WO2009136557A1 - Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials - Google Patents

Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials Download PDF

Info

Publication number
WO2009136557A1
WO2009136557A1 PCT/JP2009/058159 JP2009058159W WO2009136557A1 WO 2009136557 A1 WO2009136557 A1 WO 2009136557A1 JP 2009058159 W JP2009058159 W JP 2009058159W WO 2009136557 A1 WO2009136557 A1 WO 2009136557A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide precursor
photosensitive
group
bis
carbon atoms
Prior art date
Application number
PCT/JP2009/058159
Other languages
French (fr)
Japanese (ja)
Inventor
久遠 宮崎
隆志 早川
明宏 加藤
秀明 高橋
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to JP2010511044A priority Critical patent/JP5417323B2/en
Priority to CN2009801157178A priority patent/CN102015835A/en
Priority to KR1020107024194A priority patent/KR101308811B1/en
Publication of WO2009136557A1 publication Critical patent/WO2009136557A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to a polyimide precursor, a photosensitive polyimide precursor composition, a photosensitive dry film, and a flexible printed wiring board using them.
  • FPC flexible printed circuit board
  • This board has a coverlay made of polyimide film etc. on the processed FCCL (Flexible Copper Clad Laminate) and is mainly used for devices such as mobile phones, laptop computers, digital cameras, etc. It has been. Since FPC maintains its function even when it is bent, it is an indispensable material for reducing the size and weight of equipment.
  • electronic devices represented by notebook computers have been reduced in size and weight, and by adopting FPC for such products, the size and weight of the devices can be reduced, the product cost can be reduced, and the design can be reduced. Contributes to simplification.
  • the coverlay provided in this FPC is formed by bonding mainly using a polyimide film with an adhesive.
  • problems have arisen in the positional accuracy of bonding.
  • development of a photosensitive cover lay capable of finely processing only necessary portions with high precision by irradiating with an actinic ray such as ultraviolet rays has begun to be carried out energetically.
  • the dry film type photosensitive coverlay exhibits excellent dimensional accuracy and does not require a solvent drying step. Therefore, in the FPC manufacturing, the process can be simplified and is expected as a material with low environmental load.
  • Patent Document 1 discloses a heat-resistant adhesive using tetracarboxylic dianhydride and diamine.
  • Patent Document 2 discloses a film-forming photosensitive heat-resistant resin composition using a polyimide precursor, and Patent Document 3 discloses a photosensitive cover coat material containing polyamic acid.
  • Patent Document 4 discloses an adhesive film made of a specific acid dianhydride.
  • the molecular weight of the polyimide precursor is lowered due to the tackiness problem of the photosensitive dry film and the solvent removal accompanying the formation of the photosensitive dry film, and the resulting photosensitive
  • the conductive dry film is bent, there may be a problem that the photosensitive layer is broken.
  • the pattern is formed by lithography due to a decrease in the molecular weight of the polyimide precursor, the development time is not stable in the development using an alkaline aqueous solution, the pattern film thickness becomes thin, and the pattern shape is distorted. Arise.
  • the FPC may be warped due to the stress caused by the solvent removal or the ring closure reaction accompanying the imidization of the polyimide precursor.
  • warpage occurs in the FPC, problems such as poor adhesion between the FCCL and the coverlay and an increase in driving power of an electronic device equipped with the FPC arise. Therefore, it is required to improve the warpage of the FPC having a coverlay on the copper wiring.
  • the coverlay is required to exhibit flame retardancy in a flame retardancy test represented by the UL standard VTM test.
  • halogen compounds have been originally added to coverlays. However, from the viewpoint of environmental protection and biotoxicity, it is desired that non-halogen and flame retardancy be expressed.
  • JP 2004-269622 A Japanese Patent Laid-Open No. 04-18450 JP 05-158237 A Japanese Patent Laid-Open No. 10-330723
  • the present invention has been made in view of the above points, and when used for FPC, a polyimide precursor, a photosensitive polyimide precursor composition, and a photosensitive dry film that have less bending of FPC after baking and excellent bendability. And it aims at providing the flexible printed wiring board using them.
  • the polyimide precursor of this invention is characterized by including the acid dianhydride represented by following General formula (1).
  • X is a divalent organic group having an alkylene group having 3 to 30 carbon atoms.
  • R 1 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .
  • the polyimide precursor of the present invention preferably contains a diamine represented by the following general formula (2).
  • Y is a divalent organic group having an alkylene group having 2 to 20 carbon atoms.
  • R 2 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .
  • the acid dianhydride represented by following General formula (3) is included.
  • A represents an integer of 1 to 20.
  • b represents an integer of 3 to 30.
  • R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.
  • the diamine represented by following General formula (4) is included.
  • Z represents an alkylene group having 2 to 20 carbon atoms.
  • R 4 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group.
  • C represents 2 to 30 carbon atoms. Represents an integer.
  • the acid dianhydride represented by following General formula (3) is included.
  • A represents an integer of 1 to 15.
  • b represents an integer of 5 to 20.
  • R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.
  • the diamine represented by the general formula (4) is preferably 25 mol% to 75 mol% of all diamine components.
  • the photosensitive polyimide precursor composition of the present invention contains 100 parts by mass of the polyimide precursor and 5 to 30 parts by mass of a photosensitizer.
  • the photosensitive agent preferably contains a quinonediazide structure.
  • the photosensitive polyimide precursor composition of the present invention preferably contains a compound having a phenolic hydroxyl group as a dissolution inhibitor.
  • the photosensitive dry film of the present invention is characterized in that the above photosensitive polyimide precursor composition is applied to a support film, desolvated, and then a cover film is laminated.
  • the flexible printed wiring board of the present invention is formed using the photosensitive dry film.
  • the ratio (Mw2 / Mw1) between the weight average molecular weight (Mw1) in the varnish and the weight average molecular weight (Mw2) after desolvation at 120 ° C. or lower is 0.7 or more. It is characterized by that.
  • the photosensitive polyimide precursor composition of the present invention uses a polyimide precursor obtained from an acid dianhydride having a specific structure, so that when used for FPC, there is little warping of the FPC after baking and bending. There is an effect that it is excellent in properties.
  • (A) Polyimide precursor An acid dianhydride and diamine are used as a monomer of a polyimide precursor. It is known that the molecular weight of the polyimide precursor is reduced by solvent removal with heating. From the viewpoint of reducing the decrease in molecular weight, the acid dianhydride used for the polyimide precursor is represented by the following general formula (1). The acid dianhydride represented is used. Any acid-free dihydrate represented by the structure may be used alone or in combination of two or more. By suppressing the decrease in molecular weight in the solvent removal step, it is possible to prevent cracking during folding when the photosensitive dry film is formed, and to improve the folding property.
  • X is a divalent organic group having an alkylene group having 3 to 30 carbon atoms.
  • R 1 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .
  • an acid dianhydride represented by the following general formula (3) from the viewpoint of suppressing a decrease in molecular weight in the solvent removal step.
  • A represents an integer of 1 to 20.
  • b represents an integer of 3 to 30.
  • R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.
  • a is preferably 1 to 15, and b is preferably 5 to 20.
  • butanediol-bis-trimellitic anhydride ester pentanediol-bis-trimellitic anhydride ester, heptanediol-bis-trimellitic anhydride ester, decanediol-bis-trimellitic anhydride ester, Examples thereof include sundiol-bis-trimellitic anhydride ester, polypropylenediol-bis-trimellitic anhydride ester, polytetramethylenediol-bis-trimellitic anhydride ester, and the like. These compounds may be used alone or in combination of two or more.
  • acid dianhydrides may be used for the polyimide precursor according to the present invention.
  • aromatic tetracarboxylic acid pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetra Carboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 '-Benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1, 1-bis (3,4-dicarboxyphenyl) ethane dianhydride,
  • Aliphatic tetracarboxylic dianhydrides include cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5,6-cyclohexanetetracarboxylic dianhydride 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] oct-7-ene- Examples include 2,3,5,6 tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride. These acid dianhydrides are preferably used in the range of 0 mol% to 50 mol% with respect to the total amount of acid dianhydride of the polyimide precursor from the viewpoint of reducing warpage after baking.
  • the diamine used for the polyimide precursor is represented by the following general formula (2) from the viewpoint of suppressing a decrease in molecular weight in the solvent removal step and from the viewpoint of improving tackiness when a photosensitive dry film is obtained after the solvent removal. It is preferable to use diamines. Any diamine represented by the structure may be used alone or in combination of two or more.
  • R 2 is preferably a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.
  • Y is a divalent organic group having an alkylene group having 2 to 20 carbon atoms.
  • R 2 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .
  • Z represents an alkylene group having 2 to 20 carbon atoms.
  • R 4 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group.
  • C represents 2 to 30 carbon atoms. Represents an integer.
  • polydimethylene oxide-di-o-aminobenzoate polydimethylene oxide-di-o-aminobenzoate
  • polydimethylene oxide-di-m-aminobenzoate polydimethylene oxide-di-p-aminobenzoate
  • polytrimethylene oxide-di-o-aminobenzoate Polytrimethylene oxide-di-m-aminobenzoate, polytrimethylene oxide-di-p-aminobenzoate, polytetramethylene oxide-di-o-aminobenzoate, polytetramethylene oxide-di-m-aminobenzoate, poly Tetramethylene oxide-di-p-aminobenzoate, poly-3-methyltetramethylene oxide-di-o-aminobenzoate, poly-3-methyltetramethylene oxide-di-m-aminobenzoate, poly-3-methyltetramethylene oxide-di-m-aminobenzoate, poly
  • the blending amount of these diamines is such that the diamine represented by the general formula (4) is 25 mol% to 75 mol% in the total diamine components from the viewpoint of reducing warpage after baking. preferable.
  • the compound represented by the general formula (2) and the compound represented by the general formula (4) are used at the same time.
  • the compounding amount of the compound represented by the general formula (4) is preferably 25 mol% to 75 mol% with respect to the total amount of diamine.
  • the end of the polyamide precursor may be sealed with a monofunctional acid anhydride, monofunctional carboxylic acid, or monofunctional amine.
  • the polyimide precursor according to the present invention can be made into a photosensitive polyimide precursor composition by blending (B) a photosensitive agent and (C) an organic solvent.
  • the photosensitive polyimide precursor composition according to the present invention is blended with a compound that generates an acid when irradiated with actinic rays as a photosensitive agent.
  • the photosensitizer is not particularly limited as long as it generates an acid upon irradiation with actinic rays, but is preferably a compound having a quinonediazide structure, such as a benzoquinonediazide compound or a naphthoquinonediazide compound.
  • a compound having a quinonediazide structure such as a benzoquinonediazide compound or a naphthoquinonediazide compound.
  • those described in US Pat. No. 2,797,213 and US Pat. No. 3,669,658 can be used.
  • ester compounds of a phenol compound and 1,2-naphthoquinone-2-diazide-4-sulfonic acid or 1,2-naphthoquinone-2-diazide-5-sulfonic acid are preferable. These may be used alone or in combination of two or more.
  • the blending amount of the photosensitizer according to the present invention is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • the blending amount of the photosensitizer is preferably 5 parts by mass or more from the viewpoint of developing photosensitivity and inhibiting dissolution in a developer composed of an alkaline aqueous solution, and 35 parts by mass or less from the viewpoint of developing sensitivity and cover toughness.
  • Organic solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, and dimethyl sulfoxide. Moreover, the solvent whose boiling point is lower than these solvents can be mix
  • the low boiling point solvent examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl alcohol, isopropyl alcohol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and hexylene glycol.
  • the blending amount of the organic solvent is preferably 25 to 900 parts by mass, more preferably 100 to 400 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • the blending amount is more than 900 parts by mass, it becomes difficult to maintain the film thickness after coating, and when it is less than 25 parts by mass, the polyimide precursor is not completely dissolved.
  • Dissolution inhibitor can be mix
  • the dissolution inhibitor according to the present invention refers to a compound that hydrogen bonds with a carboxyl group or a phenolic hydroxyl group of a polyimide precursor. When the carboxyl group or phenolic hydroxyl group of the polyimide precursor is hydrogen-bonded with the dissolution inhibitor, the polyimide precursor is shielded from the developer, and coupled with the hydrophobicity of the compound, it is possible to inhibit the dissolution of the polyimide precursor.
  • Examples of the compound having a carboxyl group or a group capable of hydrogen bonding with a phenolic hydroxyl group include a carboxylic acid compound, a carboxylic acid ester compound, an amide compound, and a urea compound. From the viewpoints of the effect of inhibiting dissolution in a developer composed of an alkaline aqueous solution and the storage stability, a compound represented by the following general formula (6) is preferable, and an amide compound and a urea compound are more preferable.
  • R 5 and R 6 represent an organic group consisting of all or part of a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. R 5 and R 6 may be the same or different.
  • amide compound examples include N, N-diethylacetamide, N, N-diisopropylformamide, N, N-dimethylbutyramide, N, N-dibutylacetamide, N, N-dipropylacetamide, N, N-dibutylformamide N, N-diethylpropionamide, N, N-dimethylpropionamide, N, N′-dimethoxy-N, N′-dimethyloxamide, N-methyl- ⁇ -caprolactam, 4-hydroxyphenylbenzamide, salicylamide, And salicylanilide, acetanilide, 2′-hydroxyacetanilide, 3′-hydroxyacetanilide, 4′-hydroxyacetanilide.
  • a phenolic hydroxyl group from the viewpoint of lowering the glass transition point of the photosensitive layer and the film obtained by baking the photosensitive layer, controlling the solubility in a developer composed of an alkaline aqueous solution, and increasing the residual film ratio.
  • a compound is preferable, and an amide compound having a phenolic hydroxyl group is more preferable.
  • Specific examples include 4-hydroxyphenylbenzamide, 2'-hydroxyacetanilide, 3'-hydroxyacetanilide, and 4'-hydroxyacetanilide. These may be used alone or in combination of two or more.
  • the urea compound examples include 1,3-dimethylurea, tetramethylurea, tetraethylurea, 1,3-diphenylurea, and 3-hydroxyphenylurea.
  • it contains phenolic hydroxyl groups from the viewpoint of controlling the solubility in a developer composed of an aqueous alkali solution, increasing the residual film ratio, and lowering the glass transition point of the photosensitive layer and the film obtained by baking the photosensitive layer.
  • More preferred are urea compounds.
  • Specific examples include 3-hydroxyphenylurea. These may be used alone or in combination of two or more.
  • the dissolution inhibitor according to the present invention may be blended in an amount of 0.1 mol to 2.0 mol with respect to 1 mol of the carboxyl group and phenolic hydroxyl group of the polyimide precursor from the viewpoint of expression of the dissolution inhibitory effect.
  • 0.15 mol to 1.5 mol is blended.
  • the dissolution inhibitor according to the present invention is preferably from 0.1 mol to 2.0 mol with respect to 1 mol of the carboxyl group and the phenolic hydroxyl group of the polyimide precursor from the viewpoint of expression of the dissolution inhibitory effect. From the viewpoint of the dissolution inhibiting effect and the toughness of the resin obtained by baking, it is more preferable to add 0.15 mol to 1.5 mol.
  • the total amount of the amide compound and the urea compound is from 0.1 mol to 1 mol of the carboxyl group and the phenolic hydroxyl group of the polyimide precursor from the viewpoint of the dissolution inhibiting effect.
  • a range of 1.5 mol is preferred.
  • Phenol compound A phenol compound can be mix
  • the phenol compound includes a compound represented by the following general formula (7) and a structure represented by the following general formula (8) from the viewpoint of reducing warpage of the sheet composed of the film and the substrate after baking and controlling the solubility in an alkaline aqueous solution. It is a phenol compound (assuming that it does not fall under the dissolution inhibitor of the present application).
  • R 7 and R 8 each independently represents an organic group having 1 to 50 hydrogen atoms or carbon atoms and 0 to 10 oxygen atoms.
  • X is independently a hydrogen atom, hydroxyl group or carbon number 1 to 20; Represents an organic group.
  • R 9 and R 11 each independently represents an organic group having 1 to 6 carbon atoms, and R 10 represents a bonding group or an organic group having 1 to 20 carbon atoms.
  • the compounding amount of the phenol compound according to the present invention is preferably 1 part by mass to 30 parts by mass, and more preferably 5 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • the blending amount is less than 1 part by mass, it becomes difficult to suppress the solubility in a developer composed of an alkaline aqueous solution, and when it exceeds 30 parts by mass, the photosensitive dry film obtained after the solvent removal step The photosensitive layer becomes brittle.
  • (F) Plasticizer In the photosensitive polyimide precursor composition according to the present invention, a compound represented by the following general formula (9) can also be suitably used as a plasticizer.
  • R 12 to R 14 are organic groups containing an ethylene glycol chain and / or a propylene glycol chain, and may be the same or different.
  • the compounding amount of the plasticizer according to the present invention is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • the blending amount is 1 part by mass or more, a warp reduction effect is exhibited, and when it is 30 parts by mass or less, a desired pattern is obtained without adversely affecting developability.
  • crosslinking agent in this invention, can be mix
  • a crosslinking agent a tetracarboxylic acid compound or a tetracarboxylic acid ester compound represented by the following general formula (10), a polyimide precursor or a carboxyl group-containing polyimide precursor ester compound represented by the following general formula (11) is preferable.
  • R 15 is a tetravalent organic group
  • R 16 to R 19 are hydrogen or a monovalent organic group having 1 to 20 carbon atoms, which may be the same or different.
  • R 20 , R 22 and R 24 are tetravalent organic groups which may be the same or different.
  • R 21 and R 23 are divalent organic groups which may be the same or different.
  • R 25 to R 32 are hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and may be the same or different, and g is an integer of 0 to 100.
  • the amount of the crosslinking agent according to the present invention is preferably from 0.1 mol to 1.5 mol, preferably from 0.5 mol to 1.1 mol, from the viewpoint of expression of the crosslinking effect, relative to the number of moles of the remaining amino groups of the polyimide precursor. Is more preferable.
  • the amount of residual amino groups can be calculated using high performance liquid chromatography.
  • thermal base generator is a compound that generates a base by heating.
  • a thermal base generator is a compound that generates a base by heating.
  • it can be obtained by forming a salt structure with an amino group of a basic compound such as amine and an acid such as sulfonic acid, protecting with a dicarbonate compound, or protecting with an acid chloride compound.
  • a thermal base generator that generates a base by deprotection by heating.
  • thermal base generator examples include U-CAT (registered trademark) SA810, U-CAT SA831, U-CAT SA841, U-CAT SA851 (above, trade name: San Apro), N- (isopropoxycarbonyl) -2,6-dimethylpiperidine, N- (tert-butoxycarbonyl) -2,6-dimethylpiperidine, N- (benzyloxycarbonyl) -2,6-dimethylpiperidine, amino group of aromatic diamine with dibutyl dicarbonate Examples include protected compounds.
  • N- (isopropoxycarbonyl) -2,6-dimethylpiperidine N-, from the viewpoints of storage stability of the photosensitive polyimide precursor composition, molecular weight stability by solvent removal, alkali solubility, and ion migration properties.
  • the blending amount of the thermal base generator according to the present invention is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor, from the viewpoint of acceleration of imidization and development performance, and 0.5 parts by mass. To 20 parts by mass is more preferable.
  • Phosphate ester compound can be mix
  • the phosphoric ester compound at least one compound selected from the group consisting of compounds represented by the following general formula (12), the following general formula (13) or the following general formula (14) is used.
  • R 35 from R 33 represents a number 1 or more organic groups carbon, it may be the same or different, respectively.
  • R 36 to R 39 each represents an organic group having 1 or more carbon atoms, and may be the same or different.
  • R 40 is hydrogen or a monovalent organic group.
  • R 33 to R 35 in the general formula (12) or R 36 to R 39 in the general formula (13) are methyl.
  • An organic group selected from a group, an ethyl group, a butyl group, a 2-ethylhexyl group, a butoxyethyl group, a phenyl group, a cresyl group, a xylenyl group, and an aminophenyl group is preferable.
  • R 40 in the general formula (14) is hydrogen, dihydroxyphenyl group, dibutylhydroxybenzyl group, (meth) acrylate-containing organic group. It is preferable that it is an organic group chosen from these. Further, in consideration of the compatibility with the resin varnish and the effect of improving the warp when the photosensitive dry film is formed, R 40 is preferably hydrogen.
  • These phosphate ester compounds can be used alone or in combination of two or more.
  • the blending amount of these phosphate ester compounds is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass. When the blending amount is 1 part by mass or more, plasticity is expressed. When the blending amount is 30 parts by mass or less, the portion of the photosensitive polyimide precursor composition that is not irradiated with actinic rays is less likely to be eroded by the developer composed of an alkaline aqueous solution. A good line image can be obtained.
  • Organophosphorus Compound An organophosphorus compound represented by the following general formula (15) can be blended with the photosensitive polyimide precursor composition according to the present invention. By mix
  • R 41 represents an organic group. H represents an integer of 1 to 50.
  • the compounding amount of these organic phosphorus compounds is preferably 1 part by mass to 30 parts by mass, and more preferably 3 parts by mass to 25 parts by mass. If the blending amount is 1 part by mass or more, flame retardancy is exhibited, and if it is 30 parts by mass or less, the resin pattern obtained after baking becomes tough.
  • the compounding amount of these compounds is preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the blending amount is 0.1 parts by mass or more, an effect of improving adhesiveness is exhibited, and when it is 10 parts by mass or less, a good line image can be obtained without adversely affecting developability.
  • alcohols such as ethanol, 2-propanol and ethylene glycol, ethyl lactate, methyl benzoate
  • Esters such as ethylene glycol monopropyl ether acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, ethers such as n-butyl ether, tetrahydrofuran and dioxane
  • glycol ethers such as ethylene glycol monoethyl ether and propylene glycol monoethyl ether Can be blended.
  • the photosensitive polyimide precursor composition of the present invention can be used as a coverlay.
  • a coverlay refers to a protective film that protects wiring formed on a silicon wafer, a copper clad laminate, an FPC, or the like.
  • the photosensitive polyimide precursor composition according to the present invention is prepared by mixing the polyimide precursor and various compounds in a suitable container, and is completely dissolved in a three-rotor motor equipped with a mix rotor, non-bubbling kneader, and stirring blades. It is obtained by stirring until
  • a photosensitive dry film can be produced using the photosensitive polyimide precursor composition, and a resin pattern can be formed.
  • the resin pattern can be formed by the following steps.
  • the photosensitive dry film is obtained by applying a photosensitive polyimide precursor composition to a support film (film substrate) and drying the solvent to form a photosensitive layer.
  • a support film low density polyethylene, high density polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, ethylene / cyclodecene copolymer, and the like can be used.
  • These support films can be subjected to surface treatment for the purpose of controlling the wettability of the photosensitive polyimide precursor composition and the peelability of the photosensitive layer obtained from the photosensitive polyimide precursor composition.
  • Examples of the surface treatment method include corona treatment, flame treatment, plasma treatment, surface modification using silicone, alkyd resin, olefin resin, and the like.
  • the thickness of the carrier film is usually 15 ⁇ m to 100 ⁇ m, preferably 15 ⁇ m to 75 ⁇ m, in consideration of coating properties, adhesion, rollability, toughness, cost, and the like.
  • the photosensitive polyimide precursor composition can be applied to the above support film using a known method such as a reverse roll coater, a gravure roll coater, a comma coater, a lip coater, or a slot die coater.
  • Solvent removal can be performed by drying the solvent (drying using hot air, far infrared rays, or near infrared rays).
  • the drying temperature is preferably from 50 ° C. to 120 ° C. from the viewpoint of suppressing the decrease in molecular weight, and more preferably from 50 ° C. to 110 ° C. from the viewpoint of the stability of the photosensitive agent.
  • the film thickness of the photosensitive layer obtained by solvent removal is preferably 5 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the film thickness is preferably 5 ⁇ m or more from the viewpoint of insulation reliability, and preferably 100 ⁇ m or less from the viewpoint of obtaining a good line image.
  • the ratio (Mw2 / Mw1) between the weight average molecular weight (Mw1) in the polyimide precursor varnish and the weight average molecular weight (Mw2) after solvent removal at 120 ° C. or lower is 0.7 or more, Even if the photosensitive dry film after solvent removal is folded, the photosensitive layer is not cracked.
  • a cover film can be laminated on a photosensitive dry film to form a photosensitive laminated film. By laminating the cover film, adhesion of the photosensitive layer to the support film can be prevented.
  • the cover film low density polyethylene, high density polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, ethylene / cyclodecene copolymer can be used.
  • a process of forming a photosensitive layer by pressure-bonding a photosensitive dry film on a substrate on which a pattern is arranged A photosensitive dry film is superimposed on a surface on which a circuit such as an FPC is formed (on a substrate on which a pattern is arranged)
  • the photosensitive layer is laminated (press-bonded) at a pressure of 0.2 MPa to 5 MPa while being heated at 40 ° C. to 130 ° C., preferably 60 ° C. to 120 ° C., by a known method such as laminating, roll laminating or vacuum pressing. Can be stacked.
  • the photosensitive dry film is a photosensitive laminated film in which a cover film is laminated
  • the cover film is peeled off before lamination.
  • the laminating temperature to 40 ° C. or higher, it is possible to eliminate troublesome work by tacking at the time of alignment before lamination, and by setting it to 130 ° C. or lower, it is possible to laminate without decomposing the photosensitive agent.
  • the temperature at which lamination is possible is that there is no problem such as remaining bubbles, and the pattern can be sufficiently embedded in the pattern, and at the same time, the photosensitive layer has a viscosity at which the photosensitive polyimide precursor composition does not flow out of the pattern. It means the temperature that can be controlled.
  • the photosensitive dry film can be suitably laminated.
  • the support film may or may not be peeled off. If the support film is not peeled after lamination, it is peeled off after the exposure step.
  • Step of irradiating the photosensitive layer with actinic rays The photosensitive layer is exposed through a photomask on which an arbitrary pattern is drawn in order to form fine holes and fine width lines. Exposure varies depending on the composition of the photosensitive polyimide precursor composition is usually 100mJ / cm 2 ⁇ 3,000mJ / cm 2. Examples of actinic rays used at this time include X-rays, electron beams, ultraviolet rays, and visible rays. As the active light source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, or the like can be used.
  • i-line 365 nm
  • h-line 405 nm
  • g-line 436 nm
  • contact exposure either contact exposure or projection exposure may be used.
  • a developing solution After exposure, a developing solution is used, and development is performed by a known method such as an immersion method or a spray method to obtain a line image.
  • an aqueous alkali solution such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, or an aqueous tetramethylammonium hydroxide solution can be used.
  • the development temperature is preferably 20 ° C. to 60 ° C., more preferably 25 ° C. to 50 ° C.
  • Step of rinsing with at least one solvent selected from the group consisting of water and acidic aqueous solution After development, washing is performed by a known method such as an immersion method or a spray method.
  • the rinsing liquid water or a solution obtained by adding an organic solvent to water can be used.
  • the temperature of the rinsing liquid is preferably 15 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C. from the viewpoint of residue removal.
  • washing may be performed with an inorganic acid aqueous solution or an organic acid aqueous solution.
  • the inorganic acid aqueous solution include a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, a phosphoric acid aqueous solution, and a boric acid aqueous solution.
  • the organic acid aqueous solution include a formic acid aqueous solution, an acetic acid aqueous solution, a citric acid aqueous solution, and a lactic acid aqueous solution.
  • the washing time with the inorganic acid aqueous solution or organic acid aqueous solution is preferably 5 seconds to 120 seconds, more preferably 10 seconds to 60 seconds, from the viewpoint of washing efficiency.
  • the acidic aqueous solution is preferably washed away with water.
  • this process can reduce the residual stress between the photosensitive agent-derived substrate and the photosensitive layer, reduce the warpage of the FPC and multilayer printed wiring board obtained in the resin pattern manufacturing process, and increase the folding resistance.
  • Exposure to irradiation in this step varies by the thickness of the type of photosensitive agent used and the photosensitive layer is usually 100 mJ / cm 2 at 3,000 mJ / cm 2.
  • the amount is preferably 500 mJ / cm 2 or more from the viewpoint of photodecomposition of the photosensitive agent.
  • actinic rays used at this time include X-rays, electron beams, ultraviolet rays, and visible rays.
  • the active light source a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, or the like can be used.
  • i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp it is preferable to use i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp.
  • the heating temperature is preferably 30 ° C to 130 ° C, more preferably 40 ° C to 100 ° C.
  • Baking process at 100 to 400 ° C A resin pattern is formed by baking the line image obtained by the above process. Baking is carried out continuously or stepwise at a temperature of 100 ° C. to 400 ° C. for 5 minutes to 5 hours. And the processed product is completed. In the case of FPC, it is preferable to cure in a temperature range of 100 ° C. to 200 ° C. from the viewpoint of preventing oxidation of the wiring. Examples of the processed product thus obtained include FPC and multilayer printed wiring boards.
  • Synthesis Example 2 Synthesis of polyimide precursor (ii) In a three-necked separable flask, 4.8 g of 1,3-bis (3-aminophenoxy) benzene, 6.8 g of polytetramethylene oxide-di-p-aminobenzoate, ⁇ -butyrolactone 82 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (ii). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (ii), the solid content of the polyimide precursor (ii) solution, and the weight average molecular weight.
  • Synthesis Example 3 Synthesis of polyimide precursor (iii) In a three-necked separable flask, 9.7 g of 1,3-bis (3-aminophenoxy) benzene, 13.7 g of polytetramethylene oxide-di-p-aminobenzoate, ⁇ -butyrolactone 168.8 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • polyimide precursor (iii) was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (iii).
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (iii), the solid content of the polyimide precursor (iii) solution, and the weight average molecular weight.
  • Synthesis Example 4 Synthesis of Polyimide Precursor (iv) In a three-necked separable flask, 8.8 g of 1,3-bis (3-aminophenoxy) benzene, 12.4 g of polytetramethylene oxide-di-p-aminobenzoate, ⁇ -butyrolactone 99.7 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (iv), the solid content of the polyimide precursor (iv) solution, and the weight average molecular weight.
  • Synthesis Example 5 Synthesis of polyimide precursor (v) In a three-necked separable flask, 10.0 g of trimethylene-bis (4-aminobenzoate), 13.1 g of polytetramethylene oxide-di-p-aminobenzoate, 104.1 g of ⁇ -butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (v), the solid content of the polyimide precursor (v) solution, and the weight average molecular weight.
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (vi), the solid content of the polyimide precursor (vi) solution, and the weight average molecular weight.
  • Synthesis Example 7 Synthesis of polyimide precursor (vii) In a three-necked separable flask, 9.5 g of trimethylene-bis (4-aminobenzoate), 12.4 g of polytetramethylene oxide-di-p-aminobenzoate, 101.0 g of ⁇ -butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • polyimide precursor (vii) was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (vii).
  • Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (vii), the solid content of the polyimide precursor (vii) solution, and the weight average molecular weight.
  • Synthesis Example 8 Synthesis of polyimide precursor (viii) Trimethylene-bis (4-aminobenzoate) 9.1 g, polytetramethylene oxide-di-p-aminobenzoate 15.4 g, ⁇ -butyrolactone 107.3 g in a three-necked separable flask And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • polyimide precursor (viii) was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (viii).
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (viii), the solid content of the polyimide precursor (viii) solution, and the weight average molecular weight.
  • Synthesis Example 9 Synthesis of polyimide precursor (ix) In a three-necked separable flask, 9.8 g of trimethylene-bis (3-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 103.1 g of ⁇ -butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • a polyimide precursor (ix) was obtained by pressure filtration of the product with a 5 ⁇ m filter.
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (ix), the solid content of the polyimide precursor (ix) solution, and the weight average molecular weight.
  • Synthesis Example 10 Synthesis of polyimide precursor (x) 9.8 g of trimethylene-bis (4-aminobenzoate), poly (tetramethylene / 3-methyltetramethylene ether) glycol bis (4-aminobenzoate) 12 in a three-necked separable flask 9.9 g and ⁇ -butyrolactone 103.1 g were added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • polyimide precursor (x) was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (x).
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (x), the solid content of the polyimide precursor (x) solution, and the weight average molecular weight.
  • Synthesis Example 11 Synthesis of polyimide precursor (xi) In a three-necked separable flask, 10.1 g of trimethylene-bis (4-aminobenzoate), 13.3 g of polytetramethylene oxide-di-p-aminobenzoate, 105.7 g of ⁇ -butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of butanediol-bis-trimellitic anhydride ester and 11.9 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • a polyimide precursor (xi) was obtained by pressure filtration of the product with a 5 ⁇ m filter.
  • Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xi), the solid content of the polyimide precursor (xi) solution, and the weight average molecular weight.
  • Synthesis Example 12 Synthesis of Polyimide Precursor (xii) 9.8 g of trimethylene-bis (4-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 110.4 g of ⁇ -butyrolactone in a three-necked separable flask And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 14.6 g of icosanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature.
  • a polyimide precursor (xii) was obtained by pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (xii).
  • Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xii), the solid content of the polyimide precursor (xii) solution, and the weight average molecular weight.
  • Synthesis Example 13 Synthesis of polyimide precursor (xiii) In a three-necked separable flask, 9.8 g of trimethylene-bis (4-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 123.9 g of ⁇ -butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 20.4 g of polypropylenediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (xiii), the solid content of the polyimide precursor (xiii) solution, and the weight average molecular weight.
  • Synthesis Example 14 Synthesis of polyimide precursor (xiv) 9.4 g of 1,3-bis (3-aminophenoxy) benzene and 73 g of ⁇ -butyrolactone were placed in a three-necked separable flask and stirred until a uniform solution was obtained. Next, 10 g of 4,4′-oxydiphthalic dianhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (xiv). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xiv), the solid content of the polyimide precursor (xiv) solution, and the weight average molecular weight.
  • Synthesis Example 15 Synthesis of Polyimide Precursor (xv)
  • a three-necked separable flask 7.1 g of 1,3-bis (3-aminophenoxy) benzene and 64.3 g of ⁇ -butyrolactone were added and stirred until a uniform solution was obtained.
  • 10 g of ethylenediol-bis-trimellitic acid ester was added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature.
  • the product was subjected to pressure filtration with a 5 ⁇ m filter to obtain a polyimide precursor (xv).
  • Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (xv), the solid content of the polyimide precursor (xv) solution, and the weight average molecular weight.
  • Synthesis Example 16 Synthesis of polyimide precursor (xvi) In a three-necked separable flask, 2.7 g of 1,3-bis (3-aminophenoxy) benzene, 26.3 g of polytetramethylene oxide-di-p-aminobenzoate, ⁇ -butyrolactone 91.0 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of 4,4′-oxydiphthalic dianhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 ⁇ m filter to obtain a polyimide precursor (xvi). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xvi), the solid content of the polyimide precursor (xvi) solution, and the weight average molecular weight.
  • Synthesis Example 17 Synthesis of polyimide precursor (xvii) In a three-necked separable flask, 2.0 g of 1,3-bis (3-aminophenoxy) benzene, 19.9 g of polytetramethylene oxide-di-p-aminobenzoate, ⁇ -butyrolactone 74.4 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of ethylenediol-bis-trimellitic acid ester was added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, a polyimide precursor (xvii) was obtained by pressure filtration of the product with a 5 ⁇ m filter. Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xvii), the solid content of the polyimide precursor (xvii) solution, and the weight average molecular weight.
  • a photosensitive polyimide precursor composition First, a predetermined amount of polyimide precursor is subdivided into a container such as a glass bottle. Next, a predetermined amount of additives such as a photosensitizer and a dissolution inhibitor are blended, and the mixture is stirred with a mix rotor until uniform. By these operations, a photosensitive polyimide precursor composition can be obtained.
  • additives such as a photosensitizer and a dissolution inhibitor
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Molecular weight measurement 0.01 g of the photosensitive polyimide precursor composition obtained after solvent removal was measured with a precision balance and dissolved in 10 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.). This solution was filtered through a 10 ⁇ m filter, and the molecular weight was measured by gel permeation chromatography (manufactured by JASCO Corporation) equipped with TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation).
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Vacuum press Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process by a vacuum press (SA-501, manufactured by Tester Sangyo Co., Ltd.) Vacuum pressing was performed under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
  • SA-501 manufactured by Tester Sangyo Co., Ltd.
  • Measurement of warpage The film obtained after baking was cut into a length of 5 cm and a width of 5 cm, static electricity was removed, and the warpage of the film was measured using a ruler.
  • Example 2 Evaluation of Photosensitive Polyimide Precursor Composition Using 3′-Hydroxyacetanilide as Dissolution Inhibitor 10 g of the polyimide precursor solution obtained in Synthesis Examples 1 to 3 and 20 parts by mass with respect to the polyimide precursor solid content as a photosensitive agent 0.42 g of the quinonediazide compound (formula 16) and 12.5 parts by mass of 3′-hydroxyacetanilide 0.26 g with respect to the polyimide precursor were mixed in the ratio shown in Table 3, and placed in a 20 cc glass bottle. No. 5 manufactured by ASONE Co., Ltd.) until stirring to obtain a photosensitive polyimide precursor composition (4 to 6). The evaluation results are shown in Table 3.
  • the photosensitive polyimide precursor composition When used for a cover film of a flexible printed wiring board, it is necessary to obtain a desired pattern by lithography with a developer composed of an alkaline aqueous solution. In addition to the fact that the molecular weight of the composition does not change over time, it is excellent in tackiness, the laminate in which the cover film is laminated after baking is not warped, and peels off even when bent and cracks occur. There are demands for performance such as lack of heat and the ability of the laminate to burn.
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Molecular weight measurement 0.01 g of the photosensitive polyimide precursor composition obtained after solvent removal was measured with a precision balance and dissolved in 10 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.). This solution was filtered through a 10 ⁇ m filter, and the molecular weight was measured by gel permeation chromatography (manufactured by JASCO Corporation) equipped with TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation).
  • Lithographic performance evaluation Coating A polyester film (manufactured by Unitika) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum-adsorbing. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 ⁇ m.
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Vacuum press First, FCCL was washed with a 15 wt% sodium persulfate aqueous solution. Next, the photosensitive dry film obtained in the solvent removal step was subjected to a press temperature of 100 ° C., a press pressure of 0.5 MPa, a vacuum degree of 15 kPa, and a press time of 1 minute using a vacuum press machine (SA-501, manufactured by Tester Sangyo Co., Ltd.). A vacuum press was performed.
  • SA-501 manufactured by Tester Sangyo Co., Ltd.
  • Actinic ray irradiation The support film of the laminate obtained in the vacuum pressing process was peeled off, and irradiated with ultraviolet rays under an exposure amount of 1.5 J / cm 2 using an ultrahigh pressure mercury lamp (manufactured by HMW-201KB Oak).
  • Lithography Using a spray-type developing machine, a time until a UV irradiation part is completely dissolved under the conditions of a developing temperature of 30 ° C. and a spray pressure of 0.18 MPa using a 1 wt% sodium carbonate aqueous solution as a developing solution (hereinafter referred to as a breakpoint) To be described). Next, development was performed with a development time 1.2 times the breakpoint. After development, washing was performed for 1/3 of the development time with distilled water in a spray type washer, and further for 30 seconds with a 0.2 wt% aqueous sulfuric acid solution.
  • Lithographic performance Lithographic performance was judged by development time, remaining film rate and pattern shape.
  • Development time A photosensitive polyimide precursor composition having a development time of 90 seconds or less was indicated by ⁇ , and a photosensitive polyimide precursor composition having a development time exceeding 90 seconds was indicated by ⁇ .
  • Pattern shape The pattern after lithography was observed using a light microscope (ECLIPS LV100, manufactured by Nikon Corp.) with a bright field at 100 times the shape of a 100 ⁇ m circle pattern. An object holding the shape of the pattern was indicated as “ ⁇ ”, and an object that collapsed was indicated as “X”.
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Evaluation of tackiness The presence or absence of tackiness of the photosensitive layer after solvent removal was evaluated by palpation. Those with fingerprints were marked with ⁇ , and those without fingerprints were marked with ⁇ .
  • Warpage evaluation Coating A polyester film (manufactured by Unitika Ltd.) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum-adsorbing. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 ⁇ m.
  • Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
  • Vacuum press Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process by a vacuum press (SA-501, manufactured by Tester Sangyo Co., Ltd.) Vacuum pressing was performed under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
  • SA-501 manufactured by Tester Sangyo Co., Ltd.
  • Measurement of warpage The film obtained after baking was cut into a length of 5 cm and a width of 5 cm, static electricity was removed, and the warpage of the film was measured using a ruler.
  • Vacuum press Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process was obtained using a vacuum press (SA-501 Tester Sangyo Co., Ltd.). Vacuum pressing was performed on both sides of the polyimide film under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
  • Examples 1 to 3 using the polyimide precursor according to the present invention show no decrease in molecular weight (M2 / M1). Moreover, the goby folding strength was also good. This result is considered to be because by using the acid dianhydride according to the present invention, decomposition of the polyimide precursor at the time of solvent removal was suppressed and molecular weight reduction was suppressed. On the other hand, in Comparative Examples 1 to 3 using other acid dianhydrides, it can be seen that the molecular weight decreases and the goby folding strength decreases.
  • Examples 4 to 22 using the polyimide precursor composition according to the present invention show that the remaining film ratio is good. . In particular, in Example 8, the remaining film ratio is 90% without adding a dissolution inhibitor. These results are considered to be because decomposition of the polyimide precursor in the development process was suppressed by using the acid dianhydride according to the present invention. Examples 4 to 22 show that the tackiness is also good. On the other hand, under any conditions using other acid dianhydrides, the remaining film ratio is reduced, indicating that the tackiness is poor.
  • the polyimide precursor of the present invention includes a surface protective film for a semiconductor device, an interlayer insulating film, a rewiring insulating film, a protective film for a device having a bump structure, an interlayer insulating film for a multilayer circuit, a cover coat for a flexible copper-clad plate, Moreover, it can utilize suitably as a liquid crystal aligning film etc.

Abstract

Disclosed is a polyimide precursor: which enables the production of such a photosensitive dry film that has no tackiness, causes no cracking in a photosensitive layer thereof when folded after removal of a solvent therefrom, and can achieve good lithography thereon; which can be applied to a FPC that causes less warpage after baking; and which can exhibit flame retardancy without the need of adding any halogen compound thereto. Also disclosed is a photosensitive polyimide precursor composition. Further disclosed is a photosensitive dry film. Still further disclosed is a flexible printed circuit board produced by using any one of the aforementioned materials. The polyimide precursor is characterized by comprising an acid dianhydride represented by general formula (1) [wherein X represents a bivalent organic group having a C3-30 alkylene group; and R1 represents a hydrogen atom, a C1-10 univalent alkyl group, an alkoxy group or a halogen group].

Description

ポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed wiring board using them
 本発明はポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板に関する。 The present invention relates to a polyimide precursor, a photosensitive polyimide precursor composition, a photosensitive dry film, and a flexible printed wiring board using them.
 近年、フレキシブルプリント基板(以下、「FPC」ともいう。)と呼ばれるフィルム状のプリント基板が活況を得ている。この基板は配線加工されたFCCL(Flexible Cupper Clad Laminate)上にポリイミドフィルムなどから構成されるカバーレイを具備した構造になっており、主に携帯電話、ノート型パソコン、デジタルカメラなどの機器に用いられている。FPCは折り曲げても機能を維持することから、機器の小型化、軽量化に向けて無くてはならない材料となっている。特に近年、ノート型パソコンに代表される電子機器の小型化、軽量化が進んでおり、このような製品にFPCを採用することで、当該機器の寸法及び重量減少、製品コストの低減並びに設計を単純化することなどに貢献している。 In recent years, a film-like printed circuit board called a flexible printed circuit board (hereinafter also referred to as “FPC”) has gained popularity. This board has a coverlay made of polyimide film etc. on the processed FCCL (Flexible Copper Clad Laminate) and is mainly used for devices such as mobile phones, laptop computers, digital cameras, etc. It has been. Since FPC maintains its function even when it is bent, it is an indispensable material for reducing the size and weight of equipment. Particularly in recent years, electronic devices represented by notebook computers have been reduced in size and weight, and by adopting FPC for such products, the size and weight of the devices can be reduced, the product cost can be reduced, and the design can be reduced. Contributes to simplification.
 このFPCに備えられるカバーレイは、主に接着剤を具備したポリイミドフィルムなどを用い、貼り合わせにより形成している。しかし、FPCの微細化、薄膜化により、張り合わせの位置精度に問題を生じるようになってきた。そこで紫外線などの活性光線を照射することにより必要な部分のみを精度よく微細に加工することができる、感光性カバーレイの開発が精力的に行われ始めている。この中でもドライフィルム型の感光性カバーレイは優れた寸法精度を発現し、溶剤の乾燥工程も必要ないことから、FPC製造において、プロセスが簡略化でき、環境負荷の低い材料として期待されている。 The coverlay provided in this FPC is formed by bonding mainly using a polyimide film with an adhesive. However, with the miniaturization and thinning of the FPC, problems have arisen in the positional accuracy of bonding. In view of this, development of a photosensitive cover lay capable of finely processing only necessary portions with high precision by irradiating with an actinic ray such as ultraviolet rays has begun to be carried out energetically. Among them, the dry film type photosensitive coverlay exhibits excellent dimensional accuracy and does not require a solvent drying step. Therefore, in the FPC manufacturing, the process can be simplified and is expected as a material with low environmental load.
 感光性カバーレイ材料の中でも、ポリイミド前駆体を用いた感光性カバーレイは、ポリイミド由来の折り曲げ耐性、耐熱性、電気絶縁性の観点から、優れたカバーレイとして期待されている。例えば、特許文献1には、テトラカルボン酸二無水物とジアミンを用いた耐熱性接着剤の開示がある。また、特許文献2にはポリイミド前駆体を用いたフィルム形成性感光性耐熱樹脂組成物、特許文献3にはポリアミド酸を含む感光性カバーコート材の開示がある。また、特許文献4には、特定の酸二無水物からなる接着フィルムの開示がある。しかし、これらのポリイミド前駆体を用いた感光性カバーレイの場合、感光性ドライフィルムのタック性の問題や、感光性ドライフィルム形成に伴う脱溶剤によりポリイミド前駆体の分子量が低下し、得られる感光性ドライフィルムを折り曲げた際に、感光層が割れてしまうという問題が発生する場合がある。さらにポリイミド前駆体の分子量が低下することで、リソグラフィーによりパターンを形成させる際、アルカリ水溶液を用いた現像において、現像時間が安定しない、パターンの膜厚が薄くなる、パターン形状が歪むなどの問題が生じる。またポリイミド前駆体からポリイミドに変換する工程おいて、脱溶媒や、ポリイミド前駆体のイミド化に伴う閉環反応に起因する応力から、FPCに反りが発生する場合がある。FPCに反りが生じると、FCCLとカバーレイの接着性不良や、FPCを具備した電子機器の駆動電力が高くなるなどの問題が生じる。従って銅配線上にカバーレイを具備したFPCの反りを改善することが求められている。 Among photosensitive cover lay materials, a photosensitive cover lay using a polyimide precursor is expected as an excellent cover lay from the viewpoint of bending resistance derived from polyimide, heat resistance, and electrical insulation. For example, Patent Document 1 discloses a heat-resistant adhesive using tetracarboxylic dianhydride and diamine. Patent Document 2 discloses a film-forming photosensitive heat-resistant resin composition using a polyimide precursor, and Patent Document 3 discloses a photosensitive cover coat material containing polyamic acid. Patent Document 4 discloses an adhesive film made of a specific acid dianhydride. However, in the case of a photosensitive cover lay using these polyimide precursors, the molecular weight of the polyimide precursor is lowered due to the tackiness problem of the photosensitive dry film and the solvent removal accompanying the formation of the photosensitive dry film, and the resulting photosensitive When the conductive dry film is bent, there may be a problem that the photosensitive layer is broken. Furthermore, when the pattern is formed by lithography due to a decrease in the molecular weight of the polyimide precursor, the development time is not stable in the development using an alkaline aqueous solution, the pattern film thickness becomes thin, and the pattern shape is distorted. Arise. Further, in the step of converting the polyimide precursor to the polyimide, the FPC may be warped due to the stress caused by the solvent removal or the ring closure reaction accompanying the imidization of the polyimide precursor. When warpage occurs in the FPC, problems such as poor adhesion between the FCCL and the coverlay and an increase in driving power of an electronic device equipped with the FPC arise. Therefore, it is required to improve the warpage of the FPC having a coverlay on the copper wiring.
 その他に、カバーレイは、UL規格のVTM試験に代表されるような難燃性試験で、難燃性を発現することが求められている。難燃性を発現する目的で、元来カバーレイにハロゲン化合物を配合してきた。しかし、環境保全の観点や生体毒性の観点から非ハロゲンで難燃性を発現することが望まれている。 In addition, the coverlay is required to exhibit flame retardancy in a flame retardancy test represented by the UL standard VTM test. For the purpose of expressing flame retardancy, halogen compounds have been originally added to coverlays. However, from the viewpoint of environmental protection and biotoxicity, it is desired that non-halogen and flame retardancy be expressed.
特開2004-269622号公報JP 2004-269622 A 特開平04-18450号公報Japanese Patent Laid-Open No. 04-18450 特開平05-158237号公報JP 05-158237 A 特開平10-330723号公報Japanese Patent Laid-Open No. 10-330723
 本発明はかかる点に鑑みてなされたものであり、FPCに用いた場合に、ベイク後のFPCの反りが少なく、折り曲げ性に優れるポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板を提供することを目的とする。 The present invention has been made in view of the above points, and when used for FPC, a polyimide precursor, a photosensitive polyimide precursor composition, and a photosensitive dry film that have less bending of FPC after baking and excellent bendability. And it aims at providing the flexible printed wiring board using them.
 本発明のポリイミド前駆体は、下記一般式(1)で表される酸二無水物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(Xは、炭素数が3から30のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
The polyimide precursor of this invention is characterized by including the acid dianhydride represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000006
(X is a divalent organic group having an alkylene group having 3 to 30 carbon atoms. R 1 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
 本発明のポリイミド前駆体においては、下記一般式(2)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007
(Yは、炭素数が2から20のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
The polyimide precursor of the present invention preferably contains a diamine represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
(Y is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. R 2 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
 本発明のポリイミド前駆体においては、下記一般式(3)で表される酸二無水物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
(aは1から20の整数を表す。bは3から30の整数を表す。Rは水素原子または炭素数が1から10の1価のアルキル基を表す。)
In the polyimide precursor of this invention, it is preferable that the acid dianhydride represented by following General formula (3) is included.
Figure JPOXMLDOC01-appb-C000008
(A represents an integer of 1 to 20. b represents an integer of 3 to 30. R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.)
 本発明のポリイミド前駆体においては、下記一般式(4)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
(Zは、炭素数が2から20のアルキレン基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。cは2から30の整数を表す。)
In the polyimide precursor of this invention, it is preferable that the diamine represented by following General formula (4) is included.
Figure JPOXMLDOC01-appb-C000009
(Z represents an alkylene group having 2 to 20 carbon atoms. R 4 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. C represents 2 to 30 carbon atoms. Represents an integer.)
 本発明のポリイミド前駆体においては、下記一般式(3)で表される酸二無水物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
(aは1から15の整数を表す。bは5から20の整数を表す。Rは水素原子または炭素数1から10の1価のアルキル基を表す。)
In the polyimide precursor of this invention, it is preferable that the acid dianhydride represented by following General formula (3) is included.
Figure JPOXMLDOC01-appb-C000010
(A represents an integer of 1 to 15. b represents an integer of 5 to 20. R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.)
 本発明のポリイミド前駆体においては、上記一般式(4)で表されるジアミンが全ジアミン成分のうち、25モル%から75モル%であることが好ましい。 In the polyimide precursor of the present invention, the diamine represented by the general formula (4) is preferably 25 mol% to 75 mol% of all diamine components.
 本発明の感光性ポリイミド前駆体組成物は、上記ポリイミド前駆体100質量部と、感光剤5~30質量部と、を含有することを特徴とする。 The photosensitive polyimide precursor composition of the present invention contains 100 parts by mass of the polyimide precursor and 5 to 30 parts by mass of a photosensitizer.
 本発明の感光性ポリイミド前駆体組成物においては、前記感光剤が、キノンジアジド構造を含むことが好ましい。 In the photosensitive polyimide precursor composition of the present invention, the photosensitive agent preferably contains a quinonediazide structure.
 本発明の感光性ポリイミド前駆体組成物においては、溶解抑止剤として、フェノール性水酸基を有する化合物を含むことが好ましい。 The photosensitive polyimide precursor composition of the present invention preferably contains a compound having a phenolic hydroxyl group as a dissolution inhibitor.
 本発明の感光性ドライフィルムは、上記感光性ポリイミド前駆体組成物を支持フィルムに塗布、脱溶剤し、次いでカバーフィルムを積層することを特徴とする。 The photosensitive dry film of the present invention is characterized in that the above photosensitive polyimide precursor composition is applied to a support film, desolvated, and then a cover film is laminated.
 本発明のフレキシブルプリント配線基板は、上記感光性ドライフィルムを用いて形成されることを特徴とする。 The flexible printed wiring board of the present invention is formed using the photosensitive dry film.
 本発明のポリイミド前駆体は、ワニスでの重量平均分子量(Mw1)と120℃以下での脱溶媒後の重量平均分子量(Mw2)との間の比(Mw2/Mw1)が0.7以上であることを特徴とする。 In the polyimide precursor of the present invention, the ratio (Mw2 / Mw1) between the weight average molecular weight (Mw1) in the varnish and the weight average molecular weight (Mw2) after desolvation at 120 ° C. or lower is 0.7 or more. It is characterized by that.
 本発明の感光性ポリイミド前駆体組成物は、特定の構造を有する酸二無水物から得られたポリイミド前駆体を用いることで、FPCに用いたときに、ベイク後のFPCの反りが少なく、折り曲げ性に優れるという効果を奏する。 The photosensitive polyimide precursor composition of the present invention uses a polyimide precursor obtained from an acid dianhydride having a specific structure, so that when used for FPC, there is little warping of the FPC after baking and bending. There is an effect that it is excellent in properties.
 以下、本発明について具体的に説明する。
(A)ポリイミド前駆体
 ポリイミド前駆体のモノマーとして、酸二無水物、ジアミンが用いられる。ポリイミド前駆体は加熱を伴う脱溶剤により分子量が低下することが知られているが、分子量の低下を低減する観点から、ポリイミド前駆体に用いる酸二無水物としては、下記一般式(1)で表される酸二無水物を用いる。当該構造で表される酸無二水物であれば、単独で用いても、2種以上組み合わせて用いても良い。脱溶剤工程での分子量低下を抑えることで、感光性ドライフィルムとしたときの折り曲げ時の割れを防止でき、折り曲げ性を向上できる。
Hereinafter, the present invention will be specifically described.
(A) Polyimide precursor An acid dianhydride and diamine are used as a monomer of a polyimide precursor. It is known that the molecular weight of the polyimide precursor is reduced by solvent removal with heating. From the viewpoint of reducing the decrease in molecular weight, the acid dianhydride used for the polyimide precursor is represented by the following general formula (1). The acid dianhydride represented is used. Any acid-free dihydrate represented by the structure may be used alone or in combination of two or more. By suppressing the decrease in molecular weight in the solvent removal step, it is possible to prevent cracking during folding when the photosensitive dry film is formed, and to improve the folding property.
Figure JPOXMLDOC01-appb-C000011
(Xは、炭素数が3から30のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
Figure JPOXMLDOC01-appb-C000011
(X is a divalent organic group having an alkylene group having 3 to 30 carbon atoms. R 1 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
 これらのうち、脱溶剤工程での分子量低下を抑える観点から、下記一般式(3)で表される酸二無水物を用いることが好ましい。 Among these, it is preferable to use an acid dianhydride represented by the following general formula (3) from the viewpoint of suppressing a decrease in molecular weight in the solvent removal step.
Figure JPOXMLDOC01-appb-C000012
(aは1から20の整数を表す。bは3から30の整数を表す。Rは水素原子または炭素数が1から10の1価のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000012
(A represents an integer of 1 to 20. b represents an integer of 3 to 30. R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.)
 上記一般式(3)で表される酸二無水物のうち、aは1から15が好ましく、bは5から20が好ましい。具体的には、ブタンジオール-ビス-無水トリメリット酸エステル、ペンタンジオール-ビス-無水トリメリット酸エステル、ヘプタンジオール-ビス-無水トリメリット酸エステル、デカンジオール-ビス-無水トリメリット酸エステル、イコサンジオール-ビス-無水トリメリット酸エステル、ポリプロピレンジオール-ビス-無水トリメリット酸エステル、ポリテトラメチレンジオール-ビス-無水トリメリット酸エステルなどが挙げられる。これらの化合物は単独でも2種類以上組み合わせて用いても良い。 Among the acid dianhydrides represented by the general formula (3), a is preferably 1 to 15, and b is preferably 5 to 20. Specifically, butanediol-bis-trimellitic anhydride ester, pentanediol-bis-trimellitic anhydride ester, heptanediol-bis-trimellitic anhydride ester, decanediol-bis-trimellitic anhydride ester, Examples thereof include sundiol-bis-trimellitic anhydride ester, polypropylenediol-bis-trimellitic anhydride ester, polytetramethylenediol-bis-trimellitic anhydride ester, and the like. These compounds may be used alone or in combination of two or more.
 本発明に係るポリイミド前駆体には、前記の酸二無水物に加えて、他の酸二無水物を用いることもできる。具体的には、芳香族テトラカルボン酸としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、3,3’-オキシジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ジヒドロ-1,3-ジオキソ-5-イソベンゾフランカルボン酸-1,4-フェニレンエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、エチレンジオール-ビス-無水トリメリット酸エステルなどが挙げられる。 In addition to the above acid dianhydrides, other acid dianhydrides may be used for the polyimide precursor according to the present invention. Specifically, as the aromatic tetracarboxylic acid, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetra Carboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 '-Benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1, 1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride , Screw (2,3-di Carboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 3,3′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid-1,4-phenylene ester, 4- (2,5-dioxotetrahydrofuran- 3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2-bis (3 -Dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) hexafluoropropane dianhydride, 2,2-bis (4- (3,4) -Dicarboxybenzoyloxy) phenyl) hexafluoropropane dianhydride, 2,2'-bis (trifluoromethyl) -4,4'-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, ethylenediol- And bis-trimellitic anhydride ester.
 脂肪族テトラカルボン酸二無水物としては、シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5,6-シクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物が挙げられる。これらの酸二無水物は、ベイク後の反りを低減する観点から、ポリイミド前駆体の酸二無水物全量に対して、0モル%から50モル%の範囲で用いることが好ましい。 Aliphatic tetracarboxylic dianhydrides include cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5,6-cyclohexanetetracarboxylic dianhydride 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] oct-7-ene- Examples include 2,3,5,6 tetracarboxylic dianhydride and 1,2,3,4-butanetetracarboxylic dianhydride. These acid dianhydrides are preferably used in the range of 0 mol% to 50 mol% with respect to the total amount of acid dianhydride of the polyimide precursor from the viewpoint of reducing warpage after baking.
 ポリイミド前駆体に用いるジアミンとしては、脱溶剤工程での分子量低下を抑える観点と、脱溶剤後、感光性ドライフィルムとしたときにタック性を向上させる観点とから、下記一般式(2)で表されるジアミンを用いることが好ましい。当該構造で表されるジアミンであれば、単独で用いても、2種以上組み合わせて用いても良い。下記一般式(2)中、Rは水素原子または炭素数が1から10の1価のアルキル基であることが好ましい。 The diamine used for the polyimide precursor is represented by the following general formula (2) from the viewpoint of suppressing a decrease in molecular weight in the solvent removal step and from the viewpoint of improving tackiness when a photosensitive dry film is obtained after the solvent removal. It is preferable to use diamines. Any diamine represented by the structure may be used alone or in combination of two or more. In the following general formula (2), R 2 is preferably a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000013
(Yは、炭素数が2から20のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
Figure JPOXMLDOC01-appb-C000013
(Y is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. R 2 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
 具体的には、ジメチレン-ビス(2-アミノベンゾエート)、ジメチレン-ビス(3-アミノベンゾエート)、ジメチレン-ビス(4-アミノベンゾエート)、トリメチレン-ビス(2-アミノベンゾエート)、トリメチレン-ビス(3-アミノベンゾエート)、トリメチレン-ビス(4-アミノベンゾエート)、テトラメチレン-ビス(2-アミノベンゾエート)、テトラメチレン-ビス(3-アミノベンゾエート)、テトラメチレン-ビス(4-アミノベンゾエート)、3-メチルテトラメチレン-ビス(2-アミノベンゾエート)、3-メチルテトラメチレン-ビス(3-アミノベンゾエート)、3-メチルテトラメチレン-ビス(4-アミノベンゾエート)、ペンタメチレン-ビス(2-アミノベンゾエート)、ペンタメチレン-ビス(3-アミノベンゾエート)、ペンタメチレン-ビス(4-アミノベンゾエート)、デカメチレン-ビス(2-アミノベンゾエート)、デカメチレン-ビス(3-アミノベンゾエート)、デカメチレン-ビス(4-アミノベンゾエート)などが挙げられる。これらのジアミンは単独で用いても2種類以上同時に用いても良い。 Specifically, dimethylene-bis (2-aminobenzoate), dimethylene-bis (3-aminobenzoate), dimethylene-bis (4-aminobenzoate), trimethylene-bis (2-aminobenzoate), trimethylene-bis (3 -Aminobenzoate), trimethylene-bis (4-aminobenzoate), tetramethylene-bis (2-aminobenzoate), tetramethylene-bis (3-aminobenzoate), tetramethylene-bis (4-aminobenzoate), 3- Methyltetramethylene-bis (2-aminobenzoate), 3-methyltetramethylene-bis (3-aminobenzoate), 3-methyltetramethylene-bis (4-aminobenzoate), pentamethylene-bis (2-aminobenzoate) , Pentamethylene (3-aminobenzoate), pentamethylene-bis (4-aminobenzoate), decamethylene-bis (2-aminobenzoate), decamethylene-bis (3-aminobenzoate), decamethylene-bis (4-aminobenzoate), etc. Can be mentioned. These diamines may be used alone or in combination of two or more.
 さらに、中でも、下記一般式(4)で表される化合物を用いることが脱溶剤工程での分子量低下を抑える観点と、脱溶剤後、感光性ドライフィルムとしたときにタック性を向上させる観点とから、好ましい。
Figure JPOXMLDOC01-appb-C000014
(Zは、炭素数が2から20のアルキレン基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。cは2から30の整数を表す。)
Furthermore, among them, the viewpoint of using the compound represented by the following general formula (4) to suppress a decrease in molecular weight in the solvent removal step, and the viewpoint of improving tackiness when a photosensitive dry film is obtained after the solvent removal. Therefore, it is preferable.
Figure JPOXMLDOC01-appb-C000014
(Z represents an alkylene group having 2 to 20 carbon atoms. R 4 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. C represents 2 to 30 carbon atoms. Represents an integer.)
 具体的には、ポリジメチレンオキシド-ジ-o-アミノベンゾエート)、ポリジメチレンオキシド-ジ-m-アミノベンゾエート、ポリジメチレンオキシド-ジ-p-アミノベンゾエート、ポリトリメチレンオキシド-ジ-o-アミノベンゾエート、ポリトリメチレンオキシド-ジ-m-アミノベンゾエート、ポリトリメチレンオキシド-ジ-p-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-o-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-m-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、ポリ-3-メチルテトラメチレンオキシド-ジ-o-アミノベンゾエート、ポリ-3-メチルテトラメチレンオキシド-ジ-m-アミノベンゾエート、ポリ-3-メチルテトラメチレンオキシド-ジ-p-アミノベンゾエート、ポリペンタメチレンオキシド-ジ-o-アミノベンゾエート、ポリペンタメチレンオキシド-ジ-m-アミノベンゾエート、ポリペンタメチレンオキシド-ジ-p-アミノベンゾエート、ポリデカメチレンオキシド-ジ-o-アミノベンゾエート、ポリデカメチレンオキシド-ジ-m-アミノベンゾエート、ポリデカメチレンオキシド-ジ-p-アミノベンゾエート、ポリ(テトラメチレン/3-メチルテトラメチレンエーテル)グリコールビス(4-アミノベンゾエート)などが挙げられる。これらのジアミンは単独で用いても2種類以上同時に用いても良い。 Specifically, polydimethylene oxide-di-o-aminobenzoate), polydimethylene oxide-di-m-aminobenzoate, polydimethylene oxide-di-p-aminobenzoate, polytrimethylene oxide-di-o-aminobenzoate Polytrimethylene oxide-di-m-aminobenzoate, polytrimethylene oxide-di-p-aminobenzoate, polytetramethylene oxide-di-o-aminobenzoate, polytetramethylene oxide-di-m-aminobenzoate, poly Tetramethylene oxide-di-p-aminobenzoate, poly-3-methyltetramethylene oxide-di-o-aminobenzoate, poly-3-methyltetramethylene oxide-di-m-aminobenzoate, poly-3-methyltetramethyle Oxide-di-p-aminobenzoate, polypentamethylene oxide-di-o-aminobenzoate, polypentamethylene oxide-di-m-aminobenzoate, polypentamethylene oxide-di-p-aminobenzoate, polydecamethylene oxide- Di-o-aminobenzoate, polydecamethylene oxide-di-m-aminobenzoate, polydecamethylene oxide-di-p-aminobenzoate, poly (tetramethylene / 3-methyltetramethylene ether) glycol bis (4-aminobenzoate) ) And the like. These diamines may be used alone or in combination of two or more.
 さらに、これらのジアミンの配合量は、ベイク後の反りを低減される観点から、上記一般式(4)で表されるジアミンが全ジアミン成分のうち、25モル%から75モル%であることが好ましい。 Furthermore, the blending amount of these diamines is such that the diamine represented by the general formula (4) is 25 mol% to 75 mol% in the total diamine components from the viewpoint of reducing warpage after baking. preferable.
 特に、上記一般式(2)で表される化合物と上記一般式(4)で表される化合物を同時に用いることが好ましい。上記一般式(2)で表される化合物と上記一般式(4)で表される化合物を同時に用いる場合、反りの低減、脱溶剤後、感光性ドライフィルムとしたときのタック性の向上、及び良好なリソグラフィー特性の観点から、上記一般式(4)で表される化合物の配合量が、ジアミン全量に対して25モル%から75モル%であることが好ましい。 In particular, it is preferable to use the compound represented by the general formula (2) and the compound represented by the general formula (4) at the same time. When the compound represented by the general formula (2) and the compound represented by the general formula (4) are used at the same time, reduction of warping, improvement of tackiness when a photosensitive dry film is obtained after solvent removal, and From the viewpoint of good lithography properties, the compounding amount of the compound represented by the general formula (4) is preferably 25 mol% to 75 mol% with respect to the total amount of diamine.
 また、前記ジアミンとそれ以外のジアミンを同時に用いることが可能である。具体的には1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,7-ジアミノ-ジメチルベンゾチオフェン-5,5-ジオキシド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,n-ビス(4-アミノフェノキシ)アルカン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、5(6)-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、4,6-ジヒドロキシ-1,3-フェニレンジアミン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、1,4-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(4'-アミノフェノキシ)ペンタン、ビス(γ-アミノプロピル)テトラメチルジシロキサン、1,4-ビス(γ-アミノプロピルジメチルシリル)ベンゼン、ビス(4-アミノブチル)テトラメチルジシロキサン、ビス(γ-アミノプロピル)テトラフェニルジシロキサン、下記一般式(5)で表されるジアミノシロキサン化合物などが挙げられる。これらは単独で用いても2種以上組み合わせて用いても良い。これらのジアミンは、ベイク後の反りを低減する観点から、ジアミンの総モル数に対して0モル%から50モル%配合することが好ましい。 Moreover, it is possible to use the diamine and other diamines simultaneously. Specifically, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3 , 3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3, , 7-Diamino-dimethylbenzothiophene-5,5-dioxide, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-bis (4-aminophenyl) sulfide, 4,4′- Diaminodiphenyl sulfone, 4,4′-diaminobenzanilide, 1, n-bis (4-aminophenoxy) alkane, , 3-bis (4-aminophenoxy) -2,2-dimethylpropane, 1,2-bis [2- (4-aminophenoxy) ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene, 5 (6) -amino-1- (4-aminomethyl) -1,3,3-trimethylindane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis (4-amino) Phenoxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- ( -Aminophenoxy) phenyl] hexafluoropropane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 4,6-dihydroxy-1,3-phenylenediamine, 3,3'-dihydroxy-4,4 ' -Diaminobiphenyl, 1,4-bis (4-aminophenoxy) pentane, 1,5-bis (4'-aminophenoxy) pentane, bis (γ-aminopropyl) tetramethyldisiloxane, 1,4-bis (γ -Aminopropyldimethylsilyl) benzene, bis (4-aminobutyl) tetramethyldisiloxane, bis (γ-aminopropyl) tetraphenyldisiloxane, diaminosiloxane compounds represented by the following general formula (5), and the like. These may be used alone or in combination of two or more. These diamines are preferably blended in an amount of 0 to 50 mol% with respect to the total number of moles of diamine, from the viewpoint of reducing warpage after baking.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 ポリイミド前駆体を合成する際、必要に応じて、単官能の酸無水物、単官能カルボン酸、単官能アミンを用いてポリアミド前駆体末端を封止してもよい。 When synthesizing the polyimide precursor, if necessary, the end of the polyamide precursor may be sealed with a monofunctional acid anhydride, monofunctional carboxylic acid, or monofunctional amine.
 また本発明に係るポリイミド前駆体のカルボキシル基の一部を、アルコール化合物など公知の化合物、及び方法を用いてエステル化することも可能である。 It is also possible to esterify a part of the carboxyl group of the polyimide precursor according to the present invention using known compounds and methods such as alcohol compounds.
 本発明に係るポリイミド前駆体は、(B)感光剤及び(C)有機溶剤を配合することにより、感光性ポリイミド前駆体組成物とすることができる。 The polyimide precursor according to the present invention can be made into a photosensitive polyimide precursor composition by blending (B) a photosensitive agent and (C) an organic solvent.
(B)感光剤
 本発明に係る感光性ポリイミド前駆体組成物は、感光剤として活性光線を照射することにより酸を発生する化合物が配合される。当該感光剤は活性光線の照射により酸を発生すれば特に限定されるものではないが、中でもベンゾキノンジアジド化合物、ナフトキノンジアジド化合物など、キノンジアジド構造を含む化合物であることが好ましい。例えば米国特許第2797213号明細書、米国特許第3669658号明細書に記載のものを用いることができる。その中でも、フェノール化合物と1,2-ナフトキノン-2-ジアジド-4-スルホン酸又は、1,2-ナフトキノン-2-ジアジド-5-スルホン酸とのエステル化合物が好ましい。これらは単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
(B) Photosensitive agent The photosensitive polyimide precursor composition according to the present invention is blended with a compound that generates an acid when irradiated with actinic rays as a photosensitive agent. The photosensitizer is not particularly limited as long as it generates an acid upon irradiation with actinic rays, but is preferably a compound having a quinonediazide structure, such as a benzoquinonediazide compound or a naphthoquinonediazide compound. For example, those described in US Pat. No. 2,797,213 and US Pat. No. 3,669,658 can be used. Among these, ester compounds of a phenol compound and 1,2-naphthoquinone-2-diazide-4-sulfonic acid or 1,2-naphthoquinone-2-diazide-5-sulfonic acid are preferable. These may be used alone or in combination of two or more.
 本発明に係る感光剤の配合量は、ポリイミド前駆体100質量部に対して5質量部から35質量部が好ましく、10質量部から30質量部がさらに好ましい。感光剤の配合量は、感光性の発現、及びアルカリ水溶液からなる現像液への溶解抑止の観点から5質量部以上、感度及びカバーレイの靭性発現の観点から35質量部以下が好ましい。 The blending amount of the photosensitizer according to the present invention is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor. The blending amount of the photosensitizer is preferably 5 parts by mass or more from the viewpoint of developing photosensitivity and inhibiting dissolution in a developer composed of an alkaline aqueous solution, and 35 parts by mass or less from the viewpoint of developing sensitivity and cover toughness.
(C)有機溶剤
 本発明に用いる有機溶剤には、例えばN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシドが挙げられる。また、必要に応じて、これらの溶剤よりも低沸点である溶剤を配合することができる。低沸点溶剤を配合することにより、乾燥時の発泡を抑制することができる。低沸点溶剤としては、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、エチルアルコール、イソプロピルアルコール、n-ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール又はヘキシレングリコールなどのアルコール類、1,4-ジオキサン、トリオキサン、ジエチルアセタール、1,2-ジオキソラン、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、アニソール、トリエチレングリコールジメチルエーテルなどのエーテル類、酢酸エチル、安息香酸メチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールジアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジアセテートなどのエステル類、n-ヘプタン、n-オクタン、シクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン及びジエチルベンゼンなどの炭化水素類が挙げられる。有機溶剤の配合量は、ポリイミド前駆体100質量部に対して、25質量部から900質量部が好ましく、100質量部から400質量部がさらに好ましい。配合量が900質量部よりも多いと、塗工後に膜厚保持が困難になり、25質量部よりも少ないと、ポリイミド前駆体が完全に溶解しない。
(C) Organic solvent Examples of the organic solvent used in the present invention include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, and dimethyl sulfoxide. Moreover, the solvent whose boiling point is lower than these solvents can be mix | blended as needed. By blending the low boiling point solvent, foaming during drying can be suppressed. Specific examples of the low boiling point solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl alcohol, isopropyl alcohol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and hexylene glycol. Alcohols, 1,4-dioxane, trioxane, diethyl acetal, 1,2-dioxolane, ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, anisole, triethylene glycol dimethyl ether, ethyl acetate, methyl benzoate, ethylene glycol monomethyl ether acetate, ethylene Glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethyl Glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol diacetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diacetate And esters such as n-heptane, n-octane, cyclohexane, benzene, toluene, xylene, ethylbenzene and diethylbenzene. The blending amount of the organic solvent is preferably 25 to 900 parts by mass, more preferably 100 to 400 parts by mass with respect to 100 parts by mass of the polyimide precursor. When the blending amount is more than 900 parts by mass, it becomes difficult to maintain the film thickness after coating, and when it is less than 25 parts by mass, the polyimide precursor is not completely dissolved.
(D)溶解抑止剤
 本発明に係る感光性ポリイミド前駆体組成物には必要に応じて溶解抑止剤を配合することができる。溶解抑止剤を配合することで、ポリイミド前駆体のアルカリ水溶液からなる現像液への溶解を抑止することができる。本発明に係る溶解抑止剤とは、ポリイミド前駆体のカルボキシル基やフェノール性水酸基と水素結合する化合物をいう。ポリイミド前駆体のカルボキシル基やフェノール性水酸基が溶解抑止剤と水素結合することで現像液から遮蔽され、また、当該化合物の疎水性と相まって、ポリイミド前駆体の溶解を抑止することが可能となる。
(D) Dissolution inhibitor A dissolution inhibitor can be mix | blended with the photosensitive polyimide precursor composition which concerns on this invention as needed. By mix | blending a dissolution inhibitor, melt | dissolution to the developing solution which consists of an alkaline aqueous solution of a polyimide precursor can be suppressed. The dissolution inhibitor according to the present invention refers to a compound that hydrogen bonds with a carboxyl group or a phenolic hydroxyl group of a polyimide precursor. When the carboxyl group or phenolic hydroxyl group of the polyimide precursor is hydrogen-bonded with the dissolution inhibitor, the polyimide precursor is shielded from the developer, and coupled with the hydrophobicity of the compound, it is possible to inhibit the dissolution of the polyimide precursor.
 カルボキシル基やフェノール性水酸基と水素結合する基を有する化合物としては、カルボン酸化合物、カルボン酸エステル化合物、アミド化合物、ウレア化合物などが挙げられる。アルカリ水溶液からなる現像液への溶解抑止効果及び保存安定性の観点より、下記一般式(6)で表される化合物が好ましく、アミド化合物、ウレア化合物がさらに好ましい。 Examples of the compound having a carboxyl group or a group capable of hydrogen bonding with a phenolic hydroxyl group include a carboxylic acid compound, a carboxylic acid ester compound, an amide compound, and a urea compound. From the viewpoints of the effect of inhibiting dissolution in a developer composed of an alkaline aqueous solution and the storage stability, a compound represented by the following general formula (6) is preferable, and an amide compound and a urea compound are more preferable.
Figure JPOXMLDOC01-appb-C000016
(RおよびRは炭素原子、窒素原子、酸素原子、硫黄原子の全て又は一部からなる有機基を表す。RおよびRは同一でも異なっていても良い。)
Figure JPOXMLDOC01-appb-C000016
(R 5 and R 6 represent an organic group consisting of all or part of a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. R 5 and R 6 may be the same or different.)
 アミド化合物としては、例えば、N,N-ジエチルアセトアミド、N,N-ジイソプロピルホルムアミド、N,N-ジメチルブチルアミド、N,N-ジブチルアセトアミド、N,N-ジプロピルアセトアミド、N,N-ジブチルホルムアミド、N,N-ジエチルプロピオンアミド、N,N-ジメチルプロピオンアミド、N,N’-ジメトキシ-N,N’-ジメチルオキサミド、N-メチル-ε-カプロラクタム、4-ヒドロキシフェニルベンズアミド、サリチルアミド、サリチルアニリド、アセトアニリド、2’-ヒドロキシアセトアニリド、3’-ヒドロキシアセトアニリド、4’-ヒドロキシアセトアニリドが挙げられる。 Examples of the amide compound include N, N-diethylacetamide, N, N-diisopropylformamide, N, N-dimethylbutyramide, N, N-dibutylacetamide, N, N-dipropylacetamide, N, N-dibutylformamide N, N-diethylpropionamide, N, N-dimethylpropionamide, N, N′-dimethoxy-N, N′-dimethyloxamide, N-methyl-ε-caprolactam, 4-hydroxyphenylbenzamide, salicylamide, And salicylanilide, acetanilide, 2′-hydroxyacetanilide, 3′-hydroxyacetanilide, 4′-hydroxyacetanilide.
 中でも、感光層及び当該感光層をベイクすることで得られるフィルムの低ガラス転移点化、アルカリ水溶液からなる現像液への溶解性の制御、高残膜率化の観点より、フェノール性水酸基を有する化合物が好ましく、フェノール性水酸基を有するアミド化合物がより好ましい。具体的には、4-ヒドロキシフェニルベンズアミド、2’-ヒドロキシアセトアニリド、3’-ヒドロキシアセトアニリド、4’-ヒドロキシアセトアニリドが挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Among them, it has a phenolic hydroxyl group from the viewpoint of lowering the glass transition point of the photosensitive layer and the film obtained by baking the photosensitive layer, controlling the solubility in a developer composed of an alkaline aqueous solution, and increasing the residual film ratio. A compound is preferable, and an amide compound having a phenolic hydroxyl group is more preferable. Specific examples include 4-hydroxyphenylbenzamide, 2'-hydroxyacetanilide, 3'-hydroxyacetanilide, and 4'-hydroxyacetanilide. These may be used alone or in combination of two or more.
 ウレア化合物としては、例えば、1,3-ジメチルウレア、テトラメチルウレア、テトラエチルウレア、1,3-ジフェニルウレア、3-ヒドロキシフェニルウレアが挙げられる。中でも、アルカリ水溶液からなる現像液への溶解性の制御、高残膜率化、感光層及び当該感光層をベイクすることにより得られるフィルムの低ガラス転移点化の観点より、フェノール性水酸基を含有するウレア化合物がより好ましい。具体的には3-ヒドロキシフェニルウレアが挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the urea compound include 1,3-dimethylurea, tetramethylurea, tetraethylurea, 1,3-diphenylurea, and 3-hydroxyphenylurea. Among them, it contains phenolic hydroxyl groups from the viewpoint of controlling the solubility in a developer composed of an aqueous alkali solution, increasing the residual film ratio, and lowering the glass transition point of the photosensitive layer and the film obtained by baking the photosensitive layer. More preferred are urea compounds. Specific examples include 3-hydroxyphenylurea. These may be used alone or in combination of two or more.
 本発明に係る溶解抑止剤は、アミド化合物を用いる場合、ポリイミド前駆体のカルボキシル基およびフェノール性水酸基1molに対して、溶解抑止効果の発現の観点から0.1molから2.0molを配合することが好ましく、0.15molから1.5mol配合することがより好ましい。 In the case of using an amide compound, the dissolution inhibitor according to the present invention may be blended in an amount of 0.1 mol to 2.0 mol with respect to 1 mol of the carboxyl group and phenolic hydroxyl group of the polyimide precursor from the viewpoint of expression of the dissolution inhibitory effect. Preferably, 0.15 mol to 1.5 mol is blended.
 本発明に係る溶解抑止剤は、ウレア化合物を用いる場合、ポリイミド前駆体のカルボキシル基およびフェノール性水酸基1molに対して、溶解抑止効果の発現の観点から0.1molから2.0molが好ましい。溶解抑止効果発現及びベイクで得られる樹脂の靭性発現の観点から、0.15molから1.5mol配合することがより好ましい。 In the case of using a urea compound, the dissolution inhibitor according to the present invention is preferably from 0.1 mol to 2.0 mol with respect to 1 mol of the carboxyl group and the phenolic hydroxyl group of the polyimide precursor from the viewpoint of expression of the dissolution inhibitory effect. From the viewpoint of the dissolution inhibiting effect and the toughness of the resin obtained by baking, it is more preferable to add 0.15 mol to 1.5 mol.
 また、アミド化合物とウレア化合物の両方を用いる場合には、アミド化合物とウレア化合物の総量が、溶解抑止効果の観点から、ポリイミド前駆体のカルボキシル基およびフェノール性水酸基1molに対して、0.1molから1.5molの範囲が好ましい。 Further, when both an amide compound and a urea compound are used, the total amount of the amide compound and the urea compound is from 0.1 mol to 1 mol of the carboxyl group and the phenolic hydroxyl group of the polyimide precursor from the viewpoint of the dissolution inhibiting effect. A range of 1.5 mol is preferred.
(E)フェノール化合物
 本発明の感光性ポリイミド前駆体組成物には必要に応じてフェノール化合物を配合することが出来る。フェノール化合物は、ベイク後のフィルムと基板から成るシートの反りの低減およびアルカリ水溶液への溶解性制御の観点から、下記一般式(7)で示される化合物および下記一般式(8)の構造を含むフェノール化合物である(本願の溶解抑止剤に該当しない成分とする)。
(E) Phenol compound A phenol compound can be mix | blended with the photosensitive polyimide precursor composition of this invention as needed. The phenol compound includes a compound represented by the following general formula (7) and a structure represented by the following general formula (8) from the viewpoint of reducing warpage of the sheet composed of the film and the substrate after baking and controlling the solubility in an alkaline aqueous solution. It is a phenol compound (assuming that it does not fall under the dissolution inhibitor of the present application).
Figure JPOXMLDOC01-appb-C000017
(RおよびRはそれぞれ独立に水素原子または炭素原子が1から50および酸素原子が0から10からなる有機基を表す。Xはそれぞれ独立に水素原子または水酸基または炭素数が1から20の有機基を表す。)
Figure JPOXMLDOC01-appb-C000017
(R 7 and R 8 each independently represents an organic group having 1 to 50 hydrogen atoms or carbon atoms and 0 to 10 oxygen atoms. X is independently a hydrogen atom, hydroxyl group or carbon number 1 to 20; Represents an organic group.)
Figure JPOXMLDOC01-appb-C000018
(RおよびR11はそれぞれ独立に炭素数が1から6の有機基を表し、R10は結合基または炭素数が1から20の有機基を表す。)
Figure JPOXMLDOC01-appb-C000018
(R 9 and R 11 each independently represents an organic group having 1 to 6 carbon atoms, and R 10 represents a bonding group or an organic group having 1 to 20 carbon atoms.)
 具体的には、ジヒドロキシジフェニルメタン、4,4’-オキシジフェノール、1,4-ビス-(3-ヒドロキシフェノキシ)-ベンゼン、1,3-ビス-(4-ヒドロキシフェノキシ)-ベンゼン、1,5-ビス-(o-ヒドロキシフェノキシ)-3-オキサペンタン、α,α’-ビス-(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼンなどの2核体、トリス(ヒドロキシフェニル)メタン、トリス(ヒドロキシフェニル)エタン、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]-α,α-ジメチルベンジル}フェノールなどの3核体、下記構造式群(a)で示される多核体などが挙げられる。これらのフェノール化合物は単独で用いても2種類以上組み合わせて用いても良い。 Specifically, dihydroxydiphenylmethane, 4,4′-oxydiphenol, 1,4-bis- (3-hydroxyphenoxy) -benzene, 1,3-bis- (4-hydroxyphenoxy) -benzene, 1,5 -Binuclear compounds such as bis- (o-hydroxyphenoxy) -3-oxapentane, α, α'-bis- (4-hydroxyphenyl) -1,4-diisopropylbenzene, tris (hydroxyphenyl) methane, tris ( Trinuclear compounds such as hydroxyphenyl) ethane, 4- {4- [1,1-bis (4-hydroxyphenyl) ethyl] -α, α-dimethylbenzyl} phenol, polynuclear compounds represented by the following structural formula group (a) Examples include the body. These phenol compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 本発明に係るフェノール化合物の配合量は、ポリイミド前駆体100質量部に対して、1質量部から30質量部が好ましく、5質量部から20質量部がさらに好ましい。配合量が1質量部よりも少ないと、アルカリ水溶液からなる現像液への溶解性を抑止することが困難になり、30質量部よりも多いと、脱溶剤工程後に得られた感光性ドライフィルムの感光層が脆くなる。 The compounding amount of the phenol compound according to the present invention is preferably 1 part by mass to 30 parts by mass, and more preferably 5 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor. When the blending amount is less than 1 part by mass, it becomes difficult to suppress the solubility in a developer composed of an alkaline aqueous solution, and when it exceeds 30 parts by mass, the photosensitive dry film obtained after the solvent removal step The photosensitive layer becomes brittle.
(F)可塑剤
 本発明に係わる感光性ポリイミド前駆体組成物には、可塑剤として、下記一般式(9)で示される化合物も好適に用いることができる。
(F) Plasticizer In the photosensitive polyimide precursor composition according to the present invention, a compound represented by the following general formula (9) can also be suitably used as a plasticizer.
Figure JPOXMLDOC01-appb-C000020
(R12からR14は、エチレングリコール鎖及び/又はプロピレングリコール鎖を含む有機基であり、それぞれ同一でも異なっても良い。)
Figure JPOXMLDOC01-appb-C000020
(R 12 to R 14 are organic groups containing an ethylene glycol chain and / or a propylene glycol chain, and may be the same or different.)
 具体的には下記構造式(i)、(j)で示される化合物が挙げられるが、これに限られたものではない。また、これらの化合物は単独で用いても2種類以上組み合わせて用いても良い。 Specific examples include compounds represented by the following structural formulas (i) and (j), but are not limited thereto. These compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000021
(dは0以上の整数、eは0以上の整数)
Figure JPOXMLDOC01-appb-C000021
(D is an integer greater than 0, e is an integer greater than 0)
 本発明に係る可塑剤の配合量は、ポリイミド前駆体100質量部に対して、1質量部から30質量部が好ましく、1質量部から10質量部がさらに好ましい。配合量が1質量部以上だと、反りの低減効果が発現し、30質量部以下だと、現像性に悪影響を及ぼすことなく、所望のパターンが得られる。 The compounding amount of the plasticizer according to the present invention is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the polyimide precursor. When the blending amount is 1 part by mass or more, a warp reduction effect is exhibited, and when it is 30 parts by mass or less, a desired pattern is obtained without adversely affecting developability.
(G)架橋剤
 本発明では、ベイク後のフィルムの靭性を向上させる目的で、架橋剤を配合することができる。架橋剤としては下記一般式(10)で表されるテトラカルボン酸化合物又はテトラカルボン酸エステル化合物、下記一般式(11)で表されるポリイミド前駆体又はカルボキシル基含有ポリイミド前駆体エステル化合物が好ましい。
(G) Crosslinking agent In this invention, a crosslinking agent can be mix | blended in order to improve the toughness of the film after baking. As the crosslinking agent, a tetracarboxylic acid compound or a tetracarboxylic acid ester compound represented by the following general formula (10), a polyimide precursor or a carboxyl group-containing polyimide precursor ester compound represented by the following general formula (11) is preferable.
Figure JPOXMLDOC01-appb-C000022
(R15は4価の有機基、R16からR19は水素又は炭素数が1から20の1価の有機基であり、それぞれ同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000022
(R 15 is a tetravalent organic group, R 16 to R 19 are hydrogen or a monovalent organic group having 1 to 20 carbon atoms, which may be the same or different.)
Figure JPOXMLDOC01-appb-C000023
(R20、R22、R24は4価の有機基であり、それぞれ同一でも異なっていてもよい。R21、R23は2価の有機基であり、それぞれ同一でも異なっていてもよい。R25からR32は水素又は炭素数が1から20の1価の有機基であり、それぞれ同一でも異なっていてもよい。gは0から100の整数である。)
Figure JPOXMLDOC01-appb-C000023
(R 20 , R 22 and R 24 are tetravalent organic groups which may be the same or different. R 21 and R 23 are divalent organic groups which may be the same or different. R 25 to R 32 are hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and may be the same or different, and g is an integer of 0 to 100.)
 本発明に係る架橋剤の配合量は、ポリイミド前駆体の残アミノ基のモル数に対して、架橋効果の発現の観点から、0.1molから1.5molが好ましく、0.5molから1.1molがより好ましい。残アミノ基量は高速液体クロマトグラフィーを用いて算出することが可能である。 The amount of the crosslinking agent according to the present invention is preferably from 0.1 mol to 1.5 mol, preferably from 0.5 mol to 1.1 mol, from the viewpoint of expression of the crosslinking effect, relative to the number of moles of the remaining amino groups of the polyimide precursor. Is more preferable. The amount of residual amino groups can be calculated using high performance liquid chromatography.
(H)熱塩基発生剤
 本発明に係る感光性ポリイミド前駆体組成物は、必要に応じて、熱塩基発生剤を含むことができる。熱塩基発生剤とは、加熱することで塩基を発生する化合物のことである。例えば、アミンなどの塩基化合物のアミノ基とスルホン酸などの酸とで塩構造を作る、ジカーボネート化合物により保護する、酸クロライド化合物により保護することにより得られる。それにより、室温では塩基性を発現せず安定であり、加熱により脱保護し、塩基を発生させる熱塩基発生剤とすることができる。また当該熱塩基発生剤を配合することで、ポリイミド前駆体のベイクの温度を比較的低温にすることも可能となる。
(H) Thermal base generator The photosensitive polyimide precursor composition which concerns on this invention can contain a thermal base generator as needed. A thermal base generator is a compound that generates a base by heating. For example, it can be obtained by forming a salt structure with an amino group of a basic compound such as amine and an acid such as sulfonic acid, protecting with a dicarbonate compound, or protecting with an acid chloride compound. Thereby, it is stable without exhibiting basicity at room temperature, and can be a thermal base generator that generates a base by deprotection by heating. Moreover, it becomes possible to make the polyimide precursor baking temperature relatively low by blending the thermal base generator.
 熱塩基発生剤としては、具体的にはU-CAT(登録商標) SA810、U-CAT SA831、U-CAT SA841、U-CAT SA851(以上商品名 サンアプロ社製)、N-(イソプロポキシカルボニル)-2,6-ジメチルピペリジン、N-(tert-ブトキシカルボニル)-2,6-ジメチルピペリジン、N-(ベンジロキシカルボニル)-2,6-ジメチルピペリジン、芳香族ジアミンのアミノ基を二炭酸ジブチルで保護した化合物などが挙げられる。これらのうち感光性ポリイミド前駆体組成物の保存安定性、脱溶剤による分子量安定性、アルカリ溶解性、イオンマイグレーション性の観点より、N-(イソプロポキシカルボニル)-2,6-ジメチルピペリジン、N-(tert-ブトキシカルボニル)-2,6-ジメチルピペリジン、N-(ベンジロキシカルボニル)-2,6-ジメチルピペリジン、4,4-ジアミノジフェニルエーテルのアミノ基を二炭酸ジブチルで保護した化合物、3,4’-ジアミノジフェニルエーテルのアミノ基を二炭酸ジブチルで保護した化合物、1,3-ビス(3-アミノフェノキシ)ベンゼンのアミノ基を二炭酸ジブチルで保護した化合物、1,3-ビス(4-アミノフェノキシ)ベンゼンのアミノ基を二炭酸ジブチルで保護した化合物、トリメチレン-ビス(4-アミノベンゾエート)のアミノ基を二炭酸ジブチルで保護した化合物、1,4-ビス(4-アミノフェノキシ)ペンタンのアミノ基を二炭酸ジブチルで保護した化合物が好ましい。当該化合物は、例えばChmistry Letters Vol.34、No.10(2005)に記載の公知の方法により合成できる。 Specific examples of the thermal base generator include U-CAT (registered trademark) SA810, U-CAT SA831, U-CAT SA841, U-CAT SA851 (above, trade name: San Apro), N- (isopropoxycarbonyl) -2,6-dimethylpiperidine, N- (tert-butoxycarbonyl) -2,6-dimethylpiperidine, N- (benzyloxycarbonyl) -2,6-dimethylpiperidine, amino group of aromatic diamine with dibutyl dicarbonate Examples include protected compounds. Of these, N- (isopropoxycarbonyl) -2,6-dimethylpiperidine, N-, from the viewpoints of storage stability of the photosensitive polyimide precursor composition, molecular weight stability by solvent removal, alkali solubility, and ion migration properties. (Tert-butoxycarbonyl) -2,6-dimethylpiperidine, N- (benzyloxycarbonyl) -2,6-dimethylpiperidine, a compound in which the amino group of 4,4-diaminodiphenyl ether is protected with dibutyl dicarbonate, 3, 4 A compound in which the amino group of '-diaminodiphenyl ether is protected with dibutyl dicarbonate, a compound in which the amino group of 1,3-bis (3-aminophenoxy) benzene is protected with dibutyl dicarbonate, 1,3-bis (4-aminophenoxy) ) A compound in which the amino group of benzene is protected with dibutyl dicarbonate, trimethylene Bis compound protected dicarbonate dibutyl amino group of (4-aminobenzoate), 1,4-bis (4-aminophenoxy) compounds in which amino groups of pentane was protected by two-dibutyl carbonate are preferred. Such compounds are described in, for example, Chemistry Letters Vol. 34, no. 10 (2005).
 本発明に係わる熱塩基発生剤の配合量は、イミド化の促進及び現像性能の観点から、ポリイミド前駆体100質量部に対して0.5質量部から30質量部が好ましく、0.5質量部から20質量部がより好ましい。 The blending amount of the thermal base generator according to the present invention is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor, from the viewpoint of acceleration of imidization and development performance, and 0.5 parts by mass. To 20 parts by mass is more preferable.
(I)リン酸エステル化合物
 本発明に係わる感光性ポリイミド前駆体組成物には、必要に応じてリン酸エステル化合物を配合することができる。これらの化合物は、感光性ポリイミド前駆体組成物に対して難燃剤や溶解助剤や可塑剤として作用する。
(I) Phosphate ester compound A phosphate ester compound can be mix | blended with the photosensitive polyimide precursor composition concerning this invention as needed. These compounds act as a flame retardant, a dissolution aid, and a plasticizer for the photosensitive polyimide precursor composition.
 リン酸エステル化合物としては、下記一般式(12)、下記一般式(13)又は下記一般式(14)で示す化合物からなる群より選ばれた少なくとも一つの化合物を用いる。 As the phosphoric ester compound, at least one compound selected from the group consisting of compounds represented by the following general formula (12), the following general formula (13) or the following general formula (14) is used.
Figure JPOXMLDOC01-appb-C000024
(R33からR35は炭素数1以上の有機基を表し、それぞれ同一でも異なっていても良い。)
Figure JPOXMLDOC01-appb-C000024
(R 35 from R 33 represents a number 1 or more organic groups carbon, it may be the same or different, respectively.)
Figure JPOXMLDOC01-appb-C000025
(R36からR39は炭素数が1以上の有機基を表し、それぞれ同一でも異なっていても良い。)
Figure JPOXMLDOC01-appb-C000025
(R 36 to R 39 each represents an organic group having 1 or more carbon atoms, and may be the same or different.)
Figure JPOXMLDOC01-appb-C000026
(式中R40は水素又は1価の有機基である。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 40 is hydrogen or a monovalent organic group.)
 感光性ポリイミド前駆体組成物の難燃性や可塑性を改善することを考慮すると、上記一般式(12)中のR33からR35又は上記一般式(13)中のR36からR39がメチル基、エチル基、ブチル基、2-エチルヘキシル基、ブトキシエチル基、フェニル基、クレジル基、キシレニル基、アミノフェニル基から選ばれる有機基であることが好ましい。 In consideration of improving the flame retardancy and plasticity of the photosensitive polyimide precursor composition, R 33 to R 35 in the general formula (12) or R 36 to R 39 in the general formula (13) are methyl. An organic group selected from a group, an ethyl group, a butyl group, a 2-ethylhexyl group, a butoxyethyl group, a phenyl group, a cresyl group, a xylenyl group, and an aminophenyl group is preferable.
 また、同様に熱安定性と、感光性ドライフィルムの反り改善効果を考慮すると、上記一般式(14)中のR40が水素、ジヒドロキシフェニル基、ジブチルヒドロキシベンジル基、(メタ)アクリレート含有有機基から選ばれる有機基であることが好ましい。さらに、樹脂ワニスとの相溶性や感光性ドライフィルム化した際の反り改善効果を考慮すると、R40は水素が好ましい。 Similarly, when considering the thermal stability and the effect of improving the warp of the photosensitive dry film, R 40 in the general formula (14) is hydrogen, dihydroxyphenyl group, dibutylhydroxybenzyl group, (meth) acrylate-containing organic group. It is preferable that it is an organic group chosen from these. Further, in consideration of the compatibility with the resin varnish and the effect of improving the warp when the photosensitive dry film is formed, R 40 is preferably hydrogen.
 これらのリン酸エステル化合物は単独でも、二種以上組み合わせて配合することもできる。これらのリン酸エステル化合物の配合量は1質量部から30質量部が好ましく、1質量部から20質量部がさらに好ましい。配合量が1質量部以上だと可塑性を発現し、30質量部以下だと、感光性ポリイミド前駆体組成物の活性光線を照射していない部分が、アルカリ水溶液からなる現像液に浸食されにくくなり、良好な線像を得ることができる。 These phosphate ester compounds can be used alone or in combination of two or more. The blending amount of these phosphate ester compounds is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass. When the blending amount is 1 part by mass or more, plasticity is expressed. When the blending amount is 30 parts by mass or less, the portion of the photosensitive polyimide precursor composition that is not irradiated with actinic rays is less likely to be eroded by the developer composed of an alkaline aqueous solution. A good line image can be obtained.
(J)有機リン化合物
 本発明に係わる感光性ポリイミド前駆体組成物には、下記一般式(15)で表される有機リン化合物を配合することができる。当該有機リン化合物を配合することにより、ベイクにより得られた樹脂パターンに難燃性を付与することができる。
(J) Organophosphorus Compound An organophosphorus compound represented by the following general formula (15) can be blended with the photosensitive polyimide precursor composition according to the present invention. By mix | blending the said organophosphorus compound, a flame retardance can be provided to the resin pattern obtained by baking.
Figure JPOXMLDOC01-appb-C000027
(R41は有機基を表す。hは1から50の整数を表す。)
Figure JPOXMLDOC01-appb-C000027
(R 41 represents an organic group. H represents an integer of 1 to 50.)
 これらの有機リン化合物の配合量は1質量部から30質量部が好ましく3質量部から25質量部がさらに好ましい。配合量が1質量部以上だと難燃性を発現し、30質量部以下だと、ベイク後に得られる樹脂パターンが強靭となる。 The compounding amount of these organic phosphorus compounds is preferably 1 part by mass to 30 parts by mass, and more preferably 3 parts by mass to 25 parts by mass. If the blending amount is 1 part by mass or more, flame retardancy is exhibited, and if it is 30 parts by mass or less, the resin pattern obtained after baking becomes tough.
(K)その他の成分
 本発明に係わる感光性ポリイミド前駆体組成物には、必要に応じてイミダゾール化合物、トリアゾール化合物、テトラゾール化合物、スルフィド化合物を配合することができる。これらの化合物を配合することによって、銅基板との接着性を改善することができる。
(K) Other components An imidazole compound, a triazole compound, a tetrazole compound, and a sulfide compound can be mix | blended with the photosensitive polyimide precursor composition concerning this invention as needed. By blending these compounds, the adhesion to the copper substrate can be improved.
 これらの化合物の配合量は0.1質量部から10質量部が好ましく、0.1質量部から5質量部がさらに好ましい。配合量が0.1質量部以上だと接着性の改善効果が発現し、10質量部以下だと、現像性に悪影響を及ぼすことなく、良好な線像を得ることができる。 The compounding amount of these compounds is preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. When the blending amount is 0.1 parts by mass or more, an effect of improving adhesiveness is exhibited, and when it is 10 parts by mass or less, a good line image can be obtained without adversely affecting developability.
 本発明に係わる感光性ポリイミド前駆体組成物には、支持フィルムとの濡れ性を向上させる目的で、必要に応じてエタノール、2-プロパノール、エチレングリコールなどのアルコール類、乳酸エチル、安息香酸メチル、エチレングリコールモノプロピルエーテルアセテートなどのエステル類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、n-ブチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルなどのグリコールエーテル類を配合することが出来る。 In the photosensitive polyimide precursor composition according to the present invention, for the purpose of improving the wettability with the support film, alcohols such as ethanol, 2-propanol and ethylene glycol, ethyl lactate, methyl benzoate, Esters such as ethylene glycol monopropyl ether acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, ethers such as n-butyl ether, tetrahydrofuran and dioxane, glycol ethers such as ethylene glycol monoethyl ether and propylene glycol monoethyl ether Can be blended.
 本発明の感光性ポリイミド前駆体組成物はカバーレイとして使用することができる。カバーレイとは、シリコンウェハ、銅張積層板、FPCなどの上に形成された配線を保護する保護膜をいう。 The photosensitive polyimide precursor composition of the present invention can be used as a coverlay. A coverlay refers to a protective film that protects wiring formed on a silicon wafer, a copper clad laminate, an FPC, or the like.
(感光性ポリイミド前駆体組成物の調合)
 本発明に係わる感光性ポリイミド前駆体組成物は、適当な容器内に、前記ポリイミド前駆体および種々の化合物を配合し、ミックスローター、ノンバブリングニーダー、攪拌羽を具備したスリーワンモーターなどで完全に溶解するまで攪拌することで得られる。
(Preparation of photosensitive polyimide precursor composition)
The photosensitive polyimide precursor composition according to the present invention is prepared by mixing the polyimide precursor and various compounds in a suitable container, and is completely dissolved in a three-rotor motor equipped with a mix rotor, non-bubbling kneader, and stirring blades. It is obtained by stirring until
(樹脂パターンの製造)
 本発明では、感光性ポリイミド前駆体組成物を用いて感光性ドライフィルムを作製し、樹脂パターンを形成させることができる。当該樹脂パターンは以下の工程で形成することができる。
(Manufacture of resin patterns)
In this invention, a photosensitive dry film can be produced using the photosensitive polyimide precursor composition, and a resin pattern can be formed. The resin pattern can be formed by the following steps.
(1)感光性ポリイミド前駆体組成物をフィルム基材に塗布し、次いで脱溶剤し感光性ドライフィルムを作る工程 (1) A process of applying a photosensitive polyimide precursor composition to a film substrate and then removing the solvent to produce a photosensitive dry film
 感光性ドライフィルムは、支持フィルム(フィルム基材)に感光性ポリイミド前駆体組成物を塗布し、溶媒を乾燥させ感光層を形成することにより得られる。支持フィルムとしては低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアリレート、ポリアクリロニトリル、エチレン/シクロデセン共重合体などを用いることができる。これらの支持フィルムには、感光性ポリイミド前駆体組成物の濡れ性や、当該感光性ポリイミド前駆体組成物から得られる感光層の剥離性を制御する目的で、表面処理を行うことが可能である。表面処理方法としては、コロナ処理、フレーム処理、プラズマ処理、シリコーンやアルキッド樹脂やオレフィン樹脂などを用いた表面改質などが挙げられる。またキャリアフィルムの厚みは、塗工性、付着性、ロール性、強靱性、コストなどを考慮し、通常15μmから100μm、好ましくは15μmから75μmである。 The photosensitive dry film is obtained by applying a photosensitive polyimide precursor composition to a support film (film substrate) and drying the solvent to form a photosensitive layer. As the support film, low density polyethylene, high density polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, ethylene / cyclodecene copolymer, and the like can be used. These support films can be subjected to surface treatment for the purpose of controlling the wettability of the photosensitive polyimide precursor composition and the peelability of the photosensitive layer obtained from the photosensitive polyimide precursor composition. . Examples of the surface treatment method include corona treatment, flame treatment, plasma treatment, surface modification using silicone, alkyd resin, olefin resin, and the like. The thickness of the carrier film is usually 15 μm to 100 μm, preferably 15 μm to 75 μm, in consideration of coating properties, adhesion, rollability, toughness, cost, and the like.
 感光性ポリイミド前駆体組成物の塗布は、上記の支持フィルムにリバースロールコーターやグラビアロールコーター、コンマコーター、リップコーター、スロットダイコーターなど公知の方法を用いて行うことが出来る。 The photosensitive polyimide precursor composition can be applied to the above support film using a known method such as a reverse roll coater, a gravure roll coater, a comma coater, a lip coater, or a slot die coater.
 脱溶剤は、溶剤の乾燥(熱風乾燥や遠赤外線、近赤外線を用いた乾燥機)により、行うことができる。乾燥温度は分子量低下の抑止の観点より、温度50℃から120℃が好ましく、感光剤の安定性の観点より、50℃から110℃がさらに好ましい。脱溶剤により得られた感光層の膜厚は、5μmから100μmが好ましく、より好ましくは5μmから50μmである。膜厚は、絶縁信頼性の観点から5μm以上が好ましく、良好な線像を得るという観点から100μm以下が好ましい。ここで、ポリイミド前駆体ワニスでの重量平均分子量(Mw1)と120℃以下での脱溶媒後の重量平均分子量(Mw2)との間の比(Mw2/Mw1)が0.7以上であれば、脱溶剤後の感光性ドライフィルムを折り曲げても感光層の割れがないという効果を奏する。 Solvent removal can be performed by drying the solvent (drying using hot air, far infrared rays, or near infrared rays). The drying temperature is preferably from 50 ° C. to 120 ° C. from the viewpoint of suppressing the decrease in molecular weight, and more preferably from 50 ° C. to 110 ° C. from the viewpoint of the stability of the photosensitive agent. The film thickness of the photosensitive layer obtained by solvent removal is preferably 5 μm to 100 μm, more preferably 5 μm to 50 μm. The film thickness is preferably 5 μm or more from the viewpoint of insulation reliability, and preferably 100 μm or less from the viewpoint of obtaining a good line image. Here, if the ratio (Mw2 / Mw1) between the weight average molecular weight (Mw1) in the polyimide precursor varnish and the weight average molecular weight (Mw2) after solvent removal at 120 ° C. or lower is 0.7 or more, Even if the photosensitive dry film after solvent removal is folded, the photosensitive layer is not cracked.
 また、感光性ドライフィルムにカバーフィルムを積層させ、感光性積層フィルムとすることができる。カバーフィルムを積層させることで、感光層の支持フィルムへの接着を防止することができる。カバーフィルムとしては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリアリレート、ポリアクリロニトリル、エチレン/シクロデセン共重合体を用いることができる。 Moreover, a cover film can be laminated on a photosensitive dry film to form a photosensitive laminated film. By laminating the cover film, adhesion of the photosensitive layer to the support film can be prevented. As the cover film, low density polyethylene, high density polyethylene, polypropylene, polyester, polycarbonate, polyarylate, polyacrylonitrile, ethylene / cyclodecene copolymer can be used.
(2)感光性ドライフィルムを、パターンを配した基板上に圧着し感光層を形成する工程
 感光性ドライフィルムをFPCなどの回路形成された面(パターンを配した基板上)に重ね合わせ、平面ラミネートやロールラミネート、真空プレスなどの公知の方法により、40℃から130℃、好ましくは60℃から120℃に加熱しながら、0.2MPaから5MPaの圧力でラミネート(圧着)することで感光層を積層することができる。
(2) A process of forming a photosensitive layer by pressure-bonding a photosensitive dry film on a substrate on which a pattern is arranged. A photosensitive dry film is superimposed on a surface on which a circuit such as an FPC is formed (on a substrate on which a pattern is arranged) The photosensitive layer is laminated (press-bonded) at a pressure of 0.2 MPa to 5 MPa while being heated at 40 ° C. to 130 ° C., preferably 60 ° C. to 120 ° C., by a known method such as laminating, roll laminating or vacuum pressing. Can be stacked.
 このとき感光性ドライフィルムがカバーフィルムを積層した感光性積層フィルムの場合、ラミネート前にカバーフィルムを剥す。ラミネート可能温度を40℃以上とする事でラミネート前の位置合わせ時にタックにより手間取る事が無くなり、130℃以下とすることにより感光剤の分解が進行せずにラミネートすることが可能となる。なお、ラミネート可能温度とは、気泡残りなどの問題がなく、パターンへの埋め込みが充分にできると同時に、感光性ポリイミド前駆体組成物が流れすぎてパターンの外に流れ出さない粘度に感光層を制御することが可能な温度を意味する。 At this time, if the photosensitive dry film is a photosensitive laminated film in which a cover film is laminated, the cover film is peeled off before lamination. By setting the laminating temperature to 40 ° C. or higher, it is possible to eliminate troublesome work by tacking at the time of alignment before lamination, and by setting it to 130 ° C. or lower, it is possible to laminate without decomposing the photosensitive agent. Note that the temperature at which lamination is possible is that there is no problem such as remaining bubbles, and the pattern can be sufficiently embedded in the pattern, and at the same time, the photosensitive layer has a viscosity at which the photosensitive polyimide precursor composition does not flow out of the pattern. It means the temperature that can be controlled.
 また、感光層のガラス転移点(以下Tg)をラミネート温度より低くすることにより、感光性ドライフィルムのラミネートを好適に行うことが出来る。感光層のラミネート後、支持フィルムは、剥しても剥さなくても良い。ラミネート後に支持フィルムを剥さない場合は、露光工程後に剥す。 Further, by making the glass transition point (hereinafter referred to as Tg) of the photosensitive layer lower than the laminating temperature, the photosensitive dry film can be suitably laminated. After lamination of the photosensitive layer, the support film may or may not be peeled off. If the support film is not peeled after lamination, it is peeled off after the exposure step.
(3)感光層に活性光線を照射する工程
 感光層は、微細孔や微細幅ラインを形成するため、任意のパターンが描かれたフォトマスクを通して露光される。露光量は、感光性ポリイミド前駆体組成物の組成により異なるが、通常100mJ/cm2~3,000mJ/cm2である。この時使用される活性光線としては、例えばX線、電子線、紫外線、可視光線などが挙げられる。活性光線の光源としては低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプなどを使用することができる。本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いるのが好ましい。活性光線を照射する方法としては、密着露光、投影露光のいずれの方法でもよい。
(3) Step of irradiating the photosensitive layer with actinic rays The photosensitive layer is exposed through a photomask on which an arbitrary pattern is drawn in order to form fine holes and fine width lines. Exposure varies depending on the composition of the photosensitive polyimide precursor composition is usually 100mJ / cm 2 ~ 3,000mJ / cm 2. Examples of actinic rays used at this time include X-rays, electron beams, ultraviolet rays, and visible rays. As the active light source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, or the like can be used. In the present invention, it is preferable to use i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp. As a method of irradiating with actinic rays, either contact exposure or projection exposure may be used.
(4)アルカリ水溶液により現像する工程
 露光後、現像液を用い、浸漬法、スプレー法などの公知の方法にて現像を行い、線像を得ることができる。現像液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、テトラメチルアンモニウムヒドロキシド水溶液などのアルカリ水溶液が使用できる。また本工程では、現像液を加熱しながら現像を行うことが好ましい。現像温度を管理することで、現像時間をコントロールでき、得られる線像の形状を保持できる。これらの観点より現像液の温度は、20℃~60℃が好ましく、25℃~50℃がさらに好ましい。
(4) Step of developing with aqueous alkali solution After exposure, a developing solution is used, and development is performed by a known method such as an immersion method or a spray method to obtain a line image. As the developer, an aqueous alkali solution such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, or an aqueous tetramethylammonium hydroxide solution can be used. In this step, it is preferable to perform development while heating the developer. By managing the development temperature, the development time can be controlled and the shape of the obtained line image can be maintained. From these viewpoints, the temperature of the developer is preferably 20 ° C. to 60 ° C., more preferably 25 ° C. to 50 ° C.
(5)水及び酸性水溶液からなる群から選択される少なくとも1つの溶媒によりリンスする工程
 現像後は、浸漬法、スプレー法などの公知の方法にて洗浄を行う。リンス液としては、水や水に有機溶剤を添加したものを用いることができる。本工程では、リンス液を適切な温度に保持することが好ましい。これにより現像後に基板や樹脂上の残渣を取り除くことが可能である。リンス液の温度としては残渣除去の観点から15℃~60℃が好ましく、20℃~50℃がさらに好ましい。リンス液での洗浄後、無機酸水溶液または有機酸水溶液により洗浄を行っても良い。無機酸水溶液としては、具体的には塩酸水溶液、硫酸水溶液、リン酸水溶液、ホウ酸水溶液が挙げられる。有機酸水溶液としては、具体的にはギ酸水溶液、酢酸水溶液、クエン酸水溶液、乳酸水溶液などが挙げられる。無機酸水溶液または有機酸水溶液での洗浄時間は、洗浄効率の観点から、5秒から120秒が好ましく、10秒から60秒がさらに好ましい。酸性水溶液でリンスを行う場合、その後、水により酸性水溶液を洗い流すことが好ましい。
(5) Step of rinsing with at least one solvent selected from the group consisting of water and acidic aqueous solution After development, washing is performed by a known method such as an immersion method or a spray method. As the rinsing liquid, water or a solution obtained by adding an organic solvent to water can be used. In this step, it is preferable to maintain the rinse liquid at an appropriate temperature. Thereby, it is possible to remove residues on the substrate and the resin after development. The temperature of the rinsing liquid is preferably 15 ° C. to 60 ° C., more preferably 20 ° C. to 50 ° C. from the viewpoint of residue removal. After washing with a rinsing liquid, washing may be performed with an inorganic acid aqueous solution or an organic acid aqueous solution. Specific examples of the inorganic acid aqueous solution include a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution, a phosphoric acid aqueous solution, and a boric acid aqueous solution. Specific examples of the organic acid aqueous solution include a formic acid aqueous solution, an acetic acid aqueous solution, a citric acid aqueous solution, and a lactic acid aqueous solution. The washing time with the inorganic acid aqueous solution or organic acid aqueous solution is preferably 5 seconds to 120 seconds, more preferably 10 seconds to 60 seconds, from the viewpoint of washing efficiency. When rinsing with an acidic aqueous solution, the acidic aqueous solution is preferably washed away with water.
(6)感光層の全体に活性光線を照射する工程
 リンス工程後、得られた線像の全面に活性光線を照射しても良い。本工程により感光剤を分解させることで、その後のキュア工程にかかる時間を短縮化することができる。さらにキュア工程後に得られる樹脂パターンの光線透過率を高めることが可能となる。
(6) A process of irradiating the entire photosensitive layer with actinic rays After the rinsing process, the entire surface of the obtained line image may be irradiated with actinic rays. By decomposing the photosensitizer in this step, the time required for the subsequent curing step can be shortened. Furthermore, the light transmittance of the resin pattern obtained after the curing process can be increased.
 また、本工程により、感光剤由来の基板と感光層間にかかる残留応力を低減でき、樹脂パターン製造工程で得られるFPCや多層プリント配線板の反りを低減し、耐折性を高めることが可能となる。本工程で照射する露光量は、用いる感光剤の種類や感光層の膜厚により異なるが、通常100mJ/cm2から3,000mJ/cm2である。例えば感光剤にナフトキノンジアジド化合物を用い、感光層の膜厚が25μmの場合、感光剤の光分解の観点から500mJ/cm以上が好ましい。この時使用される活性光線としては、例えばX線、電子線、紫外線、可視光線などが挙げられる。活性光線の光源としては低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプなどを使用することができる。これらの中でも水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いるのが好ましい。また、必要に応じて、加熱をしながら活性光線を照射することが可能である。作業性の観点から加熱温度は30℃から130℃が好ましく、40℃から100℃がさらに好ましい。 In addition, this process can reduce the residual stress between the photosensitive agent-derived substrate and the photosensitive layer, reduce the warpage of the FPC and multilayer printed wiring board obtained in the resin pattern manufacturing process, and increase the folding resistance. Become. Exposure to irradiation in this step varies by the thickness of the type of photosensitive agent used and the photosensitive layer is usually 100 mJ / cm 2 at 3,000 mJ / cm 2. For example, when a naphthoquinone diazide compound is used for the photosensitive agent and the photosensitive layer has a thickness of 25 μm, the amount is preferably 500 mJ / cm 2 or more from the viewpoint of photodecomposition of the photosensitive agent. Examples of actinic rays used at this time include X-rays, electron beams, ultraviolet rays, and visible rays. As the active light source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, or the like can be used. Among these, it is preferable to use i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp. Moreover, it is possible to irradiate actinic light, heating as needed. From the viewpoint of workability, the heating temperature is preferably 30 ° C to 130 ° C, more preferably 40 ° C to 100 ° C.
(7)100から400℃でベイクする工程
 前記工程によって得られた線像に、ベイクを行うことにより樹脂パターンが形成される。ベイクは、100℃から400℃の温度で5分から5時間、連続的又は段階的に行われる。そして、加工品が出来上がる。FPCの場合、配線の酸化防止の観点より100℃から200℃の温度範囲でキュアすることが好ましい。このようにして得られる加工品としては、FPC、多層プリント配線板などが挙げられる。
(7) Baking process at 100 to 400 ° C. A resin pattern is formed by baking the line image obtained by the above process. Baking is carried out continuously or stepwise at a temperature of 100 ° C. to 400 ° C. for 5 minutes to 5 hours. And the processed product is completed. In the case of FPC, it is preferable to cure in a temperature range of 100 ° C. to 200 ° C. from the viewpoint of preventing oxidation of the wiring. Examples of the processed product thus obtained include FPC and multilayer printed wiring boards.
 以下、本発明を実施例により具体的に説明するが、これらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but is not limited to these examples.
(ポリイミド前駆体の合成)
合成例1 ポリイミド前駆体(i)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン6.4g、γ-ブチロラクトン62gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(i)を得た。得られたポリイミド前駆体(i)の酸二無水物とジアミンのモル比、ポリイミド前駆体(i)溶液の固形分及び重量平均分子量を表1に示す。
(Synthesis of polyimide precursor)
Synthesis Example 1 Synthesis of Polyimide Precursor (i) 6.4 g of 1,3-bis (3-aminophenoxy) benzene and 62 g of γ-butyrolactone were placed in a three-necked separable flask and stirred until a uniform solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the polyimide precursor (i) was obtained by carrying out pressure filtration of the product with a 5-micrometer filter. Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (i), the solid content of the polyimide precursor (i) solution, and the weight average molecular weight.
合成例2 ポリイミド前駆体(ii)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン4.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート6.8g、γ-ブチロラクトン82gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(ii)を得た。得られたポリイミド前駆体(ii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(ii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 2 Synthesis of polyimide precursor (ii) In a three-necked separable flask, 4.8 g of 1,3-bis (3-aminophenoxy) benzene, 6.8 g of polytetramethylene oxide-di-p-aminobenzoate, γ-butyrolactone 82 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (ii). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (ii), the solid content of the polyimide precursor (ii) solution, and the weight average molecular weight.
合成例3 ポリイミド前駆体(iii)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン9.7g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート13.7g、γ-ブチロラクトン168.8gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(iii)を得た。得られたポリイミド前駆体(iii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(iii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 3 Synthesis of polyimide precursor (iii) In a three-necked separable flask, 9.7 g of 1,3-bis (3-aminophenoxy) benzene, 13.7 g of polytetramethylene oxide-di-p-aminobenzoate, γ-butyrolactone 168.8 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (iii). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (iii), the solid content of the polyimide precursor (iii) solution, and the weight average molecular weight.
合成例4 ポリイミド前駆体(iv)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン8.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.4g、γ-ブチロラクトン99.7gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(iv)を得た。得られたポリイミド前駆体(iv)の酸二無水物とジアミンのモル比、ポリイミド前駆体(iv)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 4 Synthesis of Polyimide Precursor (iv) In a three-necked separable flask, 8.8 g of 1,3-bis (3-aminophenoxy) benzene, 12.4 g of polytetramethylene oxide-di-p-aminobenzoate, γ-butyrolactone 99.7 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (iv). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (iv), the solid content of the polyimide precursor (iv) solution, and the weight average molecular weight.
合成例5 ポリイミド前駆体(v)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)10.0g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート13.1g、γ-ブチロラクトン104.1gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(v)を得た。得られたポリイミド前駆体(v)の酸二無水物とジアミンのモル比、ポリイミド前駆体(v)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 5 Synthesis of polyimide precursor (v) In a three-necked separable flask, 10.0 g of trimethylene-bis (4-aminobenzoate), 13.1 g of polytetramethylene oxide-di-p-aminobenzoate, 104.1 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (v). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (v), the solid content of the polyimide precursor (v) solution, and the weight average molecular weight.
合成例6 ポリイミド前駆体(vi)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.9g、γ-ブチロラクトン103.1gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(vi)を得た。得られたポリイミド前駆体(vi)の酸二無水物とジアミンのモル比、ポリイミド前駆体(vi)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 6 Synthesis of Polyimide Precursor (vi) In a three-necked separable flask, 9.8 g of trimethylene-bis (4-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 103.1 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (vi). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (vi), the solid content of the polyimide precursor (vi) solution, and the weight average molecular weight.
合成例7 ポリイミド前駆体(vii)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.5g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.4g、γ-ブチロラクトン101.0gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(vii)を得た。得られたポリイミド前駆体(vii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(vii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 7 Synthesis of polyimide precursor (vii) In a three-necked separable flask, 9.5 g of trimethylene-bis (4-aminobenzoate), 12.4 g of polytetramethylene oxide-di-p-aminobenzoate, 101.0 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (vii). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (vii), the solid content of the polyimide precursor (vii) solution, and the weight average molecular weight.
合成例8 ポリイミド前駆体(viii)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.1g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート15.4g、γ-ブチロラクトン107.3gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(viii)を得た。得られたポリイミド前駆体(viii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(viii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 8 Synthesis of polyimide precursor (viii) Trimethylene-bis (4-aminobenzoate) 9.1 g, polytetramethylene oxide-di-p-aminobenzoate 15.4 g, γ-butyrolactone 107.3 g in a three-necked separable flask And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (viii). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (viii), the solid content of the polyimide precursor (viii) solution, and the weight average molecular weight.
合成例9 ポリイミド前駆体(ix)の合成
 三口セパラブルフラスコにトリメチレン-ビス(3-アミノベンゾエート)9.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.9g、γ-ブチロラクトン103.1gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(ix)を得た。得られたポリイミド前駆体(ix)の酸二無水物とジアミンのモル比、ポリイミド前駆体(ix)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 9 Synthesis of polyimide precursor (ix) In a three-necked separable flask, 9.8 g of trimethylene-bis (3-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 103.1 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, a polyimide precursor (ix) was obtained by pressure filtration of the product with a 5 μm filter. Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (ix), the solid content of the polyimide precursor (ix) solution, and the weight average molecular weight.
合成例10 ポリイミド前駆体(x)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.8g、ポリ(テトラメチレン/3-メチルテトラメチレンエーテル)グリコールビス(4-アミノベンゾエート)12.9g、γ-ブチロラクトン103.1gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.5gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(x)を得た。得られたポリイミド前駆体(x)の酸二無水物とジアミンのモル比、ポリイミド前駆体(x)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 10 Synthesis of polyimide precursor (x) 9.8 g of trimethylene-bis (4-aminobenzoate), poly (tetramethylene / 3-methyltetramethylene ether) glycol bis (4-aminobenzoate) 12 in a three-necked separable flask 9.9 g and γ-butyrolactone 103.1 g were added and stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 11.5 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (x). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (x), the solid content of the polyimide precursor (x) solution, and the weight average molecular weight.
合成例11 ポリイミド前駆体(xi)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)10.1g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート13.3g、γ-ブチロラクトン105.7gを入れ、均一溶液になるまで攪拌した。次に、ブタンジオール-ビス-無水トリメリット酸エステル10g、デカンジオール-ビス-無水トリメリット酸エステル11.9gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xi)を得た。得られたポリイミド前駆体(xi)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xi)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 11 Synthesis of polyimide precursor (xi) In a three-necked separable flask, 10.1 g of trimethylene-bis (4-aminobenzoate), 13.3 g of polytetramethylene oxide-di-p-aminobenzoate, 105.7 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of butanediol-bis-trimellitic anhydride ester and 11.9 g of decanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, a polyimide precursor (xi) was obtained by pressure filtration of the product with a 5 μm filter. Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xi), the solid content of the polyimide precursor (xi) solution, and the weight average molecular weight.
合成例12 ポリイミド前駆体(xii)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.9g、γ-ブチロラクトン110.4gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、イコサンジオール-ビス-無水トリメリット酸エステル14.6gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xii)を得た。得られたポリイミド前駆体(xii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 12 Synthesis of Polyimide Precursor (xii) 9.8 g of trimethylene-bis (4-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 110.4 g of γ-butyrolactone in a three-necked separable flask And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 14.6 g of icosanediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (xii). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xii), the solid content of the polyimide precursor (xii) solution, and the weight average molecular weight.
合成例13 ポリイミド前駆体(xiii)の合成
 三口セパラブルフラスコにトリメチレン-ビス(4-アミノベンゾエート)9.8g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート12.9g、γ-ブチロラクトン123.9gを入れ、均一溶液になるまで攪拌した。次に、ペンタンジオール-ビス-無水トリメリット酸エステル10g、ポリプロピレンジオール-ビス-無水トリメリット酸エステル20.4gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xiii)を得た。得られたポリイミド前駆体(xiii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xiii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 13 Synthesis of polyimide precursor (xiii) In a three-necked separable flask, 9.8 g of trimethylene-bis (4-aminobenzoate), 12.9 g of polytetramethylene oxide-di-p-aminobenzoate, 123.9 g of γ-butyrolactone And stirred until a homogeneous solution was obtained. Next, 10 g of pentanediol-bis-trimellitic anhydride ester and 20.4 g of polypropylenediol-bis-trimellitic anhydride ester were added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (xiii). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (xiii), the solid content of the polyimide precursor (xiii) solution, and the weight average molecular weight.
合成例14 ポリイミド前駆体(xiv)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン9.4g、γ-ブチロラクトン73gを入れ、均一溶液になるまで攪拌した。次に、4,4’-オキシジフタル酸二無水物10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xiv)を得た。得られたポリイミド前駆体(xiv)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xiv)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 14 Synthesis of polyimide precursor (xiv) 9.4 g of 1,3-bis (3-aminophenoxy) benzene and 73 g of γ-butyrolactone were placed in a three-necked separable flask and stirred until a uniform solution was obtained. Next, 10 g of 4,4′-oxydiphthalic dianhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (xiv). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xiv), the solid content of the polyimide precursor (xiv) solution, and the weight average molecular weight.
合成例15 ポリイミド前駆体(xv)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン7.1g、γ-ブチロラクトン64.3gを入れ、均一溶液になるまで攪拌した。次に、エチレンジオール-ビス-トリメリット酸エステル10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xv)を得た。得られたポリイミド前駆体(xv)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xv)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 15 Synthesis of Polyimide Precursor (xv) In a three-necked separable flask, 7.1 g of 1,3-bis (3-aminophenoxy) benzene and 64.3 g of γ-butyrolactone were added and stirred until a uniform solution was obtained. Next, 10 g of ethylenediol-bis-trimellitic acid ester was added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, the product was subjected to pressure filtration with a 5 μm filter to obtain a polyimide precursor (xv). Table 1 shows the molar ratio of the acid dianhydride and diamine of the obtained polyimide precursor (xv), the solid content of the polyimide precursor (xv) solution, and the weight average molecular weight.
合成例16 ポリイミド前駆体(xvi)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン2.7g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート26.3g、γ-ブチロラクトン91.0gを入れ、均一溶液になるまで攪拌した。次に、4,4’-オキシジフタル酸二無水物10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xvi)を得た。得られたポリイミド前駆体(xvi)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xvi)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 16 Synthesis of polyimide precursor (xvi) In a three-necked separable flask, 2.7 g of 1,3-bis (3-aminophenoxy) benzene, 26.3 g of polytetramethylene oxide-di-p-aminobenzoate, γ-butyrolactone 91.0 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of 4,4′-oxydiphthalic dianhydride was added, and the mixture was stirred for 1 hour while cooling with ice and then for 6 hours at room temperature. Next, the product was pressure filtered through a 5 μm filter to obtain a polyimide precursor (xvi). Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xvi), the solid content of the polyimide precursor (xvi) solution, and the weight average molecular weight.
合成例17 ポリイミド前駆体(xvii)の合成
 三口セパラブルフラスコに1,3-ビス(3-アミノフェノキシ)ベンゼン2.0g、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート19.9g、γ-ブチロラクトン74.4gを入れ、均一溶液になるまで攪拌した。次に、エチレンジオール-ビス-トリメリット酸エステル10gを加え、氷冷しながら1時間、その後室温で6時間攪拌した。次に生成物を5μmのフィルターで加圧ろ過することでポリイミド前駆体(xvii)を得た。得られたポリイミド前駆体(xvii)の酸二無水物とジアミンのモル比、ポリイミド前駆体(xvii)溶液の固形分、及び重量平均分子量を表1に示す。
Synthesis Example 17 Synthesis of polyimide precursor (xvii) In a three-necked separable flask, 2.0 g of 1,3-bis (3-aminophenoxy) benzene, 19.9 g of polytetramethylene oxide-di-p-aminobenzoate, γ-butyrolactone 74.4 g was added and stirred until a homogeneous solution was obtained. Next, 10 g of ethylenediol-bis-trimellitic acid ester was added, and the mixture was stirred for 1 hour with ice cooling and then for 6 hours at room temperature. Next, a polyimide precursor (xvii) was obtained by pressure filtration of the product with a 5 μm filter. Table 1 shows the molar ratio between the acid dianhydride and diamine of the obtained polyimide precursor (xvii), the solid content of the polyimide precursor (xvii) solution, and the weight average molecular weight.
(感光性ポリイミド前駆体組成物の調合)
 はじめに所定量のポリイミド前駆体をガラス瓶などの容器に小分けする。次に、感光剤や溶解抑止剤などの添加剤を所定量配合し、ミックスローターなどにより均一になるまで攪拌する。これらの操作により感光性ポリイミド前駆体組成物を得ることが出来る。
(Preparation of photosensitive polyimide precursor composition)
First, a predetermined amount of polyimide precursor is subdivided into a container such as a glass bottle. Next, a predetermined amount of additives such as a photosensitizer and a dissolution inhibitor are blended, and the mixture is stirred with a mix rotor until uniform. By these operations, a photosensitive polyimide precursor composition can be obtained.
(重量平均分子量の測定)
1:ポリイミド前駆体の重量平均分子量測定
 合成したポリイミド前駆体0.01gを精密天秤により計測し、10gのジメチルホルムアミド(和光純薬工業社製)に溶解させた。この溶液を10μmのフィルターを通してろ過し、TSK-GEL SUPER HM-H(商品名 東ソー社製)を備えたゲルパーミエーションクロマトグラフィー(日本分光社製)により分子量を測定した。
(Measurement of weight average molecular weight)
1: Weight average molecular weight measurement of polyimide precursor 0.01 g of the synthesized polyimide precursor was measured with a precision balance and dissolved in 10 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.). This solution was filtered through a 10 μm filter, and the molecular weight was measured by gel permeation chromatography (manufactured by JASCO Corporation) equipped with TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation).
2:感光性ポリイミド前駆体組成物の重量平均分子量測定
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
2: Weight average molecular weight measurement of photosensitive polyimide precursor composition Coating: A polyester film (manufactured by Unitika) placed on a coating table (manufactured by MATSUKI SCIENCE CO., LTD.) That can be vacuum-adsorbed and heated, and vacuum-adsorbed to form the polyester film. Was pasted. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 分子量測定:脱溶剤後に得られた感光性ポリイミド前駆体組成物0.01gを精密天秤により計測し、10gのジメチルホルムアミド(和光純薬工業社製)に溶解させた。この溶液を10μmのフィルターを通してろ過し、TSK-GEL SUPER HM-H(商品名 東ソー社製)を備えたゲルパーミエーションクロマトグラフィー(日本分光社製)により分子量を測定した。 Molecular weight measurement: 0.01 g of the photosensitive polyimide precursor composition obtained after solvent removal was measured with a precision balance and dissolved in 10 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.). This solution was filtered through a 10 μm filter, and the molecular weight was measured by gel permeation chromatography (manufactured by JASCO Corporation) equipped with TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation).
 分子量比の算出:感光性ポリイミド前駆体組成物ワニスの重量平均分子量M1、脱溶剤後の当該感光性ポリイミド前駆体組成物の重量平均分子量M2としたとき、分子量比を以下の式1により算出した。
 分子量比 = M2/M1
Calculation of molecular weight ratio: When the weight average molecular weight M1 of the photosensitive polyimide precursor composition varnish and the weight average molecular weight M2 of the photosensitive polyimide precursor composition after solvent removal are set, the molecular weight ratio was calculated by the following formula 1. .
Molecular weight ratio = M2 / M1
(折り曲げ試験)
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが100μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
(Bending test)
Coating: A polyester film (manufactured by Unitika Co., Ltd.) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) capable of vacuum adsorption and heating, and the polyester film was adhered by vacuum adsorption. On the polyester film, a photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 100 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 折り曲げ試験:脱溶剤後に得られたフィルムを180度に折り曲げ(ハゼ折り)、感光層の割れ、剥れを目視にて観察した。割れ、剥れがない場合○、割れ、剥れがあった場合×とした。 Bending test: The film obtained after solvent removal was bent at 180 degrees (goose folding), and cracking and peeling of the photosensitive layer were visually observed. When there was no crack and peeling, it was marked as “Good”, and when there was crack and peeling, it was marked as “X”.
(反り評価)
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
(Warp evaluation)
Coating: A polyester film (manufactured by Unitika Co., Ltd.) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) capable of vacuum adsorption and heating, and the polyester film was adhered by vacuum adsorption. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 真空プレス:基材にポリイミドフィルム(Kapton EN-100 商品名 東レ・デュポン社製)を用い、真空プレス機(SA-501 テスター産業社製)により、脱溶剤工程で得られた感光性ドライフィルムをプレス温度100℃、プレス圧力0.5MPa、真空度15kPa、プレス時間1分の条件で、真空プレスを行った。 Vacuum press: Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process by a vacuum press (SA-501, manufactured by Tester Sangyo Co., Ltd.) Vacuum pressing was performed under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
 ベイク:乾燥機(SPH-201 エスペック社製)を用いて、表5に示す条件でキュアを行った。 Bake: Curing was performed under the conditions shown in Table 5 using a dryer (SPH-201, manufactured by Espec).
 反りの測定:ベイク後に得られたフィルムを長さ5cm、幅5cmに切り取り、静電気を取り除いた後、フィルムの反りを、定規を用いて測定した。 Measurement of warpage: The film obtained after baking was cut into a length of 5 cm and a width of 5 cm, static electricity was removed, and the warpage of the film was measured using a ruler.
(実施例1)
 ポリイミド前駆体と感光剤からなる感光性ポリイミド前駆体組成物の評価
 合成例1から3で得たポリイミド前駆体溶液10g、感光剤としてポリイミド前駆体固形分に対して20質量部のキノンジアジド化合物(式16)0.42gを表2で示す割合で混合し、20ccガラス瓶に入れ、ミックスローター(MR-5 アズワン社製)により均一になるまで攪拌し感光性ポリイミド前駆体組成物(1から3)を得た。評価結果を表2に示す。
Example 1
Evaluation of Photosensitive Polyimide Precursor Composition Comprising Polyimide Precursor and Photosensitizer 10 g of the polyimide precursor solution obtained in Synthesis Examples 1 to 3, and 20 parts by mass of a quinonediazide compound (formula) based on the polyimide precursor solid content as a photosensitizer 16) 0.42 g was mixed in the ratio shown in Table 2, put into a 20 cc glass bottle, stirred with a mix rotor (MR-5, manufactured by ASONE) until uniform, and a photosensitive polyimide precursor composition (1 to 3) was prepared. Obtained. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(実施例2)
 溶解抑止剤に3’-ヒドロキシアセトアニリドを用いた感光性ポリイミド前駆体組成物の評価
 合成例1から3で得たポリイミド前駆体溶液10g、感光剤としてポリイミド前駆体固形分に対して20質量部のキノンジアジド化合物(式16)0.42g、ポリイミド前駆体に対して12.5質量部の3’-ヒドロキシアセトアニリド0.26gを表3で示す割合で混合し、20ccガラス瓶に入れ、ミックスローター(MR-5 アズワン社製)により均一になるまで攪拌し感光性ポリイミド前駆体組成物(4から6)を得た。評価結果を表3に示す。
(Example 2)
Evaluation of Photosensitive Polyimide Precursor Composition Using 3′-Hydroxyacetanilide as Dissolution Inhibitor 10 g of the polyimide precursor solution obtained in Synthesis Examples 1 to 3 and 20 parts by mass with respect to the polyimide precursor solid content as a photosensitive agent 0.42 g of the quinonediazide compound (formula 16) and 12.5 parts by mass of 3′-hydroxyacetanilide 0.26 g with respect to the polyimide precursor were mixed in the ratio shown in Table 3, and placed in a 20 cc glass bottle. No. 5 manufactured by ASONE Co., Ltd.) until stirring to obtain a photosensitive polyimide precursor composition (4 to 6). The evaluation results are shown in Table 3.
(実施例3)
フェノール化合物を用いた感光性ポリイミド前駆体組成物の評価
 合成例1から3で得たポリイミド前駆体溶液10g、感光剤としてポリイミド前駆体固形分に対して20質量部の上記一般式(16)で表されるキノンジアジド化合物0.42g、ポリイミド前駆体に対して20質量部の下記一般式(17)で表されるフェノール化合物0.42gを表4で示す割合で混合し、20ccガラス瓶に入れ、ミックスローター(MR-5 アズワン社製)により均一になるまで攪拌し感光性ポリイミド前駆体組成物(7から9)を得た。評価結果を表4に示す。
(Example 3)
Evaluation of Photosensitive Polyimide Precursor Composition Using Phenol Compound 10 g of the polyimide precursor solution obtained in Synthesis Examples 1 to 3, and 20 parts by mass of the general formula (16) based on the polyimide precursor solid content as a photosensitizer 0.42 g of the quinonediazide compound represented, and 0.42 g of the phenol compound represented by the following general formula (17) with respect to the polyimide precursor are mixed at a ratio shown in Table 4, and the mixture is put into a 20 cc glass bottle and mixed. The mixture was stirred until it became uniform with a rotor (MR-5, manufactured by ASONE) to obtain a photosensitive polyimide precursor composition (7 to 9). The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(比較例1)
 合成例14から15で得たポリイミド前駆体溶液10gを用いる以外は実施例1と同様にして表2に示す感光性ポリイミド前駆体組成物(10から11)を得た。評価結果を表2に示す。
(Comparative Example 1)
A photosensitive polyimide precursor composition (10 to 11) shown in Table 2 was obtained in the same manner as in Example 1 except that 10 g of the polyimide precursor solution obtained in Synthesis Examples 14 to 15 was used. The evaluation results are shown in Table 2.
(比較例2)
 合成例14から15で得たポリイミド前駆体溶液10gを用いる以外は実施例2と同様にして表3に示す感光性ポリイミド前駆体組成物(12から13)を得た。評価結果を表3に示す。
(Comparative Example 2)
A photosensitive polyimide precursor composition (12 to 13) shown in Table 3 was obtained in the same manner as in Example 2 except that 10 g of the polyimide precursor solution obtained in Synthesis Examples 14 to 15 was used. The evaluation results are shown in Table 3.
(比較例3)
 合成例14から15で得たポリイミド前駆体溶液10gを用いる以外は実施例3と同様にして表4に示す感光性ポリイミド前駆体組成物(14から15)を得た。評価結果を表4に示す。
(Comparative Example 3)
A photosensitive polyimide precursor composition (14 to 15) shown in Table 4 was obtained in the same manner as in Example 3 except that 10 g of the polyimide precursor solution obtained in Synthesis Examples 14 to 15 was used. The evaluation results are shown in Table 4.
 感光性ポリイミド前駆体組成物をフレキシブルプリント配線板のカバーフィルムなどに用いる場合、アルカリ水溶液からなる現像液でのリソグラフィーにより所望のパターンを得ることが必要となる。また、当該組成物の分子量が経時的に変化しないことの他にも、タック性に優れること、ベイク後にカバーフィルムを積層した積層体が反らないこと、屈曲させても剥れ、割れが生じないこと、積層体が燃えないことなどの性能が求められる。 When the photosensitive polyimide precursor composition is used for a cover film of a flexible printed wiring board, it is necessary to obtain a desired pattern by lithography with a developer composed of an alkaline aqueous solution. In addition to the fact that the molecular weight of the composition does not change over time, it is excellent in tackiness, the laminate in which the cover film is laminated after baking is not warped, and peels off even when bent and cracks occur. There are demands for performance such as lack of heat and the ability of the laminate to burn.
(感光性ポリイミド前駆体組成物の性能評価)
1)材料安定性の評価
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
(Performance evaluation of photosensitive polyimide precursor composition)
1) Evaluation of material stability Coating: A polyester film (manufactured by Unitika Co., Ltd.) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum adsorption. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 分子量測定:脱溶剤後に得られた感光性ポリイミド前駆体組成物0.01gを精密天秤により計測し、10gのジメチルホルムアミド(和光純薬工業社製)に溶解させた。この溶液を10μmのフィルターを通してろ過し、TSK-GEL SUPER HM-H(商品名 東ソー社製)を備えたゲルパーミエーションクロマトグラフィー(日本分光社製)により分子量を測定した。 Molecular weight measurement: 0.01 g of the photosensitive polyimide precursor composition obtained after solvent removal was measured with a precision balance and dissolved in 10 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.). This solution was filtered through a 10 μm filter, and the molecular weight was measured by gel permeation chromatography (manufactured by JASCO Corporation) equipped with TSK-GEL SUPER HM-H (trade name, manufactured by Tosoh Corporation).
 分子量比の算出:感光性ポリイミド前駆体組成物ワニスの重量平均分子量M1、脱溶剤後の当該感光性ポリイミド前駆体組成物の重量平均分子量M2としたとき、分子量比を以下の式1により算出した。
 分子量比 = M2/M1
Calculation of molecular weight ratio: When the weight average molecular weight M1 of the photosensitive polyimide precursor composition varnish and the weight average molecular weight M2 of the photosensitive polyimide precursor composition after solvent removal are set, the molecular weight ratio was calculated by the following formula 1. .
Molecular weight ratio = M2 / M1
2:リソグラフィー性能評価
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
2: Lithographic performance evaluation Coating: A polyester film (manufactured by Unitika) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum-adsorbing. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 真空プレス:はじめに15wt%の過硫酸ナトリウム水溶液によりFCCLを洗浄した。次に、真空プレス機(SA-501 テスター産業社製)により、脱溶剤工程で得られた感光性ドライフィルムをプレス温度100℃、プレス圧力0.5MPa、真空度15kPa、プレス時間1分の条件で真空プレスを行った。 Vacuum press: First, FCCL was washed with a 15 wt% sodium persulfate aqueous solution. Next, the photosensitive dry film obtained in the solvent removal step was subjected to a press temperature of 100 ° C., a press pressure of 0.5 MPa, a vacuum degree of 15 kPa, and a press time of 1 minute using a vacuum press machine (SA-501, manufactured by Tester Sangyo Co., Ltd.). A vacuum press was performed.
 活性光線照射:真空プレス工程で得られた積層体の支持フィルムを剥し、超高圧水銀灯(HMW-201KB オーク社製)を用いて露光量1.5J/cmの条件で紫外線を照射した。 Actinic ray irradiation: The support film of the laminate obtained in the vacuum pressing process was peeled off, and irradiated with ultraviolet rays under an exposure amount of 1.5 J / cm 2 using an ultrahigh pressure mercury lamp (manufactured by HMW-201KB Oak).
 リソグラフィー:スプレー型の現像機により、現像液に1wt%炭酸ナトリウム水溶液を用い、現像温度30℃、スプレー圧力0.18MPaの条件で、UV照射部分が完全に溶解するまでの時間(以下ブレークポイントと記載する)を計測した。次にブレークポイントの1.2倍の現像時間で現像を行った。現像後、スプレー式洗浄器にて蒸留水で現像時間×1/3の洗浄を行い、さらに0.2wt%硫酸水溶液により30秒の洗浄を行った。 Lithography: Using a spray-type developing machine, a time until a UV irradiation part is completely dissolved under the conditions of a developing temperature of 30 ° C. and a spray pressure of 0.18 MPa using a 1 wt% sodium carbonate aqueous solution as a developing solution (hereinafter referred to as a breakpoint) To be described). Next, development was performed with a development time 1.2 times the breakpoint. After development, washing was performed for 1/3 of the development time with distilled water in a spray type washer, and further for 30 seconds with a 0.2 wt% aqueous sulfuric acid solution.
 リソグラフィー性能:リソグラフィー性能を現像時間、残膜率及びパターン形状により判断した。 Lithographic performance: Lithographic performance was judged by development time, remaining film rate and pattern shape.
 現像時間:現像時間が90秒以下であった感光性ポリイミド前駆体組成物を○、90秒を越えた感光性ポリイミド前駆体組成物を×と表記した。 Development time: A photosensitive polyimide precursor composition having a development time of 90 seconds or less was indicated by ◯, and a photosensitive polyimide precursor composition having a development time exceeding 90 seconds was indicated by ×.
 残膜率測定:現像前の感光層の膜厚をT1、現像後の感光層の膜厚をT2として以下の数式により算出した。
 残膜率 = T2/T1×100(%)
Residual film ratio measurement: The film thickness of the photosensitive layer before development was T1, and the film thickness of the photosensitive layer after development was T2.
Remaining film ratio = T2 / T1 x 100 (%)
 パターン形状:リソグラフィー後のパターンを光学顕微鏡(ECLIPS LV100 ニコン社製)を用い、明視野、100倍の条件で100μmサークルパターンの形状観察を実施した。パターンの形状を保持している物を○、崩れてしまった物を×と表記した。 Pattern shape: The pattern after lithography was observed using a light microscope (ECLIPS LV100, manufactured by Nikon Corp.) with a bright field at 100 times the shape of a 100 μm circle pattern. An object holding the shape of the pattern was indicated as “◯”, and an object that collapsed was indicated as “X”.
3:感光性ドライフィルムのタック性評価
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
3: Evaluation of tackiness of photosensitive dry film Coating: A polyester film (manufactured by Unitika) was placed on a coating table (manufactured by Matsuki Kagaku) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum-adsorbing. . On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 タック性評価:脱溶剤後の感光層のタック有無を触診にて評価した。指紋がついたものを×、指紋がつかなかったものを○と表記した。 Evaluation of tackiness: The presence or absence of tackiness of the photosensitive layer after solvent removal was evaluated by palpation. Those with fingerprints were marked with ×, and those without fingerprints were marked with ○.
4:耐折性評価
 キュア:リソグラフィー後に、乾燥機(SPH-201 エスペック社製)を用いて表5に示す条件でキュアを行った。
4: Evaluation of folding resistance Cure: After lithography, curing was performed under the conditions shown in Table 5 using a dryer (SPH-201 manufactured by Espec).
 折り曲げ試験:キュア後に得られたフィルムを180度に折り曲げ(ハゼ折り)、カバーフィルムの割れ、剥れを目視にて観察した。割れ、剥れがない場合○、割れ、剥れがあった場合×とした。 Bending test: The film obtained after curing was bent at 180 degrees (haze fold), and the cover film was visually observed for cracking and peeling. When there was no crack and peeling, it was marked as “Good”, and when there was crack and peeling, it was marked as “X”.
5:反り評価
 塗工:真空吸着及び加熱できる塗工台(マツキ科学社製)にポリエステルフィルム(ユニチカ社製)を置き、真空吸着させることで該ポリエステルフィルムを貼り付けた。該ポリエステルフィルム上に、ギャップが67.5μmのアプリケーター(マツキ科学社製)を用いて感光性ポリイミド前駆体組成物を塗布した。
5: Warpage evaluation Coating: A polyester film (manufactured by Unitika Ltd.) was placed on a coating table (manufactured by Matsuki Kagaku Co., Ltd.) that can be vacuum-adsorbed and heated, and the polyester film was adhered by vacuum-adsorbing. On the polyester film, the photosensitive polyimide precursor composition was applied using an applicator (manufactured by Matsuki Scientific Co., Ltd.) having a gap of 67.5 μm.
 脱溶剤:乾燥機(SPH-201、エスペック社製)で、95℃で30分の条件で脱溶剤を行った。 Solvent removal: Solvent removal was performed with a dryer (SPH-201, manufactured by Espec Corp.) at 95 ° C. for 30 minutes.
 真空プレス:基材にポリイミドフィルム(Kapton EN-100 商品名 東レ・デュポン社製)を用い、真空プレス機(SA-501 テスター産業社製)により、脱溶剤工程で得られた感光性ドライフィルムをプレス温度100℃、プレス圧力0.5MPa、真空度15kPa、プレス時間1分の条件で、真空プレスを行った。 Vacuum press: Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process by a vacuum press (SA-501, manufactured by Tester Sangyo Co., Ltd.) Vacuum pressing was performed under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
 ベイク:乾燥機(SPH-201 エスペック社製)を用いて、表5に示す条件でキュアを行った。 Bake: Curing was performed under the conditions shown in Table 5 using a dryer (SPH-201, manufactured by Espec).
 反りの測定:ベイク後に得られたフィルムを長さ5cm、幅5cmに切り取り、静電気を取り除いた後、フィルムの反りを、定規を用いて測定した。 Measurement of warpage: The film obtained after baking was cut into a length of 5 cm and a width of 5 cm, static electricity was removed, and the warpage of the film was measured using a ruler.
6:難燃性評価
 塗工、脱溶剤までは反りの評価と同様に実施した。
 真空プレス:基材にポリイミドフィルム(Kapton EN-100 商品名 東レ・デュポン社製)を用い、真空プレス機(SA-501 テスター産業社製)により、脱溶剤工程で得られた感光性ドライフィルムをプレス温度100℃、プレス圧力0.5MPa、真空度15kPa、プレス時間1分の条件で、ポリイミドフィルムの両面に真空プレスを行った。
6: Flame retardancy evaluation The coating and solvent removal were performed in the same manner as the warpage evaluation.
Vacuum press: Using a polyimide film (Kapton EN-100, trade name, manufactured by Toray DuPont) as a base material, the photosensitive dry film obtained in the solvent removal process was obtained using a vacuum press (SA-501 Tester Sangyo Co., Ltd.). Vacuum pressing was performed on both sides of the polyimide film under the conditions of a pressing temperature of 100 ° C., a pressing pressure of 0.5 MPa, a degree of vacuum of 15 kPa, and a pressing time of 1 minute.
 ベイク:乾燥機(SPH-201 エスペック社製)を用いて、表5に示す条件でキュアを行った。 Bake: Curing was performed under the conditions shown in Table 5 using a dryer (SPH-201, manufactured by Espec).
 難燃性試験:ベイク工程で得られたフィルムを幅1cm、長さ5cmに切り取った。次に試験片の一端に火を着け延焼する過程を目視にて観察した。途中で消炎した試料を○、全て燃えてしまった試料を×とした。 Flame retardance test: The film obtained in the baking process was cut into a width of 1 cm and a length of 5 cm. Next, the process of igniting one end of the test piece and spreading it was visually observed. A sample that was extinguished during the course was marked with ◯, and a sample that had all burned was marked with ×.
(実施例4~実施例22)
 合成例2から合成例13で得たポリイミド前駆体溶液10gに対して、種々の添加剤を表6-1に示す割合で混合し、20ccガラス瓶に入れ、ミックスローター(MR-5 アズワン社製)により均一になるまで攪拌し、感光性ポリイミド前駆体組成物(16から34)を得た。これらの感光性ポリイミド前駆体組成物の評価結果を表7-1に示す。
(Examples 4 to 22)
To 10 g of the polyimide precursor solution obtained in Synthesis Example 2 to Synthesis Example 13, various additives were mixed in the proportions shown in Table 6-1 and placed in a 20 cc glass bottle, and a mix rotor (manufactured by MR-5 ASONE) To obtain a photosensitive polyimide precursor composition (16 to 34). Table 7-1 shows the evaluation results of these photosensitive polyimide precursor compositions.
(比較例4~比較例7)
 合成例16から合成例17で得たポリイミド前駆体溶液10gに対して、種々の添加剤を表6-2に示す割合で混合し、20ccガラス瓶に入れ、ミックスローター(MR-5 アズワン社製)により均一になるまで攪拌し、感光性ポリイミド前駆体組成物(35から38)を得た。これらの感光性ポリイミド前駆体組成物の評価結果を表7-2に示す。
(Comparative Examples 4 to 7)
Various additives were mixed in the proportions shown in Table 6-2 with 10 g of the polyimide precursor solution obtained in Synthesis Example 16 to Synthesis Example 17, and placed in a 20 cc glass bottle. Mix rotor (manufactured by MR-5 ASONE) To obtain a photosensitive polyimide precursor composition (35 to 38). The evaluation results of these photosensitive polyimide precursor compositions are shown in Table 7-2.
 なお、実施例4~実施例22及び、比較例4~比較例7においては、下記式(18)~式(27)の化合物を添加剤として使用した。 In Examples 4 to 22 and Comparative Examples 4 to 7, compounds of the following formulas (18) to (27) were used as additives.
 溶解抑止剤1
Figure JPOXMLDOC01-appb-C000030
Dissolution inhibitor 1
Figure JPOXMLDOC01-appb-C000030
 溶解抑止剤2
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Dissolution inhibitor 2
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 難燃剤
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Flame retardants
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 熱塩基発生剤
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Thermal base generator
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 表2~表4に示すように、本発明に係るポリイミド前駆体を用いた実施例1~実施例3は、分子量の低下(M2/M1)がないことを示している。また、ハゼ折り強度も良好であった。この結果は、本発明に係る酸二無水物を用いることにより、脱溶剤時のポリイミド前駆体の分解が抑制され、分子量低下が抑制されたためと考えられる。一方、その他の酸二無水物を用いた比較例1~比較例3は、分子量が低下すると共にハゼ折り強度が低下していることが分かる。 As shown in Tables 2 to 4, Examples 1 to 3 using the polyimide precursor according to the present invention show no decrease in molecular weight (M2 / M1). Moreover, the goby folding strength was also good. This result is considered to be because by using the acid dianhydride according to the present invention, decomposition of the polyimide precursor at the time of solvent removal was suppressed and molecular weight reduction was suppressed. On the other hand, in Comparative Examples 1 to 3 using other acid dianhydrides, it can be seen that the molecular weight decreases and the goby folding strength decreases.
 また、表7-1、表7-2に示すように、本発明に係るポリイミド前駆体組成物を用いた、実施例4~実施例22は、残膜率が良好であることを示している。特に、実施例8においては、溶解抑止剤を添加せずに残膜率90%となっている。これらの結果は、本発明に係る酸二無水物を用いることにより、現像工程でのポリイミド前駆体の分解が抑制されたためと考えられる。実施例4~実施例22はタック性も良好であることを示している。一方、その他の酸二無水物を用いたいずれの条件においても、残膜率が低下し、タック性が悪いことを示している。 Further, as shown in Table 7-1 and Table 7-2, Examples 4 to 22 using the polyimide precursor composition according to the present invention show that the remaining film ratio is good. . In particular, in Example 8, the remaining film ratio is 90% without adding a dissolution inhibitor. These results are considered to be because decomposition of the polyimide precursor in the development process was suppressed by using the acid dianhydride according to the present invention. Examples 4 to 22 show that the tackiness is also good. On the other hand, under any conditions using other acid dianhydrides, the remaining film ratio is reduced, indicating that the tackiness is poor.
 本発明のポリイミド前駆体は、半導体装置の表面保護膜、層間絶縁膜、及び再配線用絶縁膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、並びに液晶配向膜などとして好適に利用できる。 The polyimide precursor of the present invention includes a surface protective film for a semiconductor device, an interlayer insulating film, a rewiring insulating film, a protective film for a device having a bump structure, an interlayer insulating film for a multilayer circuit, a cover coat for a flexible copper-clad plate, Moreover, it can utilize suitably as a liquid crystal aligning film etc.

Claims (12)

  1.  下記一般式(1)で表される酸二無水物を含むことを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、炭素数が3から30のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
    A polyimide precursor comprising an acid dianhydride represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (X is a divalent organic group having an alkylene group having 3 to 30 carbon atoms. R 1 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
  2.  前記ポリイミド前駆体が、下記一般式(2)で表されるジアミンを含むことを特徴とする請求項1に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000002
    (Yは、炭素数が2から20のアルキレン基を有する2価の有機基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。)
    The said polyimide precursor contains the diamine represented by following General formula (2), The polyimide precursor of Claim 1 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000002
    (Y is a divalent organic group having an alkylene group having 2 to 20 carbon atoms. R 2 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. .)
  3.  前記ポリイミド前駆体が、下記一般式(3)で表される酸二無水物を含むことを特徴とする請求項1または請求項2に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
    (aは1から20の整数を表す。bは3から30の整数を表す。Rは水素原子または炭素数が1から10の1価のアルキル基を表す。)
    The said polyimide precursor contains the acid dianhydride represented by following General formula (3), The polyimide precursor of Claim 1 or Claim 2 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000003
    (A represents an integer of 1 to 20. b represents an integer of 3 to 30. R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.)
  4.  前記ポリイミド前駆体が、下記一般式(4)で表されるジアミンを含むことを特徴とする請求項1または請求項2に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
    (Zは、炭素数が2から20のアルキレン基である。Rは水素原子、炭素数が1から10の1価のアルキル基、アルコキシ基、またはハロゲン基を表す。cは2から30の整数を表す。)
    The said polyimide precursor contains the diamine represented by following General formula (4), The polyimide precursor of Claim 1 or Claim 2 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000004
    (Z represents an alkylene group having 2 to 20 carbon atoms. R 4 represents a hydrogen atom, a monovalent alkyl group having 1 to 10 carbon atoms, an alkoxy group, or a halogen group. C represents 2 to 30 carbon atoms. Represents an integer.)
  5.  前記ポリイミド前駆体が、下記一般式(3)で表される酸二無水物を含むことを特徴とする請求項2に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000005
    (aは1から15の整数を表す。bは5から20の整数を表す。Rは水素原子または炭素数が1から10の1価のアルキル基を表す。)
    The said polyimide precursor contains the acid dianhydride represented by following General formula (3), The polyimide precursor of Claim 2 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000005
    (A represents an integer of 1 to 15. b represents an integer of 5 to 20. R 3 represents a hydrogen atom or a monovalent alkyl group having 1 to 10 carbon atoms.)
  6.  上記一般式(4)で表されるジアミンが全ジアミン成分のうち、25モル%から75モル%であることを特徴とする請求項4に記載のポリイミド前駆体。 The polyimide precursor according to claim 4, wherein the diamine represented by the general formula (4) is 25 mol% to 75 mol% of all diamine components.
  7.  請求項1または請求項2若しくは請求項5のいずれかに記載のポリイミド前駆体100質量部と、感光剤5質量部~35質量部と、含有してなることを特徴とする感光性ポリイミド前駆体組成物。 A photosensitive polyimide precursor comprising 100 parts by weight of the polyimide precursor according to claim 1, 2 or 5, and 5 to 35 parts by weight of a photosensitive agent. Composition.
  8.  前記感光剤が、キノンジアジド構造を含むことを特徴とする請求項7に記載の感光性ポリイミド前駆体組成物。 The photosensitive polyimide precursor composition according to claim 7, wherein the photosensitive agent contains a quinonediazide structure.
  9.  フェノール性水酸基を有する溶解抑止剤を含むことを特徴とする請求項7に記載の感光性ポリイミド前駆体組成物。 The photosensitive polyimide precursor composition according to claim 7, comprising a dissolution inhibitor having a phenolic hydroxyl group.
  10.  請求項7から請求項9のいずれかに記載の感光性ポリイミド前駆体組成物を支持フィルムに塗布、脱溶剤し、次いでカバーフィルムを積層することで得られることを特徴とする感光性ドライフィルム。 A photosensitive dry film obtained by coating the photosensitive polyimide precursor composition according to any one of claims 7 to 9 on a support film, removing the solvent, and then laminating a cover film.
  11.  請求項10に記載の感光性ドライフィルムを用いて形成されたことを特徴とするフレキシブルプリント配線基板。 A flexible printed wiring board formed using the photosensitive dry film according to claim 10.
  12.  ワニスでの重量平均分子量(Mw1)と120℃以下での脱溶媒後の重量平均分子量(Mw2)との間の比(Mw2/Mw1)が0.7以上であることを特徴とするポリイミド前駆体。 A polyimide precursor characterized in that the ratio (Mw2 / Mw1) between the weight average molecular weight (Mw1) in the varnish and the weight average molecular weight (Mw2) after desolvation at 120 ° C. or lower is 0.7 or more .
PCT/JP2009/058159 2008-05-09 2009-04-24 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials WO2009136557A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010511044A JP5417323B2 (en) 2008-05-09 2009-04-24 Photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed wiring board
CN2009801157178A CN102015835A (en) 2008-05-09 2009-04-24 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials
KR1020107024194A KR101308811B1 (en) 2008-05-09 2009-04-24 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008124016 2008-05-09
JP2008-124016 2008-05-09

Publications (1)

Publication Number Publication Date
WO2009136557A1 true WO2009136557A1 (en) 2009-11-12

Family

ID=41264612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058159 WO2009136557A1 (en) 2008-05-09 2009-04-24 Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials

Country Status (5)

Country Link
JP (2) JP5417323B2 (en)
KR (1) KR101308811B1 (en)
CN (1) CN102015835A (en)
TW (1) TWI384015B (en)
WO (1) WO2009136557A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059089A1 (en) * 2009-11-16 2011-05-19 旭化成イーマテリアルズ株式会社 Polyimide precursor and photosensitive resin composition containing the polyimide precursor
WO2011135887A1 (en) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 Photosensitive resin composition
JP2012185291A (en) * 2011-03-04 2012-09-27 Nof Corp Photosensitive resin composition and use thereof
JP2012247762A (en) * 2011-05-31 2012-12-13 Sumitomo Bakelite Co Ltd Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device and display body device
JP2013095894A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Polyimide precursor or polyimide and photosensitive resin composition
JP2013174774A (en) * 2012-02-27 2013-09-05 Nof Corp Photosensitive resin composition and use of the same
JP2014205827A (en) * 2013-03-21 2014-10-30 東洋紡株式会社 Transparent polyesterimide resin film, and resin and resin composition used for the same
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device
WO2019107250A1 (en) * 2017-11-28 2019-06-06 旭化成株式会社 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern
WO2022039028A1 (en) * 2020-08-17 2022-02-24 東レ株式会社 Photosensitive resin composition, cured product, display device, semiconductor device and method for producing cured product
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562784B (en) * 2011-03-31 2016-09-28 日产化学工业株式会社 Aligning agent for liquid crystal and use the liquid crystal orientation film of this aligning agent for liquid crystal
TWI486335B (en) * 2011-12-29 2015-06-01 Eternal Materials Co Ltd Base generator
JP2016080803A (en) * 2014-10-14 2016-05-16 太陽インキ製造株式会社 Dry film and flexible printed wiring board
TWI754734B (en) * 2017-03-29 2022-02-11 日商富士軟片股份有限公司 Photosensitive resin composition, cured film, laminated body, manufacturing method of cured film, and semiconductor device
JP6810677B2 (en) * 2017-12-05 2021-01-06 信越化学工業株式会社 New tetracarboxylic dianhydride, polyimide resin and its manufacturing method, photosensitive resin composition, pattern forming method and cured film forming method, interlayer insulating film, surface protective film, electronic parts
JP6958332B2 (en) * 2017-12-20 2021-11-02 Hdマイクロシステムズ株式会社 Photosensitive resin composition, manufacturing method of pattern cured film, cured film, interlayer insulating film, cover coat layer, surface protective film and electronic components
CN110857332B (en) * 2018-08-22 2022-10-21 臻鼎科技股份有限公司 Polymer resin, polymer resin composition and copper-clad plate
CN116789590B (en) * 2023-06-25 2024-02-02 波米科技有限公司 Diamine compound containing piperidine group, and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100061A (en) * 1994-09-28 1996-04-16 Hitachi Chem Co Ltd Block copolymer, its production, liquid crystal orientation material, liquid crystal orientation film, substrate sandwiched with liquid crystal sandwiched, and liquid crystal display element
JPH10330723A (en) * 1997-05-28 1998-12-15 Hitachi Chem Co Ltd Adhesive film
JP2005134742A (en) * 2003-10-31 2005-05-26 Nitto Denko Corp Photoresist and method for forming image by using the same
WO2007029614A1 (en) * 2005-09-05 2007-03-15 Asahi Kasei Emd Corporation Positive photosensitive resin composition
JP2007169585A (en) * 2005-09-20 2007-07-05 Manac Inc Polyesterimide having low liner thermal expansion coefficient and precursor thereof, and method for producing them
JP2007217476A (en) * 2006-02-14 2007-08-30 Kaneka Corp Novel polyimide resin
JP2008156425A (en) * 2006-12-21 2008-07-10 Asahi Kasei Corp Polyimide and photosensitive resin composition using the same
JP2008216984A (en) * 2007-02-09 2008-09-18 Sony Chemical & Information Device Corp Photosensitive polyimide resin composition
JP2008231420A (en) * 2007-02-22 2008-10-02 New Japan Chem Co Ltd Solvent-soluble polyimide copolymer and polyimide varnish containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206756A (en) * 2005-01-28 2006-08-10 Sony Chem Corp Polyimide compound and flexible wiring board
JP2009109592A (en) * 2007-10-26 2009-05-21 Asahi Kasei Corp Photosensitive resin composition, photosensitive dry film, photosensitive laminated film and coverlay using those
JP5068629B2 (en) * 2007-10-26 2012-11-07 旭化成イーマテリアルズ株式会社 Photosensitive resin composition, photosensitive dry film, photosensitive laminated film, and coverlay using the same
JP5065853B2 (en) * 2007-10-26 2012-11-07 旭化成イーマテリアルズ株式会社 Photosensitive polyamic acid composition and photosensitive dry film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100061A (en) * 1994-09-28 1996-04-16 Hitachi Chem Co Ltd Block copolymer, its production, liquid crystal orientation material, liquid crystal orientation film, substrate sandwiched with liquid crystal sandwiched, and liquid crystal display element
JPH10330723A (en) * 1997-05-28 1998-12-15 Hitachi Chem Co Ltd Adhesive film
JP2005134742A (en) * 2003-10-31 2005-05-26 Nitto Denko Corp Photoresist and method for forming image by using the same
WO2007029614A1 (en) * 2005-09-05 2007-03-15 Asahi Kasei Emd Corporation Positive photosensitive resin composition
JP2007169585A (en) * 2005-09-20 2007-07-05 Manac Inc Polyesterimide having low liner thermal expansion coefficient and precursor thereof, and method for producing them
JP2007217476A (en) * 2006-02-14 2007-08-30 Kaneka Corp Novel polyimide resin
JP2008156425A (en) * 2006-12-21 2008-07-10 Asahi Kasei Corp Polyimide and photosensitive resin composition using the same
JP2008216984A (en) * 2007-02-09 2008-09-18 Sony Chemical & Information Device Corp Photosensitive polyimide resin composition
JP2008231420A (en) * 2007-02-22 2008-10-02 New Japan Chem Co Ltd Solvent-soluble polyimide copolymer and polyimide varnish containing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392539B1 (en) 2009-11-16 2014-05-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and photosensitive resin composition containing the polyimide precursor
WO2011059089A1 (en) * 2009-11-16 2011-05-19 旭化成イーマテリアルズ株式会社 Polyimide precursor and photosensitive resin composition containing the polyimide precursor
JP5758300B2 (en) * 2009-11-16 2015-08-05 旭化成イーマテリアルズ株式会社 Photosensitive resin composition containing polyimide precursor, photosensitive film, coverlay, flexible printed wiring board, and laminate thereof
WO2011135887A1 (en) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 Photosensitive resin composition
JP2012027490A (en) * 2010-04-28 2012-02-09 Asahi Kasei E-Materials Corp Photosensitive resin composition
CN102439520A (en) * 2010-04-28 2012-05-02 旭化成电子材料株式会社 Photosensitive resin composition
CN102439520B (en) * 2010-04-28 2014-08-27 旭化成电子材料株式会社 Photosensitive resin composition
JP2012185291A (en) * 2011-03-04 2012-09-27 Nof Corp Photosensitive resin composition and use thereof
JP2012247762A (en) * 2011-05-31 2012-12-13 Sumitomo Bakelite Co Ltd Positive photosensitive resin composition, cured film, protective film, insulating film, semiconductor device and display body device
JP2013095894A (en) * 2011-11-04 2013-05-20 Asahi Kasei E-Materials Corp Polyimide precursor or polyimide and photosensitive resin composition
JP2013174774A (en) * 2012-02-27 2013-09-05 Nof Corp Photosensitive resin composition and use of the same
JP2014205827A (en) * 2013-03-21 2014-10-30 東洋紡株式会社 Transparent polyesterimide resin film, and resin and resin composition used for the same
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device
JPWO2015199219A1 (en) * 2014-06-27 2017-06-01 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, method for producing cured film, and semiconductor device
WO2019107250A1 (en) * 2017-11-28 2019-06-06 旭化成株式会社 Negative photosensitive resin composition, method for producing said composition, and method for producing cured relief pattern
JPWO2019107250A1 (en) * 2017-11-28 2020-07-27 旭化成株式会社 Negative photosensitive resin composition, method for producing the same, and method for producing cured relief pattern
TWI700554B (en) * 2017-11-28 2020-08-01 日商旭化成股份有限公司 Negative photosensitive resin composition, its production method, and hardened relief pattern production method
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device
WO2022039028A1 (en) * 2020-08-17 2022-02-24 東レ株式会社 Photosensitive resin composition, cured product, display device, semiconductor device and method for producing cured product

Also Published As

Publication number Publication date
CN102015835A (en) 2011-04-13
TWI384015B (en) 2013-02-01
TW201006867A (en) 2010-02-16
JP5603977B2 (en) 2014-10-08
JP5417323B2 (en) 2014-02-12
KR20100125467A (en) 2010-11-30
JPWO2009136557A1 (en) 2011-09-08
KR101308811B1 (en) 2013-09-13
JP2013241607A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5603977B2 (en) Polyimide precursor
JP5497312B2 (en) Flexible printed circuit board
JP5123846B2 (en) Photosensitive resin composition and photosensitive film
JPWO2009054487A1 (en) Polyimide precursor and photosensitive resin composition containing polyimide precursor
JP6743692B2 (en) Photosensitive resin composition, photosensitive sheet, semiconductor device, and method for manufacturing semiconductor device
JP2008156425A (en) Polyimide and photosensitive resin composition using the same
JP5576181B2 (en) Photosensitive resin composition and photosensitive film using the same
JP7151427B2 (en) Positive photosensitive resin composition, cured film, semiconductor device, and method for producing relief pattern of cured film
JP2011208025A (en) Polyimide precursor and photosensitive resin composition produced by using polyimide precursor
EP1705204B1 (en) Photosensitive resin and a method of preparing the same
JP5179843B2 (en) Photosensitive resin composition and photosensitive film using the same
JP5068629B2 (en) Photosensitive resin composition, photosensitive dry film, photosensitive laminated film, and coverlay using the same
JP5065853B2 (en) Photosensitive polyamic acid composition and photosensitive dry film
JP5571431B2 (en) Photosensitive resin composition
JP2010031216A (en) Thermosetting solder resist composition, film for forming solder resist, method for forming solder resist, and circuit board
JP2011209521A (en) Positive photosensitive resin composition
JP2009109592A (en) Photosensitive resin composition, photosensitive dry film, photosensitive laminated film and coverlay using those
JP5319103B2 (en) Photosensitive resin composition and photosensitive film using the same
JP5721459B2 (en) Photosensitive resin composition, cured product using the same, and multilayer material
JP5390964B2 (en) Photosensitive resin composition and photosensitive film using the same
JP2020094194A (en) Resin composition, resin sheet, cured film, cured film relief pattern manufacturing method, protective film, insulator film, electronic component, and display device
JP5179844B2 (en) Photosensitive resin composition and photosensitive film using the same
JP2008304569A (en) Photosensitive resin composition and its use
WO2008018352A1 (en) Photosensitive polyimide composition, positive photosensitive resin composition, and fpc
JP7370145B2 (en) Photosensitive resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115717.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511044

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107024194

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742681

Country of ref document: EP

Kind code of ref document: A1