WO2009137980A1 - 基于数据模式的无线终端接收灵敏度性能测试系统及方法 - Google Patents

基于数据模式的无线终端接收灵敏度性能测试系统及方法 Download PDF

Info

Publication number
WO2009137980A1
WO2009137980A1 PCT/CN2008/073910 CN2008073910W WO2009137980A1 WO 2009137980 A1 WO2009137980 A1 WO 2009137980A1 CN 2008073910 W CN2008073910 W CN 2008073910W WO 2009137980 A1 WO2009137980 A1 WO 2009137980A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
receiving sensitivity
wireless terminal
antenna
model
Prior art date
Application number
PCT/CN2008/073910
Other languages
English (en)
French (fr)
Inventor
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP08874252.3A priority Critical patent/EP2285021A4/en
Priority to US12/992,736 priority patent/US8358992B2/en
Publication of WO2009137980A1 publication Critical patent/WO2009137980A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the present invention relates to the field of communications, and in particular to a data mode based wireless terminal receiving sensitivity performance testing system and method.
  • BACKGROUND OF THE INVENTION radio frequency performance testing of wireless terminals has received increasing attention.
  • the test of the receiving sensitivity of the whole machine can objectively reflect the final transmitting performance and receiving performance of the wireless terminal.
  • the receiving sensitivity performance is another method of testing the spatial RF performance of a wireless terminal such as receiving sensitivity in a specific microwave darkroom, called active testing.
  • active testing is another method of testing the spatial RF performance of a wireless terminal such as receiving sensitivity in a specific microwave darkroom.
  • FTA Full Type Approval
  • the RF performance test mainly tests the RF performance of the wireless terminal in the cable connection mode; as for the spatial RF performance of the wireless terminal, there is no clear regulation in the FTA test, but the air interface test (OTA) test Can make up for the shortcomings of FTA testing in this area.
  • OTA air interface test
  • the wireless terminal manufacturer needs to have a clear understanding of the receiving sensitivity performance of the produced wireless terminal, and needs various measures to improve the transmitting and receiving indicators of the wireless terminal radiation, and the wireless terminal with poor receiving sensitivity performance will be given to the user.
  • Use brings a lot of inconvenience.
  • Especially when using a wireless terminal for a call since the human body is close to the wireless terminal antenna, this will reduce the transmission and reception performance of the wireless terminal, and the transmission and reception performance of the wireless terminal will be reduced.
  • the transmission parameters include Total Radiated Power (TRP), and the receiving parameters include Total Radiated Sensitivity (TRS).
  • TRP Total Radiated Power
  • TRS Total Radiated Sensitivity
  • the TRS of the mobile terminal is reflected in the receiving sensitivity index of the entire radiating spherical wireless terminal, which reflects the receiving sensitivity of the wireless terminal, and the conduction sensitivity and antenna of the wireless terminal.
  • the sensitivity of the receiving sensitivity is related.
  • EIS effective isotropic sensitivity
  • N and M are multiple sampling intervals for ⁇ and ⁇ .
  • ⁇ ⁇ and ⁇ " are measurement angles
  • EISe is the equivalent omnidirectional received power horizontal polarization component value of the test point with angles ⁇ , ⁇ ⁇ , in milliwatts; is the equivalent omnidirectional received power vertical polarization component of the test point with angles of ⁇ Value in milliwatts.
  • the devices and methods for measuring TRP in space RF performance are currently directed to the voice mode, which only involves free space or human head, and does not fully reflect the influence of the electromagnetic coupling of the human hand and even the human body and the antenna in the data mode. The results of the program's measurements are not accurate.
  • the present invention has been made in view of the fact that the TRS measurement scheme in the current spatial radio frequency performance existing in the related art does not sufficiently reflect the influence of the electromagnetic coupling of the human hand and the human body and the antenna in the data mode, and thus the test result is inaccurate.
  • the present invention aims to provide a wireless terminal receiving sensitivity performance testing system and method based on data mode, to solve at least one of the above problems.
  • a data mode based wireless terminal receiving sensitivity performance testing method is provided.
  • the data mode-based wireless terminal receiving sensitivity performance testing method includes: constructing a human body model, wherein the upper limb of the model holds the device to be tested at a certain distance in front of the head of the model; constructing the antenna of the device to be tested as an origin Spherical coordinate system, and select the test point in the spherical coordinate system; Place the model in the full dark wave chamber environment, make the device under test work in the data mode, and use the measuring antenna to collect the receiving power at the test point in the spherical placement system. And thus obtain the total power receiving sensitivity of the device under test.
  • the processing of constructing the model further comprises: filling the model with the simulated human tissue fluid.
  • the measuring antenna is a dual polarized antenna. The received power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the process of obtaining the power receiving sensitivity of the device under test is specifically: obtaining the total receiving sensitivity at each test point by using formula (1), respectively.
  • the total receiving sensitivity at the test points is normalized:
  • the data mode-based wireless terminal receiving sensitivity performance testing system comprises: a full anechoic chamber for providing a test environment for the wireless terminal; a human body model, wherein the upper limb of the model holds the device under test in front of the head of the model A spherical coordinate establishing and testing module at a certain distance, for constructing a spherical coordinate system with the antenna of the device to be tested as the origin, and selecting a test point in the spherical coordinate system; a spherical placement system for controlling the wireless terminal in the spherical coordinate system Measuring the angular position of the antenna; measuring antenna for collecting the received power of the wireless terminal in the data mode under the control of the spherical placement system; processing unit for receiving the wireless terminal according to the data point in the test mode The power obtains the power receiving sensitivity of the device under test.
  • the model is filled with simulated human tissue fluid.
  • the measuring antenna is a dual polarized antenna.
  • the received power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • FIG. 1 is a flowchart of a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • 2 is a schematic diagram of a human body model used in a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • FIG. 1 is a flowchart of a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • 2 is a schematic diagram of a human body model used in a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • FIG. 1 is a flowchart of a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • 2 is a schematic diagram of a human body model used in a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention
  • FIG. 1 is a flowchart of a data mode based wireless terminal receiving
  • FIG. 3 is a data mode based wireless terminal receiving sensitivity performance test according to an embodiment of the method of the present invention.
  • Method is a schematic diagram of placing a human body model during execution of a test;
  • FIG. 4 is a flow chart showing an example of processing of a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention;
  • FIG. 5 is a system according to an embodiment of the present invention. A preferred diagram of a wireless terminal radiation performance test system based on a data pattern.
  • a spherical body coordinate system is constructed by constructing a human body model, and an antenna of the device to be tested is taken as an origin, and a test point is selected in the spherical coordinate system, and then The model is placed in a full dark wave chamber environment, so that the device under test operates in the data mode, and the receiving power at the test point is collected in the spherical placement system by using the measuring antenna, and thereby the total power receiving sensitivity of the device under test is obtained, wherein The upper limb of the above model holds the device to be tested at a certain distance in front of the head of the model.
  • a data mode based wireless terminal receiving sensitivity performance testing method is provided.
  • 1 is a flowchart of a data mode based wireless terminal receiving sensitivity performance testing method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps (step S102 - step S106).
  • Step S102 constructing a human body model Wherein the upper limb of the model holds the device to be tested at a certain distance in front of the head of the model, wherein FIG. 2 schematically shows a human body model that can be employed in the present invention, As shown in Figure 2, the model can be the upper body model of the human body.
  • the processing of constructing the mannequin herein may include: filling the model with the simulated human tissue fluid.
  • Step S104 Construct a spherical coordinate system with the antenna of the device to be tested as an origin, and select a test point in the spherical coordinate system.
  • Step S106 placing the model in a full dark wave chamber environment, so that the device under test works in the data mode, and collecting the receiving power at the test point in the spherical placement system by using the measuring antenna, and thereby obtaining the total power of the device to be tested.
  • Receive sensitivity Preferably, the measuring antenna is a dual polarized antenna.
  • Figure 3 is a schematic diagram of the measurement antenna being sampled at the test power by changing the relative angle of the terminal to the measurement antenna in a spherical coordinate system. Among them, the model holding the terminal can rotate in the horizontal plane, and the probe antenna can be moved in the plane perpendicular to the horizontal plane to sample, thereby obtaining the sampling result of each test point.
  • the received power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the process of obtaining the power receiving sensitivity of the device under test is specifically: obtaining the total receiving sensitivity at each test point by using formula (1), respectively.
  • the total receiving sensitivity at the test points is normalized:
  • TRS is the total receiving sensitivity at the current test point
  • S and is the measured angle
  • is the horizontal polarization component and the vertical polarization component, respectively, which is the stereo direction angle of the current test point in the spherical coordinate system
  • f is to be Measuring the current operating frequency of the device
  • Equation (2) where TRS is the total receiving sensitivity of the device under test, N and M are the sampling intervals of the sum of the sums, ⁇ 5 ⁇ 1 ⁇ ) is the receiving power of the test points with the measuring angles ⁇ and ⁇
  • the horizontal polarization component, and ⁇ ) are the vertical polarization components of the received power of the test points with the measurement angles of ⁇ and ⁇ , which are the current operating frequencies of the device under test.
  • 4 is a flowchart of a processing example of a data mode-based wireless terminal receiving sensitivity performance testing method according to an embodiment of the method of the present invention. As shown in FIG.
  • the method may specifically include the following steps (step S1 - Step S6): Step S1, in the data mode, the human body model mold sets the position of the user equipment, constructs a test system; Step S2, establishes a spherical coordinate system centering on the location of the wireless terminal antenna, and selects a test point; Step S3, sets the user The wireless link of the device is in a normal working state and satisfies the test condition. Step S4, continuously sending the UP power control command to the user equipment, and when the user equipment reaches at least a certain target value until the BER arrives, the agreed maximum power is started, and the sending starts.
  • Step S5 sampling test at set test point, collecting equal power horizontal polarization component ( ⁇ ') and equivalent omnidirectional receive power vertical polarization component in horizontal and vertical directions, respectively
  • Step S6 linearly averaging the data measured at each test point to obtain a total receiving sensitivity TRS
  • Step S1 setting a position of the user equipment according to the human body model mold, and constructing a test system.
  • the data mode is usually used in the one-hand or dual-handheld state.
  • the human model includes a human head, and a handheld wireless terminal with one hand and the upper or the whole of the torso.
  • the origin of the spherical coordinate system is transferred to the current device position, ie, near the chest of the mannequin.
  • the human body model is filled with human tissue fluid, and the tissue fluid formula meets the relevant standards.
  • the following formula can be used: water (45.3%), sugar (54.3%), hydroxyethyl cellulose (0.3%) and preservative (0.1%),
  • the ratios are all weight percentages.
  • the human hand is separated from the head 3 by a large distance of 3, for example, 40 cm; in this case, the human hand 3 is also separated from the model chest by a certain distance, for example, it may be 20 cm.
  • the joint of the manikin of the constructed mannequin is movable, and therefore, the wireless terminal of the model is adjustable relative to the head and the chest; step S2, establishing the position of the wireless terminal antenna as the center
  • the spherical coordinate system, and the test points are selected.
  • two positioning systems can be defined: a combined axis system and a distributed axis system.
  • the combined shaft system means that the two rotating shafts are independent of each other.
  • the Phi axis positioner is installed on the basis of the Theta axis positioner, so that the DUT can rotate around two axes at the same time; two rotations of the distributed shaft system The axes are combined with each other.
  • the measuring antenna can be rotated around the Theta axis, and the DUT can be rotated around the Phi axis; Step S3, setting the wireless link of the user equipment and putting it in a normal working state to satisfy the test condition; preferably, the DUT is in step S3
  • the supported frequency bands should select the high, medium and low channels in all the frequency bands supported by the DUT to establish a link for testing.
  • For the telescopic antenna DUT should be tested in both extended and contracted states.
  • the relative sensitivity test is also performed on the intermediate channel under the condition that the maximum interval is satisfied.
  • the relative sensitivity test requires finding the measurement point of the best receiving sensitivity of the complete test channel, adjusting the position of the positioner and the polarization of the test to be consistent with the best receiving sensitivity point, and adjusting the output power of the base station simulator to be greater than the optimal receiving sensitivity.
  • + 5dB test the sensitivity of the DUT in the intermediate channel under this power condition, the sensitivity of the intermediate channel should not exceed the error rate/frame error rate of the complete test channel;
  • Step S4 continuously send the UP power control command to the user equipment until the user
  • the device's bit error rate (BER) reaches at least 20,000 bits 1.0% ⁇ 0.2% of the target value.
  • Step S5 the sampling test is performed at the set test point, and the horizontal and vertical directions are collected respectively. Wait Effective omnidirectional transmit power level ⁇ ⁇ and equivalent omnidirectional transmit power vertical polarization component EiRP person ⁇ ⁇ .
  • the measured EIS data is normalized by equation (3):
  • n - 1 formula ( 3 ) where is the standard sensitive measurement and ⁇ 5 ⁇ is the power measurement of the non-standard modulation. "It is the number of reference measurement points; Step S6, using the equations (1) and (2) for the data measured at each test point, to obtain the spatial RF performance reception sensitivity index TRS of the mobile terminal device or other wireless communication products.
  • the above half body model is taken as an example to describe the embodiment of the present invention, but the embodiment of the present invention can also be measured by using a whole body human body model.
  • the data mode-based wireless terminal reception sensitivity performance test system may include an all-wave darkroom and a human body model (hereinafter, simply referred to as a model) for providing a test environment for the wireless terminal, wherein the model The upper limb holds the device to be tested at a certain distance in front of the head of the model.
  • a model a human body model
  • the invention is not limited, and can be flexibly simulated or simulated according to the needs of testing, design, or implementation. Adjustment, this does not affect the essence of the invention.
  • 5 is a preferred block diagram of a data mode based wireless terminal radiation performance testing system in accordance with an embodiment of the present invention. As shown in FIG.
  • the system includes a device under test 1, and preferably includes the following functional modules: Spherical coordinates
  • the establishing and testing module 2 is configured to construct a spherical coordinate system with the antenna of the device to be tested as an origin, and select a test point in the spherical coordinate system; a spherical placement system 3 for controlling the wireless terminal and the measuring antenna in the spherical coordinate system Angle position; measuring antenna 4, used to collect the receiving power of the wireless terminal in the data mode under the control of the spherical placement system; processing unit 5, for receiving power of the wireless terminal according to the data point in the data mode The power receiving sensitivity of the device under test 1 is obtained.
  • the above human body model may be an upper body model or a whole body model, and is filled with simulated human tissue fluid.
  • the full anechoic chamber can fully isolate the electromagnetic dry w ⁇ from the external environment.
  • the shielding effectiveness of the anechoic chamber meets the requirements of EN50147-1 in the range of 800 Hz to 4 GHz.
  • the static space of the full anechoic chamber needs to meet the test requirements.
  • the Spherical Coordinate System Setup and Test Module 2 can be used to create a spherical coordinate system that establishes a spherical coordinate system defined by the x, y, and z axes for the wireless communication product.
  • the ⁇ angle is the angle between the test point and the positive direction of the z-axis.
  • the ⁇ angle is the angle between the positive X-axis and the projection point of the test point on the x and y planes, and the test coordinate point is selected in the spherical coordinate system.
  • the final structure of the built test environment consists of a support structure and a test placement device for placing the DUT and manipulating it relative to the measurement antenna, the system is capable of moving the DUT/model, And/or measuring the antenna to cover the radiation model of the entire spherical surface of the DUT, thereby sampling at each test point.
  • the above measuring antenna 4 may be a dual polarized antenna: used to obtain two orthogonal components of the electric field vector at each point on the spherical surface.
  • the received power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the device under test (DUT) described above may include a single mode terminal, where the single mode includes time division synchronous code division multiple access (TD-SCDMA), wideband code division multiple access (WCDMA), code division multiple access (CDMA). , Globle system for mobile communication (GSM), personal wireless access system (PHS, also known as PHS), Bluetooth (BLUETOOTH), wireless LAN or wireless LAN, Global Positioning System (Global) Communication systems such as Positioning System, GPS), Radio Frequency ID (RFID), and Wave Access Global Interoperability (WiMAX) or a combination thereof.
  • TD-SCDMA time division synchronous code division multiple access
  • WCDMA wideband code division multiple access
  • CDMA code division multiple access
  • GSM global system for mobile communication
  • PHS personal wireless access system
  • Bluetooth BLUETOOTH
  • wireless LAN or wireless LAN Global Positioning System (Global) Communication systems such as Positioning System, GPS), Radio Frequency ID (RFID), and Wave Access Global Interoperability (WiMAX
  • the technical solution of the present invention can truly reflect the performance impact of the human body coupling on the mobile terminal in the data mode, has high authenticity, and is easy to use.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

基于数据模式的
无线终端接收灵敏度性能测试系统及方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种基于数据模式的无线终端接 收灵敏度性能测试系统及方法。 背景技术 近年来, 无线终端射频性能测试越来越受到关注。 整机接收灵敏度性能 的测试可以客观反映无线终端的最终发射性能和接收性能。 目前, 主要有两 种方法对无线终端的接收灵敏度性能进行考察: 一种方法是从天线的接收灵 敏度性能进行判定, 侧重从无线终端天线的增益、 效率、 方向图等天线的辐 射方面考察无线终端的接收灵敏度性能, 称为无源测试, 另一种方法是在特 定微波暗室内, 测试无线终端的诸如接收灵敏度等的空间射频性能, 称为有 源测试。 目前, 只有通过 FTA ( Full Type Approval )认证测试的无线终端才能上 市销售。 在 FTA测试中, 射频性能测试主要进行无线终端在电缆连接模式下 的射频性能测试; 至于无线终端整机的空间射频性能, 在 FTA测试中没有明 确的规定, 但是, 空中接口测试(OTA )测试能够弥补 FTA测试在这方面测 试的不足。 同时, 无线终端生产厂家需要对所生产的无线终端的接收灵敏度 性能有清楚的了解, 并且需要通过各种措施来提高无线终端辐射的发射和接 收指标, 接收灵敏度性能差的无线终端将给用户的使用带来诸多不便。 尤其 在使用无线终端进行通话时, 由于人体靠近无线终端天线, 这将降低无线终 端的发射和接收性能, 无线终端整机辐射的发射和接收性能都会降低。 因此, 在无线终端研发过程中, 应定量测量人体对无线终端的发射和接收性能的影 响, 进行优化设计, 使得发射和接收性能不能太大地降低, 即, 减少人体和 天线的电磁耦合效应。 发射参数包括总辐射功率 (Total Radiated Power, 简 称为 TRP ), 接收参数包括总辐射灵敏度 (Total Radiated Sensitivity, 简称为 TRS )。 移动终端的 TRS反映在整个辐射球面无线终端接收灵敏度指标的情况, 其反映了无线终端整机的接收灵敏度情况, 与无线终端的传导灵敏度和天线 的接收灵敏度性能有关。
TRS 二
Figure imgf000004_0001
公式 ( l ) 这里, 有效等方向性灵敏度(简称为 EIS )定义了可用的天线输出功率, 例如, 每个极化都达到了可接收的门限。 Ω是描述方向的立体角,/是频率, 和 是正交极化的角度参数。
Figure imgf000004_0002
其中, N和 M是对 θφ的多个采样间隔。 υ η 和^ "是测量角
EISe , )为角度为 ^、 Φ〗的测试点的等效全向接收功率水平极化分量 值, 单位为毫瓦; 为角度为 、 ^的测试点的等效全向接收功率垂直极化分量 值, 单位为毫瓦。 目前采用的空间射频性能中 TRP测量的装置和方法都是针对语音模式 的, 仅涉及自由空间或者人头, 并没有充分反映数据模式下人手乃至于人体 和天线的电磁耦合的影响, 因此, 采用上述的方案进行测量的结果并不准确。 发明内容 考虑到相关技术中存在的目前的空间射频性能中 TRS测量方案没有充 分反映数据模式下人手乃至于人体和天线的电磁耦合的影响, 因此测试结果 不准确的问题而提出本发明。 为此, 本法明旨在提供一种基于数据模式的无 线终端接收灵敏度性能测试系统及方法, 用以解决上述问题至少之一。 为了实现上述目的, 根据本发明的一个方面, 提供了一种基于数据模式 的无线终端接收灵敏度性能测试方法。 根据本发明的基于数据模式的无线终端接收灵敏度性能测试方法包括: 构造人体模型, 其中,模型的上肢将待测设备持于模型的头部前一定距离处; 以待测设备的天线为原点构建球面坐标系, 并在球面坐标系中选择测试点; 将模型置于全暗波室环境下, 使待测设备在数据模式下工作, 利用测量天线 在球面放置系统中采集测试点处的接收功率, 并由此获得待测设备的总功率 接收灵敏度。 优选地,构造模型的处理进一步包括:在模型中填充仿真的人体组织液。 优选地, 测量天线为双极化天线。 其中,在每个测试点采集到的接收功率包括水平极化分量和垂直极化分
优选地, 在采集到水平极化分量和垂直极化分量之后, 获得待测设备的 功率接收灵敏度的处理具体为: 通过公式 ( 1 ) 分别获得每个测试点处的总 接收灵敏度, 之后对每个测试点处的总接收灵敏度进行归一化:
TRS 二
Figure imgf000005_0001
公式 ( l ), 其中, TRS为当前测试点处的总接收灵敏度, S和 为测量角, EISe φ分别为水平极化分量和垂直极化分量, 为当前测试点在球面坐标系 中的立体方向角, f为待测设备的当前工作频率; 通过公式 (2 ) 获得待测设备的总接收灵敏度:
Figure imgf000005_0002
公式 ( 2 ), 其中, TRS为待测设备的总接收灵敏度, N和 M为分别对 和 的多个 采样间隔, ^ 5^^1^)为测量角为 ^和 ^的测试点的接收功率的水平极化分 量, 和^ 1^^' ^')为测量角为 Ji的测试点的接收功率的垂直极化分量, 为待测设备的当前工作频率。 为了实现上述目的,根据本发明的另一方面,提供了一种基于数据模式的 无线终端接收灵敏度性能测试系统。 根据本发明的基于数据模式的无线终端接收灵敏度性能测试系统包括: 全电波暗室, 用于为无线终端提供测试的环境; 人体模型, 其中, 模型的上 肢将待测设备持于模型的头部前一定距离处球面坐标建立和测试模块, 用于 以待测设备的天线为原点构建球面坐标系, 并在球面坐标系中选择测试点; 球面放置系统, 用于在球面坐标系内控制无线终端与测量天线的角度位置; 测量天线, 用于在球面放置系统的控制下, 采集测试点处在数据模式下无线 终端的接收功率; 处理单元, 用于根据测试点处在数据模式下无线终端的接 收功率获得待测设备的功率接收灵敏度。 优选地, 模型中填充有仿真的人体组织液。 优选地, 测量天线为双极化天线。 优选地,在每个测试点采集到的接收功率包括水平极化分量和垂直极化 分量。 借助于上述技术方案之一,通过本发明能够真实反映真人在数据模式下 中人体耦合对移动终端的性能影响, 具有高的真实性, 并且易于使用。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 是根据本发明方法实施例的基于数据模式的无线终端接收灵敏度 性能测试方法的流程图; 图 2 是根据本发明方法实施例的基于数据模式的无线终端接收灵敏度 性能测试方法中所采用的人体模型的示意图; 图 3 是根据本发明方法实施例的基于数据模式的无线终端接收灵敏度 性能测试方法在执行测试过程中放置人体模型的示意图; 图 4 是根据本发明方法实施例的基于数据模式的无线终端接收灵敏度 性能测试方法的处理实例的流程图; 图 5 是根据本发明系统实施例的基于数据模式的无线终端辐射性能测 试系统的优选才11图。 具体实施方式 功能相克述 在本发明实施例提供的技术方案中, 通过构造人体模型, 以及, 以待测 设备的天线为原点构建球面坐标系, 并在球面坐标系中选择测试点, 然后, 将模型置于全暗波室环境下, 使待测设备在数据模式下工作, 利用测量天线 在球面放置系统中采集测试点处的接收功率, 并由此获得待测设备的总功率 接收灵敏度, 其中, 上述模型的上肢将待测设备持于所述模型的头部前一定 距离处。 相比于现有技术, 本发明实施例提供的技术方案, 能够真实地反映 真人在数据模式下中人体耦合对移动终端的性能影响, 具有较高的真实性。 下面将结合附图详细描述本发明。 需要说明的是, 如果不沖突, 本申请 中的实施例以及实施例中的特征可以相互组合。 方法实施例 根据本发明实施例,提供了一种基于数据模式的无线终端接收灵敏度性 能测试方法。 图 1 是根据本发明实施例的基于数据模式的无线终端接收灵敏度性能 测试方法的流程图, 如图 1 所示, 该方法包括以下步骤(步骤 S 102—步骤 S106 )„ 步骤 S102, 构造人体模型, 其中, 模型的上肢将待测设备持于模型的 头部前一定距离处, 其中, 图 2示意性地示出了本发明可以采用的人体模型, 如图 2所示, 该模型可以为人体的上半身模型。 这里的构造人体模型的处理 可以包括: 在模型中填充仿真的人体组织液。 步骤 S104 , 以待测设备的天线为原点构建球面坐标系, 并在球面坐标 系中选择测试点。 步骤 S106 , 将模型置于全暗波室环境下, 使待测设备在数据模式下工 作, 利用测量天线在球面放置系统中采集测试点处的接收功率, 并由此获得 待测设备的总功率接收灵敏度。 优选地, 测量天线为双极化天线。 图 3是在球面坐标系中通过改变终端与测量天线的相对角度,使得测量 天线在测试电进行采样的示意图。其中,持有终端的模型能够在水平面旋转, 天线 (probe antenna ) 能够在垂直于水平面的平面内延球面移动进行采样, 从而得到每个测试点的采样结果。 当然, 还可以采用其它的旋转和 /或移动的 方式, 这里不再——列举。 其中,在每个测试点采集到的接收功率包括水平极化分量和垂直极化分 量。 优选地, 在采集到水平极化分量和垂直极化分量之后, 获得待测设备的 功率接收灵敏度的处理具体为: 通过公式 ( 1 ) 分别获得每个测试点处的总 接收灵敏度, 之后对每个测试点处的总接收灵敏度进行归一化:
Figure imgf000008_0001
其中, TRS为当前测试点处的总接收灵敏度, S和 为测量角, 和 φ分别为水平极化分量和垂直极化分量, 为当前测试点在球面坐标系 中的立体方向角, f为待测设备的当前工作频率; 通过公式 (2 ) 获得待测设备的总接收灵敏度:
TRS ,—— 層
sinfe )
公式 ( 2 ), 其中, TRS为待测设备的总接收灵敏度, N和 M为分别对 和 的多个 采样间隔, ^ 5^^1^)为测量角为 ^和 ^的测试点的接收功率的水平极化分 量, 和^^^^ )为测量角为 和 ^的测试点的接收功率的垂直极化分量, ,为待测设备的当前工作频率。 图 4 是根据本发明方法实施例的基于数据模式的无线终端接收灵敏度 性能测试方法的处理实例的流程图, 如图 4所示, 在实际应用当中, 该方法 可以具体包括以下步骤 (步骤 S1—步骤 S6 ): 步骤 S1 , 在数据模式下人体模型模具设置用户设备的位置, 构建测试 系统; 步骤 S2, 以无线终端天线所在位置为中心建立球面坐标系统, 并选取 测试点; 步骤 S3 , 设置用户设备的无线链路, 并使其处于正常工作状态, 满足 测试条件; 步骤 S4 ,连续发送 UP功率控制命令到用户设备, 当用户设备直到 BER 到达使用至少一定目标值, 实现约定最大功率, 开始发送数据模式; 步骤 S5 , 在设定测试点进行采样测试, 分别在水平和垂直方向采集等 功率水平极化分量 (^' )和等效全向接收功率垂直极化分量
Figure imgf000009_0001
步骤 S6, 将在各个测试点所测量的数据进行线性平均得到需要的总接 收灵敏度 TRS 下面将对上述步骤 SI至 S6进行详细描述。 步骤 S1 , 根据人体模型模具设置用户设备的位置, 构建测试系统。 如 图 2所示, 其中对于人体模型要求模拟真人通常用在单手或双手持机状态下 进行数据模式。 真人模型中包含人头, 和手持无线终端单手和躯干上半部分 或全部。 在上述测试情境中, 球面坐标系的原点就转移到了当前的设备位置 上, 即, 在人体模型的胸部附近。 人体模型中充盈人体组织液, 组织液配方 符合标准相关规定, 例如可以采用以下配方: 水(45.3% ), 糖(54.3% ), 羟 乙基纤维素 (0.3% ) 和防腐剂 (0.1% ), 以上配比均为重量百分比。 并且, 人手相对头部 3巨离取一定 3巨离, 例如, 可以是 40cm; 此夕卜, 人手 3巨离模型胸 部也有一定距离, 例如, 可以是 20cm。 并且, 构造的人体模型的上月支的关节 是可以活动的, 因此, 模型手持的无线终端相对头部和胸部的 3巨离是可以调 节的; 步骤 S2, 以无线终端天线所在位置为中心建立球面坐标系统, 并选取 测试点, 具体地, 基于球面测试方法, 可以定义两种定位系统: 组合轴系统 和分布轴系统。 其中, 组合轴系统是指两个旋转轴相互独立, 此时是在 Theta 轴定位器基础上力口装 Phi轴定位器, 这样, DUT可同时绕两个轴旋转; 分布 轴系统的两个旋转轴相互结合在一起。 此时, 测量天线可以围绕 Theta轴转 动, DUT可以围绕 Phi轴转动; 步骤 S3 , 设置用户设备的无线链路, 并使其处于正常工作状态, 满足 测试条件; 优选地, 在步骤 S3 中 DUT在所支持的频段应该选取 DUT所支 持的所有频段中的高、 中、 低三个信道进行建立链路进行测试。 对于伸缩天 线 DUT应在伸展和收缩两种状态进行测试。 在 TRS测试中, 在满足最大间 隔条件下对中间信道还要进行相对灵敏度测试。 相对灵敏度测试要求找到完 整测试信道的最佳接收灵敏度的测量点, 调整定位器的位置及测试的极化与 最佳接收灵敏度点一致, 调节基站模拟器的输出功率大于最佳接收灵敏度一 定值如 + 5dB , 测试在此功率条件下 DUT在中间信道的灵敏度, 中间信道的 灵敏度不应超过完整测试信道的误码率 /误帧率; 步骤 S4 , 连续发送 UP功率控制命令到用户设备, 直到用户设备的误码 率 ( BER ) 到达至少 20000 bits 1.0%士 0.2%目标值, 达到约定最大功率时, 开始发送数据模式; 步骤 S5 , 在设定测试点进行采样测试, 分别在水平和垂直方向采集等 效全向发射功率水平 Ρ Ά和等效全向发射功率垂直极化分量 EiRP人 θ^ φ^。 通过控制 DUT和测试天线的相对位置, 能够在三维空间有效 采样和测量每个点的接受灵敏度。 之后, 通过公式 (3 ) 对测量的 EIS 数据 进行归一化:
AEIS =丄^^ - ElSnstd,
n -1 公式 ( 3 ) 其中, 是标准敏感测量, ^ 5^^^是非标准调制的功率测量。 "是参考测量点的数目; 步骤 S6 , 将在各个测试点所测量的数据利用公式( 1 )和(2 ), 得到移 动终端设备或者其他无线通信产品的空间射频性能接收灵敏度指标 TRS。 尽管之前以上半身模型为例描述了本发明实施例,但是本发明实施例同 样可以采用全身人体模型进行测量。
系统实施例
根据本发明的实施例的基于数据模式的无线终端接收灵敏度性能测试 系统中, 可以包括用于为无线终端提供测试的环境的全电波暗室和人体模型 (在下文中, 简称为模型), 其中, 模型的上肢将待测设备持于模型的头部前 一定距离处, 对于该距离的选取, 本发明没有限制, 可以根据测试、 设计、 或实施的需要, 通过对实际应用场景进行仿真或模拟来灵活调整, 这不影响 本发明的本质。 图 5是根据本发明系统实施例的基于数据模式的无线终端辐 射性能测试系统的优选框图, 如图 5所示, 该系统中包括待测设备 1 , 还优 选地包括如下的功能模块: 球面坐标建立和测试模块 2 , 用于以待测设备的 天线为原点构建球面坐标系, 并在球面坐标系中选择测试点; 球面放置系统 3 , 用于在球面坐标系内控制无线终端与测量天线的角度位置; 测量天线 4 , 用于在球面放置系统的控制下, 采集测试点处在数据模式下无线终端的接收 功率; 处理单元 5 , 用于根据测试点处在数据模式下无线终端的接收功率获 得待测设备 1的功率接收灵敏度。
优选地, 上述人体模型可以为上半身模型或全身模型, 并且其中填充有 仿真的人体组织液。
在实际应用中, 全电波暗室能够充分隔离来自外部环境的电磁干 w ^ 电波暗室的屏蔽效能在 800Hz到 4GHz范围内满足 EN50147-1标准要求。全 电波暗室的静区空间大小需要满足测试要求。
球面坐标系建立和测试模块 2可用于建立球面坐标系,对于无线通信产 品以其为原点建立具有 x、 y、 z轴所定义的球面坐标系。 Θ 角为测试点与 z 轴正方向的夹角, φ角为 X轴正向与测试点在 x、 y平面上的投影点的夹角, 并在该球面坐标系下选取测试坐标点。
上述球面放置系统 3: 为了覆盖整个球面, 所搭建的测试环境的最终结 构由支撑结构和用于放置 DUT 并相对于测量天线来操控他的测试放置器组 成, 该系统是可以移动 DUT/模型、 和 /或测量天线以覆盖 DUT的整个球面的 辐射模型, 从而在每个测试点进行采样。
优选地, 上述测量天线 4可以是双极化天线, 该双极化天线: 用于获得 球面上每一点处电场向量的两个正交分量。 此时, 在每个测试点采集到的接 收功率包括水平极化分量和垂直极化分量。
在上文中所述待测设备 ( DUT )可以包括单模式终端, 这里的单模式包 括时分同步码分多址(TD-SCDMA )、 宽带码分多址( WCDMA )、 码分多址 ( CDMA )、 全球移动通信系统 ( Globle system for mobile communication , GSM )、 个人无线接入系统( PHS , 也可称为小灵通)、蓝牙( BLUETOOTH )、 无线局或网( Wireless LAN )、全球定位系统( Global Positioning System, GPS )、 射频 ID ( RFID ) 和 波接入全球互通 ( WiMAX ) 等通信制式或其组合。
综上所述, 借助于本发明的技术方案, 能够真实反映真人在数据模式下 中人体耦合对移动终端的性能影响, 具有较高的真实性, 并且易于使用。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种基于数据模式的无线终端接收灵敏度性能测试方法, 其特征在于, 包括:
构造人体模型, 其中, 所述模型的上肢将待测设备持于所述模型的 头部前一定距离处;
以所述待测设备的天线为原点构建球面坐标系,并在所述球面坐标 系中选择测试点;
将所述模型置于全暗波室环境下,使所述待测设备在数据模式下工 作,利用测量天线在所述球面放置系统中采集所述测试点处的接收功率, 并由此获得所述待测设备的总功率接收灵敏度。
2. 根据权利要求 1所述的方法, 其特征在于, 构造所述模型的处理进一步 包括:
在所述模型中填充仿真的人体组织液。
3. 才艮据权利要求 1所述的方法, 其特征在于, 所述测量天线为双极化天线。
4. 根据权利要求 3所述的方法, 其特征在于, 在所述每个测试点采集到的 接收功率包括水平极化分量和垂直极化分量。
5. 根据权利要求 4所述的方法, 其特征在于, 在采集到所述水平极化分量 和所述垂直极化分量之后 , 获得所述待测设备的功率接收灵敏度的处理 包括:
通过公式 ( 1 ) 分别获得所述每个测试点处的总接收灵敏度, 之后 对所述每个测试点处的总接收灵敏度进行归一化:
Figure imgf000013_0001
公式 ( 1 ), 其中, TRS为当前测试点处的总接收灵敏度, S和 为测量角, EIS θ' 和 分别为水平极化分量和垂直极化分量, Ω为所述当前测试点在 球面坐标系中的立体方向角, /为所述待测设备的当前工作频率; 通过公式 (2 ) 获得所述待测设备的总接收灵敏度:
2NM
TRS
N-\ M- π sinfe )
ί? ∑二 0 m∑二 0
公式 ( 2 ), 其中, TRS为所述待测设备的总接收灵敏度, N和 M为分别对 S和 的多个采样间隔, ΕΙ$Θι , % )为测量角为 θι和 Φ〗的测试点的接收功率 的水平极化分量, 和 为测量角为 Jj的测试点的接收功率 的垂直极化分量, f为所述待测设备的当前工作频率。
6. 一种基于数据模式的无线终端接收灵敏度性能测试系统, 其特征在于, 包括:
全电波暗室, 用于为所述无线终端提供测试的环境; 人体模型, 其中, 所述人体模型的上肢将待测设备持于所述人体模 型的头部前预定 3巨离处;
球面坐标建立和测试模块,用于以所述待测设备的天线为原点构建 球面坐标系, 并在所述球面坐标系中选择测试点;
球面放置系统,用于在所述球面坐标系内控制所述无线终端与测量 天线的角度位置;
所述测量天线, 用于在所述球面放置系统的控制下, 采集所述测试 点处在数据模式下所述无线终端的接收功率;
处理单元,用于根据所述测试点处在数据模式下所述无线终端的接 收功率获得所述待测设备的功率接收灵敏度。
7. 根据权利要求 6所述的系统, 其特征在于, 所述人体模型中填充有仿真 的人体组织液。
8. 才艮据权利要求 7所述的系统, 其特征在于, 所述测量天线为双极化天线。
9. 根据权利要求 8所述的系统, 其特征在于, 在所述每个测试点采集到的 接收功率包括水平极化分量和垂直极化分量。
PCT/CN2008/073910 2008-05-15 2008-12-31 基于数据模式的无线终端接收灵敏度性能测试系统及方法 WO2009137980A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08874252.3A EP2285021A4 (en) 2008-05-15 2008-12-31 SYSTEM AND METHOD FOR TESTING THE PERFORMANCE OF THE RECEIVING SENSITIVITY OF A WIRELESS TERMINAL BASED ON DATA MODE
US12/992,736 US8358992B2 (en) 2008-05-15 2008-12-31 System and method for the wireless terminal receiving sensitivity performance test based on data mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008101002494A CN101582726A (zh) 2008-05-15 2008-05-15 基于数据模式的无线终端接收灵敏度性能测试系统及方法
CN200810100249.4 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009137980A1 true WO2009137980A1 (zh) 2009-11-19

Family

ID=41318342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073910 WO2009137980A1 (zh) 2008-05-15 2008-12-31 基于数据模式的无线终端接收灵敏度性能测试系统及方法

Country Status (4)

Country Link
US (1) US8358992B2 (zh)
EP (1) EP2285021A4 (zh)
CN (2) CN101582726A (zh)
WO (1) WO2009137980A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771474B (zh) * 2008-12-30 2014-04-09 中兴通讯股份有限公司 接收灵敏度性能测试方法和系统
DE102009019685A1 (de) * 2009-02-09 2010-08-12 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Testvorrichtung zur Analyse eines über eine Funkstrecke kommunizierenden Geräts
US8521092B2 (en) * 2009-05-27 2013-08-27 Echo Ridge Llc Wireless transceiver test bed system and method
US9473963B2 (en) 2009-05-27 2016-10-18 Echo Ridge Llc Interactive RF system testing system and method
US8141784B2 (en) 2009-09-25 2012-03-27 Hand Held Products, Inc. Encoded information reading terminal with user-configurable multi-protocol wireless communication interface
US20110116424A1 (en) * 2009-11-19 2011-05-19 Hand Held Products, Inc. Network-agnostic encoded information reading terminal
CN102237934A (zh) * 2010-04-26 2011-11-09 中国移动通信集团公司 一种终端数据传输性能的测试方法、系统及装置
CN102237933B (zh) * 2010-04-26 2014-02-26 深圳市鼎立方无线技术有限公司 等效全向灵敏度测试方法和装置
US9588218B2 (en) 2010-09-30 2017-03-07 Echo Ridge Llc System and method for robust navigation and geolocation using measurements of opportunity
US10212687B2 (en) 2010-09-30 2019-02-19 Echo Ridge Llc System and method for robust navigation and geolocation using measurements of opportunity
FR2965931B1 (fr) * 2010-10-08 2013-05-03 Satimo Ind Procede et dispositif de test electronique d'un objet
CN102223196A (zh) * 2011-06-30 2011-10-19 北京广电天地信息咨询有限公司 一种移动多媒体广播终端空间耦合性能测试方法及其系统
US10013588B2 (en) 2011-08-17 2018-07-03 Hand Held Products, Inc. Encoded information reading terminal with multi-directional antenna
US8596533B2 (en) 2011-08-17 2013-12-03 Hand Held Products, Inc. RFID devices using metamaterial antennas
US8779898B2 (en) 2011-08-17 2014-07-15 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
US9594170B2 (en) 2011-09-30 2017-03-14 Echo Ridge Llc Performance improvements for measurement of opportunity geolocation/navigation systems
US9739891B2 (en) 2011-09-30 2017-08-22 Echo Ridge Llc System and method of using measurements of opportunity with vector tracking filters for improved navigation
US9148808B2 (en) 2011-12-01 2015-09-29 Echo Ridge Llc Adaptive RF system testing system and method
US9116232B2 (en) 2012-04-13 2015-08-25 Apple Inc. Methods and apparatus for testing satellite navigation system receiver performance
EP3182144B1 (en) * 2015-04-10 2019-11-06 General Test Systems Inc. Wireless terminal testing system and method for controlling same
CN105704281B (zh) * 2016-01-21 2019-02-19 上海煜鹏通讯电子股份有限公司 一种适用同一天线的大批量有源测试方法
CN106059691B (zh) * 2016-04-27 2018-11-06 北京小米移动软件有限公司 灵敏度衰减(desense)测试方法及装置
CN106209284B (zh) * 2016-07-07 2018-10-16 北京邮电大学 一种mimo ota信道的创建方法及装置
CN108322269B (zh) * 2018-01-31 2021-12-24 上海鸿洛通信电子有限公司 指向性天线的发射性能评估方法及装置
CN108306697B (zh) * 2018-01-31 2021-09-28 上海鸿洛通信电子有限公司 指向性天线的接收性能评估方法及装置
CN108847903A (zh) * 2018-06-19 2018-11-20 Oppo广东移动通信有限公司 电子设备接收灵敏度测试系统、方法和装置
JP7227198B2 (ja) * 2020-07-28 2023-02-21 アンリツ株式会社 移動端末試験装置、及び移動端末試験方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094488A (zh) * 2007-01-30 2007-12-26 中兴通讯股份有限公司 一种mat中rtut接收灵敏度的测量方法
CN101106432A (zh) * 2007-08-16 2008-01-16 中兴通讯股份有限公司 一种移动终端接收灵敏度参数的测试方法及系统
CN101132594A (zh) * 2007-09-28 2008-02-27 北京五龙电信技术公司 移动通信终端的音频测试系统及其测试方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127980A (en) * 1995-09-26 2000-10-03 Podgorski; Andrew S. Dual polarization electromagnetic field simulator
SE524833C2 (sv) * 1999-10-28 2004-10-12 Integra Antennas Ltd Mätanordning och metod för mätning av transmissions- och mottagningsegenskaper hos en kommunikationsutrustning
SE0002980D0 (sv) * 2000-03-31 2000-08-23 Kildal Antenn Consulting Ab A method and an apparatus for measuring the performance of antennas
US6329953B1 (en) * 2000-09-29 2001-12-11 Rangestar Wireless Method and system for rating antenna performance
US7079086B2 (en) * 2001-02-15 2006-07-18 Integral Technologies, Inc. Low cost electromagnetic field absorbing devices manufactured from conductive loaded resin-based materials
US7035594B2 (en) * 2001-07-02 2006-04-25 Qualcomm Inc. Method and apparatus for testing and evaluating wireless communication devices
GB0130842D0 (en) * 2001-12-21 2002-02-06 Fizzle Holdings Ltd Antenna measurement system
US7477877B2 (en) * 2004-02-11 2009-01-13 Sony Ericsson Mobile Communications Ab GSM radiated sensitivity measurement technique
US7190301B2 (en) * 2004-12-22 2007-03-13 Motorola, Inc. Radio frequency anechoic chamber with nonperturbing wireless signalling means
US7699615B2 (en) * 2005-02-03 2010-04-20 Christopher Sakezles Joint replica models and methods of using same for testing medical devices
US8626321B2 (en) * 2006-04-19 2014-01-07 Sontia Logic Limited Processing audio input signals
TWI352208B (en) * 2007-12-05 2011-11-11 Wistron Neweb Corp Method and related electronic device for adjusting
US9002287B2 (en) * 2009-10-09 2015-04-07 Apple Inc. System for testing multi-antenna devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094488A (zh) * 2007-01-30 2007-12-26 中兴通讯股份有限公司 一种mat中rtut接收灵敏度的测量方法
CN101106432A (zh) * 2007-08-16 2008-01-16 中兴通讯股份有限公司 一种移动终端接收灵敏度参数的测试方法及系统
CN101132594A (zh) * 2007-09-28 2008-02-27 北京五龙电信技术公司 移动通信终端的音频测试系统及其测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Measurements of radio performances for UMTS terminals in speech mode (Release 7)", 3GPP TR 25.914 V7.0.0, June 2006 (2006-06-01), pages 1 - 67, XP008147556 *

Also Published As

Publication number Publication date
US8358992B2 (en) 2013-01-22
EP2285021A1 (en) 2011-02-16
CN101582726A (zh) 2009-11-18
US20110136457A1 (en) 2011-06-09
CN105071873A (zh) 2015-11-18
EP2285021A4 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2009137980A1 (zh) 基于数据模式的无线终端接收灵敏度性能测试系统及方法
WO2009137979A1 (zh) 基于数据模式的无线终端辐射性能测试系统及方法
Yu et al. Radiated two-stage method for LTE MIMO user equipment performance evaluation
WO2010075754A1 (zh) 辐射性能测试方法和系统
JP5886947B2 (ja) アンテナ、携帯電話及び他の無線端末の性能を測定するための改良された方法と装置
CN101771474B (zh) 接收灵敏度性能测试方法和系统
US6329953B1 (en) Method and system for rating antenna performance
WO2011094989A1 (zh) 多天线系统中的空间射频性能测试方法及系统
EP2512173A1 (en) Method and apparatus for testing total isotropic sensitivity in multi-antenna mimo system
EP2060035A2 (en) Method and apparatus for determining a radiated performance of a wireless device
US10393786B2 (en) Test system and method for over the air (OTA) measurements based on randomly adjusted measurement points
CA2585415A1 (en) Systems, methods and apparatus for determining a radiated performance of a wireless device
CN113162706B (zh) 无线设备的射频性能测试方法及系统
WO2014176846A1 (zh) 一种终端天线总辐射功率的快速测试方法
JP7221243B2 (ja) 移動端末試験装置、及び移動端末試験方法
WO2014190609A1 (zh) 一种移动终端的wifi ota测试方法及其测试系统
Vähä-Savo et al. Empirical evaluation of a 28 GHz antenna array on a 5G mobile phone using a body phantom
CN212696220U (zh) 无线路由器多向吞吐量测试系统
Xue et al. Impacts of real hands on 5G millimeter-wave cellphone antennas: Measurements and electromagnetic models
CN107957518A (zh) 一种天线方向性测试方法及系统
Fan et al. Measurement uncertainty investigation in the multi-probe OTA setups
Wang et al. Studying the effects of location offset on the evaluation of MIMO performance based on the radiated two-stage (RTS) method
Folea et al. Indoor localization based on Wi-Fi parameters influence
CN113098631B (zh) 基于参考信号接收功率rsrp的5g ota tis快速推测方法
Buris MIMO Antenna System Throughput Simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008874252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12992736

Country of ref document: US