WO2009137979A1 - 基于数据模式的无线终端辐射性能测试系统及方法 - Google Patents

基于数据模式的无线终端辐射性能测试系统及方法 Download PDF

Info

Publication number
WO2009137979A1
WO2009137979A1 PCT/CN2008/073902 CN2008073902W WO2009137979A1 WO 2009137979 A1 WO2009137979 A1 WO 2009137979A1 CN 2008073902 W CN2008073902 W CN 2008073902W WO 2009137979 A1 WO2009137979 A1 WO 2009137979A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
antenna
wireless terminal
model
power
Prior art date
Application number
PCT/CN2008/073902
Other languages
English (en)
French (fr)
Inventor
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US12/992,737 priority Critical patent/US8401506B2/en
Priority to EP08874251.5A priority patent/EP2285154A4/en
Publication of WO2009137979A1 publication Critical patent/WO2009137979A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications, and in particular to a data mode based wireless terminal radiation performance testing system and method.
  • radio frequency performance testing of wireless terminals has received increasing attention.
  • the test of the radiation performance of the whole machine can objectively reflect the final emission performance and reception performance of the wireless terminal.
  • Performance called passive testing; the other is to test the spatial RF performance of wireless terminals such as radiant power in a specific 4 anechoic chamber, called active testing.
  • the RF performance test mainly tests the RF performance of the wireless terminal in the cable connection mode; as for the spatial RF performance of the wireless terminal, there is no clear regulation in the FTA test, but the air interface test (OTA) test Can make up for the shortcomings of FTA testing in this area.
  • wireless terminal manufacturers need to have a clear understanding of the radiation performance of the wireless terminals produced, and need to improve the emission and reception indicators of the wireless terminal radiation through various measures, and the wireless terminal with poor radiation performance will be used by the user. It is a lot of inconvenience.
  • the transmission parameters include Total Radiated Power (TRP), and the receiving parameters include Total Radiated Sensitivity (TRS).
  • the TRP of the mobile terminal is used to measure the total amount of power actually radiated by the device under test, which reflects the overall transmit power of the wireless terminal, and is related to the transmit power and antenna radiation performance of the wireless terminal in the case of conduction.
  • TRP is defined as the integral of the transmitted power in different directions across the radiating sphere:
  • TRP ⁇ 0 ⁇ EIRP e ( ⁇ ; ) + EIRP fi ( ⁇ ; f jdCl
  • E ⁇ ⁇ , is the equivalent omnidirectional radiated power horizontal polarization component of the test point of angle , in milliwatts;
  • is the value of the equivalent omnidirectional radiated power vertical polarization component of the test point with angles ⁇ ', ⁇ , in milliwatts.
  • the devices and methods for measuring TRP in space RF performance are currently directed to the voice mode, which only involves free space or human head, and does not fully reflect the influence of the electromagnetic coupling of the human hand and even the human body and the antenna in the data mode. The results of the program's measurements are not accurate.
  • the present invention has been made in view of the fact that the TRP measurement scheme in the current spatial radio frequency performance existing in the related art does not sufficiently reflect the influence of the electromagnetic coupling of the human hand and the human body and the antenna in the data mode, and thus the test result is inaccurate.
  • the present invention aims to provide a wireless terminal radiation performance test system and method based on data mode to solve at least one of the above problems.
  • a data mode based wireless terminal radiation performance testing method is provided.
  • the method comprises: constructing a human body model, wherein the upper limb of the model holds the device to be tested at a certain distance in front of the head of the model; constructing a spherical coordinate system with the antenna of the device to be tested as an origin, and on the spherical surface Select the test point in the coordinate system; place the model in the full dark wave chamber environment, make the device under test work in the data mode, and use the measuring antenna to collect the total radiant power at the test point in the spherical placement system, and thus obtain the Measure the total radiated power of the device.
  • the processing of the structural model further includes: filling the simulated human tissue fluid in the model.
  • the measuring antenna is a dual polarized antenna.
  • the total radiation power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the process of obtaining the radiation power of the device to be tested is specifically: obtaining the total radiation power at each test point by using formula (1):
  • TRP 4 ⁇ EIRP E ( ⁇ ; ) + EI ( ⁇ ; f))da
  • TRP is the total radiant power at the current test point, sitting at the spherical point for the current test point
  • the stereo direction angle in the standard system, ⁇ and the horizontal polarization component and the vertical polarization component in the stereo direction angle are respectively the current operating frequency of the device to be tested; and the total radiation power of the device to be tested is obtained by the formula (2):
  • TRP is the total radiated power of the device to be tested
  • N and M are the sampling intervals of ⁇ and , respectively
  • ⁇ " is the test of the measuring angle
  • The horizontal polarization component of the radiant power of the point
  • ElR is the vertical polarization component of the radiant power of the test point and the test point, which is the current operating frequency of the device under test.
  • the system comprises: a full anechoic chamber for providing a test environment for the wireless terminal; a human body model, wherein the upper limb of the model holds the device to be tested at a certain distance in front of the head of the model; the spherical coordinate establishing and testing module, Constructing a spherical coordinate system with the antenna of the device to be tested as the origin, and selecting a test point in the spherical coordinate system; a spherical placement system for controlling the angular position of the wireless terminal and the measuring antenna in the spherical coordinate system; Under the control of the spherical placement system, the total radiation power of the wireless terminal in the data mode is collected at the test point; and the processing unit is configured to obtain the power receiving sensitivity of the device to be tested according to the total radiation power at the test point.
  • the model is filled with simulated human tissue fluid.
  • the measuring antenna is a dual polarized antenna.
  • the total radiation power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • FIG. 1 is a flowchart of a data mode based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a data mode based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 3 is a schematic diagram of a data pattern based wireless terminal radiation performance testing method for placing a human body model during execution of a test according to an embodiment of the method of the present invention
  • FIG. 4 is a diagram based on an embodiment of the method of the present invention Flowchart of a processing example of a data mode wireless terminal radiation performance test method
  • 5 is a diagram of a preferred embodiment of a data mode based wireless terminal radiation performance testing system in accordance with an embodiment of the present invention.
  • a spherical coordinate system is constructed by constructing a human body model with an antenna of a device to be tested as an origin, and a test point is selected in a spherical coordinate system, wherein the human body model The upper limb holds the device to be tested at a certain distance in front of the head of the model, and places the human body model in the full dark wave chamber environment, so that the device under test works in the data mode, and uses the measuring antenna to collect the test points in the spherical placement system. The total radiated power at the location, and thus the total radiated power of the device under test.
  • FIG. 1 is a flowchart of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a method according to the present invention.
  • FIG. 1 is a flowchart of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a method according to the present invention.
  • FIG. 1 is a flowchart of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a method according to the present invention.
  • FIG. 1 is a flowchart of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a method according to the present invention.
  • FIG. 1 is a flowchart of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention
  • FIG. 2 is a method according to the present invention.
  • FIG. 1 is
  • the data mode-based wireless terminal radiation performance testing method includes: Step S102: Constructing a human body model, wherein the upper limb of the model holds the device to be tested in front of the head of the model. a large departure, as shown in FIG. 2, the model may be an upper body model; Step S104, constructing a spherical coordinate system with the antenna of the device to be tested as an origin, and selecting a test point in the spherical coordinate system; Step S106, placing the model In the full dark wave chamber environment, the device under test is operated in the data mode, and the total radiated power at the test point is collected in the spherical placement system by using the measuring antenna, and thereby the total radiated power of the device to be tested is obtained.
  • Figure 3 is a schematic diagram of the measurement antenna being sampled at the test power by changing the relative angle of the terminal to the measurement antenna in a spherical coordinate system.
  • the model holding the terminal can rotate in the horizontal plane, and the probe antenna can be moved in the plane perpendicular to the horizontal plane to sample, thereby obtaining the sampling result of each test point.
  • the process of constructing the model may include: filling the model with the simulated human tissue fluid.
  • the measuring antenna in step S106 is a dual polarized antenna.
  • the total radiation power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the process of obtaining the radiation power of the device to be tested specifically includes: obtaining the total radiation power at each test point by using formula (1):
  • TRP 4 ⁇ EIRP e ( ⁇ ; ) + EI ( ⁇ ;
  • TRP is the total radiant power at the current test point, sitting at the spherical point for the current test point
  • the stereo direction angle in the standard system, and ⁇ are the horizontal polarization component and the vertical polarization component in the stereo direction angle respectively, / is the current operating frequency of the device under test; and the total radiation power of the device under test is obtained by formula (2) :
  • TRP is the total radiated power of the device under test
  • N and M are the multiple sampling intervals for ⁇ and , respectively, and ⁇ "for the measurement angle, ⁇ ⁇ ' ⁇ ')
  • the horizontal polarization component of the radiated power of the test points with angles and ⁇ , ElR ( ⁇ ' ⁇ ) is the vertical polarization component of the radiated power of the test angle and the test point, which is the current operating frequency of the device under test.
  • 4 is a flowchart of a processing example of a data mode-based wireless terminal radiation performance testing method according to an embodiment of the method of the present invention. As shown in FIG.
  • the method may specifically include the following steps (step S1 - step S6) Step S1, in the data mode, the human body model mold sets the position of the user equipment, and constructs a test system; Step S2, establishing a spherical coordinate system centering on the location of the wireless terminal antenna, and selecting a test point; Step S3, setting a wireless link of the user equipment, and making the wireless link in a normal working state, satisfying the test condition; Step S4, The UP power control command is continuously sent to the user equipment. When the user equipment reaches the maximum power, the data mode is started. Step S5, sampling test is performed at the set test point, and the equivalent omnidirectional transmit power level is collected in the horizontal and vertical directions respectively.
  • Step S6 linearly averaging the data measured at each test point to obtain the required total radiant power TRP.
  • Step S1 setting a position of the user equipment according to the human body model mold, and constructing a test system.
  • the simulation of the real person is usually performed in the one-hand or dual-handheld state.
  • the human model includes a human head, and a handheld wireless terminal with one hand and the upper or the whole of the torso.
  • the origin of the spherical coordinate system is transferred to the current device position, ie, near the chest of the mannequin.
  • the human body model is filled with human tissue fluid, and the formulation of the tissue fluid meets the relevant standards, such as formula 1: water (45.3%), sugar (54.3%), hydroxyethyl cellulose (0.3%) and preservative (0.1%), the above ratio As a percentage by weight.
  • the human hand takes a certain distance from the head distance, for example, may be 40 cm; in addition, the human hand has a certain distance from the model chest, for example, may be 20 cm.
  • the joint of the upper limb of the mannequin is constructed to be movable.
  • step S2 the spherical coordinate system is established centering on the position of the wireless terminal antenna, and the test points are selected.
  • two positioning systems can be defined: a combined shaft system and a distributed shaft system.
  • the combined shaft system means that the two rotating shafts are independent of each other.
  • the Phi axis positioner is installed on the basis of the Theta axis positioner, and the DUT rotates around the two axes at the same time.
  • the two rotating shafts of the distributed shaft system are combined with each other.
  • the measuring antenna can rotate around the Theta axis, and the DUT can rotate around the Phi axis; Step S3, setting the wireless link of the user equipment, and putting it in a normal working state, satisfying the test condition; preferably, in step S3, the DUT should select the high, medium, and high frequency of all the frequency bands supported by the DUT in the supported frequency band.
  • Step S4 continuously sending the UP power control command to the user equipment, when the user equipment reaches the maximum At the time of power, the data mode is started to be transmitted; in step S5, the sampling test is performed at the set test point, and the equal-range horizontal polarization component ElRPe ' ⁇ ) and the equivalent omnidirectional transmit power vertical polarization component are respectively acquired in the horizontal and vertical directions.
  • Equations (1) and (2) obtain the total radiated power TRP of the spatial RF performance performance index of the mobile terminal device or other wireless communication products.
  • the present invention has been described by way of example of the above-described upper body model, the present invention can also construct a whole body model for measurement, which is similar to the method described above and will not be repeated here.
  • System Embodiment In this embodiment, a wireless terminal radiation performance testing system based on a data mode is provided.
  • the data mode-based wireless terminal radiation performance test system may include an all-wave darkroom and a human body model (hereinafter, simply referred to as a model) for providing a test environment for the wireless terminal, wherein the upper limb of the model
  • the device to be tested is held at a certain distance in front of the head of the model.
  • the invention is not limited, and can be flexibly adjusted according to the requirements of testing, design, or implementation, by simulating or simulating the actual application scenario. This does not affect the essence of the invention.
  • 5 is a preferred block diagram of a data mode based wireless terminal radiation performance testing system in accordance with an embodiment of the present invention. As shown in FIG.
  • the system includes a device under test 1, and preferably includes the following functional modules: Spherical coordinates
  • the establishing and testing module 2 is configured to construct a spherical coordinate system with the antenna of the device to be tested as an origin, and select a test point in the spherical coordinate system; a spherical placement system 3 for controlling the wireless terminal and the measuring antenna in the spherical coordinate system Angle position; measuring antenna 4, used to control the total radiated power of the wireless terminal at the test point in the data mode under the control of the spherical placement system;
  • the unit 5 is configured to obtain the power receiving sensitivity of the device under test 1 according to the total radiation power at the test point.
  • the human body model may be a whole body human body model or a half body human body model, and the model is filled with simulated human tissue fluid.
  • the full anechoic chamber can fully isolate the electromagnetic interference from the external environment.
  • the shielding efficiency of the full anechoic chamber meets the requirements of EN50147-1 in the range of 800 Hz to 4 GHz.
  • the dead space of the full anechoic chamber needs to meet the test requirements.
  • the spherical coordinate system establishing and testing module 2 is used to establish a spherical coordinate system, and a spherical coordinate system defined by the x, y, and z axes is established for the wireless communication product as the origin, wherein the corner is the test point and the z-axis is positive
  • the angle of the direction, the angle ⁇ is the angle between the positive X-axis and the projection point of the test point on the x, y plane, and the test coordinate point is selected in the spherical coordinate system.
  • the spherical placement system 3 in order to cover the entire spherical surface, the final structure of the test environment is composed of a support structure and a test placement device for placing the DUT and manipulating it relative to the measurement antenna to move the DUT/model and/or the measurement antenna to cover The entire spherical radiation model of the DUT is sampled at each test point.
  • the above measuring antenna 4 may be a dual polarized antenna: used to obtain two orthogonal components of the electric field vector at each point on the spherical surface. At this time, the total radiation power collected at each test point includes a horizontal polarization component and a vertical polarization component.
  • the device under test (DUT) mentioned above may include a single mode terminal, where the single mode includes: time division synchronous code division multiple access (TD-SCDMA), wideband code division multiple access (WCDMA), code division multiple access ( CDMA), Globle system for mobile communication (GSM), personal wireless access system (PHS, also known as PHS), Bluetooth (BLUETOOTH), wireless LAN or wireless (Wireless LAN), global Communication systems such as Global Positioning System (GPS), Radio Frequency ID (RFID), and Wave Access Global Interoperability (WiMAX) or a combination thereof.
  • TD-SCDMA time division synchronous code division multiple access
  • WCDMA wideband code division multiple access
  • CDMA code division multiple access
  • GSM global system for mobile communication
  • PHS personal wireless access system
  • Bluetooth BLUETOOTH
  • wireless LAN or wireless Wireless LAN
  • global Communication systems such as Global Positioning System (GPS), Radio Frequency ID (RFID), and Wave Access Global Interoperability (WiMAX) or
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be executed by a computing device
  • the program code is implemented so that they can be stored in the storage device by the computing device, or they can be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps can be made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

基于数据模式的无线终端辐射性能测试系统及方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种基于数据模式的无线终端辐 射性能测试系统及方法。 背景技术 近年来, 无线终端射频性能测试越来越受到关注。 整机辐射性能的测试 可以客观反映无线终端的最终发射性能和接收性能。 目前, 主要有两种方法 对无线终端的辐射性能进行考察: 一种是从天线的辐射性能进行判定, 侧重 从无线终端天线的增益、 效率、 方向图等天线的辐射参数方面考察无线终端 的辐射性能, 称为无源测试; 另一种是在特定 4啟波暗室内, 测试无线终端的 诸如辐射功率等的空间射频性能, 称为有源测试。 目前, 只有通过 FTA ( Full Type Approval )认证测试的无线终端才能上 市销售。 在 FTA测试中, 射频性能测试主要进行无线终端在电缆连接模式下 的射频性能测试; 至于无线终端整机的空间射频性能, 在 FTA测试中没有明 确的规定, 但是, 空中接口测试(OTA )测试能够弥补 FTA测试在这方面测 试的不足。 同时, 无线终端生产厂家需要对所生产的无线终端的辐射性能有 清楚的了解,并且需要通过各种措施来提高无线终端辐射的发射和接收指标, 辐射性能差的无线终端将给用户的使用带来诸多不便。 尤其在使用无线终端 进行通话时, 由于人体靠近无线终端天线, 这将降低无线终端的发射和接收 性能, 无线终端整机辐射的发射和接收性能都会降低。 因此, 在无线终端研 发过程中, 应定量测量人体对无线终端的发射和接收性能的影响, 进行优化 设计, 使得发射和接收性能不能降低太多, 即, 减少人体和天线的电磁耦合 效应。 其中, 发射参数包括总辐射功率(Total Radiated Power, 简称为 TRP ), 接收参数包括总辐射灵敏度 ( Total Radiated Sensitivity, 简称为 TRS )。 移动终端的 TRP用于测量被测设备实际辐射的功率总量, 它反映了无 线终端的整机发射功率情况, 与无线终端在传导情况下的发射功率和天线辐 射性能有关。 TRP定义为在整个辐射球面不同方向上发射功率的积分:
TRP =― 0{EIRPe (Ω; ) + EIRPfi (Ω; f jdCl
公式 ( 1 ) 其中, Ω是描述方向的立体角, /是频率, 和 ^是正交极化的。 EIRPe 和 £ Λ ^是在对应的计划方向上的实际发射功率等级。 因此, 有如下关系:
TRP ^^ λ匿 ' +匿 Λ 'Ψ , f D
腦—ϋ 公式 (2 ) 其中, N和 Μ是对 Θ和 φ的多个采样间隔, 和^ "是测量角
E^ ^, )为角度为 、 的测试点的等效全向辐射功率水平极化分量 值, 单位为毫瓦;
ΕίΚΡφ 为角度为 θ'、 ^的测试点的等效全向辐射功率垂直极化分量 值, 单位为毫瓦。 目前采用的空间射频性能中 TRP测量的装置和方法都是针对语音模式 的, 仅涉及自由空间或者人头, 并没有充分反映数据模式下人手乃至于人体 和天线的电磁耦合的影响, 因此, 采用上述的方案进行测量的结果并不准确。 发明内容 考虑到相关技术中存在的目前的空间射频性能中 TRP测量方案没有充 分反映数据模式下人手乃至于人体和天线的电磁耦合的影响, 因此测试结果 不准确的问题而提出本发明。 为此, 本法明旨在提供一种基于数据模式的无 线终端辐射性能测试系统及方法, 用以解决上述问题至少之一。 为了实现上述目的, 根据本发明的一方面, 提供了一种基于数据模式的 无线终端辐射性能测试方法。 该方法包括: 构造人体模型, 其中, 模型的上肢将待测设备持于该模型 的头部前一定距离处; 以待测设备的天线为原点构建球面坐标系, 并在球面 坐标系中选择测试点; 将模型放置在全暗波室环境下, 使待测设备在数据模 式下工作, 利用测量天线在球面放置系统中采集测试点处的总辐射功率, 并 由此获得待测设备的总辐射功率。 其中, 构造模型的处理进一步包括: 在模型中填充仿真的人体组织液。 优选地, 测量天线为双极化天线。 此时,在每个测试点采集到的总辐射功率包括水平极化分量和垂直极化 分量。 并且, 在采集到水平极化分量和垂直极化分量之后, 获得待测设备的辐 射功率的处理具体为: 通过公式 ( 1 ) 分别获得每个测试点处的总辐射功率:
TRP = 4{EIRPE (Ω; ) + EI (Ω; f))da
公式 ( 1 ), 其中, TRP为当前测试点处的总辐射功率, 为当前测试点在球面坐
Τ7ΤΏ Ρ FTRP
标系中的立体方向角, Γθ和 分别为立体方向角度上的水平极化分 量和垂直极化分量, 为待测设备的当前工作频率; 通过公式 (2 ) 获得待测设备的总辐射功率:
2NM n=
公式 ( 2 ), 其中, TRP为待测设备的总辐射功率, N和 M为分别对 ^和 的多个采 样间隔, 和^ "为测量角, ^^ ^ )为测量角为 和 ^的测试点的辐射功 率的水平极化分量, ElR 为测量角为 ^和 ^测试点的辐射功率的垂直 极化分量, 为待测设备的当前工作频率。 为了实现上述目的, 根据本发明的另一方面, 提供了一种基于数据模式 的无线终端辐射性能测试系统。 该系统包括:全电波暗室,用于为无线终端提供测试的环境;人体模型, 其中, 模型的上肢将待测设备持于该模型的头部前一定距离处; 球面坐标建 立和测试模块, 用于以待测设备的天线为原点构建球面坐标系, 并在球面坐 标系中选择测试点; 球面放置系统, 用于在球面坐标系内控制无线终端与测 量天线的角度位置; 测量天线, 用于在球面放置系统的控制下, 采集数据模 式下的无线终端在测试点处的总辐射功率; 处理单元, 用于才艮据测试点处的 总辐射功率获得待测设备的功率接收灵敏度。 其中, 模型中填充有仿真的人体组织液。 另夕卜, 测量天线为双极化天线。 此时, 在每个测试点采集到的总辐射功 率包括水平极化分量和垂直极化分量。 借助于上述技术方案至少之一, 通过本发明, 能够真实反映真人在数据 模式下中人体耦合对移动终端的性能影响, 具有较高的真实性, 并且易于使 用。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 是根据本发明方法实施例的基于数据模式的无线终端辐射性能测 试方法的流程图; 图 2 是根据本发明方法实施例的基于数据模式的无线终端辐射性能测 试方法中所采用的人体模型的示意图; 图 3 是根据本发明方法实施例的基于数据模式的无线终端辐射性能测 试方法在执行测试过程中放置人体模型的示意图; 图 4 是根据本发明方法实施例的基于数据模式的无线终端辐射性能测 试方法的处理实例的流程图; 图 5 是根据本发明系统实施例的基于数据模式的无线终端辐射性能测 试系统的优选才11图。 具体实施方式 功能相克述 在本发明实施例提供的技术方案中, 通过构造人体模型, 以待测设备的 天线为原点构建球面坐标系, 并在球面坐标系中选择测试点, 其中, 人体模 型的上肢将待测设备持于该模型的头部前一定距离处, 将人体模型放置在全 暗波室环境下, 使待测设备在数据模式下工作, 利用测量天线在球面放置系 统中采集测试点处的总辐射功率, 并由此获得待测设备的总辐射功率。 下面将参考附图并结合实施例, 来详细说明本发明。 需要说明的是, 如 果不沖突, 本申请中的实施例以及实施例中的特征可以相互组合。 方法实施例 根据本发明实施例,提供了一种基于数据模式的无线终端辐射性能测试 方法。 以下结合图 1和图 2来描述本实施例, 其中, 图 1是才艮据本发明方法 实施例的基于数据模式的无线终端辐射性能测试方法的流程图, 图 2是才艮据 本发明方法实施例的基于数据模式的无线终端辐射性能测试方法中所采用的 人体模型的示意图。 如图 1所示,根据本实施例的基于数据模式的无线终端辐射性能测试方 法包括: 步骤 S 102 , 构造人体模型, 其中, 模型的上肢将待测设备持于该模 型的头部前一定 3巨离处,如图 2所示,该模型可以为上半身模型; 步骤 S104 , 以待测设备的天线为原点构建球面坐标系, 并在球面坐标系中选择测试点; 步骤 S 106 , 将模型放置在全暗波室环境下, 使待测设备在数据模式下工作, 利用测量天线在球面放置系统中采集测试点处的总辐射功率, 并由此获得待 测设备的总辐射功率。 图 3是在球面坐标系中通过改变终端与测量天线的相对角度,使得测量 天线在测试电进行采样的示意图。其中,持有终端的模型能够在水平面旋转, 天线 (probe antenna ) 能够在垂直于水平面的平面内延球面移动进行采样, 从而得到每个测试点的采样结果。 当然, 还可以采用其它的旋转和 /或移动的 方式, 这里不再——列举。 在步骤 S102中, 构造模型的处理可以包括: 在模型中填充仿真的人体 组织液。 步骤 S 106中的测量天线为双极化天线。 此时, 在每个测试点采集到的 总辐射功率包括水平极化分量和垂直极化分量。 并且, 在采集到水平极化分量和垂直极化分量之后, 获得待测设备的辐 射功率的处理具体包括: 通过公式 ( 1 ) 分别获得每个测试点处的总辐射功率:
TRP = 4{EIRPe (Ω; ) + EI (Ω;
公式 ( 1 ), 其中, TRP为当前测试点处的总辐射功率, 为当前测试点在球面坐
j7Tj?p FTRP
标系中的立体方向角, 和 ρ分别为立体方向角度上的水平极化分 量和垂直极化分量, /为待测设备的当前工作频率; 通过公式 (2 ) 获得待测设备的总辐射功率:
TRP 匿 f、 +匿 "
腦― -0 公式 (2 ), 其中, TRP为待测设备的总辐射功率, N和 M为分别对 ^和 的多个采 样间隔, 和^ "为测量角, ^ ^' ^' )为测量角为 和 ^的测试点的辐射功 率的水平极化分量, ElR (^'^ )为测量角为 ^和 Α测试点的辐射功率的垂直 极化分量, 为待测设备的当前工作频率。 图 4 是根据本发明方法实施例的基于数据模式的无线终端辐射性能测 试方法的处理实例的流程图。 如图 4所示, 在实际应用当中, 该方法可以具 体包括以下步骤 (步骤 S1—步骤 S6 )。 步骤 S1 , 在数据模式下人体模型模具设置用户设备的位置, 构建测试 系统; 步骤 S2, 以无线终端天线所在位置为中心建立球面坐标系统, 并选取 测试点; 步骤 S3 , 设置用户设备的无线链路, 并使该无线链路处于正常工作状 态, 满足测试条件; 步骤 S4 , 连续发送 UP功率控制命令到用户设备, 当用户设备达到最大 功率时, 开始发送数据模式; 步骤 S5 , 在设定测试点进行采样测试, 分别在水平和垂直方向采集等 效全向发射功率水平极化分量 ElRPe ' Φί )和等效全向发射功率垂直极化分 量^ 步骤 S6, 将在各个测试点所测量的数据进行线性平均得到需要的总辐 射功率 TRP。 下面将对上述步骤 S1至 S6进行详细描述。 步骤 S1 , 根据人体模型模具设置用户设备的位置, 构建测试系统。 如 图 2所示, 对于人体模型要求模拟真人通常用在单手或双手持机状态下进行 数据模式。 真人模型中包含人头, 和手持无线终端单手和躯干上半部分或全 部。 在上述测试情境中, 球面坐标系的原点转移到当前的设备位置上, 即, 在人体模型的胸部附近。 人体模型中充盈人体组织液, 组织液配方符合标准 相关规定, 比如配方 1 : 水(45.3% ), 糖 (54.3% ), 羟乙基纤维素 (0.3% ) 和防腐剂 (0.1% ), 以上配比为重量百分比。 并且, 人手相对头部距离取一 定距离, 例如, 可以是 40cm; 此夕卜, 人手距离模型胸部也有一定距离, 例如, 可以是 20cm, 优选地, 构造的该人体模型的上肢的关节是可以活动的, 从而 可以改变人手相对头部和胸部的 3巨离; 步骤 S2, 以无线终端天线所在位置为中心建立球面坐标系统, 并选取 测试点。 具体地, 基于球面测试方法, 可以定义两种定位系统: 组合轴系统 和分布轴系统。 其中, 组合轴系统是指两个旋转轴相互独立, 此时是在 Theta 轴定位器基础上力口装 Phi轴定位器, DUT同时绕两个轴旋转。 分布轴系统的 两个旋转轴相互结合在一起。 此时, 测量天线可以围绕 Theta轴转动, DUT 可以围绕 Phi轴转动; 步骤 S3 , 设置用户设备的无线链路, 并使其处于正常工作状态, 满足 测试条件; 优选地, 在步骤 S3 中 DUT在所支持的频段应该选取 DUT所支 持的所有频段中的高、 中、 低三个信道进行建立链路进行测试, 而对于伸缩 天线的 DUT , 应在天线的伸展和收缩两种状态下进行测试; 步骤 S4 , 连续发送 UP功率控制命令到用户设备, 当用户设备达到最大 功率时, 开始发送数据模式; 步骤 S5 , 在设定测试点进行采样测试, 分别在水平和垂直方向采集等 率水平极化分量 ElRPe ' Φί )和等效全向发射功率垂直极化分
Figure imgf000010_0001
通过控制 DUT和测试天线的相对位置, 就能够在三维空间 中进行有效采样, 并且, 在 TRP测试中要求测量每个点的有效辐射功率; 步骤 S6 , 将在各测试点测量的数据利用上述公式( 1 )和(2 ), 得到移 动终端设备或者其他无线通信产品的空间射频性能性能指标总辐射功率 TRP。 尽管之前以上半身模型为例描述了本发明,但是本发明同样可以构造全 身模型进行测量, 其测量方法与上面所述的方法类似, 这里不再重复。 系统实施例 在本实施例中, 提供了一种基于数据模式的无线终端辐射性能测试系 统。 根据本实施例的基于数据模式的无线终端辐射性能测试系统中,可以包 括用于为无线终端提供测试的环境的全电波暗室和人体模型 (在下文中, 简 称为模型), 其中, 模型的上肢将待测设备持于该模型的头部前一定距离处, 对于该距离的选取, 本发明没有限制, 可以根据测试、 设计、 或实施的需要, 通过对实际应用场景进行仿真或模拟来灵活调整, 这不影响本发明的本质。 图 5是根据本发明系统实施例的基于数据模式的无线终端辐射性能测试系统 的优选框图, 如图 5所示, 该系统中包括待测设备 1 , 还优选地包括如下的 功能模块: 球面坐标建立和测试模块 2 , 用于以待测设备的天线为原点构建 球面坐标系, 并在球面坐标系中选择测试点; 球面放置系统 3 , 用于在球面 坐标系内控制无线终端与测量天线的角度位置; 测量天线 4 , 用于在球面放 置系统的控制下, 采集数据模式下的无线终端在测试点处的总辐射功率; 处 理单元 5, 用于根据测试点处的总辐射功率获得待测设备 1的功率接收灵敏 度。 其中, 上述人体模型可以为全身人体模型或半身人体模型, 并且该模型 中填充有仿真的人体组织液。 在该系统中, 全电波暗室能够充分隔离来自外部环境的电磁干扰, 全电 波暗室的屏蔽效能在 800Hz到 4GHz范围内满足 EN50147-1标准要求,全电 波暗室的静区空间大小需要满足测试要求。 上述球面坐标系建立和测试模块 2用于建立球面坐标系,对于无线通信 产品以其为原点建立具有 x、 y、 z轴所定义的球面坐标系, 其中, Θ角为测 试点与 z轴正方向的夹角, φ角为 X轴正向与测试点在 x、 y平面上的投影点 的夹角, 并在该球面坐标系下选取测试坐标点。 上述球面放置系统 3 , 为了覆盖整个球面, 测试环境的最终结构是由支 撑结构和用于放置 DUT 并相对于测量天线来操控他的测试放置器组成能移 动 DUT/模型和 /或测量天线以覆盖 DUT的整个球面辐射模型,从而在每个测 试点进行采样。 上述测量天线 4可以是双极化天线, 该双极化天线: 用于获得球面上每 一点处电场向量的两个正交分量。 此时, 在每个测试点采集到的总辐射功率 包括水平极化分量和垂直极化分量。 在上文中提到的待测设备 ( DUT )可以包括单模式终端, 这里的单模式 包括: 时分同步码分多址(TD-SCDMA )、 宽带码分多址( WCDMA )、 码分 多址 ( CDMA )、全 ί求移动通信系统 ( Globle system for mobile communication, GSM )、 个人无线接入系统( PHS, 也可称为小灵通)、蓝牙( BLUETOOTH )、 无线局或网( Wireless LAN )、全球定位系统( Global Positioning System, GPS )、 射频 ID ( RFID ) 和 波接入全球互通 ( WiMAX ) 等通信制式或其组合。 综上所述, 借助于本发明的技术方案, 能够真实反映真人在数据模式下 中人体耦合对移动终端的性能影响, 具有高的真实性, 并且易于使用。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种基于数据模式的无线终端辐射性能测试方法, 其特征在于, 包括: 构造人体模型, 其中, 所述模型的上肢将待测设备持于所述模型的 头部前一定距离处;
以所述待测设备的天线为原点构建球面坐标系,并在所述球面坐标 系中选择测试点;
将所述模型放置在全暗波室环境下,使所述待测设备在数据模式下 工作, 利用测量天线在所述球面放置系统中采集所述测试点处的总辐射 功率, 并由此获得所述待测设备的总辐射功率。
2. 根据权利要求 1所述的方法, 其特征在于, 构造所述模型的处理进一步 包括:
在所述模型中填充仿真的人体组织液。
3. 才艮据权利要求 1所述的方法, 其特征在于, 所述测量天线为双极化天线。
4. 根据权利要求 3所述的方法, 其特征在于, 在所述每个测试点采集到的 总辐射功率包括水平极化分量和垂直极化分量。
5. 根据权利要求 4所述的方法, 其特征在于, 在采集到所述水平极化分量 和所述垂直极化分量之后, 获得所述待测设备的辐射功率的处理包括: 通过公式 ( 1 ) 分别获得所述每个测试点处的总辐射功率:
TRP =一 (^{EIRPe (Ω; ) + Ε1ΚΡφ (Ω; f))dCi
' 公式 ( 1 ), 其中, TRP 为当前测试点处的总辐射功率, Ω为所述当前测试点
Τ7ΤΏ Ρ FIRP
在球面坐标系中的立体方向角, Γθ和 分别为所述立体方向角 度上的水平极化分量和垂直极化分量, f为所述待测设备的当前工作频 率; 通过公式 (2 ) 获得所述待测设备的总辐射功率:
腦 ― -0 公式 (2 ), 其中, TRP为所述待测设备的总辐射功率, N和 M为分别对 S和 的多个采样间隔, 和^ "为测量角, (^ '^ )为测量角为 和 的测 试点的辐射功率的水平极化分量, ElRP*、θί , Φ) )为测量角为 和 测试点 的辐射功率的垂直极化分量, /为所述待测设备的当前工作频率。
6. 一种基于数据模式的无线终端辐射性能测试系统, 其特征在于, 包括: 全电波暗室, 用于为所述无线终端提供测试的环境;
人体模型, 其中, 所述人体模型的上肢将待测设备持于所述人体模 型的头部前预定 3巨离处;
球面坐标建立和测试模块,用于以所述待测设备的天线为原点构建 球面坐标系, 并在所述球面坐标系中选择测试点;
球面放置系统,用于在所述球面坐标系内控制所述无线终端与测量 天线的角度位置;
所述测量天线, 用于在所述球面放置系统的控制下, 采集数据模式 下的所述无线终端在所述测试点处的总辐射功率;
处理单元,用于才艮据所述测试点处的总辐射功率获得所述待测设备 的功率接收灵敏度。
7. 根据权利要求 6所述的系统, 其特征在于, 所述人体模型中填充有仿真 的人体组织液。
8. 才艮据权利要求 7所述的系统, 其特征在于, 所述测量天线为双极化天线。
9. 根据权利要求 8所述的系统, 其特征在于, 在所述每个测试点采集到的 总辐射功率包括水平极化分量和垂直极化分量。
PCT/CN2008/073902 2008-05-15 2008-12-31 基于数据模式的无线终端辐射性能测试系统及方法 WO2009137979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/992,737 US8401506B2 (en) 2008-05-15 2008-12-31 Method and system for testing the radiation performance of wireless terminal based on data mode
EP08874251.5A EP2285154A4 (en) 2008-05-15 2008-12-31 METHOD AND SYSTEM FOR CHECKING THE RADIATION EFFICIENCY OF A WIRELESS FINISHING DEVICE BASED ON THE DATA MODE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810100247.5 2008-05-15
CNA2008101002475A CN101582725A (zh) 2008-05-15 2008-05-15 基于数据模式的无线终端辐射性能测试系统及方法

Publications (1)

Publication Number Publication Date
WO2009137979A1 true WO2009137979A1 (zh) 2009-11-19

Family

ID=41318341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073902 WO2009137979A1 (zh) 2008-05-15 2008-12-31 基于数据模式的无线终端辐射性能测试系统及方法

Country Status (4)

Country Link
US (1) US8401506B2 (zh)
EP (1) EP2285154A4 (zh)
CN (1) CN101582725A (zh)
WO (1) WO2009137979A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769967A (zh) * 2008-12-30 2010-07-07 中兴通讯股份有限公司 辐射性能测试方法和系统
US8141784B2 (en) 2009-09-25 2012-03-27 Hand Held Products, Inc. Encoded information reading terminal with user-configurable multi-protocol wireless communication interface
US20110116424A1 (en) * 2009-11-19 2011-05-19 Hand Held Products, Inc. Network-agnostic encoded information reading terminal
CN102136873B (zh) * 2010-01-25 2015-06-03 中兴通讯股份有限公司 天线测试系统及天线测试方法
CN102148648B (zh) * 2010-02-05 2015-04-01 中兴通讯股份有限公司 多天线系统中的空间射频性能测试方法及系统
US8596533B2 (en) 2011-08-17 2013-12-03 Hand Held Products, Inc. RFID devices using metamaterial antennas
US10013588B2 (en) 2011-08-17 2018-07-03 Hand Held Products, Inc. Encoded information reading terminal with multi-directional antenna
US8779898B2 (en) 2011-08-17 2014-07-15 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
CN104038294B (zh) * 2013-03-06 2016-12-28 光宝电子(广州)有限公司 无线测试系统及应用其的测量方法
CN103257282B (zh) * 2013-05-02 2016-01-13 惠州Tcl移动通信有限公司 一种终端天线trp快速测试方法
KR20160016901A (ko) * 2013-06-04 2016-02-15 오빗 어드번스드 테크놀로지스, 인코포레이티드 휴대용 구형 근거리장 안테나 측정 시스템
CN105704281B (zh) * 2016-01-21 2019-02-19 上海煜鹏通讯电子股份有限公司 一种适用同一天线的大批量有源测试方法
FI127693B (en) * 2016-02-18 2018-12-14 Verkotan Oy TEST METHOD AND SYSTEM FOR GPS LOCATION MEASUREMENTS
US10085162B2 (en) * 2016-07-22 2018-09-25 Ets-Lindgren, Inc. System and method for over-the-air testing of milli-meter wave and other beamforming technologies
US10333632B2 (en) * 2017-04-03 2019-06-25 Ets-Lindgren, Inc. Method and system for testing beam forming capabilities of wireless devices
CN106959398B (zh) * 2017-04-28 2019-08-02 重庆长安汽车股份有限公司 无线发射设备电磁特性适应性的测试系统及方法
US11035930B2 (en) * 2017-07-26 2021-06-15 Rohde & Schwarz Gmbh & Co. Kg Antenna measurement system as well as method for controlling a measurement antenna array
US10404384B1 (en) * 2018-08-03 2019-09-03 Rohde & Schwarz Gmbh & Co. Kg System and method for testing a device under test within an anechoic chamber based on a minimum test criteria
TWI674416B (zh) * 2018-11-09 2019-10-11 川升股份有限公司 用於量測天線的自動化系統
CN112448775B (zh) 2019-08-30 2022-04-08 北京小米移动软件有限公司 蓝牙辐射性能测试方法、装置及存储介质
CN111257653B (zh) * 2020-01-16 2021-06-22 湘潭大学 一种地下人行通道场景下电磁辐射预测方法
WO2022036545A1 (en) * 2020-08-18 2022-02-24 Qualcomm Incorporated Total radiated power tests for transmit diversity
CN113673098A (zh) * 2021-08-12 2021-11-19 广州广电计量检测股份有限公司 一种无线设备的电磁辐射比吸收率仿真检测方法及装置
CN115378518B (zh) * 2022-09-19 2023-04-07 深圳市中承科技有限公司 基于深度学习的射频通信设备空间辐射测试系统及方法
CN115542065B (zh) * 2022-12-02 2023-03-17 成都四威功率电子科技有限公司 外场移动式多天线多自由度辐射敏感度测试方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492957B2 (en) * 2000-12-18 2002-12-10 Juan C. Carillo, Jr. Close-proximity radiation detection device for determining radiation shielding device effectiveness and a method therefor
CN101090553A (zh) * 2007-07-12 2007-12-19 华为技术有限公司 无线终端性能测试装置及方法
CN101106792A (zh) * 2007-08-23 2008-01-16 中兴通讯股份有限公司 用于无线视频终端的参数测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127980A (en) * 1995-09-26 2000-10-03 Podgorski; Andrew S. Dual polarization electromagnetic field simulator
SE0002980D0 (sv) * 2000-03-31 2000-08-23 Kildal Antenn Consulting Ab A method and an apparatus for measuring the performance of antennas
US6329953B1 (en) * 2000-09-29 2001-12-11 Rangestar Wireless Method and system for rating antenna performance
GB0130842D0 (en) * 2001-12-21 2002-02-06 Fizzle Holdings Ltd Antenna measurement system
US7699615B2 (en) * 2005-02-03 2010-04-20 Christopher Sakezles Joint replica models and methods of using same for testing medical devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492957B2 (en) * 2000-12-18 2002-12-10 Juan C. Carillo, Jr. Close-proximity radiation detection device for determining radiation shielding device effectiveness and a method therefor
CN101090553A (zh) * 2007-07-12 2007-12-19 华为技术有限公司 无线终端性能测试装置及方法
CN101106792A (zh) * 2007-08-23 2008-01-16 中兴通讯股份有限公司 用于无线视频终端的参数测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Test Plan for Mobile Station Over the Air Performance Revision 2.2", CTIA CERTIFICATION., 30 November 2006 (2006-11-30), pages 105, XP008133335 *
See also references of EP2285154A4 *

Also Published As

Publication number Publication date
EP2285154A4 (en) 2014-01-22
US8401506B2 (en) 2013-03-19
EP2285154A1 (en) 2011-02-16
CN101582725A (zh) 2009-11-18
US20110095950A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2009137979A1 (zh) 基于数据模式的无线终端辐射性能测试系统及方法
WO2009137980A1 (zh) 基于数据模式的无线终端接收灵敏度性能测试系统及方法
WO2010075754A1 (zh) 辐射性能测试方法和系统
Yu et al. Radiated two-stage method for LTE MIMO user equipment performance evaluation
JP5886947B2 (ja) アンテナ、携帯電話及び他の無線端末の性能を測定するための改良された方法と装置
WO2010075753A1 (zh) 接收灵敏度性能测试方法和系统
CN101605350A (zh) 基于多种无线接入技术空间性能测试系统及其测试方法
WO2002029424A1 (en) Method and system for rating antenna performance
CN113162706B (zh) 无线设备的射频性能测试方法及系统
WO2009039693A1 (fr) Procédé d'essai de l'efficacité ota d'un produit de communication sans fil
US20190187199A1 (en) Test system and method for over the air (ota) measurements based on randomly adjusted measurement points
JP7221243B2 (ja) 移動端末試験装置、及び移動端末試験方法
CN104168074A (zh) 非信令天线trp测试方法及测试系统
Vähä-Savo et al. Empirical evaluation of a 28 GHz antenna array on a 5G mobile phone using a body phantom
WO2014190609A1 (zh) 一种移动终端的wifi ota测试方法及其测试系统
CN212696220U (zh) 无线路由器多向吞吐量测试系统
Xue et al. Impacts of real hands on 5G millimeter-wave cellphone antennas: Measurements and electromagnetic models
Fan et al. Measurement uncertainty investigation in the multi-probe OTA setups
CN114145770A (zh) 一种无线超声探头及其定位方法和系统
Folea et al. Indoor localization based on Wi-Fi parameters influence
WO2012129869A1 (zh) 一种数据终端接收灵敏度的测试系统及方法
Derat et al. Optimizing Over-the-Air Tests with Antenna Measurements plus Full-wave Simulation
CN116614835A (zh) 参考信号接收功率的测试方法及测试装置
李鯤 Over-The-Air Design Methodology for Wearable Antennas under the Influence of Human-Multipath Mutual Interactions
Li Over-The-Air Design Methodology for Wearable Antennas under the Influence of Human-Multipath Mutual Interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008874251

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008874251

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12992737

Country of ref document: US