JP2005265298A - ボイラ装置 - Google Patents

ボイラ装置 Download PDF

Info

Publication number
JP2005265298A
JP2005265298A JP2004078659A JP2004078659A JP2005265298A JP 2005265298 A JP2005265298 A JP 2005265298A JP 2004078659 A JP2004078659 A JP 2004078659A JP 2004078659 A JP2004078659 A JP 2004078659A JP 2005265298 A JP2005265298 A JP 2005265298A
Authority
JP
Japan
Prior art keywords
combustion
air
temperature
fuel
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078659A
Other languages
English (en)
Other versions
JP4296415B2 (ja
Inventor
Toshiyuki Suda
俊之 須田
Makoto Takato
誠 高藤
Tetsuya Hirata
哲也 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004078659A priority Critical patent/JP4296415B2/ja
Publication of JP2005265298A publication Critical patent/JP2005265298A/ja
Application granted granted Critical
Publication of JP4296415B2 publication Critical patent/JP4296415B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

【課題】 本発明の目的は、炭種の異なる種々の微粉炭や、汚泥、バイオマス燃料等の低質燃料が使用可能で、広い作動範囲に亘って安定な低NOx燃焼が可能であり、総合的なエネルギー効率に優れるシステム構成を備えたボイラ装置を提供することにある。
【解決手段】 本発明のボイラ装置1は、固体燃料を燃焼させる燃焼領域10aを有する火炉10と、該火炉から燃焼排気ガスの一部を抽気し、該ガスにより燃焼用空気を固体燃料の着火温度以上の温度に加熱して高温燃焼用空気を生成する熱交換手段26と、高温燃焼用空気より低い温度に予熱された燃焼用二次空気を生成する空気予熱手段21と、燃焼領域に固体燃料を噴出させて火炎を形成させる燃料ノズル41と、火炎近傍の燃焼領域に還元雰囲気を形成させるように高温燃焼用空気を噴出させる高温空気供給手段36と、火炎の後方の燃焼領域に前記燃焼用二次空気を噴出させる二次空気供給手段31とを備える。
【選択図】 図1

Description

本発明は、微粉炭、汚泥、バイオマス燃料等の固体燃料を燃焼させて高温の水蒸気を得ることができるボイラ装置に関し、特に、低質燃料を含む様々の燃料を燃焼させることが可能で、低負荷時を含めた排気ガス中のNOxの低減が可能なボイラ装置に関する。
従来より、火力発電所においては、微粉炭を燃料とするボイラが知られているが、そのような微粉炭燃焼ボイラの問題点として、(1)フューエルNOを中心とするNOxの発生量が多く、(2)揮発性の低い炭種の着火性が悪く安定燃焼が困難なこと、があげられ、さらにコストダウンの観点からボイラの一層の小型化が望まれていた。
従来技術においては、着火性の確保とフューエルNOの減少手段として、着火点近傍の微粉炭濃度を調整して着火性を確保するとともに、燃焼用空気量を調節して着火点近傍を還元性雰囲気にし、フューエルNの酸化を抑止してフューエルNOの発生を抑止することが行われている。例えば、微粉炭を噴出させて燃焼させるバーナの構造により微粉炭流を濃淡流としたり、燃焼用空気を供給するノズルを前述のバーナのノズルと同軸とするとともにその噴出方向を制御して、微粉炭の燃焼火炎近傍の燃焼用空気の流れを調節し前段燃焼域を還元性雰囲気に保つことなどである。さらに、着火点近傍では、供給する燃焼用空気を制限して還元雰囲気中で燃焼を行わせるとともに、燃焼の後段側にさらに空気を供給して、前段燃焼域の燃焼で燃え残った未燃焼燃料を完全に燃焼させる2段燃焼等も実施されている。
しかし、上記のような従来技術によっては、着火性の改善に限界があるため還元性雰囲気の形成によるNOx発生の抑制にも限度があり、結局、大型の脱硝装置によるNOx処理を施さざるを得ないという問題があった。
近年においては、高温空気燃焼技術を微粉炭燃焼に適用して、着火性の向上の向上を図る発明が行われている(例えば、特許文献1参照)。
特開2001−215013号公報
ところで、特許文献1に提案された高温空気燃焼技術を実際の火力発電用等のボイラ装置へ適用するためには、以下のような種々の課題がある。
(1)揮発性の低い炭種も含めた種々の炭種を燃料として、低負荷から高負荷まで広い作動範囲で低NOx、安定燃焼が可能であること。
(2)また、低負荷時の効率向上、特に所内率を低下させるとともに蒸気条件を向上(高温水蒸気量の確保)させること。
(3)装置のコンパクト化によるコストダウンができること。
(4)汚泥やバイオマス等の低質燃料にも適用可能で、安定燃焼ができること。
(5)従来の微粉炭燃焼ボイラを高温燃焼技術ボイラへ改造する場合も想定されるので該改造工事が極力小規模なものとできること。
以下、上記について詳細に説明する。
微粉炭は、ボイラ内で加熱されガス化して燃焼するが、かかるガスの発生のしやすさ(揮発性)は炭種により異なり、例えば、炭化度が進み煙の少ない無煙炭の揮発性は低く着火性が極端に悪い。無煙炭を含む種々の炭種を燃料として、低負荷から定格運転までの広い作動範囲で安定して燃焼させることは殆ど不可能である。
前述のように微粉炭燃焼において発生するNOxは、いわゆるフュ−エルNOが多く、サーマルNOxに対して有効な排ガス再循環法等の対策によっても火炉からのフュ−エルNO発生を減少させる事が困難であるので、重油等を燃料とする場合に比較すれば大型の脱硝装置によりこれを除去せざるをえない。
さらに、一般には、燃料の揮発性が低いほど揮発性の燃焼ガスが発生しにくいので着火性が低下し、また、運転出力(負荷)が低いほど燃焼が不安定となりやすい。運転出力が低いと、火炉全体の発熱量が小となって炉内温度が低下し燃焼領域の温度を着火温度以上に維持することができず、着火性が低下して、還元性雰囲気においては燃焼を安定させることができなくなるのである。このため、燃料の揮発性が低いほど、又は定格出力に比較して、運転負荷が低いほど、定格出力運転時に比較すれば、同じ量の微粉炭を安定に燃焼させるために必要な空気量(空気比)が増加し、供給空気量の増加によりバーナ近傍の雰囲気が酸化性雰囲気になり、結果として発生NOx量の増加を招いてしまう。加えて、この空気量の増加により、該空気を送風するための排風器動力が増加し(所内率増加)、該空気(燃焼用空気)に保持されたまま大気中へ放出されて無駄になる熱量も増加し、高温水蒸気を効率的に確保することができず、ボイラ効率の低下を招く。このため、低負荷運転時においては、ボイラ装置の総合的なエネルギー効率が低下することになる。
さらに特許文献1の発明をそのままボイラ装置に適用した場合には、燃焼用空気のすべてを高温まで加熱するための大型の装置が必要でありコスト高になり易く、特に、従来型のボイラ装置を改造して着火性を向上させる場合には、燃焼用空気加熱のための大型装置を設置するとともにそのための火炉まわりの配管工事等大規模な改造が必要となることから適切とはいえなかった。
また、環境保全の観点から、加熱により燃焼性のガスを発生する汚泥やバイオマス燃料もボイラ装置において燃焼させることが望ましいが、これらも含有水分量が多く着火性が悪いため、既存のボイラで燃焼させることは困難である。
本発明は、上記の事情に鑑みてなされたものであり、その目的は、炭種の異なる種々の微粉炭や、汚泥、バイオマス燃料等の低質燃料を使用することができ、低負荷運転状態を含む広い作動範囲に亘ってNOxの発生量が少なく、安定燃焼が可能であり、総合的なエネルギー効率に優れるシステム構成を備えたボイラ装置を提供することにある。
上記目的を達成するため、請求項1の発明によっては、固体燃料を燃焼させる燃焼領域を有する火炉と、該火炉から燃焼排気ガスの一部を抽気し、抽気した燃焼排気ガスにより燃焼用空気を固体燃料の着火温度以上の温度に加熱して高温燃焼用空気を生成する熱交換手段と、燃焼用空気を高温燃焼用空気より低い温度に予熱して燃焼用二次空気を生成する空気予熱手段と、前記燃焼領域に前記固体燃料を噴出させて火炎を形成させる燃料ノズルと、該燃料ノズル近傍に配設され、前記火炎近傍の燃焼領域に還元雰囲気を形成させるように前記高温燃焼用空気を噴出させる高温空気供給手段と、前記火炎の後方の燃焼領域に前記燃焼用二次空気を噴出させる二次空気供給手段とを備えることを特徴とするボイラ装置が提供される。
なお、本発明は種々の固体燃料が適用可能であり、ここでいう「固体燃料」には、微粉炭や木材チップ等の固体状燃料のほか、汚泥等スラリー状の燃料が含まれる。請求項2の発明のように、固体燃料が微粉炭である場合には、高温燃焼用空気を好ましくは800℃以上に加熱する。
前記燃料ノズルや前記高温空気供給手段の配設位置は、前述した高温の還元性雰囲気が火炎近傍に形成されれば、特に限定されず、該燃料ノズルの燃料噴出位置と該高温空気供給手段の空気噴出位置とを互いに離間させて配置してもよく(請求項3)、該燃料ノズルの燃料噴出中心と該高温空気供給手段の空気噴出中心とを互いに同軸に配置してもよい(請求項4)。
前記二次空気供給手段の空気噴出位置を燃料ノズルの燃料噴出位置に対し、前記高温空気供給手段の空気噴出位置より遠くに離間させて配置してもよく(請求項5)、該燃料ノズルの燃料噴出中心と、該高温空気供給手段および該二次空気供給手段の各空気噴出中心とを同軸に、かつ、燃料ノズルの外周に、高温空気供給手段、二次空気供給手段の順に、環状に配置してもよい(請求項6)。
前記高温空気供給手段の配設位置より後流の前記燃焼領域に、前記高温燃焼用空気の一部を噴出させる後段高温空気供給手段を備えてもよく(請求項7)、 該燃焼領域に、前記二次空気供給手段からの前記燃焼用二次空気を噴出させてもよい(請求項8)。
さらに、前記高温空気供給手段の配設位置より後流の前記燃焼領域に前記固体燃料の一部を噴出させ、前記二次空気供給手段からの前記燃焼用二次空気と混合して燃焼させる後段燃料ノズルと、該後段燃料ノズルの配設位置より後流の前記燃焼領域に前記燃焼用二次空気を噴出させる後段二次空気供給手段の空気噴出口とを備えてもよい(請求項9)。
互いに対向する前記火炉の各壁面に、前記燃料ノズルと前記二次空気供給手段の空気噴出ノズル及び前記高温空気供給手段の空気噴出ノズルとをそれぞれ対向して配置してもよく(請求項10)、或いは、前記火炉内の水平な仮想円の接線方向に、前記燃料及び燃焼用空気をそれぞれ噴出させ、前記火炉内に旋回流を発生させつつ前記固体燃料を燃焼させるように配置してもよい(請求項11)。
前記熱交換手段は、多管式熱交換器であってもよく(請求項12)、蓄熱式熱交換器であってもよい(請求項13)。特に、熱交換手段として、内部に蓄熱材を充填した交番型蓄熱式熱交換器を使用した場合には、前記火炉からの燃焼排気ガスの一部を抽気して前記熱交換器に供給し、抽気した燃焼排気ガスにより前記蓄熱材を加熱して蓄熱し、蓄熱後に燃焼用空気を前記固体燃料の着火温度以上の温度に加熱して前記高温空気供給手段に供給し、蓄熱と高温燃焼用空気の生成を交互に繰り返すこととしてもよい(請求項14)。また、前記熱交換手段は、前記火炉上部から抽気した前記燃焼排気ガスにより高温燃焼用空気を生成することとしてもよい(請求項15)。さらに、2個の前記交番型蓄熱式熱交換器と、各該熱交換器の一端がそれぞれ接続される高温燃焼用空気供給手段とを一組として備え、前記各熱交換器へ燃焼用空気を供給する燃焼用空気供給手段と、前記各熱交換器から燃焼排気ガスを排出する排気ガス排出手段と、前記各熱交換器の各他端を、前記燃焼用空気供給手段又は排気ガス排出手段に、それぞれ、交互に切換可能に接続する切換手段とを備えることとしてもよい(請求項16)。
さらに、必要に応じて、抽気した燃焼排気ガス中の粉塵を除去して当該燃焼排気ガスを前記熱交換手段に供給する脱塵手段を備えてもよい(請求項17)。
燃焼用二次空気を生成する前記空気予熱手段としては特に限定されないが、前記火炉からの排気ガスにより燃焼用空気を予熱するタイプのものであってもよい(請求項18)。
必要に応じて、前記火炉からの排気ガスを搬送ガスとし、該搬送ガスにより固体燃料を燃料ノズルに搬送することとしてもよく(請求項19)、それに加えて、石炭を微粉炭に粉砕するミル装置を備え、前記火炉からの排気ガスを雰囲気ガスとし、当該排気ガスをミル装置に供給して微粉炭を製造することとしてもよく(請求項20)、該排気ガス中の灰儘を除去する粉塵除去手段を備えていてもよい(請求項21)。
本発明の特徴は、必要最小量の高温燃焼用空気により、高温かつ還元性の雰囲気下における着火性を確保し、熱交換手段等の小型化/最適化をはかることにある。すなわち、火炉から高温の燃焼排気ガスの一部が抽気され、熱交換手段は、この抽気した燃焼排気ガスにより高温空気燃焼に必要な量の高温燃焼用空気を生成して高温空気供給手段に供給する。そして、高温空気供給手段と燃料ノズルとにより、高温燃焼用空気と燃料とを火炉本体内に噴出させて燃料を燃焼させ、着火点近傍に着火温度以上に加熱された高温燃焼用空気によって形成される高温雰囲気中で燃料を燃焼させることにより、燃料が低揮発性のものであっても高温条件下において揮発が促進され、着火性が向上して安定な前段燃焼が生じる。
ここで、本発明の構成によれば、上記高温燃焼用空気と燃料の燃焼により高温の還元性雰囲気下において火炎が形成されるが、この火炎近傍の燃焼領域で燃焼の総てを完結させるのではなく、言わば、安定な火種(前段燃焼)をつくり、後段に、二次燃焼用空気(固体燃料の着火温度以下、好ましくは300〜350℃程度に予熱された空気)を供給して後段燃焼をさせ、燃焼を完結させている。この二次燃焼用空気の温度は高くはないが、既に前段燃焼領域において高温燃焼用空気によって燃焼反応が進んでおり、一部は未燃燃料として、又一部は燃焼が完了していない活性種を含む中間反応種として、残部は既燃ガスとして後段燃焼領域に到達し、ただちに燃焼用二次空気と反応することができる。従って、後段燃焼領域においても、燃焼火炎全体に亘って、高温の雰囲気が達成され、安定な燃焼が継続する。
すなわち、前段燃焼に必要な最小量の高温燃焼用空気のみにより燃焼全体を安定な高温空気燃焼とすることができるので、熱交換手段等の小型化が可能となり、着火性が向上するので、消炎のおそれなく燃焼用空気の供給量を適切に調節して着火点近傍の雰囲気を還元性に保持することができ、このためにフュ−エルNOを含むNOxの発生を抑制することができる。
本発明においては、高温燃焼用空気としては、少なくとも着火点における安定な前段燃焼に必要な空気量を供給し、残余は300〜350℃程度に予熱された二次燃焼用空気により補うこととした。このため、多量の空気を高温に加熱する必要がないので、そのための設備を小型化できる。この特徴は、特に、従来型ボイラの改造により高温燃焼用空気を供給する設備を付加して本発明を適用する場合において、既存の設備の多くをそのまま利用して改造の規模を小規模なものとできることから重要である。
さらに、本発明によっては下記の別の効果が期待できる。
前述のように、低揮発性の炭種を燃料として使用した場合や、低負荷運転時においては、通常では、着火性の低下や炉内温度の低下による燃焼の不安定化を補うため燃焼用空気量の増加が必要となる。しかし本発明によっては、低揮発性の炭種を燃料として使用した場合、或いは低負荷運転時においては、それに応じて、燃焼用二次空気の供給割合を適宜低減させるとともに高温燃焼用空気の供給割合を適宜増加させて、容易に着火点近傍の雰囲気を着火温度以上に保持して安定燃焼を維持してすることができ、燃料と燃焼用二次空気及び高温燃焼用空気の合計(全燃焼用空気量)との比率(空気比)を、炭種や運転出力に関わらず一定に保持することができる。このため、排気ガスに同伴して大気中に散逸する熱量の増加をなくすることができる。すなわち、如何なる燃料を使用しても、或いは低負荷運転時においても総合的なエネルギー効率の低下を防止できる。
請求項2の発明のように、固体燃料が微粉炭である場合には、高温燃焼用空気を種々の炭種の着火温度を考慮して800℃以上に加熱することで安定な燃焼が確保できる。
また、燃料ノズルと高温空気供給手段のそれぞれの噴出口位置は、互いに離間させて配置させてもよいし(請求項3)、或いは同軸に配置することもでき(請求項4)、前段燃焼領域に燃料の着火温度以上の高温燃焼用空気を供給するようにしたことにより、ボイラ設計上の自由度が向上し、配置スペースや燃料や高温空気を供給する機構との位置関係などを考慮して最適な配置が可能となる。
また、上述のような後段燃焼領域への燃焼用二次空気の供給を、必要に応じて、より燃料ノズル側に近づけることもできるが、いずれにしても、請求項5の発明のように二次空気供給手段の空気噴出位置を燃料ノズルの燃料噴出位置に対し、高温空気供給手段の空気噴出位置より遠くに離間させて配置したり、請求項6の発明のように、燃料ノズル、高温空気供給手段および二次空気供給手段の各空気噴出中心とを中心からこの順序で互いに同軸に配置したりすることが必要であり、燃料ノズル先端の燃焼火炎には、まず、高温燃焼用空気が接触し、着火点近傍に前述の高温還元性雰囲気を形成するとともに、燃焼火炎の周囲から燃焼用二次空気が供給され、燃焼を完結させることができる。
更に高温空気供給手段の配設位置より後流の燃焼領域に、必要に応じて、高温燃焼用空気の一部を噴出させる後段高温空気供給手段を備えることにより(請求項7)、又は該後流の燃焼領域に、二次空気供給手段からの燃焼用二次空気を噴出させたので(請求項8)、前段燃焼においては供給空気量が不足のため燃焼していない未燃焼燃料を燃焼させ、燃焼全体を完結させることができる。特に、高温燃焼用空気を供給する場合には、未燃燃料が高温条件下において効率的に燃焼するという効果を奏する。なお、微粉炭に含まれる窒素成分は、前段燃焼において還元されるので後段燃焼においてフュ−エルNOが発生することはない。
さらに、必要に応じ、前記高温空気供給手段の配設位置より後流の前記燃焼領域に前記固体燃料の一部を噴出させ、前記二次空気供給手段からの燃焼用二次空気と混合して燃焼させる後段燃料ノズルと、該後段燃料ノズルの配設位置より後流の前記燃焼領域に前記燃焼用二次空気を噴出させる後段二次空気供給手段の空気噴出口とを更に備えることにより(請求項9)、前段燃料ノズルの火炎着火点近傍に形成された高温かつ強力な還元性雰囲気の外延に燃料を供給して燃焼用二次空気により燃焼させることもできる。この強力な還元性雰囲気の外延もまた高温の還元性雰囲気になっているので、NOx発生が抑制され、また発生したNOxが還元されるので全体として安定な低NOx燃焼が実現できる。後段燃料ノズル近傍の燃焼において未燃の燃料は、後段燃料ノズルの更に後流側に設置される二次空気供給手段の噴出口から供給される燃焼用二次空気により燃焼させて燃焼を完結させる。
互いに対向する火炉の各壁面に、燃料ノズルと二次空気供給手段の空気噴出ノズル及び高温空気供給手段の空気噴出ノズルとをそれぞれ対向して配置して、火炉の軸心近傍に安定な燃焼領域を形成させることもできるし(請求項10)、燃料ノズルと高温空気供給手段の空気噴出ノズルは、火炉内の水平な仮想円の接線方向に、燃料及び燃焼用空気をそれぞれ噴出させ、火炉内に旋回流を発生させつつ固体燃料を燃焼させることとして、ボイラ中心部に安定な高温循環燃焼域を形成させ、燃焼の安定性を向上させることもできる(請求項11)。
熱交換手段としては、特に限定されないが、多管式熱交換器(請求項12)を適用すると高温ガスが接触する部位に切換弁を必要とせず、又は安価な蓄熱材に蓄熱させる蓄熱式熱交換器(請求項13)を使用すると、高温耐熱材の使用を必要とする多管式熱交換器に比較してコスト的に有利になる。加えて、蓄熱式熱交換器を回転型蓄熱式熱交換器にすると、高温ガスが接触する部位に切換弁を必要としないという利点をあわせて有する。また、熱交換手段として、内部に蓄熱材を充填した交番型蓄熱式熱交換器を使用した場合には、火炉からの燃焼排気ガスの一部を抽気して熱交換器に供給し、抽気した燃焼排気ガスにより蓄熱材を加熱して蓄熱し、蓄熱後に燃焼用空気を固体燃料の着火温度以上の温度に加熱して高温空気供給手段に供給し、蓄熱と高温燃焼用空気の生成を交互に繰り返すこととすれば、安価な交番型蓄熱式熱交換器により高温の燃焼排気ガスを熱源として燃焼用空気を固体燃料の着火温度以上の高温に加熱することもできる(請求項14)。なお、熱交換手段が、高温燃焼用空気を生成するための燃焼排気ガスを、火炉上部から抽気することとすると(請求項15)、燃焼用空気を着火温度以上に加熱できるほどの高温であり、かつ、火炉内での十分な燃焼により未燃燃料を殆ど含まず、抽気しても燃料の無駄を生じない燃焼排気ガスを抽気することができる。また、2個の前記交番型蓄熱式熱交換器と、各該熱交換器の一端がそれぞれ接続される高温燃焼用空気供給手段とを一組として備え、各熱交換器へ燃焼用空気を供給する燃焼用空気供給手段と、各熱交換器から燃焼排気ガスを排出する排気ガス排出手段と、各熱交換器の各他端を、燃焼用空気供給手段又は排気ガス排出手段に、それぞれ、交互に切換可能に接続する切換手段とを備えることとすると、コスト的に有利でかつ回転型熱交換器のような高温の回転部もない交番型蓄熱式熱交換器を使用しながら、高温ガスが接触する部位に切換弁を必要としないという利点を有することになる(請求項16)。
また、請求項17の発明によっては、好ましくは、抽気した燃焼排気ガス中の粉塵を除去して燃焼排気ガスを熱交換手段に供給する脱塵手段を備えることにより、燃焼排気ガス中に含まれる粉塵により熱交換手段が閉塞して使用できなくなることを防止でき、装置の連続稼働時間を延長することができるという付加的な効果をえることができる。
請求項18の発明は、好ましくは、空気予熱手段として火炉からの排気ガスにより燃焼用空気を予熱することとしたので、排気ガスの熱量を有効に利用して大気中に放散される熱量を減少させ、エネルギー効率を高めるとともに、予熱のためのバーナ等の設備や燃料等のコストの発生を防止することができる。
請求項19の発明によれば、好ましくは、火炉からの排気ガスを搬送ガスとし、該搬送ガスにより固体燃料を燃料ノズルに搬送することとしたので、燃料の搬送に使用して燃料とともに火炉内の燃焼領域に噴出させる空気の酸素濃度が低下し着火点近傍における酸素不足による還元性雰囲気をさらに容易に実現することができる。通常、搬送用空気中の酸素濃度を低下させ、着火点近傍の酸素濃度を下げると燃焼が不安定になるが、高温燃焼用空気の存在により着火点近傍の温度が高温となっているので、燃焼の安定性が維持できる。搬送用空気中の酸素濃度低下による別の効果として、微粉炭が予期しない場所で燃焼することを抑止し、またそのような燃焼を防止するための温度制御等の条件を緩和することができる。
請求項20の発明は、請求項19の発明に加えて、石炭を微粉炭に粉砕するミル装置を備え、火炉からの排気ガスを雰囲気ガスとし、当該排気ガスをミル装置に供給して微粉炭を製造することとしたので、酸素濃度の高い通常の空気雰囲気下ではなく、酸素濃度の低下した燃焼排気ガス雰囲気下において微粉炭の製造を行うことになる。このため、微粉炭が予期しない燃焼をすることを抑止し、また予期しない燃焼を防止するための温度制御等の条件を緩和することができる。請求項19、20のいずれの発明においても、排気ガス中の灰儘を除去する粉塵除去手段を備えることにより、搬送等に際し大量の粉塵等が混入して閉塞を生じることを防止することもできる(請求項21)。
以下に、本発明に係るボイラ装置の実施形態を種々の実施例により説明する。
まず、本発明の第1の実施例を、図1及び図2を参照して説明する。図1に示すように第1実施例に係るボイラ装置1は、微粉炭(固体燃料)を燃焼させる火炉10と、火炉10から燃焼排気ガスEGの一部を抽気し、抽気した燃焼排気ガスにより燃焼用空気BAを微粉炭の着火温度以上の温度に加熱して高温燃焼用空気BA2を生成する多管式熱交換器(熱交換手段)26と、火炉10内において熱回収され、例えば400℃程度まで温度の低下した排気ガスEG1を熱源として、給気ブロワ32により給気した燃焼用空気BAを、高温燃焼用空気BA2より低い温度に予熱して燃焼用二次空気BA1とする空気予熱器21と、火炉10内の燃焼領域10aに微粉炭を噴出させて火炎Fを形成させる燃料ノズル41と、該燃料ノズル41近傍に配設され、火炎F近傍の燃焼領域10aに還元雰囲気を形成させるように高温燃焼用空気BA2を噴出させる高温空気ノズル(高温空気供給手段)36と、火炎Fの後方に燃焼用二次空気BA1を噴出させる二次空気ノズル(二次空気供給手段)31等を備えている。
火炉10は、下部に燃料ノズル41等が配置されて燃焼領域10aを形成するとともに、主として上部に、燃焼領域10aを臨んで形成される輻射伝熱領域10bを有する火炉本体11と、輻射伝熱領域10bに隣接して並設され、輻射伝熱領域10bを通過して温度の低下した燃焼排気ガスEGが下降して流れる箱状の対流伝熱部12を備える。火炉本体11側壁の下端近傍には、複数の燃料ノズル41と複数の高温空気ノズル36とが近接して開口し、火炉本体11側壁のやや上部には、複数の二次空気ノズル31が開口している。これらのノズルの互いの位置関係については後述する。
火炉本体11の炉頂近傍の上部側壁には、高温燃焼排気ガスEG2を火炉10から抽気するための抽気管18の一端が配設され、抽気管18の他端はサイクロン(脱塵手段)19を介して熱交換器26に接続している。抽気管18の開口位置は、水蒸気発生、過熱を行った後ではあるが、なお、熱交換により高温空気BA2を、微粉炭(固体燃料)の着火温度以上(大多数の炭種の着火温度を考慮すると、例えば800℃以上)に加熱できる温度(例えば、900℃以上)の高温燃焼排気ガスEG2を抽気できる位置であり、且つ、高温燃焼排気ガスEG2に含まれる未燃焼の微粉炭を低減させるため十分な滞留時間を確保できるように、ある程度燃料ノズル41から離隔し、且つ対流伝熱部12より上流であって、対流伝熱による温度低下のない位置である。
対流伝熱部12底部には、排気ガスEG1の排気口16があり、該排気口16は脱硝装置17を介して空気予熱器21に接続している。空気予熱器21及び空気予熱器21に空気を供給する給気ブロワ32等は公知のものであるのでここでは説明を省略する。
熱交換器26は、サイクロン19を通過して熱交換器26に流入する高温燃焼排気ガスEG2を熱源として、給気ブロワ37から供給される燃焼用空気BAを、例えば、800℃まで加熱して高温空気BA2を生成する機能を有する。熱交換により温度の低下した高温燃焼排気ガスEG2は、排気ブロワ27及び図示しない脱硝装置等の燃焼排気ガス処理装置を介して排気筒(図示せず)から放出される構造となっている。
熱交換器26の高温燃焼用空気出口26aは、配管を介して高温空気ノズル36に接続しており熱交換器26から高温空気ノズル36に高温燃焼用空気BA2が供給される。高温空気ノズル36は、前述のように火炉本体11に開口し、高温燃焼用空気BA2を適宜方向に適宜強さの旋回を与えて燃焼領域10aに噴出させる。
高温空気ノズル36は、高温燃焼用空気BA2を燃焼領域10aに噴出できる様々の形式が採用できる。
燃料ノズル41は、燃焼領域10aを臨むように火炉本体11に取りつけられており、後述のミル42から搬送された微粉炭を燃焼領域10aに噴出する機能を有する。ミル42は、石炭Cを粉砕して微粉炭にするとともに、搬送用空気ブロワ43を介して供給される搬送用空気A1により該微粉炭を圧送して燃料ノズル41に搬送供給する機能を有する。なお、燃料ノズル41の形状、大きさ、材質、噴出方向、旋回強さ、噴出させた燃料の濃淡分布等については、特に制限はないが、微粉炭を火炉本体11の燃焼領域10aの所望の位置に閉塞なく噴出させることのできる様々の形式のものが採用できる。但し、ノズル先端部に微粉炭に着火するための着火機構(図示せず)を有することはいうまでもなく、スラッギング防止装置等適宜必要装置を付加することができる。
二次空気ノズル31、高温燃焼用空気ノズル36及び燃料ノズル41の位置関係は、以下のように設定する。すなわち、燃料ノズル41先端近傍の着火点近傍に高温燃焼用空気EG2のみが流入して着火点近傍を高温の還元性雰囲気に維持するとともに、該燃焼火炎F後流側に燃焼用二次空気BA1が流れ、未燃焼の燃料を燃焼(燃焼後段)させるのに必要な燃焼用空気を供給して、燃焼を完結させる位置に設定するのである。上記状態を達成するためには、各ノズル間の距離を含めた各ノズルの配置、微粉炭(固体燃料)や高温燃焼用空気、燃焼用二次空気の噴出量、噴出速度や噴出方向等を考慮して、様々の態様が採用できるが、本発明では、燃料ノズル41近傍に高温空気ノズル36を配置し、燃料ノズル41の位置から見て火炎F後流側に二次空気ノズル31を配置することが好ましい。本実施例においては、図1に示すように、火炉本体11壁面に垂直に設置した複数の燃料ノズル41下側にそれぞれ近接して、複数の高温空気ノズル36をやや上向きに火炎Fの着火点F1近傍を指向して設置し、燃料ノズル41上側(すなわち燃料ノズル41より後流側)に、燃料ノズル41と高温空気ノズルとの距離より燃料ノズル41と二次空気ノズル31との距離が大となるように複数の二次空気ノズル31を燃料ノズル41にそれぞれ対応して配置している。上述のように、燃料ノズル41、高温空気ノズル36及び二次空気ノズルは、火炉本体11の上下方向(燃焼排気ガスの流れに沿って下流、上流方向)に分布して配置されているが、その平面上の配置を図1のA−A矢視図である図2に示す。図2に示すように、高温空気ノズル36、燃料ノズル41、及び二次空気ノズル31は、それぞれ、火炉本体11の互いに対向する壁面に互い対向するように各壁面に、例えば、2組ずつ設置される。但し、高温空気ノズル36と燃料ノズル41は、二次空気ノズル31の下に位置するため、図2中では重なるため( )で記載されている。
ボイラ装置1は、火炉10に供給される微粉炭の揮発性、及び運転負荷状態が変化しても、高温燃焼用空気BA2が必要空気温度(微粉炭の着火温度以上:例えば800℃)となるとともに燃焼に必要な高温燃焼用空気BA2及び燃焼用二次空気BA1がそれぞれ適切な量供給されるように燃焼排気ガスEG2抽気流量、高温燃焼用空気BA2及び燃焼用二次空気BA1の流量を調整する制御装置45を備える。制御装置45は、少なくとも給気ブロワ32、37、排気ブロワ27、搬送用空気ブロワ43等から空気流量、給炭量等のデータを得ると同時にこれらの運転状態を制御する機能を備える。より詳しくは、制御装置45は別途入力される、微粉炭の揮発性等の燃料性状、及び運転負荷に関する運転指令情報を演算処理して、燃焼排気ガスEG2抽気流量、高温燃焼用空気BA2及び燃焼用二次空気BA1の流量を適宜設定し給気ブロワ32、37及び排気ブロワ27の吐出圧力、流量等を設定、制御する機能を備える。
ここで、制御装置45は、微粉炭の揮発性が低いほど、或いは運転出力(負荷)が定格出力に対して低いほど、高温燃焼用空気BA2量の割合を増加させ、その分、燃焼用二次空気BA1量の割合を低減させて、燃焼させる燃料量に対する燃焼用空気量合計の比(空気比)が、微粉炭の炭種(揮発性)、運転出力によらず一定になるように制御する。
また、運転状態情報に基づき搬送用空気ブロワ43の吐出圧力、流量等或いはミル42において粉砕処理する石炭量等を設定、制御する機能も併せて備える。
なお、本ボイラ装置1は、火炉10上部の輻射伝熱領域10b及び火炉10側壁に配設され、水蒸気を発生するための水管13A及び13B、水蒸気を過熱する過熱器14、対流伝熱部12に配設され排気ガスの熱除去を行うエコノマイザ15等を備えているが、これらの設置位置と形状及び機能は公知のボイラ装置とかわるところがないのでここでは説明を省略する。
次に、上記ボイラ装置1の作用について説明する。
本ボイラ装置1によっては、以下に説明するように高温空気燃焼に必要な最小量の高温燃焼用空気を供給し、残余は予熱された燃焼用二次空気を供給することで安定な低NOx燃焼が達成されるので熱交換器26等の小型化/最適化が達成される。
本ボイラ装置1の燃料ノズル41から噴出する微粉炭の燃焼により高温(例えば1,300℃)の燃焼排気ガスが発生する。該燃焼排気ガスの一部は、過熱器14、水管13A及び13Bとの間で熱の授受を行った後、排気ブロワ27の吸引作用により抽気管18を介して抽気され、さらにサイクロン19により粉塵が除去されて熱交換器26に流入する高温(例えば、900℃)の燃焼排気ガスEG2となる。熱交換器26においては、該燃焼排気ガスEG2を熱源として、給気ブロワ37により供給される燃焼用空気BAを加熱して高温燃焼用空気BA2とする。高温燃焼用空気BA2の量を適宜調整しつつ高温空気ノズル36から燃料ノズル41近傍に形成される火炎F近傍に該空気BA2を噴出させることにより、該空気BA2と燃料ノズル41から噴出する微粉炭の燃焼による協働作用として、火炎F近傍に高温の還元性雰囲気が形成される。
このとき、前述のように燃料ノズル41等が互いに対向配置されているため、火炉本体11内で火炎Fが互いに対向して燃焼するので火炉本体11中央付近に特に安定な燃焼域が確保され、安定な低NOx燃焼が継続する。
この結果、火炎F近傍では、NOxの発生が抑制されるとともに、低揮発炭種が燃料の場合にも、消炎することなく安定な燃焼が継続する。
さらに、火炎F上部(後流)周囲には、二次空気ノズル31から火炉本体11内に噴出されたやや低温ではあるが潤沢な燃焼用二次空気BA1が充満しているので未燃焼の燃料が後段燃焼を生じて完全に燃焼する。
この二次燃焼用空気BA1は、給気ブロワ32から供給される燃焼用空気BAを、空気予熱器21において排気ガスEG1を熱源として300〜350℃程度まで予熱することにより生成されるものであり、排気ガスEG1は、火炉10内での燃焼により発生する高温の燃焼排気ガスEGのうち、前述の高温燃焼排気ガスEG2として抽気されなかった残余の燃焼排気ガスが、火炉10内の輻射伝熱領域10b、対流伝熱部12において熱交換により水蒸気を発生、過熱させて、自らは、例えば、400℃程度まで温度が低下し、排気口16から火炉外へ排出され、脱硝装置17を介して空気予熱器21に流入したものである。
これらに加えて、微粉炭を搬送する搬送用空気A1の量も必要に応じて調整することにより着火点F1近傍に最適な還元性雰囲気を達成することができる。
なお、熱交換が終了してその熱量を失った燃焼排気ガスEG2,排気ガスEG1は、それぞれ、図示しない排気ガス処理設備を介して大気中に放出される。
本ボイラ装置1においては、燃焼の高温化により燃焼反応時間が短縮されるので、火炉10における微粉炭の滞留時間を短くすることが可能であり、その間に微粉炭が燃焼排気ガスとともに移動する距離も短くなるので、火炉10を含むボイラ装置1全体をコンパクトにすることが可能となる。
なお、本実施例においては、燃料ノズル等の配置について、上下方向には、例えば、燃料ノズル41を一段のみ設置したが、上下方向にも燃料ノズル41を複数段配置してもよい。また、本実施例においては、すべてのノズルを互いに離間して設置したが、燃料ノズル41と高温空気ノズル36の各中心を同軸に配置してもよく、さらに、燃料ノズル41、高温空気ノズル36、二次空気ノズル31の各中心を互いに同軸として、燃料ノズル41を中心としてその外側に高温空気ノズル36、二次空気ノズル31をこの順に環状に配置(すなわち同軸ノズルとする)し、設置面積の低減を図ってもよい。
本実施例においては、高温の燃焼排気ガスの抽気管18を、過熱器、水管等より燃焼排気ガスの後流側に設置し、高温燃焼用空気を生成するための燃焼排気ガスも水蒸気発生、過熱に寄与させることとした。しかし、抽気管18の火炉10への開口位置は、熱交換により高温空気BA2を、微粉炭(固体燃料)の着火温度以上に加熱できる温度の高温燃焼排気ガスEG2を抽気できる位置であって、高温燃焼排気ガスEG2に含まれる未燃焼の微粉炭を低減させるため十分な滞留時間を確保できるように、ある程度燃料ノズル41から離隔していれば、特に限定しない。
また、図3に示すように高温燃焼用空気BA2を火炉側壁上下位置から(燃焼排気ガスの流れの上流位置と下流位置から)前後2段に分けて火炉本体52に供給してもよい。この場合には、前段側ノズル(高温空気供給手段の空気噴出ノズル)54を燃料ノズル53近傍に配置し、まず、前段側ノズル54から供給される高温空気の量をやや少なくして強い還元性雰囲気を燃料ノズル53近傍に醸成させ、低NOxでの安定燃焼を達成し、さらに後段側ノズル(後段高温空気供給手段の噴出ノズル)55から供給される高温燃焼用空気により未燃焼の燃料を完全に燃焼させることができる。なお、後段側の燃焼においては、既に微粉炭中の窒素成分が還元されているため、後段側の燃焼においてフュ−エルNOが発生することはない。
本実施例においては熱交換手段として多管式熱交換器(シェルアンドチューブ型)を使用したが、その代替として回転型蓄熱式熱交換器或いは交番型蓄熱式交換器を使用してもよい。800〜900℃という高温条件における熱交換の場合、多管熱交換器においては、かかる高温に耐える耐熱合金でかつ熱伝導特性に優れた高価な材料を選択する必要があるが、蓄熱式熱交換器の場合には、熱交換に安価なセラミックス製等の蓄熱材を使用するので安価な熱交換手段が提供できる。また、回転型蓄熱式熱交換器を使用する場合には多管式熱交換器を単純に回転型蓄熱式熱交換器に代替することで同様の効果がえられる。
また、回転型蓄熱式熱交換器ではなく、交番型蓄熱式熱交換器を使用する場合には、図4に示すように、熱交換手段として、例えば2基の熱交換器56A,56Bのそれぞれの一端をサイクロン出口及び高温空気ノズルに、4方切換弁57を介して切り換え可能に接続させ、一方、それぞれ熱交換器56A、56Bの他端は、排気ブロワ及び給気ブロワに、4方切換弁58を介して切り換え可能に接続させたシステムを形成させてもよい。図4に示す4方切換弁の状態では、熱交換器56Bに、サイクロンから高温燃焼排気ガスを流して該熱交換器56Bの蓄熱材に蓄熱させる一方、既に蓄熱材が加熱された熱交換器56Aに燃焼用空気を流して高温に加熱し高温空気ノズルから火炉に噴出させることができる。一定時間後、熱交換器56Bの蓄熱材が十分に加熱され、逆に熱交換器56Aの蓄熱材が熱量を失った時点で4方切換弁57、58を順次切り換え、接続する熱交換器を切り替えて同様の熱交換を行わせる。この操作の繰り返しにより燃焼用空気の加熱を連続的に行うことが出来る。また、上記は2つの交番型蓄熱式熱交換器を一対とし、4方切換弁を使用して交互に燃焼ガスの加熱、蓄熱とを繰り返すシステムの例であるが、例えば3基或いはそれ以上の数の交番型蓄熱式熱交換器を組み合わせ、それぞれの熱交換器の一端をサイクロン出口又は高温空気ノズルに、他端を、排気ブロワ又は給気ブロワにそれぞれ切換可能に接続して使用することも可能である。
本実施例においては、予熱手段として排気ガスを熱源とする空気予熱器を使用したが、例えば、熱交換器26において熱交換を行い、排出される燃焼排気ガスEG2を熱源としてもよく、又は予熱用のバーナ、ヒータを別途備えて燃焼用二次空気を予熱してもよい。
第1実施例においては、燃料を固体燃料である微粉炭としたが、例えば、細かく砕いた木材チップなどのバイオマス燃料を用いてもよい。さらに多量の水分を含む汚泥等も搬送用空気による搬送の代わりにポンプにより火炉内に噴出させ、高温燃焼用空気及び燃焼火炎からの輻射熱により水分を蒸発させ、乾燥した汚泥をさらに加熱して汚泥に含まれる可燃性成分を揮発させて燃焼することとしてもよい。高温空気燃焼技術を使用しない従来技術によっては、例えば含水率60%程度以上の汚泥を燃焼させる場合には、予め汚泥を予熱して乾燥させておくか、オイル混焼等の手段を講ずる必要があったが、本発明によってはそのような必要はなくより含水率の高い、例えば80%程度の汚泥を燃焼させることが可能である。
本実施例においては、高温燃焼排気ガス中の脱塵手段としてサイクロン19を使用したが、その代替として、熱交換器26に熱交換器26内に付着した粉塵を除去するための粉塵除去手段、例えば、水蒸気や圧縮空気を付着部分に吹き付けて粉塵を吹き飛ばして除去するスートブロー、或いは、鋼球を落下させ、粉塵が付着した管路等を落下する鋼球で叩くようにして粉塵を除去する装置、或いは、熱交換器全体を振動させて粉塵を除去する装置等を設置することとしてもよい。或いはこれら粉塵除去手段と脱塵手段とを併用してもよい。
次に本発明にかかる第2の実施例にかかるボイラ装置60を図5を参照して説明する。
本ボイラ装置60は、燃料ノズル63、二次空気ノズル64及び高温空気ノズル65を図5(a)、図5(b)に示すように複数(図5では4個ずつ)備え、それぞれの噴出方向を、噴流が火炉本体62内において旋回流を形成するように微粉炭等を噴出させるものである。従って、上記3種類のノズル配置以外のシステム全体構成、機器の機能、形状、配置などは第1実施例と同様であり、ここでは記載を説明する。
本ボイラ装置60は、図5(a)のA−A矢視図である図5(b)に示すように火炉本体62下部の4隅にそれぞれ燃料ノズル63を備える。燃料ノズル63の噴出方向は、以下のように定める。すなわち、火炉本体62の中央に中心を有する水平な円66を仮想し、燃料ノズル63の噴出軸が該水平円66の接線となるように定める。なお、このとき、該水平円66の半径を適宜調節して、発生する旋回流が火炉本体62側壁に衝突しスラッギングを生じることを防止する。また、図5(a)に示すように、高温空気ノズル65は、4つの燃料ノズル63の直下にそれぞれ近接して配設され、ノズルの噴出方向は、それぞれの高温空気ノズル65直上の燃料ノズル63に平行として、旋回流を生じるように配置する。また、二次空気ノズル64は、4つの燃料ノズル63それぞれの直上(火炎の流れとしては後流側)に、少なくとも該燃料ノズル63とその直下の高温ノズル65との離隔距離よりも、該燃料ノズル63と二次空気ノズル64の離隔距離が大となるように配置し、噴出方向は、該燃料ノズル63の噴出方向に一致させる。
本ボイラ装置60の作用を説明する。燃料ノズル近傍における燃焼により発生する燃焼排気ガスの一部を抽気し、それを熱源として高温燃焼用空気を生成し、燃料ノズル63先端に形成される火炎の近傍を高温の還元性雰囲気として安定な低NOx燃焼を生ぜしめ、火炎後流側には空気予熱器において予熱された燃焼用二次空気を供給して未燃燃料を燃焼させて燃焼を完結させることにおいて、第1実施例とかわりがない。第2実施例のボイラ装置60の特徴は、前述した燃料ノズル63、高温空気ノズル65及び二次空気ノズル64の噴出方向を火炉本体62内に仮想した水平円(仮想円)66の接線方向に揃えることにより、火炉本体62内に仮想した水平円66に沿った旋回流が発生し、且つ、各ノズル63〜65からの噴流により渦流を強めるため該旋回流が上昇しながら燃焼を完結させていくので、水平円66に沿って極めて安定な高温循環燃焼域が発生し、安定な低NOx燃焼が実現されることにある。
次に第3の実施例にかかるボイラ装置70について図6を参照しながら説明する。ボイラ装置70の特徴は、高温空気ノズル74近傍に設置される燃料ノズル73とは別に、該燃料ノズル73の火炎後流側(上側)に、後段燃料ノズル75を設置しその近傍に二次空気ノズル76を設置して該後段燃料ノズル近傍には燃焼用二次空気を供給させ、後段燃料ノズル75及び二次空気ノズル76のさらに後流側に後段二次空気ノズル77を設置することにあり、その目的は、燃料ノズル73近傍の燃焼で発生したNOxを高温還元性雰囲気の後段燃料ノズル75近傍の燃焼で還元させ、該燃焼における未燃燃料を後段二次空気ノズル77から供給される燃焼用二次空気により燃焼させ、燃焼を完結させることにある。従って、上記ノズル配置と燃料ノズル73、後段燃料ノズル75への燃料供給及び後段二次空気ノズルへの燃焼用二次空気供給以外のシステム構成、各設備の機能、形状、配置及び作用効果は第1実施例と同じであるのでここでは説明を省略する。
図6に示すように、例えば、火炉本体72の下部の燃料ノズル73と高温空気ノズル74とを同軸ノズルとして配置・開口させて燃料と高温燃焼用空気とを噴出燃焼させ、その上側、すなわち燃焼排気ガスの流れとしては後流側に、後段燃料ノズル75と二次空気ノズル76とを、例えば同軸ノズルとして配置・開口させて燃料と燃焼用二次空気とを噴出燃焼させる構造とする。また、後段燃料ノズル75、二次空気ノズル76の上側、すなわち燃焼排気ガスの流れとしては後流側に後段二次空気ノズル(後段二次空気供給手段)77を設置し、燃焼用二次空気を噴出させる構造とする。図6中では模式的に描かれているが、各ノズルの形状、数、噴出方向については、第1実施例と同様とである。
本ボイラ装置70の作用を説明する。燃料ノズル73近傍では、高温空気により特に高温かつ還元性の強い雰囲気の領域(強化還元雰囲気領域)78を形成させ、その中で安定な低NOx燃焼を行わせるとともに、強化還元雰囲気領域78近傍に後段燃料ノズル75から供給される燃料を燃焼させる。このとき、強化還元雰囲気領域78近傍にも高温の還元性雰囲気領域が形成されているので、NOxの発生が抑止され、また発生したNOxは還元されて、全体として低NOx化を促進することができる。また、これら還元性領域における燃焼において未燃であった燃料は、後段二次空気ノズル77から供給される燃焼用二次空気により燃焼し、燃焼が完結する。
本ボイラ装置70によれば更に以下の効果も奏する。すなわち、既存のボイラを高温空気燃焼ボイラに改造する際には、該ボイラの最上流側(最下段)のバーナを、高温空気により微粉炭を燃焼させるバーナ(例えば上記燃料ノズル73と高温空気ノズル74とを同軸ノズルとしたバーナ等)とし、それ以外のバーナについては、二次空気を供給して微粉炭を燃焼させる既存のバーナを利用することもできる。従って最小限の改造で、高温空気燃焼技術によるNOx低減等既述の効果を得ることができる。
なお、燃料ノズル73と高温空気ノズル74、及び後段燃料ノズル75と二次空気ノズル76について、ここではいずれも同軸ノズルとしたが、離間させて配置してもよい。
次に本発明に係る第4の実施例にかかるボイラ装置80を図7を参照して説明する。
第1実施例においては、微粉炭の搬送ガスとして搬送用空気A1を使用することとしたが、本ボイラ装置80は、空気予熱器81において燃焼用空気を予熱した後の排気ガスEG1を搬送用ガス及びミル84における微粉炭製造時の雰囲気ガスとして使用する。
より詳しくは、図7に示すように、本ボイラ装置80は、第1実施例において説明したボイラ装置1機器等に加え、又はそれに代えて、空気予熱器81の後流側に接続された集塵器(粉塵除去手段)82と、該集塵器82において除塵された排気ガスEG1を抽気して、ミル(ミル装置)84に圧送し、ミル84において微粉炭を混合させて燃料ノズル86から噴出させるための搬送空気ブロワ83と、搬送空気ブロワ83をも制御する制御装置85等を備える。
上記以外のシステム構成、各設備の機能、形状、配置及び作用効果については第1実施例と同様であるので説明を省略する。
本ボイラ装置80の作用を以下に説明する。
すなわち、排気ガスEG1の一部を集塵器82の出口から抽気して搬送用空気A1の代替及び微粉炭製造時の雰囲気ガスとしてミル84に搬送空気ブロワ83により供給する。排気ガスEG1は、酸素濃度が低下しているので、微粉炭製造時に予期しない微粉炭燃焼を生じる虞が少なく、該予期しない微粉炭燃焼を防止するための温度制御等の条件を緩和することができ、また火炎の着火点近傍の酸素不足による還元性雰囲気を維持するのに好適に使用できる。このとき、火炎の着火点近傍の温度が、高温燃焼用空気の存在により高温に維持されていることから、搬送ガス中の酸素濃度が減少しても安定な燃焼が維持されることは言うまでもない。
なお、本実施例においては、微粉炭搬送に使用するガス中には塵埃がふくまれないことが望ましいことから、排気ガスを集塵器82出口において抽気することとしたが、集塵器82以降であれば、例えば、図示しない排気筒等、排気ガス処理設備のいずれの点から抽気してもよい。
次に本発明にかかる第5の実施例について図8を参照して説明する。
第5の実施例に係るボイラ装置90は、熱交換手段として交番型蓄熱式熱交換器93A、93Bを複数(本実施例では2基)使用する実施例であるが、それぞれの熱交換器の一端が配管を介して直接火炉本体92に開口する高温空気ノズル(高温空気供給手段)94A,94Bにそれぞれ接続し、該高温空気ノズル94A、94Bが交互に燃焼排気ガスの抽気と高温燃焼用空気の火炉本体92への噴出を繰り返すことに特徴がある。すなわち、本ボイラ装置90は、燃焼ガスの抽気のための抽気管と高温燃焼用空気の火炉への噴出のための高温空気ノズルとをそれぞれ別個に備える第1の実施例のボイラ装置1と、この点において異なる。
図8に示すように火炉本体92に2つの交番型蓄熱式熱交換器93A、93Bが付設されている。熱交換器93A、93Bの一端は、それぞれ高温空気ノズル94A,94Bを介して火炉本体92と連通可能に接続し、熱交換器93A、93Bの他端は、配管を介して4方切換弁(切換手段)95のポート95a又は95bにそれぞれ接続している。4方切換弁95は、前述のポート95a、95bの他にポート95c、95dを有し、ポート95cには図示しない、排気ブロワ(排気ガス排出手段)等が接続され、該排気ブロワ及び図示しない排気ガス処理装置を介して排ガスが大気中に放出される。また、ポート95dには、図示しない給気ブロワ(燃焼用空気供給手段)等が接続しており、ポート95dを介して熱交換器93A,93Bに燃焼用空気が供給される。
高温空気ノズル94A、94Bとしては高温燃焼用空気BA2を火炉本体92の所望の位置に噴出できる様々の形式が採用でき、その配置は、互いにある程度近接して、火炉本体92側壁に水平に並ぶ配置、或いは側壁に沿って上下に並ぶ配置のいずれでもよいが、高温空気ノズルが互いに火炎流の上流、下流の関係にならない水平方向に配置することが好ましい。
微粉炭を噴出する燃料ノズル96の形状、大きさ、材質、噴出方向、旋回強さ、燃料濃淡分布等については、特に制限はないが、微粉炭を火炉本体92の所望の位置に閉塞なく噴出させることのできる様々の形式のものが採用できる。なお、燃料ノズル95の配置については、高温空気ノズル94A,94Bから噴出される高温燃焼用空気と燃焼との協働作用により高温の還元性雰囲気を形成できる範囲にあれば特に限定しないが、例えば、高温空気ノズル94A,94Bの間に開口するように配置することが望ましい。
上記以外の、ボイラ装置90のシステム構成、各設備の機能、形状、配置および作用効果については、第1実施例と同様であるのでここでは説明を省略する。
本ボイラ装置90の作用を説明する。図8に示す四方切換弁95の切換え状態では、ポート95dより供給される燃焼用空気が、四方切換弁95を介して、熱交換器93Aに導入される。熱交換器93Aの蓄熱体には既に熱が貯えられており高温となっているため、燃焼用空気が加熱され、高温(例えば、800℃以上)の高温燃焼用空気BA2として、高温空気ノズル94Aから火炉本体92内に噴出される。燃焼により発生した高温の燃焼排気ガスEG2は、高温空気ノズル94Bを介して熱交換器93Bに流入し、蓄熱材を加熱し、自らは冷却される。該燃焼排気ガスは四方切換弁95によりポート95cに導出され、図示しない排ガス処理装置により処理され、大気中に放出される。一定時間の運転により、熱交換器93Aの蓄熱材が熱量を失い、逆に熱交換器93Bの蓄熱材に十分熱が貯えられると、四方切換弁95が切り換えられ、ポート95aと95cが、ポート95bと95dとがそれぞれ連通される。上記とは逆に熱交換器93Bにおいて燃焼用空気の加熱及び火炉本体92への供給、熱交換器93Aにおいて蓄熱材の加熱が行われる。上記の操作の繰り返しにより、微粉炭燃料を火炉本体92内において、継続的に高温燃焼させることができる。
前述のように、本ボイラ装置90は、高温空気ノズル94A,94Bが抽気も行うので火炎の近傍から抽気を行うことになり、高温の燃焼排気ガスを抽気しやすいという効果がある。また、高温に晒される設備等に切換弁や例えば回転蓄熱体のような可動部がなく、かつ蓄熱材としてセラミックス等安価な材料が使用できるのでコスト面で有利であるという効果がある。
なお、熱交換器93A,93Bと高温空気ノズル94A,94Bとの間には、燃焼排気ガス中に含まれる粉塵を脱塵するためのサイクロンをそれぞれ備えてもよい。
なお、ここで説明した実施形態は一つの例であって、本発明はこれのみに限定されるものではなく、本発明の要旨の範囲において変更を加えうることはいうまでもない。
本発明にかかる第1の実施例のボイラ装置のシステム図である。 本発明にかかる第1の実施例のボイラ装置の燃料ノズル等の配置を示す、横断面図である。 本発明にかかる第1の実施例の別態様として2段燃焼用の高温空気ノズルの配置例を示すシステム図である。 本発明にかかる、第1の実施例の別態様として熱式熱交換器を使用した場合のシステム図である。 本発明にかかる第2の実施例のボイラ装置のシステム図である。 本発明にかかる第2の実施例である、二次空気ノズル、高温空気ノズル及び燃料ノズルを噴出した燃料等が水平旋回流を形成するように配置した例を示す火炉の概略水平断面図である。 本発明にかかる第3の実施例である、高温空気ノズルと燃料ノズル、二次空気ノズルと後段燃料ノズルとをそれぞれ同軸ノズルとして配置した例を示すシステム図である。 本発明にかかる第4の実施例である、搬送用空気として燃焼排気ガスを使用する場合のシステム図である。 本発明にかかる第5の実施例である、熱交換手段として、2基の交番型蓄熱式熱交換器を一対として使用し、かかる熱交換手段を直接火炉に接続した場合のシステム図である。
符号の説明
1、60,70,80,90 ボイラ装置
10 火炉
10a 燃焼領域
18 抽気管
19 サイクロン
21、81 空気予熱器
26 多管式熱交換器
26a 高温燃焼用空気出口
27 排気ブロワ
31、64、76 二次空気ノズル
32、37 給気ブロワ
36、65、74、94A、94B、 高温空気ノズル
41、53、63、73、86、96 燃料ノズル
42、84 ミル
43、83 搬送用空気ブロワ
45,85 制御装置
54 前段側ノズル
55 後段側ノズル
56A、56B、93A,93B 交番型蓄熱式熱交換器
57、58、95 4方切換弁
66 水平円
75 後段燃料ノズル
77 後段二次空気ノズル

Claims (21)

  1. 固体燃料を燃焼させる燃焼領域を有する火炉と、
    該火炉から燃焼排気ガスの一部を抽気し、抽気した燃焼排気ガスにより燃焼用空気を固体燃料の着火温度以上の温度に加熱して高温燃焼用空気を生成する熱交換手段と、
    燃焼用空気を高温燃焼用空気より低い温度に予熱して燃焼用二次空気を生成する空気予熱手段と、
    前記燃焼領域に前記固体燃料を噴出させて火炎を形成させる燃料ノズルと、
    該燃料ノズル近傍に配設され、前記火炎近傍の燃焼領域に還元雰囲気を形成させるように前記高温燃焼用空気を噴出させる高温空気供給手段と、
    前記火炎の後方の燃焼領域に前記燃焼用二次空気を噴出させる二次空気供給手段と
    を備えることを特徴とするボイラ装置。
  2. 前記固体燃料は微粉炭であり、前記高温燃焼用空気を800℃以上に加熱することを特徴とする、請求項1に記載のボイラ装置。
  3. 前記燃料ノズルおよび前記高温空気供給手段を、該燃料ノズルの燃料噴出位置と該高温空気供給手段の空気噴出位置とを互いに離間させて配置することを特徴とする、請求項1又は2のいずれかに記載のボイラ装置。
  4. 前記燃料ノズルおよび前記高温空気供給手段を、該燃料ノズルの燃料噴出中心と該高温空気供給手段の空気噴出中心とを互いに同軸に配置することを特徴とする、請求項1又は2のいずれかに記載のボイラ装置。
  5. 前記二次空気供給手段の空気噴出位置を燃料ノズルの燃料噴出位置に対し、前記高温空気供給手段の空気噴出位置より遠くに離間させて配置することを特徴とする請求項1乃至4のいずれかに記載のボイラ装置。
  6. 前記燃料ノズル、前記高温空気供給手段および前記二次空気供給手段を、該燃料ノズルの燃料噴出中心と、該高温空気供給手段および該二次空気供給手段の各空気噴出中心とを互いに同軸に、且つ、燃料ノズルの外周に、高温空気供給手段、二次空気供給手段の順に、環状に配置することを特徴とする、請求項1乃至5のいずれかに記載のボイラ装置。
  7. 前記高温空気供給手段の配設位置より後流の前記燃焼領域に、前記高温燃焼用空気の一部を噴出させる後段高温空気供給手段を備えることを特徴とする、請求項1乃至6のいずれかに記載のボイラ装置。
  8. 前記高温空気供給手段の配設位置より後流の前記燃焼領域に、前記二次空気供給手段からの燃焼用二次空気を噴出させることを特徴とする、請求項1乃至7のいずれかに記載のボイラ装置。
  9. 前記高温空気供給手段の配設位置より後流の前記燃焼領域に前記固体燃料の一部を噴出させ、前記二次空気供給手段からの燃焼用二次空気と混合して燃焼させる後段燃料ノズルと、
    該後段燃料ノズルの配設位置より後流の前記燃焼領域に前記燃焼用二次空気を噴出させる後段二次空気供給手段の空気噴出口と
    を更に備えることを特徴とする、請求項1乃至8のいずれかに記載のボイラ装置。
  10. 互いに対向する前記火炉の各壁面に、前記燃料ノズルと前記二次空気供給手段の空気噴出ノズル及び前記高温空気供給手段の空気噴出ノズルとをそれぞれ対向して配置することを特徴とする、請求項1乃至9のいずれかに記載のボイラ装置。
  11. 前記燃料ノズル手段及び燃焼用空気供給手段は、前記火炉内の水平な仮想円の接線方向に、前記燃料及び燃焼用空気をそれぞれ噴出させ、前記火炉内に旋回流を発生させつつ前記固体燃料を燃焼させることを特徴とする、請求項1乃至9のいずれかに記載のボイラ装置。
  12. 前記熱交換手段は、多管式熱交換器であることを特徴とする、請求項1乃至11のいずれかに記載のボイラ装置。
  13. 前記熱交換手段は、蓄熱式熱交換器であることを特徴とする、請求項1乃至11のいずれかに記載のボイラ装置。
  14. 前記熱交換手段は、内部に蓄熱材を充填した交番型蓄熱式熱交換器であり、前記火炉からの燃焼排気ガスの一部を抽気して前記熱交換器に供給し、抽気した燃焼排気ガスにより前記蓄熱材を加熱して蓄熱し、蓄熱後に燃焼用空気を前記固体燃料の着火温度以上の温度に加熱して前記高温空気供給手段に供給し、蓄熱と高温燃焼用空気の生成を交互に繰り返すことを特徴とする請求項1乃至11のいずれかに記載のボイラ装置。
  15. 前記熱交換手段は、前記火炉上部から抽気した前記燃焼排気ガスにより高温燃焼用空気を生成することを特徴とする請求項1乃至14のいずれかに記載のボイラ装置。
  16. 2個の前記交番型蓄熱式熱交換器と、各該熱交換器の一端がそれぞれ接続される前記高温燃焼用空気供給手段とを一組として備え、
    前記各熱交換器へ燃焼用空気を供給する燃焼用空気供給手段と、
    前記各熱交換器から燃焼排気ガスを排出する排気ガス排出手段と、
    前記各熱交換器の各他端を、前記燃焼用空気供給手段又は排気ガス排出手段に、それぞれ、交互に切換可能に接続する切換手段と
    を備えることを特徴とする、請求項14に記載のボイラ装置。
  17. 抽気した燃焼排気ガス中の粉塵を除去して当該燃焼排気ガスを前記熱交換手段に供給する脱塵手段を備えることを特徴とする、請求項1乃至16のいずれかに記載のボイラ装置。
  18. 前記空気予熱手段は、前記火炉からの排気ガスにより燃焼用空気を予熱することを特徴とする、請求項1乃至17のいずれかに記載のボイラ装置。
  19. 前記火炉からの排気ガスを搬送ガスとし、該搬送ガスにより前記固体燃料を前記燃料ノズルに搬送することを特徴とする、請求項1乃至18のいずれかに記載のボイラ装置。
  20. 石炭を微粉炭に粉砕するミル装置を備え、前記火炉からの排気ガスを雰囲気ガスとし、該排気ガスをミル装置に供給して微粉炭を製造すると共に、該排気ガスを搬送ガスとして微粉炭をミル装置から燃料ノズルに搬送することを特徴とする、請求項1乃至19のいずれかに記載のボイラ装置。
  21. 前記火炉からの排気ガス中の灰儘を除去する粉塵除去手段を備えることを特徴とする、請求項19または20のいずれかに記載のボイラ装置。

JP2004078659A 2004-03-18 2004-03-18 ボイラ装置 Expired - Fee Related JP4296415B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078659A JP4296415B2 (ja) 2004-03-18 2004-03-18 ボイラ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078659A JP4296415B2 (ja) 2004-03-18 2004-03-18 ボイラ装置

Publications (2)

Publication Number Publication Date
JP2005265298A true JP2005265298A (ja) 2005-09-29
JP4296415B2 JP4296415B2 (ja) 2009-07-15

Family

ID=35090043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078659A Expired - Fee Related JP4296415B2 (ja) 2004-03-18 2004-03-18 ボイラ装置

Country Status (1)

Country Link
JP (1) JP4296415B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112581A (ja) * 2010-11-25 2012-06-14 Ihi Corp ボイラ装置
WO2012105434A1 (ja) 2011-01-31 2012-08-09 株式会社Ihi 高温空気燃焼用バーナ装置
JP2013036681A (ja) * 2011-08-08 2013-02-21 Kubota Corp 穀物乾燥機
CN103292321A (zh) * 2009-12-17 2013-09-11 三菱重工业株式会社 固体燃料焚烧燃烧器及固体燃料焚烧锅炉
DE112011103913T5 (de) 2010-11-25 2013-09-12 Ihi Corp. Mit Brennstoffstaub befeuertes Kesselsystem
CN103712204A (zh) * 2013-12-13 2014-04-09 山西蓝天环保设备有限公司 一种用于煤粉工业锅炉的墙式布置直流煤粉燃烧技术
CN104315502A (zh) * 2014-10-17 2015-01-28 西安交通大学 一种生物质低温预燃低挥发分低质煤低NOx燃烧装置
KR101565990B1 (ko) 2013-12-19 2015-11-12 대림로얄이앤피(주) 에어재킷 보일러
CN106765015A (zh) * 2016-12-22 2017-05-31 江联重工集团股份有限公司 一种防止空气预热器低温腐蚀流化床生物质锅炉及系统
CN106871113A (zh) * 2017-04-07 2017-06-20 贵州电网有限责任公司电力科学研究院 一种对冲切圆燃烧方式电站锅炉的燃烧器型式的选择方法
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
CN108278594A (zh) * 2017-12-25 2018-07-13 辽宁中电投电站燃烧工程技术研究中心有限公司 600mw超临界褐煤直流锅炉掺烧生物质气化燃气的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620565A (zh) * 2012-03-21 2012-08-01 深圳市汇能节能投资管理有限公司 一种固体燃料的高温空气燃烧装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292321A (zh) * 2009-12-17 2013-09-11 三菱重工业株式会社 固体燃料焚烧燃烧器及固体燃料焚烧锅炉
US10281142B2 (en) 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
DE112011103913T5 (de) 2010-11-25 2013-09-12 Ihi Corp. Mit Brennstoffstaub befeuertes Kesselsystem
JP2012112581A (ja) * 2010-11-25 2012-06-14 Ihi Corp ボイラ装置
JP5549747B2 (ja) * 2011-01-31 2014-07-16 株式会社Ihi 高温空気燃焼用バーナ装置
US9869468B2 (en) 2011-01-31 2018-01-16 Ihi Corporation Burner device for high-temperature air combustion
WO2012105434A1 (ja) 2011-01-31 2012-08-09 株式会社Ihi 高温空気燃焼用バーナ装置
JP2013036681A (ja) * 2011-08-08 2013-02-21 Kubota Corp 穀物乾燥機
CN103712204A (zh) * 2013-12-13 2014-04-09 山西蓝天环保设备有限公司 一种用于煤粉工业锅炉的墙式布置直流煤粉燃烧技术
CN103712204B (zh) * 2013-12-13 2016-05-11 山西蓝天环保设备有限公司 一种用于煤粉工业锅炉的墙式布置直流煤粉燃烧装置
KR101565990B1 (ko) 2013-12-19 2015-11-12 대림로얄이앤피(주) 에어재킷 보일러
CN104315502A (zh) * 2014-10-17 2015-01-28 西安交通大学 一种生物质低温预燃低挥发分低质煤低NOx燃烧装置
CN106765015A (zh) * 2016-12-22 2017-05-31 江联重工集团股份有限公司 一种防止空气预热器低温腐蚀流化床生物质锅炉及系统
CN106871113A (zh) * 2017-04-07 2017-06-20 贵州电网有限责任公司电力科学研究院 一种对冲切圆燃烧方式电站锅炉的燃烧器型式的选择方法
CN108278594A (zh) * 2017-12-25 2018-07-13 辽宁中电投电站燃烧工程技术研究中心有限公司 600mw超临界褐煤直流锅炉掺烧生物质气化燃气的方法

Also Published As

Publication number Publication date
JP4296415B2 (ja) 2009-07-15

Similar Documents

Publication Publication Date Title
JP5436456B2 (ja) 反応器サブシステムを用いた空気燃焼co2捕捉対応の循環流動層熱発生
JP4296415B2 (ja) ボイラ装置
CN101532678B (zh) 电站燃煤锅炉布朗气(氢氧气)点火系统
JP2010242999A (ja) 木質バイオマス直接粉砕燃焼方法と装置とボイラシステム
CN102620291A (zh) 低氮氧化物排放煤粉解耦燃烧器及煤粉解耦燃烧方法
CN110425520B (zh) 一种用于半焦类难燃燃料的无焰燃烧系统
Chernyavskii et al. Experience in Converting TPP-210A Boilers with 300 MW Power Units to Burning Gas Coal at the Tripillya Thermal Power Plant
JP2007101083A (ja) 石炭・木材混焼方法及び混焼バーナ並びに混焼設備
JP4386179B2 (ja) ボイラ装置
KR100973414B1 (ko) 예열이 필요없는 미분탄 연소방식의 석탄버너
JP2005291526A (ja) バイオマス燃料の乾燥装置及び方法
JP4359768B2 (ja) ボイラ装置
JP2005291524A (ja) バイオマス燃料の燃焼装置及び方法
JP2005265299A (ja) ボイラ装置
CN203549793U (zh) 一种带煤粉燃烧器的复合式链条炉
CN102818247B (zh) 一种高效煤粉气化与煤粉复合燃烧蒸汽锅炉
KR102348745B1 (ko) 마일드 연소 기술과 배가스 잠열 회수를 통한 고효율 저배출 목재 보일러
CN108253409A (zh) 高效超低排放蓄热式多燃料气化燃烧锅炉
JP5498434B2 (ja) バイオマス燃焼ボイラ
JP2005308372A (ja) 流動床炉
CN109578977B (zh) 一种独立控制热解气化和半焦燃烧的环保燃煤锅炉及其处理方法
CN207936052U (zh) 高效超低排放蓄热式多燃料气化燃烧锅炉
CN106765061B (zh) 燃烧器区域变截面适应灵活性调峰的煤粉锅炉炉膛
JP2013108717A (ja) バイオマスバーナ及びボイラ装置
JP2006089628A (ja) ガス化炉装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R151 Written notification of patent or utility model registration

Ref document number: 4296415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees