallen is actively burned on the conveyor belt.
  • biomass fuel is dropped in a large amount while being cored, and the conveyor belt is used as a combustion dish directly below the transition hopper to be actively burned thereon, and the combustion heat is taken into the furnace.
  • the temperature, oxygen, and time required for burning the wood are necessary, but the temperature is sufficient because the bottom ash that has fallen from the furnace is 1000 ° C or higher.
  • the moving speed of the conveyor is very low, a sufficient combustion time is ensured. Therefore, if air is sufficiently supplied to the biomass fuel on the high-temperature conveyor belt, the biomass is sufficiently combusted.
  • the surplus oxygen when the sufficient amount of air is supplied to the biomass fuel on the conveyor belt is completely sucked into the furnace and used for combustion in the furnace.
  • a device that efficiently blows the biomass fuel on the conveyor belt is desired. When the air is efficiently supplied, the excess amount of combustion air can be reduced. .
  • the additional equipment for carrying out the co-firing method of the present invention is extremely small, and a small-sized biomass fuel pulverizer can be adopted, so that the equipment cost and operation cost are greatly improved.
  • the biomass pulverizer is downsized and its driving power is reduced, so that the effect of reducing the equipment cost and the operating cost is remarkable.
  • biomass fuel depends on the economic and social demands of co-firing biomass fuel with a pulverized coal fired boiler. Economic efficiency depends on the price of biomass fuel to be used, the price of processing, the price of coal fuel, and societal demands include fossil fuel consumption control, promotion of CO 2 emission reduction, and effective use of local biomass. Promotion etc.
  • the level of the pulverized particle size of the biomass fuel and the level of the co-firing rate of the biomass fuel are appropriately selected in consideration of the above.
  • Embodiment 1 is that the biomass burner is arranged at a position above the pulverized coal burner.
  • the arrangement of this biomass burner is a conventionally known arrangement (FIG. 6).
  • the floating combustion time of the biomass fuel in the furnace becomes longer. Therefore, the unburned portion (carbonized portion and woody portion) falling by that amount is reduced, and accordingly, the amount of combustion air supplied to the dry clinker processing device is reduced by that amount. Therefore, it is possible to suppress a decrease in the thermal efficiency of the biomass-mixed pulverized coal-fired boiler and improve the biomass fuel mixed-burning rate.
  • the second embodiment is that the combustion air supply means is an air supply means that is separate from the cooling air supply means, and is disposed in the vicinity of the transition hopper.
  • the unburned biomass that has fallen on the conveyor belt is supplied with fresh air by the combustion air supply means, and the biomass fuel is continuously burned on the conveyor belt, and the combustion is promoted. Therefore, the unburned portion burns out in a very short time with a small amount of air supply, and the unburned portion is not stacked on the conveyor belt and the combustion is not delayed. The clinker will not remain unburned.
  • the unburned biomass fuel on the clinker conveyor is provided by means (process) for actively burning unburned biomass fuel contained in the bottom ash on the clinker conveyor on the clinker conveyor. Even if it falls, it can be made to burn on a conveyor and the combustion heat can be utilized with a boiler. For this reason, a biomass fuel having a relatively large particle size, for example, a biomass fuel having a pulverized particle size of 5 mm or more, is used without the need to add significant facilities to the configuration of the conventional biomass fuel co-fired pulverized coal fired boiler. Thus, the pulverization power of the biomass fuel can be reduced, and the co-firing rate of the biomass fuel can be increased.
  • the coal pulverization efficiency of the coal mill is not reduced due to biomass fuel pulverization, and the pulverization particle size of the biomass fuel is 5 mm or more. This significantly reduces the pulverization power of the biomass fuel.
  • a woody (miscellaneous) biomass fuel dried to a moisture content of 20% is mixed and fired at 2.6 tons per hour.
  • a pulverized coal burner 4 is provided at the lower part of the furnace 1
  • a biomass burner 5 is provided at a position higher than the burner 4, and a transition is provided below the furnace 1.
  • a dry clinker processing device 21 is provided via a hopper 20.
  • the structure of the dry clinker processing apparatus 21 is substantially the same as that of the conventionally known dry clinker processing apparatus shown in FIG. 7, and a conveyor belt 23 having high heat resistance is provided in the casing 22 to receive the dropped bottom ash. In FIG. 3, the movement is from the left side to the right side at a speed of about 5 mm per second.
  • the conveyor belt 23 is driven by drive wheels 24. Further, a large number of cooling air suction holes 31 are provided on the side wall of the casing 22 of the dry clinker processing apparatus 21 as shown in FIG.
  • the cooling air suction hole 31 is an air supply hole opened to the outside air and is opened and closed by a flap plate.
  • the flap is opened and outside air is sucked from the cooling air suction hole 31.
  • the pressure is positive, the flap is closed by the flap and the injection of combustion gas in the furnace is prevented.
  • a combustion air supply means 32 composed of an air source, piping and the like is provided in the vicinity of the transition hopper 20.
  • the flow rate of the combustion air supplied from the combustion air supply means 32 is controlled by the combustion air control device 60.
  • the coal supplied from the coal bunker 11 is pulverized by the coal mill 6, supplied to the furnace 1 by the pulverized coal burner 4, and burned in the lower region F1.
  • the biomass fuel is charged into the biomass bunker 12 and pulverized to a pulverization particle size of 5 mm by the biomass mill 13, and the granular material of this biomass fuel is supplied from the upper biomass burner 5 to the furnace 1 and burned in the upper region F 2. It blows up and floats with the combustion gas in the lower region F 1, and its middle and coarse particles descend on the inner wall side of the furnace 1 and fall on the conveyor belt 23 of the dry clinker processing apparatus 21 through the transition hopper 20.
  • Granules of less than 5 mm of biomass fuel are completely burned out in the furnace 1 until they fall on the conveyor belt, and become ash, and a part of them becomes unburned carbide.
  • most of the medium grains b slightly exceeding 5 mm and coarse grains B significantly exceeding 5 mm fall on the conveyor belt 23 in the state of unburned carbide or carbide with a woody core remaining.
  • the amount of biomass that may fall to the dry clinker processing apparatus 21 is 0.26 tons per hour of 5 mm or more, and the breakdown of the unburned portion is about 70% of wood (volatile component) and 30% of carbide (Remaining charcoal component). Most of the medium grains close to 5 mm out of 0.26 t are burned during the fall, and about 0.13 t per hour, which is about half as a whole, is expected to fall on the conveyor belt 23.
  • the cooling air suction hole 31 supplies 2,000 Nm 3 of air per hour to the lower side of the conveyor belt.
  • the amount of air supplied for combustion in the boiler furnace of this embodiment is 100,000 Nm 3 per hour.
  • the total of the combustion air amount of 1,000 Nm 3 per hour supplied by the combustion air supply means 32 to the dry clinker processing apparatus and the cooling air amount of 2,000 Nm 3 per hour by the cooling air suction holes 31 is 3,000 Nm 3 per hour. Is sucked into the furnace 1 through the transition hopper 20, the amount of combustion air supplied from the windbox 3 to the furnace 1 is 97,000 Nm 3 per hour, and this air is the combustion air supply device 50 (FIG. 1). Supplied by
  • the wire rod of the mesh belt 23a is squeezed between the crosspieces 23d and the steel plate 23b and fixed with bolts and nuts 8 and 10, and a large number of the steel plates 23b are combined in a state where a part of them is overlapped.
  • the belt 23a is covered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

 本発明は、微粉炭とバイオマス燃料とを混焼させるための火炉と、火炉に微粉炭を供給するための微粉炭バーナと、火炉にバイオマス燃料を供給するためのバイオマスバーナと、バイオマスバーナに供給されるバイオマス燃料を粉砕するためのバイオマスミルと、火炉の下方に設けられ、火炉から排出されたボトムアッシュを搬送するためのクリンカコンベアを有する乾式クリンカ処理装置と、クリンカコンベア上のボトムアッシュに向けて燃焼空気を供給することにより、ボトムアッシュの中に含まれるバイオマス燃料の未燃分をクリンカコンベア上で燃焼させるための燃焼空気供給手段と、を備える。

Description

バイオマス混焼微粉炭焚きボイラ及び同ボイラの運転方法
 この発明は、バイオマス燃料(主に木質燃料)と微粉炭とを混焼させるボイラ(バイオマス混焼微粉炭焚きボイラ)に関するものである。
 なお、この明細書におけるバイオマス燃料の粉砕粒度は、粉砕した粉粒体を篩いで選別するメッシュの大きさをいう。また、「粉砕粒度5mm」は、粉粒体全体の90重量%が5mmメッシュを通過する粉粒体であり、「粉砕粒度5mm以上」は5mmメッシュを通過する粉粒が90%以下のものであり、「粉砕粒度5mm以下」は5mmメッシュを通過する粉粒が90%以上のものである。
 ここで採用した5mmの粒子径の意味は、「浮遊燃焼する限界バイオマス粒径」の意味であり、バイオマスの種類、形状、含水率等で異なるが、木質系のバイオマスでは概ね3~5mm程度と看做されている。
 石炭などの化石燃料とバイオマス燃料を混焼させて化石燃料の消費量を低減させることが要請されており、このために、微粉炭焚きボイラでバイオマス燃料(例えば木質バイオマス燃料)を混焼させることが行われている。そして、微粉炭焚きボイラでバイオマス燃料を混焼させる方法として、石炭バンカに少量のバイオマスを投入して石炭と共に粉砕して微粉化し、これをバーナに空気搬送して火炉で燃焼させる方法が採用されている。
 ところで、石炭ミルで石炭と一緒にバイオマス燃料を粉砕して混焼させる方法では、バイオマス燃料の比率が高くなると、石炭の粉砕能率が低下するためこの方法によるバイオマス燃料の混焼率には限界があり、現状では重量割合で2~3%程度が限度であるとされている。
 他方、バイオマス燃料の混焼率を高めるためにバイオマス燃料を専用ミルで粉砕して、これを石炭微粉とは別のバーナで火炉に供給して混焼させる方法がある。この方法によれば、石炭ミルによる石炭の粉砕能率が低下されることはないので、石炭の粉砕能力を低下させることなしにバイオマス燃料混焼率を増加させることができる。しかし、バイオマス燃料が火炉内で完全に浮遊燃焼されるようでなければ燃焼効率は悪くなる。他方、完全に浮遊燃焼させるには浮遊燃焼する限界粒径(木質バイオマスで3~5mm程度)未満でなければならない。多量のバイオマス燃料を3~5mm以下の粉粒体に粉砕するとそのための粉砕動力が非常に大きく、そのためのエネルギー損失が大きいので、バイオマス燃料を利用することのメリットがそれだけ減少する。
 図8に示すグラフは、木質バイオマスを専用粉砕機で粉砕して粒度分布を実測したデータ(<3mm)をベースに<5mm、粉砕粒度5mmにシフトした3本の粒度分布を示している。この図から得られる平均粉砕粒度d50(50重量%粒度)を、公知の研究報告(NEDO)に記載されている平均粉砕粒度d50と動力原単位の関係を示すグラフに記入すれば図9のようになり、粉砕粒度<3mmに比べて粉砕粒度5mmでは動力原単位は約1桁少なくなることが分かる。
 したがって、専用ミルによるバイオマス燃料の粉砕を粉砕粒度5mm以上のものがあってよいとすれば、粉砕動力が大幅に低減されることになる。
 専用ミルでバイオマス燃料を粉砕粒度5mm以下に粉砕してこれを混焼させることでバイオマス燃料の粉砕動力を低減する技術が、特開2005-291531号公報(特許文献1)に記載されている(以下これを「第1の従来技術」という)。これは図4に記載されているようなものであり、微粉炭バーナ4とバイオマスバーナ5とが同レベルに多段に設けられている。石炭バンカ11から供給された石炭は石炭ミル6で粉砕され、微粉炭バーナ4で火炉1に供給される。一方、バイオマス燃料16はバイオマスバンカ12に投入され、バイオマスミル13で粉砕されて、バイオマスバーナ5で火炉1に供給される。微粉炭とバイオマス燃料が風箱3からの燃焼空気で燃焼され、上方に吹き上げられ、上方において空気噴出口2からさらに燃焼空気が加えられて燃焼される。このとき、小粒径のバイオマス燃料は、浮遊しつつ燃焼して排ガスと共に火炉から流出するが、一部の大粒径バイオマス燃料は、燃えながらも燃焼ガスに逆らって炉底へ落下して行く。
 このような大粒径バイオマス燃料でも炉底まで降下したときには完全に灰になっているのが理想であるが、完全に燃え尽きて灰になるのは粒度が3~5mm未満である。これ以上の粒子は、揮発分、水分を放出し一部固定炭素分の燃焼も行われるが、かなりの割合の未燃分が炉底下のクリンカ処理装置17に落下する。
 ところで、バイオマス燃料については、粉砕粒度5mm以下のもの(全量の90%以上が大きさ5mm未満の粒子で、残りの10%未満が5mm以上の粒子)になると、粉砕動力(粉砕するのに要する動力)が指数関数的に増加するという傾向がある。このために、専用ミルによるバイオマス燃料の粉砕粒度を5mmよりも大きくすれば(粒子の最大が5mm以上、5mm未満の微粒が90%以下)、粉砕動力が大幅に低減されることになる。上記第1の従来技術は以上の知見に基づくものであり、粉砕粒度5mmのバイオマス燃料を使用している。しかしそうすると、中粒(5mmのもの)については、未燃のまま(灰にならないまま)で炉底まで降下し、クリンカ処理装置17に達する。他方、クリンカ処理装置17に落下した中粒は未燃のままで冷却されて炭化物になる。そこで、この第1の従来技術は、これを湿式分離(水に浮かせて分離)して回収し、石炭バンカ11に投入して石炭とともに石炭ミル6で粉砕し、再び火炉1に投入して燃焼させるものである。この方法によれば、石炭ミルによる石炭の粉砕能率を低下させることなしにバイオマス燃料を粒度5mmに粉砕して混焼させることができる。
 そして上記第1の従来技術では湿式クリンカ処理装置に湿式分離装置14を設け、炭化物バンカ15を設け、湿式分離装置14と炭化物バンカ15との間に炭化物搬送装置18を設けている。
 そして、上記第1の従来技術によれば、クリンカ処理装置17に落下した未燃バイオマス(炭化物)は湿式で処理され、その後、湿式分離装置14で分離回収され、炭化物搬送装置18で炭化物バンカ15に搬送され、当該炭化物バンカ15から石炭バンカ11に投入される。そして、石炭バンカ11に投入されたもの(炭化物)は石炭ミル6で石炭と一緒に粉砕され、微粉化されて微粉炭バーナ4で燃焼される。
 なお、上記第1の従来技術は、炭化した未燃バイマス燃料を湿式クリンカ処理装置で冷却し、湿式分離装置14で未燃分(炭化物)を回収することを基本とするが、乾式クリンカ処理装置を使用することも可能であることも記載されている。
 上記第1の従来技術においては、湿式クリンカ処理装置で冷却されて回収されたバイオマス燃料(炭化物など)は図5における中粒bであって炭化しているので、石炭ミル6で粉砕するときの抵抗は小さくて比較的容易に粉砕される。
 一方、バイオマス燃料の粉砕粒度が大きくて、そのために5mmより大きい粗粒が多く含まれていると、クリンカ処理装置17から回収されるときに木質の芯が多く残っていて(図5の粗粒B)、これが回収されて石炭ミルに投入されることになり、石炭の粉砕能力を著しく低下させることになる。
 したがって、上記第1の従来技術で混焼されるバイオマス燃料の粒子の大きさは、完全に炭化されて炉底に落下する範囲内のものに限られる。
 バイオマス燃料の粒子が大きい(例えば7mm)と、木質の芯が残ったもの(図5の粗粒B)がクリンカ処理装置17に多量に落下することになるので、バイオマス燃料の粉砕粒度を余り大きくすることはできない(因みに、粒子が大きいほど火炉内での落下速度が速くなり、火炉での浮遊燃焼時間が短くなり、したがって、未燃分が大幅に増加する)。
 なお、上記特許文献1には乾式クリンカ処理装置の具体的構造は記載されていないから、その構造、冷却方法は明らかでない。クリンカ処理装置として乾式クリンカ処理装置は公知であり、その一例が特公平7-56375号公報(特許文献4)に記載されている。この公知の乾式クリンカ処理装置の概略は図7に示されているとおりであり、耐熱性の高い金属製のコンベアベルト23を備えており、火炉1との間に設けられているトランジションホッパ20により火炉1のボトムアッシュが 該コンベアベルト23に案内される。コンベヤベルト23は、駆動輪24によって駆動される。
 乾式クリンカ処理装置のケーシング22は密閉構造であり、そのコンベアベルト23の側部に複数の冷却空気吸引孔31があって、これによってクリンカ冷却空気が供給されている。
 火炉1の底部(炉底)に落下したボトムアッシュは上記コンベアベルト23で受け止められてゆっくりと移送され(毎秒約5mm)、徐々に空冷されて約1時間(コンベアベルト23の搬送時間)後に、排出されてクリンカ収集手段41に回収される。このものにおいては、上記クリンカ処理装置21の本体内に冷却空気が供給され、コンベアベルト23に落下したボトムアッシュが本体内を移動する間にゆっくりと空冷されて外に排出される。本体に供給された冷却空気は焼けたボトムアッシュによって加熱されて高温になり、火炉1に吸引され、火炉内の燃焼ガスに合流する。
 微粉炭焚きボイラに乾式クリンカ処理装置が適用されるとき、当該乾式クリンカ処理装置に供給される冷却空気量は制限されていて、火炉に供給される燃焼空気量の約2%程度であり、クリンカ処理装置の本体(図7)内を排出位置まで移動する間(約1時間)にボトムアッシュがほぼ100℃まで冷却される。
 また、バイオマス粒子が上昇気流に乗って火炉内でのバイオマス燃料の燃焼時間を長くするように、バイオマスバーナを微粉炭バーナよりも上方位置に配置した従来技術がある(図6)。このものは、微粉炭バーナ4が火炉1の下方に配置されており、バイオマスバーナ5が火炉1の上方に配置されている。火炉1の下部に石炭微粉の燃焼領域F1があり、上部にバイオマス燃料の燃焼領域F2があって、微粉炭バーナ4の火炎の吹き上がりを利用してバイオマス燃料の降下を遅らせ、火炉1内での浮遊時間を長くしたもの(以下これを「第2の従来技術」という)である(特開2007-101135号公報(特許文献2)、特開2005-241108号公報(特許文献3))。この第2の従来技術に倣えば、前記第1の従来技術のバイオマスバーナ5が微粉炭バーナ4の上方に配置されて、上方の燃焼領域でバイオマス燃料が燃焼され、その火炉1内での燃焼時間が若干長くなる。したがって、バイオマス燃料の粉砕粒度を幾分大きくすることができる。しかし、バイオマス燃料の粉砕粒度を大きくすると、5mm以上の粗粒Bの割合が高くなるので、バイオマスバーナ5が微粉炭バーナ4の上方に配置されて火炉内燃焼時間が若干長くなっても、木質の芯が残るという問題を解消することはできない。
 また、混焼ボイラに関する上記第1の従来技術(特許文献1)はバイオマス燃料の炭化物を回収し石炭バンカに投入するために、湿式分離装置、搬送ライン、貯蔵バンカ、切り出し装置等が必要であり、このために、既存の石炭ボイラでバイオマス燃料を混焼させるための追加設備が大がかりであり、この設備コストが非常に嵩むという問題がある。
 バイオマス燃料の利用を促進し、その利用効果を高め、かつその設備コスト、運転コストを低減するためには、微粉炭焚きボイラのバイオマス燃料との混焼方法を工夫して、バイオマス燃料を大きい粒度で火炉に供給し、かつバイオマス燃料の混焼率を高くし、さらに、バイオマス燃料を完全燃焼させて灰にしてしまう必要がある。そして、そのための付加設備を少なくする必要がある。
 本発明は、上述の従来技術の問題点を考慮してなされたものであり、従来のバイオマス燃料混焼微粉炭焚きボイラの構成に対して大幅な設備の追加を必要とせずに、比較的大きな粒径のバイオマス燃料(特に、粉砕粒度5mm以上のバイオマス燃料)の使用を可能とし、また、バイオマス燃料の混焼率を高めることができるようにすることを目的とする。
 上記課題を解決するために、本発明によるバイオマス燃料混焼微粉炭焚きボイラは、微粉炭とバイオマス燃料とを混焼させるための火炉と、前記火炉に前記微粉炭を供給するための微粉炭バーナと、前記火炉に前記バイオマス燃料を供給するためのバイオマスバーナと、前記バイオマスバーナに供給される前記バイオマス燃料を粉砕するためのバイオマスミルと、前記火炉の下方に設けられ、前記火炉から排出されたボトムアッシュを搬送するためのクリンカコンベアを有する乾式クリンカ処理装置と、前記クリンカコンベア上の前記ボトムアッシュに向けて燃焼空気を供給することにより、前記ボトムアッシュの中に含まれる前記バイオマス燃料の未燃分を前記クリンカコンベア上で燃焼させるための燃焼空気供給手段と、を備えたことを特徴とする。
 好ましくは、前記バイオマスミルは、前記バイオマス燃料を粉砕粒度5mm以上の粉粒体に粉砕するように構成されている。
 好ましくは、前記燃焼空気供給手段は、前記バイオマス燃料の未燃分が前記クリンカコンベア上で完全燃焼するように前記ボトムアッシュに向けて前記燃焼空気を供給する。
 好ましくは、前記ボイラは、前記火炉の内部に向けて供給される燃焼空気の流量と、前記燃焼空気供給手段から前記クリンカコンベア上の前記ボトムアッシュに向けて供給される前記燃焼空気の流量とを制御して、ボイラ全体の燃焼効率を最適化するための燃焼空気制御装置をさらに有する。
 好ましくは、前記微粉炭バーナよりも上方位置に前記バイオマスバーナを配置する。
 好ましくは、前記ボイラは、前記乾式クリンカ処理装置に冷却空気を供給するための冷却空気供給手段をさらに備える。
 好ましくは、前記ボイラは、前記微粉炭バーナに供給される前記微粉炭を生成するために石炭を粉砕する石炭ミルをさらに有する。
 好ましくは、前記バイオマスミルは、前記バイオマス燃料の粉砕のための専用ミルであり、前記石炭ミルは、前記石炭の粉砕のための専用ミルである。
 上記課題を解決するために、本発明は、バイオマス混焼微粉炭焚きボイラの運転方法であって、バイオマスミルによってバイオマス燃料を粉砕する工程と、粉砕された前記バイオマス燃料をバイオマスバーナによって火炉に供給する工程と、微粉炭バーナによって微粉炭を前記火炉に供給する工程と、前記火炉の下方に設けられた乾式クリンカ処理装置のコンベアベルト上に排出されたボトムアッシュに向けて燃焼空気を供給することにより、前記ボトムアッシュの中に含まれる前記バイオマス燃料の未燃分を前記クリンカコンベア上で燃焼させる工程と、を備えたことを特徴とする。
 好ましくは、前記バイオマスミルによって前記バイオマス燃料を粉砕粒度5mm以上の粉粒体に粉砕する。
 好ましくは、前記バイオマス燃料の未燃分が前記クリンカコンベア上で完全燃焼するように前記ボトムアッシュに向けて前記燃焼空気を供給する。
 好ましくは、前記火炉の内部に向けて供給される燃焼空気の流量と、前記クリンカコンベア上のボトムアッシュに向けて供給される前記燃焼空気の流量とを制御して、ボイラ全体の燃焼効率を最適化する。
 好ましくは、前記微粉炭バーナよりも上方位置にある前記バイオマスバーナから前記バイオマス燃料を前記火炉に供給する。
 好ましくは、前記ボイラ運転方法は、前記乾式クリンカ処理装置に冷却空気を供給する工程をさらに有する。
 好ましくは、前記ボイラ運転方法は、前記微粉炭バーナに供給される前記微粉炭を生成するために石炭ミルによって石炭を粉砕する工程をさらに有する。
 好ましくは、前記バイオマスミルを前記バイオマス燃料の粉砕のための専用ミルとして使用し、前記石炭ミルを前記石炭の粉砕のための専用ミルとして使用する。
 また本発明は、石炭専用ミルとバイオマス専用ミルとを備えていて、専用粉砕機で粉砕したバイオマス燃料を石炭微粉と混焼させるバイオマス燃料混焼微粉炭焚きボイラについて、特別の設備を付加することなしで粗粒のバイオマス燃料を完全燃焼させて灰にすることができ、かつ、その混焼率を高められるようにバイオマス燃料の混焼方法を工夫することを目的とする。
 上記課題を解決するための手段は、石炭専用ミル、バイオマス専用ミルを備えていて、バイオマス専用ミルで粉砕されたバイオマス燃料を供給して微粉炭と混焼させるバイオマス混焼微粉炭焚きボイラを前提にして、次の(イ)~(ニ)によるものである。
(イ)混焼されるバイオマス燃料が粉砕粒度5mm以上の粉粒体であり、
(ロ)上記ボイラのトランジションホッパの下方に乾式クリンカ処理装置が設けられており、
(ハ)上記乾式クリンカ処理装置が燃焼空気供給手段を備えていて当該乾式クリンカ処理装置に落下したバイオマス燃料の未燃分をコンベアベルト上で完全燃焼させて灰にするようになっており、
(ニ)燃焼空気供給手段等によって上記乾式クリンカ処理装置に供給される空気量と火炉に供給される燃焼空気量で微粉炭及びバイオマス燃料が燃焼されるように、供給される燃焼空気量が制御されていること。
 なお、上記(ハ)の「乾式クリンカ処理装置に落下したバイオマス燃料の未燃分が完全燃焼される」は、乾式クリンカ処理装置に落下したバイオマス燃料の未燃分がほぼ完全に燃焼されることを意味する。仮に、未燃分が若干残っても、それはバイオマス燃料の可燃分が若干廃棄されるだけで特に運転に支障をきたすことはなく、バイオマス燃料を混焼させ、未燃分を乾式クリンカ処理装置で燃焼させてその燃焼熱を有効に利用するという初期の目的は十分に達成されるので、特に問題はないからである。
 また、上記(ニ)は、乾式クリンカ処理装置に燃焼空気が供給されることによって、クリンカを空冷するために必要な冷却空気量よりも多量の空気が乾式クリンカ処理装置に供給され、これが火炉の下端から火炉内に吸引されて火炉内での燃焼に供されることになるので、乾式クリンカ処理装置に供給される空気の増分を考慮して、火炉内に風箱から吹き込まれる燃焼空気量が低減されるように、その給気制御がなされることを意味する。
 そして、乾式クリンカ処理装置に供給される上記燃焼用空気量が比較的少量の場合はこれを無視して風箱から火炉に吹き込まれる空気量を制御してもボイラ性能の低下は微小であるから、この要件(ニ)を省略することができる。
〔作用〕
 専用ミルでバイオマス燃料を粉砕粒度5mm以上に粉砕してこれを微粉炭と混焼させる。このときバイオマス燃料は微粉炭バーナによる燃焼ガスで吹き上げられて浮遊燃焼し、粗大粒子は火炉内を降下し、最終的にトランジションホッパの下方に配置された乾式クリンカ処理装置に落下する。このとき、3mm以下の微粒分は火炉内で完全に燃え尽きて灰になり、5mm程度の中粒分はほぼ炭化状態で乾式クリンカ処理装置に落下し、また、5mmよりも大幅に大きい粗粒Bは木質の芯が残ったままでコンベアベルトに落下する。
 他方、上記乾式クリンカ処理装置に燃焼空気供給手段によって多量の燃焼空気が供給されており、トランジションホッパの直下における酸素濃度は十分に高い。他方、コンベアベルトには高温のボトムアッシュが落下しており、落下直後のその表面温度は高い。そして、粗大バイオマス燃料は燃えながら乾式クリンカ処理装置のコンベアベルト上に落下する。
 以上のことから、バイオマス燃料の未燃分はコンベアベルトに落下した後もその上で燃え続け、数分以内に燃え尽きて灰になる。
 乾式クリンカ処理装置のコンベアベルトの移動速度は極めて微速であり(約5mm/秒)、クリンカ収集手段へ排出されるまでの所要時間は約1時間である。
 乾式クリンカ処理装置に落下した未燃バイオマスの燃焼ガスは、火炉の下端からトランジションホッパを介して火炉内へ吸引され、微粉炭、バイオマス燃料の燃焼ガスと合流する。
 本発明は、木質の芯が残っている未燃バイオマスを乾式クリンカ処理装置のコンベアベルトに多量に落下させ、乾式クリンカ処理装置に燃焼空気供給手段を設けて当該燃焼空気供給手段によって多量の燃焼空気を供給して、落下した未燃バイオマスをコンベアベルト上で積極的に燃焼させる。いわば、バイオマス燃料を芯付きのままで多量に落下させ、コンベアベルトをトランジションホッパの直下における燃焼皿として利用してその上で積極的に燃焼させ、その燃焼熱を火炉内に取り込んでいる。これが本発明のバイオマス燃料混焼方法の基本であり、これが燃料を火炉内で全て燃焼させるという従来の方法と根本的に異なるところである。
 コンベアベルトに落下したバイオマス燃料を燃焼させるためには、木材の燃焼に必要な温度、酸素及び時間が必要であるが、温度は、火炉から落下してきたボトムアッシュは1000℃以上であるから十分であり、コンベアの移動速度は微速であるから燃焼時間は十分確保される。したがって、高温のコンベアベルト上のバイオマス燃料に十分に空気が供給されれば、当該バイオマスは十分に燃焼が継続される。
 コンベアベルト上のバイオマス燃料にこれを完全燃焼させるのに十分な空気量が供給されるときの余剰酸素は火炉内に吸引されて火炉内燃焼に供されることになる。コンベアベルト上のバイオマス燃料に空気を供給する方法として、コンベアベルト上のバイオマス燃料に効率的に吹き付ける工夫が望まれ、効率的に空気が供給されると燃焼空気の過剰分を少なくすることができる。
 いずれにしても、本発明によるバイオマス燃料混焼微粉炭焚きボイラに供給される総燃料量と総空気量は、通常の方法とほとんど違いはなく、したがって、燃焼空気供給のための追加設備が僅かである。
 したがって、本発明の混焼方法を実施するための追加設備は極めて僅かであり、また、バイオマス燃料の粉砕機として小型のものを採用できるので、設備コスト及び運転コストが大幅に改善される。
 この発明によれば、バイオマス混焼率及び粉砕粒度の制約は大幅に緩和される。
 しかし、混焼率が高いほど、また、粉砕粒度が5mmよりも大きいほど未燃バイオマスのコンベアベルトへの落下量が増大し、これに伴って、乾式クリンカ処理装置への燃焼空気供給量を増大させることになる。
 乾式クリンカ処理装置への空気供給量が増大しても、ボイラに供給される総空気量に大差はないが、火炉内で通常の燃焼を行う時の空気過剰率が15~20%であるのに対して、コンベアベルト上で多量のバイオマス燃料を焼却する時は50~100%の過剰空気が必要である。余剰の空気は火炉内に吸引されるものの、火炉側壁に沿って上昇し火炉内での燃焼に寄与しないものもある。したがって、バイオマス燃料のコンベアベルトへの落下量が多いほど、厳密には総空気過剰率が高くなり、ボイラ効率が低下する可能性があるが、その低下率は僅かである。
 したがって、火炉に投入したバイオマス燃料の全てを火炉内で燃焼させるのが好ましいが、火炉から落下した粗粒が乾式クリンカ処理装置のコンベアベルト上で燃やされ、その燃焼熱エネルギーがボイラ内に導入されれば、熱効率の点では大差がない。他方、上記のシステムではバイオマス粉砕機が小型化されその運転動力も低減されるので、設備コスト、運転コストの低減効果は顕著である。
 他方、バイオマス燃料の利用は、微粉炭焚きボイラでバイオマス燃料を混焼させることの経済性と社会的要請による。経済性は使用するバイオマス燃料の入手価格、加工価格の如何、石炭燃料の価格の如何によって左右され、社会的要請は化石燃料の消費量抑制、CO排出削減促進、地域のバイオマスの有効利用の促進等である。
 実際においてバイオマス燃料の粉砕粒度をどの程度にするか、また、バイオマス燃料の混焼率をどの程度にするかは、以上のようなことを考慮して適宜選択されることである。
〔実施態様1〕
  実施態様1は、微粉炭バーナよりも上方位置にバイオマスバーナを配置したことである。
 このバイオマスバーナの配置は、従来公知の配置である(図6)が、この発明においてバイオマスバーナの配置を微粉炭バーナよりも上方に配置すると、バイオマス燃料の火炉内での浮遊燃焼時間が長くなり、その分だけ落下する未燃分(炭化分及び木質分)が減少し、したがって、その分だけ乾式クリンカ処理装置に供給される燃焼空気量が減少される。それゆえ、バイオマス混焼微粉炭焚きボイラの熱効率の低下を抑制し、バイオマス燃料の混焼率を向上させることができる。
〔実施態様2〕
 実施態様2は、燃焼空気供給手段を冷却空気供給手段とは別個の空気供給手段とし、これをトランジションホッパの近傍に配置したことである。
 コンベアベルト上に落下した未燃バイオマスに、上記燃焼空気供給手段によって新気が供給されることになり、当該バイオマス燃料がコンベアベルト上で引き続き燃焼され、その燃焼が促進される。したがって、少ない給気量で極めて短時間に未燃分が燃え尽きることになり、コンベアベルト上で未燃分が積み重なって燃焼が遅延されることはないから、未燃分が確実に燃焼され、排出されるクリンカに未燃分として残ることはない。
 上記の燃焼空気供給手段は、コンベアベルトの上面に向けて空気を高速で吹き付けるように空気ノズルを備えたものであれば、落下した未燃バイオマスの燃焼が一層促進される。
[発明の効果]
 本発明によれば、クリンカコンベア上のボトムアッシュ中に含まれるバイオマス燃料の未燃分をクリンカコンベア上で積極的に燃焼させる手段(工程)を備えることにより、クリンカコンベア上に未燃焼のバイオマス燃料が落下してもコンベア上で燃焼させてその燃焼熱をボイラで利用することができる。このため、従来のバイオマス燃料混焼微粉炭焚きボイラの構成に対して大幅な設備の追加を必要とせずに、比較的大きな粒径のバイオマス燃料、例えば「粉砕粒度5mm以上」のバイオマス燃料を使用することによりバイオマス燃料の粉砕動力を低減することができ、また、バイオマス燃料の混焼率を高めることができる。
 好ましくは、この発明は、専用ミルでバイオマス燃料を粉砕することにより、バイオマス燃料粉砕のために石炭ミルの石炭粉砕能率が低下されることはなく、また、バイオマス燃料の粉砕粒度5mm以上とすることにより、バイオマス燃料の粉砕動力が著しく軽減される。
 このように本発明によれば、乾式クリンカ処理装置に燃焼空気を供給して、落下した多量の未燃バイオマスを乾式クリンカ処理装置上で積極的に燃焼させて速やかに燃え尽きさせるから、粉砕粒度5mm以上のバイオマス燃料を高い混焼率で燃焼させることがきる。
 そして、僅かなボイラ効率の低下を問題にしなければ、混焼率を20%にしてもバイオマス燃料を完全燃焼させることができ、この場合でもバイオマス燃料の未燃分(炭化分及び木質部)が冷却されたボトムアッシュに残ることはない。
本発明の一実施形態によるバイオマス混焼微粉炭焚きボイラの断面図。 (a)は、図1におけるX-X断面図、(b)は、燃焼空気ノズルの他の配置の例を示すX-X断面図。 (a)は、本発明の一実施形態によるバイオマス混焼微粉炭焚きボイラにおける乾式クリンカ処理装置のコンベアベルトの一部の断面図、(b)は、他の断面図。 従来のバイオマス混焼微粉炭焚きボイラの一例を示す断面図。 (a)は、図4に示した従来例におけるバイオマス燃料の燃焼状態の説明図、(b)は、未燃バイオマスの模式的な断面図。 他の従来例における微粉炭バーナとバイオマスバーナの配置を示す断面図。 公知の乾式クリンカ処理装置を模式的に示す断面図。 粉砕バイオマスの粒度別の粉砕粒度分布の一例を示すグラフ。 平均粉砕粒度と動力原単位の関係の一例を示すグラフ。
 本発明の一実施形態として、粉砕粒度5mmのバイオマス燃料を毎時2.6tと微粉炭を毎時10.8tとを混焼させ(バイオマスの熱量混焼率10%)て、蒸気を毎時105t発生させるバイオマス混焼微粉炭焚きボイラについて、図1を参照して説明する。
 この実施形態では、含水率20%まで乾燥した木質(雑木)のバイオマス燃料が毎時2.6t混焼される。
  図1の実施形態のバイオマス混焼微粉炭焚きボイラでは、火炉1の下部に微粉炭バーナ4が設けられ、当該バーナ4よりも上方位置にバイオマスバーナ5が設けられており、火炉1の下方にトランジションホッパ20を介して乾式クリンカ処理装置21が設けられている。この乾式クリンカ処理装置21の構造は、図7に示す従来公知の乾式クリンカ処理装置と概ね共通しており、ケーシング22内に耐熱性の高いコンベアベルト23があり、落下したボトムアッシュを受け止め、図において左側から右側に秒速5mm程度で移動するようになっている。コンベヤベルト23は、駆動輪24によって駆動される。そして、乾式クリンカ処理装置21のケーシング22の側壁に、図7に示すものと同様に多数の冷却空気吸引孔31がある。
 上記冷却空気吸引孔31は、外気に開口した給気孔であってフラップ板で開閉されるようになっている。炉内圧が負圧のときフラップが開いて上記冷却空気吸引孔31から外気が吸引され、正圧のとき上記フラップで閉じられて炉内燃焼ガスの噴出が阻止される。
 そして、本実施形態によるバイオマス混焼微粉炭焚きボイラにおいては、トランジションホッパ20の近傍に、空気源、配管等で構成される燃焼空気供給手段32が設けられている。燃焼空気供給手段32から供給される燃焼空気の流量は、燃焼空気制御装置60によって制御される。
 石炭バンカ11から供給された石炭は石炭ミル6で粉砕され、微粉炭バーナ4で火炉1に供給されて下部領域F1で燃焼される。一方、バイオマス燃料はバイオマスバンカ12に投入され、バイオマスミル13で粉砕粒度5mmに粉砕され、このバイオマス燃料の粉粒体が上方のバイオマスバーナ5から火炉1に供給されて上部領域F2で燃焼され、下部領域F1の燃焼ガスで吹き上げられて浮遊し、その中粒、粗粒が火炉1の内壁側を降下し、トランジションホッパ20を経て乾式クリンカ処理装置21のコンベアベルト23上に落下する。
 バイオマス燃料のうちの5mm未満の微粒はコンベアベルトに落下するまでの間に火炉1内で完全に燃え尽きて灰になり、その一部が未燃の炭化物になる。他方、5mmを若干超える中粒b、5mmを大幅に超える粗粒Bの大方は、未燃の炭化物または木質の芯が残った炭化物の状態でコンベアベルト23に落下する。
 そして、本実施形態においては、未燃の炭化物または木質の芯が残った炭化物の状態で中粒b又は粗粒Bがコンベアベルト23上に落下したとき、これに燃焼空気供給手段32によって必要な燃焼空気が供給される。このため、コンベアベルト23上に落下した中粒b又は粗粒Bの未燃分は落下後も燃え続け、3分程度で燃え尽きる。他方、コンベアベルト23上のボトムアッシュは冷却空気吸引孔31から供給される冷却空気(トランジションホッパ20を経て火炉1に向って流れる冷却空気)によって十分に冷却され、約1時間後に乾式クリンカ処理装置21から排出されてクリンカ収集部41に収容される。
 蒸気発生量が毎時105tのこの実施形態のボイラは、混焼されるバイオマス燃料は粉砕粒度5mmである。このバイオマス燃料では5mm以下の微粉が90重量%であり、5mmを超える中粒と粗粒が10重量%である。そしてバイオマス燃料の熱量混焼率が10%であり、微粉炭の供給量が毎時10.8tであり、バイオマス燃料(含水率20%)供給量が毎時2.6tである。
 この時乾式クリンカ処理装置21に落下する可能性のあるバイオマスの量は5mm以上の毎時0.26tであり、未燃分の内訳は、木質分が約70%(揮発成分)、炭化物が30%(残炭成分)である。0.26tのうち、5mmに近い中粒の大部分は落下途中で燃焼し、総体として約半分の毎時0.13t程度がコンベアベルト23に落下すると見られる。
 トランジションホッパ20の近傍において燃焼空気供給手段32によって毎時1,000Nmの空気が供給される(Nm(ノーマル・リューベ) は1気圧0℃での体積)。図2(a)に示したように、トランジションホッパ20の下端の左右両側に、燃焼空気供給手段32の一部である燃焼空気ノズル33があり、この燃焼空気ノズル33からトランジションホッパ20の直下のコンベアベルト23の上面に向けて斜めに秒速30m程度で当該空気が吹き付けられる。
 これによってコンベアベルト23に落下したバイオマス燃料に燃焼空気が直接吹き付けられる。そして毎秒5mm程度で移動しているコンベアベルト23に落下した未燃バイオマスは、落下してから3分程度で燃え尽きて灰になる。
 図2(a)では、左右の燃焼空気ノズル33からコンベアベルト23の表面に向けて斜めに燃焼空気が吹き付けられるように、燃焼空気ノズル33が配置されているが、図2(b)に示したように、コンベアベルト23の裏面に向けて燃焼空気が吹き付けられるように、燃焼空気ノズル33’を配置することもできる。
 なお冷却空気吸引孔31によって毎時2,000Nmの空気がコンベアベルトの下側に供給される。
 この実施形態のボイラ火炉内での燃焼に供給される空気量は、毎時10万Nmである。乾式クリンカ処理装置に燃焼空気供給手段32によって供給される燃焼空気量毎時1,000Nmと、冷却空気吸引孔31による冷却空気量毎時2,000Nmの合計は毎時3,000Nmであり、これらの空気がトランジションホッパ20を経て火炉1に吸引されるから、風箱3から火炉1に供給される燃焼空気量は毎時97,000Nmであり、この空気が燃焼空気供給装置50(図1)によって供給される。
 燃焼空気供給装置50から供給される燃焼空気の流量は、燃焼空気制御装置60によって制御される。上述したように燃焼空気供給手段32から供給される燃焼空気の流量もこの燃焼空気制御装置60によって制御される。即ち、燃焼空気制御装置60によって燃焼空気供給装置50及び燃焼空気供給手段32の各流量が制御され、これによりボイラ全体の燃焼空気量が上記の通りに制御されて最適化される。
 この実施形態で使用している乾式クリンカ処理装置21の基本構造は、上記特公平7-56375号公報(特許文献4)に記載されているものと概ね共通しており、コンベアベルト23の断面構造は図3(a)に示すように、金属線材による網ベルト23aと鋼板23bによるものであり、図3(b)に示されているように本体22のガイドローラ25a,25bに支持されている。
 網ベルト23aの線材を横桟23dと鋼板23bとで鋏み、ボルト、ナット8,10で固定しており、多数の鋼板23bがその一部を重ね合わせた状態で組み合わされていて、これによって網ベルト23aがカバーされている。
 以上、本発明の好ましい例についてある程度特定的に説明したが、それらについて種々の変更をなし得ることはあきらかである。従って、本発明の範囲及び精神から逸脱することなく、本明細書中で特定的に記載された態様とは異なる態様で本発明を実施できることが理解されるべきである。

Claims (16)

  1.  微粉炭とバイオマス燃料とを混焼させるための火炉と、
     前記火炉に前記微粉炭を供給するための微粉炭バーナと、
     前記火炉に前記バイオマス燃料を供給するためのバイオマスバーナと、
     前記バイオマスバーナに供給される前記バイオマス燃料を粉砕するためのバイオマスミルと、
     前記火炉の下方に設けられ、前記火炉から排出されたボトムアッシュを搬送するためのクリンカコンベアを有する乾式クリンカ処理装置と、
     前記クリンカコンベア上の前記ボトムアッシュに向けて燃焼空気を供給することにより、前記ボトムアッシュの中に含まれる前記バイオマス燃料の未燃分を前記クリンカコンベア上で燃焼させるための燃焼空気供給手段と、を備えたことを特徴とするバイオマス混焼微粉炭焚きボイラ。
  2.  前記バイオマスミルは、前記バイオマス燃料を粉砕粒度5mm以上の粉粒体に粉砕するように構成されていることを特徴とする請求項1記載のバイオマス混焼微粉炭焚きボイラ。
  3.  前記燃焼空気供給手段は、前記バイオマス燃料の未燃分が前記クリンカコンベア上で完全燃焼するように前記ボトムアッシュに向けて前記燃焼空気を供給することを特徴とする請求項1又は2に記載のバイオマス混焼微粉炭焚きボイラ。
  4.  前記火炉の内部に向けて供給される燃焼空気の流量と、前記燃焼空気供給手段から前記クリンカコンベア上の前記ボトムアッシュに向けて供給される前記燃焼空気の流量とを制御して、ボイラ全体の燃焼効率を最適化するための燃焼空気制御装置をさらに有する請求項1乃至3のいずれか一項に記載のバイオマス混焼微粉炭焚きボイラ。
  5.  前記微粉炭バーナよりも上方位置に前記バイオマスバーナを配置したことを特徴とする請求項1乃至4のいずれか一項に記載のバイオマス混焼微粉炭焚きボイラ。
  6.  前記乾式クリンカ処理装置に冷却空気を供給するための冷却空気供給手段をさらに備えたことを特徴とする請求項1乃至5のいずれか一項に記載のバイオマス混焼微粉炭焚きボイラ。
  7.  前記微粉炭バーナに供給される前記微粉炭を生成するために石炭を粉砕する石炭ミルをさらに有することを特徴とする請求項1乃至6のいずれか一項に記載のバイオマス混焼微粉炭焚きボイラ。
  8.  前記バイオマスミルは、前記バイオマス燃料の粉砕のための専用ミルであり、前記石炭ミルは、前記石炭の粉砕のための専用ミルであることを特徴とする請求項7に記載のバイオマス混焼微粉炭焚きボイラ。
  9.  バイオマス混焼微粉炭焚きボイラの運転方法であって、
     バイオマスミルによってバイオマス燃料を粉砕する工程と、
     粉砕された前記バイオマス燃料をバイオマスバーナによって火炉に供給する工程と、
     微粉炭バーナによって微粉炭を前記火炉に供給する工程と、
     前記火炉の下方に設けられた乾式クリンカ処理装置のコンベアベルト上に排出されたボトムアッシュに向けて燃焼空気を供給することにより、前記ボトムアッシュの中に含まれる前記バイオマス燃料の未燃分を前記クリンカコンベア上で燃焼させる工程と、を備えたことを特徴とするボイラ運転方法。
  10.  前記バイオマスミルによって前記バイオマス燃料を粉砕粒度5mm以上の粉粒体に粉砕することを特徴とする請求項9に記載のボイラ運転方法。
  11.  前記バイオマス燃料の未燃分が前記クリンカコンベア上で完全燃焼するように前記ボトムアッシュに向けて前記燃焼空気を供給することを特徴とする請求項9又は10に記載のボイラ運転方法。
  12.  前記火炉の内部に向けて供給される燃焼空気の流量と、前記クリンカコンベア上のボトムアッシュに向けて供給される前記燃焼空気の流量とを制御して、ボイラ全体の燃焼効率を最適化することを特徴とする請求項9乃至11のいずれか一項に記載のボイラ運転方法。
  13.  前記微粉炭バーナよりも上方位置にある前記バイオマスバーナから前記バイオマス燃料を前記火炉に供給することを特徴とする請求項9乃至12のいずれか一項に記載のボイラ運転方法。
  14.  前記乾式クリンカ処理装置に冷却空気を供給する工程をさらに有することを特徴とする請求項9乃至13のいずれか一項に記載のボイラ運転方法。
  15.  前記微粉炭バーナに供給される前記微粉炭を生成するために石炭ミルによって石炭を粉砕する工程をさらに有することを特徴とする請求項9乃至14のいずれか一項に記載のボイラ運転方法。
  16.  前記バイオマスミルを前記バイオマス燃料の粉砕のための専用ミルとして使用し、前記石炭ミルを前記石炭の粉砕のための専用ミルとして使用することを特徴とする請求項15に記載のボイラ運転方法。
PCT/JP2009/058887 2008-05-16 2009-05-13 バイオマス混焼微粉炭焚きボイラ及び同ボイラの運転方法 WO2009139404A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EA201001798A EA201001798A1 (ru) 2008-05-16 2009-05-13 Котёл, работающий на смешанном с биомассой распылённом угле, и способ эксплуатации котла
MX2010012333A MX2010012333A (es) 2008-05-16 2009-05-13 Caldera alimentada por mezcla de biomasa y carbon pulverizado y metodo de operación de la caldera.
KR1020107025134A KR101280199B1 (ko) 2008-05-16 2009-05-13 바이오매스혼소미분탄연소보일러 및 동 보일러의 운전방법
BRPI0911995A BRPI0911995A2 (pt) 2008-05-16 2009-05-13 caldeira a carvão pulverizado e à queima nisturada com biomassa, e, método para operar a mesma
DK09746610.6T DK2287529T3 (en) 2008-05-16 2009-05-13 Biomass blend fired boiler fueled by pulverized coal, and the method of operating the boiler
EP09746610.6A EP2287529B1 (en) 2008-05-16 2009-05-13 Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler
US12/988,804 US9068746B2 (en) 2008-05-16 2009-05-13 Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler
ZA2010/08158A ZA201008158B (en) 2008-05-16 2010-11-15 Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-129783 2008-05-16
JP2008129783A JP5051721B2 (ja) 2008-05-16 2008-05-16 バイオマス混焼微粉炭焚きボイラ

Publications (1)

Publication Number Publication Date
WO2009139404A1 true WO2009139404A1 (ja) 2009-11-19

Family

ID=41318771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058887 WO2009139404A1 (ja) 2008-05-16 2009-05-13 バイオマス混焼微粉炭焚きボイラ及び同ボイラの運転方法

Country Status (10)

Country Link
US (1) US9068746B2 (ja)
EP (1) EP2287529B1 (ja)
JP (1) JP5051721B2 (ja)
KR (1) KR101280199B1 (ja)
BR (1) BRPI0911995A2 (ja)
DK (1) DK2287529T3 (ja)
EA (1) EA201001798A1 (ja)
MX (1) MX2010012333A (ja)
WO (1) WO2009139404A1 (ja)
ZA (1) ZA201008158B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841346A (zh) * 2016-04-12 2016-08-10 杜普利 生物质型煤锅炉
CN110986065A (zh) * 2019-11-18 2020-04-10 国网河北省电力有限公司电力科学研究院 利用干渣机的冷却空气加热烟气的系统及消除烟羽的方法
CN112032745A (zh) * 2020-08-31 2020-12-04 井冈山大学 一种污水治理用金鱼藻焚烧装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1396049B1 (it) * 2009-09-24 2012-11-09 Magaldi Ind Srl Sistema di estrazione e trasporto di ceneri leggere mediante trasportatore a nastro in acciaio.
US20110209647A1 (en) * 2010-02-26 2011-09-01 Global Greensteam Llc Biomass-to-energy combustion method
JP2011245357A (ja) * 2010-05-21 2011-12-08 Mitsubishi Heavy Ind Ltd バイオマス粉砕装置及びバイオマス・石炭混焼システム
DE102010033307A1 (de) * 2010-08-04 2012-02-09 Clyde Bergemann Drycon Gmbh Vorrichtung und Verfahren zum Nachverbrennen von heißem Material auf einem Förderer
US20140076210A1 (en) * 2011-09-30 2014-03-20 Mitsubishi Heavy Industries, Ltd Biomass mill and biomass-coal mixed combustion system
JP5886031B2 (ja) * 2011-12-26 2016-03-16 川崎重工業株式会社 バイオマス燃料燃焼方法
HU4493U (en) * 2012-10-24 2015-01-28 Károly Róbert F Iskola Biomass boiler system
JP2014238192A (ja) * 2013-06-06 2014-12-18 株式会社神戸製鋼所 バイオマス燃料と石炭系燃料の混焼方法、およびバイオマス−石炭系燃料
CN104421952A (zh) * 2013-09-11 2015-03-18 青岛中策环保设备有限公司 一种板链阶梯式干除渣机
US10018355B2 (en) * 2014-06-16 2018-07-10 CTP Biotechnology, LLC System and process for combusting coal and beneficiated organic-carbon-containing feedstock
US10024533B2 (en) * 2014-06-16 2018-07-17 Ctp Biotechnology Llc System and process for combusting cleaned coal and beneficiated organic-carbon-containing feedstock
CN104633680A (zh) * 2014-11-26 2015-05-20 青岛松灵电力环保设备有限公司 一种煤粉炉鳞斗式干渣机系统设备
CA2919936C (en) * 2015-02-10 2023-06-27 Hitachi Zosen Inova Ag Method for cooling solid residues of a combustion process
KR101809077B1 (ko) 2015-08-18 2017-12-14 (주)경동월드와이드 반탄화 바이오매스 고형 연료 및 그 제조방법
JP6616153B2 (ja) * 2015-10-21 2019-12-04 株式会社神鋼環境ソリューション ボイラ
WO2018144096A2 (en) * 2016-11-04 2018-08-09 Queston, Inc. A biomass coal fuel and method of producing same
KR101767250B1 (ko) * 2016-12-12 2017-08-14 김준영 유기성 연료를 이용한 연소 발전 장치
CN107741021B (zh) * 2017-10-31 2019-07-23 史震伟 一种风冷干渣机炉渣显热回用系统
CN108584457B (zh) * 2017-12-22 2023-07-18 江苏保丽洁环境科技股份有限公司 配套于烫光机烟气净化器的毛纤维自动排出结构
CN108844055B (zh) * 2018-06-13 2024-05-14 中国船舶集团有限公司第七一一研究所 锅炉
CN110822449B (zh) * 2019-09-17 2021-08-24 中国能源建设集团广东省电力设计研究院有限公司 用于刮板捞渣机的污泥掺烧系统
JP2022101041A (ja) * 2020-12-24 2022-07-06 三菱重工業株式会社 ボイラの運転支援装置及びボイラの運転支援システム
CN116772195A (zh) * 2021-12-21 2023-09-19 中印恒盛(北京)贸易有限公司 一种生物质混烧煤粉锅炉及其使用方法
KR102667550B1 (ko) * 2022-06-30 2024-05-22 김광용 바이오매스 연료를 사용하고 완전연소를 유도하는 연소실
KR102667552B1 (ko) * 2022-06-30 2024-05-22 김광용 왕겨재 제조장치
KR102651163B1 (ko) * 2022-06-30 2024-03-26 김광용 완전연소를 유도하는 연소실의 공기 및 산소분사장치
CN115342341A (zh) * 2022-08-10 2022-11-15 西安热工研究院有限公司 一种提高煤粉锅炉深度调峰能力的系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334408A (ja) * 1986-07-28 1988-02-15 Ishikawajima Harima Heavy Ind Co Ltd 微粉燃焼プロセス加熱装置
JPH0756375A (ja) 1993-08-19 1995-03-03 Kimoto & Co Ltd 記録用紙
JP2004347271A (ja) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd 燃焼装置及び方法
JP2005241108A (ja) 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd バイオマス混焼装置および混焼方法
JP2005291531A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼方法及び装置
JP2005291539A (ja) * 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の前処理及び混焼方法と装置
JP2007101135A (ja) 2005-10-07 2007-04-19 Ube Ind Ltd 微粉炭とバイオマスの混焼方法
JP2008082651A (ja) * 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd 石炭・バイオマス混焼システム及び混焼方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481890A (en) * 1980-09-29 1984-11-13 Sterling Drug Inc. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
IT1188247B (it) * 1986-01-10 1988-01-07 Magaldi Mario Procedimento ed apparecchiatura per l'estrazione continua a secco di ceneri pesanti
IT1241408B (it) * 1990-03-02 1994-01-14 Mario Magaldi Sistema di scarico delle ceneri pesanti da caldaie per la produzione di vapore
US6193768B1 (en) * 1994-09-27 2001-02-27 Mcx Environmental Energy Corp. Particulate waste wood fuel, method for making particulate waste wood fuel, and a method for producing energy with particulate waste wood fuel
US5775237A (en) * 1996-12-30 1998-07-07 Florida Power Corporation Dry bottom ash handling system
US6973883B1 (en) * 2001-03-22 2005-12-13 The Texas A&M University System Reburn system with feedlot biomass
ITMI20020744A1 (it) * 2002-04-09 2003-10-09 Magaldi Ricerche & Brevetti Trasportatore raffreddore ad aria ed acqua di materiali caldi sfusi
JP2004205161A (ja) * 2002-12-26 2004-07-22 Hitachi Ltd 固体燃料ボイラ及びボイラ燃焼方法
US8015932B2 (en) * 2007-09-24 2011-09-13 General Electric Company Method and apparatus for operating a fuel flexible furnace to reduce pollutants in emissions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334408A (ja) * 1986-07-28 1988-02-15 Ishikawajima Harima Heavy Ind Co Ltd 微粉燃焼プロセス加熱装置
JPH0756375A (ja) 1993-08-19 1995-03-03 Kimoto & Co Ltd 記録用紙
JP2004347271A (ja) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd 燃焼装置及び方法
JP2005241108A (ja) 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd バイオマス混焼装置および混焼方法
JP2005291531A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼方法及び装置
JP2005291539A (ja) * 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の前処理及び混焼方法と装置
JP2007101135A (ja) 2005-10-07 2007-04-19 Ube Ind Ltd 微粉炭とバイオマスの混焼方法
JP2008082651A (ja) * 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd 石炭・バイオマス混焼システム及び混焼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2287529A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841346A (zh) * 2016-04-12 2016-08-10 杜普利 生物质型煤锅炉
CN110986065A (zh) * 2019-11-18 2020-04-10 国网河北省电力有限公司电力科学研究院 利用干渣机的冷却空气加热烟气的系统及消除烟羽的方法
CN110986065B (zh) * 2019-11-18 2021-08-17 国网河北省电力有限公司电力科学研究院 利用干渣机的冷却空气加热烟气的系统及消除烟羽的方法
CN112032745A (zh) * 2020-08-31 2020-12-04 井冈山大学 一种污水治理用金鱼藻焚烧装置
CN112032745B (zh) * 2020-08-31 2022-12-06 井冈山大学 一种污水治理用金鱼藻焚烧装置

Also Published As

Publication number Publication date
EP2287529A1 (en) 2011-02-23
MX2010012333A (es) 2011-04-04
US9068746B2 (en) 2015-06-30
EP2287529A4 (en) 2014-07-30
JP5051721B2 (ja) 2012-10-17
KR20110031153A (ko) 2011-03-24
BRPI0911995A2 (pt) 2015-10-27
US20110107948A1 (en) 2011-05-12
DK2287529T3 (en) 2015-12-07
EA201001798A1 (ru) 2011-06-30
KR101280199B1 (ko) 2013-06-28
ZA201008158B (en) 2011-09-28
EP2287529B1 (en) 2015-08-26
JP2009276027A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5051721B2 (ja) バイオマス混焼微粉炭焚きボイラ
JP4861318B2 (ja) 重い灰と軽い灰とを分離し、未燃焼物の含有量を低減させる方法及びシステム
KR101428831B1 (ko) 중회분 건조 추출/ 냉각용 및 고 미연소 성분 잔류물 연소 제어용 플랜트 및 방법
US20130146686A1 (en) Method and installation for coal grinding in inert operation or in non-inert operation
JP2005291539A (ja) バイオマス燃料の前処理及び混焼方法と装置
JP2007247962A (ja) 可燃物処理装置
JP4367768B2 (ja) バイオマス燃料の燃焼方法及び装置
JP5420159B2 (ja) 炭化物貯留搬送装置及び方法
JP2005265298A (ja) ボイラ装置
JP2008208360A (ja) 固体燃料およびその製造方法
JP2014181887A (ja) 湿潤燃料流動層乾燥装置及びその乾燥方法
KR102169127B1 (ko) 바이콘형 폐기물 압축 및 분쇄 장치 및 폐기물 예비 건조장치가 구비된 스토커식 소각로
JP6816361B2 (ja) 微粉炭焚きボイラ設備
JP4318259B2 (ja) バイオマス燃料の粉砕方法と装置及びバイオマス燃料の燃焼方法と装置
TWI837404B (zh) 用於減少一爐之污染物之排放的方法、爐及非暫時性電腦可讀媒體
JP2014159935A (ja) 燃料加工設備
JP2007106781A (ja) 木質燃料の製造方法及び使用方法並びに製造装置
JP2012078019A (ja) バイオマス貯蔵ユニット及び前処理ユニット
JP2022545772A (ja) ハイブリッドボイラ乾燥機および方法
TW202108942A (zh) 混合式鍋爐-乾燥機及方法
CN116772195A (zh) 一种生物质混烧煤粉锅炉及其使用方法
JP2012233634A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
WO2012133122A1 (ja) 流動層乾燥装置
JP2013167418A (ja) 熱処理物の冷却装置
JPH11351526A (ja) 廃棄物燃焼処理方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12010502479

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20107025134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/012333

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009746610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201001798

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 12988804

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0911995

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101112